WO2019003845A1 - Semiconductor inspection device and semiconductor inspection method - Google Patents

Semiconductor inspection device and semiconductor inspection method Download PDF

Info

Publication number
WO2019003845A1
WO2019003845A1 PCT/JP2018/021796 JP2018021796W WO2019003845A1 WO 2019003845 A1 WO2019003845 A1 WO 2019003845A1 JP 2018021796 W JP2018021796 W JP 2018021796W WO 2019003845 A1 WO2019003845 A1 WO 2019003845A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
unit
passivation film
ion
light
Prior art date
Application number
PCT/JP2018/021796
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 明
英俊 中西
敏光 望月
白澤 勝彦
秀尚 高遠
Original Assignee
株式会社Screenホールディングス
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社Screenホールディングス
Publication of WO2019003845A1 publication Critical patent/WO2019003845A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a technique for inspecting defects, deterioration, etc. of a semiconductor sample.
  • Patent Document 1 a phenomenon (voltage induced degradation, potential induced degradation (PID)) in which the output is reduced in a relatively short time due to application of high system voltage and environmental conditions such as high temperature and high humidity especially in mega solar etc. is known (for example, Patent Document 1).
  • PID potential induced degradation
  • FIG. 11 is a schematic view showing the structure of a general solar cell module 900.
  • the solar cell module 900 includes a plurality of solar cells 902 electrically connected to one another by an interconnector 901.
  • the plurality of solar cells 902 (for example, crystalline silicon solar cells) are sealed in EVA (Ethylene-Vinyl Acetate: ethylene vinyl acetate copolymer resin) 903.
  • EVA Ethylene-Vinyl Acetate: ethylene vinyl acetate copolymer resin
  • a reinforced white sheet glass 904 is attached as a surface material to the light receiving surface side
  • a back sheet 905 as a back surface material is attached to the back surface side.
  • a reinforced white sheet glass 904, EVA 903 and a back sheet 905 are assembled to an Al (aluminum) frame 906. All of the solar cells 902 are electrically connected to a terminal box 907 provided on the back side of the solar cell module 900 through the interconnector 901.
  • the PID is considered to be one cause of generation of metal ions mainly composed of sodium (Na) ions of the reinforced white sheet glass 904.
  • a circuit may be formed from the Al frame 906, through the reinforced white sheet glass 904, the EVA 903 to the solar battery cell 902, which may cause a negative high voltage to be applied to the solar battery cell 902 (for example, -600 V of the system voltage) , -1000V, etc.).
  • metal ions such as Na ions can diffuse from the reinforced white sheet glass 904 into the EVA 903 of the encapsulant and reach the surface of the solar cell 902.
  • the Na ion or the like interacts with the electrons in the n-type layer of Si to reduce the bending of the band due to the pn junction which is important for photoelectric conversion, which may lower the power generation efficiency.
  • the generation efficiency can be reduced by Na ions or the like entering the crystal defects of Si and becoming recombination centers.
  • this hypothesis is not necessarily sufficiently verified, and further investigation of the cause of the PID is desired.
  • a PID acceleration test is performed on each of the solar cell modules having passivation films having a refractive index of 2.2 and 2.03. Then, PID occurred at a refractive index of 2.03 but was suppressed at a refractive index of 2.2. That is, it is considered possible to inspect the presence or absence of deterioration resistance such as PID by thus inspecting the characteristics of the passivation film.
  • the conventional PID test and Dmap-Heat test are performed on the fabrication of a solar cell module and a dedicated accelerated test, and it is extremely difficult to test the solar cell substrate when the passivation film is formed.
  • Have difficulty In order to manufacture a solar cell module, the back surface electrode formation process, the surface electrode formation process, the baking process, etc. are required with respect to a photovoltaic cell, and there existed a problem of taking time until it became testable.
  • passivation films may be formed on the surface of semiconductor devices other than solar cell modules (for example, LSIs and power devices), and a technique for early and appropriate inspection of the characteristics of such passivation films is required. It is done.
  • an object of the present invention is to provide a technology capable of carrying out a characteristic inspection of a passivation film at an early stage of a semiconductor manufacturing process.
  • a first aspect is a semiconductor inspection apparatus for inspecting a semiconductor sample having a passivation film having a fixed charge formed on the surface, the sample holding unit for holding the semiconductor sample, and a process for applying ions to the passivation film
  • An ion applying unit to perform, a light irradiating unit to irradiate an inspection light for generating an electromagnetic wave to the semiconductor sample, a detector to detect the electromagnetic wave emitted by the semiconductor sample in response to the irradiation of the inspection light;
  • a comparison evaluation unit for evaluating the characteristics of the passivation film by comparing each of the electromagnetic waves emitted by the semiconductor sample before the processing by the processing unit and after a predetermined time t after the ion application and after the processing for a predetermined time has elapsed .
  • a second aspect is the semiconductor inspection apparatus according to the first aspect, further comprising a scanning mechanism that scans the surface of the semiconductor sample with the inspection light emitted from the light irradiator.
  • a third aspect is the semiconductor inspection device according to the second aspect, wherein the ion application unit further includes an application region displacement mechanism that displaces the region to which the ions are applied relative to the surface of the semiconductor sample.
  • a fourth aspect is the semiconductor inspection device according to any one of the first aspect to the third aspect, wherein the control unit that controls the ion applying unit and the light emitting unit and the time t based on a predetermined operation input.
  • a time setting unit for setting the inspection light to the light irradiation unit after the time t set by the time setting unit after the ion applying unit applies the ions Irradiate.
  • a fifth aspect is the semiconductor inspection device according to any one of the first aspect to the fourth aspect, wherein ion applying conditions for setting the ions to be applied by the ion applying unit are set based on a predetermined operation input.
  • the apparatus further comprises a setting unit.
  • a sixth aspect is the semiconductor inspection device according to any one of the first aspect to the fifth aspect, wherein the ion applying part is a needle-like discharge electrode, and a voltage capable of discharging the discharge electrode to the discharge electrode And a power supply unit to be applied.
  • a seventh aspect is the semiconductor inspection device according to any one of the first aspect to the sixth aspect, wherein the inspection light is pulsed light, and the detector is responsive to incident pulsed light for detection.
  • a photoconductive antenna for detecting the intensity of the electromagnetic wave, and the semiconductor inspection apparatus further includes a delay unit for delaying the input time of the pulse light for detection with respect to the electromagnetic wave incident on the photoconductive antenna Prepare.
  • An eighth aspect is the semiconductor inspection device according to any one of the first aspect to the seventh aspect, wherein the ion application unit applies ions of the opposite sign to the fixed charge, and the comparison evaluation unit The characteristics of the passivation film are evaluated based on the sign of the polarity of the electromagnetic wave.
  • a ninth aspect is the semiconductor inspection device according to the eighth aspect, wherein the passivation film includes silicon nitride, and the ion applying unit can apply ions having a charge density of ⁇ 1 ⁇ 10 13 q / cm 2 or less. It is configured.
  • a tenth aspect is the semiconductor inspection apparatus according to any one of the first aspect to the ninth aspect, wherein a portion of the sample holding portion in contact with the semiconductor sample is made of resin.
  • An eleventh aspect is a semiconductor inspection method for inspecting a semiconductor sample on the surface of which a passivation film having a fixed charge is formed, wherein (a) the semiconductor sample is irradiated with inspection light and the semiconductor sample emits an electromagnetic wave A step of detecting the intensity, (b) a step of applying ions to the passivation film after the step (a), and (c) the inspection light on the semiconductor sample after the step (b). And detecting the intensity of the electromagnetic wave emitted by the semiconductor sample in response to the irradiation emitted by the semiconductor sample; (d) the electromagnetic waves detected in the steps (b) and (d) Evaluating the characteristics of the passivation film in the semiconductor sample by comparing.
  • the semiconductor inspection device of the first aspect if the formation of the passivation film is defective, the applied ions are retained to change the band structure in the vicinity of the passivation film and change the intensity of the radiated electromagnetic wave. It can. Therefore, the characteristics of the passivation film can be properly evaluated by comparing the intensity of the electromagnetic wave before and after the treatment of ion application. In addition, since the performance can be inspected when the passivation film is formed on the semiconductor, the characteristics of the passivation film can be evaluated at an early stage of the semiconductor manufacturing process.
  • the characteristics of the passivation film can be evaluated for each different part.
  • ions can be applied to different portions of the semiconductor sample.
  • the operator can appropriately set the time t in accordance with the type of the passivation film and the like.
  • the operator can appropriately set the conditions of the ions to be applied according to the type of the passivation film and the like.
  • ions generated by discharge can be applied to the passivation film.
  • the semiconductor inspection apparatus of the seventh aspect since the time waveform can be restored, the deterioration resistance can be analyzed in more detail.
  • the band structure on the surface of the passivation film can be reversed by applying ions of the opposite sign to the fixed charge of the passivation film.
  • the sign of the polarity of the electromagnetic wave emitted from the semiconductor sample may be reversed. Therefore, the characteristics of the passivation film can be properly evaluated only by comparing the signs of the polarities of the electromagnetic waves.
  • the charge density of fixed charges passivation film in the case of less than 1 ⁇ 10 13 q / cm 2 , to impart ion of -1 ⁇ 10 13 q / cm 2 or less charge density
  • the electric field on the surface of the passivation film can be reversed.
  • the positive and negative of the intensity of the electromagnetic wave emitted by the semiconductor sample can be reversed.
  • the semiconductor inspection apparatus of the tenth aspect since the portion of the sample holder in contact with the semiconductor sample is made of resin, damage to the semiconductor sample can be reduced. For this reason, the semiconductor sample which is an unfinished product before becoming a product can be inspected nondestructively.
  • the semiconductor inspection method of the eleventh aspect if the formation of the passivation film is defective, the applied ions are retained, whereby the band structure in the vicinity of the passivation film changes, and the intensity of the radiated electromagnetic wave changes. It can. Therefore, the characteristics of the passivation film can be properly evaluated by comparing the intensity of the electromagnetic wave before and after the treatment of ion application. In addition, since the performance can be inspected when the passivation film is formed on the semiconductor, the characteristics of the passivation film can be evaluated at an early stage of the semiconductor manufacturing process.
  • FIG. 5 is a schematic cross-sectional view showing a semiconductor sample 9; It is a schematic block diagram which shows the light irradiation part 20 and the electromagnetic wave detection part 30 of the semiconductor inspection apparatus 1 of embodiment. It is a figure which shows the time waveform of electromagnetic wave LT1 which the semiconductor sample 9 (refractive index 2.1) before and after the process of ion provision emits. It is a figure which shows the time waveform of electromagnetic wave LT1 which the semiconductor sample 9 (refractive index 2.0) before and after the process of ion provision emits. It is a figure which shows the relationship between the charge density of provision ion, and electromagnetic wave intensity.
  • FIG. 1 is a schematic block diagram of a semiconductor inspection apparatus 1 of the embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the semiconductor sample 9.
  • FIG. 3 is a schematic configuration view showing the light irradiation unit 20 and the electromagnetic wave detection unit 30 of the semiconductor inspection device 1 of the embodiment.
  • the semiconductor inspection apparatus 1 irradiates light (pulse light in this case) having a predetermined wavelength to a semiconductor sample which is an inspection object, and the electromagnetic wave LT1 (specifically, the semiconductor sample emits in response to the irradiation of the light).
  • the electromagnetic wave LT1 specifically, the semiconductor sample emits in response to the irradiation of the light.
  • the semiconductor sample may include a semiconductor device and a photo device.
  • a semiconductor device is an electronic device that includes a transistor constituted by a semiconductor, an integrated circuit (IC or LSI), a resistor or a capacitor.
  • the photo device is an electronic device that utilizes the photoelectric effect of a semiconductor, such as a photodiode, an image sensor such as a CMOS sensor or a CCD sensor, a solar cell or an LED.
  • semiconductor sample 9 is a silicon substrate for solar cells is mainly explained.
  • the semiconductor sample 9 is a member for a solar battery cell, and is formed in a flat plate shape.
  • the semiconductor sample 9 has a p-type silicon layer 91, an n-type silicon layer 93, and a passivation film 95 in order.
  • the passivation film 95 is a so-called antireflective film, and is, for example, a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film).
  • a junction portion of the p-type silicon layer 91 and the n-type silicon layer 93 is a pn junction portion 97.
  • a back surface electrode and a front surface electrode are formed on this semiconductor sample 9 and fired to complete a solar battery cell. Furthermore, the solar battery module is completed by performing soldering, laminate formation, and lamination on the solar battery cell.
  • the semiconductor inspection apparatus 1 includes a stage 10, a light irradiation unit 20, an electromagnetic wave detection unit 30, a delay unit 40 (see FIG. 3), a stage drive unit 50, an ion application unit 60, and a control unit 70. ing.
  • the stage 10 holds the semiconductor sample 9 by fixing means (not shown).
  • a fixing means various means such as a holding tool for holding the both ends of the semiconductor sample 9, a pressure-sensitive adhesive sheet adhering to the back main surface of the semiconductor sample 9, and a means for sucking air from suction holes formed on the surface of the stage 10 Things can be considered.
  • the holding tool is preferably made of resin rather than metal. Since the portion of the sample holder in contact with the semiconductor sample 9 is made of resin, damage to the semiconductor sample 9 can be reduced. For this reason, the semiconductor sample 9 which is an unfinished product before becoming a product can be inspected nondestructively.
  • the light irradiation unit 20 includes a femtosecond laser 21.
  • the femtosecond laser 21 outputs, for example, pulsed light LP1 of a wavelength including a visible light range of 300 nm (nanometers) or more and 1.5 ⁇ m (micrometers) or less.
  • pulsed light LP1 of a wavelength including a visible light range of 300 nm (nanometers) or more and 1.5 ⁇ m (micrometers) or less.
  • linearly polarized pulsed light having a center wavelength of about 800 nm, a period of several kHz to several hundreds of MHz, and a pulse width of about 10 to 150 femtoseconds is emitted from the femtosecond laser.
  • pulsed light of other wavelength regions for example, visible light wavelengths of blue wavelength (450 to 495 nm) and green wavelength (495 to 570 nm) may be emitted.
  • the pulsed light LP1 emitted from the femtosecond laser 21 is split into two by the beam splitter BE1.
  • One pulse light is irradiated to the surface of the semiconductor sample 9 as the inspection light LP11.
  • the stage 10 holds the semiconductor sample 9 so that the inspection light LP 11 is incident on the passivation film 95 side of the semiconductor sample 9.
  • the light irradiation unit 20 irradiates the semiconductor light 9 with the inspection light LP11 so that the optical axis of the inspection light LP11 is oblique to the surface of the passivation film 95.
  • the incident angle of the inspection light LP11 is 45 °, but is not limited to this, and may be set within the range of 0 ° to 90 °.
  • the light irradiation unit 20 may be configured so that the incident angle of the inspection light LP11 can be changed.
  • the inspection light LP11 is irradiated to the passivation film 95 in a spot shape.
  • the spot diameter (irradiation diameter) of the inspection light LP11 in the passivation film 95 is, for example, 1 ⁇ m to 10 mm, but is not limited to this.
  • the inspection light LP11 pulsed light
  • photoexcited carriers free electrons and free holes
  • the photoexcited carriers are accelerated by the internal electric field of the semiconductor sample 9.
  • a pulsed current is generated, and in response, a pulsed electromagnetic wave LT1 (terahertz wave) having a wavelength range different from that of the inspection light LP11 is generated. Therefore, by measuring the electromagnetic wave LT1, the state of the internal electric field (such as the strength and the direction of the electric field) can be inspected.
  • the electromagnetic wave detection unit 30 includes a detector 31 that detects the electromagnetic wave LT1 emitted by the semiconductor sample 9.
  • the detector 31 here is constituted by a photoconductive antenna.
  • the detection light LP21 which is the other pulse light split by the beam splitter BE1, is incident on the detector 31.
  • the detector 31 detects the intensity of the electromagnetic wave LT1 at the timing when the detection light LP21 is incident.
  • a dipole-type photoconductive antenna includes a photoconductive film that generates electrons and holes when the detection light LP21 is incident, and a pair of parallel transmission lines (electrodes) formed in parallel on the photoconductive film. And A central portion of each of the pair of parallel transmission lines is provided with a protrusion (antenna) extending inward to form a gap. In addition, an ammeter is provided between the pair of parallel transmission lines.
  • the electromagnetic wave detection unit 30 detects the electric field intensity of the electromagnetic wave LT1 emitted by the semiconductor sample 9 in response to the irradiation of the detection light LP21.
  • the detector 31 may be configured by an element different from the photoconductive antenna. For example, non-linear optical crystals or Schottky barrier diodes may also be employed.
  • the delay unit 40 is a delay mechanism that delays the detection light LP21.
  • the delay unit 40 includes a delay stage 41 and a delay stage driver 43.
  • the delay stage 41 is provided on the optical path of the detection light LP21.
  • the delay stage 41 is provided with a reflection mirror 41M that reflects the detection light LP21 in parallel with the incident direction thereof and offset from the optical axis at the time of the incident light.
  • the LP 21 reflected by the reflection mirror 41 M is reflected by a group of mirrors disposed on the optical path, and is guided to the detector 31.
  • the delay stage drive unit 43 linearly reciprocates the delay stage 41 along the optical path of the detection light LP21 incident on the reflection mirror 41M. As a result, the optical path length of the detection light LP21 is changed, and the time for the detection light LP21 to reach the detector 31 is delayed. That is, the timing at which the detector 31 detects the electromagnetic wave LT1 is delayed.
  • the electromagnetic wave LT1 emitted by the semiconductor sample 9 is a pulse wave. Therefore, the intensity of the electromagnetic wave LT1 can be detected for each phase by delaying the detection light LP21.
  • the delay unit 40 delays the detection light LP21.
  • a delay may be given to the inspection light LP11.
  • the delay stage 41 may be provided on the optical path of the LP 11 and the delay stage 41 may be moved by the delay stage drive unit 43 to change the optical path length of the inspection light LP 11.
  • the timing at which the inspection light LP11 (pulsed light) is incident on the semiconductor sample 9 can be delayed, and thus the timing at which the electromagnetic wave LT1 is generated and hence the timing at which the electromagnetic wave LT1 reaches the detector 31 can be delayed. Therefore, the intensity of the electromagnetic wave LT1 can be detected for each phase by delaying the inspection light LP11.
  • the stage drive unit 50 moves the stage 10 relative to the light irradiation unit 20 and the electromagnetic wave detection unit 30 along a horizontal plane parallel to the upper surface thereof.
  • the semiconductor inspection apparatus 1 scans the passivation film 95 of the semiconductor sample 9 held on the upper surface of the stage 10 with the inspection light LP11.
  • the stage drive unit 50 is an example of a scanning mechanism.
  • the scanning mechanism is not limited to the configuration such as the stage driving unit 50.
  • a mechanism for moving the light irradiation unit 20 and the electromagnetic wave detection unit 30 in a horizontal plane may be provided as a scanning mechanism.
  • the surface of the semiconductor sample 9 held on the stage 10 can be scanned with the inspection light LP11.
  • changing means a galvano mirror or the like
  • the passivation film 95 of the semiconductor sample 9 can be scanned with the inspection light LP11 by changing the optical path of the inspection light LP11 by this changing means.
  • the ion applying unit 60 is a device that performs processing for applying positive ions or negative ions to the semiconductor sample 9.
  • the ion applying unit 60 is configured as a corona discharge device having the discharge electrode 61 and the power supply unit 63.
  • the discharge electrode 61 is a conductive member formed in a needle shape, and is disposed above the semiconductor sample 9 held by the stage 10 at a distance above the semiconductor sample 9. The tip of the discharge electrode 61 is directed to the passivation film 95 of the semiconductor sample 9 held by the stage 10.
  • the power supply unit 63 is a device that applies a high voltage to the discharge electrode 61. The operation of the power supply unit 63 is controlled by the ion application control unit 701 of the control unit 70.
  • the discharge electrode 61 starts discharge, molecules in the air are ionized. As shown in FIG. 1, the generated ions are applied to the semiconductor sample 9 through the electrode 65 having a hole formed in the center. By charging the electrode 65 positively or negatively, negative ions or positive ions of the opposite pole are absorbed. In this way, either positive ions or negative ions can be selectively applied to the semiconductor sample 9.
  • the ion applying unit 60 applies ions not to the entire surface of the passivation film 95 of the semiconductor sample 9 but to a limited region.
  • the region to which the ion applying unit 60 applies ions is referred to as a applying region.
  • the stage driving unit 50 moves the stage 10 and the semiconductor sample 9 in the horizontal plane, the position of the semiconductor sample 9 relative to the ion applying unit 60 changes relatively. Therefore, the application region can be displaced relative to the semiconductor sample 9 by moving the semiconductor sample 9.
  • the stage drive unit 50 constitutes an application area displacement mechanism.
  • the application area displacement mechanism is not limited to the configuration such as the stage drive unit 50.
  • a mechanism for moving the discharge electrode 61 of the ion applying unit 60 in a horizontal plane may be used as the application region displacement mechanism. Even when such a mechanism is employed, the application region can be displaced with respect to the surface of the semiconductor sample 9.
  • the control unit 70 controls the operation of the semiconductor inspection device 1.
  • the control unit 70 has a configuration (CPU, ROM, RAM, etc.) as a general computer. Further, the control unit 70 includes a storage unit 72. The storage unit 72 may temporarily store information such as a RAM. Further, the control unit 70 is connected to a display unit 74 configured of a liquid crystal display for displaying various information, and an operation unit 76 configured of various input devices such as a keyboard and a mouse.
  • control unit 70 controls the ion application control unit 701, the stage drive control unit 702, the delay stage drive control unit 703, and the time waveform restoration unit 704. These functions as the comparison evaluation unit 705, the time setting unit 706, and the image generation unit 707.
  • the ion application control unit 701 controls the discharge from the discharge electrode 61 by controlling the power supply unit 63 of the ion application unit 60. Further, the ion application control unit 701 controls the amount of ions applied by the ion applying unit 60 to the semiconductor sample 9 by controlling the voltage applied to the discharge electrode 61 by the power supply unit 63. Further, the ion application control unit 701 controls the polarity (positive or negative) of the electrode 65 to control the polarity of ions to be applied to the semiconductor sample 9.
  • the ion application control unit 701 receives, through the operation unit 76, an operation input by the operator for specifying the amount of ions to be applied to the semiconductor sample 9 or the polarity of the ions.
  • the ion deposition control unit 701 controls the ion deposition unit 60 based on the received operation input.
  • the stage drive control unit 702 controls the stage drive unit 50.
  • the stage drive control unit 702 receives, through the operation unit 76, an operation input by the operator for specifying a position to be inspected on the semiconductor sample 9.
  • the stage drive control unit 702 controls the stage drive unit 50 based on the received operation input to move the stage 10 so that the inspection target portion matches the incident position of the inspection light LP11. Further, the stage drive control unit 702 receives an operation input for designating an inspection target range that the operator wants to inspect. Then, the stage 10 is moved so that the received inspection target range is scanned by the inspection light LP11.
  • the delay stage drive control unit 703 moves the delay stage 41 by controlling the delay stage drive unit 43, and adds a time delay to the detection light LP21. Thereby, the electric field strength for each phase is detected for the electromagnetic wave LT1 generated in a pulse shape.
  • the time waveform restoration unit 704 restores the time waveform of the electromagnetic wave LT1 based on the electric field strength for each phase of the electromagnetic wave LT1 collected by the delay stage drive control unit 703 controlling the delay stage drive unit 43. More specifically, the time waveform restoration unit 704 plots the time waveform of the electromagnetic wave LT1 by plotting the detected electric field strength on a two-dimensional coordinate with the horizontal axis representing phase (time) and the vertical axis representing the electric field strength. Restore.
  • the comparative evaluation unit 705 evaluates the characteristics of the passivation film 95 in the semiconductor sample 9.
  • the comparative evaluation unit 705 evaluates the passivation film 95 by comparing each of the electromagnetic wave intensities emitted by the semiconductor sample 9 before and after the treatment by the ion application unit.
  • the time setting unit 706 sets a time t until the ion applying unit 60 performs the ion application and measures the electromagnetic wave LT1.
  • the time setting unit 706 receives a designation input of the operator via the operation unit 76, and sets a time t based on the designation input.
  • the control unit 70 may receive a designation input of the operator via the operation unit 76.
  • the operator may arbitrarily designate the time t, or if the operator designates the type of the passivation film 95 and the conditions for ion deposition, the time t is automatically determined accordingly. You may The time t may be a fixed value stored in advance in the storage unit 72. In this case, the time setting unit 706 may be omitted.
  • the image generation unit 707 generates an image to be displayed on the display unit 74.
  • the image generation unit 707 generates, for example, an electric field strength distribution image.
  • the electric field intensity distribution image is an image that visually represents the distribution of the electric field intensity of the electromagnetic wave LT1 generated at each inspection target location by color or pattern when the inspection target range in the semiconductor sample 9 is scanned with the inspection light LP11. It is.
  • FIG.4 and FIG.5 is a figure which shows the time waveform of electromagnetic wave LT1 which the semiconductor sample 9 before and after the process of ion provision radiates
  • 4 shows time waveforms TW10 and TW12 of the electromagnetic wave LT1 emitted by the semiconductor sample 9 having a refractive index of 2.1
  • FIG. 5 shows an electromagnetic wave LT1 emitted by the semiconductor sample 9 having a refractive index of 2.0.
  • the time waveforms TW20 and TW22 are shown.
  • the ion applying treatment is performed by the ion applying unit 60, and after the application applying treatment, measurement is performed for a predetermined time (here, after 1 to 2 minutes) after the ions are applied by the ion applying unit 60.
  • the results are shown.
  • the polarity of the ions applied by the ion applying unit 60 is opposite in sign to the fixed charge of the passivation film 95.
  • the charge density (corona charge density) of the ions given to the passivation film 95 is ⁇ 1 ⁇ 10 13 q / cm 2 . This charge density is the opposite sign of the charge density (about 1 ⁇ 10 12 q / cm 2 ) of the passivation film 95 and has a large absolute value.
  • FIG. 6 is a view showing the relationship between the charge density of the imparted ions and the electromagnetic wave intensity.
  • the abscissa represents the charge density of the applied ions
  • the ordinate represents the peak intensity.
  • the peak intensity is the electric field intensity at which the absolute value of the electric field intensity is maximum in the time waveform.
  • the open squares correspond to the semiconductor sample 9 having a refractive index of 2.1
  • the open triangles correspond to the semiconductor sample 9 having a refractive index of 2.0.
  • FIG. 7 and FIG. 8 are diagrams showing the band structure near the surface of the passivation film 95 before and after the treatment of ion application.
  • FIG. 7 shows the band structure of the semiconductor sample 9 in which the passivation film 95 having a refractive index of 2.1, that is, the good passivation film 95 having a relatively high PID resistance is formed.
  • FIG. 8 shows the band structure of the defective passivation film 95 having a refractive index of 2.0, that is, a relatively low PID resistance.
  • the band structure near the surface of the passivation film 95 of the semiconductor sample 9 which is a silicon substrate for solar cells collects electrons on the surface electrode, and as shown in the upper part of FIGS. It has a structure.
  • the passivation film 95 when the passivation film 95 is defective in formation, when ions are applied, the surface of the passivation film 95 is likely to be charged by staying at the site to which the ions are applied. Therefore, it is considered that the band structure in the vicinity of the surface of the passivation film 95 is changed by the fact that the ions do not diffuse even after a predetermined time has elapsed.
  • an ion here, a negative ion
  • it since an ion (here, a negative ion) having a charge density of the opposite sign to the fixed charge is applied to the passivation film 95, it has a band structure bent upward. Therefore, when the passivation film 95 is defective in formation, as shown in FIG. 5, it is presumed that the sign of the electromagnetic wave LT1 radiated from the semiconductor sample before and after the process of ion application is reversed.
  • the characteristics of the passivation film 95 can be evaluated by comparing the intensity of the electromagnetic wave LT1 emitted by the semiconductor sample 9 before and after the treatment of ion application.
  • the presence or absence or degree of PID resistance can be properly evaluated by evaluating the characteristics of the passivation film 95 with respect to the semiconductor sample 9 which is an incomplete product before the product to be a solar battery cell or a solar cell module. That is, the characteristic inspection of the passivation film can be carried out at an early stage of the semiconductor manufacturing process.
  • FIG. 9 is a diagram showing the flow of the operation of the semiconductor inspection device 1 of the embodiment.
  • the semiconductor sample 9 is first held on the stage 10 (step S1).
  • the semiconductor sample 9 is held at a predetermined position on the stage 10 by fixing means (not shown) on the stage 10.
  • step S2 electromagnetic wave measurement is performed on the inspection target portion of the semiconductor sample 9 (step S2).
  • the stage drive unit 50 moves the stage 10 such that the inspection target portion coincides with the incident position of the inspection light LP11.
  • the inspection target location may be a location designated by the operator or a predetermined location.
  • the light irradiation unit 20 irradiates the surface of the passivation film 95 of the semiconductor sample 9 with the inspection light LP 11 in a spot shape with a predetermined irradiation diameter.
  • the detector 31 detects the electric field intensity of the electromagnetic wave LT1 emitted from the semiconductor sample 9 at the timing when the detection light LP21 is incident.
  • the delay stage drive control unit 703 controls the delay stage 41 to delay the detection light LP21. Thereby, the electromagnetic wave intensity of the electromagnetic wave LT1 is detected for each phase.
  • the time waveform restoration unit 704 restores the time waveform from the electromagnetic wave LT1 from the collected electromagnetic wave intensity.
  • step S3 quality determination of the semiconductor sample 9 is performed based on the electromagnetic wave intensity acquired in step S2 (step S3). Specifically, for example, in the time waveform of the restored electromagnetic wave LT1, when the control unit 70 determines whether the polarity (positive or negative) of the peak intensity or the absolute value thereof satisfies a predetermined reference. Good. If the criteria are satisfied (Yes in step S3), a positive evaluation is given, and the next step S4 is performed. If the reference is not satisfied (No in step S3), a negative evaluation is given to the semiconductor sample 9 (step S31), and the inspection of the semiconductor sample 9 ends.
  • step S4 the ion imparting condition that the ion applying unit 60 applies to the inspection target portion of the semiconductor sample 9 is set (step S4).
  • the conditions for ion application for example, the polarity (positive or negative) and ion amount (charge density) of the ions to be applied are set.
  • the ion deposition control unit 701 receives a setting input from the operator via the operation unit 76, and sets the polarity and amount of ions based on the setting input. Note that the ion application control unit 701 may directly receive the input of the polarity and the ion amount of the ion as a numerical value or the like.
  • the ion application control unit 701 may receive designation of the type of the passivation film 95, and automatically determine the polarity and amount of ions corresponding to the designated type. In this case, it is preferable to create a table in which ion application conditions predetermined for each type of passivation film 95 are predetermined, and store the table in the storage unit 72.
  • step S5 ion imparting processing is performed on the semiconductor sample 9 (step S5).
  • the ion application control unit 701 applies ions to the passivation film 95 in accordance with the ion application conditions set in step S4.
  • step S6 it is determined whether or not a predetermined time t has elapsed after the ion applying process of step S5 (step S6).
  • step S7 electromagnetic wave measurement is performed on the measurement target portion of the semiconductor sample 9 (step S7). Specifically, in step S7, as in step S2, the electric field intensity of the electromagnetic wave LT1 emitted from the semiconductor sample 9 in response to the irradiation of the inspection light LP11 is detected by the detector 31. Further, the delay is given to the detection light LP21, whereby the electric field strength for each phase of the electromagnetic wave LT1 is acquired.
  • the time waveform restoration unit 704 restores the time waveform from the electromagnetic wave LT1 from the collected electromagnetic wave intensity.
  • comparative evaluation processing is performed to evaluate the characteristics of passivation film 95 (step S8).
  • the comparative evaluation unit 705 determines the electric field intensity of the electromagnetic wave LT1 emitted by the semiconductor sample 9 before the ion applying treatment (the electric field intensity measured in step S2) and the predetermined time t after the ion applying treatment. The electric field strengths of the electromagnetic waves LT1 emitted by the semiconductor samples 9 are compared.
  • step S5 it is preferable to apply, to the semiconductor sample 9, ions of a polarity opposite to that of the fixed charge of the passivation film 95 and larger than the absolute value of the fixed charge. If the passivation film 95 is defective, it is expected that the sign of the peak intensity is reversed as described in FIGS. 4 and 5. Therefore, the quality of the passivation film 95 can be properly evaluated only by determining the sign of the peak intensity.
  • step S5 ions of a polarity opposite to that of the fixed charge and smaller than the absolute value of the fixed charge may be applied to the semiconductor sample 9.
  • ions of a polarity opposite to that of the fixed charge and smaller than the absolute value of the fixed charge may be applied to the semiconductor sample 9.
  • step S5 ions of the same sign as the fixed charge may be provided.
  • ions of the same sign as the fixed charge may be provided.
  • the peak intensity for each ion amount may be confirmed by shaking the amount of ions to be applied.
  • the characteristic change of the passivation film 95 due to the ion application process and the characteristic change of the passivation film 95 depending on the amount of ions can be analyzed, the characteristic of the passivation film 95 can be appropriately evaluated.
  • step S2 and step S7 the delay unit 40 is operated to collect the electric field intensity for each phase, and the time waveform restoration unit 704 restores the time waveform.
  • restoration of this time waveform is not essential. That is, the timing at which the detector 31 detects the electromagnetic wave LT1 may be fixed without operating the delay unit 40.
  • the timing p1 (phase) at which the peak intensity is obtained can be specified from the time waveform restored in step S2 (see FIGS. 4 and 5). Therefore, in step S7, the delay stage 41 may be fixed at a position corresponding to the timing p1 and the electric field strength of the electromagnetic wave LT1 may be measured. As a result, since the peak intensity can be measured without operating the delay unit 40, the time taken for the measurement can be shortened.
  • the stage driving unit 50 may be operated to measure electromagnetic waves at a plurality of locations of the semiconductor sample 9. At this time, for example, by fixing the detection timing of the detector 31 to the timing p1, the peak intensity of the electromagnetic wave LT1 can be measured in a short time at each inspection target location.
  • FIG. 10 is a view showing the electromagnetic wave intensity distribution images WID1 and WID2 of the semiconductor sample 9 before and after the ion applying process. As shown in FIG. 10, by generating the electromagnetic wave intensity distribution images WID1 and WID2, it is possible to evaluate the characteristics of the passivation film 95 for each part. In addition, it is easy to identify the portion where the passivation film 95 is defective.
  • the characteristics of the passivation film 95 formed on the n-type silicon layer 93 are inspected.
  • the semiconductor inspection apparatus 1 can also be applied to inspection of a passivation film formed on a p-type silicon layer.
  • the semiconductor sample 9 is not limited to one for a solar cell module.
  • the ion applying unit 60 is configured to apply the ions generated by the corona discharge to the passivation film 95.
  • ions may be applied by another method.
  • ionizing radiation may be emitted toward the semiconductor sample 9 to ionize and ionize gas molecules in the vicinity of the semiconductor sample 9.
  • ions of unnecessary polarity may be removed by electrodes or the like disposed around the periphery.

Abstract

Provided is a technique capable of inspecting the characteristics of a passivation film in an early stage of a semiconductor manufacturing process. This semiconductor inspection device 1 is provided with: an ion imparting unit 60 for performing a treatment for imparting ions to a passivation film 95 of a semiconductor sample 9; a light irradiation unit 20 for irradiating the semiconductor sample 9 with inspection light LP11 that generates electromagnetic waves; a detector 31 for detecting electromagnetic waves LT1 radiated from the semiconductor sample 9 due to the irradiation of the inspection light LP11; and a comparison and evaluation unit 706 which evaluates the characteristics of the passivation film 95. The comparison and evaluation unit 706 compares the electromagnetic waves LT1 radiated from the semiconductor sample 9 before the treatment by the ion imparting unit 60 and those after a predetermined time t has elapsed from the imparting of the ions.

Description

半導体検査装置及び半導体検査方法Semiconductor inspection apparatus and semiconductor inspection method
 この発明は、半導体試料の欠陥・劣化等を検査する技術に関する。 The present invention relates to a technique for inspecting defects, deterioration, etc. of a semiconductor sample.
 近年、特に、メガソーラーなどにおける高システム電圧の印加と高温多湿などの環境条件により比較的短期間で出力が低下する現象(電圧誘起劣化、Potential Induced Degradation:PID)が知られている(例えば、特許文献1)。 In recent years, a phenomenon (voltage induced degradation, potential induced degradation (PID)) in which the output is reduced in a relatively short time due to application of high system voltage and environmental conditions such as high temperature and high humidity especially in mega solar etc. is known (for example, Patent Document 1).
 図11は、一般的な太陽電池モジュール900の構造を示す模式図である。太陽電池モジュール900は、互いにインターコネクタ901で電気的に接続された複数の太陽電池セル902を備えている。複数の太陽電池セル902(例えば、結晶シリコン太陽電池)は、EVA(Ethylene-Vinyl Acetate:エチレン酢酸ビニル共重合樹脂)903内に封止されている。そのEVA903の両側主面のうち、受光面側には表面材として強化白板ガラス904が、裏面側には裏面材としてのバックシート905が取り付けられている。さらに、強化白板ガラス904、EVA903及びバックシート905が、Al(アルミニウム)フレーム906に組付けられている。全ての太陽電池セル902は、インターコネクタ901を介して、太陽電池モジュール900の裏面側に設けられた端子ボックス907に電気的に接続されている。 FIG. 11 is a schematic view showing the structure of a general solar cell module 900. As shown in FIG. The solar cell module 900 includes a plurality of solar cells 902 electrically connected to one another by an interconnector 901. The plurality of solar cells 902 (for example, crystalline silicon solar cells) are sealed in EVA (Ethylene-Vinyl Acetate: ethylene vinyl acetate copolymer resin) 903. Among the main surfaces of the EVA 903, a reinforced white sheet glass 904 is attached as a surface material to the light receiving surface side, and a back sheet 905 as a back surface material is attached to the back surface side. Further, a reinforced white sheet glass 904, EVA 903 and a back sheet 905 are assembled to an Al (aluminum) frame 906. All of the solar cells 902 are electrically connected to a terminal box 907 provided on the back side of the solar cell module 900 through the interconnector 901.
 PIDは、強化白板ガラス904のナトリウム(Na)イオンを主とする金属イオン発生が原因と一つと考えられている。例えば、Alフレーム906から、強化白板ガラス904、EVA903を通して、太陽電池セル902まで回路が形成されることにより、太陽電池セル902にマイナスの高電圧がかかる場合がある(例えば、システム電圧の-600V、-1000V等)。そのような状態では、強化白板ガラス904からNaイオン等の金属イオンが封止材のEVA903中に拡散し太陽電池セル902表面上に到達し得る。すると、そのNaイオン等がSiのn型層内の電子と相互作用することにより、光電変換に重要なpn接合によるバンドの曲がりを減少させ、発電効率を低下させ得る。また、Naイオン等がSiの結晶欠陥に侵入して、再結合中心になることによって、発電効率を低下させ得る。なお、この仮説は、必ずしも十分に検証されておらず、PIDについてさらなる原因究明が望まれている。 The PID is considered to be one cause of generation of metal ions mainly composed of sodium (Na) ions of the reinforced white sheet glass 904. For example, a circuit may be formed from the Al frame 906, through the reinforced white sheet glass 904, the EVA 903 to the solar battery cell 902, which may cause a negative high voltage to be applied to the solar battery cell 902 (for example, -600 V of the system voltage) , -1000V, etc.). In such a state, metal ions such as Na ions can diffuse from the reinforced white sheet glass 904 into the EVA 903 of the encapsulant and reach the surface of the solar cell 902. Then, the Na ion or the like interacts with the electrons in the n-type layer of Si to reduce the bending of the band due to the pn junction which is important for photoelectric conversion, which may lower the power generation efficiency. In addition, the generation efficiency can be reduced by Na ions or the like entering the crystal defects of Si and becoming recombination centers. In addition, this hypothesis is not necessarily sufficiently verified, and further investigation of the cause of the PID is desired.
 通常、PID耐性の有無の評価は、図11に示すような太陽電池モジュールを作成し、専用の加速試験(PID試験やDamp-Heat試験)を行って評価する。PIDを抑制する手段として、太陽電池の反射防止膜(パッシベーション膜、窒化ケイ素(SiNx)膜)の屈折率を高くするとよいことが報告されている(非特許文献1)。 Usually, evaluation of the presence or absence of PID tolerance produces a solar cell module as shown in FIG. 11, and performs an accelerated test (PID test and Damp-Heat test) for exclusive use, and evaluates. It has been reported that it is preferable to increase the refractive index of the anti-reflection film (passivation film, silicon nitride (SiNx) film) of the solar cell as a means for suppressing the PID (Non-Patent Document 1).
 具体的には、PIDを確認するため、屈折率が2.2と2.03のパッシベーション膜を持つ太陽電池モジュール各々について、PID加速試験が行われている。すると、屈折率2.03ではPIDが起こったが、屈折率2.2ではPIDが抑えられた。すなわち、このように、パッシベーション膜の特性を検査することにより、PID等の劣化耐性の有無を検査することが可能と考えられる。 Specifically, in order to confirm the PID, a PID acceleration test is performed on each of the solar cell modules having passivation films having a refractive index of 2.2 and 2.03. Then, PID occurred at a refractive index of 2.03 but was suppressed at a refractive index of 2.2. That is, it is considered possible to inspect the presence or absence of deterioration resistance such as PID by thus inspecting the characteristics of the passivation film.
特開2015-162488号公報JP, 2015-162488, A
 しかしながら、従来のPID試験やDmap-Heat試験は、太陽電池モジュールの作製、及び、専用の加速試験を行っており、パッシベーション膜が形成された時点の太陽電池の基板を検査対象とすることは極めて困難である。太陽電池モジュールを作製するためには、太陽電池セルに対して裏面電極形成工程、表面電極形成工程及び焼成工程等を必要とし、検査可能となるまでに時間がかかるという問題があった。また、太陽電池モジュール以外の半導体装置(例えば、LSIやパワーデバイス)においても、表面にパッシベーション膜が形成される場合があり、そのようなパッシベーション膜の特性を、早期かつ適正に検査する技術が求められている。 However, the conventional PID test and Dmap-Heat test are performed on the fabrication of a solar cell module and a dedicated accelerated test, and it is extremely difficult to test the solar cell substrate when the passivation film is formed. Have difficulty. In order to manufacture a solar cell module, the back surface electrode formation process, the surface electrode formation process, the baking process, etc. are required with respect to a photovoltaic cell, and there existed a problem of taking time until it became testable. In addition, passivation films may be formed on the surface of semiconductor devices other than solar cell modules (for example, LSIs and power devices), and a technique for early and appropriate inspection of the characteristics of such passivation films is required. It is done.
 そこで、本発明は、半導体製造工程の早期段階でパッシベーション膜の特性検査を実施可能な技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technology capable of carrying out a characteristic inspection of a passivation film at an early stage of a semiconductor manufacturing process.
 第1態様は、固定電荷を持つパッシベーション膜が表面に形成された半導体試料を検査する半導体検査装置であって、前記半導体試料を保持する試料保持部と、前記パッシベーション膜にイオンを付与する処理を行うイオン付与部と、前記半導体試料に電磁波を発生させる検査光を照射する光照射部と、前記検査光の照射に応じて前記半導体試料が放射する前記電磁波を検出する検出器と、前記イオン付与部による処理前、及び、イオン付与してから所定の時間t経過した処理後の前記半導体試料が放射する前記電磁波各々を比較することによって、前記パッシベーション膜の特性を評価する比較評価部とを備える。 A first aspect is a semiconductor inspection apparatus for inspecting a semiconductor sample having a passivation film having a fixed charge formed on the surface, the sample holding unit for holding the semiconductor sample, and a process for applying ions to the passivation film An ion applying unit to perform, a light irradiating unit to irradiate an inspection light for generating an electromagnetic wave to the semiconductor sample, a detector to detect the electromagnetic wave emitted by the semiconductor sample in response to the irradiation of the inspection light; A comparison evaluation unit for evaluating the characteristics of the passivation film by comparing each of the electromagnetic waves emitted by the semiconductor sample before the processing by the processing unit and after a predetermined time t after the ion application and after the processing for a predetermined time has elapsed .
 第2態様は、第1態様の半導体検査装置であって、前記光照射器から出射された検査光で前記半導体試料の表面を走査する走査機構をさらに備える。 A second aspect is the semiconductor inspection apparatus according to the first aspect, further comprising a scanning mechanism that scans the surface of the semiconductor sample with the inspection light emitted from the light irradiator.
 第3態様は、第2態様の半導体検査装置であって、前記イオン付与部は、前記イオンを付与する領域を、前記半導体試料の表面に対して相対的に変位させる付与領域変位機構をさらに備える。 A third aspect is the semiconductor inspection device according to the second aspect, wherein the ion application unit further includes an application region displacement mechanism that displaces the region to which the ions are applied relative to the surface of the semiconductor sample. .
 第4態様は、第1態様から第3態様のいずれか1つの半導体検査装置であって、前記イオン付与部及び前記光照射部を制御する制御部と、所定の操作入力に基づき、前記時間tを設定する時間設定部と、を備え、前記制御部は、前記イオン付与部が前記イオンを付与してから前記時間設定部により設定された前記時間t経過後に、前記光照射部に前記検査光を照射させる。 A fourth aspect is the semiconductor inspection device according to any one of the first aspect to the third aspect, wherein the control unit that controls the ion applying unit and the light emitting unit and the time t based on a predetermined operation input. A time setting unit for setting the inspection light to the light irradiation unit after the time t set by the time setting unit after the ion applying unit applies the ions Irradiate.
 第5態様は、第1態様から第4態様のいずれか1つの半導体検査装置であって、所定の操作入力に基づき、前記イオン付与部が付与する前記イオンの付与条件を設定する、イオン付与条件設定部をさらに備える。 A fifth aspect is the semiconductor inspection device according to any one of the first aspect to the fourth aspect, wherein ion applying conditions for setting the ions to be applied by the ion applying unit are set based on a predetermined operation input. The apparatus further comprises a setting unit.
 第6態様は、第1態様から第5態様のいずれか1つの半導体検査装置であって、前記イオン付与部は、針状の放電電極と、前記放電電極が放電可能な電圧を前記放電電極に印加する電源部とを含む。 A sixth aspect is the semiconductor inspection device according to any one of the first aspect to the fifth aspect, wherein the ion applying part is a needle-like discharge electrode, and a voltage capable of discharging the discharge electrode to the discharge electrode And a power supply unit to be applied.
 第7態様は、第1態様から第6態様のいずれか1つの半導体検査装置であって、前記検査光が、パルス状の光であり、前記検出器は、検出用のパルス光の入射に応じて、前記電磁波の強度を検出する光伝導アンテナを含み、前記半導体検査装置は、前記光伝導アンテナに入射する前記電磁波に対して、前記検出用のパルス光の入力時間を遅延させる遅延部をさらに備える。 A seventh aspect is the semiconductor inspection device according to any one of the first aspect to the sixth aspect, wherein the inspection light is pulsed light, and the detector is responsive to incident pulsed light for detection. A photoconductive antenna for detecting the intensity of the electromagnetic wave, and the semiconductor inspection apparatus further includes a delay unit for delaying the input time of the pulse light for detection with respect to the electromagnetic wave incident on the photoconductive antenna Prepare.
 第8態様は、第1態様から第7態様のいずれか1つの半導体検査装置であって、前記イオン付与部は、前記固定電荷とは反対符号のイオンを付与し、前記比較評価部は、前記電磁波の極性の符号に基づいて、前記パッシベーション膜の特性を評価する。 An eighth aspect is the semiconductor inspection device according to any one of the first aspect to the seventh aspect, wherein the ion application unit applies ions of the opposite sign to the fixed charge, and the comparison evaluation unit The characteristics of the passivation film are evaluated based on the sign of the polarity of the electromagnetic wave.
 第9態様は、第8態様の半導体検査装置であって、前記パッシベーション膜が窒化ケイ素を含み、前記イオン付与部が、-1×1013q/cm以下の電荷密度のイオンを付与可能に構成されている。 A ninth aspect is the semiconductor inspection device according to the eighth aspect, wherein the passivation film includes silicon nitride, and the ion applying unit can apply ions having a charge density of −1 × 10 13 q / cm 2 or less. It is configured.
 第10態様は、第1態様から第9態様のいずれか1つの半導体検査装置であって、前記試料保持部における前記半導体試料に接触する部分が樹脂製である。 A tenth aspect is the semiconductor inspection apparatus according to any one of the first aspect to the ninth aspect, wherein a portion of the sample holding portion in contact with the semiconductor sample is made of resin.
 第11態様は、固定電荷を持つパッシベーション膜が表面に形成された半導体試料を検査する半導体検査方法であって、(a)前記半導体試料に検査光を照射し、前記半導体試料が放射する電磁波の強度を検出する工程と、(b)前記(a)工程の後、前記パッシベーション膜にイオンを付与する処理を行う工程と、(c)前記(b)工程の後、前記半導体試料に前記検査光を照射し、前記半導体試料が放射する照射に応じて前記半導体試料が放射する電磁波の強度を検出する工程と、(d)前記(b)工程及び前記(d)工程で検出された前記電磁波各々を比較することによって、前記半導体試料における前記パッシベーション膜の特性を評価する工程を含む。 An eleventh aspect is a semiconductor inspection method for inspecting a semiconductor sample on the surface of which a passivation film having a fixed charge is formed, wherein (a) the semiconductor sample is irradiated with inspection light and the semiconductor sample emits an electromagnetic wave A step of detecting the intensity, (b) a step of applying ions to the passivation film after the step (a), and (c) the inspection light on the semiconductor sample after the step (b). And detecting the intensity of the electromagnetic wave emitted by the semiconductor sample in response to the irradiation emitted by the semiconductor sample; (d) the electromagnetic waves detected in the steps (b) and (d) Evaluating the characteristics of the passivation film in the semiconductor sample by comparing.
 第1態様の半導体検査装置によると、仮にパッシベーション膜が形成不良である場合には、付与されたイオンが滞留することにより、パッシベーション膜付近のバンド構造が変化し、放射される電磁波の強度が変化し得る。このため、イオン付与の処理前及び処理後の電磁波の強度を比較することにより、パッシベーション膜の特性を適正に評価し得る。また、半導体にパッシベーション膜が形成された時点でその性能を検査できるため、半導体製造工程の早期段階でパッシベーション膜の特性を評価し得る。 According to the semiconductor inspection device of the first aspect, if the formation of the passivation film is defective, the applied ions are retained to change the band structure in the vicinity of the passivation film and change the intensity of the radiated electromagnetic wave. It can. Therefore, the characteristics of the passivation film can be properly evaluated by comparing the intensity of the electromagnetic wave before and after the treatment of ion application. In addition, since the performance can be inspected when the passivation film is formed on the semiconductor, the characteristics of the passivation film can be evaluated at an early stage of the semiconductor manufacturing process.
 第2態様の半導体検査装置によると、半導体試料の異なる箇所に検査光を照射できるため、異なる箇所毎にパッシベーション膜の特性を評価し得る。 According to the semiconductor inspection apparatus of the second aspect, since the inspection light can be irradiated to different parts of the semiconductor sample, the characteristics of the passivation film can be evaluated for each different part.
 第3態様の半導体検査装置によると、半導体試料の異なる箇所にイオンを付与し得る。 According to the semiconductor inspection device of the third aspect, ions can be applied to different portions of the semiconductor sample.
 第4態様の半導体検査装置によると、操作者が、パッシベーション膜の種別等に応じて、時間tを適切に設定し得る。 According to the semiconductor inspection device of the fourth aspect, the operator can appropriately set the time t in accordance with the type of the passivation film and the like.
 第5態様の半導体検査装置によると、操作者が、パッシベーション膜の種別等に応じて付与するイオンの条件を適切に設定し得る。 According to the semiconductor inspection device of the fifth aspect, the operator can appropriately set the conditions of the ions to be applied according to the type of the passivation film and the like.
 第6態様の半導体検査装置によると、放電により発生するイオンをパッシベーション膜に付与できる。 According to the semiconductor inspection device of the sixth aspect, ions generated by discharge can be applied to the passivation film.
 第7態様の半導体検査装置によると、時間波形を復元できるため、劣化耐性をより詳細に解析できる。 According to the semiconductor inspection apparatus of the seventh aspect, since the time waveform can be restored, the deterioration resistance can be analyzed in more detail.
 第8態様の半導体検査装置によると、パッシベーション膜が持つ固定電荷とは反対符号のイオンを付与することにより、パッシベーション膜表面のバンド構造を反転させ得る。この場合、仮に、パッシベーション膜に不良があるときに、半導体試料から放射される電磁波の極性の符号が反転し得る。したがって、電磁波の極性の符号を比較するだけで、パッシベーション膜の特性を適正に評価し得る。 According to the semiconductor inspection device of the eighth aspect, the band structure on the surface of the passivation film can be reversed by applying ions of the opposite sign to the fixed charge of the passivation film. In this case, if there is a defect in the passivation film, the sign of the polarity of the electromagnetic wave emitted from the semiconductor sample may be reversed. Therefore, the characteristics of the passivation film can be properly evaluated only by comparing the signs of the polarities of the electromagnetic waves.
 第9態様の半導体検査装置によると、パッシベーション膜の固定電荷の電荷密度が1×1013q/cm未満の場合に、-1×1013q/cm以下の電荷密度のイオンを付与することによって、パッシベーション膜表面の電界を反転させ得る。これにより、半導体試料が放射する電磁波の強度の正負を反転させ得る。 According to the semiconductor inspection device according to a ninth aspect, the charge density of fixed charges passivation film in the case of less than 1 × 10 13 q / cm 2 , to impart ion of -1 × 10 13 q / cm 2 or less charge density By this, the electric field on the surface of the passivation film can be reversed. Thus, the positive and negative of the intensity of the electromagnetic wave emitted by the semiconductor sample can be reversed.
 第10態様の半導体検査装置によると、試料保持部における半導体試料に接触する部分が樹脂製であるため、半導体試料が損傷することを軽減し得る。このため、製品となる前の未完成品である半導体試料を非破壊的に検査し得る。 According to the semiconductor inspection apparatus of the tenth aspect, since the portion of the sample holder in contact with the semiconductor sample is made of resin, damage to the semiconductor sample can be reduced. For this reason, the semiconductor sample which is an unfinished product before becoming a product can be inspected nondestructively.
 第11態様の半導体検査方法によると、仮にパッシベーション膜が形成不良である場合には、付与されたイオンが滞留することにより、パッシベーション膜付近のバンド構造が変化し、放射される電磁波の強度が変化し得る。このため、イオン付与の処理前及び処理後の電磁波の強度を比較することにより、パッシベーション膜の特性を適正に評価し得る。また、半導体にパッシベーション膜が形成された時点でその性能を検査できるため、半導体製造工程の早期段階でパッシベーション膜の特性を評価し得る。 According to the semiconductor inspection method of the eleventh aspect, if the formation of the passivation film is defective, the applied ions are retained, whereby the band structure in the vicinity of the passivation film changes, and the intensity of the radiated electromagnetic wave changes. It can. Therefore, the characteristics of the passivation film can be properly evaluated by comparing the intensity of the electromagnetic wave before and after the treatment of ion application. In addition, since the performance can be inspected when the passivation film is formed on the semiconductor, the characteristics of the passivation film can be evaluated at an early stage of the semiconductor manufacturing process.
実施形態の半導体検査装置1の概略構成図である。It is a schematic block diagram of semiconductor inspection device 1 of an embodiment. 半導体試料9を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a semiconductor sample 9; 実施形態の半導体検査装置1の光照射部20及び電磁波検出部30を示す概略構成図である。It is a schematic block diagram which shows the light irradiation part 20 and the electromagnetic wave detection part 30 of the semiconductor inspection apparatus 1 of embodiment. イオン付与の処理前及び処理後の半導体試料9(屈折率2.1)が放射する電磁波LT1の時間波形を示す図である。It is a figure which shows the time waveform of electromagnetic wave LT1 which the semiconductor sample 9 (refractive index 2.1) before and after the process of ion provision emits. イオン付与の処理前及び処理後の半導体試料9(屈折率2.0)が放射する電磁波LT1の時間波形を示す図である。It is a figure which shows the time waveform of electromagnetic wave LT1 which the semiconductor sample 9 (refractive index 2.0) before and after the process of ion provision emits. 付与イオンの電荷密度と、電磁波強度の関係を示す図である。It is a figure which shows the relationship between the charge density of provision ion, and electromagnetic wave intensity. イオン付与の処理前及び処理後におけるパッシベーション膜95(屈折率2.1)の表面付近のバンド構造を示す図である。It is a figure which shows the band structure of surface vicinity of the passivation film 95 (refractive index 2.1) before and after the process of ion provision. イオン付与の処理前及び処理後におけるパッシベーション膜95(屈折率2.0)の表面付近のバンド構造を示す図である。It is a figure which shows the band structure of surface vicinity of the passivation film 95 (refractive index 2.0) before and after the process of ion provision. 実施形態の半導体検査装置1の動作の流れを示す図である。It is a figure showing the flow of operation of semiconductor inspection device 1 of an embodiment. イオン付与処理前及びイオン付与処理後の半導体試料9における電磁波強度分布画像WID1,WID2を示す図である。It is a figure which shows electromagnetic wave intensity distribution image WID1, WID2 in the semiconductor sample 9 before an ion provision process and after an ion provision process. 一般的な太陽電池モジュール900の構造を示す模式図である。It is a schematic diagram which shows the structure of the general solar cell module 900. As shown in FIG.
 以下、添付の図面を参照しながら、本発明の実施形態について説明する。なお、この実施形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法や数が誇張又は簡略化して図示されている場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The constituent elements described in this embodiment are merely examples, and the scope of the present invention is not limited to them. In the drawings, for the sake of easy understanding, the dimensions and the numbers of the respective parts may be exaggerated or simplified as necessary.
 <1. 第1実施形態>
 図1は、実施形態の半導体検査装置1の概略構成図である。図2は、半導体試料9を示す概略断面図である。図3は、実施形態の半導体検査装置1の光照射部20及び電磁波検出部30を示す概略構成図である。
<1. First embodiment>
FIG. 1 is a schematic block diagram of a semiconductor inspection apparatus 1 of the embodiment. FIG. 2 is a schematic cross-sectional view showing the semiconductor sample 9. FIG. 3 is a schematic configuration view showing the light irradiation unit 20 and the electromagnetic wave detection unit 30 of the semiconductor inspection device 1 of the embodiment.
 半導体検査装置1は、検査対象物である半導体試料に対し、所定波長の光(ここではパルス光)を照射し、その光の照射に応じて半導体試料が放射する電磁波LT1(具体的には、周波数が0.1THz~10THzのテラヘルツ波)を検出することにより、その半導体試料の特性等を検査する。 The semiconductor inspection apparatus 1 irradiates light (pulse light in this case) having a predetermined wavelength to a semiconductor sample which is an inspection object, and the electromagnetic wave LT1 (specifically, the semiconductor sample emits in response to the irradiation of the light). By detecting a terahertz wave having a frequency of 0.1 THz to 10 THz), the characteristics and the like of the semiconductor sample are inspected.
 ここで、半導体試料とは、半導体デバイスとフォトデバイスとを含み得る。半導体デバイスは、半導体により構成されたトランジスタ、集積回路(IC又はLSI)、抵抗又はコンデンサを含む電子装置である。また、フォトデバイスは、フォトダイオード、CMOSセンサもしくはCCDセンサなどのイメージセンサ、太陽電池又はLED等、半導体における光電効果を利用する電子装置である。以下では、半導体試料9が太陽電池用シリコン基板である場合について主に説明する。 Here, the semiconductor sample may include a semiconductor device and a photo device. A semiconductor device is an electronic device that includes a transistor constituted by a semiconductor, an integrated circuit (IC or LSI), a resistor or a capacitor. The photo device is an electronic device that utilizes the photoelectric effect of a semiconductor, such as a photodiode, an image sensor such as a CMOS sensor or a CCD sensor, a solar cell or an LED. Below, the case where semiconductor sample 9 is a silicon substrate for solar cells is mainly explained.
 図2に示すように、半導体試料9は太陽電池セル向けの部材であり、平板状に形成されている。半導体試料9は、順に、p型シリコン層91、n型シリコン層93及びパッシベーション膜95を有する。パッシベーション膜95は、いわゆる反射防止膜であり、例えば、シリコン酸化膜(SiOx膜)またはシリコン窒化膜(SiNx膜)である。また、p型シリコン層91及びn型シリコン層93の接合部分が、pn接合部97である。 As shown in FIG. 2, the semiconductor sample 9 is a member for a solar battery cell, and is formed in a flat plate shape. The semiconductor sample 9 has a p-type silicon layer 91, an n-type silicon layer 93, and a passivation film 95 in order. The passivation film 95 is a so-called antireflective film, and is, for example, a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film). Further, a junction portion of the p-type silicon layer 91 and the n-type silicon layer 93 is a pn junction portion 97.
 この半導体試料9に裏面電極及び表面電極が形成され、焼成されることにより、太陽電池セルが完成する。さらに、この太陽電池セルに対して半田付け、積層体作成、ラミネート処理が施されることにより、太陽電池モジュールが完成する。 A back surface electrode and a front surface electrode are formed on this semiconductor sample 9 and fired to complete a solar battery cell. Furthermore, the solar battery module is completed by performing soldering, laminate formation, and lamination on the solar battery cell.
 図1に示すように、半導体検査装置1は、ステージ10、光照射部20、電磁波検出部30、遅延部40(図3参照)、ステージ駆動部50、イオン付与部60及び制御部70を備えている。 As shown in FIG. 1, the semiconductor inspection apparatus 1 includes a stage 10, a light irradiation unit 20, an electromagnetic wave detection unit 30, a delay unit 40 (see FIG. 3), a stage drive unit 50, an ion application unit 60, and a control unit 70. ing.
 ステージ10は、図示を省略する固定手段により、半導体試料9を保持する。固定手段としては、半導体試料9の両端部を挟持する挟持具、半導体試料9の裏側主面に粘着する粘着シート、ステージ10の表面に形成される吸着孔からエアを吸引する手段など、種々のものが考えられる。なお、挟持具のように半導体試料9を挟持するものである場合、当該挟持具は、金属製よりも樹脂製である方が好ましい。試料保持部における半導体試料9に接触する部分が樹脂製であるため、半導体試料9が損傷することを軽減し得る。このため、製品となる前の未完成品である半導体試料9を非破壊的に検査し得る。 The stage 10 holds the semiconductor sample 9 by fixing means (not shown). As a fixing means, various means such as a holding tool for holding the both ends of the semiconductor sample 9, a pressure-sensitive adhesive sheet adhering to the back main surface of the semiconductor sample 9, and a means for sucking air from suction holes formed on the surface of the stage 10 Things can be considered. When the semiconductor sample 9 is to be held like the holding tool, the holding tool is preferably made of resin rather than metal. Since the portion of the sample holder in contact with the semiconductor sample 9 is made of resin, damage to the semiconductor sample 9 can be reduced. For this reason, the semiconductor sample 9 which is an unfinished product before becoming a product can be inspected nondestructively.
 <光照射部20>
 図3に示すように、光照射部20は、フェムト秒レーザ21を備えている。フェムト秒レーザ21は、例えば、300nm(ナノメートル)以上1.5μm(マイクロメートル)以下の可視光領域を含む波長のパルス光LP1を出力する。好適な例としては、中心波長が800nm付近であり、周期が数kHz~数百MHz、パルス幅が10~150フェムト秒程度の直線偏光のパルス光が、フェムト秒レーザから放射される。もちろん、その他の波長領域(例えば、青色波長(450~495nm)、緑色波長(495~570nm)の可視光波長)のパルス光が出射されるようにしてもよい。
<Light irradiation unit 20>
As shown in FIG. 3, the light irradiation unit 20 includes a femtosecond laser 21. The femtosecond laser 21 outputs, for example, pulsed light LP1 of a wavelength including a visible light range of 300 nm (nanometers) or more and 1.5 μm (micrometers) or less. In a preferred example, linearly polarized pulsed light having a center wavelength of about 800 nm, a period of several kHz to several hundreds of MHz, and a pulse width of about 10 to 150 femtoseconds is emitted from the femtosecond laser. Of course, pulsed light of other wavelength regions (for example, visible light wavelengths of blue wavelength (450 to 495 nm) and green wavelength (495 to 570 nm)) may be emitted.
 フェムト秒レーザ21から出射されたパルス光LP1は、ビームスプリッタBE1により2つに分光される。一方のパルス光は、検査光LP11として、半導体試料9の表面に照射される。ステージ10は、半導体試料9のパッシベーション膜95側に検査光LP11が入射するように半導体試料9を保持する。光照射部20は、検査光LP11の光軸がパッシベーション膜95の表面に対して斜めになるように、検査光LP11を半導体試料9に照射する。本実施形態では、検査光LP11の入射角度を、45°としているが、これに限定されるものではなく、0°から90°の範囲内で設定してよい。また、検査光LP11の入射角度が変更可能なように光照射部20を構成してもよい。 The pulsed light LP1 emitted from the femtosecond laser 21 is split into two by the beam splitter BE1. One pulse light is irradiated to the surface of the semiconductor sample 9 as the inspection light LP11. The stage 10 holds the semiconductor sample 9 so that the inspection light LP 11 is incident on the passivation film 95 side of the semiconductor sample 9. The light irradiation unit 20 irradiates the semiconductor light 9 with the inspection light LP11 so that the optical axis of the inspection light LP11 is oblique to the surface of the passivation film 95. In the present embodiment, the incident angle of the inspection light LP11 is 45 °, but is not limited to this, and may be set within the range of 0 ° to 90 °. In addition, the light irradiation unit 20 may be configured so that the incident angle of the inspection light LP11 can be changed.
 検査光LP11は、パッシベーション膜95に対してスポット状に照射される。パッシベーション膜95における検査光LP11のスポット径(照射径)は、例えば1μm~10mmとされるが、これに限定されるものではない。 The inspection light LP11 is irradiated to the passivation film 95 in a spot shape. The spot diameter (irradiation diameter) of the inspection light LP11 in the passivation film 95 is, for example, 1 μm to 10 mm, but is not limited to this.
 半導体試料9の内部電界が存在する部位に、禁制帯幅を超えるエネルギーを持つ検査光LP11(パルス光)が照射されると、光励起キャリア(自由電子および自由正孔)が発生する。その光励起キャリアは、半導体試料9の内部電場によって加速される。これによりパルス状の電流が発生することとなり、それに応じて、検査光LP11とは波長領域が異なるパルス状の電磁波LT1(テラヘルツ波)が発生する。このため、電磁波LT1を測定することにより、内部電界の状態(強さや電界の向きなど)を検査し得る。 When the inspection light LP11 (pulsed light) having energy exceeding the forbidden band width is irradiated to a portion where the internal electric field of the semiconductor sample 9 exists, photoexcited carriers (free electrons and free holes) are generated. The photoexcited carriers are accelerated by the internal electric field of the semiconductor sample 9. As a result, a pulsed current is generated, and in response, a pulsed electromagnetic wave LT1 (terahertz wave) having a wavelength range different from that of the inspection light LP11 is generated. Therefore, by measuring the electromagnetic wave LT1, the state of the internal electric field (such as the strength and the direction of the electric field) can be inspected.
 <電磁波検出部30>
 電磁波検出部30は、半導体試料9が放射した電磁波LT1を検出する検出器31を備えている。検出器31は、ここでは、光伝導アンテナにより構成されている。検出器31には、ビームスプリッタBE1により分割された他方のパルス光である検出光LP21が入射する。検出器31は、検出光LP21が入射するタイミングで、電磁波LT1の強度を検出する。
<Electromagnetic wave detection unit 30>
The electromagnetic wave detection unit 30 includes a detector 31 that detects the electromagnetic wave LT1 emitted by the semiconductor sample 9. The detector 31 here is constituted by a photoconductive antenna. The detection light LP21, which is the other pulse light split by the beam splitter BE1, is incident on the detector 31. The detector 31 detects the intensity of the electromagnetic wave LT1 at the timing when the detection light LP21 is incident.
 光伝導アンテナとしては、ダイポール型、ボウタイ型およびスパイラル型などが知られている。例えばダイポール型の光伝導アンテナは、検出光LP21が入射したときに電子および正孔を生成する光伝導膜と、光伝導膜上に平行に形成された金属製の一対の平行伝送線(電極)とを備える。一対の平行伝送線各々の中央部には、内向きに延びてギャップを形成する出っ張り(アンテナ)が設けられている。また、一対の平行伝送線間には、電流計が設けられる。 As a photoconductive antenna, a dipole type, a bow-tie type and a spiral type are known. For example, a dipole-type photoconductive antenna includes a photoconductive film that generates electrons and holes when the detection light LP21 is incident, and a pair of parallel transmission lines (electrodes) formed in parallel on the photoconductive film. And A central portion of each of the pair of parallel transmission lines is provided with a protrusion (antenna) extending inward to form a gap. In addition, an ammeter is provided between the pair of parallel transmission lines.
 アンテナ間のギャップに検出光LP21を照射すると、光伝導膜において光励起キャリアが生成される。光励起キャリアが生成されても、電磁波LT1が入射していない状態では、ギャップ間に電位差が生じていないため、電流は発生しない。一方、電磁波LT1が検出光LP21と重なるタイミングで入射すると、電磁波LT1の強度に比例した電位差がギャップ間に瞬時的に発生し、電流が瞬時的に発生する。この電流値は、図示しないロックインアンプやA/D変換回路などを介して適宜デジタル量に変換される。 When the detection light LP21 is irradiated to the gap between the antennas, photoexcited carriers are generated in the photoconductive film. Even if the photoexcited carrier is generated, no current is generated in the state where the electromagnetic wave LT1 is not incident, since no potential difference is generated between the gaps. On the other hand, when the electromagnetic wave LT1 is incident at a timing overlapping the detection light LP21, a potential difference proportional to the intensity of the electromagnetic wave LT1 is instantaneously generated between the gaps, and a current is instantaneously generated. This current value is appropriately converted into a digital value through a lock-in amplifier, an A / D conversion circuit, etc. (not shown).
 このように、電磁波検出部30は、光伝導アンテナを備えることにより、検出光LP21の照射に応じて半導体試料9が放射する電磁波LT1の電界強度を検出する。なお、検出器31を、光伝導アンテナとは異なる素子で構成されていてもよい。例えば、非線形光学結晶またはショットキーバリアダイオード等も採用し得る。 As described above, by providing the photoconductive antenna, the electromagnetic wave detection unit 30 detects the electric field intensity of the electromagnetic wave LT1 emitted by the semiconductor sample 9 in response to the irradiation of the detection light LP21. The detector 31 may be configured by an element different from the photoconductive antenna. For example, non-linear optical crystals or Schottky barrier diodes may also be employed.
 <遅延部40>
 遅延部40は、検出光LP21に遅延を与える遅延機構である。遅延部40は、遅延ステージ41及び遅延ステージ駆動部43を備えている。
<Delay unit 40>
The delay unit 40 is a delay mechanism that delays the detection light LP21. The delay unit 40 includes a delay stage 41 and a delay stage driver 43.
 遅延ステージ41は、検出光LP21の光路上に設けられている。遅延ステージ41は、検出光LP21をその入射方向と平行に、かつ、その入射時の光軸からずらして反射する反射ミラー41Mを備えている。反射ミラー41Mで反射したLP21は、その光路上に配されたミラー群で反射して、検出器31に導かれる。 The delay stage 41 is provided on the optical path of the detection light LP21. The delay stage 41 is provided with a reflection mirror 41M that reflects the detection light LP21 in parallel with the incident direction thereof and offset from the optical axis at the time of the incident light. The LP 21 reflected by the reflection mirror 41 M is reflected by a group of mirrors disposed on the optical path, and is guided to the detector 31.
 遅延ステージ駆動部43は、遅延ステージ41を、反射ミラー41Mに入射する検出光LP21の光路に沿って直線的に往復移動させる。これにより、検出光LP21の光路長が変更されるため、検出光LP21が検出器31に到達する時間が遅延されることとなる。すなわち、検出器31が電磁波LT1を検出するタイミングが遅延される。半導体試料9が放射する電磁波LT1は、パルス波である。このため、検出光LP21に遅延を与えることにより、電磁波LT1の強度を位相毎に検出し得る。 The delay stage drive unit 43 linearly reciprocates the delay stage 41 along the optical path of the detection light LP21 incident on the reflection mirror 41M. As a result, the optical path length of the detection light LP21 is changed, and the time for the detection light LP21 to reach the detector 31 is delayed. That is, the timing at which the detector 31 detects the electromagnetic wave LT1 is delayed. The electromagnetic wave LT1 emitted by the semiconductor sample 9 is a pulse wave. Therefore, the intensity of the electromagnetic wave LT1 can be detected for each phase by delaying the detection light LP21.
 なお、本実施形態では遅延部40は、検出光LP21に遅延を与えている。しかしながら、検査光LP11に遅延を与えるようにしてもよい。具体的には、LP11の光路上に遅延ステージ41を設けて、その遅延ステージ41を遅延ステージ駆動部43により移動させることにより、検査光LP11の光路長を変更するとよい。これにより、半導体試料9に検査光LP11(パルス光)が入射するタイミングを遅延でき、もって、電磁波LT1が発生するタイミング、ひいては、電磁波LT1が検出器31に到達するタイミングを遅延できる。したがって、検査光LP11に遅延を与えることにより、電磁波LT1の強度を位相毎に検出し得る。 In the present embodiment, the delay unit 40 delays the detection light LP21. However, a delay may be given to the inspection light LP11. Specifically, the delay stage 41 may be provided on the optical path of the LP 11 and the delay stage 41 may be moved by the delay stage drive unit 43 to change the optical path length of the inspection light LP 11. As a result, the timing at which the inspection light LP11 (pulsed light) is incident on the semiconductor sample 9 can be delayed, and thus the timing at which the electromagnetic wave LT1 is generated and hence the timing at which the electromagnetic wave LT1 reaches the detector 31 can be delayed. Therefore, the intensity of the electromagnetic wave LT1 can be detected for each phase by delaying the inspection light LP11.
 <ステージ駆動部50>
 ステージ駆動部50は、ステージ10をその上面に平行な水平面内に沿って、光照射部20及び電磁波検出部30に対して相対移動させる。これによって、半導体検査装置1は、ステージ10の上面に保持された半導体試料9のパッシベーション膜95を、検査光LP11で走査する。このように、ステージ駆動部50は、走査機構の一例である。
<Stage driver 50>
The stage drive unit 50 moves the stage 10 relative to the light irradiation unit 20 and the electromagnetic wave detection unit 30 along a horizontal plane parallel to the upper surface thereof. Thus, the semiconductor inspection apparatus 1 scans the passivation film 95 of the semiconductor sample 9 held on the upper surface of the stage 10 with the inspection light LP11. Thus, the stage drive unit 50 is an example of a scanning mechanism.
 なお、走査機構は、ステージ駆動部50のような構成に限定されない。例えば、光照射部20及び電磁波検出部30を水平面内で移動させる機構を走査機構として設けてもよい。光照射部20を水平面内で移動させることにより、ステージ10に保持された半導体試料9の表面を、検査光LP11で走査し得る。また、走査機構として、検査光LP11の光路を変更する変更手段(ガルバノミラー等)を設けてもよい。この変更手段で検査光LP11の光路を変更することにより、半導体試料9のパッシベーション膜95を検査光LP11で走査し得る。 The scanning mechanism is not limited to the configuration such as the stage driving unit 50. For example, a mechanism for moving the light irradiation unit 20 and the electromagnetic wave detection unit 30 in a horizontal plane may be provided as a scanning mechanism. By moving the light irradiator 20 in a horizontal plane, the surface of the semiconductor sample 9 held on the stage 10 can be scanned with the inspection light LP11. Further, as a scanning mechanism, changing means (a galvano mirror or the like) for changing the optical path of the inspection light LP11 may be provided. The passivation film 95 of the semiconductor sample 9 can be scanned with the inspection light LP11 by changing the optical path of the inspection light LP11 by this changing means.
 <イオン付与部60>
 イオン付与部60は、正イオンまたは負イオンを半導体試料9に与える処理を行う装置である。イオン付与部60は、ここでは、放電電極61及び電源部63を有するコロナ放電装置として構成されている。
<Ion imparting unit 60>
The ion applying unit 60 is a device that performs processing for applying positive ions or negative ions to the semiconductor sample 9. Here, the ion applying unit 60 is configured as a corona discharge device having the discharge electrode 61 and the power supply unit 63.
 放電電極61は、針状に形成された導電性を有する部材であり、ステージ10に保持された半導体試料9よりも上方に離隔して配設されている。放電電極61の先端部は、ステージ10に保持された半導体試料9のパッシベーション膜95に向けられている。電源部63は、放電電極61に高電圧を印加する装置である。電源部63の動作は、制御部70のイオン付与制御部701により制御される。 The discharge electrode 61 is a conductive member formed in a needle shape, and is disposed above the semiconductor sample 9 held by the stage 10 at a distance above the semiconductor sample 9. The tip of the discharge electrode 61 is directed to the passivation film 95 of the semiconductor sample 9 held by the stage 10. The power supply unit 63 is a device that applies a high voltage to the discharge electrode 61. The operation of the power supply unit 63 is controlled by the ion application control unit 701 of the control unit 70.
 放電電極61が放電を開始すると、空気中の分子がイオン化する。図1に示すように、発生したイオンは、中央に孔が形成された電極65を通って、半導体試料9に付与される。なお、電極65を正または負に帯電させることにより、それとは反対の極の負イオンまたは正イオンが吸収される。これにより、正イオンまたは負イオンのいずれか一方のみを選択的に半導体試料9に付与し得る。 When the discharge electrode 61 starts discharge, molecules in the air are ionized. As shown in FIG. 1, the generated ions are applied to the semiconductor sample 9 through the electrode 65 having a hole formed in the center. By charging the electrode 65 positively or negatively, negative ions or positive ions of the opposite pole are absorbed. In this way, either positive ions or negative ions can be selectively applied to the semiconductor sample 9.
 イオン付与部60は、半導体試料9のパッシベーション膜95の表面の全体ではなく一部の限定された領域にイオンを付与する。以下、イオン付与部60がイオンを付与する領域を付与領域と称する。ステージ駆動部50がステージ10及び半導体試料9を水平面内で移動させることにより、イオン付与部60に対する半導体試料9の位置が相対的に変化する。このため、半導体試料9を移動させることにより、上記付与領域を半導体試料9に対して変位させることができる。ステージ駆動部50は、付与領域変位機構を構成する。 The ion applying unit 60 applies ions not to the entire surface of the passivation film 95 of the semiconductor sample 9 but to a limited region. Hereinafter, the region to which the ion applying unit 60 applies ions is referred to as a applying region. As the stage driving unit 50 moves the stage 10 and the semiconductor sample 9 in the horizontal plane, the position of the semiconductor sample 9 relative to the ion applying unit 60 changes relatively. Therefore, the application region can be displaced relative to the semiconductor sample 9 by moving the semiconductor sample 9. The stage drive unit 50 constitutes an application area displacement mechanism.
 なお、付与領域変位機構は、ステージ駆動部50のような構成に限定されない。例えば、イオン付与部60の放電電極61を水平面内で移動させる機構を付与領域変位機構としてもよい。このような機構を採用した場合においても、半導体試料9の表面に対して付与領域を変位させることができる。 The application area displacement mechanism is not limited to the configuration such as the stage drive unit 50. For example, a mechanism for moving the discharge electrode 61 of the ion applying unit 60 in a horizontal plane may be used as the application region displacement mechanism. Even when such a mechanism is employed, the application region can be displaced with respect to the surface of the semiconductor sample 9.
 <制御部70>
 制御部70は、半導体検査装置1の動作を制御する。制御部70は、一般的なコンピュータとしての構成(CPU、ROM、RAMなど)を備えている。また、制御部70は、記憶部72を備えている。なお、記憶部72は、RAMなどの一時的に情報を記憶するものであってもよい。さらに、制御部70には、各種情報を表示する液晶ディスプレイで構成される表示部74、及び、キーボードやマウス等の各種入力デバイスで構成される操作部76が接続されている。
<Control unit 70>
The control unit 70 controls the operation of the semiconductor inspection device 1. The control unit 70 has a configuration (CPU, ROM, RAM, etc.) as a general computer. Further, the control unit 70 includes a storage unit 72. The storage unit 72 may temporarily store information such as a RAM. Further, the control unit 70 is connected to a display unit 74 configured of a liquid crystal display for displaying various information, and an operation unit 76 configured of various input devices such as a keyboard and a mouse.
 図1に示すように、制御部70のCPUが所定のプログラムに従って動作することにより、制御部70はイオン付与制御部701、ステージ駆動制御部702、遅延ステージ駆動制御部703、時間波形復元部704、比較評価部705、時間設定部706、及び、画像生成部707として機能する。 As shown in FIG. 1, when the CPU of the control unit 70 operates according to a predetermined program, the control unit 70 controls the ion application control unit 701, the stage drive control unit 702, the delay stage drive control unit 703, and the time waveform restoration unit 704. These functions as the comparison evaluation unit 705, the time setting unit 706, and the image generation unit 707.
 イオン付与制御部701は、イオン付与部60の電源部63を制御することにより、放電電極61からの放電を制御する。また、イオン付与制御部701は、電源部63が放電電極61に印加する電圧を制御することにより、イオン付与部60が半導体試料9に付与するイオン量を制御する。また、イオン付与制御部701は、電極65の極性(正負)を制御することにより、半導体試料9に付与されるイオンの極性を制御する。 The ion application control unit 701 controls the discharge from the discharge electrode 61 by controlling the power supply unit 63 of the ion application unit 60. Further, the ion application control unit 701 controls the amount of ions applied by the ion applying unit 60 to the semiconductor sample 9 by controlling the voltage applied to the discharge electrode 61 by the power supply unit 63. Further, the ion application control unit 701 controls the polarity (positive or negative) of the electrode 65 to control the polarity of ions to be applied to the semiconductor sample 9.
 イオン付与制御部701は、オペレータによる、半導体試料9に付与するイオン量またはイオンの極性を指定するための操作入力を、操作部76を介して受け付ける。イオン付与制御部701は、受け付けた操作入力に基づいて、イオン付与部60を制御する。 The ion application control unit 701 receives, through the operation unit 76, an operation input by the operator for specifying the amount of ions to be applied to the semiconductor sample 9 or the polarity of the ions. The ion deposition control unit 701 controls the ion deposition unit 60 based on the received operation input.
 ステージ駆動制御部702は、ステージ駆動部50を制御する。ステージ駆動制御部702は、オペレータによる、半導体試料9上における検査対象箇所を指定する操作入力を、操作部76を介して受け付ける。ステージ駆動制御部702は、受け付けた操作入力に基づきステージ駆動部50を制御することにより、その検査対象箇所が検査光LP11の入射位置に合うように、ステージ10を移動させる。また、ステージ駆動制御部702は、オペレータが検査したい検査対象範囲の指定する操作入力を受け付ける。そして、受け付けた検査対象範囲が検査光LP11で走査されるように、ステージ10を移動させる。 The stage drive control unit 702 controls the stage drive unit 50. The stage drive control unit 702 receives, through the operation unit 76, an operation input by the operator for specifying a position to be inspected on the semiconductor sample 9. The stage drive control unit 702 controls the stage drive unit 50 based on the received operation input to move the stage 10 so that the inspection target portion matches the incident position of the inspection light LP11. Further, the stage drive control unit 702 receives an operation input for designating an inspection target range that the operator wants to inspect. Then, the stage 10 is moved so that the received inspection target range is scanned by the inspection light LP11.
 遅延ステージ駆動制御部703は、遅延ステージ駆動部43を制御することにより遅延ステージ41を移動させ、検出光LP21に時間遅延を付与する。これによって、パルス状に発生する電磁波LT1について、位相毎の電界強度が検出される。 The delay stage drive control unit 703 moves the delay stage 41 by controlling the delay stage drive unit 43, and adds a time delay to the detection light LP21. Thereby, the electric field strength for each phase is detected for the electromagnetic wave LT1 generated in a pulse shape.
 時間波形復元部704は、遅延ステージ駆動制御部703が遅延ステージ駆動部43を制御することにより収集された電磁波LT1の位相毎の電界強度に基づき、電磁波LT1の時間波形を復元する。より詳細には、時間波形復元部704は、横軸を位相(時間)、縦軸を電界強度とする二次元座標上に、検出された電界強度をプロットすることによって、電磁波LT1の時間波形を復元する。 The time waveform restoration unit 704 restores the time waveform of the electromagnetic wave LT1 based on the electric field strength for each phase of the electromagnetic wave LT1 collected by the delay stage drive control unit 703 controlling the delay stage drive unit 43. More specifically, the time waveform restoration unit 704 plots the time waveform of the electromagnetic wave LT1 by plotting the detected electric field strength on a two-dimensional coordinate with the horizontal axis representing phase (time) and the vertical axis representing the electric field strength. Restore.
 比較評価部705は、半導体試料9におけるパッシベーション膜95の特性を評価する。ここでは、比較評価部705は、イオン付与部による処理前及び処理後の半導体試料9が放射する電磁波強度各々を比較して、パッシベーション膜95を評価する。 The comparative evaluation unit 705 evaluates the characteristics of the passivation film 95 in the semiconductor sample 9. Here, the comparative evaluation unit 705 evaluates the passivation film 95 by comparing each of the electromagnetic wave intensities emitted by the semiconductor sample 9 before and after the treatment by the ion application unit.
 時間設定部706は、イオン付与部60がイオン付与を行ってから電磁波LT1を測定するまでの時間tを設定する。時間設定部706は、操作部76を介した操作者の指定入力を受付け、その指定入力に基づいて時間tを設定する。後者の場合、制御部70が、操作部76を介した操作者の指定入力を受け付けるようにしてもよい。具体的には、操作者が時間tを任意に指定可能にしてもよいし、あるいは、パッシベーション膜95の種別、イオン付与の条件を操作者が指定すると、それに応じて時間tが自動で決定されるようにしてもよい。なお、時間tは、あらかじめ記憶部72に格納された固定値としてもよい。この場合、時間設定部706を省略してもよい。 The time setting unit 706 sets a time t until the ion applying unit 60 performs the ion application and measures the electromagnetic wave LT1. The time setting unit 706 receives a designation input of the operator via the operation unit 76, and sets a time t based on the designation input. In the latter case, the control unit 70 may receive a designation input of the operator via the operation unit 76. Specifically, the operator may arbitrarily designate the time t, or if the operator designates the type of the passivation film 95 and the conditions for ion deposition, the time t is automatically determined accordingly. You may The time t may be a fixed value stored in advance in the storage unit 72. In this case, the time setting unit 706 may be omitted.
 画像生成部707は、表示部74に表示する画像を生成する。画像生成部707は、例えば、電界強度分布画像を生成する。電界強度分布画像は、半導体試料9における検査対象範囲を検査光LP11で走査したときに、各検査対象箇所で発生した電磁波LT1の電界強度の分布を、色または模様等で視覚的に表現した画像である。 The image generation unit 707 generates an image to be displayed on the display unit 74. The image generation unit 707 generates, for example, an electric field strength distribution image. The electric field intensity distribution image is an image that visually represents the distribution of the electric field intensity of the electromagnetic wave LT1 generated at each inspection target location by color or pattern when the inspection target range in the semiconductor sample 9 is scanned with the inspection light LP11. It is.
 <パッシベーション膜の検査について>
 次に、パッシベーション膜95の検査原理について説明する。
<About inspection of passivation film>
Next, the inspection principle of the passivation film 95 will be described.
 図4及び図5は、イオン付与の処理前及び処理後の半導体試料9が放射する電磁波LT1の時間波形を示す図である。なお、図4は、屈折率2.1の半導体試料9が放射する電磁波LT1の時間波形TW10,TW12を示しており、図5は、屈折率2.0の半導体試料9が放射する電磁波LT1の時間波形TW20,TW22を示している。 FIG.4 and FIG.5 is a figure which shows the time waveform of electromagnetic wave LT1 which the semiconductor sample 9 before and after the process of ion provision radiates | emits. 4 shows time waveforms TW10 and TW12 of the electromagnetic wave LT1 emitted by the semiconductor sample 9 having a refractive index of 2.1, and FIG. 5 shows an electromagnetic wave LT1 emitted by the semiconductor sample 9 having a refractive index of 2.0. The time waveforms TW20 and TW22 are shown.
 なお、イオン付与処理は、イオン付与部60によって行われたものであり、付与処理後は、イオン付与部60によりイオンが付与されてから所定時間(ここでは、1~2分経過後)の測定結果を示している。また、イオン付与部60が付与するイオンの極性は、ここでは、パッシベーション膜95の持つ固定電荷とは反対符号としている。また、パッシベーション膜95に付与されたイオンの電荷密度(コロナ電荷密度)は、-1×1013q/cmである。この電荷密度は、パッシベーション膜95の電荷密度(約1×1012q/cm)の反対符号であり、かつ、絶対値が大きい。 The ion applying treatment is performed by the ion applying unit 60, and after the application applying treatment, measurement is performed for a predetermined time (here, after 1 to 2 minutes) after the ions are applied by the ion applying unit 60. The results are shown. Further, here, the polarity of the ions applied by the ion applying unit 60 is opposite in sign to the fixed charge of the passivation film 95. The charge density (corona charge density) of the ions given to the passivation film 95 is −1 × 10 13 q / cm 2 . This charge density is the opposite sign of the charge density (about 1 × 10 12 q / cm 2 ) of the passivation film 95 and has a large absolute value.
 図4に示すように、屈折率が相対的に高い場合(屈折率2.1)、処理前の時間波形TW10と処理後の時間波形TW12とを比較した場合、変化は殆ど見られない。これに対して、図5に示すように、屈折率が相対的に低い場合(屈折率2.0)、処理前の時間波形TW20と処理後の時間波形TW22とを比較した場合、正負の符号が反転している。これは、付与されたイオンの電荷密度(-1×1013q/cm)が、パッシベーション膜95の電荷密度(1×1012q/cm)よりも大きく、かつ、反対符号であるためと推察される。 As shown in FIG. 4, when the refractive index is relatively high (refractive index 2.1), almost no change is observed when the time waveform TW10 before processing and the time waveform TW12 after processing are compared. On the other hand, as shown in FIG. 5, in the case where the refractive index is relatively low (refractive index 2.0), when comparing the time waveform TW20 before processing and the time waveform TW22 after processing, positive and negative signs Is inverted. This is because the charge density (-1 × 10 13 q / cm 2 ) of the applied ions is larger than the charge density (1 × 10 12 q / cm 2 ) of the passivation film 95 and has the opposite sign. It is guessed.
 図6は、付与イオンの電荷密度と、電磁波強度の関係を示す図である。図6中、横軸は付与されるイオンの電荷密度を示しており、縦軸はピーク強度を示している。なお、ピーク強度は、時間波形において、電界強度の絶対値が最大となるときのその電界強度である。図6中、白抜きの四角は屈折率2.1の半導体試料9に対応しており、白抜きの三角は屈折率2.0の半導体試料9に対応する。 FIG. 6 is a view showing the relationship between the charge density of the imparted ions and the electromagnetic wave intensity. In FIG. 6, the abscissa represents the charge density of the applied ions, and the ordinate represents the peak intensity. The peak intensity is the electric field intensity at which the absolute value of the electric field intensity is maximum in the time waveform. In FIG. 6, the open squares correspond to the semiconductor sample 9 having a refractive index of 2.1, and the open triangles correspond to the semiconductor sample 9 having a refractive index of 2.0.
 図6に示すように、屈折率2.1の半導体試料9では、イオンの電荷密度を振ってもピーク強度に変化は殆ど見られない。これに対して、屈折率2.0の半導体試料9では、イオンの電荷密度を負にして絶対値を大きくしていくと、ピーク強度が反転する。 As shown in FIG. 6, in the semiconductor sample 9 having a refractive index of 2.1, almost no change in peak intensity is observed even if the charge density of ions is changed. On the other hand, in the semiconductor sample 9 having a refractive index of 2.0, the peak intensity is reversed as the charge density of ions is made negative to increase the absolute value.
 図7及び図8は、イオン付与の処理前及び処理後におけるパッシベーション膜95の表面付近のバンド構造を示す図である。なお、図7は、屈折率が2.1のパッシベーション膜95、すなわち、PID耐性が比較的高い良好なパッシベーション膜95が形成された半導体試料9のバンド構造を示している。また、図8は、屈折率が2.0、すなわち、PID耐性が比較的低い不良のパッシベーション膜95のバンド構造を示している。 FIG. 7 and FIG. 8 are diagrams showing the band structure near the surface of the passivation film 95 before and after the treatment of ion application. FIG. 7 shows the band structure of the semiconductor sample 9 in which the passivation film 95 having a refractive index of 2.1, that is, the good passivation film 95 having a relatively high PID resistance is formed. Further, FIG. 8 shows the band structure of the defective passivation film 95 having a refractive index of 2.0, that is, a relatively low PID resistance.
 通常、太陽電池用シリコン基板である半導体試料9のパッシベーション膜95表面付近のバンド構造は、表面電極に電子を集めるため、図7及び図8中、上段に示すように、下から上に曲がるバンド構造を有する。 Usually, the band structure near the surface of the passivation film 95 of the semiconductor sample 9 which is a silicon substrate for solar cells collects electrons on the surface electrode, and as shown in the upper part of FIGS. It has a structure.
 そして、図7に示すように、パッシベーション膜95が形成良好であった場合、イオンを付与したときに、当該イオンが付与された部位に滞留せず拡散し得る。このため、バンド構造は殆ど変化しないと考えられる。したがって、図4に示すように、イオン付与の処理前及び処理後の半導体試料9から放射される電磁波LT1の強度が殆ど変化しなかったと推察される。 Then, as shown in FIG. 7, when the passivation film 95 is formed well, when the ions are applied, the ions can be diffused without being retained at the sites where the ions are applied. For this reason, it is considered that the band structure hardly changes. Therefore, as shown in FIG. 4, it is presumed that the intensity of the electromagnetic wave LT1 emitted from the semiconductor sample 9 before and after the treatment of ion application hardly changes.
 一方、パッシベーション膜95が形成不良であった場合、イオンを付与したときに、当該イオンが付与された部位に滞留することによって、パッシベーション膜95表面が帯電しやすくなる。したがって、所定時間が経過しても、イオンが拡散しないことにより、パッシベーション膜95表面付近バンド構造が変化すると考えられる。図8に示す例では、パッシベーション膜95に対して、その固定電荷とは反対符号の電荷密度であるイオン(ここでは負イオン)が付与されるため、上向きに曲がるバンド構造となっている。したがって、パッシベーション膜95が形成不良であった場合、図5に示すように、イオン付与の処理前及び処理後の半導体試料から放射される電磁波LT1の符号が反転するものと推察される。 On the other hand, when the passivation film 95 is defective in formation, when ions are applied, the surface of the passivation film 95 is likely to be charged by staying at the site to which the ions are applied. Therefore, it is considered that the band structure in the vicinity of the surface of the passivation film 95 is changed by the fact that the ions do not diffuse even after a predetermined time has elapsed. In the example shown in FIG. 8, since an ion (here, a negative ion) having a charge density of the opposite sign to the fixed charge is applied to the passivation film 95, it has a band structure bent upward. Therefore, when the passivation film 95 is defective in formation, as shown in FIG. 5, it is presumed that the sign of the electromagnetic wave LT1 radiated from the semiconductor sample before and after the process of ion application is reversed.
 以上の原理に基づき、イオン付与の処理前及び処理後の半導体試料9が放射する電磁波LT1の強度を比較することによって、パッシベーション膜95の特性を評価することができる。特に、太陽電池セルまたは太陽電池モジュールになる製品前の未完成品である半導体試料9について、パッシベーション膜95の特性を評価することにより、PID耐性の有無または程度を適正に評価し得る。つまり、半導体製造工程の早期段階で、パッシベーション膜の特性検査を実施することができる。 Based on the above principle, the characteristics of the passivation film 95 can be evaluated by comparing the intensity of the electromagnetic wave LT1 emitted by the semiconductor sample 9 before and after the treatment of ion application. In particular, the presence or absence or degree of PID resistance can be properly evaluated by evaluating the characteristics of the passivation film 95 with respect to the semiconductor sample 9 which is an incomplete product before the product to be a solar battery cell or a solar cell module. That is, the characteristic inspection of the passivation film can be carried out at an early stage of the semiconductor manufacturing process.
 <動作説明>
 次に、半導体試料9の検査の流れについて説明する。図9は、実施形態の半導体検査装置1の動作の流れを示す図である。
<Description of operation>
Next, the flow of inspection of the semiconductor sample 9 will be described. FIG. 9 is a diagram showing the flow of the operation of the semiconductor inspection device 1 of the embodiment.
 検査が開始されると、まず、半導体試料9がステージ10に保持される(ステップS1)。詳細には、ステージ10における不図示の固定手段によりステージ10上の一定位置に半導体試料9が保持される。 When the inspection is started, the semiconductor sample 9 is first held on the stage 10 (step S1). In detail, the semiconductor sample 9 is held at a predetermined position on the stage 10 by fixing means (not shown) on the stage 10.
 続いて、半導体試料9の検査対象箇所について、電磁波計測が行われる(ステップS2)。具体的には、検査対象箇所が検査光LP11の入射位置に一致するように、ステージ駆動部50がステージ10を移動させる。検査対象箇所は、オペレータが指定した箇所であってもよいし、既定の箇所であってもよい。そして、光照射部20が半導体試料9のパッシベーション膜95の表面に所定の照射径で検査光LP11をスポット状に照射する。さらに、検出器31が、半導体試料9から放射される電磁波LT1の電界強度を、検出光LP21が入射するタイミングで検出する。このとき、遅延ステージ駆動制御部703が遅延ステージ41を制御して、検出光LP21に遅延を与える。これによって、電磁波LT1の電磁波強度が位相毎に検出される。時間波形復元部704は、収集された電磁波強度から、電磁波LT1から時間波形を復元する。 Subsequently, electromagnetic wave measurement is performed on the inspection target portion of the semiconductor sample 9 (step S2). Specifically, the stage drive unit 50 moves the stage 10 such that the inspection target portion coincides with the incident position of the inspection light LP11. The inspection target location may be a location designated by the operator or a predetermined location. Then, the light irradiation unit 20 irradiates the surface of the passivation film 95 of the semiconductor sample 9 with the inspection light LP 11 in a spot shape with a predetermined irradiation diameter. Furthermore, the detector 31 detects the electric field intensity of the electromagnetic wave LT1 emitted from the semiconductor sample 9 at the timing when the detection light LP21 is incident. At this time, the delay stage drive control unit 703 controls the delay stage 41 to delay the detection light LP21. Thereby, the electromagnetic wave intensity of the electromagnetic wave LT1 is detected for each phase. The time waveform restoration unit 704 restores the time waveform from the electromagnetic wave LT1 from the collected electromagnetic wave intensity.
 続いて、ステップS2において取得された電磁波強度に基づき、半導体試料9の良否判定が行われる(ステップS3)。具体的には、例えば、復元された電磁波LT1の時間波形において、そのピーク強度の極性(正または負)やその絶対値が、予め定められた基準を満たすか否かを制御部70が判定するとよい。基準を満たす場合(ステップS3においてYes)、肯定的な評価が与えられ、次のステップS4が実施される。基準を満たさない場合(ステップS3においてNo)、その半導体試料9に対して否定的な評価が与えられ(ステップS31)、半導体試料9の検査が終了する。 Subsequently, quality determination of the semiconductor sample 9 is performed based on the electromagnetic wave intensity acquired in step S2 (step S3). Specifically, for example, in the time waveform of the restored electromagnetic wave LT1, when the control unit 70 determines whether the polarity (positive or negative) of the peak intensity or the absolute value thereof satisfies a predetermined reference. Good. If the criteria are satisfied (Yes in step S3), a positive evaluation is given, and the next step S4 is performed. If the reference is not satisfied (No in step S3), a negative evaluation is given to the semiconductor sample 9 (step S31), and the inspection of the semiconductor sample 9 ends.
 ステップS3において肯定的な評価がされた場合(ステップS3においてYes)、イオン付与部60が半導体試料9の検査対象箇所に対して付与するイオンの付与条件が設定される(ステップS4)。イオン付与の条件として、例えば、付与するイオンの極性(正または負)及びイオン量(電荷密度)が設定される。具体的には、イオン付与制御部701が、操作部76を介した操作者からの設定入力を受け付け、その設定入力に基づきイオンの極性及びイオン量を設定する。なお、イオン付与制御部701は、イオンの極性及びイオン量を直接数値等で入力を受け付けるようにしてもよい。あるいは、イオン付与制御部701は、パッシベーション膜95の種別の指定を受付け、その指定された種別に対応するイオンの極性及びイオン量を自動で決定してもよい。この場合、パッシベーション膜95の種別毎に予め定められたイオン付与条件を予め定めたテーブルを作成して記憶部72に保存しておくとよい。 When the positive evaluation is made in step S3 (Yes in step S3), the ion imparting condition that the ion applying unit 60 applies to the inspection target portion of the semiconductor sample 9 is set (step S4). As the conditions for ion application, for example, the polarity (positive or negative) and ion amount (charge density) of the ions to be applied are set. Specifically, the ion deposition control unit 701 receives a setting input from the operator via the operation unit 76, and sets the polarity and amount of ions based on the setting input. Note that the ion application control unit 701 may directly receive the input of the polarity and the ion amount of the ion as a numerical value or the like. Alternatively, the ion application control unit 701 may receive designation of the type of the passivation film 95, and automatically determine the polarity and amount of ions corresponding to the designated type. In this case, it is preferable to create a table in which ion application conditions predetermined for each type of passivation film 95 are predetermined, and store the table in the storage unit 72.
 続いて、半導体試料9にイオンの付与処理が行われる(ステップS5)。具体的には、イオン付与制御部701が、ステップS4において設定されたイオン付与条件にしたがって、パッシベーション膜95にイオンを付与する。 Subsequently, ion imparting processing is performed on the semiconductor sample 9 (step S5). Specifically, the ion application control unit 701 applies ions to the passivation film 95 in accordance with the ion application conditions set in step S4.
 続いて、ステップS5のイオン付与処理後に、既定の時間tが経過したか否かが判定される(ステップS6)。 Subsequently, it is determined whether or not a predetermined time t has elapsed after the ion applying process of step S5 (step S6).
 時間tが経過した場合(ステップS6においてYes)、半導体試料9の測定対象箇所について、電磁波計測が行われる(ステップS7)。具体的に、ステップS7では、ステップS2と同様に、検査光LP11の照射に応じて半導体試料9から放射された電磁波LT1の電界強度が、検出器31により検出される。また、検出光LP21に遅延が与えられることによって、電磁波LT1の位相毎の電界強度が取得される。時間波形復元部704は、収集された電磁波強度から、電磁波LT1から時間波形を復元する。 When the time t has elapsed (Yes in step S6), electromagnetic wave measurement is performed on the measurement target portion of the semiconductor sample 9 (step S7). Specifically, in step S7, as in step S2, the electric field intensity of the electromagnetic wave LT1 emitted from the semiconductor sample 9 in response to the irradiation of the inspection light LP11 is detected by the detector 31. Further, the delay is given to the detection light LP21, whereby the electric field strength for each phase of the electromagnetic wave LT1 is acquired. The time waveform restoration unit 704 restores the time waveform from the electromagnetic wave LT1 from the collected electromagnetic wave intensity.
 続いて、パッシベーション膜95の特性を評価する比較評価処理が行われる(ステップS8)。具体的には、比較評価部705が、イオン付与処理前に半導体試料9が放射する電磁波LT1の電界強度(ステップS2で測定された電界強度)、及び、イオン付与処理後、所定の時間t経過した半導体試料9が放射する電磁波LT1の電界強度が比較される。 Subsequently, comparative evaluation processing is performed to evaluate the characteristics of passivation film 95 (step S8). Specifically, the comparative evaluation unit 705 determines the electric field intensity of the electromagnetic wave LT1 emitted by the semiconductor sample 9 before the ion applying treatment (the electric field intensity measured in step S2) and the predetermined time t after the ion applying treatment. The electric field strengths of the electromagnetic waves LT1 emitted by the semiconductor samples 9 are compared.
 強度を比較する際、上述したように、処理前及び処理後のピーク強度を比較するとよい。具体的には、ピーク強度の極性の符号に基づいて、パッシベーション膜95の特性を評価することが考えられる。この場合、ステップS5において、パッシベーション膜95の持つ固定電荷とは反対符号の極性であって、かつ、その固定電荷の絶対値よりも大きい量のイオンが半導体試料9に付与するとよい。仮に、パッシベーション膜95が不良であるときは、図4及び図5において説明したように、ピーク強度の符号が反転すると期待される。このため、ピーク強度の符号を判定することのみで、パッシベーション膜95の良否を適正に評価し得る。 When comparing the intensities, it is preferable to compare peak intensities before and after treatment as described above. Specifically, it is conceivable to evaluate the characteristics of the passivation film 95 based on the sign of the polarity of the peak intensity. In this case, in step S5, it is preferable to apply, to the semiconductor sample 9, ions of a polarity opposite to that of the fixed charge of the passivation film 95 and larger than the absolute value of the fixed charge. If the passivation film 95 is defective, it is expected that the sign of the peak intensity is reversed as described in FIGS. 4 and 5. Therefore, the quality of the passivation film 95 can be properly evaluated only by determining the sign of the peak intensity.
 また、ステップS5において、固定電荷とは反対符号の極性であって、かつ、その固定電荷の絶対値よりも小さい量のイオンが半導体試料9に付与してもよい。この場合、仮にパッシベーション膜95に不良があるときは、処理前に比べて処理後のピーク強度の絶対値が、付与されたイオン量に応じて小さくなると期待される。このため、ピーク強度の絶対値を比較することにより、パッシベーション膜95の良否を適正に評価し得る。 Further, in step S5, ions of a polarity opposite to that of the fixed charge and smaller than the absolute value of the fixed charge may be applied to the semiconductor sample 9. In this case, if there is a defect in the passivation film 95, it is expected that the absolute value of the peak intensity after processing will be smaller according to the amount of ions applied than before processing. Therefore, the quality of the passivation film 95 can be properly evaluated by comparing the absolute values of the peak intensities.
 さらに、ステップS5において、固定電荷と同符号の極性のイオンを付与してもよい。この場合、仮にパッシベーション膜95に不良があるときは、処理前に比べて処理後にピーク強度が付与されたイオン量に応じて大きくなると期待される。このため、ピーク強度の大きさを比較することにより、パッシベーション膜95の良否を適正に評価し得る。 Furthermore, in step S5, ions of the same sign as the fixed charge may be provided. In this case, if there is a defect in the passivation film 95, it is expected that the peak intensity will be increased according to the amount of ion applied after the treatment as compared to before the treatment. Therefore, the quality of the passivation film 95 can be properly evaluated by comparing the magnitudes of the peak intensities.
 また、図6に示すように、付与するイオン量を振ることにより、イオン量毎のピーク強度を確認してもよい。この場合、イオン付与処理によるパッシベーション膜95の特性変化、及び、イオン量に依存するパッシベーション膜95の特性変化を解析できるため、パッシベーション膜95の特性を適正に評価し得る。 Further, as shown in FIG. 6, the peak intensity for each ion amount may be confirmed by shaking the amount of ions to be applied. In this case, since the characteristic change of the passivation film 95 due to the ion application process and the characteristic change of the passivation film 95 depending on the amount of ions can be analyzed, the characteristic of the passivation film 95 can be appropriately evaluated.
 なお、ステップS2及びステップS7において、遅延部40を動作させることにより、位相毎の電界強度を収集して、時間波形復元部704が時間波形を復元すると説明した。しかしながら、この時間波形の復元は必須ではない。すなわち、遅延部40を動作させずに、検出器31が電磁波LT1を検出するタイミングを固定してもよい。例えば、ステップS2において復元される時間波形から、ピーク強度となるタイミングp1(位相)を特定し得る(図4,5参照)。そこで、ステップS7では、そのタイミングp1に対応する位置に遅延ステージ41を固定して、電磁波LT1の電界強度を測定するとよい。これにより、遅延部40を動作させずに、ピーク強度を測定できるため、測定にかかる時間を短縮し得る。 In step S2 and step S7, the delay unit 40 is operated to collect the electric field intensity for each phase, and the time waveform restoration unit 704 restores the time waveform. However, restoration of this time waveform is not essential. That is, the timing at which the detector 31 detects the electromagnetic wave LT1 may be fixed without operating the delay unit 40. For example, the timing p1 (phase) at which the peak intensity is obtained can be specified from the time waveform restored in step S2 (see FIGS. 4 and 5). Therefore, in step S7, the delay stage 41 may be fixed at a position corresponding to the timing p1 and the electric field strength of the electromagnetic wave LT1 may be measured. As a result, since the peak intensity can be measured without operating the delay unit 40, the time taken for the measurement can be shortened.
 また、上記実施形態では、検査対象箇所が1箇所である場合について説明したが、半導体試料9上の複数の箇所を検査対象とすることも考えられる。この場合、ステージ駆動部50を動作させて、半導体試料9の複数箇所において電磁波の計測を行うとよい。このとき、例えば検出器31の検出のタイミングを上記タイミングp1に固定することにより、各検査対象箇所において電磁波LT1のピーク強度を短時間に測定し得る。 Moreover, although the said embodiment demonstrated the case where a test object location was one place, it is also considered to make several places on the semiconductor sample 9 into test object. In this case, the stage driving unit 50 may be operated to measure electromagnetic waves at a plurality of locations of the semiconductor sample 9. At this time, for example, by fixing the detection timing of the detector 31 to the timing p1, the peak intensity of the electromagnetic wave LT1 can be measured in a short time at each inspection target location.
 なお、複数の検査対象箇所について検査を行う場合、先に、全ての検査対象箇所について先に電磁波計測を行い、その後に、検査箇所毎にイオン付与処理と電磁波測定を交互に行うとよい。先に電磁波測定を行うことによってイオン付与の影響のない電磁波強度の分布を得ることができるため、パッシベーション膜95の複数の箇所の特性を適正に評価し得る。 When inspection is performed on a plurality of inspection target parts, it is preferable to first perform electromagnetic wave measurement on all the inspection target parts first, and then alternately perform the ion applying process and the electromagnetic wave measurement for each inspection part. By performing the electromagnetic wave measurement first, the distribution of the electromagnetic wave intensity without the influence of the ion application can be obtained, so the characteristics of the plurality of portions of the passivation film 95 can be appropriately evaluated.
 図10は、イオン付与処理前及びイオン付与処理後の半導体試料9における電磁波強度分布画像WID1,WID2を示す図である。図10に示すように、電磁波強度分布画像WID1,WID2を生成することにより、箇所毎にパッシベーション膜95の特性を評価することができる。また、パッシベーション膜95が不良である箇所の特定が容易となる。 FIG. 10 is a view showing the electromagnetic wave intensity distribution images WID1 and WID2 of the semiconductor sample 9 before and after the ion applying process. As shown in FIG. 10, by generating the electromagnetic wave intensity distribution images WID1 and WID2, it is possible to evaluate the characteristics of the passivation film 95 for each part. In addition, it is easy to identify the portion where the passivation film 95 is defective.
 <2. 変形例>
 以上、実施形態について説明してきたが、本発明は上記のようなものに限定されるものではなく、様々な変形が可能である。
<2. Modified example>
As mentioned above, although embodiment was described, this invention is not limited to the above things, A various deformation | transformation is possible.
 上記実施形態では、n型シリコン層93に形成されたパッシベーション膜95の特性を検査している。しかしながら、半導体検査装置1は、p型シリコン層に形成されたパッシベーション膜の検査にも適用し得る。また、半導体試料9は、太陽電池モジュール向けのものに限定されない。 In the above embodiment, the characteristics of the passivation film 95 formed on the n-type silicon layer 93 are inspected. However, the semiconductor inspection apparatus 1 can also be applied to inspection of a passivation film formed on a p-type silicon layer. In addition, the semiconductor sample 9 is not limited to one for a solar cell module.
 また、上記実施形態では、イオン付与部60がコロナ放電により発生するイオンをパッシベーション膜95に付与するように構成されている。しかしながら、別の方法によりイオンを付与するようにしてもよい。例えば、電離放射線を半導体試料9に向けて放射し、半導体試料9近傍のガス分子を電離させ、イオン化させてもよい。この場合、不要な極性のイオンを、周囲に配された電極等で除去させるとよい。また、電離放射線の線量を調整することにより、付与されるイオン量を制御するとよい。 In the above embodiment, the ion applying unit 60 is configured to apply the ions generated by the corona discharge to the passivation film 95. However, ions may be applied by another method. For example, ionizing radiation may be emitted toward the semiconductor sample 9 to ionize and ionize gas molecules in the vicinity of the semiconductor sample 9. In this case, ions of unnecessary polarity may be removed by electrodes or the like disposed around the periphery. Further, it is preferable to control the amount of applied ions by adjusting the dose of ionizing radiation.
 この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention. The configurations described in the above-described embodiments and the modifications can be appropriately combined or omitted as long as no contradiction arises.
 1 半導体検査装置
 10 ステージ
 20 光照射部
 21 フェムト秒レーザ
 30 電磁波検出部
 31 検出器
 40 遅延部
 41 遅延ステージ
 43 遅延ステージ駆動部
 50 ステージ駆動部
 60 イオン付与部
 61 放電電極
 63 電源部
 70 制御部
 701 イオン付与制御部
 702 ステージ駆動制御部
 703 遅延ステージ駆動制御部
 704 時間波形復元部
 705 比較評価部
 706 時間設定部
 707 画像生成部
 72 記憶部
 74 表示部
 76 操作部
 9 半導体試料
 91 p型シリコン層
 93 n型シリコン層
 95 パッシベーション膜
 97 pn接合部
 900 太陽電池モジュール
 LP1 パルス光
 LP11 検査光
 LP21 検出光
 LT1 電磁波
 TW10,TW12,TW20,TW22 時間波形
 WID1,WID2 電磁波強度分布画像
Reference Signs List 1 semiconductor inspection apparatus 10 stage 20 light irradiation unit 21 femtosecond laser 30 electromagnetic wave detection unit 31 detector 40 delay unit 41 delay stage 43 delay stage drive unit 50 stage drive unit 60 ion application unit 61 discharge electrode 63 power supply unit 70 control unit 701 Ion application control unit 702 Stage drive control unit 703 Delay stage drive control unit 704 Time waveform restoration unit 705 Comparison evaluation unit 706 Time setting unit 707 Image generation unit 72 Storage unit 74 Display unit 76 Operation unit 9 Semiconductor sample 91 p-type silicon layer 93 n-type silicon layer 95 passivation film 97 pn junction 900 solar cell module LP1 pulse light LP11 inspection light LP21 detection light LT1 electromagnetic wave TW10, TW12, TW20, TW22 time waveform WID1, WID2 electromagnetic wave intensity distribution image

Claims (11)

  1.  固定電荷を持つパッシベーション膜が表面に形成された半導体試料を検査する半導体検査装置であって、
     前記半導体試料を保持する試料保持部と、
     前記パッシベーション膜にイオンを付与する処理を行うイオン付与部と、
     前記半導体試料に電磁波を発生させる検査光を照射する光照射部と、
     前記検査光の照射に応じて前記半導体試料が放射する前記電磁波を検出する検出器と、
     前記イオン付与部による処理前、及び、イオン付与してから所定の時間t経過した処理後の前記半導体試料が放射する前記電磁波各々を比較することによって、前記パッシベーション膜の特性を評価する比較評価部と、
    を備える、半導体検査装置。
    A semiconductor inspection apparatus for inspecting a semiconductor sample on the surface of which a passivation film having a fixed charge is formed,
    A sample holding unit for holding the semiconductor sample;
    An ion applying unit performing a process of applying ions to the passivation film;
    A light irradiator for irradiating an inspection light for generating an electromagnetic wave on the semiconductor sample;
    A detector for detecting the electromagnetic wave emitted by the semiconductor sample in response to the irradiation of the inspection light;
    A comparative evaluation unit that evaluates the characteristics of the passivation film by comparing each of the electromagnetic waves emitted by the semiconductor sample before the treatment by the ion application unit and after a predetermined time t after the ion application and after the treatment. When,
    A semiconductor inspection apparatus comprising:
  2.  請求項1の半導体検査装置であって、
     前記光照射器から出射された検査光で前記半導体試料の表面を走査する走査機構、
    をさらに備える、半導体検査装置。
    The semiconductor inspection apparatus according to claim 1, wherein
    A scanning mechanism for scanning the surface of the semiconductor sample with inspection light emitted from the light irradiator;
    The semiconductor inspection apparatus further comprising:
  3.  請求項2の半導体検査装置であって、
     前記イオン付与部は、
     前記イオンを付与する領域を、前記半導体試料の表面に対して相対的に変位させる付与領域変位機構、
    をさらに備える、半導体検査装置。
    The semiconductor inspection apparatus according to claim 2, wherein
    The ion applying unit is
    An application area displacement mechanism which displaces the area to which the ions are applied relative to the surface of the semiconductor sample,
    The semiconductor inspection apparatus further comprising:
  4.  請求項1から請求項3のいずれか1項の半導体検査装置であって、
     前記イオン付与部及び前記光照射部を制御する制御部と、
     所定の操作入力に基づき、前記時間tを設定する時間設定部と、
    を備え、
     前記制御部は、
     前記イオン付与部が前記イオンを付与してから前記時間設定部により設定された前記時間t経過後に、前記光照射部に前記検査光を照射させる、半導体検査装置。
    The semiconductor inspection apparatus according to any one of claims 1 to 3, wherein
    A control unit that controls the ion applying unit and the light emitting unit;
    A time setting unit configured to set the time t based on a predetermined operation input;
    Equipped with
    The control unit
    The semiconductor inspection apparatus which makes the said light irradiation part irradiate the said inspection light after the said time t set by the said time setting part after the said ion provision part applies the said ion.
  5.  請求項1から請求項4のいずれか1項の半導体検査装置であって、
     所定の操作入力に基づき、前記イオン付与部が付与する前記イオンの付与条件を設定する、イオン付与条件設定部、
    をさらに備える、半導体検査装置。
    The semiconductor inspection apparatus according to any one of claims 1 to 4, wherein
    An ion applying condition setting unit that sets application conditions of the ions to be applied by the ion applying unit based on a predetermined operation input,
    The semiconductor inspection apparatus further comprising:
  6.  請求項1から請求項5のいずれか1項の半導体検査装置であって、
     前記イオン付与部は、
     針状の放電電極と、
     前記放電電極が放電可能な電圧を前記放電電極に印加する電源部と
    を含む、半導体検査装置。
    The semiconductor inspection apparatus according to any one of claims 1 to 5, wherein
    The ion applying unit is
    Needle-like discharge electrodes,
    And a power supply unit that applies a voltage capable of discharging the discharge electrode to the discharge electrode.
  7.  請求項1から請求項6のいずれか1項の半導体検査装置であって、
     前記検査光が、パルス状の光であり、
     前記検出器は、検出用のパルス光の入射に応じて、前記電磁波の強度を検出する光伝導アンテナを含み、
     前記半導体検査装置は、
     前記光伝導アンテナに入射する前記電磁波に対して、前記検出用のパルス光の入力時間を遅延させる遅延部、
    をさらに備える、半導体検査装置。
    The semiconductor inspection apparatus according to any one of claims 1 to 6, wherein
    The inspection light is pulsed light,
    The detector includes a photoconductive antenna that detects the intensity of the electromagnetic wave in response to the incidence of pulse light for detection.
    The semiconductor inspection apparatus
    A delay unit that delays an input time of the pulse light for detection with respect to the electromagnetic wave incident on the photo conductive antenna;
    The semiconductor inspection apparatus further comprising:
  8.  請求項1から請求項7のいずれか1項の半導体検査装置であって、
     前記イオン付与部は、前記固定電荷とは反対符号のイオンを付与し、
     前記比較評価部は、前記電磁波の極性の符号に基づいて、前記パッシベーション膜の特性を評価する、半導体検査装置。
    The semiconductor inspection apparatus according to any one of claims 1 to 7, wherein
    The ion applying unit applies ions of the opposite sign to the fixed charge,
    The said comparison evaluation part evaluates the characteristic of the said passivation film based on the code | symbol of the polarity of the said electromagnetic waves, The semiconductor test | inspection apparatus.
  9.  請求項8の半導体検査装置であって、
     前記パッシベーション膜が窒化ケイ素を含み、
     前記イオン付与部が、-1×1013q/cm以下の電荷密度のイオンを付与可能に構成されている、半導体検査装置。
    The semiconductor inspection apparatus according to claim 8, wherein
    The passivation film comprises silicon nitride,
    The semiconductor inspection device, wherein the ion applying unit is configured to be capable of applying ions of a charge density of −1 × 10 13 q / cm 2 or less.
  10.  請求項1から請求項9のいずれか1項の半導体検査装置であって、
     前記試料保持部における前記半導体試料に接触する部分が樹脂製である、半導体検査装置。
    The semiconductor inspection apparatus according to any one of claims 1 to 9, wherein
    The semiconductor inspection apparatus whose part in the said sample holding part which contacts the said semiconductor sample is resin.
  11.  固定電荷を持つパッシベーション膜が表面に形成された半導体試料を検査する半導体検査方法であって、
    (a) 前記半導体試料に検査光を照射し、前記半導体試料が放射する電磁波の強度を検出する工程と、
    (b) 前記(a)工程の後、前記パッシベーション膜にイオンを付与する処理を行う工程と、
    (c) 前記(b)工程の後、前記半導体試料に前記検査光を照射し、前記半導体試料が放射する照射に応じて前記半導体試料が放射する電磁波の強度を検出する工程と、
    (d) 前記(b)工程及び前記(d)工程で検出された前記電磁波各々を比較することによって、前記半導体試料における前記パッシベーション膜の特性を評価する工程、
    を含む、半導体検査方法。
    A semiconductor inspection method for inspecting a semiconductor sample on the surface of which a passivation film having a fixed charge is formed,
    (A) irradiating the inspection light to the semiconductor sample to detect the intensity of an electromagnetic wave emitted by the semiconductor sample;
    (B) performing a process of applying ions to the passivation film after the step (a);
    (C) irradiating the inspection light to the semiconductor sample after the step (b), and detecting the intensity of the electromagnetic wave emitted by the semiconductor sample in response to the irradiation emitted by the semiconductor sample;
    (D) evaluating the characteristics of the passivation film in the semiconductor sample by comparing each of the electromagnetic waves detected in the step (b) and the step (d);
    Semiconductor inspection methods, including:
PCT/JP2018/021796 2017-06-29 2018-06-07 Semiconductor inspection device and semiconductor inspection method WO2019003845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127305A JP6958833B2 (en) 2017-06-29 2017-06-29 Semiconductor inspection equipment and semiconductor inspection method
JP2017-127305 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003845A1 true WO2019003845A1 (en) 2019-01-03

Family

ID=64741435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021796 WO2019003845A1 (en) 2017-06-29 2018-06-07 Semiconductor inspection device and semiconductor inspection method

Country Status (2)

Country Link
JP (1) JP6958833B2 (en)
WO (1) WO2019003845A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028612A (en) * 2019-08-09 2021-02-25 株式会社Screenホールディングス Semiconductor device measuring method, semiconductor device measuring instrument, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029344A (en) * 2014-07-25 2016-03-03 株式会社Screenホールディングス Inspection device and inspection method
JP2016111330A (en) * 2014-12-02 2016-06-20 株式会社神戸製鋼所 Film quality management method of oxide semiconductor thin film
JP2017147274A (en) * 2016-02-15 2017-08-24 株式会社Screenホールディングス Inspection device and inspection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029344A (en) * 2014-07-25 2016-03-03 株式会社Screenホールディングス Inspection device and inspection method
JP2016111330A (en) * 2014-12-02 2016-06-20 株式会社神戸製鋼所 Film quality management method of oxide semiconductor thin film
JP2017147274A (en) * 2016-02-15 2017-08-24 株式会社Screenホールディングス Inspection device and inspection method

Also Published As

Publication number Publication date
JP2019012728A (en) 2019-01-24
JP6958833B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6604629B2 (en) Inspection apparatus and inspection method
Du et al. Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview
EP2546634B1 (en) Inspection apparatus and inspection method
US8941824B2 (en) Semiconductor inspection method and semiconductor inspection apparatus
JP5892597B2 (en) Inspection apparatus and inspection method
US10158325B2 (en) Inspection apparatus and inspection method
JP5804362B2 (en) Inspection apparatus and inspection method
JP6078870B2 (en) Inspection apparatus and inspection method
US9151669B2 (en) Inspecting device and inspecting method
US9651607B2 (en) Photo device inspection apparatus and photo device inspection method
JP6395206B2 (en) Inspection apparatus and inspection method
JP5835795B2 (en) Inspection method and inspection apparatus
Vorasayan et al. Limited laser beam induced current measurements: a tool for analysing integrated photovoltaic modules
JP2015040816A (en) Inspection apparatus and inspection method
JP6958833B2 (en) Semiconductor inspection equipment and semiconductor inspection method
JP6078869B2 (en) Inspection apparatus and inspection method
KR20160125760A (en) Integrated measuring apparatus for solar cell
JP2014192444A (en) Inspection device and inspection method
JP2019058042A (en) Inspection device and inspection method
Bliss et al. Development of a solar cell spectral response mapping system using multi-LBIC excitation
JP2017157692A (en) Inspection apparatus and inspection method
JP2017173147A (en) Semiconductor inspection device and semiconductor inspection method
Stojan et al. Luminescence radiation spectroscopy of silicon solar cells
Arnold et al. Investigation of charge carrier dynamics in silicon wafers using terahertz imaging spectroscopy
JP2018141675A (en) Inspection device and inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824784

Country of ref document: EP

Kind code of ref document: A1