WO2019003816A1 - Driving assistance device, recording device, driving assistance system, driving assistance method, and program - Google Patents

Driving assistance device, recording device, driving assistance system, driving assistance method, and program Download PDF

Info

Publication number
WO2019003816A1
WO2019003816A1 PCT/JP2018/021419 JP2018021419W WO2019003816A1 WO 2019003816 A1 WO2019003816 A1 WO 2019003816A1 JP 2018021419 W JP2018021419 W JP 2018021419W WO 2019003816 A1 WO2019003816 A1 WO 2019003816A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
alarm
timing
host vehicle
change
Prior art date
Application number
PCT/JP2018/021419
Other languages
French (fr)
Japanese (ja)
Inventor
守広 佐藤
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018083078A external-priority patent/JP7031472B2/en
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Priority to EP18824523.7A priority Critical patent/EP3570263A4/en
Publication of WO2019003816A1 publication Critical patent/WO2019003816A1/en
Priority to US16/539,146 priority patent/US20190359058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/01Occupants other than the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/043Identity of occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/22Psychological state; Stress level or workload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/221Physiology, e.g. weight, heartbeat, health or special needs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain

Definitions

  • the present invention relates to a driving support device, a recording device, a driving support system, a driving support method, and a program.
  • Patent Document 2 describes that an inter-vehicle distance and a relative speed are used to determine the degree of approach to a forward vehicle, and the timing of a warning is advanced when the degree of approach is high. Further, according to Patent Document 3, when the amount of change in approach to the forward vehicle is detected and the amount of change in approach is gentle, the timing of the alarm is changed later than usual, and the amount of change in approach is severe. It is stated that the timing of the alarm is changed earlier than usual.
  • the warning may not be able to be issued at an appropriate timing. For example, if the relative speed is lowered because the driver strongly presses the brake, it is determined that the danger is low, which may delay the alarm timing. In addition, when the driver also stepped on the brake because the preceding vehicle stepped on the brake suddenly, the relative speed becomes almost constant, and there is a risk that the warning timing will be delayed without being judged as having high danger. . Therefore, there is a need for a technique for learning the operation of the vehicle and appropriately controlling the timing of the warning.
  • An object of the present invention is to provide a driving support apparatus, a recording apparatus, a driving support system, a driving support method, and a program that learns the operation of the host vehicle and appropriately controls the timing of an alarm. .
  • the driving assistance apparatus includes a speed change acquisition unit that acquires a detection result of the degree of speed change of the host vehicle, and a relative speed acquisition unit that acquires a detection result of a relative speed of the host vehicle relative to a preceding vehicle.
  • the own vehicle is in proximity to the preceding vehicle based on the relative velocity and the inter-vehicle distance based on the relative velocity and the inter-vehicle distance, and a detection result of an inter-vehicle distance between the own vehicle and the preceding vehicle.
  • a warning control unit for setting a warning timing which is a timing for outputting a warning to the driver of the host vehicle based on the timing determined to be the close state.
  • the alarm control unit changes the alarm timing on the basis of the detection result of the degree of speed change of the host vehicle after it is determined that the proximity state.
  • the alarm timing is changed based on the value of the speed change of the host vehicle after it is determined that the proximity state.
  • a program includes a speed change acquisition step of acquiring a detection result of a degree of speed change of a host vehicle, and a relative speed acquisition step of acquiring a detection result of a relative velocity of the host vehicle relative to a preceding vehicle.
  • Warning timing that is a timing of outputting a warning to the driver of the own vehicle based on the determining step, the warning output step of outputting a warning to the driver of the own vehicle, and the timing determined to be the close state
  • FIG. 1 is a schematic view illustrating a host vehicle and a preceding vehicle.
  • FIG. 2 is a schematic block diagram of the driving support system according to the first embodiment.
  • FIG. 3 is a flowchart for explaining an output flow of an alarm by the driving support system according to the first embodiment.
  • FIG. 4 is a flowchart illustrating processing of calculating an alarm timing correction value by the driving support system according to the first embodiment.
  • FIG. 5 is a schematic block diagram of a driving support system according to a second embodiment.
  • FIG. 6 is a schematic block diagram of an alarm control unit according to the third embodiment.
  • FIG. 1 is a schematic view illustrating a host vehicle and a preceding vehicle.
  • FIG. 2 is a schematic block diagram of the driving support system according to the first embodiment.
  • the driving support system 100 according to the first embodiment is mounted on the vehicle A shown in FIG.
  • the driving support system 100 outputs an alarm to the driver of the host vehicle A, using the fact that the host vehicle A is in proximity to the preceding vehicle B ahead in the traveling direction as a trigger.
  • the proximity state refers to a state where the possibility that the host vehicle A collides with the leading vehicle B has occurred to some extent, and is determined by the distance between the host vehicle A and the leading vehicle B, the relative speed, the host vehicle speed, etc. .
  • the driving support system 100 may be a portable type device that can be used in the host vehicle A in addition to the one mounted on the host vehicle A.
  • the driving support system 100 may be, for example, an on-vehicle storage device such as a drive recorder, or may be an imaging device provided with a camera or the like as a detection unit (sensor group) described later.
  • the driving support system 100 includes a driving support device 10, a relative speed detection unit 12, an inter-vehicle distance detection unit 14, a speed change detection unit 16, an output unit 18, and an input unit 19.
  • the driving support device 10 is a device for setting an alarm timing, and the details will be described later.
  • the alarm timing is a timing at which an alarm is output to the driver of the host vehicle A.
  • the relative speed detection unit 12 is a unit that includes a sensor that detects the relative speed of the host vehicle A relative to the preceding vehicle B, or a calculation unit that derives the relative speed from the sensor and the sensor output.
  • the inter-vehicle distance detection unit 14 is a unit that includes a sensor that detects the distance between the host vehicle A and the preceding vehicle B, that is, the inter-vehicle distance, or a computing unit that derives the inter-vehicle distance from the sensor and the sensor output.
  • the relative speed detection unit 12 and the inter-vehicle distance detection unit 14 may have, for example, a front right sensor, a front center sensor, a front left sensor, a rear right sensor, a rear center sensor, and a rear left sensor.
  • the front right sensor, the front center sensor, and the front left sensor detect a vehicle ahead of the host vehicle A, that is, a preceding vehicle B, and detect a relative speed and an inter-vehicle distance.
  • the rear right sensor, the rear center sensor, and the rear left sensor detect a vehicle behind the host vehicle A.
  • the speed change detection unit 16 is a unit that includes a sensor that detects the speed change of the host vehicle A, or a calculation unit that derives the host vehicle speed change from the sensor and the sensor output.
  • the speed change of the host vehicle A is the change amount of the absolute speed of the host vehicle A per unit time, that is, the acceleration.
  • the speed change detection unit 16 may have, for example, a speed sensor, and may calculate the value of the speed change of the host vehicle A by temporally differentiating the speed of the host vehicle A detected by the speed sensor.
  • the speed change detection unit 16 may have, for example, an acceleration sensor, and may detect the acceleration of the host vehicle A detected by the acceleration sensor as the value of the speed change of the host vehicle A. Since the change in speed of the host vehicle A is a change in the absolute speed of the host vehicle A, the relative speed based on the speed of the destination vehicle B is different from the relative speed. This value is detectable from the operating state.
  • the relative speed detection unit 12, the inter-vehicle distance detection unit 14, and the speed change detection unit 16 serve as a detection unit that detects the relative speed, the inter-vehicle distance, and the speed change of the host vehicle A, that is, a sensor group including a plurality of sensors Is mounted on the host vehicle A.
  • the output unit 18 outputs information to the driver of the host vehicle A.
  • the output unit 18 includes, for example, a display unit and a speaker.
  • the display unit is a display including a liquid crystal display (LCD) or an organic electro-luminescence (EL) display, and a head-up display.
  • the display unit displays an image based on the image signal output from the driving support device 10.
  • the display unit may be dedicated to the driving support system 100 or may be used jointly with other systems including, for example, a navigation system.
  • the display unit is disposed at a position easily visible by the driver.
  • the speaker is, for example, an audio output device shared with other systems including a navigation system. The speaker outputs a sound based on the sound signal output from the driving support device 10.
  • the output unit 18 outputs an alarm to the driver of the host vehicle A at the alarm timing set by the driving support device 10. That is, the output unit 18 has a function as an alarm output unit that outputs an alarm.
  • the output unit 18 may cause the display unit to display a warning video indicating that there is a risk of collision with the preceding vehicle B as a warning, or may cause a speaker to output a warning sound, or both of them. You may
  • the input unit 19 is a device for the driver of the host vehicle A to perform an operation (input of information), and is, for example, a touch panel or a button.
  • the driving support device 10 includes a control unit 20 and a storage unit 22.
  • the control unit 20 is an arithmetic processing unit including a central processing unit (CPU), a processor for video processing, and the like.
  • the storage unit 22 stores data required for various processing in the driving support device 10 and various processing results.
  • the storage unit 22 is, for example, a semiconductor memory device such as a random access memory (RAM), a read only memory (ROM), a flash memory, or a storage device such as a hard disk or an optical disk. Alternatively, it may be an external storage device wirelessly connected via a communication device (not shown).
  • the control unit 20 loads the program stored in the storage unit 22 into the memory and executes an instruction included in the program.
  • the control unit 20 includes an internal memory (not shown), and the internal memory is used for temporary storage of data in the control unit 20 and the like.
  • the control unit 20 may be configured of one or more devices.
  • the control unit 20 determines whether the host vehicle A has approached based on the relative speed and the inter-vehicle distance.
  • the control unit 20 causes the output unit 18 to output an alarm at the set alarm timing based on the determination result that the state of proximity is reached. Further, the control unit 20 learns the operation of the host vehicle A and updates the alarm timing.
  • the control unit 20 includes a relative speed acquisition unit 30, an inter-vehicle distance acquisition unit 32, a determination threshold setting unit 34, a determination unit 36, a speed change acquisition unit 38, and an alarm control unit 40.
  • the relative speed acquisition unit 30 acquires, from the relative speed detection unit 12, the detection result of the relative speed of the host vehicle A relative to the preceding vehicle B.
  • the relative speed acquisition unit 30 may acquire the relative speed from a not-shown relative speed calculation unit that acquires the vehicle information including the speed from CAN (Controller Area Network) and calculates the relative speed.
  • the relative velocity acquisition unit 30 acquires the latest value of the relative velocity detection result for each predetermined time.
  • the inter-vehicle distance acquisition unit 32 acquires the detection result of the inter-vehicle distance between the host vehicle A and the preceding vehicle B from the inter-vehicle distance detection unit 14.
  • the inter-vehicle distance acquisition unit 32 acquires the latest value of the detection result of the inter-vehicle distance every predetermined time.
  • the determination threshold setting unit 34 acquires, from the storage unit 22, a determination threshold for determining a proximity state.
  • the determination threshold is a predetermined set value, and the value is not changed in the first embodiment. However, the determination threshold may be changed (updated) by the alarm control unit 40 as described later.
  • the determination unit 36 acquires the current value (latest value) of the relative velocity detection result from the relative velocity acquisition unit 30, and acquires the current value (latest value) of the inter-vehicle distance detection result from the inter-vehicle distance acquisition unit 32. .
  • the determination unit 36 calculates a collision prediction time based on the relative speed and the inter-vehicle distance.
  • the collision prediction time is the time until the host vehicle A collides with the preceding vehicle B when the relative speed continues in this state.
  • the determination unit 36 determines the collision prediction time Is calculated to be 3 seconds.
  • the determination unit 36 further obtains a determination threshold from the determination threshold setting unit 34.
  • the determination threshold is set to, for example, a value indicating that the host vehicle A may collide with the leading vehicle B when the collision prediction time is a value equal to or less than the determination threshold.
  • the determination threshold is set as 3 seconds, it is not limited to this and may be set arbitrarily.
  • the determination unit 36 determines whether the host vehicle A is in proximity to the preceding vehicle B based on the relative speed, the inter-vehicle distance, and the determination threshold.
  • the proximity state refers to a state in which the host vehicle A may collide with the preceding vehicle B when a predetermined time passes, for example, when the relative speed continues in this state.
  • the determination unit 36 may determine whether the vehicle is in the close state based on the inter-vehicle distance between the host vehicle A and the preceding vehicle B and the host vehicle speed.
  • a determination threshold is used to determine the predetermined time here.
  • the determination unit 36 determines that the own vehicle A is in the close state when the calculated estimated collision time is equal to or less than the determination threshold, and the own vehicle A approaches when the calculated estimated collision time is higher than the determination threshold. Judge not in the state. In the above-described example, since the collision prediction time is 3 seconds and the determination threshold is also 3 seconds, the determination unit 36 determines that the current vehicle A is in the proximity state.
  • the speed change acquisition unit 38 acquires the detection result of the degree of speed change of the host vehicle A from the speed change detection unit 16.
  • the speed change acquisition unit 38 may acquire the degree of speed change from a speed change calculation unit (not shown) that acquires vehicle information including speed from a CAN (Controller Area Network) and calculates the speed change.
  • the degree of speed change of the host vehicle A is a value based on the speed change (acceleration) of the host vehicle A detected by the speed change detection unit 16 and is an index indicating how intense the speed change of the host vehicle A is.
  • the degree of the speed change of the host vehicle A is the value of the speed change of the host vehicle A itself.
  • the speed change acquisition unit 38 acquires the value of the speed change of the host vehicle A from the speed change detection unit 16. However, although the details will be described later, the speed change acquisition unit 38 acquires the detection results of other parameters (the depression force of the brake, etc.) in addition to the value of the speed change of the host vehicle A. The degree of speed change may be obtained (calculated). Note that the degree of speed change of the host vehicle A is a value that can be acquired from the operating state of the host vehicle A only, regardless of the operating state of the leading vehicle B.
  • the speed change acquisition unit 38 acquires the detection result of the speed change of the host vehicle A, using the determination that the determination unit 36 is in the proximity state as a trigger. That is, the speed change acquisition unit 38 acquires the degree of speed change of the host vehicle A after the approach timing.
  • the proximity timing is the timing at which the determination unit 36 determines that it is in the proximity state.
  • the degree of speed change of the host vehicle A after the close timing is described as a close speed change value.
  • the speed change acquisition unit 38 acquires, as a proximity speed change value, the degree of the speed change of the host vehicle A during a predetermined time elapsed from the proximity timing.
  • the predetermined time is, for example, a time during which the host vehicle A can be stopped at least by sudden braking, such as several seconds, and is, for example, a value equal to or less than the determination threshold.
  • the speed change acquisition unit 38 acquires the degree of deceleration of the host vehicle A (acceleration in the deceleration direction) from the approach timing to the elapse of a predetermined time as the approach speed change value.
  • the speed change detection unit 16 samples the speed change of the host vehicle A regardless of whether it is determined to be in the proximity state, the detection of the speed change from the proximity timing is triggered by the determination that the state is proximity. You may start
  • the proximity speed change value acquired by the speed change acquisition unit 38 is used by the alarm control unit 40 to set the timing of the alarm output in the next and subsequent proximity states.
  • the alarm control unit 40 sets the alarm timing based on the proximity timing (timing determined to be in the proximity state). Further, the alarm control unit 40 changes the alarm timing based on the proximity speed change value (the degree of speed change of the host vehicle A after the proximity timing).
  • the alarm timing is a timing at which an alarm is output to the driver of the host vehicle A.
  • the alarm control unit 40 includes an alarm timing setting unit 50 and an alarm timing correction value calculation unit 52.
  • the alarm timing setting unit 50 acquires, as the proximity timing, the timing at which the determination unit 36 determines that the proximity state is in effect. Then, the alarm timing setting unit 50 reads the alarm timing correction value stored in the storage unit 22 from the storage unit 22. The alarm timing setting unit 50 sets an alarm timing based on the approach timing and the alarm timing correction value. Here, the approach timing is t0, the alarm timing correction value is ⁇ t, and the alarm timing is t1. The alarm timing setting unit 50 calculates the alarm timing t1 as the following equation (1).
  • T1 t0 + ⁇ t (1)
  • the alarm timing setting unit 50 sets a value obtained by adding the alarm timing correction value ⁇ t to the proximity timing t0 as the alarm timing t1. In other words, the alarm timing setting unit 50 sets a timing delayed by the alarm timing correction value ⁇ t from the proximity timing t0 as the alarm timing t1.
  • the alarm timing correction value ⁇ t is a value calculated by the alarm timing correction value calculation unit 52 as described later, and is calculated as a value of 0 or more (a value of 0 seconds or more).
  • the alarm timing correction value calculation unit 52 calculates an alarm timing correction value ⁇ t.
  • the alarm timing correction value ⁇ t is a correction value for shifting (correcting) the alarm timing t1 after the next time from the proximity timing t0, as in the above-mentioned equation (1).
  • the warning timing correction value calculation unit 52 calculates a warning timing correction value ⁇ t based on the proximity velocity change value (the degree of the velocity change of the host vehicle A from the proximity timing) acquired by the velocity change acquisition unit 38.
  • the alarm timing correction value calculation unit 52 updates and calculates the alarm timing correction value ⁇ t each time the proximity speed change value is acquired, that is, each time the proximity state is reached. In other words, the alarm timing correction value calculation unit 52 performs learning based on the proximity speed change value, updates and calculates the alarm timing correction value ⁇ t, and corrects the alarm timing t1 from the next time on.
  • the alarm timing correction value calculation unit 52 acquires, from the speed change acquisition unit 38, an approach speed change value from the current approach timing. Further, the alarm timing correction value calculation unit 52 acquires from the storage unit 22 the change threshold and the alarm timing correction value ⁇ t that has been calculated by the learning up to the previous time.
  • the change threshold is a threshold set in advance to update the value of the alarm timing correction value ⁇ t.
  • the change threshold may be a single numerical value or a predetermined numerical range.
  • the alarm timing correction value calculation unit 52 changes the calculated alarm timing correction value ⁇ t based on the magnitude relationship between the proximity speed change value and the change threshold value, and changes the alarm timing correction value ⁇ t as the update alarm timing correction value. Calculated as ⁇ t ′.
  • the alarm timing correction value calculation unit 52 stores the updated alarm timing correction value ⁇ t ′ in the storage unit 22 as the updated alarm timing correction value ⁇ t.
  • the alarm timing correction value calculation unit 52 reduces the value of the calculated alarm timing correction value ⁇ t and updates the reduced value as the update alarm timing. Calculated as the correction value ⁇ t ′.
  • the alarm timing correction value calculation unit 52 makes the alarm timing t1 after the next time earlier by decreasing the value of the alarm timing correction value ⁇ t. In other words, the alarm timing correction value calculation unit 52 sets the alarm timing t1 after the next time to a timing closer to the proximity timing t0.
  • the alarm timing correction value calculation unit 52 enlarges the value of the alarm timing correction value ⁇ t that has already been calculated, and updates the increased value as the update alarm timing correction value ⁇ t. Calculate as'.
  • the alarm timing correction value calculation unit 52 delays the alarm timing t1 after the next time by increasing the value of the alarm timing correction value ⁇ t. In other words, the alarm timing correction value calculation unit 52 sets the alarm timing t1 after the next time to a timing delayed from the proximity timing t0.
  • the alarm timing correction value calculation unit 52 sets the lower limit value of the updated alarm timing correction value ⁇ t ′ (alarm timing correction value ⁇ t) as 0, so that the alarm timing correction value ⁇ t does not become a value smaller than 0. Do. As a result, the alarm timing t1 is not earlier than the proximity timing t0. Further, the alarm timing correction value calculation unit 52 sets the upper limit value of the updated alarm timing correction value ⁇ t ′ (alarm timing correction value ⁇ t), so that the alarm timing correction value ⁇ t does not become a larger value than this upper limit value. Do. As a result, the time when the alarm timing t1 is delayed from the approach timing t0 is limited so that the alarm timing t1 is not delayed too much.
  • the warning timing correction value calculation unit 52 calculates the amount of change of the warning timing correction value ⁇ t based on the difference between the proximity speed change value and the change threshold value. That is, the larger the difference between the proximity speed change value and the change threshold value, the larger the amount of change in the calculated alarm timing correction value ⁇ t, and the difference between the proximity speed change value and the change threshold value. Is smaller, the amount of change in the calculated alarm timing correction value ⁇ t is smaller. Also, the alarm timing correction value calculation unit 52 divides the difference between the current proximity speed change value and the change threshold value by the number of times the proximity speed change value has been detected so far, and based on the divided value, the alarm timing correction. The amount of change of the value ⁇ t may be calculated.
  • the alarm timing correction value calculation unit 52 updates the alarm timing correction value ⁇ t based on the proximity speed change value (degree of speed change of the host vehicle A from the proximity timing).
  • the alarm timing setting unit 50 sets the alarm timing t1 at the next proximity timing using the alarm timing correction value ⁇ t updated at the current proximity timing. That is, the alarm timing setting unit 50 uses the alarm timing correction value ⁇ t updated by the alarm timing correction value calculation unit 52 for setting the alarm timing t1 after the next time.
  • the alarm timing setting unit 50 sets the alarm timing t1 at the present proximity timing using the alarm timing correction value ⁇ t that has been calculated at the previous proximity timing.
  • the alarm control unit 40 changes the alarm timing t1 from the next time using the alarm timing correction value ⁇ t calculated based on the proximity speed change value.
  • the alarm control unit 40 changes the current alarm timing t1 based on the current proximity timing t0 and the alarm timing correction value ⁇ t already calculated up to the previous proximity timing.
  • the alarm control unit 40 updates the alarm timing correction value ⁇ t to be smaller when the approach speed change value (degree of the speed change of the host vehicle A from the approach time) is equal to or greater than the change threshold.
  • Alarm timing t1 of when the proximity speed change value is smaller than the change threshold value, the alarm control unit 40 updates the alarm timing correction value ⁇ t so as to be large, and delays the alarm timing t1 from the next time onward.
  • the change timing of the alarm timing t1 is not limited to the next time.
  • the correction value of the alarm timing (alarm timing correction value ⁇ t) there may be an embodiment such as taking an average value of several proximity states.
  • the alarm control unit 40 controls the output unit 18 to output an alarm at the alarm timing t1 set as described above.
  • the output unit 18 outputs an alarm at the alarm timing t1.
  • the alarm control unit 40 may update the determination threshold used to determine the proximity state based on the proximity velocity change value (degree of velocity change of the host vehicle A from the proximity timing). Based on the updated determination threshold value, the determination unit 36 determines whether the next or subsequent proximity state is present. In this case, the alarm control unit 40 increases the determination threshold when the proximity speed change value is equal to or greater than the predetermined threshold, and decreases the determination threshold when the proximity speed change value is smaller than the predetermined threshold.
  • the determination threshold is large, it is easy to be determined as being in the proximity state, and when the determination threshold is small, it is difficult to be determined as being in the proximity state.
  • the alarm control unit 40 may set the alarm timing t1 so as to be changeable for each driver. That is, the driving support device 10 includes a driver information acquisition unit (not shown), identifies the driver by the driver information acquisition unit, and stores the alarm timing correction value ⁇ t in the storage unit 22 for each driver. It is also good. In this case, for example, when the driver riding on the host vehicle A inputs his / her information (such as an ID) into the input unit 19, the driver information acquisition unit acquires the driver's information and identifies the driver. Do. The alarm control unit 40 reads out from the storage unit 22 the alarm timing correction value ⁇ t which is assigned to and stored in the driver identified by the driver information acquisition unit.
  • the driver information acquisition unit can also identify the driver using known techniques such as person authentication by a camera and ID identification by communication with a possessed smartphone.
  • the alarm control unit 40 may include a driver information acquisition unit for identifying the driver of the host vehicle A, and may set an alarm timing for each identified driver.
  • the driving support apparatus 10 can learn and set the alarm timing t1 for each driver, and can appropriately set the alarm timing even when, for example, the driver of the host vehicle A changes. it can.
  • the warning control unit 40 may include a driver information acquisition unit for identifying a driver, and may set the warning timing t1 for each identified driver. That is, the driving assistance apparatus 10 may have a learning function for each driver and may change the alarm timing t1 in accordance with the driving characteristic of the driver.
  • the driver's recognition may be manually selected from the driver list registered in advance, or may be a known method such as face authentication, fingerprint authentication, authentication of a wireless ID of a smartphone, license number authentication You may use my number authentication.
  • the warning control unit 40 returns the warning timing t1 for the driver to the initial setting value. It is also good.
  • the initial setting value is an alarm timing t1 before the alarm timing t1 is changed based on the detection result of the degree of speed change of the host vehicle A.
  • the alarm timing t1 of the initial setting value is the proximity timing t0 because the alarm timing correction value ⁇ t does not exist.
  • the predetermined period is a period set in advance, such as several weeks, for example, and is a period that the driver feels when driving after a long time. If the driver performs daily driving, the driver may feel that it is not a long time if he does not drive for several days, so the predetermined period can be set arbitrarily.
  • the driving support apparatus 10 may set the warning timing t1 learned for each driver as a default setting (initially set value) for the driver who is not driving for a predetermined period.
  • a default setting initially set value
  • the safety for users who are not used to driving it is preferable for the safety for users who are not used to driving to warn early if it is bothersome for users who are used to driving and it is a bother for early warnings. It is desirable to appropriately reduce the number of warnings by delaying the timing of emitting For this reason, the driving support apparatus 10 can enhance the safety for the user who has not driven for a certain period of time by setting the warning timing as the initial setting regardless of the previous learning result.
  • the warning timing is earlier than the initial setting value, it is desirable to set the warning timing to the earlier one of the initial setting value and the learning result.
  • the alarm timing t1 reflects the value changed based on the detection result of the degree of speed change of the host vehicle A also at the time of driving the next day and thereafter.
  • the alarm control unit 40 may reset the contents of change of the alarm timing up to the previous day, and return the alarm timing t1 at the start of driving of the host vehicle A on the current day to the initial setting value. That is, the driving support device 10 may reset the warning timing t1 learned by the previous day and start from the initial set value at the start of driving daily.
  • a proximity warning with the preceding vehicle B is easily issued, but it is difficult to learn and issue a warning while performing safe driving.
  • FIG. 3 is a flowchart for explaining an output flow of an alarm by the driving support system according to the first embodiment.
  • the determination unit 36 of the driving support system 100 acquires the determination threshold from the determination threshold setting unit 34 (step S10), and the relative speed acquisition unit 30
  • the detection result of the relative speed with respect to the leading vehicle B is acquired, and the detection result of the inter-vehicle distance between the host vehicle A and the leading vehicle B is acquired from the inter-vehicle distance acquisition unit 32 (step S12).
  • the determination unit 36 determines whether the host vehicle A is in the close state based on the relative speed, the inter-vehicle distance, and the determination threshold (step S14). If the determination section 36 determines that it is not in the proximity state (step S14; No), the process returns to step S12, acquires the latest value of the relative speed and the inter-vehicle distance, and continues determination of whether or not it is in the proximity state.
  • the alarm control unit 40 sets the alarm timing t1 based on the proximity timing t0 and the alarm timing correction value ⁇ t. (Step S16).
  • the alarm control unit 40 sets the alarm timing t1 based on the proximity timing t0 determined to be in the proximity state by the alarm timing setting unit 50 and the alarm timing correction value ⁇ t calculated at the previous proximity timing. .
  • the alarm control unit 40 causes the output unit 18 to output an alarm at this alarm timing t1 (step S18). Thereafter, the driving support system 100 continues the determination processing of the proximity state and the setting processing of the alarm timing t1, and ends the processing according to the instruction to end the processing.
  • FIG. 4 is a flowchart illustrating processing of calculating an alarm timing correction value by the driving support system according to the first embodiment.
  • the alarm timing correction value calculation unit 52 in the driving support system 100 receives the proximity change timing from the speed change acquisition unit 38.
  • the detection result of the speed change of the host vehicle A is acquired (step S22).
  • the alarm timing correction value calculation unit 52 calculates and updates the alarm timing correction value ⁇ t from the next time based on the proximity speed change value (step S24).
  • the alarm timing correction value calculation unit 52 corrects the alarm timing based on the proximity speed change value from the current proximity timing, the alarm timing correction value ⁇ t already calculated in the previous learning, and the change threshold value. Update the value ⁇ t.
  • the updated alarm timing correction value ⁇ t is used to calculate the alarm timing at the next approach timing in step S16 of FIG.
  • the alarm timing correction value calculation unit 52 continues updating the alarm timing correction value ⁇ t, and ends the present process according to the instruction to end the process.
  • the timing for outputting the alarm is determined according to only the proximity timing t0.
  • the approach timing t0 is a timing that is calculated based on the relative speed and the inter-vehicle distance, and it is determined that the host vehicle A may collide with the preceding vehicle B. Therefore, when an alarm is output in response to the proximity timing t0, the driver can be alerted to promote the prevention of a collision.
  • whether the timing for outputting an alarm is appropriate may differ depending on the driver. For example, depending on the driver, the warning at this timing may be felt too early to disturb the driving. Conversely, the warning at this timing may be too late, so the response may be delayed and the brake applied suddenly.
  • the alarm based on only the proximity timing t0 may not be an appropriate timing. For example, when the driver has stepped on the brake strongly and the relative speed is lowered, the timing of outputting the alarm may be delayed. Further, when the preceding vehicle B decelerates rapidly due to a sudden braking and the driver also suddenly decelerates to decelerate the own vehicle A, the relative speed becomes almost constant, and the timing of outputting an alarm may be delayed. As described above, data based on the relative velocity and the inter-vehicle distance (proximity timing t0) may not be sufficient to appropriately output the alarm.
  • the driving support apparatus 10 learns an appropriate alarm timing t1 (calculates an alarm timing correction value ⁇ t) based on the degree of speed change of the host vehicle A after the proximity timing t0.
  • the alarm timing t1 from the next time is changed. Since the driving support device 10 learns and corrects the alarm timing t1 based on the speed change of the host vehicle A, that is, the operation state, the alarm is output at the timing according to the driver's tendency and the characteristics of the host vehicle A. It is possible to
  • the driving assistance apparatus 10 includes a relative speed acquisition unit 30, an inter-vehicle distance acquisition unit 32, a determination unit 36, a speed change acquisition unit 38, and an alarm control unit 40.
  • the relative speed acquisition unit 30 acquires the detection result of the relative speed of the host vehicle A with respect to the preceding vehicle B.
  • the inter-vehicle distance acquisition unit 32 acquires the detection result of the inter-vehicle distance between the host vehicle A and the preceding vehicle B.
  • the determination unit 36 determines whether the host vehicle A is in proximity to the preceding vehicle B based on the relative speed and the inter-vehicle distance.
  • the speed change acquisition unit 38 acquires the detection result of the degree of speed change of the host vehicle A.
  • the alarm control unit 40 sets an alarm timing t1, which is a timing for outputting an alarm to the driver of the host vehicle A, based on the timing (proximity timing t0) determined to be in the proximity state. Then, the alarm control unit 40 changes the alarm timing t1 from the next time on the basis of the detection result (proximity speed change value) of the degree of speed change of the host vehicle A after being determined to be in the close state.
  • the driving support apparatus 10 corrects the alarm timing t1 from the next time on the basis of the speed change of the host vehicle A from the proximity state, that is, the degree of deceleration of the host vehicle A after approaching the leading vehicle B. Therefore, the driving support device 10 learns the operation of the host vehicle A in a state in which the dependence on the operation of the leading vehicle B is suppressed, and from the next time on, according to the driver's tendency and the characteristics of the host vehicle A. The timing of the alarm can be properly controlled.
  • the alarm control unit 40 make it fast. Then, the alarm control unit 40 delays the alarm timing t1 from the next time, when the speed change of the host vehicle A after being determined to be in the close state is smaller than the change threshold.
  • the driving support apparatus 10 makes the alarm timing t1 from the next time earlier to notify the alarm earlier.
  • the driving support device 10 determines that the driver is rapidly decelerating because the driver is decelerating because it tends to be delayed from the timing to be decelerated, and notifies the warning early from the next time to decelerate early. It is possible to urge the driver to Thereby, the risk of the collision of the own vehicle A can be suppressed.
  • the driving support device 10 delays the alarm timing t1 from the next time and delays the alarm notification.
  • the driving support device 10 since the driving support device 10 starts deceleration with a margin for the timing at which the driver should decelerate, it is determined that the deceleration is moderate, and the alarm notification is delayed from the next time to drive. Avoid giving unnecessary alert notices to people. This enables the driver to drive without being bothered by unnecessary alarm notification. By thus controlling the alarm timing t1 from the next time, the driving support apparatus 10 can learn the operation of the host vehicle A more appropriately, and can appropriately control the timing of the next alarm.
  • the driving support system 100A according to the second embodiment differs from the first embodiment in that the speed change detection unit 16A detects a plurality of parameters. Descriptions of parts of the second embodiment having the same configuration as the first embodiment will be omitted.
  • FIG. 5 is a schematic block diagram of a driving support system according to a second embodiment.
  • the speed change detection unit 16A according to the second embodiment includes an acceleration sensor 60, a pressure detection unit 62, a weight scale 64, a tension detection unit 66, and a treading force detection unit 68.
  • the speed change detection unit 16A mainly captures the detection results of these parts as the degree of speed change of the host vehicle A due to the sudden braking and outputs the result to the speed change acquisition unit 38A.
  • the acceleration sensor 60 detects the acceleration of the host vehicle A as a value of the speed change of the host vehicle A. Note that, instead of the acceleration sensor 60, the above-mentioned speed sensor may be provided, or in addition to the acceleration sensor 60, a speed sensor may be provided.
  • the pressure detection unit 62 is a pressure sensor provided on the suspension of the host vehicle A, and detects a pressure change acting on the suspension. The pressure detection unit 62 outputs the detection result of the pressure change amount to the speed change acquisition unit 38A as one parameter of the degree of speed change of the vehicle A.
  • the weight scale 64 is a weight sensor provided on the seat of the host vehicle A, and detects a change in weight acting on the seat of the host vehicle A.
  • the weight scale 64 outputs the detection result of the weight change acting on the seat of the host vehicle A to the speed change acquisition unit 38A as one parameter of the degree of the speed change of the host vehicle A.
  • the tension detection unit 66 is a tension sensor provided on the seat belt of the host vehicle A, and detects a change in tension of the seat belt.
  • the tension detection unit 66 outputs the detection result of the change in tension of the seat belt to the speed change acquisition unit 38A as one parameter of the degree of speed change of the host vehicle A.
  • the pedaling force detection unit 68 is a sensor provided on the brake of the host vehicle A, and detects a change in pedaling force acting on the brake.
  • the pedaling force detection unit 68 outputs the detection result of the pedaling force change acting on the brake to the speed change acquisition unit 38A as one parameter of the degree of speed change of the host vehicle A.
  • the speed change acquisition unit 38A acquires the value of the speed change of the host vehicle A from the proximity timing from the acceleration sensor 60, and the value of the pressure change of the suspension from the pressure detection unit 62 (from the proximity timing The pressure change amount in unit time is acquired.
  • the speed change acquisition unit 38A acquires the value of the weight change of the seat (the amount of weight change in unit time from the proximity timing) from the weight scale 64, and the value of the tension change of the seat belt from the tension detection unit 66 ( The tension change amount in unit time from the approach timing is acquired, and the value of the pedal effort change to the brake (the pedal effort change amount in the unit time from the approach timing) is acquired from the pedal effort detection unit 68.
  • the speed change acquisition unit 38A calculates (determines) the degree of speed change of the host vehicle A based on these values.
  • the speed change acquisition unit 38A for example, increases the degree of speed change of the host vehicle A as the values of pressure change, weight change, tension change, and pedal force change from proximity timing increase, and pressure change from the proximity timing, weight As the values of the change, the change in tension, and the change in treading force become smaller, the degree of the speed change of the host vehicle A is set smaller.
  • the alarm timing correction value calculation unit 52A acquires the degree of speed change of the host vehicle A set in this manner, and calculates an alarm timing correction value ⁇ t based on the degree.
  • the degree of speed change of the host vehicle A is set based on pressure change, weight change, tension change, and pedal force change, so that the direct feeling of the driver or the passenger is felt.
  • the near sense of incongruity and the degree of danger can be reflected in the learning of the alarm timing t1. More specifically, by applying a sudden brake, a driver or a passenger can be in a forward position, and a state in which he feels anxiety or danger can be detected and reflected in timing learning.
  • the change in the speed of the host vehicle A is obtained using all the detection results of the acceleration sensor 60, the pressure detection unit 62, the weight scale 64, the tension detection unit 66, and the pedaling force detection unit 68.
  • the degree of speed change of the host vehicle A may be set using at least one of the detection results. That is, the speed change acquisition unit 38A acquires and acquires at least one of the detection result of the weight change of the weight scale 64, the detection result of the tension change of the seat belt, and the detection result of the pressure change acting on the suspension.
  • the degree of speed change of the host vehicle A may be determined based on at least one of the weight change amount, the acquired tension change amount, and the acquired pressure change amount.
  • the alarm control unit 40 may change the alarm timing t1 based on at least one of the acquired weight change amount, the acquired tension change amount, and the acquired pressure change amount.
  • the speed change acquisition unit 38A acquires the detection result of the weight change of the weighing scale 64 provided in the seat of the host vehicle A, and based on the acquired weight change amount, Determine the degree of speed change.
  • the driving support apparatus 10 can reflect in the learning of the alarm timing t1 an uncomfortable feeling or a degree of danger closer to the direct feeling of the driver or the passenger.
  • the speed change acquisition unit 38A according to the second embodiment acquires the detection result of the tension change of the seat belt provided in the seat of the host vehicle A, and the speed change of the host vehicle based on the acquired tension change amount. Determine the degree of As a result, the driving support apparatus 10 according to the second embodiment can reflect in the learning of the alarm timing t1 an uncomfortable feeling or a degree of danger closer to the direct feeling of the driver or the passenger.
  • the speed change acquisition unit 38A according to the second embodiment acquires the detection result of the pressure change acting on the suspension of the host vehicle A, and determines the degree of speed change of the host vehicle based on the acquired pressure change amount. Do.
  • the driving support apparatus 10 according to the second embodiment can reflect in the learning of the alarm timing t1 an uncomfortable feeling or a degree of danger closer to the direct feeling of the driver or the passenger.
  • the alarm timing correction value calculation unit 52A detects the alarm timing correction value based on the detection result from the acceleration sensor 60, that is, the value of the speed change of the host vehicle A.
  • the alarm timing correction value ⁇ t may be further corrected based on the detection results of others (pressure detection unit 62, weight scale 64, tension detection unit 66, treading force detection unit 68) by calculating ⁇ t.
  • the alarm timing correction value calculation unit 52A reduces the alarm timing correction value ⁇ t as the values of pressure change, weight change, tension change, and pedal force change from the proximity timing increase, and the pressure change from the proximity timing, weight
  • the alarm timing correction value ⁇ t is increased as the values of the change, the change in tension, and the change in treading force become smaller.
  • the speed change detection unit 16A may have a passenger state detection unit (not shown) that detects the state of emotion of the passenger.
  • the passenger is a passenger of the host vehicle A other than the driver, and is a passenger who gets in the passenger seat or the rear seat of the host vehicle.
  • the alarm timing correction value calculation unit 52A calculates the alarm timing correction value ⁇ t based on the detection result from the acceleration sensor 60, that is, the value of the speed change of the host vehicle A, and the passenger state detection unit The alarm timing correction value ⁇ t may be further corrected based on the detection result.
  • the alarm control unit 40 changes the alarm timing t1 based on the acquired detection result of the state of emotion of the passenger and the acquired speed change of the host vehicle A.
  • the passenger's state detection unit detects the state of the passenger's feeling by detecting the state of the passenger's feeling of anxiety or danger, and the alarm timing correction value calculation unit 52A warns the state of the passenger's state. By reflecting on t1, it becomes possible to reflect in the learning of the alarm timing t1 the degree of discomfort or danger closer to the direct feeling of the passenger.
  • the value of the speed change of the host vehicle A may be a value obtained by time-differentiating the speed of the host vehicle A detected by the degree sensor, as in the first embodiment.
  • the passenger status detection unit may be a pulse sensor that detects the pulse of the passenger, a voice sensor that detects the voice of the passenger, an imaging device that detects the expression and blink frequency of the passenger, and the temperature of the passenger. It may be at least one of a temperature sensor (eg, a thermo camera) to detect. For example, if the passenger feels that there is a high risk of collision with the forward vehicle B, the pulse of the passenger may rise, the voice of the passenger may change, the expression of the passenger may change, or the blink of the passenger The number of times and the temperature of the passenger become high, etc. (Pulse, voice, expression, blink frequency, temperature) reflect the state of emotion of the passenger.
  • the speed change acquisition unit 38A increases the degree of speed change of the host vehicle A as the pulse rate of the passenger increases, and the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier.
  • the speed change acquisition unit 38A detects that the sound volume of the passenger's voice is increased, or that a predetermined keyword such as "dangerous" is present in the sound, the degree of speed change of the host vehicle A, etc.
  • the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier.
  • the speed change acquisition unit 38A detects that the expression of the passenger is a predetermined expression, that is, the expression that felt danger, the degree of the speed change of the host vehicle A is increased, and the alarm timing correction value
  • the calculation unit 52A makes the alarm timing t1 after the next time earlier.
  • the speed change acquisition unit 38A increases the degree of speed change of the host vehicle A as the number of blinks of the passenger increases, and the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier.
  • the speed change acquisition unit 38A increases the degree of speed change of the host vehicle A as the passenger's body temperature rises, and the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier.
  • the speed change acquisition unit 33A acquires the detection result of the state of emotion of the passenger and the speed change of the host vehicle A, and the acquired detection result of the state of emotion of the passenger and the acquired host vehicle Based on the speed change of A, the degree of speed change of the host vehicle A may be determined.
  • the driver always confirms the situation around the vehicle, and operates the accelerator and the brake by himself so that the behavior of the vehicle can be predicted. For this reason, evaluation of the degree of the incident may be subjective.
  • the driver recognizes itself by an objective standard that the driver is aware of the level of safe driving. It is possible to change the timing t1.
  • the driving support system 100A may have an external brightness detection unit (not shown).
  • the external luminance detection unit is a luminance sensor that detects a change in luminance in the external environment of the host vehicle A, that is, a change in brightness of the external environment.
  • the external luminance detection unit in the present embodiment is, for example, an illuminance sensor, and detects the luminance of the external environment sequentially at each predetermined timing.
  • the external luminance detection unit may be any one as long as it detects a change in luminance in the external environment of the host vehicle A. For example, setting values such as camera exposure, shutter speed and AGC (automatic gain control) have been changed. May be detected.
  • the alarm timing correction value calculation unit 52A sequentially acquires the detection result of the detection of the luminance of the external environment by the external luminance detection unit.
  • the alarm timing correction value calculation unit 52A detects the speed change acquisition unit 33A during a predetermined time from the timing when the change in luminance of the external environment becomes larger than the predetermined value.
  • the degree of the speed change of the own vehicle determined in the above is not reflected in the change of the alarm timing t1 from the next time. That is, the warning timing correction value calculation unit 52A does not use the degree of the speed change of the host vehicle when the change of the luminance of the external environment is larger than the predetermined value, for learning of the warning timing t1.
  • the predetermined value is a predetermined value and can be set arbitrarily.
  • the predetermined time here is also a predetermined value such as several seconds, for example, and can be set arbitrarily.
  • the alarm control unit 40 obtains the detection result of the luminance of the external environment of the host vehicle A, and is determined to be in the proximity state when the luminance change of the external environment within the predetermined period is larger than the predetermined value.
  • the detection result of the degree of speed change of the host vehicle A from the above is excluded from the change condition of the alarm timing t1 (not reflected in the change of the alarm timing t1).
  • the driving support system 100A can not set the case where there is an abrupt change in luminance due to a tunnel or the like as the learning target in the learning of the alarm timing t1.
  • the eyes are not dimmed, and if there is proximity to the preceding vehicle B at this time, strong braking may be performed for safety.
  • the driving support system 100A can change the alarm timing t1 according to the degree of safe driving of the driver by excluding such a case from the learning target.
  • the driving support system 100 according to the third embodiment differs from the first embodiment in that the alarm control unit 40A has a mode selection unit 54A. Descriptions of parts of the third embodiment that share the same configuration as the first embodiment will be omitted.
  • the alarm control unit 40A according to the third embodiment can also be combined with the second embodiment.
  • FIG. 6 is a schematic block diagram of an alarm control unit according to the third embodiment.
  • the alarm control unit 40A according to the third embodiment includes an alarm timing setting unit 50, an alarm timing correction value calculation unit 52, and a mode selection unit 54A.
  • the mode selection unit 54A includes an external environment acquisition unit (not shown) that acquires the external environment of the host vehicle A, and selects a mode for each external environment that matches the external environment acquired by the external environment acquisition unit.
  • the mode includes, for example, a rainy weather mode, a fine weather mode, and a nighttime mode, and a plurality of modes are set according to the difference in the external environment.
  • the storage unit 22 stores an alarm timing correction value ⁇ t for each mode.
  • the alarm timing correction value calculation unit 52 reads the calculated alarm timing correction value ⁇ t of the mode selected by the mode selection unit 54A from the storage unit 22. Then, the alarm timing correction value calculation unit 52 updates the alarm timing correction value ⁇ t in the same manner as in the first embodiment. However, the alarm timing correction value calculation unit 52 sets the value of the alarm timing correction value ⁇ t to be different for each mode. For example, in the nighttime mode, the value of the alarm timing correction value ⁇ t is set to be smaller than that of normal (daytime). Further, in the rainy weather mode, the value of the alarm timing correction value ⁇ t is set to be smaller than that in the fine weather mode. In the present embodiment, since the alarm timing correction value ⁇ t is updated by learning, each value changes. However, since learning is performed for each mode, an appropriate alarm timing t1 can be set according to the external environment.
  • the alarm control unit 40A according to the third embodiment includes the external environment acquisition unit that acquires the external environment of the host vehicle A, and sets the alarm timing t1 for each acquired external environment. Therefore, the driving support apparatus 10 according to the third embodiment can set an appropriate alarm timing t1 according to the external environment.
  • different alarm timing correction values ⁇ t are set for each mode (every difference in the external environment), but the stored alarm timing correction values ⁇ t themselves are also common values regardless of the external environment. Good.
  • the alarm timing correction value calculation unit 52 further corrects the alarm timing correction value ⁇ t in accordance with the external environment.
  • the alarm timing correction value calculation unit 52 can set an appropriate alarm timing t1 according to the external environment by setting the value for correcting the alarm timing correction value ⁇ t to a different value for each difference in the external environment. .

Abstract

In order to learn the operation of a host vehicle and control the timing of a warning appropriately, a driving assistance device (10) has: a speed change acquisition unit (38) for acquiring a detection result for a degree of change in the speed of a host vehicle; a relative speed acquisition unit (30) for acquiring a detection result for a relative speed with respect to a vehicle preceding the host vehicle; an inter-vehicle distance acquisition unit (32) for acquiring a detection result for an inter-vehicle distance between the host vehicle and the preceding vehicle; a determination unit (36) for determining whether the host vehicle is in a state of approaching the preceding vehicle, on the basis of the relative speed and the inter-vehicle distance; and a warning control unit (40) for setting a warning timing, which is a timing for outputting a warning to the driver of the host vehicle, on the basis of the timing at which it is determined that the host vehicle is in an approaching state. The warning control unit (40) changes the warning timing on the basis of the detection result for the degree of change in the speed of the host vehicle after it has been determined that the host vehicle is in an approaching state.

Description

運転支援装置、記録装置、運転支援システム、運転支援方法およびプログラムDriving support device, recording device, driving support system, driving support method and program
 本発明は、運転支援装置、記録装置、運転支援システム、運転支援方法およびプログラムに関する。 The present invention relates to a driving support device, a recording device, a driving support system, a driving support method, and a program.
 車両に搭載されたカメラやセンサなどを使用し、先行車両または障害物との衝突の危険を検知した際に警告を発する装置が知られている。この警告が遅い場合には衝突を回避する動作が間に合わなくなるが、早すぎると運転者に違和感を与えてしまうため、適切なタイミングで警告を行う技術が求められている。例えば、特許文献1には、前方車両との相対速度が一定値以上になってから運転者がブレーキ操作を行うまでの時間を学習し、ブレーキ操作の初動が遅い運転者には早めに警告を発する旨が記載されている。また、特許文献2には、前方車両との接近度合の判断に、車間距離と相対速度を用い、接近度合が高い場合に警告のタイミングを早くする旨が記載されている。また、特許文献3には、前方車両への接近の変化量を検出し、接近の変化量が穏やかである場合に、警報のタイミングを通常時よりも遅く変更し、接近の変化量が激しい場合に、警報のタイミングを通常時よりも早く変更する旨が記載されている。 There is known a device that uses a camera, a sensor, or the like mounted on a vehicle and issues a warning when detecting the risk of a collision with a preceding vehicle or an obstacle. If this warning is slow, the action to avoid the collision will not be in time, but if it is too early it will give the driver a sense of discomfort, so there is a need for a technique to warn at appropriate timing. For example, according to Patent Document 1, the time until the driver performs the brake operation after the relative speed with the preceding vehicle becomes a predetermined value or more is learned, and a warning is given to the driver who has a slow start of the brake operation early. It describes that it emits. Further, Patent Document 2 describes that an inter-vehicle distance and a relative speed are used to determine the degree of approach to a forward vehicle, and the timing of a warning is advanced when the degree of approach is high. Further, according to Patent Document 3, when the amount of change in approach to the forward vehicle is detected and the amount of change in approach is gentle, the timing of the alarm is changed later than usual, and the amount of change in approach is severe. It is stated that the timing of the alarm is changed earlier than usual.
特開2011-253487号公報JP 2011-253487 A 特開2013-222297号公報JP, 2013-222297, A 特開2012-3710号公報JP 2012-3710 A
 しかし、相対速度や車間距離だけで警告のタイミングを制御すると、適切なタイミングで警告を行う事が出来ない場合がある。例えば、運転者が強くブレーキを踏んだために相対速度が下がった場合、危険性が低いと判断されて警報タイミングを遅くするおそれがある。また、前方車両が急ブレーキを踏んだために運転者も急ブレーキを踏んだ場合などは、相対速度がほぼ一定となり、やはり危険性が高いとは判断されずに警報タイミングを遅くするおそれがある。従って、自車両の動作を学習して、警告のタイミングを適切に制御する技術が求められている。 However, when the timing of the warning is controlled only by the relative speed and the distance between the vehicles, the warning may not be able to be issued at an appropriate timing. For example, if the relative speed is lowered because the driver strongly presses the brake, it is determined that the danger is low, which may delay the alarm timing. In addition, when the driver also stepped on the brake because the preceding vehicle stepped on the brake suddenly, the relative speed becomes almost constant, and there is a risk that the warning timing will be delayed without being judged as having high danger. . Therefore, there is a need for a technique for learning the operation of the vehicle and appropriately controlling the timing of the warning.
 本発明は、上記課題を鑑み、自車両の動作を学習して、警報のタイミングを適切に制御する運転支援装置、記録装置、運転支援システム、運転支援方法およびプログラムを提供することを目的とする。 An object of the present invention is to provide a driving support apparatus, a recording apparatus, a driving support system, a driving support method, and a program that learns the operation of the host vehicle and appropriately controls the timing of an alarm. .
 本発明の一態様にかかる運転支援装置は、自車両の速度変化の度合いの検出結果を取得する速度変化取得部と、前記自車両の先行車両に対する相対速度の検出結果を取得する相対速度取得部と、前記自車両と前記先行車両との車間距離の検出結果を取得する車間距離取得部と、前記相対速度と前記車間距離とに基づき、前記自車両が前記先行車両に対して近接状態であるかを判定する判定部と、前記近接状態であると判定されたタイミングに基づき、前記自車両の運転者に警報を出力するタイミングである警報タイミングを設定する警報制御部と、を有し、前記警報制御部は、前記近接状態であると判定されてからの前記自車両の速度変化の度合いの検出結果に基づき、前記警報タイミングを変更する。 The driving assistance apparatus according to an aspect of the present invention includes a speed change acquisition unit that acquires a detection result of the degree of speed change of the host vehicle, and a relative speed acquisition unit that acquires a detection result of a relative speed of the host vehicle relative to a preceding vehicle. And the own vehicle is in proximity to the preceding vehicle based on the relative velocity and the inter-vehicle distance based on the relative velocity and the inter-vehicle distance, and a detection result of an inter-vehicle distance between the own vehicle and the preceding vehicle. And a warning control unit for setting a warning timing which is a timing for outputting a warning to the driver of the host vehicle based on the timing determined to be the close state. The alarm control unit changes the alarm timing on the basis of the detection result of the degree of speed change of the host vehicle after it is determined that the proximity state.
 本発明の一態様にかかる運転支援方法は、自車両の速度変化の度合いの検出結果を取得する速度変化取得ステップと、前記自車両の先行車両に対する相対速度の検出結果を取得する相対速度取得ステップと、前記自車両と前記先行車両との車間距離の検出結果を取得する車間距離取得ステップと、前記相対速度と前記車間距離とに基づき、前記自車両が前記先行車両に対して近接状態であるかを判定する判定ステップと、前記近接状態であると判定されたタイミングに基づき、前記自車両の運転者に警報を出力するタイミングである警報タイミングを設定する警報制御ステップと、を有し、前記警報制御ステップにおいて、前記近接状態であると判定されてからの前記自車両の速度変化の値に基づき、前記警報タイミングを変更する。 In the driving support method according to one aspect of the present invention, a speed change acquisition step of acquiring a detection result of a degree of speed change of a host vehicle, and a relative speed acquisition step of acquiring a detection result of a relative speed of the host vehicle relative to a preceding vehicle And the own vehicle is in proximity to the preceding vehicle based on the inter-vehicle distance acquiring step of acquiring the detection result of the inter-vehicle distance between the own vehicle and the preceding vehicle, the relative speed and the inter-vehicle distance And an alarm control step of setting an alarm timing which is a timing of outputting an alarm to the driver of the host vehicle based on the timing determined that the proximity state is determined. In the alarm control step, the alarm timing is changed based on the value of the speed change of the host vehicle after it is determined that the proximity state.
 本発明の一態様にかかるプログラムは、自車両の速度変化の度合いの検出結果を取得する速度変化取得ステップと、前記自車両の先行車両に対する相対速度の検出結果を取得する相対速度取得ステップと、前記自車両と前記先行車両との車間距離の検出結果を取得する車間距離取得ステップと、前記相対速度と前記車間距離に基づき、前記自車両が前記先行車両に対して近接状態であるかを判定する判定ステップと、前記自車両の運転者に警報を出力する警報出力ステップと、前記近接状態であると判定されたタイミングに基づき、前記自車両の運転者に警報を出力するタイミングである警報タイミングを設定する警報制御ステップと、を運転支援装置として動作するコンピュータに実行させるためのプログラムであって、前記警報制御ステップにおいて、前記近接状態であると判定されてからの前記自車両の速度変化の値に基づき、前記警報タイミングを変更する。 A program according to one aspect of the present invention includes a speed change acquisition step of acquiring a detection result of a degree of speed change of a host vehicle, and a relative speed acquisition step of acquiring a detection result of a relative velocity of the host vehicle relative to a preceding vehicle. An inter-vehicle distance acquiring step of acquiring a detection result of an inter-vehicle distance between the host vehicle and the leading vehicle, and determining whether the host vehicle is in proximity to the leading vehicle based on the relative speed and the inter-vehicle distance. Warning timing that is a timing of outputting a warning to the driver of the own vehicle based on the determining step, the warning output step of outputting a warning to the driver of the own vehicle, and the timing determined to be the close state A program for causing a computer operating as a driving assistance apparatus to execute an alarm control step of setting In-up, based on the value of the speed variation of the vehicle from being determined to the a proximity state, to change the alarm time.
 本発明によれば、自車両の動作を学習して、警報のタイミングを適切に制御することができる。 According to the present invention, it is possible to learn the operation of the vehicle and appropriately control the timing of the alarm.
図1は、自車両及び先行車両を説明する模式図である。FIG. 1 is a schematic view illustrating a host vehicle and a preceding vehicle. 図2は、第1実施形態に係る運転支援システムの模式的なブロック図である。FIG. 2 is a schematic block diagram of the driving support system according to the first embodiment. 図3は、第1実施形態に係る運転支援システムによる警報の出力フローを説明するフローチャートである。FIG. 3 is a flowchart for explaining an output flow of an alarm by the driving support system according to the first embodiment. 図4は、第1実施形態に係る運転支援システムによる警報タイミング補正値の算出処理を説明するフローチャートである。FIG. 4 is a flowchart illustrating processing of calculating an alarm timing correction value by the driving support system according to the first embodiment. 図5は、第2実施形態に係る運転支援システムの模式的なブロック図である。FIG. 5 is a schematic block diagram of a driving support system according to a second embodiment. 図6は、第3実施形態に係る警報制御部の模式的なブロック図である。FIG. 6 is a schematic block diagram of an alarm control unit according to the third embodiment.
 以下に、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Note that the present invention is not limited by the embodiments described below.
 (第1実施形態)
 図1は、自車両及び先行車両を説明する模式図である。図2は、第1実施形態に係る運転支援システムの模式的なブロック図である。第1実施形態に係る運転支援システム100は、図1に示す自車両Aに搭載される。運転支援システム100は、図1に示すように、自車両Aが進行方向前方の先行車両Bに対して近接状態となったことをトリガとして、自車両Aの運転者に対して警報を出力するためのシステムである。近接状態は、自車両Aが先行車両Bに対して衝突する可能性が、ある程度生じた状態を指し、自車両Aと先行車両Bとの車間距離や相対速度、自車速度などにより判定される。運転支援システム100は、自車両Aに載置されているものに加えて、可搬型で自車両Aにおいて利用可能な装置であってもよい。運転支援システム100は、例えばドライブレコーダーなどの車載用の記憶装置であってもよいし、後述する検出部(センサ群)としてカメラなどを備えた撮像装置であってもよい。
First Embodiment
FIG. 1 is a schematic view illustrating a host vehicle and a preceding vehicle. FIG. 2 is a schematic block diagram of the driving support system according to the first embodiment. The driving support system 100 according to the first embodiment is mounted on the vehicle A shown in FIG. As shown in FIG. 1, the driving support system 100 outputs an alarm to the driver of the host vehicle A, using the fact that the host vehicle A is in proximity to the preceding vehicle B ahead in the traveling direction as a trigger. Is a system for The proximity state refers to a state where the possibility that the host vehicle A collides with the leading vehicle B has occurred to some extent, and is determined by the distance between the host vehicle A and the leading vehicle B, the relative speed, the host vehicle speed, etc. . The driving support system 100 may be a portable type device that can be used in the host vehicle A in addition to the one mounted on the host vehicle A. The driving support system 100 may be, for example, an on-vehicle storage device such as a drive recorder, or may be an imaging device provided with a camera or the like as a detection unit (sensor group) described later.
 図2に示すように、運転支援システム100は、運転支援装置10と、相対速度検出部12と、車間距離検出部14と、速度変化検出部16と、出力部18と、入力部19とを有する。運転支援装置10は、警報タイミングを設定するための装置であり、詳しくは後述する。警報タイミングとは、自車両Aの運転者に対して警報を出力するタイミングである。 As shown in FIG. 2, the driving support system 100 includes a driving support device 10, a relative speed detection unit 12, an inter-vehicle distance detection unit 14, a speed change detection unit 16, an output unit 18, and an input unit 19. Have. The driving support device 10 is a device for setting an alarm timing, and the details will be described later. The alarm timing is a timing at which an alarm is output to the driver of the host vehicle A.
 相対速度検出部12は、自車両Aの先行車両Bに対する相対速度を検出するセンサ、またはセンサとセンサ出力から相対速度を導出する演算部から成るユニットである。車間距離検出部14は、自車両Aと先行車両Bとの間の距離、すなわち車間距離を検出するセンサ、またはセンサとセンサ出力から車間距離を導出する演算部から成るユニットである。相対速度検出部12及び車間距離検出部14は、例えば、前方右センサと前方中央センサと前方左センサと後方右センサと後方中央センサと後方左センサとを有していてもよい。前方右センサ、前方中央センサ及び前方左センサは、自車両Aより前方の車両、すなわち先行車両Bを検出し、相対速度及び車間距離を検出する。後方右センサ、後方中央センサ及び後方左センサは、自車両Aより後方の車両を検出する。 The relative speed detection unit 12 is a unit that includes a sensor that detects the relative speed of the host vehicle A relative to the preceding vehicle B, or a calculation unit that derives the relative speed from the sensor and the sensor output. The inter-vehicle distance detection unit 14 is a unit that includes a sensor that detects the distance between the host vehicle A and the preceding vehicle B, that is, the inter-vehicle distance, or a computing unit that derives the inter-vehicle distance from the sensor and the sensor output. The relative speed detection unit 12 and the inter-vehicle distance detection unit 14 may have, for example, a front right sensor, a front center sensor, a front left sensor, a rear right sensor, a rear center sensor, and a rear left sensor. The front right sensor, the front center sensor, and the front left sensor detect a vehicle ahead of the host vehicle A, that is, a preceding vehicle B, and detect a relative speed and an inter-vehicle distance. The rear right sensor, the rear center sensor, and the rear left sensor detect a vehicle behind the host vehicle A.
 速度変化検出部16は、自車両Aの速度変化を検出するセンサ、またはセンサとセンサ出力から自車速度変化を導出する演算部から成るユニットである。自車両Aの速度変化とは、単位時間あたりの自車両Aの絶対速度の変化量、すなわち加速度である。速度変化検出部16は、例えば速度センサを有し、この速度センサが検出した自車両Aの速度を時間微分することで、自車両Aの速度変化の値を算出してもよい。また、速度変化検出部16は、例えば加速度センサを有し、この加速度センサが検出した自車両Aの加速度を、自車両Aの速度変化の値として検出してもよい。なお、自車両Aの速度変化は、自車両Aの絶対速度の変化であるため、先方車両Bの速度にも基づく相対速度とは異なり、先行車両Bの作動状態にかかわらず自車両Aだけの作動状態から検出可能な値である。 The speed change detection unit 16 is a unit that includes a sensor that detects the speed change of the host vehicle A, or a calculation unit that derives the host vehicle speed change from the sensor and the sensor output. The speed change of the host vehicle A is the change amount of the absolute speed of the host vehicle A per unit time, that is, the acceleration. The speed change detection unit 16 may have, for example, a speed sensor, and may calculate the value of the speed change of the host vehicle A by temporally differentiating the speed of the host vehicle A detected by the speed sensor. The speed change detection unit 16 may have, for example, an acceleration sensor, and may detect the acceleration of the host vehicle A detected by the acceleration sensor as the value of the speed change of the host vehicle A. Since the change in speed of the host vehicle A is a change in the absolute speed of the host vehicle A, the relative speed based on the speed of the destination vehicle B is different from the relative speed. This value is detectable from the operating state.
 相対速度検出部12、車間距離検出部14、及び速度変化検出部16は、相対速度、車間距離、及び自車両Aの速度変化の度合いを検出する検出部として、すなわち複数のセンサからなるセンサ群として、自車両Aに搭載されている。 The relative speed detection unit 12, the inter-vehicle distance detection unit 14, and the speed change detection unit 16 serve as a detection unit that detects the relative speed, the inter-vehicle distance, and the speed change of the host vehicle A, that is, a sensor group including a plurality of sensors Is mounted on the host vehicle A.
 出力部18は、自車両Aの運転者に対して情報を出力する。第1実施形態では、出力部18は、例えば表示部及びスピーカを備えている。表示部は、液晶ディスプレイ(LCD:Liquid Crystal Display)または有機EL(Organic Electro-Luminescence)ディスプレイ、ヘッドアップディスプレイを含むディスプレイである。表示部は、運転支援装置10から出力された映像信号に基づいて映像を表示する。表示部は、運転支援システム100に専用のものであっても、例えば、ナビゲーションシステムを含む他のシステムと共同で使用するものであってもよい。表示部は、運転者から視認容易な位置に配置されている。また、スピーカは、一例としてはナビゲーションシステムを含む他のシステムと共用した音声出力装置などである。スピーカは、運転支援装置10から出力された音声信号に基づき、音声を出力する。 The output unit 18 outputs information to the driver of the host vehicle A. In the first embodiment, the output unit 18 includes, for example, a display unit and a speaker. The display unit is a display including a liquid crystal display (LCD) or an organic electro-luminescence (EL) display, and a head-up display. The display unit displays an image based on the image signal output from the driving support device 10. The display unit may be dedicated to the driving support system 100 or may be used jointly with other systems including, for example, a navigation system. The display unit is disposed at a position easily visible by the driver. Also, the speaker is, for example, an audio output device shared with other systems including a navigation system. The speaker outputs a sound based on the sound signal output from the driving support device 10.
 出力部18は、運転支援装置10が設定した警報タイミングで、自車両Aの運転者に対して警報を出力する。すなわち、出力部18は、警報を出力する警報出力部としての機能を有する。出力部18は、警報として、表示部に、先行車両Bと衝突する危険がある旨の警告の映像を表示させてもよいし、スピーカに警告の音声を出力させてもよいし、それらの両方を行わせてもよい。 The output unit 18 outputs an alarm to the driver of the host vehicle A at the alarm timing set by the driving support device 10. That is, the output unit 18 has a function as an alarm output unit that outputs an alarm. The output unit 18 may cause the display unit to display a warning video indicating that there is a risk of collision with the preceding vehicle B as a warning, or may cause a speaker to output a warning sound, or both of them. You may
 入力部19は、自車両Aの運転者が操作(情報の入力)を行うための装置であり、例えばタッチパネルやボタンである。 The input unit 19 is a device for the driver of the host vehicle A to perform an operation (input of information), and is, for example, a touch panel or a button.
 次に、運転支援装置10について説明する。図2に示すように、運転支援装置10は、制御部20と記憶部22とを有する。制御部20は、CPU(Central Processing Unit)や映像処理用プロセッサなどで構成された演算処理装置である。記憶部22は、運転支援装置10における各種処理に要するデータおよび各種処理結果を記憶する。記憶部22は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置である。または、図示しない通信装置を介して無線接続される外部記憶装置であってもよい。 Next, the driving support device 10 will be described. As shown in FIG. 2, the driving support device 10 includes a control unit 20 and a storage unit 22. The control unit 20 is an arithmetic processing unit including a central processing unit (CPU), a processor for video processing, and the like. The storage unit 22 stores data required for various processing in the driving support device 10 and various processing results. The storage unit 22 is, for example, a semiconductor memory device such as a random access memory (RAM), a read only memory (ROM), a flash memory, or a storage device such as a hard disk or an optical disk. Alternatively, it may be an external storage device wirelessly connected via a communication device (not shown).
 制御部20は、記憶部22に記憶されているプログラムをメモリにロードして、プログラムに含まれる命令を実行する。制御部20には図示しない内部メモリが含まれ、内部メモリは制御部20におけるデータの一時記憶などに用いられる。制御部20は、一または複数の装置で構成されていてもよい。 The control unit 20 loads the program stored in the storage unit 22 into the memory and executes an instruction included in the program. The control unit 20 includes an internal memory (not shown), and the internal memory is used for temporary storage of data in the control unit 20 and the like. The control unit 20 may be configured of one or more devices.
 制御部20は、相対速度及び車間距離から、自車両Aが近接状態となったかを判定する。制御部20は、近接状態となったとの判定結果に基づき、設定した警報タイミングにおいて出力部18に警報を出力させる。また、制御部20は、自車両Aの動作を学習して、警報タイミングを更新する。制御部20は、相対速度取得部30と、車間距離取得部32と、判定閾値設定部34と、判定部36と、速度変化取得部38と、警報制御部40とを有する。 The control unit 20 determines whether the host vehicle A has approached based on the relative speed and the inter-vehicle distance. The control unit 20 causes the output unit 18 to output an alarm at the set alarm timing based on the determination result that the state of proximity is reached. Further, the control unit 20 learns the operation of the host vehicle A and updates the alarm timing. The control unit 20 includes a relative speed acquisition unit 30, an inter-vehicle distance acquisition unit 32, a determination threshold setting unit 34, a determination unit 36, a speed change acquisition unit 38, and an alarm control unit 40.
 相対速度取得部30は、相対速度検出部12から、自車両Aの先行車両Bに対する相対速度の検出結果を取得する。相対速度取得部30は、または、CAN(Controller Area Network)から速度を含む車両情報を取得して相対速度を演算する、図示しない相対速度演算部から相対速度を取得してもよい。相対速度取得部30は、所定時間毎に、相対速度の検出結果の最新値を取得する。車間距離取得部32は、車間距離検出部14から、自車両Aと先行車両Bとの間の車間距離の検出結果を取得する。車間距離取得部32は、所定時間毎に、車間距離の検出結果の最新値を取得する。 The relative speed acquisition unit 30 acquires, from the relative speed detection unit 12, the detection result of the relative speed of the host vehicle A relative to the preceding vehicle B. Alternatively, the relative speed acquisition unit 30 may acquire the relative speed from a not-shown relative speed calculation unit that acquires the vehicle information including the speed from CAN (Controller Area Network) and calculates the relative speed. The relative velocity acquisition unit 30 acquires the latest value of the relative velocity detection result for each predetermined time. The inter-vehicle distance acquisition unit 32 acquires the detection result of the inter-vehicle distance between the host vehicle A and the preceding vehicle B from the inter-vehicle distance detection unit 14. The inter-vehicle distance acquisition unit 32 acquires the latest value of the detection result of the inter-vehicle distance every predetermined time.
 判定閾値設定部34は、近接状態と判定するための判定閾値を、記憶部22から取得する。判定閾値は、予め定められた設定値であり、第1実施形態においては値が変更されない。ただし、判定閾値は、後述するように、警報制御部40により変更(更新)されてもよい。 The determination threshold setting unit 34 acquires, from the storage unit 22, a determination threshold for determining a proximity state. The determination threshold is a predetermined set value, and the value is not changed in the first embodiment. However, the determination threshold may be changed (updated) by the alarm control unit 40 as described later.
 判定部36は、相対速度取得部30から、相対速度の検出結果の現在値(最新値)を取得し、車間距離取得部32から、車間距離の検出結果の現在値(最新値)を取得する。判定部36は、相対速度と車間距離とに基づき、衝突予測時間を算出する。衝突予測時間とは、相対速度がこの状態のまま継続した場合に、自車両Aが先行車両Bに衝突するまでの時間である。例えば、車間距離が12mであり、自車両Aの先行車両Bに対する相対速度(自車両Aが先行車両Bに近づく方向の相対速度)が4m/sである場合、判定部36は、衝突予測時間を、3秒であると算出する。 The determination unit 36 acquires the current value (latest value) of the relative velocity detection result from the relative velocity acquisition unit 30, and acquires the current value (latest value) of the inter-vehicle distance detection result from the inter-vehicle distance acquisition unit 32. . The determination unit 36 calculates a collision prediction time based on the relative speed and the inter-vehicle distance. The collision prediction time is the time until the host vehicle A collides with the preceding vehicle B when the relative speed continues in this state. For example, when the inter-vehicle distance is 12 m and the relative speed of the own vehicle A to the preceding vehicle B (the relative speed of the own vehicle A approaching the preceding vehicle B) is 4 m / s, the determination unit 36 determines the collision prediction time Is calculated to be 3 seconds.
 判定部36は、さらに、判定閾値設定部34から、判定閾値を取得する。判定閾値は、例えば、衝突予測時間が判定閾値以下の値である場合に、自車両Aが先行車両Bに衝突するおそれがあることを示すような値に設定されている。例えば、判定閾値は、3秒として設定されているが、これに限られず任意に設定されてよい。 The determination unit 36 further obtains a determination threshold from the determination threshold setting unit 34. The determination threshold is set to, for example, a value indicating that the host vehicle A may collide with the leading vehicle B when the collision prediction time is a value equal to or less than the determination threshold. For example, although the determination threshold is set as 3 seconds, it is not limited to this and may be set arbitrarily.
 判定部36は、相対速度と車間距離と判定閾値とに基づき、自車両Aが先行車両Bに対して近接状態であるかを判定する。近接状態とは、相対速度がこの状態のまま継続した場合などに、所定の時間が経過すると、自車両Aが先行車両Bに衝突するおそれがある状態を指す。判定部36は、または、自車両Aと先行車両Bとの車間距離と、自車速度とによって、近接状態であるかを判定してもよい。ここでの所定の時間の判定に、判定閾値が用いられる。すなわち、判定部36は、算出した衝突予測時間が判定閾値以下である場合に、自車両Aが近接状態にあると判断し、算出した衝突予測時間が判定閾値より高い場合、自車両Aが近接状態にないと判断する。上述の例では、衝突予測時間が3秒であり、判定閾値も3秒であるため、判定部36は、現在の自車両Aが近接状態にあると判断する。 The determination unit 36 determines whether the host vehicle A is in proximity to the preceding vehicle B based on the relative speed, the inter-vehicle distance, and the determination threshold. The proximity state refers to a state in which the host vehicle A may collide with the preceding vehicle B when a predetermined time passes, for example, when the relative speed continues in this state. Alternatively, the determination unit 36 may determine whether the vehicle is in the close state based on the inter-vehicle distance between the host vehicle A and the preceding vehicle B and the host vehicle speed. A determination threshold is used to determine the predetermined time here. That is, the determination unit 36 determines that the own vehicle A is in the close state when the calculated estimated collision time is equal to or less than the determination threshold, and the own vehicle A approaches when the calculated estimated collision time is higher than the determination threshold. Judge not in the state. In the above-described example, since the collision prediction time is 3 seconds and the determination threshold is also 3 seconds, the determination unit 36 determines that the current vehicle A is in the proximity state.
 速度変化取得部38は、速度変化検出部16から、自車両Aの速度変化の度合いの検出結果を取得する。速度変化取得部38は、または、CAN(Controller Area Network)から速度を含む車両情報を取得して速度変化を演算する、図示しない速度変化演算部から速度変化の度合いを取得してもよい。自車両Aの速度変化の度合いとは、速度変化検出部16が検出した自車両Aの速度変化(加速度)に基づく値であり、自車両Aの速度変化がどれだけ激しいかを示す指標である。第1実施形態では、自車両Aの速度変化の度合いは、自車両Aの速度変化の値そのものである。すなわち、速度変化取得部38は、速度変化検出部16から、自車両Aの速度変化の値を取得する。ただし、詳しくは後述するが、速度変化取得部38は、自車両Aの速度変化の値に加え、他のパラメータ(ブレーキの踏力など)の検出結果を取得し、これらに基づき、自車両Aの速度変化の度合いを取得(算出)してもよい。なお、自車両Aの速度変化の度合いは、先行車両Bの動作状態にかかわらず、自車両Aだけの作動状態から取得可能な値である。 The speed change acquisition unit 38 acquires the detection result of the degree of speed change of the host vehicle A from the speed change detection unit 16. Alternatively, the speed change acquisition unit 38 may acquire the degree of speed change from a speed change calculation unit (not shown) that acquires vehicle information including speed from a CAN (Controller Area Network) and calculates the speed change. The degree of speed change of the host vehicle A is a value based on the speed change (acceleration) of the host vehicle A detected by the speed change detection unit 16 and is an index indicating how intense the speed change of the host vehicle A is. . In the first embodiment, the degree of the speed change of the host vehicle A is the value of the speed change of the host vehicle A itself. That is, the speed change acquisition unit 38 acquires the value of the speed change of the host vehicle A from the speed change detection unit 16. However, although the details will be described later, the speed change acquisition unit 38 acquires the detection results of other parameters (the depression force of the brake, etc.) in addition to the value of the speed change of the host vehicle A. The degree of speed change may be obtained (calculated). Note that the degree of speed change of the host vehicle A is a value that can be acquired from the operating state of the host vehicle A only, regardless of the operating state of the leading vehicle B.
 より詳しくは、速度変化取得部38は、判定部36が近接状態であると判定したことをトリガとして、自車両Aの速度変化の検出結果を取得する。すなわち、速度変化取得部38は、近接タイミング以降の自車両Aの速度変化の度合いを取得する。近接タイミングとは、判定部36が近接状態であると判定したタイミングである。また、以下、近接タイミング以降の自車両Aの速度変化の度合いを、近接速度変化値と記載する。具体的には、速度変化取得部38は、近接タイミングから所定の時間が経過するまでの間の、自車両Aの速度変化の度合いを、近接速度変化値として取得する。この所定の時間は、例えば数秒など、少なくとも急ブレーキにより自車両Aが停止可能な時間であり、例えば、判定閾値以下の値である。通常、近接状態と判定される程度に自車両Aが先行車両Bに近づくと、運転者は、衝突を避けるため、自車両Aを減速させる。従って、速度変化取得部38は、近接タイミングから所定時間経過までの、自車両Aの減速の度合い(減速方向の加速度)を、近接速度変化値として取得する。なお、速度変化検出部16は、近接状態と判定されたかに関わらず、自車両Aの速度変化をサンプリングしているが、近接状態と判定されたことをトリガとして、近接タイミングから速度変化の検出を開始してもよい。 More specifically, the speed change acquisition unit 38 acquires the detection result of the speed change of the host vehicle A, using the determination that the determination unit 36 is in the proximity state as a trigger. That is, the speed change acquisition unit 38 acquires the degree of speed change of the host vehicle A after the approach timing. The proximity timing is the timing at which the determination unit 36 determines that it is in the proximity state. Also, hereinafter, the degree of speed change of the host vehicle A after the close timing is described as a close speed change value. Specifically, the speed change acquisition unit 38 acquires, as a proximity speed change value, the degree of the speed change of the host vehicle A during a predetermined time elapsed from the proximity timing. The predetermined time is, for example, a time during which the host vehicle A can be stopped at least by sudden braking, such as several seconds, and is, for example, a value equal to or less than the determination threshold. Usually, when the host vehicle A approaches the preceding vehicle B to such an extent that it is determined to be in the close state, the driver decelerates the host vehicle A to avoid a collision. Therefore, the speed change acquisition unit 38 acquires the degree of deceleration of the host vehicle A (acceleration in the deceleration direction) from the approach timing to the elapse of a predetermined time as the approach speed change value. Although the speed change detection unit 16 samples the speed change of the host vehicle A regardless of whether it is determined to be in the proximity state, the detection of the speed change from the proximity timing is triggered by the determination that the state is proximity. You may start
 速度変化取得部38が取得した近接速度変化値は、警報制御部40によって、次回以降の近接状態における警報出力のタイミングの設定に用いられる。 The proximity speed change value acquired by the speed change acquisition unit 38 is used by the alarm control unit 40 to set the timing of the alarm output in the next and subsequent proximity states.
 警報制御部40は、近接タイミング(近接状態であると判定されたタイミング)に基づき、警報タイミングを設定する。また、警報制御部40は、近接速度変化値(近接タイミング以降の自車両Aの速度変化の度合い)に基づき、警報タイミングを変更する。警報タイミングとは、自車両Aの運転者に警報を出力するタイミングである。警報制御部40は、警報タイミング設定部50と、警報タイミング補正値算出部52とを有する。 The alarm control unit 40 sets the alarm timing based on the proximity timing (timing determined to be in the proximity state). Further, the alarm control unit 40 changes the alarm timing based on the proximity speed change value (the degree of speed change of the host vehicle A after the proximity timing). The alarm timing is a timing at which an alarm is output to the driver of the host vehicle A. The alarm control unit 40 includes an alarm timing setting unit 50 and an alarm timing correction value calculation unit 52.
 警報タイミング設定部50は、判定部36が近接状態であると判定したタイミングを、近接タイミングとして取得する。そして、警報タイミング設定部50は、記憶部22に記憶されている警報タイミング補正値を、記憶部22から読み出す。警報タイミング設定部50は、近接タイミングと警報タイミング補正値とに基づき、警報タイミングを設定する。ここで、近接タイミングをt0とし、警報タイミング補正値をΔtとし、警報タイミングをt1とする。警報タイミング設定部50は、以下の式(1)のように警報タイミングt1を算出する。 The alarm timing setting unit 50 acquires, as the proximity timing, the timing at which the determination unit 36 determines that the proximity state is in effect. Then, the alarm timing setting unit 50 reads the alarm timing correction value stored in the storage unit 22 from the storage unit 22. The alarm timing setting unit 50 sets an alarm timing based on the approach timing and the alarm timing correction value. Here, the approach timing is t0, the alarm timing correction value is Δt, and the alarm timing is t1. The alarm timing setting unit 50 calculates the alarm timing t1 as the following equation (1).
 t1=t0+Δt ・・・(1) T1 = t0 + Δt (1)
 すなわち、警報タイミング設定部50は、近接タイミングt0に警報タイミング補正値Δtを加えた値を、警報タイミングt1として設定する。言い換えれば、警報タイミング設定部50は、近接タイミングt0から警報タイミング補正値Δtだけ遅らせたタイミングを、警報タイミングt1として設定する。警報タイミング補正値Δtは、後述するように警報タイミング補正値算出部52によって算出される値であり、0以上の値(0秒以上の値)として算出される。 That is, the alarm timing setting unit 50 sets a value obtained by adding the alarm timing correction value Δt to the proximity timing t0 as the alarm timing t1. In other words, the alarm timing setting unit 50 sets a timing delayed by the alarm timing correction value Δt from the proximity timing t0 as the alarm timing t1. The alarm timing correction value Δt is a value calculated by the alarm timing correction value calculation unit 52 as described later, and is calculated as a value of 0 or more (a value of 0 seconds or more).
 警報タイミング補正値算出部52は、警報タイミング補正値Δtを算出する。警報タイミング補正値Δtは、上述の式(1)のように、次回以降の警報タイミングt1を、近接タイミングt0からずらす(補正する)ための補正値である。警報タイミング補正値算出部52は、速度変化取得部38が取得した近接速度変化値(近接タイミングからの自車両Aの速度変化の度合い)に基づき、警報タイミング補正値Δtを算出する。警報タイミング補正値算出部52は、近接速度変化値が取得される毎に、すなわち近接状態となる度に、警報タイミング補正値Δtを更新して算出する。言い換えれば、警報タイミング補正値算出部52は、近接速度変化値に基づき学習を行って、警報タイミング補正値Δtを更新して算出し、次回以降の警報タイミングt1を補正する。 The alarm timing correction value calculation unit 52 calculates an alarm timing correction value Δt. The alarm timing correction value Δt is a correction value for shifting (correcting) the alarm timing t1 after the next time from the proximity timing t0, as in the above-mentioned equation (1). The warning timing correction value calculation unit 52 calculates a warning timing correction value Δt based on the proximity velocity change value (the degree of the velocity change of the host vehicle A from the proximity timing) acquired by the velocity change acquisition unit 38. The alarm timing correction value calculation unit 52 updates and calculates the alarm timing correction value Δt each time the proximity speed change value is acquired, that is, each time the proximity state is reached. In other words, the alarm timing correction value calculation unit 52 performs learning based on the proximity speed change value, updates and calculates the alarm timing correction value Δt, and corrects the alarm timing t1 from the next time on.
 具体的には、警報タイミング補正値算出部52は、今回の近接タイミングからの近接速度変化値を、速度変化取得部38から取得する。また、警報タイミング補正値算出部52は、変化閾値と、前回までの学習で算出済みの警報タイミング補正値Δtとを、記憶部22から取得する。変化閾値は、警報タイミング補正値Δtの値を更新するために、予め設定された閾値である。変化閾値は、1つの数値であってもよいし、予め定めた数値範囲であってもよい。警報タイミング補正値算出部52は、近接速度変化値と変化閾値との大小関係に基づき、算出済みの警報タイミング補正値Δtを変化させ、変化させた警報タイミング補正値Δtを、更新警報タイミング補正値Δt’として算出する。警報タイミング補正値算出部52は、更新警報タイミング補正値Δt’を、更新した警報タイミング補正値Δtとして、記憶部22に記憶させる。 Specifically, the alarm timing correction value calculation unit 52 acquires, from the speed change acquisition unit 38, an approach speed change value from the current approach timing. Further, the alarm timing correction value calculation unit 52 acquires from the storage unit 22 the change threshold and the alarm timing correction value Δt that has been calculated by the learning up to the previous time. The change threshold is a threshold set in advance to update the value of the alarm timing correction value Δt. The change threshold may be a single numerical value or a predetermined numerical range. The alarm timing correction value calculation unit 52 changes the calculated alarm timing correction value Δt based on the magnitude relationship between the proximity speed change value and the change threshold value, and changes the alarm timing correction value Δt as the update alarm timing correction value. Calculated as Δt ′. The alarm timing correction value calculation unit 52 stores the updated alarm timing correction value Δt ′ in the storage unit 22 as the updated alarm timing correction value Δt.
 より詳しくは、警報タイミング補正値算出部52は、近接速度変化値が変化閾値以上である場合に、算出済みの警報タイミング補正値Δtの値を小さくして、その小さくした値を、更新警報タイミング補正値Δt’として算出する。警報タイミング補正値算出部52は、警報タイミング補正値Δtの値を小さくすることで、次回以降の警報タイミングt1を、早くする。言い換えれば、警報タイミング補正値算出部52は、次回以降の警報タイミングt1を、近接タイミングt0により近いタイミングとする。また、警報タイミング補正値算出部52は、近接速度変化値が変化閾値より小さい場合に、算出済みの警報タイミング補正値Δtの値を大きくして、その大きくした値を、更新警報タイミング補正値Δt’として算出する。警報タイミング補正値算出部52は、警報タイミング補正値Δtの値を大きくすることで、次回以降の警報タイミングt1を、遅くする。言い換えれば、警報タイミング補正値算出部52は、次回以降の警報タイミングt1を、近接タイミングt0からより遅らせたタイミングとする。なお、警報タイミング補正値算出部52は、更新警報タイミング補正値Δt’(警報タイミング補正値Δt)の下限値を0として設定しておき、警報タイミング補正値Δtが0より小さい値にならないようにする。これにより、警報タイミングt1が近接タイミングt0より早くならないようにする。また、警報タイミング補正値算出部52は、更新警報タイミング補正値Δt’(警報タイミング補正値Δt)の上限値を設定しておき、警報タイミング補正値Δtがこの上限値より大きな値にならないようにする。これにより、警報タイミングt1が近接タイミングt0から遅れる時間を制限して、警報タイミングt1が遅くなり過ぎないようにする。 More specifically, when the proximity speed change value is equal to or greater than the change threshold, the alarm timing correction value calculation unit 52 reduces the value of the calculated alarm timing correction value Δt and updates the reduced value as the update alarm timing. Calculated as the correction value Δt ′. The alarm timing correction value calculation unit 52 makes the alarm timing t1 after the next time earlier by decreasing the value of the alarm timing correction value Δt. In other words, the alarm timing correction value calculation unit 52 sets the alarm timing t1 after the next time to a timing closer to the proximity timing t0. Further, when the proximity speed change value is smaller than the change threshold value, the alarm timing correction value calculation unit 52 enlarges the value of the alarm timing correction value Δt that has already been calculated, and updates the increased value as the update alarm timing correction value Δt. Calculate as'. The alarm timing correction value calculation unit 52 delays the alarm timing t1 after the next time by increasing the value of the alarm timing correction value Δt. In other words, the alarm timing correction value calculation unit 52 sets the alarm timing t1 after the next time to a timing delayed from the proximity timing t0. Note that the alarm timing correction value calculation unit 52 sets the lower limit value of the updated alarm timing correction value Δt ′ (alarm timing correction value Δt) as 0, so that the alarm timing correction value Δt does not become a value smaller than 0. Do. As a result, the alarm timing t1 is not earlier than the proximity timing t0. Further, the alarm timing correction value calculation unit 52 sets the upper limit value of the updated alarm timing correction value Δt ′ (alarm timing correction value Δt), so that the alarm timing correction value Δt does not become a larger value than this upper limit value. Do. As a result, the time when the alarm timing t1 is delayed from the approach timing t0 is limited so that the alarm timing t1 is not delayed too much.
 なお、警報タイミング補正値算出部52は、警報タイミング補正値Δtの変化量を、近接速度変化値と変化閾値との差分に基づき算出する。すなわち、警報タイミング補正値算出部52は、近接速度変化値と変化閾値との差分が大きいほど、算出済みの警報タイミング補正値Δtの変化量を大きくし、近接速度変化値と変化閾値との差分が小さいほど、算出済みの警報タイミング補正値Δtの変化量を小さくする。また、警報タイミング補正値算出部52は、今回の近接速度変化値と変化閾値との差分を、今まで近接速度変化値を検出した回数で除して、その除した値に基づき、警報タイミング補正値Δtの変化量を算出してもよい。 The warning timing correction value calculation unit 52 calculates the amount of change of the warning timing correction value Δt based on the difference between the proximity speed change value and the change threshold value. That is, the larger the difference between the proximity speed change value and the change threshold value, the larger the amount of change in the calculated alarm timing correction value Δt, and the difference between the proximity speed change value and the change threshold value. Is smaller, the amount of change in the calculated alarm timing correction value Δt is smaller. Also, the alarm timing correction value calculation unit 52 divides the difference between the current proximity speed change value and the change threshold value by the number of times the proximity speed change value has been detected so far, and based on the divided value, the alarm timing correction. The amount of change of the value Δt may be calculated.
 警報タイミング補正値算出部52は、以上説明したように、近接速度変化値(近接タイミングからの自車両Aの速度変化の度合い)に基づき、警報タイミング補正値Δtを更新する。警報タイミング設定部50は、今回の近接タイミングにおいて更新された警報タイミング補正値Δtを用いて、次の近接タイミングにおける警報タイミングt1を設定する。すなわち、警報タイミング設定部50は、警報タイミング補正値算出部52が更新した警報タイミング補正値Δtを、次回以降の警報タイミングt1の設定に用いる。なお、警報タイミング設定部50は、前回までの近接タイミングで算出済みの警報タイミング補正値Δtを用いて、今回の近接タイミングにおける警報タイミングt1を設定する。 As described above, the alarm timing correction value calculation unit 52 updates the alarm timing correction value Δt based on the proximity speed change value (degree of speed change of the host vehicle A from the proximity timing). The alarm timing setting unit 50 sets the alarm timing t1 at the next proximity timing using the alarm timing correction value Δt updated at the current proximity timing. That is, the alarm timing setting unit 50 uses the alarm timing correction value Δt updated by the alarm timing correction value calculation unit 52 for setting the alarm timing t1 after the next time. The alarm timing setting unit 50 sets the alarm timing t1 at the present proximity timing using the alarm timing correction value Δt that has been calculated at the previous proximity timing.
 このように、警報制御部40は、近接速度変化値に基づき算出された警報タイミング補正値Δtを用いて、次回からの警報タイミングt1を変更する。言い換えれば、警報制御部40は、今回の近接タイミングt0と、前回の近接タイミングまでにおいて算出済みの警報タイミング補正値Δtとに基づき、今回の警報タイミングt1を変更する。そして、警報制御部40は、近接速度変化値(近接タイミングからの自車両Aの速度変化の度合い)が変化閾値以上である場合、警報タイミング補正値Δtが小さくなるように更新して、次回以降の警報タイミングt1を早くする。そして、警報制御部40は、近接速度変化値が変化閾値より小さい場合、警報タイミング補正値Δtが大きくなるように更新して、次回以降の警報タイミングt1を遅くする。また、警報タイミングt1の変更時期は、次回からに限定されない。警報タイミングの補正値(警報タイミング補正値Δt)を算出するために、何回かの近接状態の平均値を取るなどの実施形態があってもよい。 Thus, the alarm control unit 40 changes the alarm timing t1 from the next time using the alarm timing correction value Δt calculated based on the proximity speed change value. In other words, the alarm control unit 40 changes the current alarm timing t1 based on the current proximity timing t0 and the alarm timing correction value Δt already calculated up to the previous proximity timing. Then, the alarm control unit 40 updates the alarm timing correction value Δt to be smaller when the approach speed change value (degree of the speed change of the host vehicle A from the approach time) is equal to or greater than the change threshold. Alarm timing t1 of Then, when the proximity speed change value is smaller than the change threshold value, the alarm control unit 40 updates the alarm timing correction value Δt so as to be large, and delays the alarm timing t1 from the next time onward. Further, the change timing of the alarm timing t1 is not limited to the next time. In order to calculate the correction value of the alarm timing (alarm timing correction value Δt), there may be an embodiment such as taking an average value of several proximity states.
 警報制御部40は、出力部18に対して、このようにして設定した警報タイミングt1で警報を出力するように制御する。これにより、出力部18は、警報タイミングt1において、警報を出力する。 The alarm control unit 40 controls the output unit 18 to output an alarm at the alarm timing t1 set as described above. Thus, the output unit 18 outputs an alarm at the alarm timing t1.
 なお、警報制御部40は、近接速度変化値(近接タイミングからの自車両Aの速度変化の度合い)に基づき、近接状態の判定に用いる判定閾値を更新してもよい。判定部36は、この更新された判定閾値に基づき、次回以降の近接状態であるかの判定を行う。なお、この場合、警報制御部40は、近接速度変化値が所定の閾値以上である場合、判定閾値を大きくし、近接速度変化値が所定の閾値より小さい場合、判定閾値を小さくする。判定閾値が大きくなると、近接状態であると判定され易くなり、判定閾値が小さくなると、近接状態であると判定され難くなる。 The alarm control unit 40 may update the determination threshold used to determine the proximity state based on the proximity velocity change value (degree of velocity change of the host vehicle A from the proximity timing). Based on the updated determination threshold value, the determination unit 36 determines whether the next or subsequent proximity state is present. In this case, the alarm control unit 40 increases the determination threshold when the proximity speed change value is equal to or greater than the predetermined threshold, and decreases the determination threshold when the proximity speed change value is smaller than the predetermined threshold. When the determination threshold is large, it is easy to be determined as being in the proximity state, and when the determination threshold is small, it is difficult to be determined as being in the proximity state.
 また、警報制御部40は、運転者毎に警報タイミングt1を変更可能に設定していてもよい。すなわち、運転支援装置10は、図示しない運転者情報取得部を備え、運転者情報取得部により運転者を識別して、警報タイミング補正値Δtを、運転者毎に記憶部22に保存していてもよい。この場合、例えば自車両Aに乗車した運転者が、自身の情報(IDなど)を入力部19に入力すると、運転者情報取得部が、この運転者の情報を取得して、運転者を識別する。警報制御部40は、運転者情報取得部が識別したこの運転者に対して割り当てて記憶された警報タイミング補正値Δtを、記憶部22から読み出す。運転者情報取得部は、カメラによる人認証、所持するスマートフォンとの通信によるID識別など、公知の技術を利用して、運転者を識別することもできる。このように、警報制御部40は、自車両Aの運転者を識別するための運転者情報取得部を備え、識別した運転者ごとに、警報タイミングを設定してもよい。これにより、運転支援装置10は、運転者毎に警報タイミングt1を学習して設定することが可能となり、例えば自車両Aの運転者が変わった場合にも、適切に警報タイミングを設定することができる。 In addition, the alarm control unit 40 may set the alarm timing t1 so as to be changeable for each driver. That is, the driving support device 10 includes a driver information acquisition unit (not shown), identifies the driver by the driver information acquisition unit, and stores the alarm timing correction value Δt in the storage unit 22 for each driver. It is also good. In this case, for example, when the driver riding on the host vehicle A inputs his / her information (such as an ID) into the input unit 19, the driver information acquisition unit acquires the driver's information and identifies the driver. Do. The alarm control unit 40 reads out from the storage unit 22 the alarm timing correction value Δt which is assigned to and stored in the driver identified by the driver information acquisition unit. The driver information acquisition unit can also identify the driver using known techniques such as person authentication by a camera and ID identification by communication with a possessed smartphone. As described above, the alarm control unit 40 may include a driver information acquisition unit for identifying the driver of the host vehicle A, and may set an alarm timing for each identified driver. Thus, the driving support apparatus 10 can learn and set the alarm timing t1 for each driver, and can appropriately set the alarm timing even when, for example, the driver of the host vehicle A changes. it can.
 このように、警報制御部40は、運転者を識別するための運転者情報取得部を備え、識別した運転者ごとに、警報タイミングt1を設定するものであってもよい。すなわち、運転支援装置10は、運転者ごとに学習機能を備え、運転者の運転特性に沿った警報タイミングt1の変更を行ってもよい。運転者の認識は、予め登録された運転者リストから手動で選択してもよく、顔認証、指紋認証、スマートフォンの無線IDの認証など、公知の手段を用いてもよく、免許証番号認証やマイナンバー認証を用いてもよい。さらに、警報制御部40は、運転者情報取得部が、運転者が所定期間以上自車両Aを運転していないと検出した場合、その運転者についての警報タイミングt1を、初期設定値に戻してもよい。初期設定値とは、自車両Aの速度変化の度合いの検出結果に基づいて警報タイミングt1が変更される前の警報タイミングt1である。本実施形態では、初期設定値の警報タイミングt1は、警報タイミング補正値Δtが存在しないため、近接タイミングt0となる。また、所定期間とは、例えば数週間など、予め設定した期間であり、久しぶりに運転を行うと運転者が感じる期間である。毎日運転を行う運転者であれば、数日運転を行わない場合に久しぶりと感じる場合などもあるため、所定の期間は、任意に設定することができる。 As described above, the warning control unit 40 may include a driver information acquisition unit for identifying a driver, and may set the warning timing t1 for each identified driver. That is, the driving assistance apparatus 10 may have a learning function for each driver and may change the alarm timing t1 in accordance with the driving characteristic of the driver. The driver's recognition may be manually selected from the driver list registered in advance, or may be a known method such as face authentication, fingerprint authentication, authentication of a wireless ID of a smartphone, license number authentication You may use my number authentication. Furthermore, when the driver information acquisition unit detects that the driver has not driven the vehicle A for a predetermined period or more, the warning control unit 40 returns the warning timing t1 for the driver to the initial setting value. It is also good. The initial setting value is an alarm timing t1 before the alarm timing t1 is changed based on the detection result of the degree of speed change of the host vehicle A. In the present embodiment, the alarm timing t1 of the initial setting value is the proximity timing t0 because the alarm timing correction value Δt does not exist. Further, the predetermined period is a period set in advance, such as several weeks, for example, and is a period that the driver feels when driving after a long time. If the driver performs daily driving, the driver may feel that it is not a long time if he does not drive for several days, so the predetermined period can be set arbitrarily.
 このように、運転支援装置10は、運転者ごとに学習した警告タイミングt1を、所定の期間運転していない運転者には、デフォルト設定(初期設定値)としてもよい。前方衝突などの危険警告は、運転に慣れていないユーザに向けては早めに警告を発することが安全のために好ましく、運転に慣れたユーザにとって早めの警告がわずらわしいものとなった場合に、警告を発するタイミングを遅くすることで警告の回数を適宜に減らすことが望ましい。このため、運転支援装置10は、一定期間運転していないユーザには、以前の学習結果に関わらず警告タイミングを初期設定とすることで安全性を高めることができる。また初期設定値よりも警告タイミングが早くなっている、運転に慣れていないユーザの場合には、初期設定値と学習結果のいずれか早い方の警告タイミングとすることが望ましい。 As described above, the driving support apparatus 10 may set the warning timing t1 learned for each driver as a default setting (initially set value) for the driver who is not driving for a predetermined period. For safety warnings such as a frontal collision, it is preferable for the safety for users who are not used to driving to warn early if it is bothersome for users who are used to driving and it is a bother for early warnings. It is desirable to appropriately reduce the number of warnings by delaying the timing of emitting For this reason, the driving support apparatus 10 can enhance the safety for the user who has not driven for a certain period of time by setting the warning timing as the initial setting regardless of the previous learning result. In the case of a user who is not accustomed to driving, the warning timing is earlier than the initial setting value, it is desirable to set the warning timing to the earlier one of the initial setting value and the learning result.
 また、警報タイミングt1は、自車両Aの速度変化の度合いの検出結果に基づいて変更された値を、翌日以降の運転時にも反映している。ただし、警報制御部40は、前日までの警報タイミングの変更内容をリセットして、当日の自車両Aの運転開始時の警報タイミングt1を、初期設定値に戻してもよい。すなわち、運転支援装置10は、毎日の運転開始時に、前日までに学習した警告タイミングt1をリセットして初期設定値からスタートさせることとしてもよい。このとき、運転開始直後には、先行車両Bとの近接警告が発せられやすくなるが、安全運転を行っているうちに学習して警告が発せられにくくなる。このような実施形態とすることで、ユーザが安全運転をしていることが客観的に評価されることとなり、またそれをユーザが実感することができ、日々の安全運転を心がけるきっかけとすることができる。 Further, the alarm timing t1 reflects the value changed based on the detection result of the degree of speed change of the host vehicle A also at the time of driving the next day and thereafter. However, the alarm control unit 40 may reset the contents of change of the alarm timing up to the previous day, and return the alarm timing t1 at the start of driving of the host vehicle A on the current day to the initial setting value. That is, the driving support device 10 may reset the warning timing t1 learned by the previous day and start from the initial set value at the start of driving daily. At this time, immediately after the start of driving, a proximity warning with the preceding vehicle B is easily issued, but it is difficult to learn and issue a warning while performing safe driving. By adopting such an embodiment, it will be objectively evaluated that the user is driving safely, and that the user can feel it and use it as an opportunity to keep in mind daily safe driving. Can.
 運転支援装置10は、以上説明したように構成されている。以下、運転支援システム100による警報の出力フローを説明する。図3は、第1実施形態に係る運転支援システムによる警報の出力フローを説明するフローチャートである。図3に示すように、警報を出力する際、運転支援システム100は、判定部36が、判定閾値設定部34から判定閾値を取得し(ステップS10)、相対速度取得部30から自車両Aの先行車両Bに対する相対速度の検出結果を取得し、車間距離取得部32から自車両Aと先行車両Bとの車間距離の検出結果を取得する(ステップS12)。その後、判定部36は、相対速度と、車間距離と、判定閾値とに基づき、自車両Aが近接状態にあるかを判定する(ステップS14)。判定部36は、近接状態でないと判定した場合(ステップS14;No)、ステップS12に戻り、相対速度と車間距離との最新値を取得して、近接状態であるかの判定を続ける。判定部36が近接状態であると判定した場合(ステップS14;Yes)、運転支援システム100は、警報制御部40が、近接タイミングt0と警報タイミング補正値Δtとに基づき、警報タイミングt1を設定する(ステップS16)。警報制御部40は、警報タイミング設定部50により、近接状態であると判定された近接タイミングt0と、前回までの近接タイミングで算出された警報タイミング補正値Δtとに基づき、警報タイミングt1を設定する。警報制御部40は、出力部18に、この警報タイミングt1で警報を出力させる(ステップS18)。その後、運転支援システム100は、近接状態の判定及び警報タイミングt1の設定処理を続け、処理終了の指示に応じて、処理を終了する。 The driving support device 10 is configured as described above. Hereinafter, the output flow of the alarm by the driving support system 100 will be described. FIG. 3 is a flowchart for explaining an output flow of an alarm by the driving support system according to the first embodiment. As shown in FIG. 3, when outputting an alarm, the determination unit 36 of the driving support system 100 acquires the determination threshold from the determination threshold setting unit 34 (step S10), and the relative speed acquisition unit 30 The detection result of the relative speed with respect to the leading vehicle B is acquired, and the detection result of the inter-vehicle distance between the host vehicle A and the leading vehicle B is acquired from the inter-vehicle distance acquisition unit 32 (step S12). Thereafter, the determination unit 36 determines whether the host vehicle A is in the close state based on the relative speed, the inter-vehicle distance, and the determination threshold (step S14). If the determination section 36 determines that it is not in the proximity state (step S14; No), the process returns to step S12, acquires the latest value of the relative speed and the inter-vehicle distance, and continues determination of whether or not it is in the proximity state. When it is determined that the determination unit 36 is in the proximity state (Step S14; Yes), the alarm control unit 40 sets the alarm timing t1 based on the proximity timing t0 and the alarm timing correction value Δt. (Step S16). The alarm control unit 40 sets the alarm timing t1 based on the proximity timing t0 determined to be in the proximity state by the alarm timing setting unit 50 and the alarm timing correction value Δt calculated at the previous proximity timing. . The alarm control unit 40 causes the output unit 18 to output an alarm at this alarm timing t1 (step S18). Thereafter, the driving support system 100 continues the determination processing of the proximity state and the setting processing of the alarm timing t1, and ends the processing according to the instruction to end the processing.
 次に、警報タイミング補正値Δtの算出(更新)フローを説明する。図4は、第1実施形態に係る運転支援システムによる警報タイミング補正値の算出処理を説明するフローチャートである。図4に示すように、判定部36により近接状態であると判定されると(ステップS20)、運転支援システム100は、警報タイミング補正値算出部52が、速度変化取得部38から、近接タイミングからの自車両Aの速度変化の検出結果(近接速度変化値)を取得する(ステップS22)。警報タイミング補正値算出部52は、近接速度変化値を取得したら、近接速度変化値に基づき、次回からの警報タイミング補正値Δtを算出して更新する(ステップS24)。具体的には、警報タイミング補正値算出部52は、今回の近接タイミングからの近接速度変化値と、前回までの学習で算出済みの警報タイミング補正値Δtと、変化閾値とに基づき、警報タイミング補正値Δtを更新する。この更新した警報タイミング補正値Δtは、図3のステップS16において、次回の近接タイミングにおける警報タイミングの算出に用いられる。警報タイミング補正値算出部52は、警報タイミング補正値Δtの更新を続け、処理終了の指示に応じて、本処理を終了する。 Next, a flow of calculation (update) of the alarm timing correction value Δt will be described. FIG. 4 is a flowchart illustrating processing of calculating an alarm timing correction value by the driving support system according to the first embodiment. As shown in FIG. 4, when the determination unit 36 determines that the vehicle is in the close state (step S20), the alarm timing correction value calculation unit 52 in the driving support system 100 receives the proximity change timing from the speed change acquisition unit 38. The detection result of the speed change of the host vehicle A (proximity speed change value) is acquired (step S22). After acquiring the proximity speed change value, the alarm timing correction value calculation unit 52 calculates and updates the alarm timing correction value Δt from the next time based on the proximity speed change value (step S24). Specifically, the alarm timing correction value calculation unit 52 corrects the alarm timing based on the proximity speed change value from the current proximity timing, the alarm timing correction value Δt already calculated in the previous learning, and the change threshold value. Update the value Δt. The updated alarm timing correction value Δt is used to calculate the alarm timing at the next approach timing in step S16 of FIG. The alarm timing correction value calculation unit 52 continues updating the alarm timing correction value Δt, and ends the present process according to the instruction to end the process.
 ここで、もし警報タイミング補正値Δtにより警報タイミングt1を補正しない場合、警報を出力するタイミングは、近接タイミングt0のみに応じて決定される。近接タイミングt0は、相対速度と車間距離とに基づき算出され、自車両Aが先行車両Bに衝突するおそれがあると判定されたタイミングである。従って、近接タイミングt0に応じて警報を出力すると、運転者に注意を促し、衝突の防止を促進することができる。しかし、警報を出力するタイミングが適切であるかは、運転者によって異なる場合がある。例えば、運転者によっては、このタイミングでの警報が早すぎると感じて運転に支障をきたし、逆に、このタイミングでの警報では遅すぎるため、対応が遅れて急ブレーキを踏んでしまう場合などが考えられる。また、近接タイミングt0は、自車両Aの動作状態だけでなく、先行車両Bの動作状態にも依存するため、近接タイミングt0のみに基づく警報では、適切なタイミングとならない場合がある。例えば、運転者が強くブレーキを踏んだために相対速度が下がった場合、警報を出力するタイミングが遅くなるおそれがある。また、先行車両Bが急ブレーキで減速したために運転者も急ブレーキを踏んで自車両Aを減速した場合などは、相対速度がほぼ一定となり、警報を出力するタイミングが遅くなるおそれがある。このように、警報を出力するタイミングを適切にするには、相対速度及び車間距離に基づくデータ(近接タイミングt0)だけでは不十分な場合がある。それに対し、第1実施形態に係る運転支援装置10は、近接タイミングt0以降の自車両Aの速度変化の度合いに基づき、適切な警報タイミングt1を学習し(警報タイミング補正値Δtを算出し)、次回からの警報タイミングt1を変更している。運転支援装置10は、自車両Aの速度変化、すなわち動作状態に基づき警報タイミングt1を学習して修正しているため、運転者の性向や自車両Aの特性に応じたタイミングで、警報を出力することが可能となる。 Here, if the alarm timing t1 is not corrected by the alarm timing correction value Δt, the timing for outputting the alarm is determined according to only the proximity timing t0. The approach timing t0 is a timing that is calculated based on the relative speed and the inter-vehicle distance, and it is determined that the host vehicle A may collide with the preceding vehicle B. Therefore, when an alarm is output in response to the proximity timing t0, the driver can be alerted to promote the prevention of a collision. However, whether the timing for outputting an alarm is appropriate may differ depending on the driver. For example, depending on the driver, the warning at this timing may be felt too early to disturb the driving. Conversely, the warning at this timing may be too late, so the response may be delayed and the brake applied suddenly. Conceivable. Further, since the proximity timing t0 depends not only on the operating state of the host vehicle A but also on the operating state of the preceding vehicle B, the alarm based on only the proximity timing t0 may not be an appropriate timing. For example, when the driver has stepped on the brake strongly and the relative speed is lowered, the timing of outputting the alarm may be delayed. Further, when the preceding vehicle B decelerates rapidly due to a sudden braking and the driver also suddenly decelerates to decelerate the own vehicle A, the relative speed becomes almost constant, and the timing of outputting an alarm may be delayed. As described above, data based on the relative velocity and the inter-vehicle distance (proximity timing t0) may not be sufficient to appropriately output the alarm. On the other hand, the driving support apparatus 10 according to the first embodiment learns an appropriate alarm timing t1 (calculates an alarm timing correction value Δt) based on the degree of speed change of the host vehicle A after the proximity timing t0. The alarm timing t1 from the next time is changed. Since the driving support device 10 learns and corrects the alarm timing t1 based on the speed change of the host vehicle A, that is, the operation state, the alarm is output at the timing according to the driver's tendency and the characteristics of the host vehicle A. It is possible to
 具体的には、第1実施形態に係る運転支援装置10は、相対速度取得部30と、車間距離取得部32と、判定部36と、速度変化取得部38と、警報制御部40とを有する。相対速度取得部30は、自車両Aの先行車両Bに対する相対速度の検出結果を取得する。車間距離取得部32は、自車両Aと先行車両Bとの車間距離の検出結果を取得する。判定部36は、相対速度と車間距離とに基づき、自車両Aが先行車両Bに対して近接状態であるかを判定する。速度変化取得部38は、自車両Aの速度変化の度合いの検出結果を取得する。警報制御部40は、近接状態であると判定されたタイミング(近接タイミングt0)に基づき、自車両Aの運転者に警報を出力するタイミングである警報タイミングt1を設定する。そして、警報制御部40は、近接状態であると判定されてからの自車両Aの速度変化の度合いの検出結果(近接速度変化値)に基づき、次回からの警報タイミングt1を変更する。 Specifically, the driving assistance apparatus 10 according to the first embodiment includes a relative speed acquisition unit 30, an inter-vehicle distance acquisition unit 32, a determination unit 36, a speed change acquisition unit 38, and an alarm control unit 40. . The relative speed acquisition unit 30 acquires the detection result of the relative speed of the host vehicle A with respect to the preceding vehicle B. The inter-vehicle distance acquisition unit 32 acquires the detection result of the inter-vehicle distance between the host vehicle A and the preceding vehicle B. The determination unit 36 determines whether the host vehicle A is in proximity to the preceding vehicle B based on the relative speed and the inter-vehicle distance. The speed change acquisition unit 38 acquires the detection result of the degree of speed change of the host vehicle A. The alarm control unit 40 sets an alarm timing t1, which is a timing for outputting an alarm to the driver of the host vehicle A, based on the timing (proximity timing t0) determined to be in the proximity state. Then, the alarm control unit 40 changes the alarm timing t1 from the next time on the basis of the detection result (proximity speed change value) of the degree of speed change of the host vehicle A after being determined to be in the close state.
 この運転支援装置10は、近接状態からの自車両Aの速度変化、すなわち先行車両Bに近づいてからの自車両Aの減速の度合いに基づいて、次回からの警報タイミングt1を修正している。従って、この運転支援装置10は、先行車両Bの動作への依存を抑制した状態で自車両Aの動作を学習して、運転者の性向や自車両Aの特性に応じたタイミングで、次回からの警報のタイミングを適切に制御することができる。 The driving support apparatus 10 corrects the alarm timing t1 from the next time on the basis of the speed change of the host vehicle A from the proximity state, that is, the degree of deceleration of the host vehicle A after approaching the leading vehicle B. Therefore, the driving support device 10 learns the operation of the host vehicle A in a state in which the dependence on the operation of the leading vehicle B is suppressed, and from the next time on, according to the driver's tendency and the characteristics of the host vehicle A. The timing of the alarm can be properly controlled.
 また、警報制御部40は、近接状態であると判定されてからの自車両Aの速度変化(近接速度変化値)が、予め設定された変化閾値以上である場合、次回からの警報タイミングt1を早くする。そして、警報制御部40は、近接状態であると判定されてからの自車両Aの速度変化が変化閾値より小さい場合、次回からの警報タイミングt1を遅くする。この運転支援装置10は、近接状態からの自車両Aの速度変化が大きい場合、すなわち急減速された場合に、次回からの警報タイミングt1を早くして、より早めに警報を通知する。この場合、運転支援装置10は、運転者が減速すべきタイミングから遅れがちで減速しているために、急減速していると判断して、次回から早めに警報を通知して、早めに減速することを運転者に促すことが可能となる。これにより、自車両Aの衝突の危険性を抑制することができる。一方、運転支援装置10は、近接状態からの自車両Aの速度変化が小さい場合、すなわち緩やかに減速された場合に、次回からの警報タイミングt1を遅くして、警報通知を遅らせる。この場合、運転支援装置10は、運転者が減速すべきタイミングに対して余裕を持って減速を開始しているため、減速が緩やかであると判断して、次回から警報通知を遅らせて、運転者に不要な警報通知をしてしまうことを避けている。これにより、運転者が不要な警報通知に煩わされることなく、運転することが可能となる。運転支援装置10は、このように次回からの警報タイミングt1を制御することで、自車両Aの動作をより適切に学習して、次回からの警告のタイミングを適切に制御することができる。 Further, when the change in speed of the host vehicle A (proximity speed change value) after it is determined that the vehicle is in the close state is equal to or more than the change threshold set in advance, the alarm control unit 40 Make it fast. Then, the alarm control unit 40 delays the alarm timing t1 from the next time, when the speed change of the host vehicle A after being determined to be in the close state is smaller than the change threshold. When the speed change of the host vehicle A from the proximity state is large, that is, when the vehicle is suddenly decelerated, the driving support apparatus 10 makes the alarm timing t1 from the next time earlier to notify the alarm earlier. In this case, the driving support device 10 determines that the driver is rapidly decelerating because the driver is decelerating because it tends to be delayed from the timing to be decelerated, and notifies the warning early from the next time to decelerate early. It is possible to urge the driver to Thereby, the risk of the collision of the own vehicle A can be suppressed. On the other hand, when the speed change of the host vehicle A from the proximity state is small, that is, when the speed is gradually reduced, the driving support device 10 delays the alarm timing t1 from the next time and delays the alarm notification. In this case, since the driving support device 10 starts deceleration with a margin for the timing at which the driver should decelerate, it is determined that the deceleration is moderate, and the alarm notification is delayed from the next time to drive. Avoid giving unnecessary alert notices to people. This enables the driver to drive without being bothered by unnecessary alarm notification. By thus controlling the alarm timing t1 from the next time, the driving support apparatus 10 can learn the operation of the host vehicle A more appropriately, and can appropriately control the timing of the next alarm.
 (第2実施形態)
 次に、第2実施形態に係る運転支援システム100Aについて説明する。第2実施形態に係る運転支援システム100Aは、速度変化検出部16Aが、複数のパラメータを検出する点で、第1実施形態とは異なる。第2実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。
Second Embodiment
Next, a driving support system 100A according to the second embodiment will be described. The driving support system 100A according to the second embodiment differs from the first embodiment in that the speed change detection unit 16A detects a plurality of parameters. Descriptions of parts of the second embodiment having the same configuration as the first embodiment will be omitted.
 図5は、第2実施形態に係る運転支援システムの模式的なブロック図である。図5に示すように、第2実施形態に係る速度変化検出部16Aは、加速度センサ60と、圧力検出部62と、重量計64と、張力検出部66と、踏力検出部68とを有する。速度変化検出部16Aは、これらの各部の検出結果を、主に急ブレーキによる自車両Aの速度変化の度合いとして捉え、速度変化取得部38Aに出力する。 FIG. 5 is a schematic block diagram of a driving support system according to a second embodiment. As shown in FIG. 5, the speed change detection unit 16A according to the second embodiment includes an acceleration sensor 60, a pressure detection unit 62, a weight scale 64, a tension detection unit 66, and a treading force detection unit 68. The speed change detection unit 16A mainly captures the detection results of these parts as the degree of speed change of the host vehicle A due to the sudden braking and outputs the result to the speed change acquisition unit 38A.
 加速度センサ60は、自車両Aの加速度を、自車両Aの速度変化の値として検出する。なお、加速度センサ60の代わりに、上述した速度センサを設けてもよいし、加速度センサ60に加えて速度センサを設けてもよい。圧力検出部62は、自車両Aのサスペンションに設けられた圧力センサであり、サスペンションに作用する圧力変化を検出する。圧力検出部62は、圧力変化量の検出結果を、車両Aの速度変化の度合いの1つのパラメータとして、速度変化取得部38Aに出力する。重量計64は、自車両Aの座席に設けられた重量センサであり、自車両Aの座席に作用する重量変化を検出する。重量計64は、自車両Aの座席に作用する重量変化の検出結果を、自車両Aの速度変化の度合いの1つのパラメータとして、速度変化取得部38Aに出力する。張力検出部66は、自車両Aのシートベルトに設けられた張力センサであり、シートベルトの張力変化を検出する。張力検出部66は、シートベルトの張力変化の検出結果を、自車両Aの速度変化の度合いの1つのパラメータとして、速度変化取得部38Aに出力する。踏力検出部68は、自車両Aのブレーキに設けられたセンサであり、ブレーキに作用する踏力変化を検出する。踏力検出部68は、ブレーキに作用する踏力変化の検出結果を、自車両Aの速度変化の度合いの1つのパラメータとして、速度変化取得部38Aに出力する。 The acceleration sensor 60 detects the acceleration of the host vehicle A as a value of the speed change of the host vehicle A. Note that, instead of the acceleration sensor 60, the above-mentioned speed sensor may be provided, or in addition to the acceleration sensor 60, a speed sensor may be provided. The pressure detection unit 62 is a pressure sensor provided on the suspension of the host vehicle A, and detects a pressure change acting on the suspension. The pressure detection unit 62 outputs the detection result of the pressure change amount to the speed change acquisition unit 38A as one parameter of the degree of speed change of the vehicle A. The weight scale 64 is a weight sensor provided on the seat of the host vehicle A, and detects a change in weight acting on the seat of the host vehicle A. The weight scale 64 outputs the detection result of the weight change acting on the seat of the host vehicle A to the speed change acquisition unit 38A as one parameter of the degree of the speed change of the host vehicle A. The tension detection unit 66 is a tension sensor provided on the seat belt of the host vehicle A, and detects a change in tension of the seat belt. The tension detection unit 66 outputs the detection result of the change in tension of the seat belt to the speed change acquisition unit 38A as one parameter of the degree of speed change of the host vehicle A. The pedaling force detection unit 68 is a sensor provided on the brake of the host vehicle A, and detects a change in pedaling force acting on the brake. The pedaling force detection unit 68 outputs the detection result of the pedaling force change acting on the brake to the speed change acquisition unit 38A as one parameter of the degree of speed change of the host vehicle A.
 第2実施形態に係る速度変化取得部38Aは、加速度センサ60から、近接タイミングからの自車両Aの速度変化の値を取得し、圧力検出部62から、サスペンションの圧力変化の値(近接タイミングからの単位時間における圧力変化量)を取得する。また、速度変化取得部38Aは、重量計64から、座席の重量変化の値(近接タイミングからの単位時間における重量変化量)を取得し、張力検出部66から、シートベルトの張力変化の値(近接タイミングからの単位時間における張力変化量)を取得し、踏力検出部68から、ブレーキへの踏力変化の値(近接タイミングからの単位時間における踏力変化量)を取得する。速度変化取得部38Aは、これらの各値に基づき、自車両Aの速度変化の度合いを算出(判定)する。速度変化取得部38Aは、例えば、近接タイミングからの圧力変化、重量変化、張力変化、踏力変化の値が大きいほど、自車両Aの速度変化の度合いを大きくし、近接タイミングからの圧力変化、重量変化、張力変化、踏力変化の値が小さいほど、自車両Aの速度変化の度合いを小さく設定する。第2実施形態に係る警報タイミング補正値算出部52Aは、このようにして設定された自車両Aの速度変化の度合いを取得し、これに基づき、警報タイミング補正値Δtを算出する。このように、第2実施形態では、圧力変化、重量変化、張力変化、踏力変化にも基づき自車両Aの速度変化の度合いを設定しているため、運転者または同乗者の直接的の感覚により近い違和感や危険度を、警報タイミングt1の学習に反映させることができる。より詳しくは、急ブレーキをかけることにより運転者または同乗者が前のめりになり、不安や危険を感じる状態を検出し、タイミング学習に反映することができる。なお、本実施形態では、加速度センサ60と、圧力検出部62と、重量計64と、張力検出部66と、踏力検出部68との全ての検出結果を用いて、自車両Aの速度変化の度合いを設定していたが、すくなくともいずれかの検出結果を用いて自車両Aの速度変化の度合いを設定してもよい。すなわち、速度変化取得部38Aは、重量計64の重量変化の検出結果と、シートベルトの張力変化の検出結果と、サスペンションに作用する圧力変化の検出結果との、少なくとも一つを取得し、取得した重量変化量と、取得した張力変化量と、取得した圧力変化量との、少なくとも一つに基づいて、自車両Aの速度変化の度合いを判定すればよい。言い換えれば、警報制御部40は、取得された重量変化量と、取得された張力変化量と、取得された圧力変化量との、少なくとも一つに基づいて、警報タイミングt1を変更すればよい。 The speed change acquisition unit 38A according to the second embodiment acquires the value of the speed change of the host vehicle A from the proximity timing from the acceleration sensor 60, and the value of the pressure change of the suspension from the pressure detection unit 62 (from the proximity timing The pressure change amount in unit time is acquired. In addition, the speed change acquisition unit 38A acquires the value of the weight change of the seat (the amount of weight change in unit time from the proximity timing) from the weight scale 64, and the value of the tension change of the seat belt from the tension detection unit 66 ( The tension change amount in unit time from the approach timing is acquired, and the value of the pedal effort change to the brake (the pedal effort change amount in the unit time from the approach timing) is acquired from the pedal effort detection unit 68. The speed change acquisition unit 38A calculates (determines) the degree of speed change of the host vehicle A based on these values. The speed change acquisition unit 38A, for example, increases the degree of speed change of the host vehicle A as the values of pressure change, weight change, tension change, and pedal force change from proximity timing increase, and pressure change from the proximity timing, weight As the values of the change, the change in tension, and the change in treading force become smaller, the degree of the speed change of the host vehicle A is set smaller. The alarm timing correction value calculation unit 52A according to the second embodiment acquires the degree of speed change of the host vehicle A set in this manner, and calculates an alarm timing correction value Δt based on the degree. As described above, in the second embodiment, the degree of speed change of the host vehicle A is set based on pressure change, weight change, tension change, and pedal force change, so that the direct feeling of the driver or the passenger is felt. The near sense of incongruity and the degree of danger can be reflected in the learning of the alarm timing t1. More specifically, by applying a sudden brake, a driver or a passenger can be in a forward position, and a state in which he feels anxiety or danger can be detected and reflected in timing learning. In the present embodiment, the change in the speed of the host vehicle A is obtained using all the detection results of the acceleration sensor 60, the pressure detection unit 62, the weight scale 64, the tension detection unit 66, and the pedaling force detection unit 68. Although the degree is set, the degree of speed change of the host vehicle A may be set using at least one of the detection results. That is, the speed change acquisition unit 38A acquires and acquires at least one of the detection result of the weight change of the weight scale 64, the detection result of the tension change of the seat belt, and the detection result of the pressure change acting on the suspension. The degree of speed change of the host vehicle A may be determined based on at least one of the weight change amount, the acquired tension change amount, and the acquired pressure change amount. In other words, the alarm control unit 40 may change the alarm timing t1 based on at least one of the acquired weight change amount, the acquired tension change amount, and the acquired pressure change amount.
 このように、第2実施形態に係る速度変化取得部38Aは、自車両Aの座席に設けられた重量計64の重量変化の検出結果を取得し、取得した重量変化量に基づいて、自車両の速度変化の度合いを判定する。これにより、第2実施形態に係る運転支援装置10は、運転者または同乗者の直接的の感覚により近い違和感や危険度を、警報タイミングt1の学習に反映させることが可能となる。 As described above, the speed change acquisition unit 38A according to the second embodiment acquires the detection result of the weight change of the weighing scale 64 provided in the seat of the host vehicle A, and based on the acquired weight change amount, Determine the degree of speed change. As a result, the driving support apparatus 10 according to the second embodiment can reflect in the learning of the alarm timing t1 an uncomfortable feeling or a degree of danger closer to the direct feeling of the driver or the passenger.
 また、第2実施形態に係る速度変化取得部38Aは、自車両Aの座席に設けられたシートベルトの張力変化の検出結果を取得し、取得した張力変化量に基づいて、自車両の速度変化の度合いを判定する。これにより、第2実施形態に係る運転支援装置10は、運転者または同乗者の直接的の感覚により近い違和感や危険度を、警報タイミングt1の学習に反映させることが可能となる。 In addition, the speed change acquisition unit 38A according to the second embodiment acquires the detection result of the tension change of the seat belt provided in the seat of the host vehicle A, and the speed change of the host vehicle based on the acquired tension change amount. Determine the degree of As a result, the driving support apparatus 10 according to the second embodiment can reflect in the learning of the alarm timing t1 an uncomfortable feeling or a degree of danger closer to the direct feeling of the driver or the passenger.
 また、第2実施形態に係る速度変化取得部38Aは、自車両Aのサスペンションに作用する圧力変化の検出結果を取得し、取得した圧力変化量に基づいて、自車両の速度変化の度合いを判定する。これにより、第2実施形態に係る運転支援装置10は、運転者または同乗者の直接的の感覚により近い違和感や危険度を、警報タイミングt1の学習に反映させることが可能となる。 The speed change acquisition unit 38A according to the second embodiment acquires the detection result of the pressure change acting on the suspension of the host vehicle A, and determines the degree of speed change of the host vehicle based on the acquired pressure change amount. Do. As a result, the driving support apparatus 10 according to the second embodiment can reflect in the learning of the alarm timing t1 an uncomfortable feeling or a degree of danger closer to the direct feeling of the driver or the passenger.
 また、例えば、第2実施形態に係る警報タイミング補正値算出部52Aは、第1実施形態と同様に、加速度センサ60からの検出結果、すなわち自車両Aの速度変化の値に基づき警報タイミング補正値Δtを算出し、他(圧力検出部62、重量計64、張力検出部66、踏力検出部68)の検出結果に基づき、警報タイミング補正値Δtを更に補正してもよい。この場合、警報タイミング補正値算出部52Aは、近接タイミングからの圧力変化、重量変化、張力変化、踏力変化の値が大きいほど、警報タイミング補正値Δtを小さくし、近接タイミングからの圧力変化、重量変化、張力変化、踏力変化の値が小さいほど、警報タイミング補正値Δtを大きくする。 Further, for example, the alarm timing correction value calculation unit 52A according to the second embodiment, as in the first embodiment, detects the alarm timing correction value based on the detection result from the acceleration sensor 60, that is, the value of the speed change of the host vehicle A. The alarm timing correction value Δt may be further corrected based on the detection results of others (pressure detection unit 62, weight scale 64, tension detection unit 66, treading force detection unit 68) by calculating Δt. In this case, the alarm timing correction value calculation unit 52A reduces the alarm timing correction value Δt as the values of pressure change, weight change, tension change, and pedal force change from the proximity timing increase, and the pressure change from the proximity timing, weight The alarm timing correction value Δt is increased as the values of the change, the change in tension, and the change in treading force become smaller.
 また、速度変化検出部16Aは、同乗者の感情の状態を検出する、図示しない同乗者状態検出部を有していてもよい。なお、同乗者とは、運転者以外の自車両Aの搭乗者であり、自車両の助手席や後部座席に搭乗する搭乗者である。警報タイミング補正値算出部52Aは、加速度センサ60からの検出結果、すなわち自車両Aの速度変化の値に基づき警報タイミング補正値Δtを算出し、同乗者状態検出部による同乗者の感情の状態の検出結果に基づき、警報タイミング補正値Δtを更に補正してもよい。言い換えれば、警報制御部40は、取得された同乗者の感情の状態の検出結果と、取得された自車両Aの速度変化とに基づいて、警報タイミングt1を変更する。同乗者状態検出部は、同乗者の感情の状態を検出することで、同乗者の不安や危険を感じた状態を検出し、警報タイミング補正値算出部52Aは、その同乗者の状態を警報タイミングt1に反映することで、同乗者の直接的の感覚により近い違和感や危険度を、警報タイミングt1の学習に反映させることが可能となる。なお、ここでの自車両Aの速度変化の値は、第1実施形態と同様、度センサが検出した自車両Aの速度を時間微分した値であってもよい。 In addition, the speed change detection unit 16A may have a passenger state detection unit (not shown) that detects the state of emotion of the passenger. The passenger is a passenger of the host vehicle A other than the driver, and is a passenger who gets in the passenger seat or the rear seat of the host vehicle. The alarm timing correction value calculation unit 52A calculates the alarm timing correction value Δt based on the detection result from the acceleration sensor 60, that is, the value of the speed change of the host vehicle A, and the passenger state detection unit The alarm timing correction value Δt may be further corrected based on the detection result. In other words, the alarm control unit 40 changes the alarm timing t1 based on the acquired detection result of the state of emotion of the passenger and the acquired speed change of the host vehicle A. The passenger's state detection unit detects the state of the passenger's feeling by detecting the state of the passenger's feeling of anxiety or danger, and the alarm timing correction value calculation unit 52A warns the state of the passenger's state. By reflecting on t1, it becomes possible to reflect in the learning of the alarm timing t1 the degree of discomfort or danger closer to the direct feeling of the passenger. The value of the speed change of the host vehicle A may be a value obtained by time-differentiating the speed of the host vehicle A detected by the degree sensor, as in the first embodiment.
 例えば、同乗者状態検出部は、同乗者の脈拍を検出する脈拍センサや、同乗者の音声を検出する音声センサや、同乗者の表情や瞬き回数を検出する撮像装置や、同乗者の体温を検出する体温センサ(例えばサーモカメラ)の少なくとも1つであってよい。例えば前方車両Bと衝突の危険性が高いと同乗者が感じた場合、同乗者の脈拍が高くなったり、同乗者の音声が変化したり、同乗者の表情が変化したり、同乗者の瞬き回数が多くなったり、同乗者の体温が高くなったりするなど、これら(脈拍や音声や表情や瞬き回数や体温)は、同乗者の感情の状態を反映する。例えば、速度変化取得部38Aは、同乗者の脈拍が高いほど、自車両Aの速度変化の度合いを大きくして、警報タイミング補正値算出部52Aが、次回以降の警報タイミングt1を早くする。また、速度変化取得部38Aは、同乗者の音声の音量が大きくなったり、音声に「危ない」などの所定のキーワードがあったりしたことを検出した場合などに、自車両Aの速度変化の度合いを大きくして、警報タイミング補正値算出部52Aが、次回以降の警報タイミングt1を早くする。また、速度変化取得部38Aは、同乗者の表情が、所定の表情、すなわち危険を感じた表情であると検出した場合に、自車両Aの速度変化の度合いを大きくして、警報タイミング補正値算出部52Aが、次回以降の警報タイミングt1を早くする。また、速度変化取得部38Aは、同乗者の瞬き回数が多くなるほど、自車両Aの速度変化の度合いを大きくして、警報タイミング補正値算出部52Aが、次回以降の警報タイミングt1を早くする。また、速度変化取得部38Aは、同乗者の体温が高くなるほど、自車両Aの速度変化の度合いを大きくして、警報タイミング補正値算出部52Aが、次回以降の警報タイミングt1を早くする。 For example, the passenger status detection unit may be a pulse sensor that detects the pulse of the passenger, a voice sensor that detects the voice of the passenger, an imaging device that detects the expression and blink frequency of the passenger, and the temperature of the passenger. It may be at least one of a temperature sensor (eg, a thermo camera) to detect. For example, if the passenger feels that there is a high risk of collision with the forward vehicle B, the pulse of the passenger may rise, the voice of the passenger may change, the expression of the passenger may change, or the blink of the passenger The number of times and the temperature of the passenger become high, etc. (Pulse, voice, expression, blink frequency, temperature) reflect the state of emotion of the passenger. For example, the speed change acquisition unit 38A increases the degree of speed change of the host vehicle A as the pulse rate of the passenger increases, and the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier. In addition, when the speed change acquisition unit 38A detects that the sound volume of the passenger's voice is increased, or that a predetermined keyword such as "dangerous" is present in the sound, the degree of speed change of the host vehicle A, etc. The alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier. In addition, when the speed change acquisition unit 38A detects that the expression of the passenger is a predetermined expression, that is, the expression that felt danger, the degree of the speed change of the host vehicle A is increased, and the alarm timing correction value The calculation unit 52A makes the alarm timing t1 after the next time earlier. Further, the speed change acquisition unit 38A increases the degree of speed change of the host vehicle A as the number of blinks of the passenger increases, and the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier. The speed change acquisition unit 38A increases the degree of speed change of the host vehicle A as the passenger's body temperature rises, and the alarm timing correction value calculation unit 52A makes the alarm timing t1 after the next time earlier.
 このように、速度変化取得部33Aは、同乗者の感情の状態の検出結果と、自車両Aの速度変化とを取得し、取得した同乗者の感情の状態の検出結果と、取得した自車両Aの速度変化とに基づいて、自車両Aの速度変化の度合いを判定してもよい。運転者は車両周囲の状況を常に確認しており、また自身でアクセルやブレーキなどを操作するため、車両の挙動を予測することができる。このためにヒヤリハットの度合いの評価が主観的なものとなる可能性がある。このようにすることで、同乗者が感じた危険度やヒヤリハット度合いなどを基準として警告タイミングt1を変更することで、運転者自身では気付かない、客観的な基準で安全運転の度合いを認識した警告タイミングt1の変更を行うことができる。 Thus, the speed change acquisition unit 33A acquires the detection result of the state of emotion of the passenger and the speed change of the host vehicle A, and the acquired detection result of the state of emotion of the passenger and the acquired host vehicle Based on the speed change of A, the degree of speed change of the host vehicle A may be determined. The driver always confirms the situation around the vehicle, and operates the accelerator and the brake by himself so that the behavior of the vehicle can be predicted. For this reason, evaluation of the degree of the incident may be subjective. In this way, by changing the warning timing t1 on the basis of the degree of danger or near-missedness felt by the passenger, the driver recognizes itself by an objective standard that the driver is aware of the level of safe driving. It is possible to change the timing t1.
 また、運転支援システム100Aは、図示しない外部輝度検出部を有していてもよい。外部輝度検出部は、自車両Aの外部環境における輝度変化、すなわち外部環境の明るさの変化を検出する輝度センサである。本実施形態における外部輝度検出部は、例えば照度センサであり、所定のタイミング毎に、逐次外部環境の輝度を検出している。ただし、外部輝度検出部は、自車両Aの外部環境における輝度変化を検出するものであればよく、例えば、カメラの露出やシャッタスピードやAGC(オートマチックゲインコントロール)などの設定値が変更されたことを検出してもよい。 In addition, the driving support system 100A may have an external brightness detection unit (not shown). The external luminance detection unit is a luminance sensor that detects a change in luminance in the external environment of the host vehicle A, that is, a change in brightness of the external environment. The external luminance detection unit in the present embodiment is, for example, an illuminance sensor, and detects the luminance of the external environment sequentially at each predetermined timing. However, the external luminance detection unit may be any one as long as it detects a change in luminance in the external environment of the host vehicle A. For example, setting values such as camera exposure, shutter speed and AGC (automatic gain control) have been changed. May be detected.
 警報タイミング補正値算出部52Aは、外部輝度検出部による外部環境の輝度を検出の検出結果を逐次取得する。警報タイミング補正値算出部52Aは、外部環境の輝度の変化が所定値より大きい場合、その外部環境の輝度の変化が所定値より大きくなったタイミングから所定の時間の間に、速度変化取得部33Aに判定された自車両の速度変化の度合いを、次回からの警報タイミングt1の変更に反映しない。すなわち、警報タイミング補正値算出部52Aは、外部環境の輝度の変化が所定値より大きい場合の自車両の速度変化の度合いを、警報タイミングt1の学習に用いない。なお、ここでの所定値は、予め定めた値であり、任意に設定できる。また、ここでの所定の時間も、例えば数秒など予め定めた値であり、任意に設定できる。 The alarm timing correction value calculation unit 52A sequentially acquires the detection result of the detection of the luminance of the external environment by the external luminance detection unit. When the change in luminance of the external environment is larger than a predetermined value, the alarm timing correction value calculation unit 52A detects the speed change acquisition unit 33A during a predetermined time from the timing when the change in luminance of the external environment becomes larger than the predetermined value. The degree of the speed change of the own vehicle determined in the above is not reflected in the change of the alarm timing t1 from the next time. That is, the warning timing correction value calculation unit 52A does not use the degree of the speed change of the host vehicle when the change of the luminance of the external environment is larger than the predetermined value, for learning of the warning timing t1. Here, the predetermined value is a predetermined value and can be set arbitrarily. Further, the predetermined time here is also a predetermined value such as several seconds, for example, and can be set arbitrarily.
 このように、警報制御部40は、自車両Aの外部環境の輝度の検出結果を取得し、所定期間内における外部環境の輝度変化が所定値より大きい場合に、近接状態であると判定されてからの自車両Aの速度変化の度合いの検出結果を、警報タイミングt1の変更条件から除外する(警報タイミングt1の変更に反映しない)。このようにすることで、運転支援システム100Aは、警報タイミングt1の学習において、トンネルなどによる急激な輝度変化があった場合を学習対象としないことができる。トンネルに入った直後は目が暗さになれておらず、このような際に先行車両Bとの近接があった場合には、安全のために強いブレーキ操作を行うことがある。太陽光が急に目に入った場合などにアクセルを踏み続けることは危険であり、アクセル操作を緩めることによる速度変化が大きくなる場合もある。運転支援システム100Aは、このような場合を学習対象から除くことで、より運転者の安全運転の度合いに応じた警報タイミングt1の変更を行うことができる。 As described above, the alarm control unit 40 obtains the detection result of the luminance of the external environment of the host vehicle A, and is determined to be in the proximity state when the luminance change of the external environment within the predetermined period is larger than the predetermined value. The detection result of the degree of speed change of the host vehicle A from the above is excluded from the change condition of the alarm timing t1 (not reflected in the change of the alarm timing t1). By doing this, the driving support system 100A can not set the case where there is an abrupt change in luminance due to a tunnel or the like as the learning target in the learning of the alarm timing t1. Immediately after entering the tunnel, the eyes are not dimmed, and if there is proximity to the preceding vehicle B at this time, strong braking may be performed for safety. It is dangerous to continue to step on the accelerator when the sun suddenly enters the eyes, and the speed change by loosening the accelerator operation may be large. The driving support system 100A can change the alarm timing t1 according to the degree of safe driving of the driver by excluding such a case from the learning target.
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態に係る運転支援システム100は、警報制御部40Aが、モード選定部54Aを有する点で、第1実施形態と異なる。第3実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。なお、第3実施形態に係る警報制御部40Aは、第2実施形態に組み合わせることも可能である。
Third Embodiment
Next, a third embodiment will be described. The driving support system 100 according to the third embodiment differs from the first embodiment in that the alarm control unit 40A has a mode selection unit 54A. Descriptions of parts of the third embodiment that share the same configuration as the first embodiment will be omitted. The alarm control unit 40A according to the third embodiment can also be combined with the second embodiment.
 図6は、第3実施形態に係る警報制御部の模式的なブロック図である。図6に示すように、第3実施形態に係る警報制御部40Aは、警報タイミング設定部50と、警報タイミング補正値算出部52と、モード選定部54Aとを有する。モード選定部54Aは、自車両Aの外部環境を取得する図示しない外部環境取得部を備え、外部環境取得部が取得した外部環境に合致した、外部環境毎のモードを選定する。モードは、例えば、雨天モード、晴天モード、夜間モードなどが挙げられ、外部環境の違いによって複数設定されている。記憶部22は、モード毎に、警報タイミング補正値Δtを記憶している。警報タイミング補正値算出部52は、モード選定部54Aが選定したモードの、算出済みの警報タイミング補正値Δtを、記憶部22から読み出す。そして、警報タイミング補正値算出部52は、第1実施形態と同じ方法で、警報タイミング補正値Δtを更新する。ただし、警報タイミング補正値算出部52は、警報タイミング補正値Δtの値が、モード毎に異なるように設定している。例えば、夜間モードにおいては、通常(昼間)よりも、警報タイミング補正値Δtの値を小さくなるように設定している。また、雨天モードにおいては、晴天モードよりも、警報タイミング補正値Δtの値を小さくなるように設定している。本実施形態では、警報タイミング補正値Δtは学習により更新されるため、それぞれの値は変化する。しかし、モード毎に学習を行っているため、外部環境に応じて適切な警報タイミングt1を設定することができる。 FIG. 6 is a schematic block diagram of an alarm control unit according to the third embodiment. As shown in FIG. 6, the alarm control unit 40A according to the third embodiment includes an alarm timing setting unit 50, an alarm timing correction value calculation unit 52, and a mode selection unit 54A. The mode selection unit 54A includes an external environment acquisition unit (not shown) that acquires the external environment of the host vehicle A, and selects a mode for each external environment that matches the external environment acquired by the external environment acquisition unit. The mode includes, for example, a rainy weather mode, a fine weather mode, and a nighttime mode, and a plurality of modes are set according to the difference in the external environment. The storage unit 22 stores an alarm timing correction value Δt for each mode. The alarm timing correction value calculation unit 52 reads the calculated alarm timing correction value Δt of the mode selected by the mode selection unit 54A from the storage unit 22. Then, the alarm timing correction value calculation unit 52 updates the alarm timing correction value Δt in the same manner as in the first embodiment. However, the alarm timing correction value calculation unit 52 sets the value of the alarm timing correction value Δt to be different for each mode. For example, in the nighttime mode, the value of the alarm timing correction value Δt is set to be smaller than that of normal (daytime). Further, in the rainy weather mode, the value of the alarm timing correction value Δt is set to be smaller than that in the fine weather mode. In the present embodiment, since the alarm timing correction value Δt is updated by learning, each value changes. However, since learning is performed for each mode, an appropriate alarm timing t1 can be set according to the external environment.
 このように、第3実施形態に係る警報制御部40Aは、自車両Aの外部環境を取得する外部環境取得部を備え、取得した外部環境ごとに、警報タイミングt1を設定している。従って、第3実施形態に係る運転支援装置10は、外部環境に応じて適切な警報タイミングt1を設定することができる。 As described above, the alarm control unit 40A according to the third embodiment includes the external environment acquisition unit that acquires the external environment of the host vehicle A, and sets the alarm timing t1 for each acquired external environment. Therefore, the driving support apparatus 10 according to the third embodiment can set an appropriate alarm timing t1 according to the external environment.
 なお、本実施形態では、モード毎(外部環境の違い毎)に異なる警報タイミング補正値Δtを設定していたが、記憶する警報タイミング補正値Δt自体は、外部環境によらず共通の値としてもよい。この場合、例えば、警報タイミング補正値算出部52は、共通の値である警報タイミング補正値Δtを読み出した後、外部環境に応じて、警報タイミング補正値Δtを更に補正する。警報タイミング補正値算出部52は、この警報タイミング補正値Δtを補正する値を、外部環境の違い毎に異なる値とすることで、外部環境に応じて適切な警報タイミングt1を設定することができる。 In the present embodiment, different alarm timing correction values Δt are set for each mode (every difference in the external environment), but the stored alarm timing correction values Δt themselves are also common values regardless of the external environment. Good. In this case, for example, after reading out the alarm timing correction value Δt which is a common value, the alarm timing correction value calculation unit 52 further corrects the alarm timing correction value Δt in accordance with the external environment. The alarm timing correction value calculation unit 52 can set an appropriate alarm timing t1 according to the external environment by setting the value for correcting the alarm timing correction value Δt to a different value for each difference in the external environment. .
 以上、本発明の実施形態を説明したが、これら実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 As mentioned above, although embodiment of this invention was described, embodiment is not limited by the content of these embodiment. Further, the above-described constituent elements include ones that can be easily conceived by those skilled in the art, substantially the same ones, and so-called equivalent ranges. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, substitutions, or modifications of the components can be made without departing from the scope of the embodiments described above.
 10 運転支援装置
 12 相対速度検出部
 14 車間距離検出部
 16 速度変化検出部
 18 出力部
 19 入力部
 20 制御部
 22 記憶部
 30 相対速度取得部
 32 車間距離取得部
 34 判定閾値設定部
 36 判定部
 38 速度変化取得部
 40 警報制御部
 50 警報タイミング設定部
 52 警報タイミング補正値算出部
 100 運転支援システム
 A 自車両
 B 先行車両
 t0 近接タイミング
 t1 警報タイミング
 Δt 警報タイミング補正値
DESCRIPTION OF SYMBOLS 10 Driver assistance apparatus 12 Relative speed detection part 14 Inter-vehicle distance detection part 16 Speed change detection part 18 Output part 19 Input part 20 Control part 22 Storage part 30 Relative speed acquisition part 32 Inter-vehicle distance acquisition part 34 Judgment threshold value setting part 36 Judgment part 38 Speed change acquisition unit 40 Alarm control unit 50 Alarm timing setting unit 52 Alarm timing correction value calculation unit 100 Driving support system A Host vehicle B Leading vehicle t0 Approach timing t1 Alarm timing Δt Alarm timing correction value

Claims (11)

  1.  自車両の速度変化の度合いの検出結果を取得する速度変化取得部と、
     前記自車両の先行車両に対する相対速度の検出結果を取得する相対速度取得部と、
     前記自車両と前記先行車両との車間距離の検出結果を取得する車間距離取得部と、
     前記相対速度と前記車間距離とに基づき、前記自車両が前記先行車両に対して近接状態であるかを判定する判定部と、
     前記近接状態であると判定されたタイミングに基づき、前記自車両の運転者に警報を出力するタイミングである警報タイミングを設定する警報制御部と、を有し、
     前記警報制御部は、前記近接状態であると判定されてからの前記自車両の速度変化の度合いの検出結果に基づき、前記警報タイミングを変更する、運転支援装置。
    A speed change acquisition unit that acquires a detection result of the degree of speed change of the host vehicle;
    A relative velocity acquisition unit that acquires a detection result of a relative velocity of the host vehicle relative to a preceding vehicle;
    An inter-vehicle distance acquisition unit that acquires a detection result of an inter-vehicle distance between the host vehicle and the leading vehicle;
    A determination unit that determines whether the host vehicle is in proximity to the preceding vehicle based on the relative speed and the inter-vehicle distance;
    And a warning control unit that sets a warning timing that is a timing of outputting a warning to the driver of the host vehicle based on the timing determined to be the close state.
    The driving support apparatus, wherein the alarm control unit changes the alarm timing based on a detection result of a degree of change in speed of the host vehicle after being determined to be in the close state.
  2.  前記速度変化取得部は、前記運転者以外の前記自車両の同乗者の感情の状態の検出結果と、前記自車両の速度変化とを取得し、
     前記警報制御部は、取得した前記同乗者の感情の状態の検出結果と、取得した前記自車両の速度変化とに基づいて、前記警報タイミングを変更する、請求項1に記載の運転支援装置。
    The speed change acquisition unit acquires a detection result of a state of an emotion of a passenger of the own vehicle other than the driver and a change in speed of the own vehicle.
    The driving support device according to claim 1, wherein the alarm control unit changes the alarm timing based on the acquired detection result of the state of emotion of the fellow passenger and the acquired speed change of the host vehicle.
  3.  前記速度変化取得部は、前記自車両の座席に設けられた重量計の重量変化の検出結果と、前記自車両の座席に設けられたシートベルトの張力変化の検出結果と、前記自車両のサスペンションに作用する圧力変化の検出結果との、少なくとも一つを取得し、
     前記警報制御部は、取得した重量変化量と、取得した張力変化量と、取得した圧力変化量との、少なくとも一つに基づいて、前記警報タイミングを変更する、請求項1に記載の運転支援装置。
    The speed change acquiring unit detects a change in weight of a weight scale provided on a seat of the vehicle, a detection of a change in tension on a seat belt provided on a seat of the vehicle, and a suspension of the vehicle. Obtain at least one of the detection results of pressure change acting on the
    The driving support according to claim 1, wherein the alarm control unit changes the alarm timing based on at least one of the acquired weight change amount, the acquired tension change amount, and the acquired pressure change amount. apparatus.
  4.  前記警報制御部は、前記自車両の外部環境の輝度の検出結果を取得し、所定期間内における前記外部環境の輝度変化が所定値より大きい場合に、前記近接状態であると判定されてからの前記自車両の速度変化の度合いの検出結果を、前記警報タイミングの変更条件から除外する、請求項1から請求項3のいずれか1項に記載の運転支援装置。 The alarm control unit acquires the detection result of the luminance of the external environment of the host vehicle, and is determined to be in the proximity state when the change in luminance of the external environment within a predetermined period is larger than a predetermined value. The driving support device according to any one of claims 1 to 3, wherein the detection result of the degree of speed change of the host vehicle is excluded from the change condition of the alarm timing.
  5.  前記警報制御部は、前記運転者を識別するための運転者情報取得部を備え、識別した運転者ごとに、前記警報タイミングを設定するものであり、前記運転者が所定期間以上、前記自車両を運転していないと前記運転者情報取得部が検出した場合、前記警報タイミングを、初期設定値に戻す、請求項1から請求項4のいずれか1項に記載の運転支援装置。 The alarm control unit includes a driver information acquisition unit for identifying the driver, and sets the alarm timing for each identified driver, and the driver performs the vehicle for a predetermined period or more. The driving support device according to any one of claims 1 to 4, wherein when the driver information acquisition unit detects that the vehicle is not driving, the alarm timing is returned to an initial set value.
  6.  前記警報制御部は、前記自車両の外部環境を取得する外部環境取得部を備え、取得した外部環境ごとに、前記警報タイミングを設定する、請求項1から請求項5のいずれか1項に記載の運転支援装置。 The said alarm control part is provided with the external environment acquisition part which acquires the external environment of the said own vehicle, and sets the said alarm timing for every acquired external environment, The any one of Claim 1 to 5 Driving support device.
  7.  前記警報制御部は、前日までの前記警報タイミングの変更内容をリセットして、当日の前記自車両の運転開始時の前記警報タイミングを、初期設定値に戻す、請求項1から請求項6のいずれか1項に記載の運転支援装置。 The said alarm control part resets the change content of the said alarm timing to the previous day, and resets the said alarm timing at the time of the driving start of the said vehicle on the day to an initial setting value. The driving support device according to any one of the above.
  8.  請求項1から請求項7のいずれか1項に記載の運転支援装置を有する車載用の記録装置。 An on-vehicle recording device having the driving support device according to any one of claims 1 to 7.
  9.  請求項1から請求項7のいずれか1項に記載の運転支援装置と、
     前記自車両の速度変化、前記自車両の前記先行車両に対する相対速度、及び前記自車両と前記先行車両との車間距離を検出する検出部と、を有する、運転支援システム。
    A driving support apparatus according to any one of claims 1 to 7;
    A driving support system, comprising: a detection unit that detects a speed change of the host vehicle, a relative speed of the host vehicle with respect to the leading vehicle, and an inter-vehicle distance between the host vehicle and the leading vehicle.
  10.  自車両の速度変化の度合いの検出結果を取得する速度変化取得ステップと、
     前記自車両の先行車両に対する相対速度の検出結果を取得する相対速度取得ステップと、
     前記自車両と前記先行車両との車間距離の検出結果を取得する車間距離取得ステップと、
     前記相対速度と前記車間距離とに基づき、前記自車両が前記先行車両に対して近接状態であるかを判定する判定ステップと、
     前記近接状態であると判定されたタイミングに基づき、前記自車両の運転者に警報を出力するタイミングである警報タイミングを設定する警報制御ステップと、を有し、
     前記警報制御ステップにおいて、前記近接状態であると判定されてからの前記自車両の速度変化の値に基づき、前記警報タイミングを変更する、運転支援方法。
    A speed change acquisition step of acquiring a detection result of the degree of speed change of the host vehicle;
    A relative velocity acquisition step of acquiring a detection result of a relative velocity of the host vehicle relative to a preceding vehicle;
    An inter-vehicle distance acquisition step of acquiring a detection result of an inter-vehicle distance between the host vehicle and the leading vehicle;
    A determination step of determining whether the host vehicle is in proximity to the preceding vehicle based on the relative speed and the inter-vehicle distance;
    And an alarm control step of setting an alarm timing which is a timing of outputting an alarm to the driver of the host vehicle based on the timing determined to be the close state.
    The driving support method, wherein the alarm timing is changed based on the value of the speed change of the host vehicle after it is determined that the proximity state is in the alarm control step.
  11.  自車両の速度変化の度合いの検出結果を取得する速度変化取得ステップと、
     前記自車両の先行車両に対する相対速度の検出結果を取得する相対速度取得ステップと、
     前記自車両と前記先行車両との車間距離の検出結果を取得する車間距離取得ステップと、
     前記相対速度と前記車間距離に基づき、前記自車両が前記先行車両に対して近接状態であるかを判定する判定ステップと、
     前記自車両の運転者に警報を出力する警報出力ステップと、
     前記近接状態であると判定されたタイミングに基づき、前記自車両の運転者に警報を出力するタイミングである警報タイミングを設定する警報制御ステップと、を運転支援装置として動作するコンピュータに実行させるためのプログラムであって、
     前記警報制御ステップにおいて、前記近接状態であると判定されてからの前記自車両の速度変化の値に基づき、前記警報タイミングを変更する、プログラム。
    A speed change acquisition step of acquiring a detection result of the degree of speed change of the host vehicle;
    A relative velocity acquisition step of acquiring a detection result of a relative velocity of the host vehicle relative to a preceding vehicle;
    An inter-vehicle distance acquisition step of acquiring a detection result of an inter-vehicle distance between the host vehicle and the leading vehicle;
    A determination step of determining whether the host vehicle is in proximity to the preceding vehicle based on the relative speed and the inter-vehicle distance;
    An alarm output step of outputting an alarm to a driver of the host vehicle;
    An alarm control step of setting an alarm timing which is a timing of outputting an alarm to the driver of the host vehicle based on the timing determined to be in the close state; and causing a computer operating as a driving assistance device A program,
    The program which changes the said alarm timing based on the value of the speed change of the said own vehicle after determining with it being in the said proximity | contact state in the said alarm control step.
PCT/JP2018/021419 2017-06-27 2018-06-04 Driving assistance device, recording device, driving assistance system, driving assistance method, and program WO2019003816A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18824523.7A EP3570263A4 (en) 2017-06-27 2018-06-04 Driving assistance device, recording device, driving assistance system, driving assistance method, and program
US16/539,146 US20190359058A1 (en) 2017-06-27 2019-08-13 Driving assistance device, recording device, driving assistance system, driving assistance method, and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-125430 2017-06-27
JP2017125430 2017-06-27
JP2018083078A JP7031472B2 (en) 2017-06-27 2018-04-24 Driving support device and driving support method
JP2018-083078 2018-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/539,146 Continuation US20190359058A1 (en) 2017-06-27 2019-08-13 Driving assistance device, recording device, driving assistance system, driving assistance method, and program

Publications (1)

Publication Number Publication Date
WO2019003816A1 true WO2019003816A1 (en) 2019-01-03

Family

ID=64741299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021419 WO2019003816A1 (en) 2017-06-27 2018-06-04 Driving assistance device, recording device, driving assistance system, driving assistance method, and program

Country Status (1)

Country Link
WO (1) WO2019003816A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067845A (en) * 2000-08-29 2002-03-08 Toyota Motor Corp Alarm device and running control device equipped with alarm device
JP2002220035A (en) * 2000-11-24 2002-08-06 Toyota Motor Corp Alarm device
JP2010143578A (en) * 2005-05-12 2010-07-01 Denso Corp Driver condition detecting device, in-vehicle alarm system and drive assistance system
JP2011253487A (en) 2010-06-04 2011-12-15 Suzuki Motor Corp Controller for vehicle
JP2012003710A (en) 2010-06-21 2012-01-05 Toyota Motor Corp Rear-end collision prevention support device
JP2013222297A (en) 2012-04-16 2013-10-28 Toyota Motor Corp Driving support apparatus
JP2014117995A (en) * 2012-12-14 2014-06-30 Daihatsu Motor Co Ltd Drive support device
JP2018092554A (en) * 2016-12-02 2018-06-14 システム東京株式会社 Accident occurrence prediction device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067845A (en) * 2000-08-29 2002-03-08 Toyota Motor Corp Alarm device and running control device equipped with alarm device
JP2002220035A (en) * 2000-11-24 2002-08-06 Toyota Motor Corp Alarm device
JP2010143578A (en) * 2005-05-12 2010-07-01 Denso Corp Driver condition detecting device, in-vehicle alarm system and drive assistance system
JP2011253487A (en) 2010-06-04 2011-12-15 Suzuki Motor Corp Controller for vehicle
JP2012003710A (en) 2010-06-21 2012-01-05 Toyota Motor Corp Rear-end collision prevention support device
JP2013222297A (en) 2012-04-16 2013-10-28 Toyota Motor Corp Driving support apparatus
JP2014117995A (en) * 2012-12-14 2014-06-30 Daihatsu Motor Co Ltd Drive support device
JP2018092554A (en) * 2016-12-02 2018-06-14 システム東京株式会社 Accident occurrence prediction device

Similar Documents

Publication Publication Date Title
JP7031472B2 (en) Driving support device and driving support method
US9007198B2 (en) Adaptive Actuator interface for active driver warning
JP4400624B2 (en) Dozing prevention device and method
US10919536B2 (en) Emergency control device for vehicle
JP6631585B2 (en) Presentation control device, automatic operation control device, presentation control method, and automatic operation control method
KR20160055969A (en) System and method for responding to driver behavior
JP2009244959A (en) Driving support device and driving support method
EP2082383A2 (en) On-board warning apparatus and warning method
JP6524129B2 (en) Driving support device
JP6627811B2 (en) Concentration determination device, concentration determination method, and program for concentration determination
JP4529394B2 (en) Driver's vehicle driving characteristic estimation device
JP2009262581A (en) Vehicle control device
US10773633B2 (en) Distance information system and method for a motor vehicle
JP2017123054A (en) Warning device, warning method and program
JP2008225899A (en) Arousal judgement device and arousal judgement method
KR20150051548A (en) Driver assistance systems and controlling method for the same corresponding to dirver's predisposition
JP4534789B2 (en) Vehicle alarm device
JP2018133007A (en) Alarm apparatus
KR20180048097A (en) Apparatus for controlling a vehicle based on driver condition and method thereof
JP2012053746A (en) Vehicle control device
EP3819178A1 (en) Adaptive cruise control system for a vehicle and method for controlling a speed of a vehicle
WO2019003816A1 (en) Driving assistance device, recording device, driving assistance system, driving assistance method, and program
JP6734205B2 (en) Fatigue estimation device
JP6631545B2 (en) Dependency estimator
JP2006309432A (en) Driver's state estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018824523

Country of ref document: EP

Effective date: 20190812

NENP Non-entry into the national phase

Ref country code: DE