WO2019004156A1 - Hydraulic drive system - Google Patents

Hydraulic drive system Download PDF

Info

Publication number
WO2019004156A1
WO2019004156A1 PCT/JP2018/024084 JP2018024084W WO2019004156A1 WO 2019004156 A1 WO2019004156 A1 WO 2019004156A1 JP 2018024084 W JP2018024084 W JP 2018024084W WO 2019004156 A1 WO2019004156 A1 WO 2019004156A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hydraulic
switching valve
state
closed loop
Prior art date
Application number
PCT/JP2018/024084
Other languages
French (fr)
Japanese (ja)
Inventor
信治 西田
亮介 楠本
武久 加藤
優樹 中山
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2019004156A1 publication Critical patent/WO2019004156A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/452Selectively controlling multiple pumps or motors, e.g. switching between series or parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a hydraulic drive system.
  • each part is driven by a hydraulic drive system.
  • a hydraulic drive system conventionally, there is one using a hydraulic continuously variable transmission (HST) in a traveling circuit and a turning circuit.
  • HST continuously variable transmission
  • Patent Document 1 discloses a hydraulic drive system configured to be able to regenerate kinetic energy at the time of turning and decelerating operation.
  • a bi-directional pump also referred to as an over-center pump
  • the engine also drives a supply pump that supplies hydraulic fluid to hydraulic actuators other than the swing motor.
  • the bidirectional pump is driven by the hydraulic oil discharged from the swing motor during the swing decelerating operation.
  • the bidirectional pump functions as a motor, and the kinetic energy at the time of the swing decelerating operation assists the drive of the supply pump by the engine.
  • an object of this invention is to provide the hydraulic drive system which can regenerate
  • a hydraulic drive system is driven by an engine connected to the hydraulic motor and the hydraulic motor to form a first closed loop, to the hydraulic motor.
  • the hydraulic motor connected to the hydraulic motor so as to form a second closed loop, a bidirectional pump supplying hydraulic fluid, a first regulator for adjusting the tilt angle of the bidirectional pump, and the hydraulic motor at the time of deceleration operation to the hydraulic motor
  • a bidirectional motor driven by hydraulic fluid discharged from the pump, a flywheel rotated by the bidirectional motor, a second regulator for adjusting a tilt angle of the bidirectional motor, and the second motor based on the operation to the hydraulic motor
  • a controller that controls the first regulator and the second regulator.
  • kinetic energy at the time of deceleration operation to the hydraulic motor can be stored in the flywheel. Therefore, kinetic energy at the time of deceleration operation to the hydraulic motor can be regenerated at any timing.
  • kinetic energy at the time of deceleration operation to the hydraulic motor can be regenerated at any timing.
  • the bidirectional motor is driven by the flywheel and the two-directional motor is made to function as a pump while the tilting angle of the bidirectional motor is other than zero, energy stored in the flywheel
  • the hydraulic motor can be driven.
  • the engine also drives a supply pump that supplies hydraulic fluid to hydraulic actuators other than hydraulic motors, the output shaft of the hydraulic motor is locked with a lock mechanism even when acceleration operation or constant speed operation is not performed on the hydraulic motor.
  • the bidirectional pump functions as a motor. Therefore, the energy stored in the flywheel can assist the drive of the supply pump by the engine.
  • the above-described hydraulic drive system is controlled by the control device, and includes a first switching valve that permits or prohibits the circulation of hydraulic fluid through the first closed loop, and the second closed loop controlled by the control device. And a second switching valve for permitting or prohibiting the circulation of the hydraulic fluid. According to this configuration, it is possible to instantly switch between permitting and prohibiting circulation through the first closed loop and permitting and prohibiting circulation through the second closed loop.
  • the first switching valve and the second switching valve are configured to function as check valves in the circulation inhibition state, it is possible to prevent the backflow of hydraulic oil in the bidirectional pump and the bidirectional motor.
  • the first switching valve has a neutral state that prohibits the circulation of hydraulic fluid through the first closed loop, a first state that allows the hydraulic fluid to circulate through the first closed loop in a first direction, and the first state.
  • a neutral state prohibits the circulation of hydraulic fluid through the first closed loop
  • a first state permitting circulation of hydraulic fluid through the first closed loop in a second direction opposite to the direction
  • the second switching valve circulating hydraulic fluid through the second closed loop
  • a neutral state prohibiting the hydraulic oil a first state permitting circulation of the hydraulic oil through the second closed loop in a third direction in which the hydraulic oil passes through the hydraulic motor in the same direction as the first direction; It may be switchable to a second state which permits the circulation of hydraulic fluid through the second closed loop in a fourth direction opposite to the third direction.
  • the above-described hydraulic drive system further includes a speed detector that detects the speed of an object driven by the hydraulic motor, and the control device is configured to reduce the second switching valve when the hydraulic motor is decelerated.
  • the second switching valve may be switched to the neutral state when the speed of the object detected by the speed detector becomes zero after the decelerating operation.
  • the above hydraulic drive system further includes a speed detector for detecting the rotational speed of the flywheel, and the control device is detected by the second detector at the time of acceleration operation and constant speed operation on the hydraulic motor. If the rotational speed of the flywheel is larger than the predetermined value, the second switching valve is switched to the first state or the second state, and the first switching valve is switched to the neutral state, and the speed detector Both the first switching valve and the second switching valve may be switched to the first state or the second state as long as the rotational speed of the flywheel detected at step (d) is smaller than a predetermined value.
  • the energy stored in the flywheel is preferentially used to drive the hydraulic motor rather than the engine, and when the energy stored in the flywheel is insufficient for driving the hydraulic motor, the hydraulic motor is driven in both directions. Hydraulic fluid can be supplied from both the pump and the two-way motor.
  • the above-described hydraulic drive system includes a boom cylinder, a supply pump driven by the engine that supplies hydraulic fluid to the boom cylinder via a control valve, and hydraulic fluid discharged from the boom cylinder at the time of a boom lowering operation.
  • the motor may further comprise a regenerative motor that is driven to rotate the flywheel. According to this configuration, since the potential energy of the boom can be stored in the flywheel, the potential energy of the boom can also be used to drive the hydraulic motor.
  • a hydraulic drive system comprising: a hydraulic motor; and hydraulic oil discharged from the hydraulic motor at the time of a reduction operation on the hydraulic motor connected to the hydraulic motor to form a closed loop.
  • Two-way motor that is rotated, flywheel that is rotated by the two-way motor, a regulator that adjusts the tilt angle of the two-way motor, a control device that controls the regulator based on the operation on the hydraulic motor, boom cylinder
  • An engine driven feed pump for supplying hydraulic fluid to the boom cylinder via a control valve; and a regenerative brake driven by hydraulic fluid discharged from the boom cylinder at the time of a boom lowering operation to rotate the flywheel And a motor.
  • kinetic energy at the time of deceleration operation to the hydraulic motor can be stored in the flywheel. Therefore, as in the hydraulic drive system according to one aspect of the present invention, kinetic energy at the time of deceleration operation on the hydraulic motor can be regenerated at any timing. Furthermore, in the above configuration, since the potential energy of the boom can be stored in the flywheel, the potential energy of the boom can also be used to drive the hydraulic motor.
  • kinetic energy at the time of deceleration operation to a hydraulic motor can be regenerated at any timing.
  • FIG. 2 is a schematic configuration view around an engine and a swing motor of the hydraulic drive system according to the first embodiment of the present invention. It is a schematic block diagram of a boom cylinder periphery of a hydraulic drive system shown in FIG. It is a side view of the hydraulic shovel which is an example of construction machinery. It is a schematic block diagram of the engine of the hydraulic drive system concerning a 2nd embodiment of the present invention, and a revolution motor circumference.
  • First Embodiment 1 and 2 show a hydraulic drive system 1A according to a first embodiment of the present invention
  • FIG. 3 shows a construction machine 10 on which the hydraulic drive system 1A is mounted.
  • the construction machine 10 shown in FIG. 3 is a hydraulic shovel
  • the present invention is also applicable to other construction machines such as a hydraulic crane.
  • the present invention is applicable not only to construction machines but also to industrial vehicles such as wheel loaders.
  • HST is used for the turning circuit, and HST is not used for the traveling circuit. That is, in the present embodiment, the swing motor 16 described later corresponds to the hydraulic motor of the present invention. However, HST may not be used for the turning circuit, and HST may be used for the traveling circuit. In this case, each of a left traveling motor and a right traveling motor described later corresponds to the hydraulic motor of the present invention. Alternatively, HST may be used for both the turning circuit and the traveling circuit.
  • the construction machine 10 shown in FIG. 3 is a self-propelled type, and includes a traveling body 11 and a swing body 12 rotatably supported by the traveling body 11.
  • the traveling body 11 is driven by a left traveling motor and a right traveling motor described later, and the swing structure 12 is driven by a swing motor 16 described later.
  • the revolving unit 12 is provided with a cabin for accommodating a pilot and a boom is connected. An arm is connected to the tip of the boom, and a bucket is connected to the tip of the arm.
  • the construction machine 10 may not be self-propelled.
  • the hydraulic drive system 1A includes a boom cylinder 13, an arm cylinder 14 and a bucket cylinder 15 shown in FIG. 3 as hydraulic actuators, and also includes a swing motor 16 shown in FIG. 1 and a left travel motor and a right travel motor.
  • the hydraulic drive system 1A also includes a bidirectional pump 23 dedicated to the swing motor 16 and a supply pump 22 that supplies hydraulic fluid to hydraulic actuators other than the swing motor 16 via control valves.
  • the bidirectional pump 23 and the feed pump 22 are driven by the engine 21.
  • FIGS. 1 and 2 hydraulic actuators other than the swing motor 16 and the boom cylinder 13 are omitted for simplification of the drawings. Further, although only one supply pump 22 is provided in the illustrated example, a plurality of supply pumps 22 may be provided.
  • the two-way pump 23 is a variable displacement pump capable of changing the tilt angle.
  • the tilt angle of the bidirectional pump 23 is adjusted by the regulator 24 (corresponding to the first regulator of the present invention).
  • the bidirectional pump 23 is a swash plate pump in which the swash plate can be tilted to both sides from the center (direction orthogonal to the axial direction of the bidirectional pump 23). That is, the angle of the swash plate with respect to the center is the tilt angle.
  • the bidirectional pump 23 may be an oblique axis pump in which the oblique axis can be tilted to both sides from the center (the axial direction of the bidirectional pump 23).
  • the bidirectional pump 23 is connected to the swing motor 16 so as to form a first closed loop 4 by a pair of supply and discharge lines 4 a and 4 b. That is, the hydraulic fluid is supplied from the bidirectional pump 23 to the swing motor 16 through one of the supply and discharge lines 4a and 4b, and the hydraulic fluid is discharged from the swing motor 16 to the bidirectional pump 23 through the other of the supply and discharge lines 4a and 4b.
  • the locking mechanism includes, for example, a hydraulic cylinder that operates to grip the output shaft of the pivot motor 16.
  • the supply and discharge lines 4 a and 4 b are connected to each other by a first bridge 41, a second bridge 43 and a third bridge 45.
  • the first bridge path 41, the second bridge path 43 and the third bridge path 45 are arranged in this order from the bidirectional pump 23 toward the swing motor 16.
  • the positions of the second bridge 43 and the third bridge 45 may be interchanged.
  • the engine 21 described above also drives the charge pump 25.
  • a circulation line 31 extends from the charge pump 25 to the tank, and a relief valve 32 is provided in the circulation line 31.
  • the downstream side portion of the relief valve 32 in the circulation line 31 doubles as the drain line of the bidirectional pump 23.
  • the first bridge passage 41 is provided with a pair of check valves 42 in opposite directions. A portion between the check valves 42 in the first bridge passage 41 is connected to the upstream portion of the relief valve 32 in the circulation line 31 by the supply line 33.
  • the second bridge passage 43 is provided with a pair of relief valves 44 in opposite directions, and the third bridge passage 45 is provided with a pair of check valves 46 in opposite directions. A portion between the relief valves 44 in the second bridge passage 43 is connected to a portion between the check valves 46 in the third bridge passage 45 by the relay line 47.
  • the supply and discharge lines 4a and 4b are connected to the switching valve 37 by relief lines 48 and 49, respectively.
  • a discharge line 38 extends from the switching valve 37 to the tank, and the discharge line 38 is provided with a relief valve 39.
  • the downstream portion of the relief valve 39 in the discharge line 38 also serves as the drain line of the swing motor 16.
  • the switching valve 37 is configured to communicate the other line of which the pressure is lower with the discharge line 38. That is, one of the relief valves 44 provided in the second bridge path 43 prevents the pressure on the supply side to the swing motor 16 from becoming higher than the set value, and the relief valve 39 provided in the discharge line 38 The pressure on the discharge side from the swing motor 16 is prevented from becoming higher than the set value.
  • the regulator 24 described above operates by an electrical signal.
  • the regulator 24 may electrically change the hydraulic pressure acting on the servo piston connected to the swash plate of the bidirectional pump 23 or is an electric actuator connected to the swash plate of the bidirectional pump 23 May be
  • the regulator 24 is controlled by the controller 9. However, in FIG. 1, only some signal lines are drawn for simplification of the drawing.
  • a turning operation signal output from the turning operation device 67 is input to the control device 9.
  • the turning operation device 67 is an electric joystick that outputs an electric signal as a turning operation signal.
  • the turning operation device 67 includes an operation lever that receives a turning operation (operation on the turning motor 16), and outputs a turning operation signal (left turning operation signal or right turning operation signal) according to the tilt angle of the operation lever. That is, the turning operation signal output from the turning operation device 67 becomes larger as the tilt angle (operation amount) of the operation lever becomes larger.
  • the control device 9 controls the regulator 24 based on the turning operation signal output from the turning operation device 67.
  • the control device 9 has a memory such as a ROM or a RAM and a CPU, and a program stored in the ROM is executed by the CPU. The control of the regulator 24 will be described in detail later.
  • the bidirectional motor 26 is connected to the swing motor 16 so as to form the second closed loop 5 by the pair of supply and discharge lines 5a and 5b. That is, the end of the supply / discharge line 5a on the side of the turning motor 16 is a flow path common to the end of the supply / discharge line 4a described above on the side of the turning motor 16, and the end of the supply / discharge line 5b on the side of the turning motor 16 The part is a common flow path with the end of the feed / discharge line 4b described above on the side of the swing motor 16.
  • the bidirectional motor 26 is driven by the hydraulic oil discharged from the swing motor 16 at the time of the swing decelerating (when the swing operation signal output from the swing operation device 67 decreases). That is, at the time of swing deceleration, hydraulic fluid is supplied from the swing motor 16 to the bidirectional motor 26 through one of the supply and discharge lines 5a and 5b, and hydraulic fluid is discharged from the bidirectional motor 26 to the swing motor 16 through the other of the supply and discharge lines 5a and 5b. Be done.
  • the supply and discharge lines 5 a and 5 b are connected by a bridge path 51.
  • the bridge passage 51 is provided with a pair of check valves 52 in opposite directions. A portion of the bridge passage 51 between the check valves 52 is connected to the upstream portion of the relief valve 32 in the circulation line 31 by a supply line 34.
  • the two-way motor 26 is a variable displacement motor capable of changing the tilt angle.
  • the tilt angle of the two-way motor 26 is adjusted by the regulator 27 (corresponding to the second regulator of the present invention).
  • the bidirectional motor 26 is a swash plate motor in which the swash plate can be tilted to both sides from the center (direction orthogonal to the axial direction of the bidirectional motor 26). That is, the angle of the swash plate with respect to the center is the tilt angle.
  • the bidirectional motor 26 may be an oblique axis motor in which the oblique axis can be tilted to both sides from the center (the axial direction of the bidirectional motor 26).
  • the regulator 27 operates by an electrical signal.
  • the regulator 27 may electrically change the hydraulic pressure acting on the servo piston connected to the swash plate of the bidirectional motor 26 or is an electric actuator connected to the swash plate of the bidirectional motor 26. May be
  • the regulator 27 is controlled by the controller 9.
  • the control device 9 controls the regulator 27 based on the turning operation signal output from the turning operation device 67.
  • the control of the regulator 27 will be described in detail later.
  • the two-way motor 26 is for rotating the flywheel 54.
  • the bidirectional motor 26 is connected to the flywheel 54 via a speed increasing gear 53 composed of a gear train.
  • the bidirectional motor 26 may be directly coupled to the flywheel 54.
  • no clutch is provided between the bidirectional motor 26 and the speed increasing device 53, but whether torque transmission is permitted between the bidirectional motor 26 and the speed increasing device 53 A switching clutch may be provided.
  • the flywheel 54 is connected to the regenerative motor 28 via the speed increasing gear 53 and the one-way clutch 55.
  • One-way clutch 55 allows only torque transmission from regenerative motor 28 to speed increasing device 53.
  • the first switching valve 61 and the second switching valve 64 are incorporated in the turning circuit.
  • the first switching valve 61 and the second switching valve 64 are controlled by the controller 9.
  • the first switching valve 61 permits or prohibits the circulation of hydraulic fluid through the first closed loop 4 described above
  • the second switching valve 64 permits or prohibits the circulation of the hydraulic fluid through the second closed loop 5 described above.
  • the first switching valve 61 is configured by the switching valve 62 provided in the supply / discharge line 4 a and the switching valve 63 provided in the supply / discharge line 4 b.
  • the second switching valve 64 is configured of a switching valve 65 provided in the supply and discharge line 5a and a switching valve 66 provided in the supply and discharge line 4b.
  • the switching valve 62 functions as a check valve that allows the flow from the bi-directional pump 23 to the swing motor 16 through the supply and discharge line 4a but prohibits the reverse flow.
  • the switching valve 62 allows bidirectional flow.
  • the switching valve 63 functions as a check valve that allows the flow from the bidirectional pump 23 to the swing motor 16 via the supply and discharge line 4b but prohibits the reverse flow.
  • the switching valve 63 allows bidirectional flow.
  • the first switching valve 61 is in the neutral state in which the switching valve 62 and the switching valve 63 are in the neutral position, the first state in which the switching valve 62 is in the neutral position, and the switching valve 63 is in the operating position, In the operating position, the switch valve 63 is in the neutral position, and the third state in which the switch valve 62 and the switch valve 63 are in the operating position.
  • the first switching valve 61 in the neutral state prohibits the circulation of hydraulic fluid through the first closed loop 4.
  • the first switching valve 61 in the first state permits circulation of hydraulic fluid through the first closed loop 4 in the first direction, while operating through the first closed loop 4 in the second direction opposite to the first direction. Prohibit oil circulation.
  • the first switching valve 61 in the second state permits circulation of hydraulic fluid through the first closed loop 4 in the second direction, while inhibiting circulation of hydraulic fluid through the first closed loop 4 in the first direction.
  • the first switching valve 61 in the third state allows the hydraulic oil to circulate through the first closed loop 4 in the first and second directions.
  • the switching valve 65 functions as a check valve that allows the flow from the two-way motor 26 to the swing motor 16 through the supply and discharge line 5a but prohibits the reverse flow.
  • the switching valve 65 allows bidirectional flow.
  • the switching valve 66 functions as a check valve that allows the flow from the two-way motor 26 to the turning motor 16 through the supply and discharge line 4b but prohibits the reverse flow.
  • the switching valve 66 allows bidirectional flow.
  • the second switching valve 64 is in the neutral state in which the switching valve 65 and the switching valve 66 are in the neutral position, the first state in which the switching valve 65 is in the neutral position, and the switching valve 66 is in the operating position, Is switchable between a second state in which the switch valve 66 is in the neutral position, and a third state in which the switch valve 65 and the switch valve 66 are in the operating position.
  • the second switching valve 64 in the neutral state prohibits the circulation of hydraulic fluid through the second closed loop 5.
  • the second switching valve 64 in the first state allows the hydraulic oil to circulate through the second closed loop 5 in the third direction in which the hydraulic oil passes through the swing motor 16 in the same direction as the first direction, while The circulation of hydraulic fluid through the first closed loop 4 in the fourth direction opposite to the three directions is prohibited.
  • the second switching valve 64 in the second state permits circulation of hydraulic fluid through the second closed loop 5 in the fourth direction, while prohibiting circulation of hydraulic fluid through the first closed loop 4 in the third direction.
  • the second switching valve 64 in the third state allows circulation of hydraulic fluid through the second closed loop 5 in the third and fourth directions.
  • the first bridge path 41 and the replenishment line 33 described above play a role of preventing cavitation on the suction side of the bidirectional pump 23 when the circulation of hydraulic fluid through the first closed loop 4 is prohibited by the first switching valve 61. Play. Similarly, the bridge path 51 and the supply line 34 play a role in preventing cavitation on the suction side of the bidirectional motor 26 when the circulation of hydraulic fluid through the second closed loop 5 is prohibited by the second switching valve 64. .
  • the feed pump 22 described above is a variable displacement pump (swash plate pump or oblique shaft pump) whose tilt angle can be changed.
  • the tilt angle of the feed pump 22 is adjusted by a regulator (not shown).
  • the discharge flow rate of the supply pump 22 may be controlled by any of a hydraulic negative control method, an electrical positive control method, and a load sensing method.
  • the supply pump 22 is connected by a supply line 71 to a plurality of control valves (not shown except for the boom control valve 73) including the boom control valve 73.
  • the boom control valve 73 is connected to the boom cylinder 13 by a boom raising supply line 75 and a boom lowering supply line 74.
  • the bleed line 72 is branched from the supply line 71, and this bleed line 72 is a center bleed line passing through a plurality of control valves.
  • the bleed line 72 may not pass through a plurality of control valves, and the bleed line 72 may be provided with an unload valve.
  • the boom control valve 73 is connected to the tank by a tank line 76.
  • the boom control valve 73 is switched from the neutral position to the boom raising operation position (the left position in FIG. 1) or the boom lowering operation position (the right position in FIG. 1) by operating the boom operating device 68.
  • the boom control valve 73 communicates the boom raising supply line 75 with the supply line 71 and communicates the boom lowering supply line 74 with the tank line 76.
  • the boom control valve 73 communicates the boom lowering supply line 74 with the supply line 71 and communicates the boom raising supply line 75 with the tank line 76.
  • the boom control valve 73 is a hydraulic pilot type, and has a pair of pilot ports.
  • the boom control valve 73 may be of an electromagnetic pilot type.
  • Boom operating device 68 includes an operating lever that receives a boom operation (an operation on boom cylinder 13), and outputs a boom operating signal (a boom raising operation signal or a boom lowering operation signal) according to the tilt angle of the operation lever. That is, the boom operation signal output from the boom operation device 68 increases as the tilt angle (operation amount) of the operation lever increases.
  • the boom operation device 68 is an electric joystick that outputs an electric signal as a boom operation signal.
  • the boom operation signal output from the boom operation device 68 is input to the control device 9.
  • the control device 9 controls the boom control valve 73 via a pair of solenoid proportional valves (not shown) so that the boom control valve 73 has an opening area corresponding to the boom operation signal.
  • the boom control device 68 may be a pilot control valve that outputs a pilot pressure as a boom control signal.
  • the pilot port of the boom control valve 73 is connected by a pilot line to the boom operating device 68 which is a pilot control valve.
  • the boom operating device 68 is a pilot operating valve
  • the pilot pressure output from the boom operating device 68 is detected by the pressure sensor and input to the control device 9.
  • the above-described regenerative motor 28 is driven by the hydraulic oil discharged from the boom cylinder 13 at the time of the boom lowering operation (when the boom lowering operation signal is output from the boom operation device 68), and rotates the flywheel 54.
  • the tank line 76 is provided with a regenerative valve 81.
  • the regenerative valve 81 is connected to the regenerative motor 28 by a regenerative line 82.
  • the regenerative valve 81 may be provided in the boom raising supply line 75.
  • the regenerative motor 28 is a variable displacement motor (swash plate motor or oblique axis motor) whose tilt angle can be changed.
  • the tilt angle of the regenerative motor 28 is adjusted by a regulator (not shown).
  • the regulator for the regenerative motor 28 is controlled by the control device 9 based on the boom operation signal.
  • the regenerative motor 28 may be a fixed displacement motor.
  • the regenerative valve 81 is provided in the tank line 76 so as to divide the tank line 76 into an upstream flow passage on the boom control valve 73 side and a downstream flow passage on the tank side. In the neutral position, the regenerative valve 81 communicates the upstream flow passage of the tank line 76 with the downstream flow passage.
  • the regenerative valve 81 is controlled by the control device 9. The regenerative valve 81 is switched to the working position at the time of the boom lowering operation, and communicates the upstream flow path of the tank line 76 with the regenerative line 82.
  • the regenerative line 82 is provided with a check valve 83. Further, the downstream side portion of the check valve 83 in the regeneration line 82 is connected to the upstream side portion of the relief valve 32 in the circulation line 31 by the supply line 35 provided with the check valve 36.
  • the replenishment line 35 plays a role of preventing cavitation on the suction side of the regenerative motor 28 when the regenerative valve 81 is at the neutral position.
  • a relief line 84 is branched from a downstream side portion of the check valve 83 in the regeneration line 82, and the relief line 85 is provided with a relief valve 85. Further, the downstream side of the check valve 83 in the regeneration line 82 is connected to the tank by a replenishment line 86 provided with a check valve 87.
  • the control device 9 is electrically connected not only to the swing operation device 67 and the boom operation device 68 but also to the first speed detector 91 and the second speed detector 92.
  • the first speed detector 91 detects the speed of the rotating body 12, and the second speed detector 92 detects the rotational speed of the flywheel 54.
  • the control device 9 sets the first switching valve 61 according to the type of turning operation signal (whether left turning or right turning). Switch to the first state or the second state.
  • the control device 9 performs the turning acceleration operation (when the turning operation signal output from the turning operation device 67 increases) and the turning constant speed operation (when the turning operation signal output from the turning operation device 67 is other than zero).
  • the regulator 24 is controlled such that the discharge flow rate of the bidirectional pump 23 in the direction according to the type of the turning operation signal (left turning or right turning) increases as the turning operation signal increases.
  • the controller 9 controls the tilting angle of the bidirectional motor 26 to change the type and magnitude of the turning operation signal.
  • the regulator 27 is controlled to have an angle corresponding to the distance.
  • the control device 9 changes the second switching valve 64 according to the type of the turning operation signal (left turn or right turn). While switching to the 1 state or the second state, the first switching valve 61 is switched to the neutral state. At the same time, the controller 9 controls the regulator 24 so that the tilt angle of the bidirectional pump 23 becomes zero.
  • the second switching valve 64 is switched to the first state at the time of the swing decelerating operation to operate the hydraulic fluid in the first direction in the third direction. Shift to oil circulation.
  • the bidirectional motor 26 is driven by the hydraulic oil discharged from the swing motor 16, and kinetic energy at the time of the swing reduction operation is accumulated in the flywheel 54.
  • the second switching valve 64 may be switched to the third state instead of switching to the first state or the second state.
  • the control device 9 switches the second switching valve 64 to the neutral state. At the same time, the control device 9 controls the regulator 27 so that the tilt angle of the bidirectional motor 26 becomes zero.
  • the controller 9 When the turning operation is started in a state where energy is stored in the flywheel 54, that is, when the rotational speed of the flywheel 54 detected by the second speed detector 92 is not zero, the controller 9 generates a turning operation signal
  • the second switching valve 64 is switched to the first state or the second state depending on the type of the valve. Further, at the time of turning acceleration operation and turning constant velocity operation, the controller 9 causes the discharge flow rate of the bidirectional motor 26 in the direction according to the type of turning operation signal (whether left turning or right turning) as the turning operation signal increases.
  • the regulator 27 is controlled so as to become large.
  • the controller 9 maintains the first switching valve 61 in the neutral state. Do. On the other hand, if the rotational speed Vf of the flywheel 54 is smaller than the predetermined value Vs (Vf ⁇ Vs), the controller 9 sets the first switching valve 61 in the first state or the second state according to the type of the turning operation signal. Switch to Furthermore, the controller 9 controls the regulator 24 for the bidirectional pump 23 based on the magnitude of the turning operation signal.
  • the first switching valve 61 is also switched to the first state to enable circulation of hydraulic fluid in the first direction and circulation of hydraulic fluid in the third direction.
  • hydraulic fluid is supplied to the swing motor 16 from both the bidirectional motor 26 and the bidirectional pump 23.
  • control device 9 performs the same control as the case where the rotational speed of the flywheel 54 described above is zero.
  • the bi-directional motor 26 is driven by the flywheel 54 and the bi-directional motor 26 functions as a pump with the non-zero tilt angle of the bi-directional motor 26 during the swing acceleration operation or the swing constant velocity operation. Then, the swing motor 16 can be driven by the energy stored in the flywheel 54.
  • the control device 9 locks the output shaft of the swing motor 16 as described above. Lock the motor and drive the bidirectional motor 26 with the flywheel 54 and allow the bidirectional motor 26 to function as a pump with a non-zero tilt angle of the bidirectional motor 26, the bidirectional pump 23 will function as a motor. . Therefore, the energy stored in the flywheel 54 can assist the drive of the supply pump 22 by the engine 21.
  • kinetic energy at the time of turning and decelerating operation can be stored in the flywheel 54. Therefore, kinetic energy at the time of turning and decelerating operation can be regenerated at any timing.
  • each of the first switching valve 61 and the second switching valve 64 permits circulation in only one direction in the first state or the second state.
  • Working in the first closed loop 4 or the second closed loop 5 when the hydraulic fluid is supplied from both (when the first switching valve 61 and the second switching valve 64 are both switched to the first state or the second state) It is possible to prevent the backflow of oil.
  • the second switching valve 64 is switched to the first state or the second state when the rotational speed of the flywheel 54 is high, and the first switching valve 61 is when the rotational speed of the flywheel 54 is low. And the second switching valve 64 are both switched to the first state or the second state. Therefore, the energy stored in the flywheel 54 is preferentially used for driving the swing motor 16 rather than the engine 21, and the energy stored in the flywheel 54 is insufficient for the drive of the swing motor 16, the swing motor 16
  • the hydraulic fluid can be supplied to both the bidirectional pump 23 and the bidirectional motor 26.
  • the potential energy of the boom can also be used to drive the swing motor 16.
  • FIG. 4 shows a hydraulic drive system 1B according to a second embodiment of the present invention.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and duplicate descriptions are omitted.
  • the speed increasing gear 53, the flywheel 54, the one-way clutch 55 and the regenerative motor 28 shown in FIG. 1 are omitted.
  • the first switching valve 61 is a single three-position valve in which the switching valves 62 and 63 of the first embodiment are combined. That is, the neutral position of the first switching valve 61 is in the neutral state described in the first embodiment, and one operating position (the upper position in FIG. 4) of the first switching valve 61 is the first position described in the first embodiment. In the second position, the other operating position (the lower position in FIG. 4) of the first switching valve 61 is the second position described in the first embodiment.
  • the second switching valve 64 is a single three-position valve in which the switching valves 65 and 66 of the first embodiment are combined. That is, the neutral position of the second switching valve 64 is in the neutral state described in the first embodiment, and one operating position of the second switching valve 64 (the upper position in FIG. 4) is the first embodiment described in the first embodiment. In the second position, the other operating position (the lower position in FIG. 4) of the second switching valve 64 is the second position described in the first embodiment.
  • the bidirectional pump 23 and the first switching valve 61 may be omitted to provide a flywheel. It is possible to drive the swing motor with only the energy stored in 54. In this case, the second switching valve 64 may also be omitted.
  • the boom cylinder 13 and the regenerative motor 28 may be omitted.
  • the first switching valve 61 and the second switching valve 64 are omitted, and the circulation of hydraulic oil through the first closed loop 4 and / or the first closed loop 4 only by the control of the regulators 24 and 27
  • the circulation of hydraulic fluid through the closed loop 5 can be permitted or prohibited.
  • permission and prohibition of circulation through the first closed loop 4 and circulation through the second closed loop 5 are provided. It is possible to switch between permission and prohibition instantly.
  • the first switching valve 61 and the second switching valve 64 are configured to function as check valves in the circulation inhibition state, the backflow of hydraulic oil in the bidirectional pump 23 and the bidirectional motor 26 can be prevented. it can.

Abstract

This hydraulic drive system is provided with: a hydraulic motor; a bi-directional pump connected to the hydraulic motor so as to form a first closed loop and driven by an engine to supply hydraulic oil to the hydraulic motor; a first regulator for regulating the tilt angle of the bi-directional pump; a bi-directional motor connected to the hydraulic motor so as to form a second closed loop and driven by hydraulic oil discharged from the hydraulic motor when the hydraulic motor is operated to reduce the speed thereof; a flywheel rotated by the bi-directional motor; a second regulator for regulating the tilt angle of the bi-directional motor; and a control device for controlling the first regulator and the second regulator on the basis of operation on the hydraulic motor.

Description

油圧駆動システムHydraulic drive system
 本発明は、油圧駆動システムに関する。 The present invention relates to a hydraulic drive system.
 油圧ショベルや油圧クレーンのような建設機械やホイールローダのような産業車両では、油圧駆動システムによって各部が駆動される。このような油圧駆動システムとしては、従来、走行回路や旋回回路に油圧式無段変速機(HST)を用いたものがある。 In an industrial vehicle such as a construction machine such as a hydraulic shovel or hydraulic crane or a wheel loader, each part is driven by a hydraulic drive system. As such a hydraulic drive system, conventionally, there is one using a hydraulic continuously variable transmission (HST) in a traveling circuit and a turning circuit.
 例えば、特許文献1には、旋回減速操作時の運動エネルギを回生できるように構成された油圧駆動システムが開示されている。この油圧駆動システムでは、エンジンにより駆動される両方向ポンプ(オーバーセンターポンプともいう)が一対の給排ラインにより閉ループを形成するように旋回モータと接続される。また、エンジンは、旋回モータ以外の油圧アクチュエータへ作動油を供給する供給ポンプも駆動する。 For example, Patent Document 1 discloses a hydraulic drive system configured to be able to regenerate kinetic energy at the time of turning and decelerating operation. In this hydraulic drive system, a bi-directional pump (also referred to as an over-center pump) driven by an engine is connected to a swing motor so as to form a closed loop by a pair of supply and discharge lines. The engine also drives a supply pump that supplies hydraulic fluid to hydraulic actuators other than the swing motor.
 特許文献1に開示された油圧駆動システムでは、旋回減速操作時に、旋回モータから排出される作動油により両方向ポンプが駆動される。これにより、両方向ポンプがモータとして機能し、旋回減速操作時の運動エネルギによりエンジンによる供給ポンプの駆動がアシストされる。 In the hydraulic drive system disclosed in Patent Document 1, the bidirectional pump is driven by the hydraulic oil discharged from the swing motor during the swing decelerating operation. As a result, the bidirectional pump functions as a motor, and the kinetic energy at the time of the swing decelerating operation assists the drive of the supply pump by the engine.
特開2016-80009号公報JP, 2016-80009, A
 しかしながら、特許文献1に開示された油圧駆動システムでは、供給ポンプが何れかの油圧アクチュエータへ作動油を供給している場合にしか旋回減速操作時の運動エネルギが回生されない。 However, in the hydraulic drive system disclosed in Patent Document 1, kinetic energy at the time of the swing deceleration operation is regenerated only when the supply pump supplies the hydraulic fluid to any hydraulic actuator.
 そこで、本発明は、油圧モータに対する減速操作時の運動エネルギを任意のタイミングで回生することができる油圧駆動システムを提供することを目的とする。 Then, an object of this invention is to provide the hydraulic drive system which can regenerate | regenerate the kinetic energy at the time of deceleration operation with respect to a hydraulic motor at arbitrary timing.
 前記課題を解決するために、本発明の一つの側面からの油圧駆動システムは、油圧モータと、第1閉ループを形成するように前記油圧モータと接続された、エンジンにより駆動されて前記油圧モータへ作動油を供給する両方向ポンプと、前記両方向ポンプの傾転角を調整する第1レギュレータと、第2閉ループを形成するように前記油圧モータと接続された、前記油圧モータに対する減速操作時に前記油圧モータから排出される作動油により駆動される両方向モータと、前記両方向モータにより回転されるフライホイールと、前記両方向モータの傾転角を調整する第2レギュレータと、前記油圧モータに対する操作に基づいて前記第1レギュレータおよび前記第2レギュレータを制御する制御装置と、を備える、ことを特徴とする。 In order to solve the problem, a hydraulic drive system according to one aspect of the present invention is driven by an engine connected to the hydraulic motor and the hydraulic motor to form a first closed loop, to the hydraulic motor. The hydraulic motor connected to the hydraulic motor so as to form a second closed loop, a bidirectional pump supplying hydraulic fluid, a first regulator for adjusting the tilt angle of the bidirectional pump, and the hydraulic motor at the time of deceleration operation to the hydraulic motor A bidirectional motor driven by hydraulic fluid discharged from the pump, a flywheel rotated by the bidirectional motor, a second regulator for adjusting a tilt angle of the bidirectional motor, and the second motor based on the operation to the hydraulic motor And a controller that controls the first regulator and the second regulator.
 上記の構成によれば、油圧モータに対する減速操作時の運動エネルギをフライホイールに蓄積することができる。従って、油圧モータに対する減速操作時の運動エネルギを任意のタイミングで回生することができる。例えば、油圧モータに対する加速操作時または等速操作時に、フライホイールによって両方向モータを駆動するとともに両方向モータの傾転角をゼロ以外として両方向モータをポンプとして機能させれば、フライホイールに蓄積したエネルギにより油圧モータを駆動することができる。あるいは、エンジンが油圧モータ以外の油圧アクチュエータへ作動油を供給する供給ポンプも駆動する場合には、油圧モータに対する加速操作時または等速操作時でなくても、油圧モータの出力軸をロック機構でロックした上で、フライホイールによって両方向モータを駆動するとともに両方向モータの傾転角をゼロ以外として両方向モータをポンプとして機能させれば、両方向ポンプがモータとして機能することになる。従って、フライホイールに蓄積したエネルギによりエンジンによる供給ポンプの駆動をアシストすることができる。 According to the above configuration, kinetic energy at the time of deceleration operation to the hydraulic motor can be stored in the flywheel. Therefore, kinetic energy at the time of deceleration operation to the hydraulic motor can be regenerated at any timing. For example, at the time of accelerating operation to the hydraulic motor or at the same speed operation, if the bidirectional motor is driven by the flywheel and the two-directional motor is made to function as a pump while the tilting angle of the bidirectional motor is other than zero, energy stored in the flywheel The hydraulic motor can be driven. Alternatively, when the engine also drives a supply pump that supplies hydraulic fluid to hydraulic actuators other than hydraulic motors, the output shaft of the hydraulic motor is locked with a lock mechanism even when acceleration operation or constant speed operation is not performed on the hydraulic motor. When the motor is locked and the bidirectional motor is driven by the flywheel and the tilt angle of the bidirectional motor is other than zero and the bidirectional motor is functioned as a pump, the bidirectional pump functions as a motor. Therefore, the energy stored in the flywheel can assist the drive of the supply pump by the engine.
 上記の油圧駆動システムは、前記制御装置により制御される、前記第1閉ループを通じた作動油の循環を許可または禁止する第1切換弁と、前記制御装置により制御される、前記第2閉ループを通じた作動油の循環を許可または禁止する第2切換弁と、をさらに備えてもよい。この構成によれば、第1閉ループを通じた循環の許可と禁止および第2閉ループを通じた循環の許可と禁止を瞬時に切り換えることができる。また、第1切換弁および第2切換弁が循環禁止状態で逆止弁として機能するように構成されていれば、両方向ポンプおよび両方向モータでの作動油の逆流を防止することができる。 The above-described hydraulic drive system is controlled by the control device, and includes a first switching valve that permits or prohibits the circulation of hydraulic fluid through the first closed loop, and the second closed loop controlled by the control device. And a second switching valve for permitting or prohibiting the circulation of the hydraulic fluid. According to this configuration, it is possible to instantly switch between permitting and prohibiting circulation through the first closed loop and permitting and prohibiting circulation through the second closed loop. In addition, if the first switching valve and the second switching valve are configured to function as check valves in the circulation inhibition state, it is possible to prevent the backflow of hydraulic oil in the bidirectional pump and the bidirectional motor.
 前記第1切換弁は、前記第1閉ループを通じた作動油の循環を禁止する中立状態と、第1方向への前記第1閉ループを通じた作動油の循環を許可する第1状態と、前記第1方向とは逆の第2方向への前記第1閉ループを通じた作動油の循環を許可する第2状態とに切り換え可能であり、前記第2切換弁は、前記第2閉ループを通じた作動油の循環を禁止する中立状態と、作動油が前記油圧モータを通過する向きが前記第1方向と同じである第3方向への前記第2閉ループを通じた作動油の循環を許可する第1状態と、前記第3方向とは逆の第4方向への前記第2閉ループを通じた作動油の循環を許可する第2状態とに切り換え可能であってもよい。この構成によれば、油圧モータに両方向ポンプと両方向モータの双方から作動油を供給する場合(第1切換弁および第2切換弁の双方が第1状態または第2状態に切り換えられる場合)に、第1閉ループまたは第2閉ループでの作業油の逆流を防止することができる。 The first switching valve has a neutral state that prohibits the circulation of hydraulic fluid through the first closed loop, a first state that allows the hydraulic fluid to circulate through the first closed loop in a first direction, and the first state. Switchable to a second state permitting circulation of hydraulic fluid through the first closed loop in a second direction opposite to the direction, the second switching valve circulating hydraulic fluid through the second closed loop A neutral state prohibiting the hydraulic oil, a first state permitting circulation of the hydraulic oil through the second closed loop in a third direction in which the hydraulic oil passes through the hydraulic motor in the same direction as the first direction; It may be switchable to a second state which permits the circulation of hydraulic fluid through the second closed loop in a fourth direction opposite to the third direction. According to this configuration, when the hydraulic motor is supplied with hydraulic fluid from both the bidirectional pump and the bidirectional motor (when both the first switching valve and the second switching valve are switched to the first state or the second state), The backflow of the working oil in the first closed loop or the second closed loop can be prevented.
 例えば、上記の油圧駆動システムは、前記油圧モータによって駆動される物体の速度を検出する速度検出器をさら備え、前記制御装置は、前記油圧モータに対する減速操作時に、前記第2切換弁を前記第1状態または前記第2状態に切り換え、前記減速操作後に前記速度検出器で検出される物体の速度がゼロとなったときに前記第2切換弁を中立状態に切り換えてもよい。 For example, the above-described hydraulic drive system further includes a speed detector that detects the speed of an object driven by the hydraulic motor, and the control device is configured to reduce the second switching valve when the hydraulic motor is decelerated. The second switching valve may be switched to the neutral state when the speed of the object detected by the speed detector becomes zero after the decelerating operation.
 上記の油圧駆動システムは、前記フライホイールの回転速度を検出する速度検出器をさらに備え、前記制御装置は、前記油圧モータに対する加速操作時および等速操作時に、前記第2検出器で検出される前記フライホイールの回転速度が前記所定値よりも大きければ、前記第2切換弁を前記第1状態または前記第2状態に切り換えるとともに、前記第1切換弁を前記中立状態に切り換え、前記速度検出器で検出される前記フライホイールの回転速度が所定値よりも小さければ、前記第1切換弁および前記第2切換弁の双方を前記第1状態または前記第2状態に切り換えてもよい。この構成によれば、油圧モータの駆動に、エンジンよりもフライホイールに蓄積したエネルギを優先的に使用し、フライホイールに蓄積したエネルギでは油圧モータの駆動に不十分な場合に、油圧モータに両方向ポンプと両方向モータの双方から作動油を供給することができる。 The above hydraulic drive system further includes a speed detector for detecting the rotational speed of the flywheel, and the control device is detected by the second detector at the time of acceleration operation and constant speed operation on the hydraulic motor. If the rotational speed of the flywheel is larger than the predetermined value, the second switching valve is switched to the first state or the second state, and the first switching valve is switched to the neutral state, and the speed detector Both the first switching valve and the second switching valve may be switched to the first state or the second state as long as the rotational speed of the flywheel detected at step (d) is smaller than a predetermined value. According to this configuration, the energy stored in the flywheel is preferentially used to drive the hydraulic motor rather than the engine, and when the energy stored in the flywheel is insufficient for driving the hydraulic motor, the hydraulic motor is driven in both directions. Hydraulic fluid can be supplied from both the pump and the two-way motor.
 上記の油圧駆動システムは、ブームシリンダと、前記ブームシリンダへ制御弁を介して作動油を供給する、前記エンジンにより駆動される供給ポンプと、ブーム下げ操作時に前記ブームシリンダから排出される作動油により駆動され、前記フライホイールを回転させる回生モータと、をさらに備えてもよい。この構成によれば、ブームの位置エネルギをフライホイールに蓄積することができるので、油圧モータの駆動にブームの位置エネルギをも利用することができる。 The above-described hydraulic drive system includes a boom cylinder, a supply pump driven by the engine that supplies hydraulic fluid to the boom cylinder via a control valve, and hydraulic fluid discharged from the boom cylinder at the time of a boom lowering operation. The motor may further comprise a regenerative motor that is driven to rotate the flywheel. According to this configuration, since the potential energy of the boom can be stored in the flywheel, the potential energy of the boom can also be used to drive the hydraulic motor.
 また、本発明の別の側面からの油圧駆動システムは、油圧モータと、閉ループを形成するように前記油圧モータと接続された、前記油圧モータに対する減速操作時に前記油圧モータから排出される作動油により回転される両方向モータと、前記両方向モータにより回転されるフライホイールと、前記両方向モータの傾転角を調整するレギュレータと、前記油圧モータに対する操作に基づいて前記レギュレータを制御する制御装置と、ブームシリンダと、前記ブームシリンダへ制御弁を介して作動油を供給する、エンジンにより駆動される供給ポンプと、ブーム下げ操作時に前記ブームシリンダから排出される作動油により駆動され、前記フライホイールを回転させる回生モータと、を備える、ことを特徴とする。 Further, according to another aspect of the present invention, there is provided a hydraulic drive system comprising: a hydraulic motor; and hydraulic oil discharged from the hydraulic motor at the time of a reduction operation on the hydraulic motor connected to the hydraulic motor to form a closed loop. Two-way motor that is rotated, flywheel that is rotated by the two-way motor, a regulator that adjusts the tilt angle of the two-way motor, a control device that controls the regulator based on the operation on the hydraulic motor, boom cylinder An engine driven feed pump for supplying hydraulic fluid to the boom cylinder via a control valve; and a regenerative brake driven by hydraulic fluid discharged from the boom cylinder at the time of a boom lowering operation to rotate the flywheel And a motor.
 上記の構成によれば、油圧モータに対する減速操作時の運動エネルギをフライホイールに蓄積することができる。従って、本発明の一つの側面からの油圧駆動システムと同様に、油圧モータに対する減速操作時の運動エネルギを任意のタイミングで回生することができる。さらに、上記の構成では、ブームの位置エネルギをフライホイールに蓄積することができるので、油圧モータの駆動にブームの位置エネルギをも利用することができる。 According to the above configuration, kinetic energy at the time of deceleration operation to the hydraulic motor can be stored in the flywheel. Therefore, as in the hydraulic drive system according to one aspect of the present invention, kinetic energy at the time of deceleration operation on the hydraulic motor can be regenerated at any timing. Furthermore, in the above configuration, since the potential energy of the boom can be stored in the flywheel, the potential energy of the boom can also be used to drive the hydraulic motor.
 本発明によれば、油圧モータに対する減速操作時の運動エネルギを任意のタイミングで回生することができる。 According to the present invention, kinetic energy at the time of deceleration operation to a hydraulic motor can be regenerated at any timing.
本発明の第1実施形態に係る油圧駆動システムのエンジンおよび旋回モータ回りの概略構成図である。FIG. 2 is a schematic configuration view around an engine and a swing motor of the hydraulic drive system according to the first embodiment of the present invention. 図1に示す油圧駆動システムのブームシリンダ回りの概略構成図である。It is a schematic block diagram of a boom cylinder periphery of a hydraulic drive system shown in FIG. 建設機械の一例である油圧ショベルの側面図である。It is a side view of the hydraulic shovel which is an example of construction machinery. 本発明の第2実施形態に係る油圧駆動システムのエンジンおよび旋回モータ回りの概略構成図である。It is a schematic block diagram of the engine of the hydraulic drive system concerning a 2nd embodiment of the present invention, and a revolution motor circumference.
 (第1実施形態)
 図1および図2に、本発明の第1実施形態に係る油圧駆動システム1Aを示し、図3に、その油圧駆動システム1Aが搭載された建設機械10を示す。図3に示す建設機械10は油圧ショベルであるが、本発明は、油圧クレーンなどの他の建設機械にも適用可能である。あるいは、本発明は、建設機械に限られず、ホイールローダのような産業車両にも適用可能である。
First Embodiment
1 and 2 show a hydraulic drive system 1A according to a first embodiment of the present invention, and FIG. 3 shows a construction machine 10 on which the hydraulic drive system 1A is mounted. Although the construction machine 10 shown in FIG. 3 is a hydraulic shovel, the present invention is also applicable to other construction machines such as a hydraulic crane. Alternatively, the present invention is applicable not only to construction machines but also to industrial vehicles such as wheel loaders.
 本実施形態では、旋回回路にHSTが用いられ、走行回路にはHSTが用いられていない。つまり、本実施形態では、後述する旋回モータ16が本発明の油圧モータに相当する。ただし、旋回回路にHSTが用いられず、走行回路にHSTが用いられてもよい。この場合、後述する左走行モータおよび右走行モータのそれぞれが本発明の油圧モータに相当する。あるいは、旋回回路と走行回路の双方にHSTが用いられてもよい。 In the present embodiment, HST is used for the turning circuit, and HST is not used for the traveling circuit. That is, in the present embodiment, the swing motor 16 described later corresponds to the hydraulic motor of the present invention. However, HST may not be used for the turning circuit, and HST may be used for the traveling circuit. In this case, each of a left traveling motor and a right traveling motor described later corresponds to the hydraulic motor of the present invention. Alternatively, HST may be used for both the turning circuit and the traveling circuit.
 図3に示す建設機械10は自走式であり、走行体11と、走行体11に旋回可能に支持された旋回体12を含む。走行体11は、後述する左走行モータおよび右走行モータによって駆動され、旋回体12は、後述する旋回モータ16によって駆動される。旋回体12には、操縦者を収容するキャビンが設けられているとともに、ブームが連結されている。ブームの先端にはアームが連結され、アームの先端にはバケットが連結されている。ただし、建設機械10は自走式でなくてもよい。 The construction machine 10 shown in FIG. 3 is a self-propelled type, and includes a traveling body 11 and a swing body 12 rotatably supported by the traveling body 11. The traveling body 11 is driven by a left traveling motor and a right traveling motor described later, and the swing structure 12 is driven by a swing motor 16 described later. The revolving unit 12 is provided with a cabin for accommodating a pilot and a boom is connected. An arm is connected to the tip of the boom, and a bucket is connected to the tip of the arm. However, the construction machine 10 may not be self-propelled.
 油圧駆動システム1Aは、油圧アクチュエータとして、図3に示すブームシリンダ13、アームシリンダ14およびバケットシリンダ15を含むとともに、図1に示す旋回モータ16ならびに図略の左走行モータおよび右走行モータを含む。また、油圧駆動システム1Aは、旋回モータ16専用の両方向ポンプ23と、旋回モータ16以外の油圧アクチュエータへ制御弁を介して作動油を供給する供給ポンプ22を含む。両方向ポンプ23および供給ポンプ22は、エンジン21により駆動される。 The hydraulic drive system 1A includes a boom cylinder 13, an arm cylinder 14 and a bucket cylinder 15 shown in FIG. 3 as hydraulic actuators, and also includes a swing motor 16 shown in FIG. 1 and a left travel motor and a right travel motor. The hydraulic drive system 1A also includes a bidirectional pump 23 dedicated to the swing motor 16 and a supply pump 22 that supplies hydraulic fluid to hydraulic actuators other than the swing motor 16 via control valves. The bidirectional pump 23 and the feed pump 22 are driven by the engine 21.
 なお、図1および図2では、図面の簡略化のために、旋回モータ16およびブームシリンダ13以外の油圧アクチュエータを省略している。また、図例では、供給ポンプ22が1つだけ設けられているが、供給ポンプ22は複数設けられてもよい。 In FIGS. 1 and 2, hydraulic actuators other than the swing motor 16 and the boom cylinder 13 are omitted for simplification of the drawings. Further, although only one supply pump 22 is provided in the illustrated example, a plurality of supply pumps 22 may be provided.
 両方向ポンプ23は、傾転角が変更可能な可変容量型のポンプである。両方向ポンプ23の傾転角は、レギュレータ24(本発明の第1レギュレータに相当)により調整される。本実施形態では、両方向ポンプ23が、斜板がセンター(両方向ポンプ23の軸方向と直交する方向)から両側に傾倒可能な斜板ポンプである。すなわち、センターに対する斜板の角度が傾転角である。ただし、両方向ポンプ23は、斜軸がセンター(両方向ポンプ23の軸方向)から両側に傾倒可能な斜軸ポンプであってもよい。 The two-way pump 23 is a variable displacement pump capable of changing the tilt angle. The tilt angle of the bidirectional pump 23 is adjusted by the regulator 24 (corresponding to the first regulator of the present invention). In the present embodiment, the bidirectional pump 23 is a swash plate pump in which the swash plate can be tilted to both sides from the center (direction orthogonal to the axial direction of the bidirectional pump 23). That is, the angle of the swash plate with respect to the center is the tilt angle. However, the bidirectional pump 23 may be an oblique axis pump in which the oblique axis can be tilted to both sides from the center (the axial direction of the bidirectional pump 23).
 両方向ポンプ23は、一対の給排ライン4a,4bにより、第1閉ループ4を形成するように旋回モータ16と接続されている。つまり、給排ライン4a,4bの一方を通じて両方向ポンプ23から旋回モータ16へ作動油が供給され、給排ライン4a,4bの他方を通じて旋回モータ16から両方向ポンプ23へ作動油が排出される。 The bidirectional pump 23 is connected to the swing motor 16 so as to form a first closed loop 4 by a pair of supply and discharge lines 4 a and 4 b. That is, the hydraulic fluid is supplied from the bidirectional pump 23 to the swing motor 16 through one of the supply and discharge lines 4a and 4b, and the hydraulic fluid is discharged from the swing motor 16 to the bidirectional pump 23 through the other of the supply and discharge lines 4a and 4b.
 なお、旋回モータ16の停止中は、旋回モータ16の出力軸が図略のロック機構によりロックされる。ロック機構は、例えば、旋回モータ16の出力軸を把持するように作動する油圧シリンダを含む。 While the swing motor 16 is stopped, the output shaft of the swing motor 16 is locked by a lock mechanism (not shown). The locking mechanism includes, for example, a hydraulic cylinder that operates to grip the output shaft of the pivot motor 16.
 給排ライン4a,4b同士は、第1橋架路41、第2橋架路43および第3橋架路45によって接続されている。本実施形態では、第1橋架路41、第2橋架路43および第3橋架路45が、両方向ポンプ23から旋回モータ16に向かってこの順に並んでいる。ただし、第2橋架路43と第3橋架路45の位置は入れ替わってもよい。 The supply and discharge lines 4 a and 4 b are connected to each other by a first bridge 41, a second bridge 43 and a third bridge 45. In the present embodiment, the first bridge path 41, the second bridge path 43 and the third bridge path 45 are arranged in this order from the bidirectional pump 23 toward the swing motor 16. However, the positions of the second bridge 43 and the third bridge 45 may be interchanged.
 上述したエンジン21は、チャージポンプ25も駆動する。チャージポンプ25からタンクまでは循環ライン31が延びており、循環ライン31にはリリーフ弁32が設けられている。本実施形態では、循環ライン31におけるリリーフ弁32の下流側部分が両方向ポンプ23のドレンラインを兼ねている。 The engine 21 described above also drives the charge pump 25. A circulation line 31 extends from the charge pump 25 to the tank, and a relief valve 32 is provided in the circulation line 31. In the present embodiment, the downstream side portion of the relief valve 32 in the circulation line 31 doubles as the drain line of the bidirectional pump 23.
 第1橋架路41には、互いに逆向きに一対の逆止弁42が設けられている。第1橋架路41における逆止弁42の間の部分は、補給ライン33により循環ライン31におけるリリーフ弁32の上流側部分と接続されている。第2橋架路43には、互いに逆向きに一対のリリーフ弁44が設けられており、第3橋架路45には、互いに逆向きに一対の逆止弁46が設けられている。第2橋架路43におけるリリーフ弁44の間の部分は、中継ライン47により第3橋架路45における逆止弁46の間の部分と接続されている。 The first bridge passage 41 is provided with a pair of check valves 42 in opposite directions. A portion between the check valves 42 in the first bridge passage 41 is connected to the upstream portion of the relief valve 32 in the circulation line 31 by the supply line 33. The second bridge passage 43 is provided with a pair of relief valves 44 in opposite directions, and the third bridge passage 45 is provided with a pair of check valves 46 in opposite directions. A portion between the relief valves 44 in the second bridge passage 43 is connected to a portion between the check valves 46 in the third bridge passage 45 by the relay line 47.
 給排ライン4a,4bは、それぞれリリーフライン48,49により切換弁37と接続されている。切換弁37からタンクまでは排出ライン38が延びており、排出ライン38にはリリーフ弁39が設けられている。本実施形態では、排出ライン38におけるリリーフ弁39の下流側部分が旋回モータ16のドレンラインを兼ねている。 The supply and discharge lines 4a and 4b are connected to the switching valve 37 by relief lines 48 and 49, respectively. A discharge line 38 extends from the switching valve 37 to the tank, and the discharge line 38 is provided with a relief valve 39. In the present embodiment, the downstream portion of the relief valve 39 in the discharge line 38 also serves as the drain line of the swing motor 16.
 切換弁37は、給排ライン4a,4bの一方の圧力が高いときに、圧力が低い方である他方のラインを排出ライン38と連通するように構成されている。つまり、第2橋架路43に設けられたリリーフ弁44の一方が、旋回モータ16への供給側の圧力が設定値よりも高くなることを防ぎ、排出ライン38に設けられたリリーフ弁39が、旋回モータ16からの排出側の圧力が設定値よりも高くなることを防ぐ。 When the pressure of one of the supply and discharge lines 4a and 4b is high, the switching valve 37 is configured to communicate the other line of which the pressure is lower with the discharge line 38. That is, one of the relief valves 44 provided in the second bridge path 43 prevents the pressure on the supply side to the swing motor 16 from becoming higher than the set value, and the relief valve 39 provided in the discharge line 38 The pressure on the discharge side from the swing motor 16 is prevented from becoming higher than the set value.
 上述したレギュレータ24は、電気信号により作動する。例えば、レギュレータ24は、両方向ポンプ23の斜板と連結されたサーボピストンに作用する油圧を電気的に変更するものであってもよいし、両方向ポンプ23の斜板と連結された電動アクチュエータであってもよい。 The regulator 24 described above operates by an electrical signal. For example, the regulator 24 may electrically change the hydraulic pressure acting on the servo piston connected to the swash plate of the bidirectional pump 23 or is an electric actuator connected to the swash plate of the bidirectional pump 23 May be
 レギュレータ24は、制御装置9により制御される。ただし、図1では、図面の簡略化のために一部の信号線のみを描いている。制御装置9には、旋回操作装置67から出力される旋回操作信号が入力される。旋回操作装置67は、旋回操作信号として電気信号を出力する電気ジョイスティックである。 The regulator 24 is controlled by the controller 9. However, in FIG. 1, only some signal lines are drawn for simplification of the drawing. A turning operation signal output from the turning operation device 67 is input to the control device 9. The turning operation device 67 is an electric joystick that outputs an electric signal as a turning operation signal.
 旋回操作装置67は、旋回操作(旋回モータ16に対する操作)を受ける操作レバーを含み、操作レバーの傾倒角に応じた旋回操作信号(左旋回操作信号または右旋回操作信号)を出力する。つまり、旋回操作装置67から出力される旋回操作信号は、操作レバーの傾倒角(操作量)が大きくなるほど大きくなる。 The turning operation device 67 includes an operation lever that receives a turning operation (operation on the turning motor 16), and outputs a turning operation signal (left turning operation signal or right turning operation signal) according to the tilt angle of the operation lever. That is, the turning operation signal output from the turning operation device 67 becomes larger as the tilt angle (operation amount) of the operation lever becomes larger.
 制御装置9は、旋回操作装置67から出力される旋回操作信号に基づいてレギュレータ24を制御する。例えば、制御装置9は、ROMやRAMなどのメモリとCPUを有し、ROMに格納されたプログラムがCPUにより実行される。なお、レギュレータ24の制御については、後述にて詳細に説明する。 The control device 9 controls the regulator 24 based on the turning operation signal output from the turning operation device 67. For example, the control device 9 has a memory such as a ROM or a RAM and a CPU, and a program stored in the ROM is executed by the CPU. The control of the regulator 24 will be described in detail later.
 さらに、本実施形態では、両方向モータ26が、一対の給排ライン5a,5bにより、第2閉ループ5を形成するように、旋回モータ16と接続されている。つまり、給排ライン5aの旋回モータ16側の端部は上述した給排ライン4aの旋回モータ16側の端部と共通の流路となっており、給排ライン5bの旋回モータ16側の端部は上述した給排ライン4bの旋回モータ16側の端部と共通の流路となっている。 Furthermore, in the present embodiment, the bidirectional motor 26 is connected to the swing motor 16 so as to form the second closed loop 5 by the pair of supply and discharge lines 5a and 5b. That is, the end of the supply / discharge line 5a on the side of the turning motor 16 is a flow path common to the end of the supply / discharge line 4a described above on the side of the turning motor 16, and the end of the supply / discharge line 5b on the side of the turning motor 16 The part is a common flow path with the end of the feed / discharge line 4b described above on the side of the swing motor 16.
 両方向モータ26は、旋回減速時(旋回操作装置67から出力される旋回操作信号が減少するとき)に旋回モータ16から排出される作動油により駆動される。つまり、旋回減速時には、給排ライン5a,5bの一方を通じて旋回モータ16から両方向モータ26へ作動油が供給され、給排ライン5a,5bの他方を通じて両方向モータ26から旋回モータ16へ作動油が排出される。 The bidirectional motor 26 is driven by the hydraulic oil discharged from the swing motor 16 at the time of the swing decelerating (when the swing operation signal output from the swing operation device 67 decreases). That is, at the time of swing deceleration, hydraulic fluid is supplied from the swing motor 16 to the bidirectional motor 26 through one of the supply and discharge lines 5a and 5b, and hydraulic fluid is discharged from the bidirectional motor 26 to the swing motor 16 through the other of the supply and discharge lines 5a and 5b. Be done.
 給排ライン5a,5b同士は、橋架路51によって接続されている。橋架路51には、互いに逆向きに一対の逆止弁52が設けられている。橋架路51における逆止弁52の間の部分は、補給ライン34により循環ライン31におけるリリーフ弁32の上流側部分と接続されている。 The supply and discharge lines 5 a and 5 b are connected by a bridge path 51. The bridge passage 51 is provided with a pair of check valves 52 in opposite directions. A portion of the bridge passage 51 between the check valves 52 is connected to the upstream portion of the relief valve 32 in the circulation line 31 by a supply line 34.
 両方向モータ26は、傾転角が変更可能な可変容量型のモータである。両方向モータ26の傾転角は、レギュレータ27(本発明の第2レギュレータに相当)により調整される。本実施形態では、両方向モータ26が、斜板がセンター(両方向モータ26の軸方向と直交する方向)から両側に傾倒可能な斜板モータである。すなわち、センターに対する斜板の角度が傾転角である。ただし、両方向モータ26は、斜軸がセンター(両方向モータ26の軸方向)から両側に傾倒可能な斜軸モータであってもよい。 The two-way motor 26 is a variable displacement motor capable of changing the tilt angle. The tilt angle of the two-way motor 26 is adjusted by the regulator 27 (corresponding to the second regulator of the present invention). In the present embodiment, the bidirectional motor 26 is a swash plate motor in which the swash plate can be tilted to both sides from the center (direction orthogonal to the axial direction of the bidirectional motor 26). That is, the angle of the swash plate with respect to the center is the tilt angle. However, the bidirectional motor 26 may be an oblique axis motor in which the oblique axis can be tilted to both sides from the center (the axial direction of the bidirectional motor 26).
 レギュレータ27は、電気信号により作動する。例えば、レギュレータ27は、両方向モータ26の斜板と連結されたサーボピストンに作用する油圧を電気的に変更するものであってもよいし、両方向モータ26の斜板と連結された電動アクチュエータであってもよい。 The regulator 27 operates by an electrical signal. For example, the regulator 27 may electrically change the hydraulic pressure acting on the servo piston connected to the swash plate of the bidirectional motor 26 or is an electric actuator connected to the swash plate of the bidirectional motor 26. May be
 レギュレータ27は、制御装置9により制御される。制御装置9は、旋回操作装置67から出力される旋回操作信号に基づいてレギュレータ27を制御する。なお、レギュレータ27の制御については、後述にて詳細に説明する。 The regulator 27 is controlled by the controller 9. The control device 9 controls the regulator 27 based on the turning operation signal output from the turning operation device 67. The control of the regulator 27 will be described in detail later.
 両方向モータ26は、フライホイール54を回転するためのものである。本実施形態では、両方向モータ26が、ギア列からなる増速機53を介してフライホイール54と連結されている。ただし、両方向モータ26がフライホイール54と直接的に連結されてもよい。また、本実施形態では、両方向モータ26と増速機53との間にクラッチが設けられていないが、両方向モータ26と増速機53との間には、トルク伝達を許容するか否かを切り換えるクラッチが設けられてもよい。 The two-way motor 26 is for rotating the flywheel 54. In the present embodiment, the bidirectional motor 26 is connected to the flywheel 54 via a speed increasing gear 53 composed of a gear train. However, the bidirectional motor 26 may be directly coupled to the flywheel 54. Further, in the present embodiment, no clutch is provided between the bidirectional motor 26 and the speed increasing device 53, but whether torque transmission is permitted between the bidirectional motor 26 and the speed increasing device 53 A switching clutch may be provided.
 さらに、本実施形態では、フライホイール54が、増速機53およびワンウェイクラッチ55を介して回生モータ28と連結されている。ワンウェイクラッチ55は、回生モータ28から増速機53へのトルク伝達のみを許容する。 Furthermore, in the present embodiment, the flywheel 54 is connected to the regenerative motor 28 via the speed increasing gear 53 and the one-way clutch 55. One-way clutch 55 allows only torque transmission from regenerative motor 28 to speed increasing device 53.
 旋回回路には、第1切換弁61および第2切換弁64が組み込まれている。第1切換弁61および第2切換弁64は、制御装置9により制御される。第1切換弁61は、上述した第1閉ループ4を通じた作動油の循環を許可または禁止し、第2切換弁64は、上述した第2閉ループ5を通じた作動油の循環を許可または禁止する。 The first switching valve 61 and the second switching valve 64 are incorporated in the turning circuit. The first switching valve 61 and the second switching valve 64 are controlled by the controller 9. The first switching valve 61 permits or prohibits the circulation of hydraulic fluid through the first closed loop 4 described above, and the second switching valve 64 permits or prohibits the circulation of the hydraulic fluid through the second closed loop 5 described above.
 本実施形態では、第1切換弁61が、給排ライン4aに設けられた切換弁62と、給排ライン4bに設けられた切換弁63とで構成されている。また、第2切換弁64は、給排ライン5aに設けられた切換弁65と、給排ライン4bに設けられた切換弁66とで構成されている。 In the present embodiment, the first switching valve 61 is configured by the switching valve 62 provided in the supply / discharge line 4 a and the switching valve 63 provided in the supply / discharge line 4 b. The second switching valve 64 is configured of a switching valve 65 provided in the supply and discharge line 5a and a switching valve 66 provided in the supply and discharge line 4b.
 切換弁62は、中立位置では、給排ライン4aを通じた両方向ポンプ23から旋回モータ16へ向かう流れは許容するが、その逆の流れは禁止する逆止弁として機能する。制御装置9から切換弁62へ指令電流が供給されて、切換弁62が作動位置に切り換わると、切換弁62は、双方向の流れを許容する。同様に、切換弁63は、中立位置では、給排ライン4bを通じた両方向ポンプ23から旋回モータ16へ向かう流れは許容するが、その逆の流れは禁止する逆止弁として機能する。制御装置9から切換弁63へ指令電流が供給されて、切換弁63が作動位置に切り換わると、切換弁63は、双方向の流れを許容する。 In the neutral position, the switching valve 62 functions as a check valve that allows the flow from the bi-directional pump 23 to the swing motor 16 through the supply and discharge line 4a but prohibits the reverse flow. When a command current is supplied from the controller 9 to the switching valve 62 and the switching valve 62 is switched to the operating position, the switching valve 62 allows bidirectional flow. Similarly, in the neutral position, the switching valve 63 functions as a check valve that allows the flow from the bidirectional pump 23 to the swing motor 16 via the supply and discharge line 4b but prohibits the reverse flow. When a command current is supplied from the control device 9 to the switching valve 63 and the switching valve 63 is switched to the operating position, the switching valve 63 allows bidirectional flow.
 つまり、第1切換弁61は、切換弁62および切換弁63が中立位置に位置する中立状態と、切換弁62が中立位置、切換弁63が作動位置に位置する第1状態と、切換弁62が作動位置、切換弁63が中立位置に位置する第2状態と、切換弁62および切換弁63が作動位置に位置する第3状態とに切り換え可能である。中立状態の第1切換弁61は、第1閉ループ4を通じた作動油の循環を禁止する。第1状態の第1切換弁61は、第1方向への第1閉ループ4を通じた作動油の循環を許可する一方、第1方向とは逆の第2方向への第1閉ループ4を通じた作動油の循環を禁止する。第2状態の第1切換弁61は、第2方向への第1閉ループ4を通じた作動油の循環を許可する一方、第1方向への第1閉ループ4を通じた作動油の循環を禁止する。第3状態の第1切換弁61は、第1方向および第2方向への第1閉ループ4を通じた作動油の循環を許容する。 That is, the first switching valve 61 is in the neutral state in which the switching valve 62 and the switching valve 63 are in the neutral position, the first state in which the switching valve 62 is in the neutral position, and the switching valve 63 is in the operating position, In the operating position, the switch valve 63 is in the neutral position, and the third state in which the switch valve 62 and the switch valve 63 are in the operating position. The first switching valve 61 in the neutral state prohibits the circulation of hydraulic fluid through the first closed loop 4. The first switching valve 61 in the first state permits circulation of hydraulic fluid through the first closed loop 4 in the first direction, while operating through the first closed loop 4 in the second direction opposite to the first direction. Prohibit oil circulation. The first switching valve 61 in the second state permits circulation of hydraulic fluid through the first closed loop 4 in the second direction, while inhibiting circulation of hydraulic fluid through the first closed loop 4 in the first direction. The first switching valve 61 in the third state allows the hydraulic oil to circulate through the first closed loop 4 in the first and second directions.
 切換弁65は、中立位置では、給排ライン5aを通じた両方向モータ26から旋回モータ16へ向かう流れは許容するが、その逆の流れは禁止する逆止弁として機能する。制御装置9から切換弁65へ指令電流が供給されて、切換弁65が作動位置に切り換わると、切換弁65は、双方向の流れを許容する。同様に、切換弁66は、中立位置では、給排ライン4bを通じた両方向モータ26から旋回モータ16へ向かう流れは許容するが、その逆の流れは禁止する逆止弁として機能する。制御装置9から切換弁66へ指令電流が供給されて、切換弁66が作動位置に切り換わると、切換弁66は、双方向の流れを許容する。 In the neutral position, the switching valve 65 functions as a check valve that allows the flow from the two-way motor 26 to the swing motor 16 through the supply and discharge line 5a but prohibits the reverse flow. When a command current is supplied from the control device 9 to the switching valve 65 and the switching valve 65 is switched to the operating position, the switching valve 65 allows bidirectional flow. Similarly, in the neutral position, the switching valve 66 functions as a check valve that allows the flow from the two-way motor 26 to the turning motor 16 through the supply and discharge line 4b but prohibits the reverse flow. When a command current is supplied from the controller 9 to the switching valve 66 and the switching valve 66 switches to the operating position, the switching valve 66 allows bidirectional flow.
 つまり、第2切換弁64は、切換弁65および切換弁66が中立位置に位置する中立状態と、切換弁65が中立位置、切換弁66が作動位置に位置する第1状態と、切換弁65が作動位置、切換弁66が中立位置に位置する第2状態と、切換弁65および切換弁66が作動位置に位置する第3状態とに切り換え可能である。中立状態の第2切換弁64は、第2閉ループ5を通じた作動油の循環を禁止する。第1状態の第2切換弁64は、作動油が旋回モータ16を通過する向きが第1方向と同じである第3方向への第2閉ループ5を通じた作動油の循環を許可する一方、第3方向とは逆の第4方向への第1閉ループ4を通じた作動油の循環を禁止する。第2状態の第2切換弁64は、第4方向への第2閉ループ5を通じた作動油の循環を許可する一方、第3方向への第1閉ループ4を通じた作動油の循環を禁止する。第3状態の第2切換弁64は、第3方向および第4方向への第2閉ループ5を通じた作動油の循環を許容する。 That is, the second switching valve 64 is in the neutral state in which the switching valve 65 and the switching valve 66 are in the neutral position, the first state in which the switching valve 65 is in the neutral position, and the switching valve 66 is in the operating position, Is switchable between a second state in which the switch valve 66 is in the neutral position, and a third state in which the switch valve 65 and the switch valve 66 are in the operating position. The second switching valve 64 in the neutral state prohibits the circulation of hydraulic fluid through the second closed loop 5. The second switching valve 64 in the first state allows the hydraulic oil to circulate through the second closed loop 5 in the third direction in which the hydraulic oil passes through the swing motor 16 in the same direction as the first direction, while The circulation of hydraulic fluid through the first closed loop 4 in the fourth direction opposite to the three directions is prohibited. The second switching valve 64 in the second state permits circulation of hydraulic fluid through the second closed loop 5 in the fourth direction, while prohibiting circulation of hydraulic fluid through the first closed loop 4 in the third direction. The second switching valve 64 in the third state allows circulation of hydraulic fluid through the second closed loop 5 in the third and fourth directions.
 上述した第1橋架路41および補給ライン33は、第1切換弁61により第1閉ループ4を通じた作動油の循環が禁止されたときに、両方向ポンプ23の吸入側でのキャビテーションを防止する役割を果たす。同様に、橋架路51および補給ライン34は、第2切換弁64により第2閉ループ5を通じた作動油の循環が禁止されたときに、両方向モータ26の吸入側でのキャビテーションを防止する役割を果たす。 The first bridge path 41 and the replenishment line 33 described above play a role of preventing cavitation on the suction side of the bidirectional pump 23 when the circulation of hydraulic fluid through the first closed loop 4 is prohibited by the first switching valve 61. Play. Similarly, the bridge path 51 and the supply line 34 play a role in preventing cavitation on the suction side of the bidirectional motor 26 when the circulation of hydraulic fluid through the second closed loop 5 is prohibited by the second switching valve 64. .
 上述した供給ポンプ22は、傾転角が変更可能な可変容量型のポンプ(斜板ポンプまたは斜軸ポンプ)である。供給ポンプ22の傾転角は図略のレギュレータにより調整される。供給ポンプ22の吐出流量は、油圧ネガティブコントロール方式、電気ポジティブコントロール方式、ロードセンシング方式のいずれで制御されてもよい。 The feed pump 22 described above is a variable displacement pump (swash plate pump or oblique shaft pump) whose tilt angle can be changed. The tilt angle of the feed pump 22 is adjusted by a regulator (not shown). The discharge flow rate of the supply pump 22 may be controlled by any of a hydraulic negative control method, an electrical positive control method, and a load sensing method.
 供給ポンプ22は、供給ライン71によりブーム制御弁73を含む複数の制御弁(ブーム制御弁73以外は図示せず)と接続されている。ブーム制御弁73は、ブーム上げ供給ライン75およびブーム下げ供給ライン74によりブームシリンダ13と接続されている。本実施形態では、供給ライン71からブリードライン72が分岐しており、このブリードライン72が複数の制御弁を通過するセンターブリードラインとなっている。ただし、ブリードライン72が複数の制御弁を通過せず、ブリードライン72にアンロード弁が設けられてもよい。また、ブーム制御弁73は、タンクライン76によりタンクと接続されている。 The supply pump 22 is connected by a supply line 71 to a plurality of control valves (not shown except for the boom control valve 73) including the boom control valve 73. The boom control valve 73 is connected to the boom cylinder 13 by a boom raising supply line 75 and a boom lowering supply line 74. In the present embodiment, the bleed line 72 is branched from the supply line 71, and this bleed line 72 is a center bleed line passing through a plurality of control valves. However, the bleed line 72 may not pass through a plurality of control valves, and the bleed line 72 may be provided with an unload valve. The boom control valve 73 is connected to the tank by a tank line 76.
 ブーム制御弁73は、ブーム操作装置68が操作されることによって、中立位置からブーム上げ作動位置(図1の左側位置)またはブーム下げ作動位置(図1の右側位置)に切り換えられる。ブーム上げ作動位置では、ブーム制御弁73は、ブーム上げ供給ライン75を供給ライン71と連通するとともに、ブーム下げ供給ライン74をタンクライン76と連通する。一方、ブーム下げ作動位置では、ブーム制御弁73は、ブーム下げ供給ライン74を供給ライン71と連通するとともに、ブーム上げ供給ライン75をタンクライン76と連通する。 The boom control valve 73 is switched from the neutral position to the boom raising operation position (the left position in FIG. 1) or the boom lowering operation position (the right position in FIG. 1) by operating the boom operating device 68. In the boom raising operation position, the boom control valve 73 communicates the boom raising supply line 75 with the supply line 71 and communicates the boom lowering supply line 74 with the tank line 76. On the other hand, in the boom lowering operation position, the boom control valve 73 communicates the boom lowering supply line 74 with the supply line 71 and communicates the boom raising supply line 75 with the tank line 76.
 本実施形態では、ブーム制御弁73が油圧パイロット式であり、一対のパイロットポートを有する。ただし、ブーム制御弁73は、電磁パイロット式であってもよい。 In the present embodiment, the boom control valve 73 is a hydraulic pilot type, and has a pair of pilot ports. However, the boom control valve 73 may be of an electromagnetic pilot type.
 ブーム操作装置68は、ブーム操作(ブームシリンダ13に対する操作)を受ける操作レバーを含み、操作レバーの傾倒角に応じたブーム操作信号(ブーム上げ操作信号またはブーム下げ操作信号)を出力する。つまり、ブーム操作装置68から出力されるブーム操作信号は、操作レバーの傾倒角(操作量)が大きくなるほど大きくなる。 Boom operating device 68 includes an operating lever that receives a boom operation (an operation on boom cylinder 13), and outputs a boom operating signal (a boom raising operation signal or a boom lowering operation signal) according to the tilt angle of the operation lever. That is, the boom operation signal output from the boom operation device 68 increases as the tilt angle (operation amount) of the operation lever increases.
 本実施形態では、ブーム操作装置68がブーム操作信号として電気信号を出力する電気ジョイスティックである。ブーム操作装置68から出力されるブーム操作信号は、制御装置9に入力される。 In the present embodiment, the boom operation device 68 is an electric joystick that outputs an electric signal as a boom operation signal. The boom operation signal output from the boom operation device 68 is input to the control device 9.
 制御装置9は、ブーム制御弁73がブーム操作信号に応じた開口面積となるように、図略の一対の電磁比例弁を介してブーム制御弁73を制御する。ただし、ブーム操作装置68は、ブーム操作信号としてパイロット圧を出力するパイロット操作弁であってもよい。この場合、ブーム制御弁73のパイロットポートがパイロットラインによりパイロット操作弁であるブーム操作装置68と接続される。また、ブーム操作装置68がパイロット操作弁である場合、ブーム操作装置68から出力されるパイロット圧が圧力センサにより検出されて制御装置9へ入力される。 The control device 9 controls the boom control valve 73 via a pair of solenoid proportional valves (not shown) so that the boom control valve 73 has an opening area corresponding to the boom operation signal. However, the boom control device 68 may be a pilot control valve that outputs a pilot pressure as a boom control signal. In this case, the pilot port of the boom control valve 73 is connected by a pilot line to the boom operating device 68 which is a pilot control valve. When the boom operating device 68 is a pilot operating valve, the pilot pressure output from the boom operating device 68 is detected by the pressure sensor and input to the control device 9.
 上述した回生モータ28は、ブーム下げ操作時(ブーム操作装置68からブーム下げ操作信号が出力されるとき)にブームシリンダ13から排出される作動油により駆動され、フライホイール54を回転させる。そのための構成として、タンクライン76には、回生弁81が設けられている。また、回生弁81は、回生ライン82により回生モータ28と接続されている。ただし、回生弁81は、ブーム上げ供給ライン75に設けられてもよい。 The above-described regenerative motor 28 is driven by the hydraulic oil discharged from the boom cylinder 13 at the time of the boom lowering operation (when the boom lowering operation signal is output from the boom operation device 68), and rotates the flywheel 54. As a configuration for that purpose, the tank line 76 is provided with a regenerative valve 81. Further, the regenerative valve 81 is connected to the regenerative motor 28 by a regenerative line 82. However, the regenerative valve 81 may be provided in the boom raising supply line 75.
 回生モータ28は、傾転角が変更可能な可変容量型のモータ(斜板モータまたは斜軸モータ)である。回生モータ28の傾転角は図略のレギュレータにより調整される。例えば、回生モータ28用のレギュレータは、ブーム操作信号に基づいて制御装置9により制御される。ただし、回生モータ28は、固定容量型のモータであってもよい。 The regenerative motor 28 is a variable displacement motor (swash plate motor or oblique axis motor) whose tilt angle can be changed. The tilt angle of the regenerative motor 28 is adjusted by a regulator (not shown). For example, the regulator for the regenerative motor 28 is controlled by the control device 9 based on the boom operation signal. However, the regenerative motor 28 may be a fixed displacement motor.
 回生弁81は、タンクライン76をブーム制御弁73側の上流流路とタンク側の下流流路とに分断するようにタンクライン76に設けられている。回生弁81は、中立位置では、タンクライン76の上流流路を下流流路と連通する。回生弁81は、制御装置9により制御される。回生弁81は、ブーム下げ操作時に作動位置に切り換えられ、タンクライン76の上流流路を回生ライン82と連通する。 The regenerative valve 81 is provided in the tank line 76 so as to divide the tank line 76 into an upstream flow passage on the boom control valve 73 side and a downstream flow passage on the tank side. In the neutral position, the regenerative valve 81 communicates the upstream flow passage of the tank line 76 with the downstream flow passage. The regenerative valve 81 is controlled by the control device 9. The regenerative valve 81 is switched to the working position at the time of the boom lowering operation, and communicates the upstream flow path of the tank line 76 with the regenerative line 82.
 回生ライン82には、逆止弁83が設けられている。また、回生ライン82における逆止弁83の下流側部分は、逆止弁36が設けられた補給ライン35により循環ライン31におけるリリーフ弁32の上流側部分と接続されている。補給ライン35は、回生弁81が中立位置に位置するときに、回生モータ28の吸入側でのキャビテーションを防止する役割を果たす。 The regenerative line 82 is provided with a check valve 83. Further, the downstream side portion of the check valve 83 in the regeneration line 82 is connected to the upstream side portion of the relief valve 32 in the circulation line 31 by the supply line 35 provided with the check valve 36. The replenishment line 35 plays a role of preventing cavitation on the suction side of the regenerative motor 28 when the regenerative valve 81 is at the neutral position.
 さらに、回生ライン82における逆止弁83の下流側部分からはリリーフライン84が分岐しており、このリリーフライン84にリリーフ弁85が設けられている。また、回生ライン82における逆止弁83の下流側部は、逆止弁87が設けられた補給ライン86によりタンクと接続されている。 Further, a relief line 84 is branched from a downstream side portion of the check valve 83 in the regeneration line 82, and the relief line 85 is provided with a relief valve 85. Further, the downstream side of the check valve 83 in the regeneration line 82 is connected to the tank by a replenishment line 86 provided with a check valve 87.
 次に、制御装置9が行うレギュレータ24,27ならびに第1切換弁61および第2切換弁64の制御について説明する。制御装置9は、旋回操作装置67およびブーム操作装置68だけでなく、第1速度検出器91および第2速度検出器92とも電気的に接続されている。第1速度検出器91は旋回体12の速度を検出し、第2速度検出器92はフライホイール54の回転速度を検出する。 Next, control of the regulators 24 and 27 and the first switching valve 61 and the second switching valve 64 performed by the control device 9 will be described. The control device 9 is electrically connected not only to the swing operation device 67 and the boom operation device 68 but also to the first speed detector 91 and the second speed detector 92. The first speed detector 91 detects the speed of the rotating body 12, and the second speed detector 92 detects the rotational speed of the flywheel 54.
 まず、建設機械10の起動時などで、フライホイール54にエネルギが蓄積されていない状態、すなわち第2速度検出器92で検出されるフライホイール54の回転速度がゼロの状態からの制御を説明する。この初期状態では、第1切換弁61および第2切換弁64は、中立状態に維持される。 First, control from a state where energy is not stored in the flywheel 54 at startup of the construction machine 10, that is, a state where the rotational speed of the flywheel 54 detected by the second speed detector 92 is zero will be described. . In this initial state, the first switching valve 61 and the second switching valve 64 are maintained in the neutral state.
 旋回操作装置67の操作レバーが傾倒されることによって旋回操作が開始されると、制御装置9は、旋回操作信号の種類(左旋回か右旋回か)に応じて、第1切換弁61を第1状態または第2状態に切り換える。また、制御装置9は、旋回加速操作時(旋回操作装置67から出力される旋回操作信号が増加するとき)および旋回等速操作時(旋回操作装置67から出力される旋回操作信号がゼロ以外で一定のとき)に、旋回操作信号が大きくなるにつれて旋回操作信号の種類(左旋回か右旋回か)に応じた方向における両方向ポンプ23の吐出流量が大きくなるように、レギュレータ24を制御する。 When the turning operation is started by tilting the operation lever of the turning operation device 67, the control device 9 sets the first switching valve 61 according to the type of turning operation signal (whether left turning or right turning). Switch to the first state or the second state. In addition, the control device 9 performs the turning acceleration operation (when the turning operation signal output from the turning operation device 67 increases) and the turning constant speed operation (when the turning operation signal output from the turning operation device 67 is other than zero). At a certain time), the regulator 24 is controlled such that the discharge flow rate of the bidirectional pump 23 in the direction according to the type of the turning operation signal (left turning or right turning) increases as the turning operation signal increases.
 さらに、旋回加速操作時および旋回等速操作時は、旋回減速操作の開始直後に両方向モータ26を駆動するために、制御装置9は、両方向モータ26の傾転角が旋回操作信号の種類および大きさに応じた角度となるようにレギュレータ27を制御する。 Furthermore, at the time of turning acceleration operation and turning constant velocity operation, in order to drive the bidirectional motor 26 immediately after the start of the turning deceleration operation, the controller 9 controls the tilting angle of the bidirectional motor 26 to change the type and magnitude of the turning operation signal. The regulator 27 is controlled to have an angle corresponding to the distance.
 旋回操作装置67の操作レバーが中立位置に向かって戻される旋回減速操作時は、制御装置9は、第2切換弁64を旋回操作信号の種類(左旋回か右旋回か)に応じて第1状態または第2状態に切り換えるとともに、第1切換弁61を中立状態に切り換える。これと同時に、制御装置9は、両方向ポンプ23の傾転角がゼロとなるようにレギュレータ24を制御する。 At the time of the decelerating operation in which the operation lever of the turning operation device 67 is returned toward the neutral position, the control device 9 changes the second switching valve 64 according to the type of the turning operation signal (left turn or right turn). While switching to the 1 state or the second state, the first switching valve 61 is switched to the neutral state. At the same time, the controller 9 controls the regulator 24 so that the tilt angle of the bidirectional pump 23 becomes zero.
 例えば、旋回加速操作時に第1切換弁61が第1状態であれば、旋回減速操作時に第2切換弁64を第1状態に切り換えて、第1方向の作動油の循環を第3方向の作動油の循環にシフトする。これにより、旋回モータ16から排出される作動油により両方向モータ26が駆動され、フライホイール54に旋回減速操作時の運動エネルギが蓄積される。ただし、旋回減速操作時には、第2切換弁64を第1状態または第2状態に切り換える代わりに、第3状態に切り換えてもよい。 For example, if the first switching valve 61 is in the first state at the time of the swing acceleration operation, the second switching valve 64 is switched to the first state at the time of the swing decelerating operation to operate the hydraulic fluid in the first direction in the third direction. Shift to oil circulation. As a result, the bidirectional motor 26 is driven by the hydraulic oil discharged from the swing motor 16, and kinetic energy at the time of the swing reduction operation is accumulated in the flywheel 54. However, when turning and decelerating, the second switching valve 64 may be switched to the third state instead of switching to the first state or the second state.
 旋回減速操作後、第1速度検出器91で検出される旋回体12の速度がゼロとなったときに、制御装置9は、第2切換弁64を中立状態に切り換える。これと同時に、制御装置9は、両方向モータ26の傾転角がゼロとなるようにレギュレータ27を制御する。 When the speed of the swing body 12 detected by the first speed detector 91 becomes zero after the turning and decelerating operation, the control device 9 switches the second switching valve 64 to the neutral state. At the same time, the control device 9 controls the regulator 27 so that the tilt angle of the bidirectional motor 26 becomes zero.
 フライホイール54にエネルギが蓄積されている状態、すなわち第2速度検出器92で検出されるフライホイール54の回転速度がゼロでない状態で旋回操作が開始されると、制御装置9は、旋回操作信号の種類に応じて、第2切換弁64を第1状態または第2状態に切り換える。また、制御装置9は、旋回加速操作時および旋回等速操作時に、旋回操作信号が大きくなるにつれて旋回操作信号の種類(左旋回か右旋回か)に応じた方向における両方向モータ26の吐出流量が大きくなるように、レギュレータ27を制御する。 When the turning operation is started in a state where energy is stored in the flywheel 54, that is, when the rotational speed of the flywheel 54 detected by the second speed detector 92 is not zero, the controller 9 generates a turning operation signal The second switching valve 64 is switched to the first state or the second state depending on the type of the valve. Further, at the time of turning acceleration operation and turning constant velocity operation, the controller 9 causes the discharge flow rate of the bidirectional motor 26 in the direction according to the type of turning operation signal (whether left turning or right turning) as the turning operation signal increases. The regulator 27 is controlled so as to become large.
 さらに、両方向モータ26から旋回モータ16へ作動油を供給するときは、フライホイール54に蓄積されたエネルギ量に基づいて、両方向ポンプ23からも旋回モータ16へ作動油を供給するか否かが切り換えられる。 Furthermore, when hydraulic fluid is supplied from the bidirectional motor 26 to the swing motor 16, whether or not hydraulic fluid is also supplied from the bidirectional pump 23 to the swing motor 16 is switched based on the amount of energy stored in the flywheel 54. Be
 具体的に、制御装置9は、第2速度検出器92で検出されるフライホイール54の回転速度Vfが所定値Vsよりも大きければ(Vf>Vs)、第1切換弁61を中立状態に維持する。一方、フライホイール54の回転速度Vfが所定値Vsよりも小さければ(Vf<Vs)、制御装置9は、旋回操作信号の種類に応じて、第1切換弁61を第1状態または第2状態に切り換える。さらに、制御装置9は、旋回操作信号の大きさに基づいて両方向ポンプ23用のレギュレータ24を制御する。 Specifically, when the rotational speed Vf of the flywheel 54 detected by the second speed detector 92 is larger than the predetermined value Vs (Vf> Vs), the controller 9 maintains the first switching valve 61 in the neutral state. Do. On the other hand, if the rotational speed Vf of the flywheel 54 is smaller than the predetermined value Vs (Vf <Vs), the controller 9 sets the first switching valve 61 in the first state or the second state according to the type of the turning operation signal. Switch to Furthermore, the controller 9 controls the regulator 24 for the bidirectional pump 23 based on the magnitude of the turning operation signal.
 例えば、第2切換弁64が第1状態であれば、第1切換弁61も第1状態に切り換えて、第1方向の作動油の循環と第3方向の作動油の循環とを可能にする。これにより、両方向モータ26と両方向ポンプ23の双方から旋回モータ16へ作動油が供給される。 For example, if the second switching valve 64 is in the first state, the first switching valve 61 is also switched to the first state to enable circulation of hydraulic fluid in the first direction and circulation of hydraulic fluid in the third direction. . As a result, hydraulic fluid is supplied to the swing motor 16 from both the bidirectional motor 26 and the bidirectional pump 23.
 フライホイール54の回転速度がゼロでない場合の旋回減速操作時は、制御装置9は上述したフライホイール54の回転速度がゼロである場合と同様の制御を行う。 At the time of turning and decelerating operation when the rotational speed of the flywheel 54 is not zero, the control device 9 performs the same control as the case where the rotational speed of the flywheel 54 described above is zero.
 このように、本実施形態では、旋回加速操作時または旋回等速操作時に、フライホイール54によって両方向モータ26を駆動するとともに両方向モータ26の傾転角をゼロ以外として両方向モータ26をポンプとして機能させれば、フライホイール54に蓄積したエネルギにより旋回モータ16を駆動することができる。 As described above, in the present embodiment, the bi-directional motor 26 is driven by the flywheel 54 and the bi-directional motor 26 functions as a pump with the non-zero tilt angle of the bi-directional motor 26 during the swing acceleration operation or the swing constant velocity operation. Then, the swing motor 16 can be driven by the energy stored in the flywheel 54.
 一方、フライホイール54にエネルギが蓄積されている場合には、旋回操作が行われなくても、フライホイール54に蓄積されたエネルギを利用することは可能である。例えば、旋回操作以外の操作が行われて、供給ポンプ22が少なくとも1つの油圧アクチュエータへ作動油を供給する場合には、制御装置9は、旋回モータ16の出力軸を上述した図略のロック機構でロックした上で、フライホイール54によって両方向モータ26を駆動するとともに両方向モータ26の傾転角をゼロ以外として両方向モータ26をポンプとして機能させれば、両方向ポンプ23がモータとして機能することになる。従って、フライホイール54に蓄積したエネルギによりエンジン21による供給ポンプ22の駆動をアシストすることができる。 On the other hand, when energy is stored in the flywheel 54, it is possible to use the energy stored in the flywheel 54 even if the turning operation is not performed. For example, when an operation other than the swing operation is performed and the supply pump 22 supplies the hydraulic fluid to at least one hydraulic actuator, the control device 9 locks the output shaft of the swing motor 16 as described above. Lock the motor and drive the bidirectional motor 26 with the flywheel 54 and allow the bidirectional motor 26 to function as a pump with a non-zero tilt angle of the bidirectional motor 26, the bidirectional pump 23 will function as a motor. . Therefore, the energy stored in the flywheel 54 can assist the drive of the supply pump 22 by the engine 21.
 以上説明したように、本実施形態の油圧駆動システム1Aでは、旋回減速操作時の運動エネルギをフライホイール54に蓄積することができる。従って、旋回減速操作時の運動エネルギを任意のタイミングで回生することができる。 As described above, in the hydraulic drive system 1A of the present embodiment, kinetic energy at the time of turning and decelerating operation can be stored in the flywheel 54. Therefore, kinetic energy at the time of turning and decelerating operation can be regenerated at any timing.
 また、本実施形態では、第1切換弁61および第2切換弁64のそれぞれが第1状態または第2状態では一方向のみの循環を許可するので、旋回モータ16に両方向ポンプ23と両方向モータ26の双方から作動油を供給する場合(第1切換弁61および第2切換弁64の双方が第1状態または第2状態に切り換えられる場合)に、第1閉ループ4または第2閉ループ5での作業油の逆流を防止することができる。 Further, in the present embodiment, each of the first switching valve 61 and the second switching valve 64 permits circulation in only one direction in the first state or the second state. Working in the first closed loop 4 or the second closed loop 5 when the hydraulic fluid is supplied from both (when the first switching valve 61 and the second switching valve 64 are both switched to the first state or the second state) It is possible to prevent the backflow of oil.
 さらに、本実施形態では、フライホイール54の回転速度が大きい場合は第2切換弁64のみが第1状態または第2状態に切り換えられ、フライホイール54の回転速度が小さい場合は第1切換弁61および第2切換弁64の双方が第1状態または第2状態に切り換えられる。従って、旋回モータ16の駆動に、エンジン21よりもフライホイール54に蓄積したエネルギを優先的に使用し、フライホイール54に蓄積したエネルギでは旋回モータ16の駆動に不十分な場合に、旋回モータ16に両方向ポンプ23と両方向モータ26の双方から作動油を供給することができる。 Furthermore, in the present embodiment, only the second switching valve 64 is switched to the first state or the second state when the rotational speed of the flywheel 54 is high, and the first switching valve 61 is when the rotational speed of the flywheel 54 is low. And the second switching valve 64 are both switched to the first state or the second state. Therefore, the energy stored in the flywheel 54 is preferentially used for driving the swing motor 16 rather than the engine 21, and the energy stored in the flywheel 54 is insufficient for the drive of the swing motor 16, the swing motor 16 The hydraulic fluid can be supplied to both the bidirectional pump 23 and the bidirectional motor 26.
 また、本実施形態では、回生モータ28が設けられていてブームの位置エネルギもフライホイール54に蓄積することができるので、旋回モータ16の駆動にブームの位置エネルギをも利用することができる。 Further, in the present embodiment, since the regenerative motor 28 is provided and the potential energy of the boom can also be stored in the flywheel 54, the potential energy of the boom can also be used to drive the swing motor 16.
 (第2実施形態)
 図4に、本発明の第2実施形態に係る油圧駆動システム1Bを示す。なお、本実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。また、図4では、図1に示す増速機53、フライホイール54、ワンウェイクラッチ55および回生モータ28を省略する。
Second Embodiment
FIG. 4 shows a hydraulic drive system 1B according to a second embodiment of the present invention. In the present embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and duplicate descriptions are omitted. Further, in FIG. 4, the speed increasing gear 53, the flywheel 54, the one-way clutch 55 and the regenerative motor 28 shown in FIG. 1 are omitted.
 本実施形態では、第1切換弁61は、第1実施形態の切換弁62,63を組み合わせたような単一の3位置弁である。つまり、第1切換弁61の中立位置が第1実施形態で説明した中立状態であり、第1切換弁61の一方の作動位置(図4では上側位置)が第1実施形態で説明した第1位状態であり、第1切換弁61の他方の作動位置(図4では下側位置)が第1実施形態で説明した第2位状態である。 In the present embodiment, the first switching valve 61 is a single three-position valve in which the switching valves 62 and 63 of the first embodiment are combined. That is, the neutral position of the first switching valve 61 is in the neutral state described in the first embodiment, and one operating position (the upper position in FIG. 4) of the first switching valve 61 is the first position described in the first embodiment. In the second position, the other operating position (the lower position in FIG. 4) of the first switching valve 61 is the second position described in the first embodiment.
 同様に、第2切換弁64は、第1実施形態の切換弁65,66を組み合わせたような単一の3位置弁である。つまり、第2切換弁64の中立位置が第1実施形態で説明した中立状態であり、第2切換弁64の一方の作動位置(図4では上側位置)が第1実施形態で説明した第1位状態であり、第2切換弁64の他方の作動位置(図4では下側位置)が第1実施形態で説明した第2位状態である。 Similarly, the second switching valve 64 is a single three-position valve in which the switching valves 65 and 66 of the first embodiment are combined. That is, the neutral position of the second switching valve 64 is in the neutral state described in the first embodiment, and one operating position of the second switching valve 64 (the upper position in FIG. 4) is the first embodiment described in the first embodiment. In the second position, the other operating position (the lower position in FIG. 4) of the second switching valve 64 is the second position described in the first embodiment.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained.
 (その他の実施形態)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present invention.
 例えば、本発明が建設機械に適用される場合、油圧駆動システム(1Aまたは1B)において、ブームの位置エネルギは非常に大きなために、両方向ポンプ23および第1切換弁61を省略して、フライホイール54に蓄積したエネルギのみで旋回モータを駆動することが可能である。この場合、第2切換弁64も省略されてもよい。 For example, when the present invention is applied to a construction machine, in the hydraulic drive system (1A or 1B), since the potential energy of the boom is very large, the bidirectional pump 23 and the first switching valve 61 may be omitted to provide a flywheel. It is possible to drive the swing motor with only the energy stored in 54. In this case, the second switching valve 64 may also be omitted.
 あるいは、本発明が、走行回路にHSTが用いられた産業車両に適用される場合、ブームシリンダ13および回生モータ28が省略されてもよい。 Alternatively, when the present invention is applied to an industrial vehicle in which HST is used in the traveling circuit, the boom cylinder 13 and the regenerative motor 28 may be omitted.
 また、第1および第2実施形態においては、第1切換弁61および第2切換弁64を省略して、レギュレータ24,27の制御のみで第1閉ループ4を通じた作動油の循環および/または第2閉ループ5を通じた作動油の循環を許可したり禁止したりすることができる。ただし、第1および第2実施形態のように第1切換弁61および第2切換弁64が設けられていれば、第1閉ループ4を通じた循環の許可と禁止および第2閉ループ5を通じた循環の許可と禁止を瞬時に切り換えることができる。また、第1切換弁61および第2切換弁64が循環禁止状態で逆止弁として機能するように構成されていれば、両方向ポンプ23および両方向モータ26での作動油の逆流を防止することができる。 Further, in the first and second embodiments, the first switching valve 61 and the second switching valve 64 are omitted, and the circulation of hydraulic oil through the first closed loop 4 and / or the first closed loop 4 only by the control of the regulators 24 and 27 The circulation of hydraulic fluid through the closed loop 5 can be permitted or prohibited. However, if the first switching valve 61 and the second switching valve 64 are provided as in the first and second embodiments, permission and prohibition of circulation through the first closed loop 4 and circulation through the second closed loop 5 are provided. It is possible to switch between permission and prohibition instantly. In addition, if the first switching valve 61 and the second switching valve 64 are configured to function as check valves in the circulation inhibition state, the backflow of hydraulic oil in the bidirectional pump 23 and the bidirectional motor 26 can be prevented. it can.
 1A,1B 油圧駆動システム
 13 ブームシリンダ
 16 旋回モータ(油圧モータ)
 21 エンジン
 22 供給ポンプ
 23 両方向ポンプ
 24 レギュレータ(第1レギュレータ)
 26 両方向モータ
 27 レギュレータ(第2レギュレータ)
 28 回生モータ
 4  第1閉ループ
 5  第2閉ループ
 54 フライホイール
 61 第1切換弁
 64 第2切換弁
 73 ブーム制御弁
 9  制御装置
 91 第1速度検出器
 92 第2速度検出器
 
1A, 1B Hydraulic drive system 13 Boom cylinder 16 Swing motor (hydraulic motor)
21 engine 22 supply pump 23 two-way pump 24 regulator (first regulator)
26 2-way motor 27 regulator (second regulator)
28 Regenerative motor 4 first closed loop 5 second closed loop 54 flywheel 61 first switching valve 64 second switching valve 73 boom control valve 9 control device 91 first speed detector 92 second speed detector

Claims (7)

  1.  油圧モータと、
     第1閉ループを形成するように前記油圧モータと接続された、エンジンにより駆動されて前記油圧モータへ作動油を供給する両方向ポンプと、
     前記両方向ポンプの傾転角を調整する第1レギュレータと、
     第2閉ループを形成するように前記油圧モータと接続された、前記油圧モータに対する減速操作時に前記油圧モータから排出される作動油により駆動される両方向モータと、
     前記両方向モータにより回転されるフライホイールと、
     前記両方向モータの傾転角を調整する第2レギュレータと、
     前記油圧モータに対する操作に基づいて前記第1レギュレータおよび前記第2レギュレータを制御する制御装置と、
    を備える、油圧駆動システム。
    Hydraulic motor,
    A bi-directional pump driven by an engine and supplying hydraulic fluid to the hydraulic motor, connected with the hydraulic motor to form a first closed loop;
    A first regulator for adjusting a tilt angle of the bidirectional pump;
    A bidirectional motor connected with the hydraulic motor so as to form a second closed loop, which is driven by hydraulic fluid discharged from the hydraulic motor when the hydraulic motor is decelerated;
    A flywheel rotated by the bidirectional motor;
    A second regulator for adjusting the tilt angle of the bidirectional motor;
    A control device that controls the first regulator and the second regulator based on an operation on the hydraulic motor;
    , Hydraulic drive system.
  2.  前記制御装置により制御される、前記第1閉ループを通じた作動油の循環を許可または禁止する第1切換弁と、
     前記制御装置により制御される、前記第2閉ループを通じた作動油の循環を許可または禁止する第2切換弁と、をさらに備える、請求項1に記載の油圧駆動システム。
    A first switching valve controlled by the control device for permitting or inhibiting the circulation of hydraulic fluid through the first closed loop;
    The hydraulic drive system according to claim 1, further comprising: a second switching valve controlled by the control device that permits or prohibits the circulation of hydraulic fluid through the second closed loop.
  3.  前記第1切換弁は、前記第1閉ループを通じた作動油の循環を禁止する中立状態と、第1方向への前記第1閉ループを通じた作動油の循環を許可する第1状態と、前記第1方向とは逆の第2方向への前記第1閉ループを通じた作動油の循環を許可する第2状態とに切り換え可能であり、
     前記第2切換弁は、前記第2閉ループを通じた作動油の循環を禁止する中立状態と、作動油が前記油圧モータを通過する向きが前記第1方向と同じである第3方向への前記第2閉ループを通じた作動油の循環を許可する第1状態と、前記第3方向とは逆の第4方向への前記第2閉ループを通じた作動油の循環を許可する第2状態とに切り換え可能である、請求項2に記載の油圧駆動システム。
    The first switching valve has a neutral state that prohibits the circulation of hydraulic fluid through the first closed loop, a first state that allows the hydraulic fluid to circulate through the first closed loop in a first direction, and the first state. Switchable to a second state permitting circulation of hydraulic fluid through the first closed loop in a second direction opposite to the direction;
    The second switching valve is in a neutral state for inhibiting the circulation of hydraulic fluid through the second closed loop, and in the third direction in which the hydraulic fluid passes through the hydraulic motor in the same direction as the first direction. (2) switchable between a first state permitting circulation of hydraulic fluid through the closed loop and a second state permitting circulation of hydraulic fluid through the second closed loop in a fourth direction opposite to the third direction The hydraulic drive system according to claim 2.
  4.  前記油圧モータによって駆動される物体の速度を検出する速度検出器をさら備え、
     前記制御装置は、前記油圧モータに対する減速操作時に、前記第2切換弁を前記第1状態または前記第2状態に切り換え、前記減速操作後に前記速度検出器で検出される物体の速度がゼロとなったときに前記第2切換弁を中立状態に切り換える、請求項3に記載の油圧駆動システム。
    The apparatus further comprises a speed detector for detecting the speed of an object driven by the hydraulic motor,
    The control device switches the second switching valve to the first state or the second state when the hydraulic motor is decelerating, and the velocity of the object detected by the speed detector after the decelerating operation becomes zero. The hydraulic drive system according to claim 3, wherein the second switching valve is switched to the neutral state when it is turned off.
  5.  前記フライホイールの回転速度を検出する速度検出器をさらに備え、
     前記制御装置は、前記油圧モータに対する加速操作時および等速操作時に、前記第2検出器で検出される前記フライホイールの回転速度が前記所定値よりも大きければ、前記第2切換弁を前記第1状態または前記第2状態に切り換えるとともに、前記第1切換弁を前記中立状態に切り換え、前記速度検出器で検出される前記フライホイールの回転速度が所定値よりも小さければ、前記第1切換弁および前記第2切換弁の双方を前記第1状態または前記第2状態に切り換える、請求項3または4に記載の油圧駆動システム。
    It further comprises a speed detector for detecting the rotational speed of the flywheel,
    When the rotational speed of the flywheel detected by the second detector is larger than the predetermined value at the time of accelerating operation and equal speed operation to the hydraulic motor, the control device controls the second switching valve to the second switching valve. Switching to the first state or the second state, switching the first switching valve to the neutral state, and if the rotational speed of the flywheel detected by the speed detector is smaller than a predetermined value, the first switching valve The hydraulic drive system according to claim 3 or 4, wherein both of the second switching valve and the second switching valve are switched to the first state or the second state.
  6.  ブームシリンダと、
     前記ブームシリンダへ制御弁を介して作動油を供給する、前記エンジンにより駆動される供給ポンプと、
     ブーム下げ操作時に前記ブームシリンダから排出される作動油により駆動され、前記フライホイールを回転させる回生モータと、
    をさらに備える、請求項1~5の何れか一項に記載の油圧駆動システム。
    A boom cylinder,
    A supply pump driven by the engine, which supplies hydraulic oil to the boom cylinder via a control valve;
    A regenerative motor driven by hydraulic fluid discharged from the boom cylinder at the time of a boom lowering operation to rotate the flywheel;
    The hydraulic drive system according to any one of claims 1 to 5, further comprising:
  7.  油圧モータと、
     閉ループを形成するように前記油圧モータと接続された、前記油圧モータに対する減速操作時に前記油圧モータから排出される作動油により回転される両方向モータと、
     前記両方向モータにより回転されるフライホイールと、
     前記両方向モータの傾転角を調整するレギュレータと、
     前記油圧モータに対する操作に基づいて前記レギュレータを制御する制御装置と、
     ブームシリンダと、
     前記ブームシリンダへ制御弁を介して作動油を供給する、エンジンにより駆動される供給ポンプと、
     ブーム下げ操作時に前記ブームシリンダから排出される作動油により駆動され、前記フライホイールを回転させる回生モータと、
    を備える、油圧駆動システム。
    Hydraulic motor,
    A bidirectional motor connected with the hydraulic motor so as to form a closed loop, which is rotated by hydraulic fluid discharged from the hydraulic motor when the hydraulic motor is decelerated;
    A flywheel rotated by the bidirectional motor;
    A regulator for adjusting the tilt angle of the bidirectional motor;
    A controller that controls the regulator based on an operation on the hydraulic motor;
    A boom cylinder,
    An engine driven feed pump for feeding hydraulic oil to the boom cylinder through a control valve;
    A regenerative motor driven by hydraulic fluid discharged from the boom cylinder at the time of a boom lowering operation to rotate the flywheel;
    , Hydraulic drive system.
PCT/JP2018/024084 2017-06-27 2018-06-26 Hydraulic drive system WO2019004156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-125197 2017-06-27
JP2017125197A JP7037290B2 (en) 2017-06-27 2017-06-27 Hydraulic drive system

Publications (1)

Publication Number Publication Date
WO2019004156A1 true WO2019004156A1 (en) 2019-01-03

Family

ID=64741614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024084 WO2019004156A1 (en) 2017-06-27 2018-06-26 Hydraulic drive system

Country Status (2)

Country Link
JP (1) JP7037290B2 (en)
WO (1) WO2019004156A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622609B (en) * 2022-03-15 2023-06-30 徐州工业职业技术学院 Energy recovery and recycling integrated system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380702A (en) * 1976-12-27 1978-07-17 Komatsu Mfg Co Ltd Top turning type hydraulic excavator
JP2003130006A (en) * 2001-10-19 2003-05-08 Tamura Electric Works Ltd Hydraulic device
JP2004324742A (en) * 2003-04-23 2004-11-18 Saxa Inc Hydraulic device
JP2004324743A (en) * 2003-04-23 2004-11-18 Saxa Inc Hydraulic device
JP2015025475A (en) * 2013-07-24 2015-02-05 日立建機株式会社 Energy regenerating system for construction machine
JP2016080106A (en) * 2014-10-20 2016-05-16 川崎重工業株式会社 Hydraulic drive system for construction machine
US20160305455A1 (en) * 2014-02-10 2016-10-20 Taiyuan University Of Technology Double-loop control system with single hydraulic motor
US20160333903A1 (en) * 2015-05-11 2016-11-17 Caterpillar Inc. Hydraulic system having regeneration and hybrid start

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110859A (en) * 1980-12-27 1982-07-09 Hitachi Constr Mach Co Ltd Controller of oil hydraulic system
JPS57110856A (en) * 1980-12-27 1982-07-09 Hitachi Constr Mach Co Ltd Controller of oil hydraulic device
JP2011220390A (en) 2010-04-06 2011-11-04 Kobelco Contstruction Machinery Ltd Control device of hydraulic working machine
JP2013104244A (en) 2011-11-15 2013-05-30 Komatsu Ltd Hydraulic shovel
JP6430735B2 (en) 2014-07-09 2018-11-28 日立建機株式会社 Drive device for work machine
JP6335093B2 (en) * 2014-10-10 2018-05-30 川崎重工業株式会社 Hydraulic drive system for construction machinery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380702A (en) * 1976-12-27 1978-07-17 Komatsu Mfg Co Ltd Top turning type hydraulic excavator
JP2003130006A (en) * 2001-10-19 2003-05-08 Tamura Electric Works Ltd Hydraulic device
JP2004324742A (en) * 2003-04-23 2004-11-18 Saxa Inc Hydraulic device
JP2004324743A (en) * 2003-04-23 2004-11-18 Saxa Inc Hydraulic device
JP2015025475A (en) * 2013-07-24 2015-02-05 日立建機株式会社 Energy regenerating system for construction machine
US20160305455A1 (en) * 2014-02-10 2016-10-20 Taiyuan University Of Technology Double-loop control system with single hydraulic motor
JP2016080106A (en) * 2014-10-20 2016-05-16 川崎重工業株式会社 Hydraulic drive system for construction machine
US20160333903A1 (en) * 2015-05-11 2016-11-17 Caterpillar Inc. Hydraulic system having regeneration and hybrid start

Also Published As

Publication number Publication date
JP7037290B2 (en) 2022-03-16
JP2019007586A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US10337538B2 (en) Shovel
JP6941517B2 (en) Hydraulic drive system for construction machinery
WO2016056244A1 (en) Hydraulic drive system for construction machinery
US10604916B2 (en) Shovel
JP7324654B2 (en) Hydraulic system for construction machinery
WO2021039286A1 (en) Hydraulic system for construction machinery
JP6013503B2 (en) Construction machinery
JP6891079B2 (en) Hydraulic drive system for construction machinery
JP6675871B2 (en) Excavator
KR101747519B1 (en) Hybrid construction machine
JP2015172400A (en) Shovel
WO2016092809A1 (en) Hydraulic drive system for construction machinery
JP2000145711A (en) Method and device for controlling turning system hydraulic device
WO2019004156A1 (en) Hydraulic drive system
CN111344459B (en) Drive system for construction machine
JP2018071311A (en) Energy regenerative system
JP6847821B2 (en) Work machine hydraulic system
CN111936751B (en) Hydraulic drive system for construction machine
EP1894765A2 (en) Hydraulic traveling drive system
JP2015172396A (en) Shovel
JP6535871B2 (en) Industrial vehicles
JP6580301B2 (en) Excavator
CN113286950B (en) Rotary driving device of engineering machinery
JP2015172398A (en) Shovel
JP2015172397A (en) Shovel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825346

Country of ref document: EP

Kind code of ref document: A1