WO2019003802A1 - Rotor, motor, and rotor production method - Google Patents

Rotor, motor, and rotor production method Download PDF

Info

Publication number
WO2019003802A1
WO2019003802A1 PCT/JP2018/021172 JP2018021172W WO2019003802A1 WO 2019003802 A1 WO2019003802 A1 WO 2019003802A1 JP 2018021172 W JP2018021172 W JP 2018021172W WO 2019003802 A1 WO2019003802 A1 WO 2019003802A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
convex portion
end cap
magnet
Prior art date
Application number
PCT/JP2018/021172
Other languages
French (fr)
Japanese (ja)
Inventor
真郷 青野
貴之 右田
晃弘 大北
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201890000952.5U priority Critical patent/CN212063658U/en
Publication of WO2019003802A1 publication Critical patent/WO2019003802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to a rotor, a motor and a method of manufacturing the rotor.
  • a rotor comprising a rotor core and a rotor cover covering a permanent magnet, and a motor comprising such a rotor are known (e.g. U.S. Pat. No. 5,075,015).
  • the present invention provides a rotor having a rotor cover and a magnet on a rotor cover without using an adhesive and suppressing rattling, a motor including such a rotor, and a method of manufacturing the rotor.
  • One of the purposes is to provide.
  • One aspect of the rotor according to the present invention is a shaft disposed along a central axis extending in the vertical direction, a rotor core fixed to the shaft, and a plurality of radial outer sides of the rotor core and arranged along the circumferential direction
  • a rotor cover having a magnet, a cylindrical portion surrounding the rotor core and the magnet from the radially outer side of the magnet, and a bottom portion positioned at an opening on the lower side of the cylindrical portion; and a position above the rotor core and the magnet
  • One aspect of the motor of the present invention includes the above-described rotor, and a stator that faces the rotor in the radial direction via a gap.
  • FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment.
  • FIG. 2 is an exploded perspective view of the rotor of an embodiment.
  • FIG. 3 is a cross-sectional view of the rotor of one embodiment.
  • FIG. 4 is a perspective view of an end cap of one embodiment.
  • FIG. 5 is a perspective view for describing a part of a second step in the process of manufacturing a rotor according to an embodiment.
  • FIG. 6 is a perspective view for explaining a part of a second step in the process of manufacturing a rotor according to an embodiment.
  • FIG. 7 is a perspective view for explaining a part of a second step in the process of manufacturing a rotor according to an embodiment.
  • FIG. 8 is a cross-sectional view of a rotor of a modification.
  • FIG. 9 is a perspective view of a modified end cap.
  • FIG. 1 is a schematic cross-sectional view of a motor 10 according to the present embodiment.
  • the motor 10 includes a housing 11, a stator 12, a rotor 13 having a shaft 20 disposed along a vertically extending central axis J, a bearing holder 14, and bearings 15 and 16.
  • the stator 12 opposes the rotor 13 via the radial gap on the radially outer side of the rotor 13.
  • the shaft 20 is rotatably supported by the bearings 15 and 16.
  • the shaft 20 has a cylindrical shape extending in the axial direction.
  • the Z axis is shown as appropriate.
  • the Z-axis direction of each drawing is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the positive side in the Z-axis direction (+ Z side, one side) is referred to as “upper side”
  • the negative side in the Z-axis direction ( ⁇ Z side, other side) as “lower side”.
  • the upper and lower sides are directions used merely for the purpose of explanation, and do not limit the actual positional relationship or direction.
  • a direction (Z-axis direction) parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, and a radial direction centered on the central axis J is simply referred to as “radial direction”.
  • the circumferential direction around the central axis J that is, around the axis of the central axis J, is simply referred to as “circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • a scale, the number, etc. in an actual structure and each structure may be varied.
  • FIG. 2 is an exploded perspective view of the rotor 13.
  • FIG. 3 is a cross-sectional view of the rotor 13. In FIG. 2, the illustration of the shaft 20 is omitted.
  • the rotor 13 includes a shaft 20 (see FIG. 4), a rotor core 30, a plurality of magnets 40, a rotor cover 60, and an end cap 50.
  • the rotor core 30 is in the form of an axially extending column.
  • the rotor core 30 is configured, for example, by laminating a plurality of plate members in the axial direction.
  • the rotor core 30 has a rotor core main body 31 and a plurality of projections 33 located on the outer peripheral surface of the rotor core main body 31.
  • the rotor core body 31 extends in the axial direction. More specifically, the rotor core main body 31 is a regular octagonal prism centered on the central axis J.
  • the rotor core body 31 has a plurality of magnet support surfaces 32.
  • the magnet support surface 32 extends in the axial direction.
  • the magnet support surface 32 is a flat surface orthogonal to the radial direction.
  • the plurality of magnet support surfaces 32 form a plurality of radially outer side surfaces of the rotor core main body 31 having a regular octagonal columnar shape.
  • the rotor core main body 31 has a fixing hole 31 a penetrating the rotor core main body 31 in the axial direction.
  • the shape viewed along the axial direction of the fixing hole portion 31 a is a circular shape centering on the central axis J.
  • the shaft 20 is passed through the fixing hole 31a.
  • the inner peripheral surface of the fixing hole 31 a is fixed to the outer peripheral surface of the shaft 20.
  • the rotor core 30 is thereby fixed to the shaft 20.
  • the protrusion 33 protrudes radially outward from the rotor core main body 31.
  • the protrusion 33 extends from the upper end portion of the rotor core main body 31 to the lower end portion of the rotor core main body 31.
  • the radially outer surface of the protrusion 33 is a flat surface orthogonal to the radial direction.
  • the dimension in the circumferential direction of the protrusion 33 increases from the radially inner side toward the radially outer side.
  • the plurality of protrusions 33 are arranged side by side along the circumferential direction.
  • the circumferential intervals of the plurality of protrusions 33 are, for example, the same as one another.
  • the number of the plurality of protrusions 33 is, for example, eight.
  • the eight projections 33 project radially outward from the respective corners of the regular octagonal columnar rotor core body 31.
  • the rotor core 30 is provided with a plurality of core through holes (recesses) 34 penetrating the rotor core 30 in the axial direction.
  • the core through hole 34 penetrates the rotor core main body 31 in the axial direction.
  • the plurality of core through holes 34 are arranged at equal intervals along the circumferential direction.
  • the circumferential intervals of the plurality of core through holes 34 are, for example, equal to one another.
  • the core through holes 34 are circular when viewed along the axial direction.
  • the number of core through holes 34 is, for example, eight.
  • Each core through hole 34 is located radially inward of the different magnets 40.
  • the magnet 40 has a substantially square prism shape that is flat in the radial direction and extends in the axial direction.
  • the magnet 40 is located radially outward of the rotor core 30.
  • the plurality of magnets 40 are arranged along the circumferential direction. More specifically, the plurality of magnets 40 are arranged at equal intervals along the circumferential direction.
  • Each magnet 40 is arrange
  • the end portions on both sides in the circumferential direction of the magnet 40 are in contact with the protrusions 33 adjacent on both sides in the circumferential direction of the magnet 40. More specifically, the radially inner ends of the circumferential ends of the magnet 40 are in contact with the protrusions 33.
  • the magnet 40 is positioned in the circumferential direction by contacting the protrusion 33.
  • Each magnet 40 is supported by the magnet support surface 32 from the inside in the radial direction.
  • the radially inner side surface of the magnet 40 is a flat surface orthogonal to the radial direction, and is in contact with the magnet support surface 32.
  • the radially outer side surface of the magnet 40 is a curved surface which is curved in the circumferential direction along the radially inner side surface of a cylindrical portion 61 of the rotor cover 60 described later.
  • the center of curvature of the radially outer surface of the magnet 40 coincides with the central axis J.
  • the radially outer side surface of the magnet 40 contacts the radially inner side surface of the rotor cover 60. Thereby, the magnet 40 is pinched in the radial direction in a state of being in contact with the rotor core 30 and the rotor cover 60.
  • the axial design dimension of the magnet 40 is the same as the axial design dimension of the rotor core 30.
  • the upper surface 40 a of the magnet 40 and the upper surface 30 a of the rotor core 30 are disposed on substantially the same plane orthogonal to the axial direction.
  • the lower surface 40 b of the magnet 40 and the lower surface 30 b of the rotor core 30 are disposed on substantially the same plane orthogonal to the axial direction.
  • the rotor cover 60 has a cylindrical portion 61 and a bottom portion 62.
  • the rotor cover 60 is made of a metal material.
  • the cylindrical portion 61 has a tubular shape extending in the axial direction. More specifically, the cylindrical portion 61 is cylindrical around the central axis J.
  • the cylindrical portion 61 opens on both sides in the axial direction.
  • the cylindrical portion 61 surrounds the rotor core 30 and the magnet 40 from the radially outer side of the magnet.
  • the upper end portion 61 c of the cylindrical portion 61 is provided with an inner protruding portion 63 extending inward in the radial direction.
  • the inner projecting portion 63 is formed by plastically deforming the upper end portion 61c (see FIG. 2) of the cylindrical portion 61 linearly extending along the axial direction (see FIG. 2) radially inward.
  • the inner projection 63 contacts the upper surface 50 a of the end cap 50.
  • the inner protrusion 63 presses the end cap 50 against the rotor core 30 and the magnet 40 to fix the end cap 50 to the cylindrical portion 61.
  • the inner protrusion 63 is provided with a fixing projection 64 described later with reference to FIG.
  • the fixing recess 55 d fits into the fixing recess 55 d of the end cap 50 to suppress the rotation of the end cap 50 with respect to the rotor cover 60.
  • the bottom portion 62 is located at the lower opening 61 b of the cylindrical portion.
  • the bottom portion 62 extends radially inward from the cylindrical portion 61.
  • the bottom portion 62 is provided with a shaft passage hole 62c.
  • the plan view shape of the shaft passing hole 62c is a circle centered on the central axis J.
  • the diameter of the shaft passage hole 62 c is larger than the diameter of the shaft 20.
  • the shaft 20 is passed through the shaft passage hole 62c.
  • the bottom portion 62 is located below the rotor core 30 and the plurality of magnets 40.
  • the lower surface 30 b of the rotor core 30 and the lower surfaces 40 b of the plurality of magnets 40 are in contact with the upper surface 62 a of the bottom portion 62.
  • the rotor core 30 and the plurality of magnets 40 are supported by the bottom portion 62 from the lower side.
  • the end cap 50 is located on the upper side of the rotor core 30 and the magnet 40 and covers the rotor core 30 and the magnet 40 from the upper side.
  • the end cap 50 is located radially inward of the cylindrical portion 61.
  • the end cap 50 is housed in the rotor cover 60.
  • the end cap 50 is made of, for example, a resin material.
  • FIG. 4 is a perspective view of the end cap 50.
  • the end cap 50 includes a disk-shaped plate-like portion 55, a plurality of (four in the present embodiment) first convex portions 51, a plurality of second convex portions 52, and a plurality (two in the present embodiment) And the third convex portion 53).
  • the first convex portion 51, the second convex portion 52 and the third convex portion 53 are provided on the lower surface 55 b of the plate-like portion 55.
  • the plate-like portion 55 extends in the direction orthogonal to the central axis J.
  • the outer shape in plan view of the plate-like portion 55 is circular.
  • the outer diameter of the plate-like portion 55 is slightly smaller than the inner diameter of the cylindrical portion 61.
  • the outer peripheral edge of the plate-like portion 55 is located inside the cylindrical portion 61.
  • the plate-like portion 55 is provided with a shaft passing hole 55c.
  • the plan view shape of the shaft passage hole 55c is a circle whose center is the central axis J.
  • the diameter of the shaft passage hole 55 c is sufficiently larger than the diameter of the shaft 20.
  • the shaft 20 is passed through the shaft passage hole 55c.
  • the first convex portion 51, the second convex portion 52, and the third convex portion 53 protrude downward from the plate-like portion 55.
  • the first convex portion 51, the second convex portion 52, and the third convex portion 53 are disposed around the central axis J, respectively. That is, the first convex portion 51, the second convex portion 52, and the third convex portion 53 are disposed on an imaginary circle centered on the central axis J in plan view.
  • the second convex portion 52 is the longest
  • the first convex portion 51 is the second longest
  • the third convex portion 53 is the shortest.
  • the plurality of first protrusions 51 are arranged at equal intervals around the central axis J.
  • the plurality of first convex portions 51 overlap the rotor core 30 as viewed from the axial direction.
  • the planar view shape of each 1st convex part 51 is circular.
  • the tip of the first convex portion 51 is curved in a hemispherical shape.
  • the state of the single component before the end cap 50 is assembled to the rotor 13 is simply referred to as the "component state”. Further, the state after the end cap 50 is assembled to the rotor 13 is simply referred to as "assembled state”.
  • the first convex portion 51 is in contact with the upper surface 30 a of the rotor core 30.
  • the first convex portion 51 is plastically deformed in accordance with the surface shape of the upper surface 30 a of the rotor core 30.
  • the end cap 50 is pressed to the rotor core 30 and the magnet 40 by the inner protruding portion 63 of the rotor cover 60.
  • the first convex portion 51 is elastically deformed in the axial direction to generate a repulsive force between the inner protruding portion 63 and the rotor core 30.
  • the axial length (protruding dimension h1) in the component state of the first convex portion 51 is longer than the distance between the lower surface 55b of the plate-like portion 55 and the upper surface 30a of the rotor core 30 in the assembled state. Therefore, the first convex portion 51 deforms and reliably contacts the upper surface 30 a of the rotor core 30.
  • the second convex portion 52 extends annularly along the circumferential direction.
  • the lower surface 52 b of the second convex portion 52 overlaps with each of the plurality of magnets 40 as viewed from the axial direction.
  • the second convex portion 52 contacts the upper surface 40 a of the magnet 40 at the lower surface 52 b.
  • the lower surface 52 b of the second convex portion 52 is located outside the outer peripheral edge of the rotor core 30 as viewed in the axial direction. Therefore, the second convex portion 52 does not contact the upper surface 30 a of the rotor core 30.
  • the height of the component state of the second convex portion 52 substantially matches the distance between the lower surface 55 b of the plate-like portion 55 and the upper surface 30 a of the rotor core 30 in the assembled state. That is, the second convex portion 52 hardly deforms before and after assembly. In other words, the protrusion dimension h2 of the second protrusion 52 hardly changes before and after the assembly. Therefore, the projection dimension h2 of the second convex portion 52 is a reference dimension that determines the distance between the lower surface 55b of the plate-like portion 55 and the upper surface 30a of the rotor core 30 in the assembled state.
  • the “projecting dimension” means the axial distance from the lower surface 55 b of the plate-like portion 55 to the tip of the convex portion.
  • the protrusion dimension h1 of the first protrusion 51 is larger than the protrusion dimension h2 of the second protrusion 52. Further, in the assembled state, the protrusion dimension h1a of the first protrusion 51 matches the protrusion dimension h2 of the second protrusion 52. In other words, the first convex portion 51 is deformed to have substantially the same height as the second convex portion 52 in the assembling process.
  • the first convex portion 51 and the second convex portion 52 individually project from the plate-like portion 55, it is difficult for one deformation to affect the other. Therefore, at least one of the first convex portion 51 and the second convex portion 52 is deformed to press the upper surfaces 30a and 40a of the rotor core 30 and the magnet 40 from the upper side to the lower side to move the rotor core 30 and the magnet 40 in the axial direction. It can suppress the occurrence of rattling.
  • the plurality of first protrusions 51 are arranged at equal intervals around the central axis J.
  • the second convex portion 52 extends annularly around the central axis J. Therefore, the first convex portion 51 is easily deformed relative to the second convex portion 52, and the first convex portion 51 can be deformed based on the protrusion dimension h2 of the second convex portion 52.
  • the axial dimension may vary. If it is attempted to press the rotor core and the magnet on the same surface of the end cap, a gap may be generated between one of the rotor core 30 and the magnet 40 and the end cap, which may cause rattling.
  • the projection dimension h1 of the first projection 51 is larger than the projection dimension h2 of the second projection 52, the first projection 52 is a first contact with the magnet 40 as a reference. Can be deformed until it sufficiently contacts the magnet 40.
  • the first convex portion 51 can be in contact with the upper surface 30 a of the rotor core 30 without a gap
  • the second convex portion 52 can be in contact with the upper surface 40 a of the magnet 40 without a gap.
  • the end cap 50 can press and fix the rotor core 30 and the magnet 40 simultaneously to the bottom 62 of the rotor cover 60.
  • the protrusion dimension of any one of the 1st convex part 51 and the 2nd convex part 52 is larger than the protrusion size of the other, rattling of the rotor core 30 and the magnet 40 can be suppressed. That is, one of the larger projecting dimensions can be plastically or elastically deformed until the other contacts the upper surface of the opposing rotor core 30 or magnet 40. Thereby, the first convex portion 51 and the second convex portion 52 can be brought into contact with the rotor core 30 and the magnet 40 without any gap, and rattling of the rotor core 30 and the magnet 40 can be suppressed.
  • the first convex portion 51 and the second convex portion 52 are disposed around the central axis J. More specifically, the plurality of first protrusions 51 are arranged at equal intervals around the central axis J, and the second protrusions 52 are annularly arranged around the central axis J. For this reason, the end cap 50 applies a force to the rotor core 30 and the plurality of magnets 40 uniformly in the circumferential direction with respect to the central axis J via the first convex portion 51 and the second convex portion 52. Can. As a result, the rotor core 30 and the plurality of magnets 40 can be pressed to the bottom 62 in a balanced manner, and the rotor core 30 and the plurality of magnets 40 can be stably fixed to the rotor cover 60.
  • the second convex portion 52 is provided annularly around the central axis J.
  • the end cap 50 of this embodiment is made of a resin material and manufactured by injection molding.
  • the lower surface 52 b of the second convex portion 52 can be formed as a surface derived from the same surface in the mold, and the dimensional accuracy of the lower surface 52 b can be enhanced. it can.
  • the protrusion dimension h2 of the second convex portion 52 is a reference dimension that determines the distance between the lower surface 55b of the plate-like portion 55 and the upper surface 30a of the rotor core 30 in the assembled state.
  • the dimensional accuracy of the lower surface 52 b of the second convex portion 52 can be enhanced, and as a result, the axial direction of the rotor 13 is obtained.
  • the plurality of third protrusions 53 are arranged at equal intervals around the central axis J.
  • the plan view shape of the third convex portion 53 is circular.
  • the protrusion dimension of the third protrusion 53 is larger than the protrusion dimension of the first protrusion 51 and the second protrusion 52.
  • the third convex portion 53 is inserted into the core through hole (concave portion) 34 of the rotor core 30.
  • the circumferential position of the end cap 50 can be positioned with respect to the rotor core 30.
  • the 2nd 3rd convex part 53 is provided in the edge part cap 50 of this embodiment, one or more 3rd convex parts 53 should just be provided.
  • the recess of the rotor core 30 into which the third protrusion 53 is inserted may not be the core through hole 34 penetrating the rotor core 30, as long as the recess is a shape that is recessed downward from the upper surface 30a.
  • the core through hole 34 is an aspect of the recess provided on the upper surface 30 a of the rotor core 30.
  • the rotor core 30 and the plurality of magnets 40 are accommodated inside the cylindrical portion 61 of the rotor cover 60. Thereby, the lower surface 30b of the rotor core 30 and the lower surfaces 40b of the plurality of magnets 40 are brought into contact with the bottom portion 62 of the rotor cover 60 (see FIG. 3).
  • 5 to 7 are perspective views for explaining the second step in the manufacturing process of the rotor 13.
  • the end cap 50 is disposed on the inner side of the cylindrical portion 61 and above the rotor core 30 and the plurality of magnets 40. At this time, the third convex portion 53 of the end cap 50 is inserted into the core through hole 34 of the rotor core 30. Further, the end cap 50 is pressed downward by using a jig (not shown). Thus, the first convex portion 51 of the end cap 50 is plastically deformed (see FIG. 3).
  • a plurality of (four in the present embodiment) fixing recesses 55 d are provided on the outer peripheral edge of the end cap 50.
  • the fixing recess 55d is recessed radially inward.
  • the fixing recess 55d is recessed downward from the upper surface 50a.
  • the four fixed recesses 55d are arranged at equal intervals around the central axis J.
  • the upper end portion 61 c of the cylindrical portion 61 is plastically deformed inward in the radial direction to form the inner protruding portion 63.
  • the inner projecting portion 63 is formed by pressing the upper end portion 61c from outside in the radial direction against the rotor cover 60 while pressing a caulking jig (not shown) around the central axis J, and bending the upper end portion 61c inward. Be done.
  • the inner protrusion 63 may be formed by lowering a die (not shown) relative to the upper end 61 c of the rotor cover 60 and pressing the upper end 61 c of the cylindrical portion 61 radially inward.
  • the inner protrusion 63 contacts the outer peripheral edge of the upper surface 50 a of the end cap 50.
  • the inner protrusion 63 presses the end cap 50 against the rotor core 30 and the magnet 40. More specifically, as shown in FIG. 3, the inner protrusion 63 brings the second protrusion 52 into contact with the upper surfaces 40 a of the plurality of magnets 40 and elastically deforms the first protrusion 51, while the upper surface of the rotor core 30 is Contact 30a.
  • the first convex portion 51 is elastically deformed and the repulsive force of the first convex portion 51 causes the end cap 50 to be attached to the rotor cover 60. It is fixed.
  • the second convex portion 52 may also be elastically deformed along with the first convex portion 51.
  • the second step of fixing the end cap 50 to the cylindrical portion 61 includes the step of deforming the first convex portion 51. Therefore, it is possible to provide the rotor 13 in which the rattling of the rotor core 30 and the magnet 40 is suppressed by bringing the first convex portion 51 and the second convex portion of the end cap into contact with the rotor core 30 and the magnet 40, respectively.
  • the process of plastically deforming the first protrusion 51 and the process of caulking the inner protrusion 63 and elastically deforming the first protrusion 51 are separately performed. did. However, these steps may be performed simultaneously. That is, when the inner protrusion 63 is formed by caulking, the first protrusion 51 may be plastically and elastically deformed. Further, in the present embodiment, only the first convex portion 51 is deformed in the second step, but the first convex portion 51 is brought into contact with the upper surface 30 a of the rotor core 30 and the second convex portion 52 is made of the magnet 40. The step of deforming one or both of the first convex portion 51 and the second convex portion 52 may be used as long as the upper surface 40 a of the second convex portion 52 is in contact with the upper surface 40 a.
  • the second step includes the step of deforming the upper end portion 61 c of the cylindrical portion 61 to provide the inner protruding portion 63.
  • the inner projection 63 can be brought into contact with the upper surface 50 a of the end cap 50, and the end cap 50 can be pressed against the rotor core 30 and the magnet 40 to fix the end cap 50.
  • the fixing convex portion 64 protrudes downward as well as dents the upper surface of the inner protruding portion 63 downward. More specifically, the fixed convex portion 64 is formed by striking a jig (not shown) from the upper side to the inner protruding portion 63 to deform.
  • the fixing projection 64 is fitted in a fixing recess 55 d provided on the outer peripheral edge of the end cap 50.
  • the second step includes the step of deforming the cylindrical portion 61 to provide the fixing projection 64.
  • the fixing convex portion 64 positions the end cap 50 in the circumferential direction with respect to the cylindrical portion 61 in order to fit in the fixing concave portion 55 d. Thereby, even if vibration occurs, the rotation of the end cap 50 is suppressed, and the first convex portion 51 and the second convex portion 52 move relative to the rotor core 30 and the magnet 40. There is no Therefore, since the first convex portion 51 and the second convex portion 52 are in stable contact with the rotor core 30 and the magnet 40, the rotor core 30 and the magnet 40 can be stably fixed to the rotor cover 60.
  • the step of caulking the inner protrusion 63 and the step of forming the fixing projection 64 may be performed in the same step.
  • the method of manufacturing the rotor 13 of this embodiment it is possible to manufacture the rotor 13 in which the rotor core 30 and the magnet 40 are fixed to the rotor cover 60 without using an adhesive and suppressing rattling. Therefore, according to this embodiment, the inexpensive and high-performance rotor 13 can be provided.
  • FIG. 8 is a cross-sectional view of a rotor 113 of a modification of the above-described embodiment.
  • FIG. 9 is a perspective view of an end cap 150 of a rotor 113 of a modification.
  • the rotor 113 of this modification mainly differs from the above-described rotor 13 in the structure of the end cap 150.
  • symbol is attached
  • the end cap 150 of the rotor 113 is pressed against the rotor core 30 and the magnet by the inner projecting portion 63 provided on the upper end portion 61 c of the cylindrical portion 61. And fixed to the tubular portion 61.
  • the end cap 150 includes a disk-shaped plate-like portion 155, a first convex portion 151, a plurality (eight in this modification) of a second convex portion 152, and a plurality (two) In the modification, two third convex portions 153 are provided.
  • the plate-like portion 155 extends in a direction perpendicular to the central axis J.
  • the outer shape of the plate-like portion 155 in a plan view is a circular shape slightly smaller than the inner diameter of the cylindrical portion 61.
  • the plate-like portion 155 is provided with a shaft passage hole 155 c through which the shaft 20 passes.
  • the first convex portion 151 protrudes downward from the lower surface 155 b of the plate-like portion 155.
  • the first convex portion 151 is disposed around the central axis J. More specifically, the first convex portion 151 extends annularly along the circumferential direction around the central axis J.
  • the first protrusions 151 overlap the rotor core 30 as viewed in the axial direction.
  • the first convex portion 151 contacts the upper surface 30 a of the rotor core 30 at the lower surface 151 b.
  • the height of the component state of the first convex portion 151 substantially matches the distance between the lower surface 155 b of the plate-like portion 155 and the upper surface 30 a of the rotor core 30 in the assembled state. That is, the first convex portion 151 hardly deforms before and after assembly, and the protrusion dimension h101 of the first convex portion 151 does not change before and after assembly. Therefore, the protrusion dimension h101 of the first convex portion 151 is a reference dimension that determines the distance between the lower surface 155b of the plate-like portion 155 and the upper surface 30a of the rotor core 30 in the assembled state.
  • the plurality of second projections 152 are arranged at equal intervals around the central axis J.
  • Each of the plurality of second convex portions 152 overlaps the different magnet 40 among the plurality of magnets 40 when viewed in the axial direction. That is, in the present modification, the end cap 150 has eight second convex portions 152 equal in number to the magnet 40, and the respective second convex portions 152 axially face the different magnets 40.
  • the plan view shape of each second convex portion 152 is circular.
  • the tip of the second protrusion 152 is hemispherically curved.
  • each of the second protrusions 152 contacts the top surface 40 a of a different magnet 40.
  • the second convex portion 152 is plastically deformed in accordance with the surface shape of the upper surface 40 a of the magnet 40.
  • the protrusion dimension h102 in the component state of the second convex portion 152 is longer than the distance between the lower surface 155b of the plate-like portion 155 and the upper surface 40a of the magnet 40 in the assembled state. Therefore, the second convex portion 152 is deformed and reliably contacts the upper surface 40 a of the magnet 40.
  • the protrusion dimension h102 of the second protrusion 152 is larger than the protrusion dimension h101 of the first protrusion 151. Further, in the assembled state, the protrusion dimension h102a of the second protrusion 152 matches the protrusion dimension h101 of the first protrusion 151. In other words, the second convex portion 152 is deformed to have substantially the same height as the first convex portion 151 in the assembling process.
  • the first convex portion 151 and the second convex portion 152 individually project from the plate-like portion 155, one deformation affects the other. Hard to give. Therefore, at least one of the first convex portion 151 and the second convex portion 152 is deformed to press the upper surfaces 30a and 40a of the rotor core 30 and the magnet 40 from the upper side to the lower side, and the axial direction of the rotor core 30 and the magnet 40 It can suppress the occurrence of rattling.
  • the plurality of second convex portions 152 contact the upper surfaces 40 a of the magnets 40 different from each other.
  • the plurality of magnets 40 may have variations in axial dimensions.
  • the second convex portions 152 individually contact the upper surface 40 a of the magnet 40 and deform according to the size of the magnet 40. For this reason, it is possible to suppress the rattling of the magnet 40 by absorbing the dimensional variations of the respective magnets 40 by the deformation of the respective second convex portions 152.
  • the plurality of third convex portions 153 are arranged at equal intervals around the central axis J.
  • the third convex portion 153 protrudes downward from the lower surface 151 b of the first convex portion 151.
  • the third convex portion 153 is inserted into the core through hole 34 of the rotor core 30 as in the above-described embodiment.
  • the circumferential position of the end cap 150 can be positioned with respect to the rotor core 30.
  • the plurality of second projections 152 can be reliably brought into contact with the different magnets 40.
  • the application of the motor provided with the rotor of the embodiment described above and its variation is not particularly limited.
  • the motor including the rotors of the above-described embodiment and the modification thereof is mounted on, for example, an electric pump, an electric power steering, and the like.
  • the 1st convex part 51 (or the 2nd convex part 152) carries out plastic deformation and elastic deformation.
  • the first convex portion 51 (or the second convex portion 152) may absorb the axial difference between the rotor core 30 and the magnet 40 only by elastic deformation without plastic deformation.
  • the shape of the 1st convex part 51 is an example.
  • the first convex portion 51 (or the second convex portion 152) may have another shape such as a conical shape which is easily deformed plastically and elastically.
  • the shaft 20 is not limited to a solid, and may be a hollow member.
  • the number of magnets 40 is eight (ie, the number of poles is eight).
  • the number of magnetic poles of the rotor may be changed as appropriate.
  • the shape of the magnet 40 is not limited to the one described above, and may be another shape.
  • the rotor core body 31 is not limited to the octagonal prismatic shape, and may be a polygonal pillar or a cylindrical shape depending on the shape and the number of the magnets 40, and is not particularly limited.
  • the bearing holder 14 may be integral with a lid member covering the opening of the housing 11.

Abstract

A rotor comprising: a shaft arranged along a center axis extending in the vertical direction; a rotor core fixed to the shaft; a plurality of magnets positioned on the outside of the rotor core, in the radial direction, and lined up along the circumferential direction; a rotor cover having a cylindrical section that surrounds the rotor core and the magnets from the outside of the magnets in the radial direction and a floor section positioned in the opening on the lower side of the cylindrical section; and an end section cap positioned on the upper side of the rotor core and magnets and fixed to the cylindrical section. The end section cap has: a plate section extending along a direction orthogonal to the center axis; a first convex section arranged around the center axis, protruding downwards from the plate section, and coming in contact with the upper surface of the rotor core; and a second convex section arranged around the center axis, protruding downwards from the plate section, and coming in contact with the upper surface of the magnets.

Description

ロータ、モータおよびロータの製造方法Rotor, motor and method of manufacturing rotor
本発明は、ロータ、モータおよびロータの製造方法に関する。 The present invention relates to a rotor, a motor and a method of manufacturing the rotor.
ロータコアおよび永久磁石を覆うロータカバーを備えるロータ、および、そのようなロータを有するモータが知られる(例えば、特許文献1)。 A rotor comprising a rotor core and a rotor cover covering a permanent magnet, and a motor comprising such a rotor are known (e.g. U.S. Pat. No. 5,075,015).
特開2011-30406号公報JP, 2011-30406, A
上記のようなロータにおいては、ロータカバーに対しロータコアおよび永久磁石を固定する必要がある。ロータカバーに対しロータコアおよび永久磁石を接着固定する場合には、製造工程において接着剤を硬化させるための待機時間が発生するため製造効率が悪いという問題がある。また、ロータカバーの一端側に蓋を固定し、蓋によってロータコアおよび永久磁石を押さえつけて固定する場合には、ロータコアおよび永久磁石の軸方向寸法のバラつきによって、蓋とロータコア又は永久磁石との間に隙間が生じ、ロータコア内にがたつきが生じるという問題がある。  In the rotor as described above, it is necessary to fix the rotor core and the permanent magnet to the rotor cover. When the rotor core and the permanent magnet are bonded and fixed to the rotor cover, a waiting time for curing the adhesive is generated in the manufacturing process, which causes a problem that manufacturing efficiency is poor. In addition, when the lid is fixed to one end of the rotor cover, and the rotor core and the permanent magnet are pressed and fixed by the lid, the gap between the lid and the rotor core or the permanent magnet is caused by the variation in axial dimension of the rotor core and the permanent magnet. There is a problem that a gap is generated and rattling occurs in the rotor core.
本発明は、上記事情に鑑みて、接着剤を用いることなく、しかもがたつきを抑制して、ロータカバーにロータコアおよびマグネットをするロータおよびそのようなロータを備えるモータ、並びにロータの製造方法を提供することを目的の一つとする。 In view of the above circumstances, the present invention provides a rotor having a rotor cover and a magnet on a rotor cover without using an adhesive and suppressing rattling, a motor including such a rotor, and a method of manufacturing the rotor. One of the purposes is to provide.
本発明のロータの一つの態様は、上下方向に延びる中心軸に沿って配置されるシャフトと、前記シャフトに固定されるロータコアと、前記ロータコアの径方向外側に位置し周方向に沿って並ぶ複数のマグネットと、前記マグネットの径方向外側から前記ロータコアおよび前記マグネットを囲む筒状部および前記筒状部の下側の開口に位置する底部を有するロータカバーと、前記ロータコアおよび前記マグネットの上側に位置し、前記筒状部に固定される、端部キャップと、を備え、前記端部キャップは、前記中心軸に直交する方向に沿って延びる板状部と、前記中心軸周りに配置され前記板状部から下側に突出して前記ロータコアの上面と接触する第1の凸部と、前記中心軸周りに配置され前記板状部から下側に突出して前記マグネットの上面と接触する第2の凸部と、を有する。  One aspect of the rotor according to the present invention is a shaft disposed along a central axis extending in the vertical direction, a rotor core fixed to the shaft, and a plurality of radial outer sides of the rotor core and arranged along the circumferential direction A rotor cover having a magnet, a cylindrical portion surrounding the rotor core and the magnet from the radially outer side of the magnet, and a bottom portion positioned at an opening on the lower side of the cylindrical portion; and a position above the rotor core and the magnet An end cap fixed to the cylindrical portion, the end cap being a plate portion extending in a direction orthogonal to the central axis, and the plate disposed around the central axis A first convex portion projecting downward from the ring-shaped portion and in contact with the upper surface of the rotor core; and a convex portion disposed around the central axis and projecting downward from the plate-shaped portion Having a second convex portion that contacts with.
本発明のモータの一つの態様は、上記のロータと、前記ロータと径方向に隙間を介して対向するステータと、を備える。 One aspect of the motor of the present invention includes the above-described rotor, and a stator that faces the rotor in the radial direction via a gap.
本発明の一つの態様によれば、接着剤を用いることなく、しかもがたつきを抑制して、ロータカバーにロータコアおよびマグネットを固定するロータおよびそのようなロータを備えるモータ、並びにロータの製造方法が提供される。 According to one aspect of the present invention, a rotor for fixing a rotor core and a magnet to a rotor cover without using an adhesive and suppressing rattling, a motor including such a rotor, and a method of manufacturing the rotor Is provided.
図1は、一実施形態のモータの断面模式図である。FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment. 図2は、一実施形態のロータの分解斜視図である。FIG. 2 is an exploded perspective view of the rotor of an embodiment. 図3は、一実施形態のロータの断面図である。FIG. 3 is a cross-sectional view of the rotor of one embodiment. 図4は、一実施形態の端部キャップの斜視図である。FIG. 4 is a perspective view of an end cap of one embodiment. 図5は、一実施形態のロータの製造工程における第2の工程の一部を説明する斜視図である。FIG. 5 is a perspective view for describing a part of a second step in the process of manufacturing a rotor according to an embodiment. 図6は、一実施形態のロータの製造工程における第2の工程の一部を説明する斜視図である。FIG. 6 is a perspective view for explaining a part of a second step in the process of manufacturing a rotor according to an embodiment. 図7は、一実施形態のロータの製造工程における第2の工程の一部を説明する斜視図である。FIG. 7 is a perspective view for explaining a part of a second step in the process of manufacturing a rotor according to an embodiment. 図8は、変形例のロータの断面図である。FIG. 8 is a cross-sectional view of a rotor of a modification. 図9は、変形例の端部キャップの斜視図である。FIG. 9 is a perspective view of a modified end cap.
図1は、本実施形態のモータ10の断面模式図である。



モータ10は、ハウジング11と、ステータ12と、上下方向に延びる中心軸Jに沿って配置されるシャフト20を有するロータ13と、ベアリングホルダ14と、ベアリング15,16と、を備える。ステータ12は、ロータ13の径方向外側においてロータ13と径方向隙間を介して対向する。シャフト20は、ベアリング15,16に回転可能に支持される。シャフト20は、軸方向に延びる円柱状である。 
FIG. 1 is a schematic cross-sectional view of a motor 10 according to the present embodiment.



The motor 10 includes a housing 11, a stator 12, a rotor 13 having a shaft 20 disposed along a vertically extending central axis J, a bearing holder 14, and bearings 15 and 16. The stator 12 opposes the rotor 13 via the radial gap on the radially outer side of the rotor 13. The shaft 20 is rotatably supported by the bearings 15 and 16. The shaft 20 has a cylindrical shape extending in the axial direction.
各図には、適宜Z軸を示す。各図のZ軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。また、以下の説明においては、Z軸方向の正の側(+Z側,一方側)を「上側」と呼び、Z軸方向の負の側(-Z側,他方側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる方向であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から視た状態を意味する。 また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。


In each figure, the Z axis is shown as appropriate. The Z-axis direction of each drawing is a direction parallel to the axial direction of the central axis J shown in FIG. In the following description, the positive side in the Z-axis direction (+ Z side, one side) is referred to as “upper side”, and the negative side in the Z-axis direction (−Z side, other side) as “lower side”. Call. Note that the upper and lower sides are directions used merely for the purpose of explanation, and do not limit the actual positional relationship or direction. Further, unless otherwise noted, a direction (Z-axis direction) parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, and a radial direction centered on the central axis J is simply referred to as “radial direction”. The circumferential direction around the central axis J, that is, around the axis of the central axis J, is simply referred to as “circumferential direction”. Furthermore, in the following description, “plan view” means a state viewed from the axial direction. Moreover, in the following drawings, in order to make each structure intelligible, a scale, the number, etc. in an actual structure and each structure may be varied.


図2は、ロータ13の分解斜視図である。図3は、ロータ13の断面図である。なお、図2において、シャフト20の図示を省略する。



ロータ13は、シャフト20(図4参照)と、ロータコア30と、複数のマグネット40と、ロータカバー60と、端部キャップ50と、を備える。


FIG. 2 is an exploded perspective view of the rotor 13. FIG. 3 is a cross-sectional view of the rotor 13. In FIG. 2, the illustration of the shaft 20 is omitted.



The rotor 13 includes a shaft 20 (see FIG. 4), a rotor core 30, a plurality of magnets 40, a rotor cover 60, and an end cap 50.


図2に示す様に、ロータコア30は、軸方向に延びる柱状である。図示は省略するが、ロータコア30は、例えば、複数の板部材が軸方向に積層されて構成される。ロータコア30は、ロータコア本体31と、ロータコア本体31の外周面に位置する複数の突起部33と、を有する。  As shown in FIG. 2, the rotor core 30 is in the form of an axially extending column. Although not shown, the rotor core 30 is configured, for example, by laminating a plurality of plate members in the axial direction. The rotor core 30 has a rotor core main body 31 and a plurality of projections 33 located on the outer peripheral surface of the rotor core main body 31.
ロータコア本体31は、軸方向に延びる。より詳細には、ロータコア本体31は、中心軸Jを中心とする正八角柱状である。ロータコア本体31は、複数のマグネット支持面32を有する。マグネット支持面32は、軸方向に延びる。マグネット支持面32は、径方向と直交する平坦な面である。複数のマグネット支持面32は、正八角柱状であるロータコア本体31が有する複数の径方向外側面を構成する。  The rotor core body 31 extends in the axial direction. More specifically, the rotor core main body 31 is a regular octagonal prism centered on the central axis J. The rotor core body 31 has a plurality of magnet support surfaces 32. The magnet support surface 32 extends in the axial direction. The magnet support surface 32 is a flat surface orthogonal to the radial direction. The plurality of magnet support surfaces 32 form a plurality of radially outer side surfaces of the rotor core main body 31 having a regular octagonal columnar shape.
ロータコア本体31は、ロータコア本体31を軸方向に貫通する固定孔部31aを有する。固定孔部31aの軸方向に沿って視た形状は、中心軸Jを中心とする円形状である。固定孔部31aには、シャフト20が通される。固定孔部31aの内周面は、シャフト20の外周面に固定される。これにより、ロータコア30は、シャフト20に固定される。  The rotor core main body 31 has a fixing hole 31 a penetrating the rotor core main body 31 in the axial direction. The shape viewed along the axial direction of the fixing hole portion 31 a is a circular shape centering on the central axis J. The shaft 20 is passed through the fixing hole 31a. The inner peripheral surface of the fixing hole 31 a is fixed to the outer peripheral surface of the shaft 20. The rotor core 30 is thereby fixed to the shaft 20.
突起部33は、ロータコア本体31から径方向外側に突出する。突起部33は、ロータコア本体31の上端部からロータコア本体31の下端部まで延びる。突起部33の径方向外側の面は、径方向と直交する平坦な面である。突起部33の周方向の寸法は、径方向内側から径方向外側に向かうに従って大きくなる。複数の突起部33は、周方向に沿って一周に亘って並んで配置される。複数の突起部33同士の周方向の間隔は、例えば、互いに同じである。複数の突起部33の数は、例えば、8つである。8つの突起部33は、正八角柱状のロータコア本体31の各角部から径方向外側に突出する。  The protrusion 33 protrudes radially outward from the rotor core main body 31. The protrusion 33 extends from the upper end portion of the rotor core main body 31 to the lower end portion of the rotor core main body 31. The radially outer surface of the protrusion 33 is a flat surface orthogonal to the radial direction. The dimension in the circumferential direction of the protrusion 33 increases from the radially inner side toward the radially outer side. The plurality of protrusions 33 are arranged side by side along the circumferential direction. The circumferential intervals of the plurality of protrusions 33 are, for example, the same as one another. The number of the plurality of protrusions 33 is, for example, eight. The eight projections 33 project radially outward from the respective corners of the regular octagonal columnar rotor core body 31.
ロータコア30には、ロータコア30を軸方向に貫通する複数のコア貫通孔(凹部)34が設けられる。コア貫通孔34は、ロータコア本体31を軸方向に貫通する。複数のコア貫通孔34は、周方向に沿って一周に亘って等間隔に並んで配置される。複数のコア貫通孔34同士の周方向の間隔は、例えば、互いに同じである。コア貫通孔34は、軸方向に沿って視て円形状である。コア貫通孔34の数は、例えば、8つである。それぞれのコア貫通孔34は、互いに異なるマグネット40の径方向内側に位置する。複数のコア貫通孔34のうち一部のコア貫通孔34は、後述する第3の凸部53が挿入される凹部として機能する。  The rotor core 30 is provided with a plurality of core through holes (recesses) 34 penetrating the rotor core 30 in the axial direction. The core through hole 34 penetrates the rotor core main body 31 in the axial direction. The plurality of core through holes 34 are arranged at equal intervals along the circumferential direction. The circumferential intervals of the plurality of core through holes 34 are, for example, equal to one another. The core through holes 34 are circular when viewed along the axial direction. The number of core through holes 34 is, for example, eight. Each core through hole 34 is located radially inward of the different magnets 40. Some of the core through holes 34 among the plurality of core through holes 34 function as concave portions into which third convex portions 53 described later are inserted.
マグネット40は、径方向に扁平で軸方向に延びる略四角柱状である。マグネット40は、ロータコア30の径方向外側に位置する。複数のマグネット40は、周方向に沿って並ぶ。より詳細には、複数のマグネット40は、周方向に沿って一周に亘って等間隔に配置される。  The magnet 40 has a substantially square prism shape that is flat in the radial direction and extends in the axial direction. The magnet 40 is located radially outward of the rotor core 30. The plurality of magnets 40 are arranged along the circumferential direction. More specifically, the plurality of magnets 40 are arranged at equal intervals along the circumferential direction.
それぞれのマグネット40は、周方向に隣り合う突起部33同士の間に配置される。マグネット40の周方向両側の端部は、マグネット40の周方向両側にそれぞれ隣り合う突起部33と接触する。より詳細には、マグネット40の周方向両側の端部における径方向内側の端部が、突起部33と接触する。マグネット40は、突起部33と接触することで周方向に位置決めされる。  Each magnet 40 is arrange | positioned between the projection parts 33 adjacent to the circumferential direction. The end portions on both sides in the circumferential direction of the magnet 40 are in contact with the protrusions 33 adjacent on both sides in the circumferential direction of the magnet 40. More specifically, the radially inner ends of the circumferential ends of the magnet 40 are in contact with the protrusions 33. The magnet 40 is positioned in the circumferential direction by contacting the protrusion 33.
それぞれのマグネット40は、マグネット支持面32に径方向内側から支持される。マグネット40の径方向内側面は、径方向と直交する平坦な面であり、マグネット支持面32と接触する。マグネット40の径方向外側面は、ロータカバー60の後述する筒状部61の径方向内側面に沿って周方向に湾曲する曲面である。マグネット40の径方向外側面の曲率中心は、中心軸Jと一致する。マグネット40の径方向外側面をこのような曲面とすることで、モータ10の磁気特性を向上できる。マグネット40の径方向外側面は、ロータカバー60の径方向内側面と接触する。これにより、マグネット40は、ロータコア30とロータカバー60とに接触した状態で径方向に挟まれる。  Each magnet 40 is supported by the magnet support surface 32 from the inside in the radial direction. The radially inner side surface of the magnet 40 is a flat surface orthogonal to the radial direction, and is in contact with the magnet support surface 32. The radially outer side surface of the magnet 40 is a curved surface which is curved in the circumferential direction along the radially inner side surface of a cylindrical portion 61 of the rotor cover 60 described later. The center of curvature of the radially outer surface of the magnet 40 coincides with the central axis J. By making the radial direction outer side surface of the magnet 40 into such a curved surface, the magnetic characteristic of the motor 10 can be improved. The radially outer side surface of the magnet 40 contacts the radially inner side surface of the rotor cover 60. Thereby, the magnet 40 is pinched in the radial direction in a state of being in contact with the rotor core 30 and the rotor cover 60.
図3に示す様に、マグネット40の軸方向の設計寸法は、ロータコア30の軸方向の設計寸法と同じである。マグネット40の上面40aとロータコア30の上面30aとは、軸方向と直交する略同一平面上に配置される。マグネット40の下面40bとロータコア30の下面30bとは、軸方向と直交する略同一平面上に配置される。  As shown in FIG. 3, the axial design dimension of the magnet 40 is the same as the axial design dimension of the rotor core 30. The upper surface 40 a of the magnet 40 and the upper surface 30 a of the rotor core 30 are disposed on substantially the same plane orthogonal to the axial direction. The lower surface 40 b of the magnet 40 and the lower surface 30 b of the rotor core 30 are disposed on substantially the same plane orthogonal to the axial direction.
ロータカバー60は、筒状部61と、底部62と、を有する。ロータカバー60は、金属材料から構成される。筒状部61は、軸方向に延びる筒状である。より詳細には、筒状部61は、中心軸Jを中心とする円筒状である。筒状部61は、軸方向の両側に開口する。筒状部61は、マグネットの径方向外側からロータコア30およびマグネット40を囲む。  The rotor cover 60 has a cylindrical portion 61 and a bottom portion 62. The rotor cover 60 is made of a metal material. The cylindrical portion 61 has a tubular shape extending in the axial direction. More specifically, the cylindrical portion 61 is cylindrical around the central axis J. The cylindrical portion 61 opens on both sides in the axial direction. The cylindrical portion 61 surrounds the rotor core 30 and the magnet 40 from the radially outer side of the magnet.
筒状部61の上端部61cには、径方向内側に延びる内側突出部63が設けられる。内側突出部63は、軸方向に沿って直線状に延びる筒状部61の上端部61c(図2参照)を径方向内側に塑性変形させるかしめ加工することで成形される。内側突出部63は、端部キャップ50の上面50aに接触する。また、内側突出部63は、端部キャップ50をロータコア30およびマグネット40に押し当てて、筒状部61に端部キャップ50を固定する。 なお、内側突出部63には、後段において図7を基に説明する固定凸部64が設けられる。固定凹部55dは、端部キャップ50の固定凹部55d嵌ってロータカバー60に対する端部キャップ50の回転を抑制する。  The upper end portion 61 c of the cylindrical portion 61 is provided with an inner protruding portion 63 extending inward in the radial direction. The inner projecting portion 63 is formed by plastically deforming the upper end portion 61c (see FIG. 2) of the cylindrical portion 61 linearly extending along the axial direction (see FIG. 2) radially inward. The inner projection 63 contacts the upper surface 50 a of the end cap 50. In addition, the inner protrusion 63 presses the end cap 50 against the rotor core 30 and the magnet 40 to fix the end cap 50 to the cylindrical portion 61. The inner protrusion 63 is provided with a fixing projection 64 described later with reference to FIG. The fixing recess 55 d fits into the fixing recess 55 d of the end cap 50 to suppress the rotation of the end cap 50 with respect to the rotor cover 60.
底部62は、筒状部の下側の開口61bに位置する。底部62は、筒状部61から径方向内側に延びる。底部62には、シャフト通過孔62cが設けられる。シャフト通過孔62cの平面視形状は、中心軸Jを中心とする円形状である。シャフト通過孔62cの直径は、シャフト20の直径より大きい。シャフト通過孔62cには、シャフト20が通される。底部62は、ロータコア30および複数のマグネット40の下側に位置する。底部62の上面62aには、ロータコア30の下面30bおよび複数のマグネット40の下面40bが接触する。これにより、ロータコア30および複数のマグネット40は、底部62によって下側から支持される。  The bottom portion 62 is located at the lower opening 61 b of the cylindrical portion. The bottom portion 62 extends radially inward from the cylindrical portion 61. The bottom portion 62 is provided with a shaft passage hole 62c. The plan view shape of the shaft passing hole 62c is a circle centered on the central axis J. The diameter of the shaft passage hole 62 c is larger than the diameter of the shaft 20. The shaft 20 is passed through the shaft passage hole 62c. The bottom portion 62 is located below the rotor core 30 and the plurality of magnets 40. The lower surface 30 b of the rotor core 30 and the lower surfaces 40 b of the plurality of magnets 40 are in contact with the upper surface 62 a of the bottom portion 62. Thus, the rotor core 30 and the plurality of magnets 40 are supported by the bottom portion 62 from the lower side.
端部キャップ50は、ロータコア30およびマグネット40の上側に位置し、ロータコア30およびマグネット40を上側から覆う。端部キャップ50は、筒状部61の径方向内側に位置する。端部キャップ50は、ロータカバー60に収容される。端部キャップ50は、例えば樹脂材料から構成される。  The end cap 50 is located on the upper side of the rotor core 30 and the magnet 40 and covers the rotor core 30 and the magnet 40 from the upper side. The end cap 50 is located radially inward of the cylindrical portion 61. The end cap 50 is housed in the rotor cover 60. The end cap 50 is made of, for example, a resin material.
図4は、端部キャップ50の斜視図である。端部キャップ50は、円板状の板状部55と、複数(本実施形態では4つ)の第1の凸部51と、第2の凸部52と、複数(本実施形態では2つ)の第3の凸部53と、を有する。第1の凸部51、第2の凸部52および第3の凸部53は、板状部55の下面55bに設けられる。  FIG. 4 is a perspective view of the end cap 50. The end cap 50 includes a disk-shaped plate-like portion 55, a plurality of (four in the present embodiment) first convex portions 51, a plurality of second convex portions 52, and a plurality (two in the present embodiment) And the third convex portion 53). The first convex portion 51, the second convex portion 52 and the third convex portion 53 are provided on the lower surface 55 b of the plate-like portion 55.
板状部55は、中心軸Jに直交する方向に沿って延びる。板状部55の平面視における外形は、円形状である。板状部55の外径は、筒状部61の内径より若干小さい。板状部55の外周縁は、筒状部61の内側に位置する。  The plate-like portion 55 extends in the direction orthogonal to the central axis J. The outer shape in plan view of the plate-like portion 55 is circular. The outer diameter of the plate-like portion 55 is slightly smaller than the inner diameter of the cylindrical portion 61. The outer peripheral edge of the plate-like portion 55 is located inside the cylindrical portion 61.
板状部55には、シャフト通過孔55cが設けられる。シャフト通過孔55cの平面視形状は、中心軸Jを中心とする円形状である。シャフト通過孔55cの直径は、シャフト20の直径より十分に大きい。シャフト通過孔55cには、シャフト20が通される。  The plate-like portion 55 is provided with a shaft passing hole 55c. The plan view shape of the shaft passage hole 55c is a circle whose center is the central axis J. The diameter of the shaft passage hole 55 c is sufficiently larger than the diameter of the shaft 20. The shaft 20 is passed through the shaft passage hole 55c.
第1の凸部51、第2の凸部52および第3の凸部53は、板状部55から下側に突出する。第1の凸部51、第2の凸部52および第3の凸部53は、それぞれ中心軸J周りに配置さる。すなわち、第1の凸部51、第2の凸部52および第3の凸部53は、平面視において、それぞれ中心軸Jを中心とする仮想円上に配置される。平面視における中心軸Jからの距離は、第2の凸部52が最も長く、第1の凸部51が次に長く、第3の凸部53が最も短い。  The first convex portion 51, the second convex portion 52, and the third convex portion 53 protrude downward from the plate-like portion 55. The first convex portion 51, the second convex portion 52, and the third convex portion 53 are disposed around the central axis J, respectively. That is, the first convex portion 51, the second convex portion 52, and the third convex portion 53 are disposed on an imaginary circle centered on the central axis J in plan view. Regarding the distance from the central axis J in plan view, the second convex portion 52 is the longest, the first convex portion 51 is the second longest, and the third convex portion 53 is the shortest.
複数の第1の凸部51は、中心軸J周りに等間隔に並んで配置される。複数の第1の凸部51は、それぞれ軸方向から視てロータコア30と重なる。それぞれの第1の凸部51の平面視形状は、円形である。端部キャップ50がロータ13に組み付けられる前の部品単品の状態で、第1の凸部51の先端は、半球状に湾曲する。なお、以下の説明で、端部キャップ50がロータ13に組み付けられる前の部品単品の状態を、単に「部品状態」と呼ぶ。また、端部キャップ50がロータ13に組み付けられた後の状態を単に「組み付け状態」と呼ぶ。  The plurality of first protrusions 51 are arranged at equal intervals around the central axis J. The plurality of first convex portions 51 overlap the rotor core 30 as viewed from the axial direction. The planar view shape of each 1st convex part 51 is circular. In the state of a single component before the end cap 50 is assembled to the rotor 13, the tip of the first convex portion 51 is curved in a hemispherical shape. In the following description, the state of the single component before the end cap 50 is assembled to the rotor 13 is simply referred to as the "component state". Further, the state after the end cap 50 is assembled to the rotor 13 is simply referred to as "assembled state".
図3に示す様に、第1の凸部51は、ロータコア30の上面30aと接触する。組み付け状態において、第1の凸部51は、ロータコア30の上面30aの面形状に合わせて塑性変形している。また上述したように、端部キャップ50は、ロータカバー60の内側突出部63によってロータコア30およびマグネット40側に押し付けられる。このため、第1の凸部51は、軸方向に弾性変形して、内側突出部63とロータコア30との間に反発力を生じさせる。  As shown in FIG. 3, the first convex portion 51 is in contact with the upper surface 30 a of the rotor core 30. In the assembled state, the first convex portion 51 is plastically deformed in accordance with the surface shape of the upper surface 30 a of the rotor core 30. Further, as described above, the end cap 50 is pressed to the rotor core 30 and the magnet 40 by the inner protruding portion 63 of the rotor cover 60. For this reason, the first convex portion 51 is elastically deformed in the axial direction to generate a repulsive force between the inner protruding portion 63 and the rotor core 30.
第1の凸部51の部品状態における軸方向の長さ(突出寸法h1)は、組み付け状態における板状部55の下面55bとロータコア30の上面30aとの距離より長い。したがって、第1の凸部51は、変形してロータコア30の上面30aと確実に接触する。  The axial length (protruding dimension h1) in the component state of the first convex portion 51 is longer than the distance between the lower surface 55b of the plate-like portion 55 and the upper surface 30a of the rotor core 30 in the assembled state. Therefore, the first convex portion 51 deforms and reliably contacts the upper surface 30 a of the rotor core 30.
第2の凸部52は、周方向に沿って円環状に延びる。第2の凸部52の下面52bは、軸方向から視て複数のマグネット40のそれぞれと重なる。第2の凸部52は、下面52bにおいてマグネット40の上面40aと接触する。また、第2の凸部52の下面52bは、軸方向から視てロータコア30の外周縁より外側に位置する。したがって、第2の凸部52は、ロータコア30の上面30aと接触しない。  The second convex portion 52 extends annularly along the circumferential direction. The lower surface 52 b of the second convex portion 52 overlaps with each of the plurality of magnets 40 as viewed from the axial direction. The second convex portion 52 contacts the upper surface 40 a of the magnet 40 at the lower surface 52 b. Further, the lower surface 52 b of the second convex portion 52 is located outside the outer peripheral edge of the rotor core 30 as viewed in the axial direction. Therefore, the second convex portion 52 does not contact the upper surface 30 a of the rotor core 30.
第2の凸部52の部品状態の高さは、組み付け状態における板状部55の下面55bとロータコア30の上面30aとの距離と略一致する。すなわち、第2の凸部52は、組み付け前後で殆ど変形することがない。言い換えると、第2の凸部52の突出寸法h2は、組み付け前後で殆ど変化しない。したがって、第2の凸部52の突出寸法h2は、組み付け状態における板状部55の下面55bとロータコア30の上面30aとの距離を決める基準寸法となる。なお、本明細書において、「突出寸法」とは、板状部55の下面55bから凸部の先端までの軸方向の距離を意味する。  The height of the component state of the second convex portion 52 substantially matches the distance between the lower surface 55 b of the plate-like portion 55 and the upper surface 30 a of the rotor core 30 in the assembled state. That is, the second convex portion 52 hardly deforms before and after assembly. In other words, the protrusion dimension h2 of the second protrusion 52 hardly changes before and after the assembly. Therefore, the projection dimension h2 of the second convex portion 52 is a reference dimension that determines the distance between the lower surface 55b of the plate-like portion 55 and the upper surface 30a of the rotor core 30 in the assembled state. In the present specification, the “projecting dimension” means the axial distance from the lower surface 55 b of the plate-like portion 55 to the tip of the convex portion.
部品状態において、第1の凸部51の突出寸法h1は、第2の凸部52の突出寸法h2より大きい。また、組み付け状態において、第1の凸部51の突出寸法h1aは、第2の凸部52の突出寸法h2と一致する。言い換えると、第1の凸部51は、組み付け工程において第2の凸部52と略同じ高さになるまで変形される。  In the component state, the protrusion dimension h1 of the first protrusion 51 is larger than the protrusion dimension h2 of the second protrusion 52. Further, in the assembled state, the protrusion dimension h1a of the first protrusion 51 matches the protrusion dimension h2 of the second protrusion 52. In other words, the first convex portion 51 is deformed to have substantially the same height as the second convex portion 52 in the assembling process.
本実施形態によれば、第1の凸部51および第2の凸部52が、それぞれ個別に板状部55から突出するため、一方の変形が他方に影響を与え難い。したがって、第1の凸部51および第2の凸部52のうち少なくとも一方を変形させて、ロータコア30およびマグネット40の上面30a、40aを上側から下側に押し付けてロータコア30およびマグネット40の軸方向のがたつきの発生を抑制できる。  According to the present embodiment, since the first convex portion 51 and the second convex portion 52 individually project from the plate-like portion 55, it is difficult for one deformation to affect the other. Therefore, at least one of the first convex portion 51 and the second convex portion 52 is deformed to press the upper surfaces 30a and 40a of the rotor core 30 and the magnet 40 from the upper side to the lower side to move the rotor core 30 and the magnet 40 in the axial direction. It can suppress the occurrence of rattling.
本実施形態によれば、複数の第1の凸部51は、中心軸J周りに等間隔に並んで配置される。一方で、第2の凸部52は、中心軸J周りに円環状に延びる。このため、第1の凸部51が、第2の凸部52に対して変形しやすく、第2の凸部52の突出寸法h2を基準に第1の凸部51を変形させることができる。


According to the present embodiment, the plurality of first protrusions 51 are arranged at equal intervals around the central axis J. On the other hand, the second convex portion 52 extends annularly around the central axis J. Therefore, the first convex portion 51 is easily deformed relative to the second convex portion 52, and the first convex portion 51 can be deformed based on the protrusion dimension h2 of the second convex portion 52.


一般的に、ロータコア30とマグネット40は、個別に製造されるため、軸方向寸法にばらつきを生じる場合がある。端部キャップの同一の面で、ロータコアおよびマグネットを押し付けようとすると、ロータコア30とマグネット40との何れか一方と端部キャップとの間に隙間が生じてがたつきの原因となり得る。



本実施形態によれば、第1の凸部51の突出寸法h1が、第2の凸部52の突出寸法h2より大きいため、マグネット40と接触する第2の凸部52を基準として、第1の凸部51をマグネット40に十分に接触するまで変形させることができる。すなわち、第1の凸部51をロータコア30の上面30aに隙間なく接触させ、第2の凸部52をマグネット40の上面40aに隙間なく接触させることができる。結果として、端部キャップ50が、ロータコア30およびマグネット40を同時に、ロータカバー60の底部62に押し付けて固定することができる。


Generally, since the rotor core 30 and the magnet 40 are manufactured separately, the axial dimension may vary. If it is attempted to press the rotor core and the magnet on the same surface of the end cap, a gap may be generated between one of the rotor core 30 and the magnet 40 and the end cap, which may cause rattling.



According to the present embodiment, since the projection dimension h1 of the first projection 51 is larger than the projection dimension h2 of the second projection 52, the first projection 52 is a first contact with the magnet 40 as a reference. Can be deformed until it sufficiently contacts the magnet 40. That is, the first convex portion 51 can be in contact with the upper surface 30 a of the rotor core 30 without a gap, and the second convex portion 52 can be in contact with the upper surface 40 a of the magnet 40 without a gap. As a result, the end cap 50 can press and fix the rotor core 30 and the magnet 40 simultaneously to the bottom 62 of the rotor cover 60.


なお、第1の凸部51および第2の凸部52のうち、何れか一方の突出寸法が他方の突出寸法より大きければ、ロータコア30およびマグネット40のがたつきを抑制できる。すなわち、突出寸法が大きい一方を、他方が対向するロータコア30又はマグネット40の上面に接触するまで塑性変形又は弾性変形させることができる。これにより、第1の凸部51および第2の凸部52をロータコア30およびマグネット40に隙間なく接触させることができ、ロータコア30およびマグネット40のがたつきを抑制できる。  In addition, if the protrusion dimension of any one of the 1st convex part 51 and the 2nd convex part 52 is larger than the protrusion size of the other, rattling of the rotor core 30 and the magnet 40 can be suppressed. That is, one of the larger projecting dimensions can be plastically or elastically deformed until the other contacts the upper surface of the opposing rotor core 30 or magnet 40. Thereby, the first convex portion 51 and the second convex portion 52 can be brought into contact with the rotor core 30 and the magnet 40 without any gap, and rattling of the rotor core 30 and the magnet 40 can be suppressed.
本実施形態によれば、第1の凸部51および第2の凸部52は、中心軸J周りに配置される。より具体的には、複数の第1の凸部51は、中心軸J周りに等間隔に並んで配置され、第2の凸部52は、中心軸J周りに円環状に配置される。このため、端部キャップ50は、第1の凸部51および第2の凸部52を介し、ロータコア30および複数のマグネット40に対し、中心軸Jに対して周方向に均等に力を加えることができる。結果として、ロータコア30および複数のマグネット40を、バランスよく底部62に押し付けることができ、ロータコア30および複数のマグネット40をロータカバー60に安定的に固定できる。  According to the present embodiment, the first convex portion 51 and the second convex portion 52 are disposed around the central axis J. More specifically, the plurality of first protrusions 51 are arranged at equal intervals around the central axis J, and the second protrusions 52 are annularly arranged around the central axis J. For this reason, the end cap 50 applies a force to the rotor core 30 and the plurality of magnets 40 uniformly in the circumferential direction with respect to the central axis J via the first convex portion 51 and the second convex portion 52. Can. As a result, the rotor core 30 and the plurality of magnets 40 can be pressed to the bottom 62 in a balanced manner, and the rotor core 30 and the plurality of magnets 40 can be stably fixed to the rotor cover 60.
本実施形態によれば、第2の凸部52は、中心軸J周りに環状に設けられる。本実施形態の端部キャップ50は、樹脂材料から構成され、射出成形により製造される。第2の凸部52を環状とすることで、第2の凸部52の下面52bを、金型内の同一面に由来する面として成形することができ、下面52bの寸法精度を高めることができる。上述したように、第2の凸部52の突出寸法h2は、組み付け状態における板状部55の下面55bとロータコア30の上面30aとの距離を決める基準寸法となる。本実施形態によれば、第2の凸部52が一つながりの環状に成形されることで、第2の凸部52の下面52bの寸法精度を高めることができ、結果としてロータ13の軸方向の寸法精度を高めることができる。  According to the present embodiment, the second convex portion 52 is provided annularly around the central axis J. The end cap 50 of this embodiment is made of a resin material and manufactured by injection molding. By making the second convex portion 52 annular, the lower surface 52 b of the second convex portion 52 can be formed as a surface derived from the same surface in the mold, and the dimensional accuracy of the lower surface 52 b can be enhanced. it can. As described above, the protrusion dimension h2 of the second convex portion 52 is a reference dimension that determines the distance between the lower surface 55b of the plate-like portion 55 and the upper surface 30a of the rotor core 30 in the assembled state. According to the present embodiment, by forming the second convex portion 52 in a continuous ring shape, the dimensional accuracy of the lower surface 52 b of the second convex portion 52 can be enhanced, and as a result, the axial direction of the rotor 13 is obtained. The dimensional accuracy of the



複数の第3の凸部53は、中心軸J周りに等間隔に並んで配置される。第3の凸部53の平面視形状は、円形である。第3の凸部53の突出寸法は、第1の凸部51および第2の凸部52の突出寸法より大きい。第3の凸部53は、ロータコア30のコア貫通孔(凹部)34に挿入される。これにより、端部キャップ50の周方向位置をロータコア30に対し位置決めすることができる。



なお、本実施形態の端部キャップ50には、2つの第3の凸部53が設けられるが、1つ以上の第3の凸部53が設けられていればよい。



また、第3の凸部53が挿入されるロータコア30の凹部は、上面30aから下側に凹む形状であれば、ロータコア30を貫通するコア貫通孔34でなくてもよい。本明細書において、コア貫通孔34は、ロータコア30の上面30aに設けられた凹部の一態様である。





The plurality of third protrusions 53 are arranged at equal intervals around the central axis J. The plan view shape of the third convex portion 53 is circular. The protrusion dimension of the third protrusion 53 is larger than the protrusion dimension of the first protrusion 51 and the second protrusion 52. The third convex portion 53 is inserted into the core through hole (concave portion) 34 of the rotor core 30. Thus, the circumferential position of the end cap 50 can be positioned with respect to the rotor core 30.



In addition, although the 2nd 3rd convex part 53 is provided in the edge part cap 50 of this embodiment, one or more 3rd convex parts 53 should just be provided.



Further, the recess of the rotor core 30 into which the third protrusion 53 is inserted may not be the core through hole 34 penetrating the rotor core 30, as long as the recess is a shape that is recessed downward from the upper surface 30a. In the present specification, the core through hole 34 is an aspect of the recess provided on the upper surface 30 a of the rotor core 30.


次に、ロータ13の製造方法について説明する。



まず予め、第1の工程として、ロータカバー60の筒状部61の内側に、ロータコア30および複数のマグネット40を収納する。これにより、ロータカバー60の底部62に、ロータコア30の下面30bおよび複数のマグネット40の下面40bを接触させる(図3参照)。


Next, a method of manufacturing the rotor 13 will be described.



First, in the first step, the rotor core 30 and the plurality of magnets 40 are accommodated inside the cylindrical portion 61 of the rotor cover 60. Thereby, the lower surface 30b of the rotor core 30 and the lower surfaces 40b of the plurality of magnets 40 are brought into contact with the bottom portion 62 of the rotor cover 60 (see FIG. 3).


次に端部キャップ50をロータカバー60の筒状部61に固定する第2の工程を行う。図5~図7は、ロータ13の製造工程における第2の工程を説明する斜視図である。  Next, a second step of fixing the end cap 50 to the cylindrical portion 61 of the rotor cover 60 is performed. 5 to 7 are perspective views for explaining the second step in the manufacturing process of the rotor 13.
第2の工程において、図5に示す様に、まず筒状部61の内側であって、ロータコア30および複数のマグネット40の上側に端部キャップ50を配置する。この時、端部キャップ50の第3の凸部53をロータコア30のコア貫通孔34に挿入する。さらに、図示略の治具を用いて、端部キャップ50を下側に押し付ける。これにより、端部キャップ50の第1の凸部51を塑性変形させる(図3参照)。  In the second step, as shown in FIG. 5, first, the end cap 50 is disposed on the inner side of the cylindrical portion 61 and above the rotor core 30 and the plurality of magnets 40. At this time, the third convex portion 53 of the end cap 50 is inserted into the core through hole 34 of the rotor core 30. Further, the end cap 50 is pressed downward by using a jig (not shown). Thus, the first convex portion 51 of the end cap 50 is plastically deformed (see FIG. 3).
なお、図5に示す様に、端部キャップ50の外周縁には、複数(本実施形態では4つ)の固定凹部55dが設けられている。固定凹部55dは、径方向内側に凹む。また、固定凹部55dは、上面50aから下側に凹む。4つの固定凹部55dは、中心軸J周りに等間隔に配置される。  As shown in FIG. 5, a plurality of (four in the present embodiment) fixing recesses 55 d are provided on the outer peripheral edge of the end cap 50. The fixing recess 55d is recessed radially inward. The fixing recess 55d is recessed downward from the upper surface 50a. The four fixed recesses 55d are arranged at equal intervals around the central axis J.
次に図6に示す様に、筒状部61の上端部61cを径方向内側に塑性変形させて内側突出部63を成形する。内側突出部63は、ロータカバー60に対し、図示略のかしめ治具を中心軸J周りに回転させながら上端部61cに径方向外側から押し付け、上端部61cを径方向内側に押し曲げることで成形される。また、内側突出部63は、ロータカバー60の上端部61cに対して図示略の金型を降下させて筒状部61の上端部61cを径方向内側に押し曲げて成形されてもよい。  Next, as shown in FIG. 6, the upper end portion 61 c of the cylindrical portion 61 is plastically deformed inward in the radial direction to form the inner protruding portion 63. The inner projecting portion 63 is formed by pressing the upper end portion 61c from outside in the radial direction against the rotor cover 60 while pressing a caulking jig (not shown) around the central axis J, and bending the upper end portion 61c inward. Be done. The inner protrusion 63 may be formed by lowering a die (not shown) relative to the upper end 61 c of the rotor cover 60 and pressing the upper end 61 c of the cylindrical portion 61 radially inward.
内側突出部63は、端部キャップ50の上面50aの外周縁に接触する。内側突出部63は、端部キャップ50をロータコア30およびマグネット40に押し付ける。より詳細には、図3に示す様に内側突出部63は、第2の凸部52を複数のマグネット40の上面40aに接触させ、第1の凸部51を弾性変形させながらロータコア30の上面30aに接触させる。端部キャップ50が内側突出部63とロータコア30との間に挟み込まれることで、第1の凸部51が弾性変形し第1の凸部51の反発力により端部キャップ50がロータカバー60に固定される。なお、第2の凸部52も、第1の凸部51とともに弾性変形していてもよい。  The inner protrusion 63 contacts the outer peripheral edge of the upper surface 50 a of the end cap 50. The inner protrusion 63 presses the end cap 50 against the rotor core 30 and the magnet 40. More specifically, as shown in FIG. 3, the inner protrusion 63 brings the second protrusion 52 into contact with the upper surfaces 40 a of the plurality of magnets 40 and elastically deforms the first protrusion 51, while the upper surface of the rotor core 30 is Contact 30a. When the end cap 50 is sandwiched between the inward projection 63 and the rotor core 30, the first convex portion 51 is elastically deformed and the repulsive force of the first convex portion 51 causes the end cap 50 to be attached to the rotor cover 60. It is fixed. The second convex portion 52 may also be elastically deformed along with the first convex portion 51.
本実施形態の製造方法によれば、端部キャップ50を筒状部61に固定する第2の工程は、第1の凸部51を変形させる工程を含む。このため、端部キャップの第1の凸部51および第2の凸部をそれぞれロータコア30およびマグネット40に接触させて、ロータコア30およびマグネット40のがたつきを抑制したロータ13を提供できる。  According to the manufacturing method of the present embodiment, the second step of fixing the end cap 50 to the cylindrical portion 61 includes the step of deforming the first convex portion 51. Therefore, it is possible to provide the rotor 13 in which the rattling of the rotor core 30 and the magnet 40 is suppressed by bringing the first convex portion 51 and the second convex portion of the end cap into contact with the rotor core 30 and the magnet 40, respectively.
なお、本実施形態において、第1の凸部51を塑性変形させる工程と、内側突出部63をかしめ成形するとともに第1の凸部51を弾性変形させる工程とをそれぞれ別工程として行う場合を例示した。しかしながら、これらの工程を同時に行ってもよい。すなわち、内側突出部63をかしめ成形する際に、第1の凸部51を塑性変形および弾性変形させてもよい。



また、本実施形態において、第2の工程は、第1の凸部51のみを変形させるが、第1の凸部51をロータコア30の上面30aに接触させ、第2の凸部52をマグネット40の上面40aに接触させるものであれば、第1の凸部51および前記第2の凸部52のうち何れか一方又は両方を変形させる工程であってもよい。 
In the present embodiment, the process of plastically deforming the first protrusion 51 and the process of caulking the inner protrusion 63 and elastically deforming the first protrusion 51 are separately performed. did. However, these steps may be performed simultaneously. That is, when the inner protrusion 63 is formed by caulking, the first protrusion 51 may be plastically and elastically deformed.



Further, in the present embodiment, only the first convex portion 51 is deformed in the second step, but the first convex portion 51 is brought into contact with the upper surface 30 a of the rotor core 30 and the second convex portion 52 is made of the magnet 40. The step of deforming one or both of the first convex portion 51 and the second convex portion 52 may be used as long as the upper surface 40 a of the second convex portion 52 is in contact with the upper surface 40 a.
本実施形態によれば、第2の工程は、筒状部61の上端部61cを変形させて内側突出部63を設ける工程を含む。この工程では、内側突出部63を端部キャップ50の上面50aに接触させ、端部キャップ50をロータコア30およびマグネット40に押し当てて端部キャップ50を固定することができる。  According to the present embodiment, the second step includes the step of deforming the upper end portion 61 c of the cylindrical portion 61 to provide the inner protruding portion 63. In this process, the inner projection 63 can be brought into contact with the upper surface 50 a of the end cap 50, and the end cap 50 can be pressed against the rotor core 30 and the magnet 40 to fix the end cap 50.
次に、図7に示す様に、内側突出部63の一部を変形させて固定凸部64を成形する。固定凸部64は、内側突出部63の上面を下側に凹むととともに下側に向かって突出する。より詳細には、固定凸部64は、内側突出部63に対して上側から図示略の治具を打ち付けて、変形させることで成形される。固定凸部64は、端部キャップ50の外周縁に設けられた固定凹部55dに嵌る。  Next, as shown in FIG. 7, a part of the inner protrusion 63 is deformed to form the fixing protrusion 64. The fixing convex portion 64 protrudes downward as well as dents the upper surface of the inner protruding portion 63 downward. More specifically, the fixed convex portion 64 is formed by striking a jig (not shown) from the upper side to the inner protruding portion 63 to deform. The fixing projection 64 is fitted in a fixing recess 55 d provided on the outer peripheral edge of the end cap 50.
本実施形態によれば、第2の工程は、筒状部61を変形させて固定凸部64を設ける工程を含む。固定凸部64は、固定凹部55dに嵌るため、筒状部61に対し端部キャップ50を周方向に位置決めする。これにより、振動が生じた場合であっても端部キャップ50の回転が抑制され、第1の凸部51および第2の凸部52がロータコア30およびマグネット40に対して相対的に移動することがない。したがって、第1の凸部51および第2の凸部52とロータコア30およびマグネット40とが安定的に接触するため、ロータコア30およびマグネット40をロータカバー60に安定的に固定できる。



なお、内側突出部63のかしめ成形を行う工程と、固定凸部64を成形する工程とは、同工程内で行ってもよい。 
According to the present embodiment, the second step includes the step of deforming the cylindrical portion 61 to provide the fixing projection 64. The fixing convex portion 64 positions the end cap 50 in the circumferential direction with respect to the cylindrical portion 61 in order to fit in the fixing concave portion 55 d. Thereby, even if vibration occurs, the rotation of the end cap 50 is suppressed, and the first convex portion 51 and the second convex portion 52 move relative to the rotor core 30 and the magnet 40. There is no Therefore, since the first convex portion 51 and the second convex portion 52 are in stable contact with the rotor core 30 and the magnet 40, the rotor core 30 and the magnet 40 can be stably fixed to the rotor cover 60.



The step of caulking the inner protrusion 63 and the step of forming the fixing projection 64 may be performed in the same step.
本実施形態のロータ13の製造方法によれば、接着剤を用いることなく、しかもがたつきを抑制して、ロータカバー60にロータコア30およびマグネット40を固定するロータ13を製造できる。したがって、本実施形態によれば安価且つ高性能なロータ13を提供できる。  According to the method of manufacturing the rotor 13 of this embodiment, it is possible to manufacture the rotor 13 in which the rotor core 30 and the magnet 40 are fixed to the rotor cover 60 without using an adhesive and suppressing rattling. Therefore, according to this embodiment, the inexpensive and high-performance rotor 13 can be provided.
(変形例)



図8は、上述の実施形態の変形例のロータ113の断面図である。図9は、変形例のロータ113の端部キャップ150の斜視図である。本変形例のロータ113は、上述のロータ13と比較して端部キャップ150の構造が主に異なる。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。 
(Modification)



FIG. 8 is a cross-sectional view of a rotor 113 of a modification of the above-described embodiment. FIG. 9 is a perspective view of an end cap 150 of a rotor 113 of a modification. The rotor 113 of this modification mainly differs from the above-described rotor 13 in the structure of the end cap 150. In addition, about the component of the aspect same as the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
図8に示す様に、また上述の実施形態と同様に、ロータ113の端部キャップ150は、筒状部61の上端部61cに設けられた内側突出部63により、ロータコア30およびマグネットに押し当てられて筒状部61に固定される。  As shown in FIG. 8, and similarly to the above-described embodiment, the end cap 150 of the rotor 113 is pressed against the rotor core 30 and the magnet by the inner projecting portion 63 provided on the upper end portion 61 c of the cylindrical portion 61. And fixed to the tubular portion 61.
図9に示す様に、端部キャップ150は、円板状の板状部155と、第1の凸部151、複数(本変形例では8つ)の第2の凸部152および複数(本変形例では2つ)の第3の凸部153を有する。  As shown in FIG. 9, the end cap 150 includes a disk-shaped plate-like portion 155, a first convex portion 151, a plurality (eight in this modification) of a second convex portion 152, and a plurality (two) In the modification, two third convex portions 153 are provided.
板状部155は、中心軸Jに直交する方向に沿って延びる。板状部155の平面視における外形は、筒状部61の内径より若干小さい円形状である。板状部155には、シャフト20が通されるシャフト通過孔155cが設けられる。  The plate-like portion 155 extends in a direction perpendicular to the central axis J. The outer shape of the plate-like portion 155 in a plan view is a circular shape slightly smaller than the inner diameter of the cylindrical portion 61. The plate-like portion 155 is provided with a shaft passage hole 155 c through which the shaft 20 passes.
第1の凸部151は、板状部155の下面155bから下側に突出する。第1の凸部151は、中心軸J周りに配置される。より詳細には、第1の凸部151は、中心軸Jを中心として周方向に沿って円環状に延びる。第1の凸部151は、それぞれ軸方向から視てロータコア30と重なる。  The first convex portion 151 protrudes downward from the lower surface 155 b of the plate-like portion 155. The first convex portion 151 is disposed around the central axis J. More specifically, the first convex portion 151 extends annularly along the circumferential direction around the central axis J. The first protrusions 151 overlap the rotor core 30 as viewed in the axial direction.
第1の凸部151は、下面151bにおいてロータコア30の上面30aと接触する。第1の凸部151の部品状態の高さは、組み付け状態における板状部155の下面155bとロータコア30の上面30aとの距離と略一致する。すなわち、第1の凸部151は、組み付け前後で殆ど変形することがなく、第1の凸部151の突出寸法h101は、組み付け前後で変化しない。したがって、第1の凸部151の突出寸法h101は、組み付け状態における板状部155の下面155bとロータコア30の上面30aとの距離を決める基準寸法となる。  The first convex portion 151 contacts the upper surface 30 a of the rotor core 30 at the lower surface 151 b. The height of the component state of the first convex portion 151 substantially matches the distance between the lower surface 155 b of the plate-like portion 155 and the upper surface 30 a of the rotor core 30 in the assembled state. That is, the first convex portion 151 hardly deforms before and after assembly, and the protrusion dimension h101 of the first convex portion 151 does not change before and after assembly. Therefore, the protrusion dimension h101 of the first convex portion 151 is a reference dimension that determines the distance between the lower surface 155b of the plate-like portion 155 and the upper surface 30a of the rotor core 30 in the assembled state.
複数の第2の凸部152は、中心軸J周りに等間隔に並んで配置される。複数の第2の凸部152のそれぞれは、軸方向からみて複数のマグネット40のうち異なるマグネット40と重なる。すなわち、本変形例において、端部キャップ150は、マグネット40と同数の8つの第2の凸部152を有し、それぞれの第2の凸部152が異なるマグネット40と軸方向に対向する。それぞれの第2の凸部152の平面視形状は、円形である。第2の凸部152の先端は、半球状に湾曲する。  The plurality of second projections 152 are arranged at equal intervals around the central axis J. Each of the plurality of second convex portions 152 overlaps the different magnet 40 among the plurality of magnets 40 when viewed in the axial direction. That is, in the present modification, the end cap 150 has eight second convex portions 152 equal in number to the magnet 40, and the respective second convex portions 152 axially face the different magnets 40. The plan view shape of each second convex portion 152 is circular. The tip of the second protrusion 152 is hemispherically curved.
図8に示す様に、第2の凸部152のそれぞれは、異なるマグネット40の上面40aと接触する。組み付け状態において、第2の凸部152は、マグネット40の上面40aの面形状に合わせて塑性変形する。第2の凸部152の部品状態における突出寸法h102は、組み付け状態における板状部155の下面155bとマグネット40の上面40aとの距離より長い。したがって、第2の凸部152は、変形してマグネット40の上面40aと確実に接触する。  As shown in FIG. 8, each of the second protrusions 152 contacts the top surface 40 a of a different magnet 40. In the assembled state, the second convex portion 152 is plastically deformed in accordance with the surface shape of the upper surface 40 a of the magnet 40. The protrusion dimension h102 in the component state of the second convex portion 152 is longer than the distance between the lower surface 155b of the plate-like portion 155 and the upper surface 40a of the magnet 40 in the assembled state. Therefore, the second convex portion 152 is deformed and reliably contacts the upper surface 40 a of the magnet 40.
部品状態において、第2の凸部152の突出寸法h102は、第1の凸部151の突出寸法h101より大きい。また、組み付け状態において、第2の凸部152の突出寸法h102aは、第1の凸部151の突出寸法h101と一致する。言い換えると、第2の凸部152は、組み付け工程において第1の凸部151と略同じ高さになるまで変形される。  In the component state, the protrusion dimension h102 of the second protrusion 152 is larger than the protrusion dimension h101 of the first protrusion 151. Further, in the assembled state, the protrusion dimension h102a of the second protrusion 152 matches the protrusion dimension h101 of the first protrusion 151. In other words, the second convex portion 152 is deformed to have substantially the same height as the first convex portion 151 in the assembling process.
本変形例によれば、上述の実施形態と同様に、第1の凸部151および第2の凸部152が、それぞれ個別に板状部155から突出するため、一方の変形が他方に影響を与え難い。したがって、第1の凸部151および第2の凸部152のうち少なくとも一方を変形させて、ロータコア30およびマグネット40の上面30a、40aを上側から下側に押し付けてロータコア30およびマグネット40の軸方向のがたつきの発生を抑制できる。  According to this modification, as in the above-described embodiment, since the first convex portion 151 and the second convex portion 152 individually project from the plate-like portion 155, one deformation affects the other. Hard to give. Therefore, at least one of the first convex portion 151 and the second convex portion 152 is deformed to press the upper surfaces 30a and 40a of the rotor core 30 and the magnet 40 from the upper side to the lower side, and the axial direction of the rotor core 30 and the magnet 40 It can suppress the occurrence of rattling.
本変形例によれば、複数の第2の凸部152は、それぞれ異なるマグネット40の上面40aに接触する。一般的に、複数のマグネット40には軸方向寸法にばらつきを有する場合がある。本変形例によれば、第2の凸部152がそれぞれ個別にマグネット40の上面40aに接触しそれぞれのマグネットの40の寸法に合わせて変形する。このため、それぞれのマグネット40寸法バラつきをそれぞれの第2の凸部152の変形によって吸収してマグネット40のがたつきを抑制できる。  According to this modification, the plurality of second convex portions 152 contact the upper surfaces 40 a of the magnets 40 different from each other. In general, the plurality of magnets 40 may have variations in axial dimensions. According to this modification, the second convex portions 152 individually contact the upper surface 40 a of the magnet 40 and deform according to the size of the magnet 40. For this reason, it is possible to suppress the rattling of the magnet 40 by absorbing the dimensional variations of the respective magnets 40 by the deformation of the respective second convex portions 152.
複数の第3の凸部153は、中心軸J周りに等間隔に並んで配置される。本変形例において、第3の凸部153は、第1の凸部151の下面151bから下側に突出する。第3の凸部153は、上述の実施形態と同様にロータコア30のコア貫通孔34に挿入される。これにより、端部キャップ150の周方向位置をロータコア30に対し位置決めすることができる。また、端部キャップ150がロータコア30およびマグネット40に対し周方向に位置決めされるため、複数の第2の凸部152をそれぞれ異なるマグネット40に確実に接触させることができる。


The plurality of third convex portions 153 are arranged at equal intervals around the central axis J. In the present modification, the third convex portion 153 protrudes downward from the lower surface 151 b of the first convex portion 151. The third convex portion 153 is inserted into the core through hole 34 of the rotor core 30 as in the above-described embodiment. Thus, the circumferential position of the end cap 150 can be positioned with respect to the rotor core 30. Further, since the end cap 150 is positioned in the circumferential direction with respect to the rotor core 30 and the magnet 40, the plurality of second projections 152 can be reliably brought into contact with the different magnets 40.





 以上に、本発明の一実施形態およびその変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。





Although one embodiment and its modification of the present invention were explained above, each composition in the embodiment and modification, combination thereof, etc. are an example, and addition of composition is within the range which does not deviate from the meaning of the present invention. , Omissions, substitutions and other modifications are possible. Further, the present invention is not limited by the embodiments.


例えば、上述した実施形態およびその変形例のロータを備えるモータの用途は、特に限定されない。上述した実施形態およびその変形例のロータを備えるモータは、例えば、電動ポンプ、および電動パワーステアリング等に搭載される。  For example, the application of the motor provided with the rotor of the embodiment described above and its variation is not particularly limited. The motor including the rotors of the above-described embodiment and the modification thereof is mounted on, for example, an electric pump, an electric power steering, and the like.
また、上述の実施形態(又はその変形例)において、第1の凸部51(又は第2の凸部152)は、塑性変形および弾性変形する。しかしながら、第1の凸部51(又は第2の凸部152)は、塑性変形せず弾性変形のみによって、ロータコア30とマグネット40との軸方向差を吸収してもよい。  In the above-mentioned embodiment (or its modification), the 1st convex part 51 (or the 2nd convex part 152) carries out plastic deformation and elastic deformation. However, the first convex portion 51 (or the second convex portion 152) may absorb the axial difference between the rotor core 30 and the magnet 40 only by elastic deformation without plastic deformation.
また、上述の実施形態(又はその変形例)において、第1の凸部51(又は第2の凸部152)の形状は、一例である。例えば、第1の凸部51(又は第2の凸部152)は、塑性変形および弾性変形しやすい円錐形状などの他の形状であってもよい。シャフト20は、中実に限られず、中空の部材であってもよい。上述した各実施形態では、マグネット40の数は8個(すなわち、ポール数は8)である。しかしながら、ロータの磁極の数は、適宜変更されてもよい。マグネット40の形状は上述のものに限られず、他の形状であってもよい。ロータコア本体31は、正八角柱状に限られず、マグネット40の形状および個数に応じて、多角形柱や円柱形状などの形状であってもよく、特に限定されるものではない。ベアリングホルダ14は、ハウジング11の開口を覆う蓋部材と一体であってもよい。 Moreover, in the above-mentioned embodiment (or its modification), the shape of the 1st convex part 51 (or 2nd convex part 152) is an example. For example, the first convex portion 51 (or the second convex portion 152) may have another shape such as a conical shape which is easily deformed plastically and elastically. The shaft 20 is not limited to a solid, and may be a hollow member. In each embodiment described above, the number of magnets 40 is eight (ie, the number of poles is eight). However, the number of magnetic poles of the rotor may be changed as appropriate. The shape of the magnet 40 is not limited to the one described above, and may be another shape. The rotor core body 31 is not limited to the octagonal prismatic shape, and may be a polygonal pillar or a cylindrical shape depending on the shape and the number of the magnets 40, and is not particularly limited. The bearing holder 14 may be integral with a lid member covering the opening of the housing 11.
10…モータ、12…ステータ、13,113…ロータ、20…シャフト、30…ロータコア、34…コア貫通孔(凹部)、40…マグネット、50,150…端部キャップ、51,151…第1の凸部、52,152…第2の凸部、53,153…第3の凸部、55,155…板状部、55d…固定凹部、60…ロータカバー、61…筒状部、61c…上端部、62…底部、63…内側突出部、64…固定凸部、h1,h2,h101,h102…突出寸法、J…中心軸、Z…軸方向 DESCRIPTION OF SYMBOLS 10 Motor 12 stator 13 13 rotor 13 shaft 30 rotor core 34 core through hole (recess) 40 magnet 50, 150 end cap 51, 151 first Convex part 52, 152: second convex part 53, 153: third convex part 55, 155: plate-like part, 55 d: fixed concave part 60: rotor cover, 61: cylindrical part, 61 c: upper end Sections 62: bottom portions 63: inner protrusions 64: fixed protrusions h1, h2, h101, h102: projecting dimensions J: central axis, Z: axial direction

Claims (11)




  1.  上下方向に延びる中心軸に沿って配置されるシャフトと、



     前記シャフトに固定されるロータコアと、



     前記ロータコアの径方向外側に位置し周方向に沿って並ぶ複数のマグネットと、



     前記マグネットの径方向外側から前記ロータコアおよび前記マグネットを囲む筒状部および前記筒状部の下側の開口に位置する底部を有するロータカバーと、



     前記ロータコアおよび前記マグネットの上側に位置し、前記筒状部に固定される、端部キャップと、



    を備え、



     前記端部キャップは、



      前記中心軸に直交する方向に沿って延びる板状部と、



      前記中心軸周りに配置され前記板状部から下側に突出して前記ロータコアの上面と接触する第1の凸部と、



      前記中心軸周りに配置され前記板状部から下側に突出して前記マグネットの上面と接触する第2の凸部と、



    を有する、



    ロータ。



    A shaft disposed along a vertically extending central axis,



    A rotor core fixed to the shaft;



    A plurality of magnets located radially outward of the rotor core and aligned along a circumferential direction;



    A rotor cover having a cylindrical portion surrounding the rotor core and the magnet from the radially outer side of the magnet, and a bottom portion positioned at an opening on the lower side of the cylindrical portion;



    An end cap located above the rotor core and the magnet and fixed to the tubular portion;



    Equipped with



    The end cap is



    A plate-like portion extending along a direction orthogonal to the central axis;



    A first convex portion disposed around the central axis, protruding downward from the plate-like portion, and in contact with the upper surface of the rotor core;



    A second convex portion disposed around the central axis, protruding downward from the plate-like portion, and in contact with the upper surface of the magnet;



    Have



    Rotor.
  2. 前記第1の凸部および前記第2の凸部のうち、何れか一方は他方より突出寸法が大きい、



    請求項1に記載のロータ。
    One of the first convex portion and the second convex portion has a projection dimension larger than the other.



    The rotor according to claim 1.
  3. 前記端部キャップは、前記中心軸周りに並ぶ複数の前記第1の凸部を有し、



    前記第1の凸部の突出寸法は、前記第2の凸部の突出寸法より大きい、



    請求項1に記載のロータ。
    The end cap has a plurality of the first protrusions aligned around the central axis,



    The protrusion dimension of the first protrusion is larger than the protrusion dimension of the second protrusion.



    The rotor according to claim 1.
  4. 前記端部キャップは、前記中心軸周りに並ぶ複数の前記第2の凸部を有し、



    前記第2の凸部の突出寸法は、前記第1の凸部の突出寸法より大きく、



    複数の前記第2の凸部は、それぞれ異なる前記マグネットの上面に接触する、



    請求項1に記載のロータ。
    The end cap has a plurality of the second protrusions aligned around the central axis,



    The projecting dimension of the second convex portion is larger than the projecting dimension of the first convex portion,



    The plurality of second protrusions contact the upper surfaces of the different magnets, respectively



    The rotor according to claim 1.
  5. 前記端部キャップは、前記板状部から下側に突出する第3の凸部を有し、



    前記ロータコアの上面には、前記第3の凸部が挿入される凹部が設けられる、



    請求項1~4の何れか一項に記載のロータ。
    The end cap has a third protrusion projecting downward from the plate-like portion,



    The upper surface of the rotor core is provided with a recess into which the third protrusion is inserted.



    A rotor according to any one of the preceding claims.
  6. 前記筒状部の上端部には、径方向内側に延びる内側突出部が設けられ、



    前記内側突出部が、前記端部キャップの上面に接触し前記端部キャップを前記ロータコアおよび前記マグネットに押し当てて前記端部キャップを固定する、



    請求項1~5の何れか一項に記載のロータ。
    The upper end portion of the cylindrical portion is provided with an inner protruding portion extending radially inward,



    The inner projection contacts the top surface of the end cap and presses the end cap against the rotor core and the magnet to secure the end cap.



    The rotor according to any one of claims 1 to 5.
  7. 前記端部キャップの外周縁には、径方向内側に向かって凹む固定凹部が設けられ、



    前記筒状部には、前記固定凹部に嵌る固定凸部が設けられる、



    請求項1~6の何れか一項に記載のロータ。
    The outer peripheral edge of the end cap is provided with a fixed recess that is recessed radially inward,



    The cylindrical portion is provided with a fixing protrusion that fits into the fixing recess.



    A rotor according to any one of the preceding claims.
  8. 請求項1~7の何れか一項に記載のロータと、



    前記ロータと径方向に隙間を介して対向するステータと、



    を備える、モータ。
    A rotor according to any one of claims 1 to 7;



    A stator that faces the rotor in the radial direction via a gap;



    Equipped with a motor.



  9. 上下方向に延びる中心軸に沿って延びる筒状部および筒状部の下側の開口に位置する底部を有するロータカバーに、ロータコアおよび前記ロータコアの径方向外側に位置し周方向に沿って並ぶ複数のマグネットを収納する第1の工程と、



    前記ロータコアおよび前記マグネットの上側に位置する端部キャップを前記筒状部に固定する第2の工程と、



    を有し、



     前記端部キャップは、



      前記中心軸に直交する方向に沿って延びる板状部と、



      軸方向からみて前記ロータコアと重なり前記中心軸周りに配置され前記板状部から下側に突出する第1の凸部と、



      軸方向からみて前記マグネットと重なり前記中心軸周りに配置され前記板状部から下側に突出する第2の凸部と、



    を有し、



     前記第2の工程は、



      前記第1の凸部および前記第2の凸部のうち何れか一方又は両方を変形させ、前記第1の凸部を前記ロータコアの上面に接触させ、前記第2の凸部を前記マグネットの上面に接触させる、工程を含む、



    ロータの製造方法。



    A rotor cover having a cylindrical portion extending along a vertically extending central axis and a bottom portion positioned at an opening on the lower side of the cylindrical portion, the rotor core and a plurality of radial outer portions of the rotor core A first step of storing the magnet of



    Fixing the rotor core and an end cap located on the upper side of the magnet to the tubular portion;



    Have



    The end cap is



    A plate-like portion extending along a direction orthogonal to the central axis;



    A first convex portion that overlaps with the rotor core as viewed in the axial direction and is disposed around the central axis and protrudes downward from the plate-like portion;



    A second convex portion that overlaps with the magnet as viewed in the axial direction and is disposed around the central axis and protrudes downward from the plate-like portion;



    Have



    The second step is



    Either or both of the first convex portion and the second convex portion are deformed to bring the first convex portion into contact with the upper surface of the rotor core, and the second convex portion to be the upper surface of the magnet Contacting, including the process,



    Method of manufacturing a rotor.
  10. 前記第2の工程は、



     前記筒状部の上端部を変形させて径方向内側に延びる内側突出部を設け、前記内側突出部を前記端部キャップの上面に接触させ、前記端部キャップを前記ロータコアおよび前記マグネットに押し当てて前記端部キャップを固定する、工程を含む、



    請求項9に記載のロータの製造方法。
    The second step is



    The upper end of the cylindrical portion is deformed to provide an inner protrusion extending radially inward, the inner protrusion being in contact with the upper surface of the end cap, and the end cap being pressed against the rotor core and the magnet Securing the end cap, including the steps of



    A method of manufacturing a rotor according to claim 9.
  11. 前記端部キャップの外周縁には、径方向内側に向かって凹む固定凹部が設けられ、



    前記第2の工程は、前記筒状部を変形させて前記固定凹部に嵌る固定凸部を設ける、工程を含む、



    請求項9又は10に記載のロータの製造方法。
    The outer peripheral edge of the end cap is provided with a fixed recess that is recessed radially inward,



    The second step includes a step of deforming the cylindrical portion to provide a fixing projection that fits into the fixing recess.



    A method of manufacturing a rotor according to claim 9 or 10.
PCT/JP2018/021172 2017-06-29 2018-06-01 Rotor, motor, and rotor production method WO2019003802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000952.5U CN212063658U (en) 2017-06-29 2018-06-01 Rotor and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-127841 2017-06-29
JP2017127841 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003802A1 true WO2019003802A1 (en) 2019-01-03

Family

ID=64740560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021172 WO2019003802A1 (en) 2017-06-29 2018-06-01 Rotor, motor, and rotor production method

Country Status (2)

Country Link
CN (1) CN212063658U (en)
WO (1) WO2019003802A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079930A1 (en) * 2022-10-13 2024-04-18 株式会社ミツバ Brushless motor and method of producing rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014859A1 (en) * 1998-09-02 2000-03-16 Empresa Brasileira De Compressores S.A. - Embraco An electric motor rotor and a process for producing an electric motor rotor
JP2003143786A (en) * 2001-11-01 2003-05-16 Mitsubishi Electric Corp Permanent magnet rotor and manufacturing method therefor
JP2009038930A (en) * 2007-08-03 2009-02-19 Daikin Ind Ltd Rotor and embedded magnet type motor
JP2016034216A (en) * 2014-07-31 2016-03-10 アスモ株式会社 Rotor and motor
JP2016092858A (en) * 2014-10-29 2016-05-23 Kyb株式会社 Rotor, method of manufacturing rotor and dynamo-electric machine including rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014859A1 (en) * 1998-09-02 2000-03-16 Empresa Brasileira De Compressores S.A. - Embraco An electric motor rotor and a process for producing an electric motor rotor
JP2003143786A (en) * 2001-11-01 2003-05-16 Mitsubishi Electric Corp Permanent magnet rotor and manufacturing method therefor
JP2009038930A (en) * 2007-08-03 2009-02-19 Daikin Ind Ltd Rotor and embedded magnet type motor
JP2016034216A (en) * 2014-07-31 2016-03-10 アスモ株式会社 Rotor and motor
JP2016092858A (en) * 2014-10-29 2016-05-23 Kyb株式会社 Rotor, method of manufacturing rotor and dynamo-electric machine including rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079930A1 (en) * 2022-10-13 2024-04-18 株式会社ミツバ Brushless motor and method of producing rotor

Also Published As

Publication number Publication date
CN212063658U (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP4706339B2 (en) Axial air gap type electric motor
WO2018180924A1 (en) Rotor and motor
JP5685506B2 (en) Rotating electric machine rotor, rotating electric machine and rotor end face member
CN110739787B (en) Motor and rotor thereof
JP2017225337A (en) motor
WO2019003802A1 (en) Rotor, motor, and rotor production method
WO2020067250A1 (en) Stator, motor, and method for manufacturing stator
US11233433B2 (en) Rotor and motor
JP2019022301A (en) motor
JPWO2018062350A1 (en) Rotor unit and motor
KR102622136B1 (en) motor with types of segmented rotor
WO2019003800A1 (en) Rotor and motor
KR20140077556A (en) Moter
JP6745674B2 (en) Rotor and rotating electric machine
WO2019003801A1 (en) Rotor and motor
JP6354227B2 (en) Magnet fixing method of rotating electric machine, jig for fixing magnet, rotating electric machine
WO2018062349A1 (en) Rotor unit, motor, and rotor unit manufacturing method
JPWO2019021656A1 (en) Stator and motor
CN210839164U (en) Motor with a stator having a stator core
JP6972890B2 (en) Motors and motor manufacturing methods
JP6816546B2 (en) Motors and motor manufacturing methods
CN212412923U (en) Motor
US20010017953A1 (en) Bearing holding structure and motor having same
WO2019123950A1 (en) Rotor and motor
KR101009227B1 (en) Scanner motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP