WO2019003955A1 - 通信システムおよび制御装置 - Google Patents

通信システムおよび制御装置 Download PDF

Info

Publication number
WO2019003955A1
WO2019003955A1 PCT/JP2018/022860 JP2018022860W WO2019003955A1 WO 2019003955 A1 WO2019003955 A1 WO 2019003955A1 JP 2018022860 W JP2018022860 W JP 2018022860W WO 2019003955 A1 WO2019003955 A1 WO 2019003955A1
Authority
WO
WIPO (PCT)
Prior art keywords
streaming
network
reception
state
communication system
Prior art date
Application number
PCT/JP2018/022860
Other languages
English (en)
French (fr)
Inventor
弘基 佐藤
兼作 和久田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP18824894.2A priority Critical patent/EP3648422B1/en
Priority to CN201880041444.6A priority patent/CN110771102B/zh
Priority to JP2019526801A priority patent/JPWO2019003955A1/ja
Priority to US16/625,169 priority patent/US11394759B2/en
Publication of WO2019003955A1 publication Critical patent/WO2019003955A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/38Flow control; Congestion control by adapting coding or compression rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/40Flow control; Congestion control using split connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/765Media network packet handling intermediate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]

Definitions

  • the present technology relates to a communication system and a control device, and more particularly, to a communication system and a control device that enables determination of the state of a streaming network.
  • Patent Document 1 discloses a system that performs communication by using a plurality of different wireless communication paths and complementing a band lacking in one wireless communication path with another wireless communication path.
  • the present technology has been made in view of such a situation, and enables appropriate determination of the state of a streaming network.
  • a communication system is a receiving device, a transmitting device that performs streaming to the receiving device, and a network that connects the receiving device and the transmitting device, the first communication line and the second communication And a control device for managing a state of a network including a line, wherein the first communication line is unstable in connection state as compared to the second communication line, and the control device is configured to The state of the network is managed based on packets transmitted to the receiving device.
  • the control device of the present technology is a network that connects a receiving device and a transmitting device that performs streaming to the receiving device, and manages the state of the network including the first communication line and the second communication line.
  • a control unit is provided, the connection state of the first communication line is unstable compared to the second communication line, and the control unit is configured to transmit a packet to be transmitted from the transmitting device to the receiving device. Based on the state of the network is managed.
  • a network connecting a receiving device and a transmitting device that performs streaming to the receiving device is managed, and the state of the network including the first communication line and the second communication line is managed,
  • the connection state of the first communication line is unstable compared to the second communication line, and the state of the network is managed based on the packet transmitted from the transmitting device to the receiving device.
  • FIG. 1 schematically shows an overall configuration of an operating room system.
  • FIG. 23 It is a figure which shows the example of a display of the operation screen in a concentration operation panel. It is a figure which shows an example of the mode of the surgery to which the operating room system was applied. It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 23, and CCU.
  • FIG. 1 is a diagram showing an example of configuration of a communication system according to the present embodiment.
  • the transmission device 11 is configured as an imaging device such as a camcorder, for example, and transmits data (moving image data) of a moving image captured by the imaging unit 11a to the receiving device 12 in real time.
  • the transmitting device 11 and the imaging device may be configured separately.
  • the receiving device 12 is configured as, for example, a streaming receiver provided in a broadcasting station of television broadcasting, and receives moving image data transmitted from the transmitting device 11.
  • the moving image data received by the receiving device 12 is distributed by broadcast waves.
  • the transmitting device 11 and the receiving device 12 are connected via a network including a first communication line including a wireless communication line and a second communication line including only a wired communication line.
  • the first communication line here refers to the communication line between the transmitting device 11 and the Internet 30 via the base station 20, and the second communication line is the communication line between the Internet 30 and the receiving device 12.
  • Point to The first communication line is unstable in connection state as compared to the second communication line, and delay or packet loss becomes large.
  • Communication between the transmission device 11 and the base station 20 is performed, for example, in 3G (3rd Generation) mode or LTE (Long Term Evolution) mode.
  • the transmitting device 11 can transmit moving image data SD obtained by shooting by performing streaming. Streaming is performed between the transmitting device 11 and the receiving device 12 by performing QoS (Quality of Service) control.
  • QoS Quality of Service
  • the controller 13 is connected to the Internet 30.
  • the controller 13 is provided, for example, in a television broadcast station as in the receiving device 12.
  • the controller 13 is a state of a network including a communication line (first communication line) between the transmitting device 11 and the Internet 30, and a communication line (second communication line) between the Internet 30 and the receiving device 12.
  • a control device that manages
  • the controller 13 manages the state of streaming between the transmitting device 11 and the receiving device 12 by TCP (Transmission Control Protocol) connection.
  • TCP Transmission Control Protocol
  • the controller 13 exchanges data with the transmitting device 11 by establishing a connection CN 1 with the transmitting device 11.
  • the controller 13 exchanges data with the receiving device 12 by establishing the connection CN 2 with the receiving device 12.
  • the controller 13 may be connected to the network constituting the communication system 1 and may be independently connected to the Internet 30 as shown in FIG. 1 or provided on the cloud 40. You may do so.
  • the controller 13 may be configured integrally with the receiving device 12 or may be configured integrally with the transmitting device 11.
  • the server 41 on the cloud 40 is connected to the Internet 30.
  • the moving image data received by the receiving device 12 may be distributed by the server 41 on the cloud 40 via the Internet 30.
  • moving image data received by the receiving device 12 may be stored in a storage 42 connected to the receiving device 12 at, for example, a broadcast station.
  • FIG. 2 is a block diagram showing a configuration example of the controller 13.
  • a central processor unit (CPU) 61 is provided with various components provided in the controller 13 according to a program stored in a read only memory (ROM) 62 or a program loaded to a random access memory (RAM) 63. Execute processing to realize the function of The RAM 63 also stores data necessary for the CPU 61 to execute various processes.
  • ROM read only memory
  • RAM random access memory
  • the CPU 61, the ROM 62, and the RAM 63 are mutually connected via a bus 64.
  • An input / output interface 65 is also connected to the bus 64.
  • An input unit 66, an output unit 67, a storage unit 68, and a communication unit 69 are connected to the input / output interface 65.
  • the input unit 66 includes keys, buttons, a touch panel, a microphone, and the like
  • the output unit 67 includes a display, a speaker, and the like.
  • the storage unit 68 is configured by a hard disk or the like
  • the communication unit 69 is configured by a communication module or the like that performs wired communication.
  • the drive 70 is also connected to the input / output interface 65 as necessary, and a removable medium 71 composed of a semiconductor memory or the like is appropriately attached.
  • the computer program read from the removable medium 71 is installed in the storage unit 68 as necessary.
  • the configurations of the transmission device 11 and the reception device 12 are basically the same as the configuration of the controller 13 of FIG. 2 except that the transmission device 11 includes an imaging unit, and thus the description thereof is omitted.
  • the controller 13 manages the state of the network connecting the transmitting device 11 and the receiving device 12.
  • the controller 13 determines the state of the network based on the reception state of streaming in the receiving device 12.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the communication system 1 according to the present embodiment.
  • the reception device 12 implements the state determination unit 91 by executing a predetermined program by a CPU (not shown). Further, the controller 13 implements the control unit 101 by the CPU 61 executing a predetermined program.
  • the control unit 101 manages the state of the network connecting the transmitting device 11 and the receiving device 12 and includes a state grasping unit 111 and an operation determining unit 112.
  • the state determination unit 91 of the reception device 12 determines the reception state of streaming based on UDP in the reception device 12 based on the packet transmitted from the transmission device 11.
  • the reception state of streaming by UDP in the reception device 12 is also referred to as a streaming state in the reception device 12 as appropriate.
  • the state grasping unit 111 of the controller 13 grasps the reception state (streaming state) of streaming by the UDP in the receiving device 12 through the TCP connection, and notifies the operation deciding unit 112 of the contents.
  • the operation determining unit 112 determines the operation of the receiving device 12 by determining the state of the network based on the streaming state of the receiving device 12 determined by the state determining unit 111.
  • the operation of the receiving device 12 refers to the operation of the receiving device 12 which is required according to the state of the network at that time, such as continuation or stop of streaming currently performed.
  • the operation determination unit 112 notifies the reception device 12 of the determined operation of the reception device 12 via the TCP connection.
  • FIG. 4 shows, as a streaming state, a state ST1 (START) indicating continuation (start) of streaming and a state ST2 (STOP) indicating stop of streaming currently being performed.
  • the streaming state when the streaming state is in the state ST1, if the condition C1 is satisfied, the streaming state transitions to the state ST2.
  • the streaming state transitions to the state ST1. It is determined by the state determination unit 91 of the reception device 12 whether the conditions C1 and C2 are satisfied.
  • condition C1 indicates that the reception interval of Real-time Transport Protocol (RTP) packets from the transmitter 11 in the receiver 12 exceeds a certain time, or the amount of packet loss after QoS control within a certain time is constant. It is considered to exceed the amount.
  • RTP Real-time Transport Protocol
  • condition C2 is that the reception interval of RTP packets from the transmission apparatus 11 in the reception apparatus 12 does not exceed a predetermined time, and the amount of packet loss after QoS control in a predetermined time is equal to or less than a predetermined amount. Ru.
  • step S11 the control unit 101 determines whether or not the connection CN1 with the transmission device 11 is disconnected.
  • step S11 when it is determined that the connection CN1 is not disconnected, the control unit 101 recognizes the state of streaming by the connection CN1 with the transmitting device 11 and the connection CN2 with the receiving device 12. Since nothing can be done, the process ends.
  • step S11 when it is determined in step S11 that the connection CN1 is disconnected, the process proceeds to step S12.
  • the state grasping unit 111 grasps the streaming state in the reception apparatus 12 determined by the state determination unit 91 through the TCP connection (CN2).
  • the state grasping unit 111 may grasp the streaming state by receiving a notification regarding the streaming state from the state determination unit 91 of the receiving device 12, and the state grasping unit 111 itself may be a part of the reception device 12.
  • the streaming state may be grasped by referring to the streaming state determined by the state determination unit 91.
  • step S13 the state grasping unit 111 determines whether the streaming state in the receiving device 12 remains STOP (state ST2 indicating stop of streaming) for a predetermined time.
  • step S13 If it is determined in step S13 that the streaming state does not remain STOP for a certain period of time, the operation determining unit 112 does nothing (the state in which streaming is performed), and the process ends.
  • step S13 when it is determined in step S13 that the streaming state remains STOP for a predetermined time, the operation determining unit 112 determines stopping of streaming in step S14, and notifies the reception device 12 to that effect. In this case, in response to the notification from the operation determination unit 112, the reception device 12 stops the application related to streaming.
  • control unit 101 can instruct the transmission apparatus 11 to start the streaming.
  • the streaming state (stopping or starting streaming) is determined based on one of the RTP packet reception interval in the receiving apparatus 12 and the amount of packet loss after QoS control within a predetermined time. You may
  • Second embodiment> In the above, the structure which judges the state of a network based on the reception state of the streaming in the receiver 12 was demonstrated. Here, a configuration will be described in which the controller 13 determines the state of the network based on the result of estimation of the bandwidth of the network.
  • FIG. 6 is a block diagram showing an example of a functional configuration of the communication system 1 according to the present embodiment.
  • the reception device 12 implements the band estimation unit 121 and the congestion detection unit 122 by executing a predetermined program by a CPU (not shown).
  • the controller 13 implements the control unit 131 by the CPU 61 executing a predetermined program.
  • the control unit 131 manages the state of the network connecting the transmission device 11 and the reception device 12 and includes a parameter setting unit 141.
  • the bandwidth estimation unit 121 of the reception device 12 estimates the bandwidth of the network to be streamed with the transmission device 11 based on the packet transmitted from the transmission device 11.
  • the estimation result (band of the network) is notified to the controller 13 via the TCP connection.
  • the congestion detection unit 122 detects congestion of the network to be streamed with the transmission device 11 based on the packet transmitted from the transmission device 11.
  • the detection result of congestion by the congestion detection unit 122 is used for band estimation by the band estimation unit 121.
  • the parameter setting unit 141 of the controller 13 sets parameters related to streaming performed by the transmission device 11 based on the bandwidth of the network estimated by the reception device 12.
  • step S31 the controller 13 instructs the transmission device 11 and the reception device 12 to start band estimation via the TCP connection.
  • step S32 in response to an instruction from the controller 13, as shown in FIG. 8, the transmission apparatus 11 performs packet transmission while raising the transmission rate in steps at regular intervals, as shown in FIG.
  • FIG. 8 shows an example of the transmission rate of the packet transmitted by the transmission device 11.
  • the transmission rate rises in a step-like manner every time T0.
  • the time T0 is a time set in advance between the transmitting device 11 and the receiving device 12.
  • the band estimation unit 121 of the reception device 12 estimates the band of the network based on the reception rate of the packet received from the transmission device 11. The estimated network bandwidth is notified to the controller 13.
  • step S34 the parameter setting unit 141 of the controller 13 sets parameters related to streaming based on the estimated bandwidth of the network.
  • the parameters for example, the resolution or transmission rate of a moving image transmitted by streaming is set.
  • the controller 13 instructs the transmission apparatus 11 to start streaming with the set parameters via the TCP connection.
  • the network including the unstable communication path can be Depending on the situation, it is possible to provide stable streaming.
  • the band estimation unit 121 checks the reception rate of the received packet every predetermined time elapsed from the start of reception of the packet transmitted while raising the transmission rate in steps at predetermined time intervals. Then, band estimation section 121 determines a band range (hereinafter referred to as a reception estimated range) corresponding to the reception rate when the fluctuation is substantially stabilized.
  • a reception estimated range a band range corresponding to the reception rate when the fluctuation is substantially stabilized.
  • FIG. 9 is a diagram showing an example of the packet reception rate in the receiver 12.
  • the reception rate exceeds the rate M1. If the reception rate does not exceed the rate M1, the reception estimation range is determined to R1. As in the example of FIG. 9, when t1 elapses and the reception rate exceeds the rate M1, a check is performed when time t2 has elapsed from the start of packet reception.
  • the reception estimation range is determined to R3. As in the example of FIG. 9, when the reception rate exceeds the rate M3 at time t3, the estimated reception range is determined to be R4.
  • FIG. 10 is a diagram showing another example of the packet reception rate in the receiver 12.
  • the reception estimation range is determined to R1. In the example of FIG. 10, since the reception rate does not exceed the rate M1 when t1 elapses, the reception estimated range is determined to be R1.
  • FIG. 11 is a flowchart illustrating the process of determining the estimated reception range described with reference to FIGS. 9 and 10.
  • step S51 the band estimation unit 121 of the receiving device 12 determines whether time t3 has elapsed since the start of reception of the packet from the transmitting device 11.
  • step S52 the band estimation unit 121 determines whether the time t2 has elapsed from the start of packet reception.
  • step S53 the band estimation unit 121 determines whether the time t1 has elapsed from the start of packet reception.
  • step S51 If it is determined that the time t1 has not elapsed from the start of packet reception, the process returns to step S51, and the processes of steps S51 to S53 are repeated. As shown in FIGS. 9 and 10, t1 ⁇ t2 ⁇ t3.
  • step S53 If it is determined in step S53 that time t1 has elapsed from the start of packet reception while the processing in steps S51 to S53 is repeated, the process proceeds to step S54, and the band estimation unit 121 determines that the reception rate is rate M1. It is determined whether or not it is smaller.
  • step S54 If it is determined in step S54 that the reception rate is smaller than the rate M1, the process proceeds to step S55, and the band estimation unit 121 determines the reception estimation range to be R1.
  • step S54 when it is determined in step S54 that the reception rate is larger than the rate M1, the process returns to step S51 again, and the processes of steps S51 to S53 are repeated.
  • step S52 If it is determined in step S52 that time t2 has elapsed from the start of packet reception while the processing in steps S51 to S53 is repeated, the process proceeds to step S56, and the band estimation unit 121 determines that the reception rate is rate M2 It is determined whether or not it is smaller.
  • step S56 If it is determined in step S56 that the reception rate is smaller than the rate M2, the process proceeds to step S57, and the band estimation unit 121 determines the reception estimation range to be R2.
  • step S56 when it is determined in step S56 that the reception rate is larger than the rate M2, the process returns to step S51 again, and the processes of steps S51 to S53 are repeated.
  • step S51 If it is determined in step S51 that time t3 has elapsed from the start of packet reception while the processing in steps S51 to S53 is repeated, the process proceeds to step S58, and the band estimation unit 121 determines that the reception rate is rate M3. It is determined whether or not it is smaller.
  • step S58 If it is determined in step S58 that the reception rate is smaller than the rate M3, the process proceeds to step S59, and the band estimation unit 121 determines the reception estimation range to be R3.
  • step S58 when it is determined in step S58 that the reception rate is larger than the rate M3, the process proceeds to step S60, and the band estimation unit 121 determines the reception estimation range to be R4.
  • the bandwidth of the network can be estimated.
  • the estimated reception range is determined based on the reception rate of packets transmitted while raising the transmission rate in steps at regular intervals.
  • the estimated reception range may be determined based on the detection result of the congestion of the network in the receiving device 12.
  • FIG. 12 is a flowchart for explaining the process of determining the estimated reception range based on the detection result of the congestion of the network in the receiving device 12.
  • the process of FIG. 12 is periodically performed, for example, at predetermined time intervals.
  • step S ⁇ b> 71 the band estimation unit 121 determines whether the congestion detection unit 122 has detected congestion of the network based on the packet transmitted from the transmission device 11.
  • the congestion detection unit 122 detects congestion of the network based on the relative delay amount of the RTP packet from the transmission device 11.
  • the transmitter 11 transmits the RTP packets 151, 152, and 153 to the receiver 12 sequentially.
  • the congestion detection unit 122 obtains a difference (relative delay amount) t12 to t11 between a transmission time t11 at which the transmitter 11 transmits the RTP packet 151 and a reception time t12 at which the transmitter 12 receives the RTP packet 151.
  • the transmission time t11 is included in the RTP packet 151.
  • the congestion detection unit 122 detects the congestion of the network based on whether or not the relative delay amount t12 to t11 exceeds a predetermined value.
  • the relative delay amount t12 to t11 is smaller than a predetermined value, and congestion of the network is not detected.
  • the congestion detection unit 122 obtains a difference (relative delay amount) t22 to t21 between the transmission time t21 at which the transmitter 11 transmits the RTP packet 152 and the reception time t22 at which the transmitter 12 receives the RTP packet 152. .
  • the transmission time t21 is included in the RTP packet 152.
  • the congestion detection unit 122 detects the congestion of the network based on whether or not the relative delay amount t22 to t21 exceeds a predetermined value.
  • the relative delay amount t22 to t21 is smaller than a predetermined value, and congestion of the network is not detected.
  • the congestion detection unit 122 obtains a difference (relative delay amount) t32 to t31 between the transmission time t31 at which the transmitter 11 transmits the RTP packet 153 and the reception time t32 at which the transmitter 12 receives the RTP packet 153.
  • the transmission time t31 is included in the RTP packet 153.
  • the congestion detection unit 122 detects congestion of the network based on whether or not the relative delay amount t32 to t31 exceeds a predetermined value.
  • the relative delay amount t32 to t31 is larger than a predetermined value, it is determined that the congestion of the network is detected.
  • the congestion detection unit 122 detects congestion of the network.
  • step S71 the process of step S71 is repeated until it is determined that the congestion detection unit 122 has detected congestion of the network. Then, if it is determined that the congestion detection unit 122 has detected congestion in the network, the process proceeds to step S72, and the band estimation unit 121 estimates the range of the band at the time when congestion of the network is detected. Decide on.
  • the bandwidth of the network can be estimated by determining the reception estimation range.
  • the transmitting device 11 may detect congestion of the network.
  • the transmitting terminal 11 transmits a Real-time Transport Control Protocol (RTCP) packet to the receiving device 12, and detects congestion of the network based on the presence or absence of feedback from the receiving device 12.
  • RTCP Real-time Transport Control Protocol
  • the transmitter 11 transmits the RTCP packets 161 and 162 to the receiver 12 sequentially.
  • the transmitting device 11 obtains time t42 to t41 from the transmitting time t41 at which the RTCP packet 161 is transmitted to the receiving time t42 at which the feedback from the receiving device 12 is received.
  • the transmitter 11 detects network congestion based on whether or not the time t42 to t41 is longer than a predetermined time.
  • time t42 to t41 is shorter than a predetermined time, and congestion of the network is not detected.
  • the transmission device 11 obtains time t50 to t43 from the transmission time t43 at which the RTCP packet 162 is transmitted to the reception time t50 at which the feedback from the reception device 12 is received.
  • the transmitter 11 detects network congestion based on whether or not the time t50 to t43 is longer than a predetermined time.
  • the time t50 to t43 is longer than a predetermined time or when the feedback from the receiving device 12 can not be received, it is determined that the network congestion is detected.
  • the transmitting device 11 can also detect network congestion.
  • the receiving apparatus 12 has a function of estimating the network band based on the reception rate of received packets and the congestion detection result of the network
  • the controller 13 has this function. You may have it.
  • the control unit 151 of the controller 13 has a band estimation unit 121 and a parameter setting unit 141.
  • the bandwidth estimation unit 121 of FIG. 15 estimates the bandwidth of the network based on the reception rate notified from the reception device 12 and the congestion detection result of the network.
  • FIG. 16 is a diagram showing an example of configuration of a communication system supporting bonding according to the present embodiment.
  • the transmission device 11 and the Internet 30 are connected via n base stations 20-1 to 20-n (n wireless communication circuits (links 1 to n)) n 2 2).
  • n base stations 20-1 to 20-n n wireless communication circuits (links 1 to n))
  • link 1 the entire communication path via link 1
  • link 2 the entire communication path via link 2 is also referred to as link 2.
  • the transmission device 11 can divide moving image data obtained by photographing into data SD1 to SDn and transmit the data by performing streaming by bonding using n wireless communication circuits.
  • controller 13 can exchange data with the transmission device 11 by establishing connections CN1-1 to 1-n with the transmission device 11 via n wireless communication lines. .
  • the controller 13 is based on the reception state of streaming in the receiving apparatus 12 via n wireless communication lines. To determine the state of the network.
  • FIG. 17 is a block diagram showing an example of a functional configuration of the communication system 201 of FIG. 16 to which the technology according to the first embodiment is applied.
  • the receiving device 12 of FIG. 17 includes state determination units 91-1 to 91-n corresponding to n wireless communication circuits (links 1 to n).
  • the state determination units 91-1 to 91-n determine the streaming states of the links 1 to n in the receiving device 12.
  • the status grasping unit 111 of the controller 13 decides the streaming status of the entire link by grasping the streaming status of each of the links 1 to n in the receiving device 12 through the TCP connection (CN 2).
  • the operation determining unit 112 determines the operation of the receiving device 12 by determining the state of the network based on the streaming state of the entire link determined by the state grasping unit 111.
  • step S 91 the control unit 101 determines whether the connections CN 1-1 to 1-n with the transmission device 11 have not been disconnected.
  • step S 91 If it is determined in step S 91 that none of the connections CN 1-1 to 1-n has been disconnected, the control unit 101 receives the connections CN 1-1 to 1-n with the transmitting device 11 and the reception Since the streaming state can be grasped by the connection CN2 with the device 12, the process ends without doing anything.
  • step S91 if it is determined in step S91 that one of the connections CN1-1 to 1-n is disconnected, the process proceeds to step S92.
  • step S92 the state grasping unit 111 grasps the streaming states of the links 1 to n in the receiving device 12 determined by the state deciding units 91-1 to 91-n through the TCP connection (CN 2).
  • step S93 the state grasping unit 111 determines the streaming state of the entire link based on the streaming states of the links 1 to n in the receiving device 12.
  • step S94 the state grasping unit 111 determines whether the streaming state of the entire link remains STOP for a predetermined time.
  • step S94 If it is determined in step S94 that the streaming state of the entire link does not remain STOP for a certain period of time, the operation determining unit 112 does nothing (the state in which streaming is performed), and the process ends.
  • step S94 when it is determined in step S94 that the streaming state of the entire link remains STOP for a certain period of time, the operation determining unit 112 determines stopping of streaming in step S95, and notifies the reception device 12 to that effect. Do. In this case, in response to the notification from the operation determination unit 112, the reception device 12 stops the application related to streaming.
  • the streaming state via link 1 is START
  • the streaming state via link 2 is STOP
  • the streaming state via link 3 is START
  • the streaming state via link n is START It has been decided.
  • the entire link streaming state is determined to be START as shown in FIG.
  • the streaming status of the entire link may be determined based on the streaming status for each of the links 1 to n and the communication scheme for each of the links 1 to n (n wireless communication lines).
  • FIG. 20 shows an example of determining the streaming status of the entire link based on the streaming status for each of the links 1 to n and the communication scheme for each of the links 1 to n.
  • the streaming state for each of the links 1 to n is the same as that of FIG. Furthermore, it is determined that the communication system in link 1 is 3G, the communication system in link 2 is 3G, the communication system in link 3 is LTE,..., And the communication system in link n is LTE.
  • the number of START exceeds a predetermined number, and among the communication methods for each of the links 1 to n, the number of LTEs capable of faster communication is another predetermined number. If exceeded, the streaming status of the entire link is determined to START, as shown in FIG.
  • the first communication line including the wireless communication line connects the transmitting device 11 and the Internet 30, and the second communication line consisting only of the wired communication line connects the Internet 30 and the receiving device 12. It was a thing. Not limited to this, a second communication line consisting only of a wired communication line connects the transmitting device 11 and the Internet 30, and a first communication line including a wireless communication line connects the Internet 30 and the receiving device 12. You may do it.
  • FIG. 21 is a diagram schematically showing an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied.
  • the operating room system 5100 is configured such that devices installed in the operating room are connected to be able to cooperate with each other via an audiovisual controller (AV controller) 5107 and an operating room control device 5109.
  • AV controller audiovisual controller
  • FIG. 21 various devices may be installed in the operating room.
  • various device groups 5101 for endoscopic surgery a sealing camera 5187 provided on the ceiling of the operating room for imaging the hand of the operator, and the operating room provided on the ceiling of the operating room
  • a surgical field camera 5189 for imaging the entire situation a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183 and an illumination 5191 are shown.
  • a device group 5101 belongs to an endoscopic surgery system 5113 described later, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like.
  • Each device belonging to the endoscopic surgery system 5113 is also referred to as a medical device.
  • the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183 and the illumination 5191 are devices provided, for example, in the operating room separately from the endoscopic surgery system 5113.
  • Each device which does not belong to the endoscopic surgery system 5113 is also referred to as a non-medical device.
  • the audiovisual controller 5107 and / or the operating room controller 5109 cooperate with each other to control the operation of the medical device and the non-medical device.
  • the audio-visual controller 5107 centrally controls processing relating to image display in medical devices and non-medical devices.
  • the device group 5101, the ceiling camera 5187, and the operation room camera 5189 have a function of transmitting information to be displayed during surgery (hereinafter also referred to as display information).
  • It may be a device (hereinafter also referred to as a source device).
  • the display devices 5103A to 5103D can be devices to which display information is output (hereinafter, also referred to as a device of an output destination).
  • the recorder 5105 may be a device that corresponds to both a source device and an output device.
  • the audiovisual controller 5107 controls the operation of the transmission source device and the output destination device, acquires display information from the transmission source device, transmits the display information to the output destination device, and displays or records the function.
  • the display information is various images captured during the operation, various information related to the operation (for example, physical information of the patient, information on a past examination result, information on the operation method, etc.).
  • information about an image of a surgical site in a patient's body cavity captured by the endoscope may be transmitted from the device group 5101 as display information to the audiovisual controller 5107.
  • information on the image of the operator's hand captured by the ceiling camera 5187 can be transmitted as display information.
  • information on an image indicating the appearance of the entire operating room captured by the surgery site camera 5189 may be transmitted from the surgery site camera 5189 as display information.
  • the audiovisual controller 5107 acquires information on an image captured by the other device from the other device as display information. You may
  • the recorder 5105 information about these images captured in the past is recorded by the audiovisual controller 5107.
  • the audiovisual controller 5107 can acquire information on an image captured in the past from the recorder 5105 as display information.
  • the recorder 5105 may also record various types of information regarding surgery in advance.
  • the audiovisual controller 5107 causes the acquired display information (that is, the image taken during the operation and various information related to the operation) to be displayed on at least one of the display devices 5103A to 5103D which are output destination devices.
  • the display device 5103A is a display device suspended and installed from the ceiling of the operating room
  • the display device 5103B is a display device installed on the wall of the operating room
  • the display device 5103C is in the operating room
  • the display device 5103D is a display device installed on a desk
  • the display device 5103D is a mobile device (for example, a tablet PC (Personal Computer)) having a display function.
  • the operating room system 5100 may include the apparatus of the exterior of an operating room.
  • the apparatus outside the operating room may be, for example, a server connected to a network built inside or outside a hospital, a PC used by medical staff, a projector installed in a conference room of a hospital, or the like.
  • the audiovisual controller 5107 can also display the display information on the display device of another hospital via a video conference system or the like for telemedicine.
  • the operating room control device 5109 centrally controls processing other than processing related to image display in non-medical devices.
  • the operating room controller 5109 controls the driving of the patient bed 5183, the ceiling camera 5187, the operation room camera 5189, and the illumination 5191.
  • the operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction for image display to the audiovisual controller 5107 through the centralized operation panel 5111, and the operating room control device 5109. Instructions can be given to the operation of the non-medical device.
  • the centralized operation panel 5111 is configured by providing a touch panel on the display surface of the display device.
  • FIG. 22 is a view showing a display example of the operation screen on the centralized operation panel 5111.
  • FIG. 22 shows, as an example, an operation screen corresponding to a case where two display devices are provided as an output destination device in the operating room system 5100.
  • the operation screen 5193 is provided with a transmission source selection area 5195, a preview area 5197, and a control area 5201.
  • a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
  • a preview of a screen displayed on two display devices which are output destination devices is displayed.
  • four images are displayed in PinP on one display device.
  • the four images correspond to the display information transmitted from the transmission source device selected in the transmission source selection area 5195.
  • one is displayed relatively large as a main image, and the remaining three are displayed relatively small as sub-images.
  • the user can replace the main image and the sub-image by appropriately selecting the area in which the four images are displayed.
  • a status display area 5199 is provided below the area where the four images are displayed, and the status regarding surgery (for example, elapsed time of surgery, physical information of patient, etc.) is appropriately displayed in the area. obtain.
  • a control area 5201 includes a transmission source operation area 5203 in which a GUI (Graphical User Interface) component for performing an operation on a transmission source device is displayed, and a GUI component for performing an operation on an output destination device And an output destination operation area 5205 in which is displayed.
  • the transmission source operation area 5203 is provided with GUI components for performing various operations (pan, tilt, and zoom) on the camera in the transmission source apparatus having an imaging function. The user can operate the operation of the camera in the source device by appropriately selecting these GUI components.
  • the transmission source operation area 5203 may be provided with a GUI component for performing an operation such as reproduction, reproduction stop, rewind, fast forward, etc. of the image.
  • a GUI component for performing various operations (swap, flip, color adjustment, contrast adjustment, switching between 2D display and 3D display) on the display in the display device which is the output destination device It is provided.
  • the user can operate the display on the display device by appropriately selecting these GUI components.
  • the operation screen displayed on the centralized operation panel 5111 is not limited to the illustrated example, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input to each device that can be controlled may be possible.
  • FIG. 23 is a diagram showing an example of a state of surgery to which the operating room system described above is applied.
  • a ceiling camera 5187 and an operation room camera 5189 are provided on the ceiling of the operating room, and can capture a picture of the hand of the operator (doctor) 5181 who performs treatment on the affected part of the patient 5185 on the patient bed 5183 and the entire operating room It is.
  • the ceiling camera 5187 and the operation room camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, an imaging direction adjustment function, and the like.
  • the illumination 5191 is provided on the ceiling of the operating room and illuminates at least the hand of the operator 5181.
  • the illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the irradiation direction of the light, and the like.
  • the endoscopic surgery system 5113, the patient bed 5183, the ceiling camera 5187, the operation room camera 5189 and the illumination 5191 are connected via the audiovisual controller 5107 and the operating room controller 5109 (not shown in FIG. 23) as shown in FIG. Are connected to each other so that they can cooperate with each other.
  • a centralized operation panel 5111 is provided in the operating room, and as described above, the user can appropriately operate these devices present in the operating room via the centralized operation panel 5111.
  • the endoscopic surgery system 5113 includes an endoscope 5115, other surgical instruments 5131, a support arm device 5141 for supporting the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 mounted thereon.
  • trocars 5139a to 5139d are punctured in the abdominal wall. Then, the barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139 a to 5139 d.
  • an insufflation tube 5133, an energy treatment instrument 5135, and a forceps 5137 are inserted into the body cavity of the patient 5185 as other surgical instruments 5131.
  • the energy treatment tool 5135 is a treatment tool that performs incision and peeling of tissue, sealing of a blood vessel, and the like by high-frequency current or ultrasonic vibration.
  • the illustrated surgical tool 5131 is merely an example, and various surgical tools generally used in endoscopic surgery, such as forceps and retractors, may be used as the surgical tool 5131, for example.
  • An image of the operation site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155.
  • the operator 5181 performs a treatment such as excision of the affected area using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the operative part displayed on the display device 5155 in real time.
  • a treatment such as excision of the affected area using the energy treatment tool 5135 and the forceps 5137
  • the insufflation tube 5133, the energy treatment tool 5135 and the forceps 5137 are supported by the operator 5181 or an assistant during the operation.
  • the support arm device 5141 includes an arm 5145 extending from the base 5143.
  • the arm 5145 includes joints 5147a, 5147b, 5147c, and links 5149a, 5149b, and is driven by control from the arm controller 5159.
  • the endoscope 5115 is supported by the arm 5145, and its position and posture are controlled. In this way, stable position fixation of the endoscope 5115 can be realized.
  • the endoscope 5115 includes a lens barrel 5117 whose region of a predetermined length from the tip is inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117.
  • the endoscope 5115 configured as a so-called rigid endoscope having a rigid barrel 5117 is illustrated.
  • the endoscope 5115 is configured as a so-called flexible mirror having a flexible barrel 5117 It is also good.
  • a light source device 5157 is connected to the endoscope 5115, and light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extended inside the lens barrel 5117, and an objective The light is emitted toward the observation target in the body cavity of the patient 5185 through the lens.
  • the endoscope 5115 may be a straight endoscope, or may be a oblique endoscope or a side endoscope.
  • An optical system and an imaging device are provided inside the camera head 5119, and reflected light (observation light) from the observation target is condensed on the imaging device by the optical system.
  • the observation light is photoelectrically converted by the imaging element to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 5153 as RAW data.
  • the camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • a plurality of imaging devices may be provided in the camera head 5119 in order to cope with, for example, stereoscopic vision (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5117 in order to guide observation light to each of the plurality of imaging elements.
  • the CCU 5153 is constituted by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operation of the endoscope 5115 and the display device 5155 in a centralized manner. Specifically, the CCU 5153 subjects the image signal received from the camera head 5119 to various types of image processing, such as development processing (demosaicing processing), for displaying an image based on the image signal. The CCU 5153 provides the display device 5155 with the image signal subjected to the image processing. Further, an audiovisual controller 5107 shown in FIG. 21 is connected to the CCU 5153. The CCU 5153 also provides the audiovisual controller 5107 with the image signal subjected to the image processing.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CCU 5153 transmits a control signal to the camera head 5119 to control the driving thereof.
  • the control signal may include information on imaging conditions such as magnification and focal length.
  • the information related to the imaging condition may be input through the input device 5161 or may be input through the above-described centralized operation panel 5111.
  • the display device 5155 displays an image based on the image signal subjected to the image processing by the CCU 5153 under the control of the CCU 5153.
  • the endoscope 5115 corresponds to high-resolution imaging such as 4K (3840 horizontal pixels ⁇ 2160 vertical pixels) or 8K (7680 horizontal pixels ⁇ 4320 vertical pixels), and / or 3D display, for example
  • the display device 5155 corresponds to each of the display devices 5155
  • a device capable of high-resolution display and / or a 3D display device can be used.
  • high-resolution imaging such as 4K or 8K
  • by using a display device 5155 having a size of 55 inches or more a further immersive feeling can be obtained.
  • a plurality of display devices 5155 having different resolutions and sizes may be provided depending on the application.
  • the light source device 5157 is configured of a light source such as an LED (light emitting diode), for example, and supplies illumination light at the time of imaging the surgical site to the endoscope 5115.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5159 is constituted by a processor such as a CPU, for example, and operates in accordance with a predetermined program to control the driving of the arm 5145 of the support arm device 5141 according to a predetermined control method.
  • the input device 5161 is an input interface to the endoscopic surgery system 5113.
  • the user can input various information and input instructions to the endoscopic surgery system 5113 through the input device 5161.
  • the user inputs, via the input device 5161, various types of information related to surgery, such as physical information of a patient and information on a surgery procedure.
  • the user instructs, via the input device 5161, an instruction to drive the arm unit 5145, and an instruction to change the imaging conditions (type of irradiated light, magnification, focal length, etc.) by the endoscope 5115.
  • An instruction to drive the energy treatment tool 5135, etc. are input.
  • the type of the input device 5161 is not limited, and the input device 5161 may be various known input devices.
  • a mouse, a keyboard, a touch panel, a switch, a foot switch 5171, and / or a lever may be applied as the input device 5161.
  • the touch panel may be provided on the display surface of the display device 5155.
  • the input device 5161 is a device mounted by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), for example, and various types of input according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5161 includes a camera capable of detecting the motion of the user, and various inputs are performed in accordance with the user's gesture and line of sight detected from the image captured by the camera. Furthermore, the input device 5161 includes a microphone capable of picking up the user's voice, and various inputs are performed by voice via the microphone.
  • a glasses-type wearable device or an HMD Head Mounted Display
  • the user for example, the operator 5181
  • the input device 5161 being configured to be able to input various information in a non-contact manner. Is possible.
  • the user can operate the device without releasing his / her hand from the operating tool, the convenience of the user is improved.
  • the treatment instrument control device 5163 controls the drive of the energy treatment instrument 5135 for ablation of tissue, incision, sealing of a blood vessel or the like.
  • the insufflation apparatus 5165 is provided with a gas in the body cavity via the insufflation tube 5133 in order to expand the body cavity of the patient 5185 for the purpose of securing a visual field by the endoscope 5115 and securing a working space of the operator.
  • Send The recorder 5167 is a device capable of recording various types of information regarding surgery.
  • the printer 5169 is a device capable of printing various types of information related to surgery in various types such as text, images, and graphs.
  • the support arm device 5141 includes a base 5143 which is a base and an arm 5145 extending from the base 5143.
  • the arm 5145 includes a plurality of joints 5147a, 5147b, and 5147c, and a plurality of links 5149a and 5149b connected by the joints 5147b, but in FIG.
  • the structure of the arm 5145 is shown in a simplified manner. In practice, the shape, number and arrangement of the joints 5147a to 5147c and the links 5149a and 5149b, and the direction of the rotation axis of the joints 5147a to 5147c are appropriately set so that the arm 5145 has a desired degree of freedom. obtain.
  • the arm 5145 may be preferably configured to have six or more degrees of freedom.
  • the endoscope 5115 can be freely moved within the movable range of the arm 5145, so that the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. It will be possible.
  • the joints 5147a to 5147c are provided with an actuator, and the joints 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the driving of the actuator is controlled by the arm control device 5159 to control the rotation angles of the joint portions 5147a to 5147c, and the driving of the arm portion 5145 is controlled. Thereby, control of the position and posture of the endoscope 5115 can be realized.
  • the arm control device 5159 can control the driving of the arm unit 5145 by various known control methods such as force control or position control.
  • the drive of the arm 5145 is appropriately controlled by the arm control device 5159 according to the operation input, and
  • the position and attitude of the endoscope 5115 may be controlled.
  • the endoscope 5115 at the tip of the arm 5145 is moved from any position to any position, the endoscope 5115 can be fixedly supported at the position after the movement.
  • the arm 5145 may be operated by a so-called master slave method. In this case, the arm 5145 can be remotely controlled by the user via the input device 5161 installed at a location distant from the operating room.
  • the arm control device 5159 receives the external force from the user and moves the actuator of each joint 5147 a to 5147 c so that the arm 5145 moves smoothly following the external force. So-called power assist control may be performed.
  • the arm 5145 can be moved with a relatively light force. Therefore, it is possible to move the endoscope 5115 more intuitively and with a simpler operation, and the convenience of the user can be improved.
  • the endoscope 5115 is supported by a doctor called scopist.
  • the position of the endoscope 5115 can be more reliably fixed without manual operation, so that it is possible to stably obtain an image of the operative site. , Can be performed smoothly.
  • the arm control device 5159 may not necessarily be provided in the cart 5151. Also, the arm control device 5159 may not necessarily be one device. For example, the arm control device 5159 may be provided at each joint 5147 a to 5147 c of the arm 5145 of the support arm device 5141, and the arm control devices 5159 cooperate with one another to drive the arm 5145. Control may be realized.
  • the light source device 5157 supplies the endoscope 5115 with illumination light for imaging the operative part.
  • the light source device 5157 is configured of, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color can be controlled with high accuracy. Adjustments can be made.
  • the laser light from each of the RGB laser light sources is irradiated on the observation target in time division, and the drive of the imaging device of the camera head 5119 is controlled in synchronization with the irradiation timing to cope with each of RGB. It is also possible to capture a shot image in time division. According to the method, a color image can be obtained without providing a color filter in the imaging device.
  • the drive of the light source device 5157 may be controlled to change the intensity of the light to be output at predetermined time intervals.
  • the drive of the imaging element of the camera head 5119 is controlled in synchronization with the timing of the change of the light intensity to acquire images in time division, and by combining the images, high dynamic without so-called blackout and whiteout is obtained. An image of the range can be generated.
  • the light source device 5157 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the mucous membrane surface layer is irradiated by irradiating narrow band light as compared with irradiation light (that is, white light) at the time of normal observation using the wavelength dependency of light absorption in body tissue.
  • the so-called narrow band imaging is performed to image a predetermined tissue such as a blood vessel with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiation with excitation light.
  • a body tissue is irradiated with excitation light and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue while being locally injected. What irradiates the excitation light corresponding to the fluorescence wavelength of the reagent, and obtains a fluorescence image etc. can be performed.
  • the light source device 5157 can be configured to be able to supply narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 24 is a block diagram showing an example of a functional configuration of the camera head 5119 and the CCU 5153 shown in FIG.
  • the camera head 5119 has a lens unit 5121, an imaging unit 5123, a drive unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions.
  • the CCU 5153 also includes a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions.
  • the camera head 5119 and the CCU 5153 are communicably connected in both directions by a transmission cable 5179.
  • the lens unit 5121 is an optical system provided at the connection with the lens barrel 5117.
  • the observation light taken in from the tip of the lens barrel 5117 is guided to the camera head 5119 and is incident on the lens unit 5121.
  • the lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the optical characteristic of the lens unit 5121 is adjusted so as to condense the observation light on the light receiving surface of the imaging element of the imaging unit 5123.
  • the zoom lens and the focus lens are configured such that the position on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
  • the imaging unit 5123 is configured by an imaging element, and is disposed downstream of the lens unit 5121.
  • the observation light which has passed through the lens unit 5121 is condensed on the light receiving surface of the imaging device, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
  • an imaging element which comprises the imaging part 5123 it is an image sensor of a CMOS (Complementary Metal Oxide Semiconductor) type, for example, and a color imaging
  • CMOS Complementary Metal Oxide Semiconductor
  • photography of the high resolution image of 4K or more may be used, for example.
  • the imaging device constituting the imaging unit 5123 is configured to have a pair of imaging devices for acquiring image signals for the right eye and for the left eye corresponding to 3D display.
  • the 3D display enables the operator 5181 to more accurately grasp the depth of the living tissue in the operation site.
  • the imaging unit 5123 is configured as a multi-plate type, a plurality of lens units 5121 are also provided corresponding to each imaging element.
  • the imaging unit 5123 may not necessarily be provided in the camera head 5119.
  • the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
  • the drive unit 5125 is constituted by an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and the focus of the captured image by the imaging unit 5123 may be appropriately adjusted.
  • the communication unit 5127 is configured of a communication device for transmitting and receiving various types of information to and from the CCU 5153.
  • the communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data.
  • the image signal be transmitted by optical communication in order to display the captured image of the surgical site with low latency.
  • the operator 5181 performs the operation while observing the condition of the affected area by the captured image, and for safer and more reliable operation, the moving image of the operation site is displayed in real time as much as possible It is because that is required.
  • the communication unit 5127 is provided with a photoelectric conversion module which converts an electrical signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
  • the communication unit 5127 also receives, from the CCU 5153, a control signal for controlling the drive of the camera head 5119.
  • the the control signal for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of imaging, and / or magnification and information, etc. indicating that specifies the focal point of the captured image, captured Contains information about the condition.
  • the communication unit 5127 provides the received control signal to the camera head control unit 5129.
  • the control signal from the CCU 5153 may also be transmitted by optical communication.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and is then provided to the camera head control unit 5129.
  • imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5115.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5129 controls the drive of the camera head 5119 based on the control signal from the CCU 5153 received via the communication unit 5127. For example, the camera head control unit 5129 controls the drive of the imaging element of the imaging unit 5123 based on the information to specify the frame rate of the captured image and / or the information to specify the exposure at the time of imaging. In addition, for example, the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the drive unit 5125 based on the information indicating that the magnification and the focus of the captured image are designated.
  • the camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
  • the camera head 5119 can have resistance to autoclave sterilization.
  • the communication unit 5173 is configured of a communication device for transmitting and receiving various information to and from the camera head 5119.
  • the communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5173 is provided with a photoelectric conversion module which converts an optical signal into an electrical signal.
  • the communication unit 5173 provides the image processing unit 5175 with the image signal converted into the electrical signal.
  • the communication unit 5173 transmits, to the camera head 5119, a control signal for controlling the drive of the camera head 5119.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5175 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 5119.
  • image processing for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing) And various other known signal processings.
  • the image processing unit 5175 also performs detection processing on the image signal to perform AE, AF, and AWB.
  • the image processing unit 5175 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program.
  • the image processing unit 5175 is configured by a plurality of GPUs, the image processing unit 5175 appropriately divides the information related to the image signal, and performs image processing in parallel by the plurality of GPUs.
  • the control unit 5177 performs various types of control regarding imaging of the surgical site by the endoscope 5115 and display of the imaged image. For example, the control unit 5177 generates a control signal for controlling the drive of the camera head 5119. At this time, when the imaging condition is input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the endoscope 5115 is equipped with the AE function, the AF function, and the AWB function, the control unit 5177 determines the optimum exposure value, focal length, and the like according to the result of the detection processing by the image processing unit 5175. The white balance is appropriately calculated to generate a control signal.
  • control unit 5177 causes the display device 5155 to display an image of the operative site based on the image signal subjected to the image processing by the image processing unit 5175.
  • the control unit 5177 recognizes various objects in the operation site image using various image recognition techniques. For example, the control unit 5177 detects a shape, a color, and the like of an edge of an object included in an operation part image, thereby enabling a surgical tool such as forceps, a specific living body region, bleeding, mist when using the energy treatment tool 5135, etc. It can be recognized.
  • the control unit 5177 uses the recognition result to superimpose various operation support information on the image of the operation unit. The operation support information is superimposed and presented to the operator 5181, which makes it possible to proceed with the operation more safely and reliably.
  • a transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to communication of an electric signal, an optical fiber corresponding to optical communication, or a composite cable of these.
  • communication is performed by wire communication using the transmission cable 5179, but communication between the camera head 5119 and the CCU 5153 may be performed wirelessly.
  • the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5179 in the operating room, so that the movement of the medical staff in the operating room can be eliminated by the transmission cable 5179.
  • the operating room system 5100 to which the technology according to the present disclosure can be applied has been described.
  • the medical treatment system to which the operating room system 5100 is applied is the endoscopic surgery system 5113
  • the configuration of the operating room system 5100 is not limited to such an example.
  • the operating room system 5100 may be applied to a flexible endoscopic system for examination or a microsurgery system instead of the endoscopic surgery system 5113.
  • the technology according to the present disclosure can be suitably applied to the audiovisual controller 5107.
  • the configuration of the control device of the present technology can be applied to the audiovisual controller 5107 that controls the operation of the device of the transmission source and the device of the output destination.
  • stable streaming can be provided according to the state of the network, so that the accuracy of diagnosis in telemedicine performed in real time can be improved. .
  • the present technology can have the following configurations.
  • a receiving device A transmitter for streaming to the receiver;
  • a network connecting the receiving device and the transmitting device, the control device managing a state of the network including the first communication line and the second communication line;
  • the connection state of the first communication line is unstable compared to the second communication line,
  • the control device manages the state of the network based on a packet transmitted from the transmitting device to the receiving device.
  • the communication system according to (1) wherein the first communication line has a large delay or packet loss as compared to the second communication line.
  • the first communication line includes a wireless communication line,
  • the transmitting device is connected to the network by the first communication line, The communication system according to (3), wherein the receiving device is connected to the network by the second communication line.
  • the controller is A state grasping unit that grasps the reception state of the streaming in the reception device by TCP (Transmission Control Protocol) connection;
  • the transmitting apparatus performs the streaming by bonding using a plurality of the first communication lines, The state grasping portion grasps the reception state of the streaming in each of the plurality of first communication lines in the reception device, The communication system according to (6) or (7), wherein the determination unit determines the stop of the streaming based on each of the reception states of the streaming.
  • the determination unit determines the stop of the streaming based on each of the reception state of the streaming and a communication scheme in each of the plurality of first communication lines.
  • the receiving apparatus includes a band estimation unit that estimates a band of the network in which the streaming is performed, The communication system according to (5), wherein the control device has a parameter setting unit configured to set a parameter related to the streaming performed by the transmission device based on the estimated bandwidth of the network.
  • the transmitting device performs packet transmission to the receiving device while raising the transmission rate in steps at predetermined time intervals.
  • the communication system according to (10) wherein the band estimation unit estimates the band of the network based on a reception rate of packets received from the transmission apparatus.
  • the receiving device further includes a congestion detection unit that detects congestion of the network; The communication system according to (10) or (11), wherein the band estimation unit estimates the band of the network based on a detection result of congestion of the network.
  • RTP Real-time Transport Protocol
  • the transmission device is configured as an imaging device that captures a moving image and transmits it in real time.
  • the connection state of the first communication line is unstable compared to the second communication line,
  • the control unit manages the state of the network based on a packet transmitted from the transmitting device to the receiving device.
  • Reference Signs List 1 communication system 11 transmitting device, 12 receiving device, 13 control device, 20, 20-1, 20-2 base station, 30 Internet, 91 state determination unit, 101 control unit, 111 state recognition unit, 112 operation determination unit, 121 bandwidth estimation unit, 122 congestion detection unit, 131 control unit, 141 parameter setting unit, 151 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Communication Control (AREA)

Abstract

本技術は、ストリーミングを行うネットワークの状態を適切に判断することができるようにする通信システムおよび制御装置に関する。 送信装置11は、受信装置12に対してストリーミングを行い、制御装置13は、受信装置と送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する。第1の通信回線は、第2の通信回線と比較して接続状態が不安定であり、制御装置は、送信装置から受信装置へと送信されるパケットに基づいて、ネットワークの状態を管理する。本技術は、UDPによるストリーミングを行う通信システムに適用することができる。

Description

通信システムおよび制御装置
 本技術は、通信システムおよび制御装置に関し、特に、ストリーミングを行うネットワークの状態を判断することができるようにする通信システムおよび制御装置に関する。
 従来、無線通信経路を用いた種々の通信システムがある。
 例えば、特許文献1には、複数の異なる無線通信経路を利用し、1つの無線通信経路において不足した帯域を、他の無線通信経路により補完することで、通信を行うシステムが開示されている。
 また近年、無線通信により、撮影している動画像をリアルタイムで配信する映像配信システムが多く実用化されている。
特開2008-113224号公報
 ところで、無線通信経路のような不安定な通信経路を含むネットワークを用いてストリーミングを行う場合、そのネットワークの状態がどのような状態であるかを知ることが求められる。
 本技術は、このような状況に鑑みてなされたものであり、ストリーミングを行うネットワークの状態を適切に判断することができるようにするものである。
 本技術の通信システムは、受信装置と、前記受信装置に対してストリーミングを行う送信装置と、前記受信装置と前記送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する制御装置とを備え、前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、前記制御装置は、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態を管理する。
 本技術の制御装置は、受信装置と、前記受信装置に対してストリーミングを行う送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する制御部を備え、前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、前記制御部は、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態を管理する。
 本技術においては、受信装置と、前記受信装置に対してストリーミングを行う送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態が管理され、前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態が管理される。
 本技術によれば、ストリーミングを行うネットワークの状態を適切に判断することが可能となる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本実施の形態に係る通信システムの構成例を示す図である。 コントローラの構成例を示すブロック図である。 第1の実施の形態の通信システムの機能構成例を示すブロック図である。 ストリーミング状態の遷移について説明する図である。 受信装置の動作決定処理について説明するフローチャートである。 第2の実施の形態の通信システムの機能構成例を示すブロック図である。 ネットワークの帯域推定処理について説明するフローチャートである。 パケットの送信レートの例を示す図である。 パケットの受信レートの例を示す図である。 パケットの受信レートの例を示す図である。 受信推定レンジ決定処理について説明するフローチャートである。 受信推定レンジ決定処理について説明するフローチャートである。 ネットワークの輻輳検知の具体例について説明する図である。 ネットワークの輻輳検知の具体例について説明する図である。 第2の実施の形態の通信システムの他の機能構成例を示すブロック図である。 ボンディングに対応した通信システムの構成例を示す図である。 図16の通信システムの機能構成例を示すブロック図である。 受信装置の動作決定処理について説明するフローチャートである。 リンク全体のストリーミング状態の決定について説明する図である。 リンク全体のストリーミング状態の決定について説明する図である。 手術室システムの全体構成を概略的に示す図である。 集中操作パネルにおける操作画面の表示例を示す図である。 手術室システムが適用された手術の様子の一例を示す図である。 図23に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下、本開示を実施するための形態(以下、実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.通信システムの構成
 2.第1の実施の形態(ストリーミングの受信状態に基づくネットワークの状態判断)
 3.第2の実施の形態(帯域推定の結果に基づくネットワークの状態判断)
 4.ボンディングに対応した通信システムの構成
 5.応用例
<1.通信システムの構成>
 (通信システムの構成例)
 図1は、本実施の形態に係る通信システムの構成例を示す図である。
 図1の通信システム1においては、送信装置11がUDP(User Datagram Protocol)によるストリーミングを行うことで、送信装置11により撮影されている動画像がリアルタイムで受信装置12に送信される。
 送信装置11は、例えばカムコーダなどの撮像装置として構成され、撮像部11aにより撮影された動画像のデータ(動画像データ)をリアルタイムで受信装置12に送信する。なお、送信装置11と撮像装置とは、それぞれ別個に構成されるようにしてもよい。
 受信装置12は、例えばテレビジョン放送の放送局に備えられるストリーミング受信機として構成され、送信装置11から送信されてくる動画像データを受信する。受信装置12が受信した動画像データは、放送波によって配信される。
 送信装置11と受信装置12とは、無線通信回線を含む第1の通信回線と、有線通信回線のみからなる第2の通信回線とを含むネットワークを介して接続される。
 ここでいう第1の通信回線は、基地局20を介した送信装置11とインターネット30との間の通信回線を指し、第2の通信回線は、インターネット30と受信装置12との間の通信回線を指すものとする。第1の通信回線は、第2の通信回線と比較して接続状態が不安定であり、遅延またはパケットロスが大きくなる。なお、送信装置11と基地局20との間においては、例えば、3G(3rd Generation)方式やLTE(Long Term Evolution)方式の通信が行われる。
 送信装置11は、ストリーミングを行うことで、撮影により得られた動画像データSDを送信することができる。送信装置11と受信装置12との間では、QoS(Quality of Service)制御が行われることによって、ストリーミングが行われる。
 インターネット30には、コントローラ13が接続される。コントローラ13は、例えば、受信装置12と同様にテレビジョン放送の放送局に備えられる。
 コントローラ13は、送信装置11とインターネット30との間の通信回線(第1の通信回線)、および、インターネット30と受信装置12との間の通信回線(第2の通信回線)を含むネットワークの状態を管理する制御装置である。例えば、コントローラ13は、TCP(Transmission Control Protocol)接続により、送信装置11と受信装置12との間のストリーミングの状態を管理する。具体的には、コントローラ13は、送信装置11との間にコネクションCN1を確立することで、送信装置11とのデータのやりとりを行う。また、コントローラ13は、受信装置12との間にコネクションCN2を確立することで、受信装置12とのデータのやりとりを行う。
 なお、コントローラ13は、通信システム1を構成するネットワークに接続されていればよく、図1に示されるように、単独でインターネット30に接続されるようにしてもよいし、クラウド40上に設けられるようにしてもよい。また、コントローラ13は、受信装置12と一体となって構成されるようにしてもよいし、送信装置11と一体となって構成されるようにしてもよい。
 さらに、インターネット30には、クラウド40上のサーバ41が接続される。受信装置12が受信した動画像データは、クラウド40上のサーバ41によって、インターネット30を経由して配信されるようにもできる。
 また、受信装置12が受信した動画像データは、例えば放送局において、受信装置12に接続されるストレージ42に保存されるようにしてもよい。
 (コントローラの構成例)
 図2は、コントローラ13の構成例を示すブロック図である。
 図2のコントローラ13において、CPU(Central Processor Unit)61は、ROM(Read Only Memory)62に記憶されているプログラム、またはRAM(Random Access Memory)63にロードされたプログラムに従って、コントローラ13が備える各種の機能を実現するための処理を実行する。RAM63にはまた、CPU61が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU61、ROM62、およびRAM63は、バス64を介して相互に接続されている。このバス64にはまた、入出力インタフェース65も接続されている。
 入出力インタフェース65には、入力部66、出力部67、記憶部68、および通信部69が接続される。
 入力部66は、キー、ボタン、タッチパネル、およびマイクロフォンなどで構成され、出力部67は、ディスプレイやスピーカなどで構成される。記憶部68は、ハードディスクなどで構成され、通信部69は、有線通信を行う通信モジュールなどで構成される。
 入出力インタフェース65にはまた、必要に応じてドライブ70が接続され、半導体メモリなどで構成されるリムーバブルメディア71が適宜装着される。リムーバブルメディア71から読み出されたコンピュータプログラムは、必要に応じて記憶部68にインストールされる。
 なお、送信装置11や受信装置12の構成は、送信装置11が撮像部を備える点を除いては、図2のコントローラ13の構成と基本的に同様であるので、その説明は省略する。
<2.第1の実施の形態>
 上述したように、通信システム1においては、コントローラ13は、送信装置11と受信装置12とを接続するネットワークの状態を管理する。ここでは、コントローラ13が、受信装置12におけるストリーミングの受信状態に基づいて、ネットワークの状態を判断する構成について説明する。
 (通信システムの機能構成例)
 図3は、本実施の形態に係る通信システム1の機能構成例を示すブロック図である。
 図3の通信システム1において、受信装置12は、図示せぬCPUにより所定のプログラムが実行されることによって、状態決定部91を実現する。また、コントローラ13は、CPU61により所定のプログラムが実行されることによって、制御部101を実現する。
 制御部101は、送信装置11と受信装置12とを接続するネットワークの状態を管理し、状態把握部111および動作決定部112を有する。
 受信装置12の状態決定部91は、送信装置11から送信されてくるパケットに基づいて、受信装置12におけるUDPによるストリーミングの受信状態を決定する。以下においては、適宜、受信装置12におけるUDPによるストリーミングの受信状態を、受信装置12におけるストリーミング状態ともいう。
 コントローラ13の状態把握部111は、受信装置12におけるUDPによるストリーミングの受信状態(ストリーミング状態)を、TCPコネクションを介して把握し、その内容を動作決定部112に通知する。
 動作決定部112は、状態把握部111により把握された、受信装置12におけるストリーミング状態に基づいて、ネットワークの状態を判断することで、受信装置12の動作を決定する。受信装置12の動作とは、現在行われているストリーミングの継続や停止など、その時のネットワークの状態に応じて求められる受信装置12の動作をいう。動作決定部112は、決定した受信装置12の動作を、TCPコネクションを介して受信装置12に通知する。
 (ストリーミング状態の遷移と受信装置の動作決定処理)
 ここで、図4を参照して、状態決定部91によって決定される、受信装置12におけるストリーミング状態の遷移について説明する。
 図4には、ストリーミング状態として、ストリーミングの継続(開始)を示す状態ST1(START)と、現在行われているストリーミングの停止を示す状態ST2(STOP)とが示されている。
 図4に示されるように、ストリーミング状態が状態ST1にあるときに条件C1を満たすと、ストリーミング状態は状態ST2へ遷移する。また、ストリーミング状態が状態ST2にあるときに条件C2を満たすと、ストリーミング状態は状態ST1へ遷移する。条件C1,C2を満たすか否かは、受信装置12の状態決定部91によって判定される。
 例えば、条件C1は、受信装置12における送信装置11からのRTP(Real-time Transport Protocol)パケットの受信間隔が一定時間を超えるか、または、所定時間内でのQoS制御後のパケットロス量が一定量を超えることとされる。
 また、条件C2は、受信装置12における送信装置11からのRTPパケットの受信間隔が一定時間を超えず、かつ、所定時間内でのQoS制御後のパケットロス量が一定量以下であることとされる。
 次に、図5のフローチャートを参照して、受信装置12の動作決定処理について説明する。
 ステップS11において、制御部101は、送信装置11との間のコネクションCN1が切断されていないか否かを判定する。
 ステップS11において、コネクションCN1が切断されていないと判定された場合、制御部101は、送信装置11との間のコネクションCN1、および、受信装置12との間のコネクションCN2により、ストリーミングの状態を把握することができるため、何もせず、処理は終了する。
 一方、ステップS11において、コネクションCN1が切断されていると判定された場合、処理はステップS12に進む。
 ステップS12において、状態把握部111は、状態決定部91によって決定された、受信装置12におけるストリーミング状態を、TCPコネクション(CN2)を介して把握する。ここでは、状態把握部111は、受信装置12の状態決定部91から、ストリーミング状態に関する通知を受信することで、ストリーミング状態を把握してもよいし、状態把握部111自体が、受信装置12の状態決定部91によって決定されたストリーミング状態を参照することで、ストリーミング状態を把握してもよい。
 ステップS13において、状態把握部111は、受信装置12におけるストリーミング状態が一定時間STOP(ストリーミングの停止を示す状態ST2)のままであるか否かを判定する。
 ステップS13において、ストリーミング状態が一定時間STOPのままではないと判定された場合、動作決定部112は何もせず(ストリーミングが行われた状態のまま)、処理は終了する。
 これにより、不安定な無線通信回線を介して接続される送信装置11とコントローラ13との間のTCPコネクションが、何らかの理由で切断された場合であっても、コントローラ13と受信装置12との間のTCPコネクションにより、UDPによるストリーミングの受信状態に問題がないと判断されることで、ストリーミングを停止することなく継続して行うことができる。
 一方、ステップS13において、ストリーミング状態が一定時間STOPのままであると判定された場合、ステップS14において、動作決定部112は、ストリーミングの停止を決定し、その旨を受信装置12に通知する。この場合、受信装置12は、動作決定部112からの通知に応じて、ストリーミングに関するアプリケーションを停止させる。
 なお、ストリーミングの停止後、ネットワークの状態が良好になり、コネクションCN1が再び確立した場合、制御部101は、送信装置11に対してストリーミングの開始を指示することができる。
 以上の処理によれば、受信装置12におけるストリーミングの受信状態に基づいて、ストリーミングを行うネットワークの状態を適切に判断することが可能となるので、不安定な通信経路を含むネットワークであっても、ネットワークの状態に応じて、安定したストリーミングを提供することが可能となる。
 なお、上述した処理において、受信装置12におけるRTPパケットの受信間隔と、所定時間内でのQoS制御後のパケットロス量のいずれか一方に基づいて、ストリーミング状態(ストリーミングの停止や開始)が決定されるようにしてもよい。
<3.第2の実施の形態>
 以上においては、受信装置12におけるストリーミングの受信状態に基づいて、ネットワークの状態を判断する構成について説明した。ここでは、コントローラ13が、ネットワークの帯域推定の結果に基づいて、ネットワークの状態を判断する構成について説明する。
 (通信システムの機能構成例)
 図6は、本実施の形態に係る通信システム1の機能構成例を示すブロック図である。
 図6の通信システム1において、受信装置12は、図示せぬCPUにより所定のプログラムが実行されることによって、帯域推定部121および輻輳検知部122を実現する。また、コントローラ13は、CPU61により所定のプログラムが実行されることによって、制御部131を実現する。
 制御部131は、送信装置11と受信装置12とを接続するネットワークの状態を管理し、パラメータ設定部141を有する。
 受信装置12の帯域推定部121は、送信装置11から送信されてくるパケットに基づいて、送信装置11との間でストリーミングが行われるネットワークの帯域を推定する。推定結果(ネットワークの帯域)は、TCPコネクションを介してコントローラ13に通知される。
 輻輳検知部122は、送信装置11から送信されてくるパケットに基づいて、送信装置11との間でストリーミングが行われるネットワークの輻輳を検知する。輻輳検知部122による輻輳の検知結果は、帯域推定部121による帯域推定に用いられる。
 コントローラ13のパラメータ設定部141は、受信装置12において推定されたネットワークの帯域に基づいて、送信装置11が行うストリーミングに関するパラメータを設定する。
 (ネットワークの帯域推定処理)
 次に、図7のフローチャートを参照して、図6の通信システム1におけるネットワークの帯域推定処理について説明する。図7の処理は、送信装置11がストリーミングを開始する前に実行される。
 ステップS31において、コントローラ13は、TCPコネクションを介して、送信装置11および受信装置12に、帯域推定の開始を指示する。
 ステップS32において、送信装置11は、コントローラ13からの指示に応じて、図8に示されるように、一定時間毎に階段状に送信レートを上げながらパケット送信を行う。
 図8は、送信装置11が送信するパケットの送信レートの例を示している。図8の例では、送信レートは、時間T0毎に階段状に上昇している。なお、時間T0は、送信装置11と受信装置12との間であらかじめ設定された時間とされる。
 図7のフローチャートに戻り、ステップS33において、受信装置12の帯域推定部121は、送信装置11から受信したパケットの受信レートに基づいて、ネットワークの帯域を推定する。推定されたネットワークの帯域は、コントローラ13に通知される。
 ステップS34において、コントローラ13のパラメータ設定部141は、推定されたネットワークの帯域に基づいて、ストリーミングに関するパラメータを設定する。パラメータとしては、例えば、ストリーミングにより伝送される動画像の解像度や伝送レートなどが設定される。
 そして、コントローラ13は、TCPコネクションを介して、設定したパラメータでのストリーミングの開始を、送信装置11に指示する。
 以上の処理によれば、ネットワークの帯域推定の結果に基づいて、ストリーミングを行うネットワークの状態を適切に判断することが可能となるので、不安定な通信経路を含むネットワークであっても、ネットワークの状態に応じて、安定したストリーミングを提供することが可能となる。
 (ネットワークの帯域推定の詳細)
 ここで、図7のステップS33において行われる、ネットワークの帯域推定の詳細について説明する。
 具体的には、帯域推定部121は、一定時間毎に階段状に送信レートを上げながら送信されてくるパケットの受信開始から所定時間経過毎に、受信しているパケットの受信レートをチェックする。そして、帯域推定部121は、その変動が概ね安定したときの受信レートに対応する帯域の範囲(以下、受信推定レンジという)を決定する。
 図9は、受信装置12におけるパケットの受信レートの一例を示す図である。
 図9においては、ある時間毎の受信レートがプロットされて示されている。
 まず、パケットの受信開始から時間t1が経過したとき、受信レートがレートM1を超えているか否かがチェックされる。受信レートがレートM1を超えなければ、受信推定レンジはR1に決定される。図9の例のように、t1経過時において、受信レートがレートM1を超えていれば、パケットの受信開始から時間t2が経過したときのチェックが行われる。
 パケットの受信開始から時間t2が経過したときには、受信レートがレートM2を超えているか否かがチェックされる。受信レートがレートM2を超えなければ、受信推定レンジはR2に決定される。図9の例のように、t2経過時において、受信レートがレートM2を超えていれば、パケットの受信開始から時間t3が経過したときのチェックが行われる。
 パケットの受信開始から時間t3が経過したときには、受信レートがレートM3を超えているか否かがチェックされる。受信レートがレートM3を超えなければ、受信推定レンジはR3に決定される。図9の例のように、t3経過時において、受信レートがレートM3を超えていれば、受信推定レンジはR4に決定される。
 図10は、受信装置12におけるパケットの受信レートの他の一例を示す図である。
 図10においても、図9と同様に、ある時間毎の受信レートがプロットされて示されている。
 まず、パケットの受信開始から時間t1が経過したとき、受信レートがレートM1を超えているか否かがチェックされる。受信レートがレートM1を超えなければ、受信推定レンジはR1に決定される。図10の例では、t1経過時において、受信レートがレートM1を超えていないので、受信推定レンジはR1に決定される。
 (受信推定レンジ決定処理)
 図11は、図9や図10を参照して説明した受信推定レンジの決定処理について説明するフローチャートである。
 ステップS51において、受信装置12の帯域推定部121は、送信装置11からのパケットの受信開始から時間t3が経過したか否かを判定する。
 パケットの受信開始から時間t3が経過していないと判定されると、処理はステップS52に進み、帯域推定部121は、パケットの受信開始から時間t2が経過したか否かを判定する。
 パケットの受信開始から時間t2が経過していないと判定されると、処理はステップS53に進み、帯域推定部121は、パケットの受信開始から時間t1が経過したか否かを判定する。
 パケットの受信開始から時間t1が経過していないと判定されると、処理はステップS51に戻り、ステップS51乃至S53の処理が繰り返される。なお、図9や図10にも示されているように、t1<t2<t3とされる。
 ステップS51乃至S53の処理が繰り返される中で、ステップS53において、パケットの受信開始から時間t1が経過したと判定されると、処理はステップS54に進み、帯域推定部121は、受信レートがレートM1より小さいか否かを判定する。
 ステップS54において、受信レートがレートM1より小さいと判定されると、処理はステップS55に進み、帯域推定部121は、受信推定レンジをR1に決定する。
 一方、ステップS54において、受信レートがレートM1より大きいと判定されると、処理は再びステップS51に戻り、ステップS51乃至S53の処理が繰り返される。
 ステップS51乃至S53の処理が繰り返される中で、ステップS52において、パケットの受信開始から時間t2が経過したと判定されると、処理はステップS56に進み、帯域推定部121は、受信レートがレートM2より小さいか否かを判定する。
 ステップS56において、受信レートがレートM2より小さいと判定されると、処理はステップS57に進み、帯域推定部121は、受信推定レンジをR2に決定する。
 一方、ステップS56において、受信レートがレートM2より大きいと判定されると、処理は再びステップS51に戻り、ステップS51乃至S53の処理が繰り返される。
 ステップS51乃至S53の処理が繰り返される中で、ステップS51において、パケットの受信開始から時間t3が経過したと判定されると、処理はステップS58に進み、帯域推定部121は、受信レートがレートM3より小さいか否かを判定する。
 ステップS58において、受信レートがレートM3より小さいと判定されると、処理はステップS59に進み、帯域推定部121は、受信推定レンジをR3に決定する。
 一方、ステップS58において、受信レートがレートM3より大きいと判定されると、処理はステップS60に進み、帯域推定部121は、受信推定レンジをR4に決定する。
 このようにして、受信推定レンジを決定することで、ネットワークの帯域を推定することができるようになる。
 (受信推定レンジ決定処理の他の例)
 以上においては、一定時間毎に階段状に送信レートを上げながら送信されてくるパケットの受信レートに基づいて、受信推定レンジが決定されるものとした。これ以外にも、受信装置12におけるネットワークの輻輳の検知結果に基づいて、受信推定レンジが決定されるようにしてもよい。
 図12は、受信装置12におけるネットワークの輻輳の検知結果に基づいた受信推定レンジの決定処理について説明するフローチャートである。図12の処理は、例えば、所定の時間毎に周期的に行われる。
 ステップS71において、帯域推定部121は、輻輳検知部122が、送信装置11から送信されてくるパケットに基づいて、ネットワークの輻輳を検知したか否かを判定する。
 具体的には、輻輳検知部122は、送信装置11からのRTPパケットの相対遅延量に基づいて、ネットワークの輻輳を検知する。
 例えば、図13に示されるように、送信装置11がRTPパケット151,152,153を順次、受信装置12に送信するものとする。
 まず、輻輳検知部122は、送信装置11がRTPパケット151を送信した送信時刻t11と、送信装置12がRTPパケット151を受信した受信時刻t12との差(相対遅延量)t12-t11を求める。送信時刻t11は、RTPパケット151中に含まれている。輻輳検知部122は、相対遅延量t12-t11が所定値を超えるか否かによって、ネットワークの輻輳を検知する。
 ここでは、相対遅延量t12-t11は所定値より小さく、ネットワークの輻輳は検知されないものとする。
 次に、輻輳検知部122は、送信装置11がRTPパケット152を送信した送信時刻t21と、送信装置12がRTPパケット152を受信した受信時刻t22との差(相対遅延量)t22-t21を求める。送信時刻t21は、RTPパケット152中に含まれている。輻輳検知部122は、相対遅延量t22-t21が所定値を超えるか否かによって、ネットワークの輻輳を検知する。
 ここでは、相対遅延量t22-t21は所定値より小さく、ネットワークの輻輳は検知されないものとする。
 そして、輻輳検知部122は、送信装置11がRTPパケット153を送信した送信時刻t31と、送信装置12がRTPパケット153を受信した受信時刻t32との差(相対遅延量)t32-t31を求める。送信時刻t31は、RTPパケット153中に含まれている。輻輳検知部122は、相対遅延量t32-t31が所定値を超えるか否かによって、ネットワークの輻輳を検知する。
 ここで、相対遅延量t32-t31が所定値より大きい場合、ネットワークの輻輳が検知されたと判断される。
 このようにして、輻輳検知部122は、ネットワークの輻輳を検知する。
 さて、図12のフローチャートに戻り、ステップS71の処理は、輻輳検知部122がネットワークの輻輳を検知したと判定されるまで繰り返される。そして、輻輳検知部122がネットワークの輻輳を検知したと判定されると、処理はステップS72に進み、帯域推定部121は、ネットワークの輻輳が検知された時点での帯域の範囲を、受信推定レンジに決定する。
 このようにして、受信推定レンジを決定することで、ネットワークの帯域を推定することもできる。
 (ネットワークの輻輳検知の他の例)
 以上においては、受信装置12がネットワークの輻輳を検知するものとしたが、送信装置11がネットワークの輻輳を検知するようにしてもよい。
 具体的には、送信端末11が、受信装置12に対してRTCP(Real-time Transport Control Protocol)パケットを送信し、受信装置12からのフィードバックの有無に基づいて、ネットワークの輻輳を検知するようにしてもよい。
 例えば、図14に示されるように、送信装置11がRTCPパケット161,162を順次、受信装置12に送信するものとする。
 まず、送信装置11は、RTCPパケット161を送信した送信時刻t41から、受信装置12からのフィードバックを受信した受信時刻t42までの時間t42-t41を求める。送信装置11は、時間t42-t41が所定時間より長いか否かによって、ネットワークの輻輳を検知する。
 ここでは、時間t42-t41は所定時間より短く、ネットワークの輻輳は検知されないものとする。
 次に、送信装置11は、RTCPパケット162を送信した送信時刻t43から、受信装置12からのフィードバックを受信した受信時刻t50までの時間t50-t43を求める。送信装置11は、時間t50-t43が所定時間より長いか否かによって、ネットワークの輻輳を検知する。
 ここで、時間t50-t43が所定時間より長い場合や、受信装置12からのフィードバックを受信できなかった場合、ネットワークの輻輳が検知されたと判断される。
 このようにして、送信装置11がネットワークの輻輳を検知することも可能となる。
 (通信システムの他の機能構成例)
 また、以上においては、受信装置12が、受信したパケットの受信レートや、ネットワークの輻輳の検知結果に基づいて、ネットワークの帯域を推定する機能を有するものとしたが、コントローラ13が、この機能を有するようにしてもよい。
 この場合、図15に示されるように、コントローラ13の制御部151が、帯域推定部121とパラメータ設定部141とを有する。図15の帯域推定部121は、受信装置12から通知される受信レートや、ネットワークの輻輳の検知結果に基づいて、ネットワークの帯域を推定する。
 図15の通信システム1においても、図6の通信システム1と同様の作用、効果を奏することが可能となる。
<4.ボンディングに対応した通信システムの構成>
 以上においては、本技術を、送信装置11から1つの基地局20(1つの無線通信回線)を介してストリーミングを行う通信システム1に適用した例について説明してきた。しかしながら、これに限らず、本技術を、送信装置11から複数の基地局(無線通信回線)を用いたボンディングによるストリーミングを行う通信システムに適用することもできる。
 (通信システムの構成例)
 図16は、本実施の形態に係る、ボンディングに対応した通信システムの構成例を示す図である。
 図16の通信システム201においても、送信装置11がUDPによるストリーミングを行うことで、送信装置11により撮影されている動画像がリアルタイムで受信装置12に送信される。
 また、通信システム201において、送信装置11とインターネット30とは、n個の基地局20-1乃至20-n(n個の無線通信回線(リンク1乃至n))を介して接続されている(n≧2)。なお、以下においては、リンク1を経由する通信経路全体をリンク1、リンク2を経由する通信経路全体をリンク2などともいう。
 送信装置11は、n個の無線通信回線を用いたボンディングによるストリーミングを行うことで、撮影により得られた動画像データを、データSD1乃至SDnに分けて送信することができる。
 また、コントローラ13は、送信装置11との間に、n個の無線通信回線を介したコネクションCN1-1乃至1-nを確立することで、送信装置11とのデータのやりとりを行うことができる。
 上述した第1の実施の形態や第2の実施の形態に係る技術は、図16の通信システム201に適用可能とされる。
 特に、第1の実施の形態に係る技術を通信システム201に適用した場合、通信システム201においては、コントローラ13が、受信装置12における、n個の無線通信回線を介したストリーミングの受信状態に基づいて、ネットワークの状態を判断する。
 (通信システムの機能構成例)
 図17は、第1の実施の形態に係る技術を適用した、図16の通信システム201の機能構成例を示すブロック図である。
 図17の受信装置12は、n個の無線通信回線(リンク1乃至n)それぞれに対応する状態決定部91-1乃至91-nを有する。
 状態決定部91-1乃至91-nは、受信装置12における各リンク1乃至nのストリーミング状態を決定する。
 この場合、コントローラ13の状態把握部111は、受信装置12における各リンク1乃至nそれぞれのストリーミング状態を、TCPコネクション(CN2)を介して把握することで、リンク全体のストリーミング状態を決定する。
 そして、動作決定部112は、状態把握部111により決定された、リンク全体のストリーミング状態に基づいて、ネットワークの状態を判断することで、受信装置12の動作を決定する。
 (受信装置の動作決定処理)
 次に、図18のフローチャートを参照して、受信装置12の動作決定処理について説明する。
 ステップS91において、制御部101は、送信装置11との間のコネクションCN1-1乃至1-nが切断されていないか否かを判定する。
 ステップS91において、コネクションCN1-1乃至1-nのいずれもが切断されていないと判定された場合、制御部101は、送信装置11との間のコネクションCN1-1乃至1-n、および、受信装置12との間のコネクションCN2により、ストリーミング状態を把握することができるため、何もせず、処理は終了する。
 一方、ステップS91において、コネクションCN1-1乃至1-nのうちのいずれかが切断されていると判定された場合、処理はステップS92に進む。
 ステップS92において、状態把握部111は、状態決定部91-1乃至91-nによって決定された、受信装置12における各リンク1乃至nのストリーミング状態を、TCPコネクション(CN2)を介して把握する。
 ステップS93において、状態把握部111は、受信装置12における各リンク1乃至nのストリーミング状態に基づいて、リンク全体のストリーミング状態を決定する。
 ステップS94において、状態把握部111は、リンク全体のストリーミング状態が一定時間STOPのままであるか否かを判定する。
 ステップS94において、リンク全体のストリーミング状態が一定時間STOPのままではないと判定された場合、動作決定部112は何もせず(ストリーミングが行われた状態のまま)、処理は終了する。
 一方、ステップS94において、リンク全体のストリーミング状態が一定時間STOPのままであると判定された場合、ステップS95において、動作決定部112は、ストリーミングの停止を決定し、その旨を受信装置12に通知する。この場合、受信装置12は、動作決定部112からの通知に応じて、ストリーミングに関するアプリケーションを停止させる。
 ここで、図19を参照して、図18のステップS93における、リンク1乃至nのストリーミング状態それぞれに基づいて、リンク全体のストリーミング状態を決定する例について説明する。
 図19の例においては、リンク1を介したストリーミング状態がSTART、リンク2を介したストリーミング状態がSTOP、リンク3を介したストリーミング状態がSTART、・・・、リンクnを介したストリーミング状態がSTARTと決定されている。
 そして、リンク1乃至nそれぞれについてのストリーミング状態のうち、STARTの数が所定数を超えている場合、図19に示されるように、リンク全体ストリーミング状態がSTARTに決定される。
 また、リンク全体のストリーミング状態が、リンク1乃至nそれぞれについてのストリーミング状態と、リンク1乃至n(n個の無線通信回線)それぞれにおける通信方式とに基づいて決定されるようにしてもよい。
 図20には、リンク1乃至nそれぞれについてのストリーミング状態と、リンク1乃至nそれぞれにおける通信方式とに基づいて、リンク全体のストリーミング状態を決定する例が示されている。
 図20の例においては、リンク1乃至nそれぞれについてのストリーミング状態は、図19と同様である。さらに、リンク1における通信方式は3G、リンク2における通信方式は3G、リンク3における通信方式はLTE、・・・、リンクnにおける通信方式はLTEと判定されている。
 そして、リンク1乃至nそれぞれについてのストリーミング状態のうち、STARTの数が所定数を超え、リンク1乃至nそれぞれにおける通信方式のうち、より高速な通信が可能なLTEの数が他の所定数を超えている場合、図20に示されるように、リンク全体のストリーミング状態がSTARTに決定される。
 以上の処理においても、受信装置12におけるストリーミングの受信状態に基づいて、ストリーミングを行うネットワークの状態を適切に判断することが可能となるので、不安定な通信経路を含むネットワークであっても、ネットワークの状態に応じて、安定したストリーミングを提供することが可能となる。
 以上においては、無線通信回線を含む第1の通信回線が、送信装置11とインターネット30とを接続し、有線通信回線のみからなる第2の通信回線が、インターネット30と受信装置12とを接続するものとした。これに限らず、有線通信回線のみからなる第2の通信回線が、送信装置11とインターネット30とを接続し、無線通信回線を含む第1の通信回線が、インターネット30と受信装置12とを接続するようにしてもよい。
<5.応用例>
 以上においては、本開示に係る技術を、テレビジョン放送を行う通信システムに適用した例について説明したが、これに限らず、様々なシステムに適用することができる。例えば、本開示に係る技術は、手術室システムに適用されてもよい。
 図21は、本開示に係る技術が適用され得る手術室システム5100の全体構成を概略的に示す図である。図21を参照すると、手術室システム5100は、手術室内に設置される装置群が視聴覚コントローラ(AV Controller)5107及び手術室制御装置5109を介して互いに連携可能に接続されることにより構成される。
 手術室には、様々な装置が設置され得る。図21では、一例として、内視鏡下手術のための各種の装置群5101と、手術室の天井に設けられ術者の手元を撮像するシーリングカメラ5187と、手術室の天井に設けられ手術室全体の様子を撮像する術場カメラ5189と、複数の表示装置5103A~5103Dと、レコーダ5105と、患者ベッド5183と、照明5191と、を図示している。
 ここで、これらの装置のうち、装置群5101は、後述する内視鏡手術システム5113に属するものであり、内視鏡や当該内視鏡によって撮像された画像を表示する表示装置等からなる。内視鏡手術システム5113に属する各装置は医療用機器とも呼称される。一方、表示装置5103A~5103D、レコーダ5105、患者ベッド5183及び照明5191は、内視鏡手術システム5113とは別個に、例えば手術室に備え付けられている装置である。これらの内視鏡手術システム5113に属さない各装置は非医療用機器とも呼称される。視聴覚コントローラ5107及び/又は手術室制御装置5109は、これら医療機器及び非医療機器の動作を互いに連携して制御する。
 視聴覚コントローラ5107は、医療機器及び非医療機器における画像表示に関する処理を、統括的に制御する。具体的には、手術室システム5100が備える装置のうち、装置群5101、シーリングカメラ5187及び術場カメラ5189は、手術中に表示すべき情報(以下、表示情報ともいう)を発信する機能を有する装置(以下、発信元の装置とも呼称する)であり得る。また、表示装置5103A~5103Dは、表示情報が出力される装置(以下、出力先の装置とも呼称する)であり得る。また、レコーダ5105は、発信元の装置及び出力先の装置の双方に該当する装置であり得る。視聴覚コントローラ5107は、発信元の装置及び出力先の装置の動作を制御し、発信元の装置から表示情報を取得するとともに、当該表示情報を出力先の装置に送信し、表示又は記録させる機能を有する。なお、表示情報とは、手術中に撮像された各種の画像や、手術に関する各種の情報(例えば、患者の身体情報や、過去の検査結果、術式についての情報等)等である。
 具体的には、視聴覚コントローラ5107には、装置群5101から、表示情報として、内視鏡によって撮像された患者の体腔内の術部の画像についての情報が送信され得る。また、シーリングカメラ5187から、表示情報として、当該シーリングカメラ5187によって撮像された術者の手元の画像についての情報が送信され得る。また、術場カメラ5189から、表示情報として、当該術場カメラ5189によって撮像された手術室全体の様子を示す画像についての情報が送信され得る。なお、手術室システム5100に撮像機能を有する他の装置が存在する場合には、視聴覚コントローラ5107は、表示情報として、当該他の装置からも当該他の装置によって撮像された画像についての情報を取得してもよい。
 あるいは、例えば、レコーダ5105には、過去に撮像されたこれらの画像についての情報が視聴覚コントローラ5107によって記録されている。視聴覚コントローラ5107は、表示情報として、レコーダ5105から当該過去に撮像された画像についての情報を取得することができる。なお、レコーダ5105には、手術に関する各種の情報も事前に記録されていてもよい。
 視聴覚コントローラ5107は、出力先の装置である表示装置5103A~5103Dの少なくともいずれかに、取得した表示情報(すなわち、手術中に撮影された画像や、手術に関する各種の情報)を表示させる。図示する例では、表示装置5103Aは手術室の天井から吊り下げられて設置される表示装置であり、表示装置5103Bは手術室の壁面に設置される表示装置であり、表示装置5103Cは手術室内の机上に設置される表示装置であり、表示装置5103Dは表示機能を有するモバイル機器(例えば、タブレットPC(Personal Computer))である。
 また、図21では図示を省略しているが、手術室システム5100には、手術室の外部の装置が含まれてもよい。手術室の外部の装置は、例えば、病院内外に構築されたネットワークに接続されるサーバや、医療スタッフが用いるPC、病院の会議室に設置されるプロジェクタ等であり得る。このような外部装置が病院外にある場合には、視聴覚コントローラ5107は、遠隔医療のために、テレビ会議システム等を介して、他の病院の表示装置に表示情報を表示させることもできる。
 手術室制御装置5109は、非医療機器における画像表示に関する処理以外の処理を、統括的に制御する。例えば、手術室制御装置5109は、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191の駆動を制御する。
 手術室システム5100には、集中操作パネル5111が設けられており、ユーザは、当該集中操作パネル5111を介して、視聴覚コントローラ5107に対して画像表示についての指示を与えたり、手術室制御装置5109に対して非医療機器の動作についての指示を与えることができる。集中操作パネル5111は、表示装置の表示面上にタッチパネルが設けられて構成される。
 図22は、集中操作パネル5111における操作画面の表示例を示す図である。図22では、一例として、手術室システム5100に、出力先の装置として、2つの表示装置が設けられている場合に対応する操作画面を示している。図22を参照すると、操作画面5193には、発信元選択領域5195と、プレビュー領域5197と、コントロール領域5201と、が設けられる。
 発信元選択領域5195には、手術室システム5100に備えられる発信元装置と、当該発信元装置が有する表示情報を表すサムネイル画面と、が紐付けられて表示される。ユーザは、表示装置に表示させたい表示情報を、発信元選択領域5195に表示されているいずれかの発信元装置から選択することができる。
 プレビュー領域5197には、出力先の装置である2つの表示装置(Monitor1、Monitor2)に表示される画面のプレビューが表示される。図示する例では、1つの表示装置において4つの画像がPinP表示されている。当該4つの画像は、発信元選択領域5195において選択された発信元装置から発信された表示情報に対応するものである。4つの画像のうち、1つはメイン画像として比較的大きく表示され、残りの3つはサブ画像として比較的小さく表示される。ユーザは、4つの画像が表示された領域を適宜選択することにより、メイン画像とサブ画像を入れ替えることができる。また、4つの画像が表示される領域の下部には、ステータス表示領域5199が設けられており、当該領域に手術に関するステータス(例えば、手術の経過時間や、患者の身体情報等)が適宜表示され得る。
 コントロール領域5201には、発信元の装置に対して操作を行うためのGUI(Graphical User Interface)部品が表示される発信元操作領域5203と、出力先の装置に対して操作を行うためのGUI部品が表示される出力先操作領域5205と、が設けられる。図示する例では、発信元操作領域5203には、撮像機能を有する発信元の装置におけるカメラに対して各種の操作(パン、チルト及びズーム)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、発信元の装置におけるカメラの動作を操作することができる。なお、図示は省略しているが、発信元選択領域5195において選択されている発信元の装置がレコーダである場合(すなわち、プレビュー領域5197において、レコーダに過去に記録された画像が表示されている場合)には、発信元操作領域5203には、当該画像の再生、再生停止、巻き戻し、早送り等の操作を行うためのGUI部品が設けられ得る。
 また、出力先操作領域5205には、出力先の装置である表示装置における表示に対する各種の操作(スワップ、フリップ、色調整、コントラスト調整、2D表示と3D表示の切り替え)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、表示装置における表示を操作することができる。
 なお、集中操作パネル5111に表示される操作画面は図示する例に限定されず、ユーザは、集中操作パネル5111を介して、手術室システム5100に備えられる、視聴覚コントローラ5107及び手術室制御装置5109によって制御され得る各装置に対する操作入力が可能であってよい。
 図23は、以上説明した手術室システムが適用された手術の様子の一例を示す図である。シーリングカメラ5187及び術場カメラ5189は、手術室の天井に設けられ、患者ベッド5183上の患者5185の患部に対して処置を行う術者(医者)5181の手元及び手術室全体の様子を撮影可能である。シーリングカメラ5187及び術場カメラ5189には、倍率調整機能、焦点距離調整機能、撮影方向調整機能等が設けられ得る。照明5191は、手術室の天井に設けられ、少なくとも術者5181の手元を照射する。照明5191は、その照射光量、照射光の波長(色)及び光の照射方向等を適宜調整可能であってよい。
 内視鏡手術システム5113、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191は、図21に示すように、視聴覚コントローラ5107及び手術室制御装置5109(図23では図示せず)を介して互いに連携可能に接続されている。手術室内には、集中操作パネル5111が設けられており、上述したように、ユーザは、当該集中操作パネル5111を介して、手術室内に存在するこれらの装置を適宜操作することが可能である。
 以下、内視鏡手術システム5113の構成について詳細に説明する。図示するように、内視鏡手術システム5113は、内視鏡5115と、その他の術具5131と、内視鏡5115を支持する支持アーム装置5141と、内視鏡下手術のための各種の装置が搭載されたカート5151と、から構成される。
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5139a~5139dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5139a~5139dから、内視鏡5115の鏡筒5117や、その他の術具5131が患者5185の体腔内に挿入される。図示する例では、その他の術具5131として、気腹チューブ5133、エネルギー処置具5135及び鉗子5137が、患者5185の体腔内に挿入されている。また、エネルギー処置具5135は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5131はあくまで一例であり、術具5131としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。
 内視鏡5115によって撮影された患者5185の体腔内の術部の画像が、表示装置5155に表示される。術者5181は、表示装置5155に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5135や鉗子5137を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5133、エネルギー処置具5135及び鉗子5137は、手術中に、術者5181又は助手等によって支持される。
 (支持アーム装置)
 支持アーム装置5141は、ベース部5143から延伸するアーム部5145を備える。図示する例では、アーム部5145は、関節部5147a、5147b、5147c、及びリンク5149a、5149bから構成されており、アーム制御装置5159からの制御により駆動される。アーム部5145によって内視鏡5115が支持され、その位置及び姿勢が制御される。これにより、内視鏡5115の安定的な位置の固定が実現され得る。
 (内視鏡)
 内視鏡5115は、先端から所定の長さの領域が患者5185の体腔内に挿入される鏡筒5117と、鏡筒5117の基端に接続されるカメラヘッド5119と、から構成される。図示する例では、硬性の鏡筒5117を有するいわゆる硬性鏡として構成される内視鏡5115を図示しているが、内視鏡5115は、軟性の鏡筒5117を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒5117の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5115には光源装置5157が接続されており、当該光源装置5157によって生成された光が、鏡筒5117の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5185の体腔内の観察対象に向かって照射される。なお、内視鏡5115は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド5119の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5153に送信される。なお、カメラヘッド5119には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5119には撮像素子が複数設けられてもよい。この場合、鏡筒5117の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。
 (カートに搭載される各種の装置)
 CCU5153は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5115及び表示装置5155の動作を統括的に制御する。具体的には、CCU5153は、カメラヘッド5119から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5153は、当該画像処理を施した画像信号を表示装置5155に提供する。また、CCU5153には、図21に示す視聴覚コントローラ5107が接続される。CCU5153は、画像処理を施した画像信号を視聴覚コントローラ5107にも提供する。また、CCU5153は、カメラヘッド5119に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。当該撮像条件に関する情報は、入力装置5161を介して入力されてもよいし、上述した集中操作パネル5111を介して入力されてもよい。
 表示装置5155は、CCU5153からの制御により、当該CCU5153によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5115が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5155としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5155として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5155が設けられてもよい。
 光源装置5157は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5115に供給する。
 アーム制御装置5159は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5141のアーム部5145の駆動を制御する。
 入力装置5161は、内視鏡手術システム5113に対する入力インタフェースである。ユーザは、入力装置5161を介して、内視鏡手術システム5113に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5161を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5161を介して、アーム部5145を駆動させる旨の指示や、内視鏡5115による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5135を駆動させる旨の指示等を入力する。
 入力装置5161の種類は限定されず、入力装置5161は各種の公知の入力装置であってよい。入力装置5161としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5171及び/又はレバー等が適用され得る。入力装置5161としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5155の表示面上に設けられてもよい。
 あるいは、入力装置5161は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5161は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5161は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5161が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5181)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。
 処置具制御装置5163は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5135の駆動を制御する。気腹装置5165は、内視鏡5115による視野の確保及び術者の作業空間の確保の目的で、患者5185の体腔を膨らめるために、気腹チューブ5133を介して当該体腔内にガスを送り込む。レコーダ5167は、手術に関する各種の情報を記録可能な装置である。プリンタ5169は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 以下、内視鏡手術システム5113において特に特徴的な構成について、更に詳細に説明する。
 (支持アーム装置)
 支持アーム装置5141は、基台であるベース部5143と、ベース部5143から延伸するアーム部5145と、を備える。図示する例では、アーム部5145は、複数の関節部5147a、5147b、5147cと、関節部5147bによって連結される複数のリンク5149a、5149bと、から構成されているが、図23では、簡単のため、アーム部5145の構成を簡略化して図示している。実際には、アーム部5145が所望の自由度を有するように、関節部5147a~5147c及びリンク5149a、5149bの形状、数及び配置、並びに関節部5147a~5147cの回転軸の方向等が適宜設定され得る。例えば、アーム部5145は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5145の可動範囲内において内視鏡5115を自由に移動させることが可能になるため、所望の方向から内視鏡5115の鏡筒5117を患者5185の体腔内に挿入することが可能になる。
 関節部5147a~5147cにはアクチュエータが設けられており、関節部5147a~5147cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5159によって制御されることにより、各関節部5147a~5147cの回転角度が制御され、アーム部5145の駆動が制御される。これにより、内視鏡5115の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5159は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5145の駆動を制御することができる。
 例えば、術者5181が、入力装置5161(フットスイッチ5171を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5159によってアーム部5145の駆動が適宜制御され、内視鏡5115の位置及び姿勢が制御されてよい。当該制御により、アーム部5145の先端の内視鏡5115を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5145は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5145は、手術室から離れた場所に設置される入力装置5161を介してユーザによって遠隔操作され得る。
 また、力制御が適用される場合には、アーム制御装置5159は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5145が移動するように、各関節部5147a~5147cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5145に触れながらアーム部5145を移動させる際に、比較的軽い力で当該アーム部5145を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5115を移動させることが可能となり、ユーザの利便性を向上させることができる。
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5115が支持されていた。これに対して、支持アーム装置5141を用いることにより、人手によらずに内視鏡5115の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。
 なお、アーム制御装置5159は必ずしもカート5151に設けられなくてもよい。また、アーム制御装置5159は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5159は、支持アーム装置5141のアーム部5145の各関節部5147a~5147cにそれぞれ設けられてもよく、複数のアーム制御装置5159が互いに協働することにより、アーム部5145の駆動制御が実現されてもよい。
 (光源装置)
 光源装置5157は、内視鏡5115に術部を撮影する際の照射光を供給する。光源装置5157は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5157において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5119の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置5157は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5119の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置5157は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5157は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 (カメラヘッド及びCCU)
 図24を参照して、内視鏡5115のカメラヘッド5119及びCCU5153の機能についてより詳細に説明する。図24は、図23に示すカメラヘッド5119及びCCU5153の機能構成の一例を示すブロック図である。
 図24を参照すると、カメラヘッド5119は、その機能として、レンズユニット5121と、撮像部5123と、駆動部5125と、通信部5127と、カメラヘッド制御部5129と、を有する。また、CCU5153は、その機能として、通信部5173と、画像処理部5175と、制御部5177と、を有する。カメラヘッド5119とCCU5153とは、伝送ケーブル5179によって双方向に通信可能に接続されている。
 まず、カメラヘッド5119の機能構成について説明する。レンズユニット5121は、鏡筒5117との接続部に設けられる光学系である。鏡筒5117の先端から取り込まれた観察光は、カメラヘッド5119まで導光され、当該レンズユニット5121に入射する。レンズユニット5121は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5121は、撮像部5123の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。
 撮像部5123は撮像素子によって構成され、レンズユニット5121の後段に配置される。レンズユニット5121を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5123によって生成された画像信号は、通信部5127に提供される。
 撮像部5123を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5181は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。
 また、撮像部5123を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5181は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5123が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5121も複数系統設けられる。
 また、撮像部5123は、必ずしもカメラヘッド5119に設けられなくてもよい。例えば、撮像部5123は、鏡筒5117の内部に、対物レンズの直後に設けられてもよい。
 駆動部5125は、アクチュエータによって構成され、カメラヘッド制御部5129からの制御により、レンズユニット5121のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5123による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部5127は、CCU5153との間で各種の情報を送受信するための通信装置によって構成される。通信部5127は、撮像部5123から得た画像信号をRAWデータとして伝送ケーブル5179を介してCCU5153に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5181が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5127には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5179を介してCCU5153に送信される。
 また、通信部5127は、CCU5153から、カメラヘッド5119の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5127は、受信した制御信号をカメラヘッド制御部5129に提供する。なお、CCU5153からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5127には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5129に提供される。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5153の制御部5177によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5115に搭載される。
 カメラヘッド制御部5129は、通信部5127を介して受信したCCU5153からの制御信号に基づいて、カメラヘッド5119の駆動を制御する。例えば、カメラヘッド制御部5129は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5123の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5129は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5125を介してレンズユニット5121のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5129は、更に、鏡筒5117やカメラヘッド5119を識別するための情報を記憶する機能を備えてもよい。
 なお、レンズユニット5121や撮像部5123等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5119について、オートクレーブ滅菌処理に対する耐性を持たせることができる。
 次に、CCU5153の機能構成について説明する。通信部5173は、カメラヘッド5119との間で各種の情報を送受信するための通信装置によって構成される。通信部5173は、カメラヘッド5119から、伝送ケーブル5179を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5173には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5173は、電気信号に変換した画像信号を画像処理部5175に提供する。
 また、通信部5173は、カメラヘッド5119に対して、カメラヘッド5119の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。
 画像処理部5175は、カメラヘッド5119から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5175は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。
 画像処理部5175は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5175が複数のGPUによって構成される場合には、画像処理部5175は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。
 制御部5177は、内視鏡5115による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5177は、カメラヘッド5119の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5177は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5115にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5177は、画像処理部5175による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。
 また、制御部5177は、画像処理部5175によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5155に表示させる。この際、制御部5177は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5177は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5135使用時のミスト等を認識することができる。制御部5177は、表示装置5155に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5181に提示されることにより、より安全かつ確実に手術を進めることが可能になる。
 カメラヘッド5119及びCCU5153を接続する伝送ケーブル5179は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル5179を用いて有線で通信が行われていたが、カメラヘッド5119とCCU5153との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5179を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5179によって妨げられる事態が解消され得る。
 以上、本開示に係る技術が適用され得る手術室システム5100の一例について説明した。なお、ここでは、一例として手術室システム5100が適用される医療用システムが内視鏡手術システム5113である場合について説明したが、手術室システム5100の構成はかかる例に限定されない。例えば、手術室システム5100は、内視鏡手術システム5113に代えて、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。
 本開示に係る技術は、以上説明した構成のうち、視聴覚コントローラ5107に好適に適用され得る。具体的には、本技術の制御装置の構成を、発信元の装置及び出力先の装置の動作を制御する視聴覚コントローラ5107に適用することができる。視聴覚コントローラ5107に本開示に係る技術を適用することにより、ネットワークの状態に応じて、安定したストリーミングを提供することができるため、特にリアルタイムで行われる遠隔医療における診断の精度向上を図ることができる。
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 さらに、本技術は以下のような構成をとることができる。
(1)
 受信装置と、
 前記受信装置に対してストリーミングを行う送信装置と、
 前記受信装置と前記送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する制御装置と
 を備え、
 前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、
 前記制御装置は、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態を管理する
 通信システム。
(2)
 前記第1の通信回線は、前記第2の通信回線と比較して遅延またはパケットロスが大きい
 (1)に記載の通信システム。
(3)
 前記第1の通信回線は、無線通信回線を含んで構成され、
 前記第2の通信回線は、有線通信回線のみで構成される
 (2)に記載の通信システム。
(4)
 前記送信装置は、前記第1の通信回線により前記ネットワークに接続され、
 前記受信装置は、前記第2の通信回線により前記ネットワークに接続される
 (3)に記載の通信システム。
(5)
 前記送信装置は、前記受信装置に対してUDP(User Datagram Protocol)による前記ストリーミングを行う
 (4)に記載の通信システム。
(6)
 前記制御装置は、
  前記受信装置における前記ストリーミングの受信状態を、TCP(Transmission Control Protocol)接続により把握する状態把握部と、
  前記ストリーミングの受信状態に基づいて、前記ストリーミングの停止を決定する決定部と
 を有する
 (5)に記載の通信システム。
(7)
 前記決定部は、前記受信装置におけるパケットの受信間隔、および、所定時間内でのパケットロス量の少なくともいずれかに基づいて、前記ストリーミングの停止を決定する
 (6)に記載の通信システム。
(8)
 前記送信装置は、複数の前記第1の通信回線を用いたボンディングによる前記ストリーミングを行い、
 前記状態把握部は、前記受信装置における、複数の前記第1の通信回線それぞれを介した前記ストリーミングの受信状態を把握し、
 前記決定部は、前記ストリーミングの受信状態それぞれに基づいて、前記ストリーミングの停止を決定する
 (6)または(7)に記載の通信システム。
(9)
 前記決定部は、前記ストリーミングの受信状態それぞれと、複数の前記第1の通信回線それぞれにおける通信方式とに基づいて、前記ストリーミングの停止を決定する
 (8)に記載の通信システム。
(10)
 前記受信装置は、前記ストリーミングが行われる前記ネットワークの帯域を推定する帯域推定部を有し、
 前記制御装置は、推定された前記ネットワークの帯域に基づいて、前記送信装置が行う前記ストリーミングに関するパラメータを設定するパラメータ設定部を有する
 (5)に記載の通信システム。
(11)
 前記送信装置は、所定時間毎に階段状に送信レートを上げながら、前記受信装置に対してパケット送信を行い、
 前記帯域推定部は、前記送信装置から受信したパケットの受信レートに基づいて、前記ネットワークの帯域を推定する
 (10)に記載の通信システム。
(12)
 前記受信装置は、前記ネットワークの輻輳を検知する輻輳検知部をさらに有し、
 前記帯域推定部は、前記ネットワークの輻輳の検知結果に基づいて、前記ネットワークの帯域を推定する
 (10)または(11)に記載の通信システム。
(13)
 前記輻輳検知部は、RTP(Real-time Transport Protocol)パケットの相対遅延量に基づいて、前記ネットワークの輻輳を検知する
 (12)に記載の通信システム。
(14)
 前記送信装置は、動画像のストリーミングを行う
 (1)乃至(13)のいずれかに記載の通信システム。
(15)
 前記送信装置は、動画像を撮像し、リアルタイムで送信する撮像装置として構成される
 (14)に記載の通信システム。
(16)
 受信装置と、前記受信装置に対してストリーミングを行う送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する制御部
 を備え、
 前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、
 前記制御部は、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態を管理する
 制御装置。
 1 通信システム, 11 送信装置, 12 受信装置, 13 制御装置, 20,20-1,20-2 基地局, 30 インターネット, 91 状態決定部, 101 制御部, 111 状態把握部, 112 動作決定部, 121 帯域推定部, 122 輻輳検知部, 131 制御部, 141 パラメータ設定部, 151 制御部

Claims (16)

  1.  受信装置と、
     前記受信装置に対してストリーミングを行う送信装置と、
     前記受信装置と前記送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する制御装置と
     を備え、
     前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、
     前記制御装置は、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態を管理する
     通信システム。
  2.  前記第1の通信回線は、前記第2の通信回線と比較して遅延またはパケットロスが大きい
     請求項1に記載の通信システム。
  3.  前記第1の通信回線は、無線通信回線を含んで構成され、
     前記第2の通信回線は、有線通信回線のみで構成される
     請求項2に記載の通信システム。
  4.  前記送信装置は、前記第1の通信回線により前記ネットワークに接続され、
     前記受信装置は、前記第2の通信回線により前記ネットワークに接続される
     請求項3に記載の通信システム。
  5.  前記送信装置は、前記受信装置に対してUDP(User Datagram Protocol)による前記ストリーミングを行う
     請求項4に記載の通信システム。
  6.  前記制御装置は、
      前記受信装置における前記ストリーミングの受信状態を、TCP(Transmission Control Protocol)接続により把握する状態把握部と、
      前記ストリーミングの受信状態に基づいて、前記ストリーミングの停止を決定する決定部と
     を有する
     請求項5に記載の通信システム。
  7.  前記決定部は、前記受信装置におけるパケットの受信間隔、および、所定時間内でのパケットロス量の少なくともいずれかに基づいて、前記ストリーミングの停止を決定する
     請求項6に記載の通信システム。
  8.  前記送信装置は、複数の前記第1の通信回線を用いたボンディングによる前記ストリーミングを行い、
     前記状態把握部は、前記受信装置における、複数の前記第1の通信回線それぞれを介した前記ストリーミングの受信状態を把握し、
     前記決定部は、前記ストリーミングの受信状態それぞれに基づいて、前記ストリーミングの停止を決定する
     請求項6に記載の通信システム。
  9.  前記決定部は、前記ストリーミングの受信状態それぞれと、複数の前記第1の通信回線それぞれにおける通信方式とに基づいて、前記ストリーミングの停止を決定する
     請求項8に記載の通信システム。
  10.  前記受信装置は、前記ストリーミングが行われる前記ネットワークの帯域を推定する帯域推定部を有し、
     前記制御装置は、推定された前記ネットワークの帯域に基づいて、前記送信装置が行う前記ストリーミングに関するパラメータを設定するパラメータ設定部を有する
     請求項5に記載の通信システム。
  11.  前記送信装置は、所定時間毎に階段状に送信レートを上げながら、前記受信装置に対してパケット送信を行い、
     前記帯域推定部は、前記送信装置から受信したパケットの受信レートに基づいて、前記ネットワークの帯域を推定する
     請求項10に記載の通信システム。
  12.  前記受信装置は、前記ネットワークの輻輳を検知する輻輳検知部をさらに有し、
     前記帯域推定部は、前記ネットワークの輻輳の検知結果に基づいて、前記ネットワークの帯域を推定する
     請求項10に記載の通信システム。
  13.  前記輻輳検知部は、RTP(Real-time Transport Protocol)パケットの相対遅延量に基づいて、前記ネットワークの輻輳を検知する
     請求項12に記載の通信システム。
  14.  前記送信装置は、動画像のストリーミングを行う
     請求項1に記載の通信システム。
  15.  前記送信装置は、動画像を撮像し、リアルタイムで送信する撮像装置として構成される
     請求項14に記載の通信システム。
  16.  受信装置と、前記受信装置に対してストリーミングを行う送信装置とを接続するネットワークであって、第1の通信回線および第2の通信回線を含むネットワークの状態を管理する制御部
     を備え、
     前記第1の通信回線は、前記第2の通信回線と比較して接続状態が不安定であり、
     前記制御部は、前記送信装置から前記受信装置へと送信されるパケットに基づいて、前記ネットワークの状態を管理する
     制御装置。
PCT/JP2018/022860 2017-06-29 2018-06-15 通信システムおよび制御装置 WO2019003955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18824894.2A EP3648422B1 (en) 2017-06-29 2018-06-15 Communication system and control device
CN201880041444.6A CN110771102B (zh) 2017-06-29 2018-06-15 通信系统和控制设备
JP2019526801A JPWO2019003955A1 (ja) 2017-06-29 2018-06-15 通信システムおよび制御装置
US16/625,169 US11394759B2 (en) 2017-06-29 2018-06-15 Communication system and control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127552 2017-06-29
JP2017-127552 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003955A1 true WO2019003955A1 (ja) 2019-01-03

Family

ID=64742890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022860 WO2019003955A1 (ja) 2017-06-29 2018-06-15 通信システムおよび制御装置

Country Status (5)

Country Link
US (1) US11394759B2 (ja)
EP (1) EP3648422B1 (ja)
JP (1) JPWO2019003955A1 (ja)
CN (1) CN110771102B (ja)
WO (1) WO2019003955A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113224A (ja) 2006-10-30 2008-05-15 Kyocera Corp 通信制御装置、無線通信装置、通信制御方法および無線通信方法
JP2013528984A (ja) * 2010-04-06 2013-07-11 クゥアルコム・インコーポレイテッド マルチパストランスポートを使用した協調帯域幅アグリゲーション

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076114A (en) * 1997-04-18 2000-06-13 International Business Machines Corporation Methods, systems and computer program products for reliable data transmission over communications networks
US20080002669A1 (en) * 2001-09-14 2008-01-03 O'brien Ray Packet voice gateway
EP1428357A1 (en) * 2001-09-21 2004-06-16 British Telecommunications Public Limited Company Data communications method and system using receiving buffer size to calculate transmission rate for congestion control
JP4116470B2 (ja) * 2002-03-06 2008-07-09 ヒューレット・パッカード・カンパニー メディア・ストリーミング配信システム
AU2003286339A1 (en) * 2002-12-17 2004-07-09 Koninklijke Philips Electronics N.V. Method of coding video streams for low-cost multiple description at gateways
KR100956817B1 (ko) * 2003-01-11 2010-05-11 엘지전자 주식회사 패킷 데이터를 처리하는 방법 및 이를 위한 장치
CN1947389A (zh) * 2004-03-04 2007-04-11 诺基亚公司 通信系统中的方法、通信系统和通信设备
US7984179B1 (en) * 2004-06-29 2011-07-19 Sextant Navigation, Inc. Adaptive media transport management for continuous media stream over LAN/WAN environment
KR100619701B1 (ko) * 2004-12-09 2006-09-08 엘지전자 주식회사 무선 랜 상태 모니터링 방법
KR100640490B1 (ko) * 2005-08-05 2006-10-30 삼성전자주식회사 이동성을 보장하는 다중 사용자 지원 멀티미디어 컨텐츠제공 시스템과 그 제공 방법
CN1835482A (zh) * 2005-12-29 2006-09-20 上海贝豪通讯电子有限公司 一种无线流媒体服务解决的方法
US8839065B2 (en) * 2011-07-29 2014-09-16 Blackfire Research Corporation Packet loss anticipation and pre emptive retransmission for low latency media applications
EP2159976A4 (en) * 2007-05-21 2014-03-12 Fujitsu Ltd RELAY DEVICE AND RELAY METHOD
US7987285B2 (en) * 2007-07-10 2011-07-26 Bytemobile, Inc. Adaptive bitrate management for streaming media over packet networks
US8595342B2 (en) * 2007-10-17 2013-11-26 Reazer Investments L.L.C. Synchronized media playback using autonomous clients over standard Internet protocols
CN101222296B (zh) * 2008-01-31 2010-06-09 上海交通大学 上行蜂窝视频通信中自适应的传输方法及系统
US9137026B1 (en) * 2009-04-23 2015-09-15 Sprint Communications Company L.P. Seamless service transitions for dual-network mobile devices
US9723319B1 (en) * 2009-06-01 2017-08-01 Sony Interactive Entertainment America Llc Differentiation for achieving buffered decoding and bufferless decoding
WO2011037245A1 (ja) * 2009-09-24 2011-03-31 日本電気株式会社 通信データ伝送装置、通信データ伝送システム、通信データ伝送方法、及び通信データ伝送プログラム
EP2486491A4 (en) * 2009-10-06 2013-10-23 Unwired Planet Llc MANAGING NETWORK TRAFFIC BY EDITING A MANIFEST FILE AND / OR USING A INTERMEDIATE FLOW CONTROL
US20120047230A1 (en) * 2010-08-18 2012-02-23 Cisco Technology, Inc. Client-initiated management controls for streaming applications
US8364812B2 (en) * 2010-08-27 2013-01-29 Sandvine Incorporated Ulc Method and system for network data flow management
CN102143536B (zh) * 2010-12-17 2013-11-06 华为终端有限公司 自动切换网络的方法和装置、无线接入设备和中间设备
US8892763B2 (en) * 2011-01-05 2014-11-18 Motorola Mobility Llc Live television playback optimizations
US8996719B2 (en) * 2011-04-03 2015-03-31 Jeremiah Condon System and method of adaptive transport of multimedia data
US20130067109A1 (en) * 2011-09-12 2013-03-14 Tektronix, Inc. Monitoring Over-the-Top Adaptive Video Streaming
US20150163273A1 (en) * 2011-09-29 2015-06-11 Avvasi Inc. Media bit rate estimation based on segment playback duration and segment data length
US10187441B2 (en) * 2011-10-03 2019-01-22 CSC Holdings, LLC Media relay
US9338410B2 (en) * 2012-06-07 2016-05-10 Verizon Patent And Licensing Inc. Remote streaming
US8904024B2 (en) * 2012-08-03 2014-12-02 Ittiam Systems (P) Ltd System and method for low delay fast update for video streaming
US20140344469A1 (en) * 2013-05-17 2014-11-20 Evology, Llc Method of in-application encoding for decreased latency application streaming
EP3007450B1 (en) * 2013-06-07 2018-11-28 Saturn Licensing LLC Transmission device, transmission method, receiving device, and receiving method
EP2814256B1 (en) * 2013-06-11 2022-01-26 MX1 GmbH Method and apparatus for modifying a stream of digital content
EP2819367A1 (en) * 2013-06-28 2014-12-31 Thomson Licensing Method for retrieving, by a client terminal, a content part of a multimedia content
JP2015070568A (ja) * 2013-09-30 2015-04-13 ソニー株式会社 情報処理装置、通信方法およびプログラム
US9578074B2 (en) * 2013-11-11 2017-02-21 Amazon Technologies, Inc. Adaptive content transmission
KR102101206B1 (ko) * 2014-01-03 2020-05-15 삼성전자 주식회사 무선 통신 시스템에서 혼잡 관리를 위한 방법 및 장치
WO2016011136A1 (en) * 2014-07-15 2016-01-21 Maximum Media LLC Systems and methods for automated real-time internet streaming and broadcasting
US10320526B1 (en) * 2014-11-07 2019-06-11 Strong Force Iot Portfolio 2016, Llc Packet coding based network communication
WO2016084334A1 (ja) * 2014-11-27 2016-06-02 日本電気株式会社 可用帯域推定システム、可用帯域推定方法、受信装置及び受信装置のプログラムの記憶媒体
KR102111572B1 (ko) * 2015-02-13 2020-05-15 에스케이텔레콤 주식회사 저지연 생방송 컨텐츠 제공을 위한 프로그램을 기록한 기록매체 및 장치
US9883214B2 (en) * 2015-03-31 2018-01-30 Dialogic Corporation Efficient approach to dynamic frame size and frame rate adaptation
US9906996B2 (en) * 2015-06-23 2018-02-27 At&T Intellectual Property I, L.P. Facilitation of wireless network session continuity
KR102461929B1 (ko) * 2015-09-25 2022-11-02 삼성전자주식회사 다수의 무선 접속 인터페이스를 지원하는 이동 통신 시스템에서 스트리밍 서비스 데이터를 수신하는 장치 및 방법
US20180131535A1 (en) * 2016-06-30 2018-05-10 CherryTomato8 System, apparatus, and method for information retrieval
KR102307447B1 (ko) * 2017-05-02 2021-09-30 삼성전자주식회사 네트워크 환경 모니터링에 기반하는 http 적응적 스트리밍 서버, 방법, 및 클라이언트 단말
US11019126B2 (en) * 2017-06-23 2021-05-25 Nokia Solutions And Networks Oy Quality-of-experience for adaptive bitrate streaming
US11991235B2 (en) * 2017-09-27 2024-05-21 Comcast Cable Communications, Llc Adaptive energy system utilizing quality of service and quality of experience metrics
US10652084B2 (en) * 2018-05-01 2020-05-12 At&T Intellectual Property I, L.P. Service recovery in a software defined network
US11032613B2 (en) * 2018-08-30 2021-06-08 Fox Broadcasting Company, Llc Dynamic slates for live streaming blackouts
KR102162350B1 (ko) * 2019-02-14 2020-10-06 국방과학연구소 다중 통신 제어 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113224A (ja) 2006-10-30 2008-05-15 Kyocera Corp 通信制御装置、無線通信装置、通信制御方法および無線通信方法
JP2013528984A (ja) * 2010-04-06 2013-07-11 クゥアルコム・インコーポレイテッド マルチパストランスポートを使用した協調帯域幅アグリゲーション

Also Published As

Publication number Publication date
US20210144186A1 (en) 2021-05-13
EP3648422A4 (en) 2020-05-13
CN110771102B (zh) 2023-09-22
EP3648422A1 (en) 2020-05-06
US11394759B2 (en) 2022-07-19
EP3648422B1 (en) 2022-03-16
JPWO2019003955A1 (ja) 2020-04-30
CN110771102A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
US11323679B2 (en) Multi-camera system, camera, processing method of camera, confirmation apparatus, and processing method of confirmation apparatus
CN110168605B (zh) 用于动态范围压缩的视频信号处理装置、视频信号处理方法和计算机可读介质
US11729519B2 (en) Video signal processing apparatus, video signal processing method, and image-capturing apparatus
EP3357235B1 (en) Information processing apparatus, multi-camera system and non-transitory computer-readable medium
JP7264051B2 (ja) 画像処理装置および画像処理方法
US11022859B2 (en) Light emission control apparatus, light emission control method, light emission apparatus, and imaging apparatus
JP7136093B2 (ja) 情報処理装置、情報処理方法および情報処理プログラム
US11671872B2 (en) Communication system and transmission apparatus
WO2019235049A1 (ja) 撮像装置、ゲイン設定方法及びプログラム
CN110771102B (zh) 通信系统和控制设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824894

Country of ref document: EP

Effective date: 20200129