WO2019003797A1 - Optical fiber amplifier and optical fiber amplification system - Google Patents

Optical fiber amplifier and optical fiber amplification system Download PDF

Info

Publication number
WO2019003797A1
WO2019003797A1 PCT/JP2018/021042 JP2018021042W WO2019003797A1 WO 2019003797 A1 WO2019003797 A1 WO 2019003797A1 JP 2018021042 W JP2018021042 W JP 2018021042W WO 2019003797 A1 WO2019003797 A1 WO 2019003797A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
light source
optical fiber
optical
output
Prior art date
Application number
PCT/JP2018/021042
Other languages
French (fr)
Japanese (ja)
Inventor
恵一 松本
タヤンディエ ドゥ ガボリ エマニュエル ル
中村 滋
柳町 成行
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019526735A priority Critical patent/JP6891957B2/en
Publication of WO2019003797A1 publication Critical patent/WO2019003797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to an optical fiber amplifier and an optical fiber amplification system that amplifies the signal strength of an optical signal.
  • Patent Document 1 describes an example of an optical fiber amplifier that amplifies the signal strength of an optical signal.
  • Patent Document 1 describes a configuration for amplifying the signal intensity of an optical signal by inputting the excitation light output from the excitation light source into a rare earth-doped fiber into which an optical signal is input. A similar configuration is described in Patent Document 2 as well.
  • Such an optical fiber amplifier is used as an amplifier for relaying an optical signal of an optical fiber communication system because it has high efficiency and high gain, and its gain is almost polarization independent.
  • Patent Document 3 discloses that an input optical signal is an optical signal in the 1.55 ⁇ m band, and discloses that excitation light is light in the 1.48 ⁇ m band. Further, Patent Document 3 discloses a configuration including a current excitation light source and a standby excitation light source.
  • the optical fiber amplifier illustrated in FIG. 9 can be considered.
  • the optical fiber 121 illustrated in FIG. 9 is an optical fiber to which rare earth ions are added.
  • erbium ion is added to the optical fiber 121 will be described as an example.
  • it is assumed that erbium ions are added in the range from position A to position B shown in FIG.
  • a first optical isolator 171, a first signal intensity monitor 101, an optical multiplexer 141, a second signal intensity monitor 102, and a second optical isolator 172 are provided.
  • the optical fiber amplifier includes a gain control circuit 151, one excitation light source 131, and a light source drive circuit 161.
  • the optical signal Lin is input to the optical fiber 121, and the optical signal Lout after signal strength amplification is output.
  • the first optical isolator 171 and the second optical isolator 172 restrict the propagation direction of the optical signal in a certain direction.
  • the first signal strength monitor 101 monitors the signal strength of the input optical signal Lin, and notifies the gain control circuit 151 of the signal strength.
  • the gain control circuit 151 calculates gains of the signal strength of the optical signal Lin and the signal strength to be constant so that the signal strength of the output optical signal Lout becomes constant.
  • the second signal strength monitor 102 monitors the signal strength of the optical signal Lout and notifies the gain control circuit 151 of the signal strength.
  • the gain control circuit 151 confirms that the signal strength of the optical signal Lout has a predetermined constant value based on the signal strength notified from the second signal strength monitor 102.
  • the gain control circuit 151 notifies the light source drive circuit 161 of the gain calculated as described above.
  • the light source drive circuit 161 drives the excitation light source 131 and causes the excitation light source 131 to output excitation light at an excitation light output intensity corresponding to the gain.
  • the optical multiplexer 141 combines the excitation light output from the excitation light source 131 into an optical signal Lin.
  • the pump light is combined with the light signal Lin, whereby the signal strength of the light signal Lin is amplified, and the light signal Lout after signal strength amplification is output.
  • the light signal is generally a 1.55 ⁇ m band light signal.
  • the excitation light is generally light in the 1.48 ⁇ m band or light in the 0.98 ⁇ m band.
  • An optical fiber communication system in which a general optical fiber amplifier illustrated in FIG. 9 is used plays an important role in speeding up and increasing the capacity of communication. And, in order to cope with the increase of communication capacity, development of related technology of wavelength multiplexing is actively carried out.
  • the “band used for signal transmission” can also be referred to as a spectrum, a signal usage rate of wavelength division multiplexing (WDM), or a wavelength filling rate.
  • WDM wavelength division multiplexing
  • a band used for signal transmission may be simply referred to as a band.
  • the optical fiber amplifier shown in FIG. 9 includes one excitation light source 131. Then, the excitation light source 131 is designed in accordance with the maximum band of the optical signal. That is, the excitation light source 131 is designed so that excitation light with high excitation light output intensity can be output when the “band used for signal transmission” becomes wide.
  • FIG. 10 is a schematic view showing the excitation light output intensity versus power consumption characteristics of such an excitation light source 131. As shown in FIG. The horizontal axis shown in FIG. 10 is the excitation light output intensity of the excitation light source. Here, it can be said that the excitation light output intensity is approximately proportional to the "band used for signal transmission".
  • the vertical axis shown in FIG. 10 is the power consumption of the excitation light source.
  • the pumping light source 131 designed to be able to output pumping light with high pumping light output intensity consumes less power even if the band is narrow. It doesn't fall that much. Then, for example, in the state where the band is narrowed as in the operation start, the power consumption increases.
  • the power consumption is preferably proportional to the excitation light output intensity.
  • the power consumption does not decrease so much, and when the band is narrowed, the power consumption becomes large.
  • an object of the present invention is to provide an optical fiber amplifier and an optical fiber amplification system capable of realizing high power utilization efficiency.
  • the optical fiber amplifier according to the present invention is an optical fiber that passes an optical signal and amplifies the signal intensity of the optical signal when the excitation light is combined with the optical signal, and a plurality of light sources that output the excitation light.
  • a plurality of light sources having different excitation light output intensity versus power consumption characteristics, light source driving means for outputting excitation light from the light sources, combining means for synthesizing excitation lights output from the light sources into optical signals, and each individual light source And a switch having an input end of excitation light corresponding to the light source and an output end for outputting the excitation light to the synthesizing means.
  • a band used for signal transmission may be simply referred to as a band.
  • the "band used for signal transmission” can also be called spectrum, WDM signal usage rate, or wavelength filling rate.
  • FIG. 1 is a block diagram showing an example of configuration of an optical fiber amplifier according to a first embodiment of the present invention.
  • the optical fiber amplifier according to the first embodiment includes a first signal strength monitor 1, a second signal strength monitor 2, a bandwidth monitor 3, a first optical isolator 11, and a second optical isolator 12.
  • An optical fiber 21 a plurality of excitation light sources 31 to 3 N, an optical multiplexer 41, a gain control circuit 51, a light source drive circuit 61, a switch 71, an output monitor 81, and a switch control circuit 91.
  • the optical fiber 21 is an optical fiber doped with rare earth ions.
  • erbium ion is added to the optical fiber 21 will be described as an example. Further, it is assumed that erbium ions are added in the range from position A to position B shown in FIG.
  • the optical fiber amplifier of the first embodiment includes one optical fiber 21.
  • the optical fiber 21 includes one core.
  • the optical fiber 21 passes an optical signal.
  • the optical fiber 21 is doped with a rare earth ion (in this example, an erbium ion) and the excitation light is synthesized to the optical signal, the signal intensity of the optical signal is amplified.
  • a rare earth ion in this example, an erbium ion
  • the optical fiber 21 is an optical fiber that passes the optical signal and amplifies the signal intensity of the optical signal when the excitation light is combined with the optical signal.
  • the optical signal input to the optical fiber 21 is denoted as Lin.
  • the amplified optical signal output from the optical fiber is referred to as Lout.
  • the side to which the optical signal Lin is input is referred to as the upstream side
  • the side to which the optical signal Lout is output is referred to as the downstream side.
  • the first signal intensity monitor 1 is connected upstream of the start position A of the erbium ion doping range, and the first optical isolator 11 is connected further upstream.
  • the second signal intensity monitor 2 is connected downstream of the end position B of the addition range of erbium ions, and the second optical isolator is connected further downstream.
  • the first signal strength monitor 1 and the second signal strength monitor 2 are connected to the gain control circuit 51, respectively. Furthermore, the gain control circuit 51 is connected to the light source drive circuit 61.
  • a band monitor 3 is connected between the first optical isolator 11 and the first signal strength monitor 1. Further, the band monitor 3 is connected to the light source drive circuit 61.
  • the excitation light sources 31 to 3 N are connected to the light source drive circuit 61.
  • the switch 71 includes an input end of excitation light corresponding to the excitation light source for each individual excitation light source.
  • the switch 71 includes input ends I1 to IN.
  • the input end I1 corresponds to the excitation light source 31
  • the input end I2 corresponds to the excitation light source 32.
  • the other inputs of the switch 71 also correspond to one excitation light source.
  • the light output ends of the respective excitation light sources 31 to 3N are connected to the corresponding input ends I1 to IN of the switch 71.
  • the light output end of the excitation light source 31 is connected to the input end I1 of the switch 71.
  • the switch 71 also includes an output end O1 for outputting the input excitation light to the optical multiplexer 41.
  • the switch 71 includes one output end O1.
  • the output end O1 is connected to the optical multiplexer 41.
  • the optical multiplexer 41 is provided in the addition range of erbium ions in the optical fiber 21.
  • the light output terminals of the excitation light sources 31 to 3N are connected to the output monitor 81.
  • the output monitor 81 is connected to the light source drive circuit 61 and the switch control circuit 91.
  • the switch control circuit 91 is connected to the switch 71.
  • the respective excitation light sources 31 to 3N are excitation light sources having different excitation light output intensity versus power consumption characteristics.
  • FIG. 2 is a schematic diagram showing excitation light output intensity versus power consumption characteristics of a plurality of excitation light sources.
  • the horizontal axis shown in FIG. 2 is the excitation light output intensity of the excitation light source.
  • the excitation light output intensity is approximately proportional to the "band used for signal transmission".
  • the vertical axis shown in FIG. 2 is the power consumption of the excitation light source.
  • FIG. 2 schematically shows an example of the characteristics of the excitation light sources 31 to 35. The lower the power consumption, the smaller the upper limit of the excitation light output intensity.
  • the excitation light sources 31, 32, 33, 34, 35 are preferred in this order.
  • the excitation light source 31 can output excitation light up to the excitation light output intensity R1, it can not output excitation light with a higher excitation light output intensity.
  • the upper limit of the excitation light output intensity of the excitation light that can be output by the excitation light sources 32, 33, 34 is R2, R3, R4, respectively.
  • the excitation light source 31 In the case of outputting the excitation light of the excitation light output intensity a (see FIG. 2), it is preferable to output the excitation light from the excitation light source 31 with the lowest power consumption. Further, in the case of outputting the excitation light of the excitation light output intensity b (see FIG. 2), since R1 ⁇ b, the excitation light source 31 can not be used. In this case, it is preferable to output excitation light from the excitation light source 32 which consumes the least power other than the excitation light source 31.
  • high power utilization efficiency is realized by selecting an appropriate excitation light source from among a plurality of excitation light sources having different excitation light output intensity versus power consumption characteristics.
  • Each of the excitation light sources 31 to 3N is provided with a Peltier cooler, respectively. And, the maximum heat absorption of the individual Peltier coolers corresponding to the individual excitation light sources is different. As described above, by making the maximum heat absorption amount of the Peltier coolers provided in the excitation light sources different from each other, it is possible to change the excitation light output intensity vs. power consumption characteristics of the respective excitation light sources 31 to 3N. However, not only the maximum heat absorption amount of the Peltier cooler but also other factors may be changed to change the excitation light output intensity versus power consumption characteristics of each of the excitation light sources 31 to 3N.
  • the wavelength of the excitation light output from each of the excitation light sources 31 to 3N is common.
  • the wavelength of the excitation light output from each of the excitation light sources 31 to 3N is common to the 1.48 ⁇ m band.
  • the wavelength of the excitation light output from each of the excitation light sources 31 to 3N may be common in the 0.98 ⁇ m band.
  • the wavelength of the input light signal Lin is 1.55 ⁇ m band.
  • the first optical isolator 11 and the second optical isolator 12 restrict the propagation direction of the optical signal in a fixed direction.
  • the first signal strength monitor 1 monitors the signal strength of the input optical signal Lin, and notifies the gain control circuit 51 of the signal strength.
  • the gain control circuit 51 is a gain between the signal strength of the optical signal Lin notified from the first signal strength monitor 1 and the signal strength to be constant so that the signal strength of the output optical signal Lout becomes constant. Calculate In other words, the gain control circuit 51 calculates the gain when amplifying the signal strength of the optical signal Lin in the optical fiber 21 to a predetermined signal strength.
  • the gain control circuit 51 may store in advance the value of the signal strength to be constant after amplification, and the gain control circuit 51 may calculate the gain of the signal strength of the optical signal Lin and the signal strength thereof.
  • the second signal strength monitor 2 monitors the signal strength of the optical signal Lout to be outputted, and notifies the gain control circuit 51 of the signal strength.
  • the gain control circuit 51 confirms that the signal strength of the optical signal Lout has a predetermined constant value based on the signal strength notified from the second signal strength monitor 2. If the signal strength of the optical signal Lout does not reach a predetermined constant value, the gain control circuit 51 adjusts the calculated gain. For example, it is assumed that the signal strength of the optical signal Lout should be constant at 100. If the signal strength of the actual optical signal Lout notified from the second signal strength monitor 2 is larger than 100, the gain control circuit 51 adjusts so as to reduce the value of the calculated gain. In addition, if the signal strength of the actual optical signal Lout notified from the second signal strength monitor 2 is smaller than 100, the gain control circuit 51 adjusts so as to increase the value of the calculated gain.
  • the gain control circuit 51 notifies the light source drive circuit 61 of the calculated gain.
  • the band monitor 3 monitors the band (the band used for signal transmission) of the optical signal Lin passing through the optical fiber 21 and notifies the light source drive circuit 61 of the band.
  • the light source drive circuit 61 calculates the product of the gain notified from the gain control circuit 51 and the band notified from the band monitor 3. Then, based on the product of the gain and the band, the light source drive circuit 61 selects one of the plurality of excitation light sources 31 to 3N that causes excitation light to be output.
  • the light source drive circuit 61 stores in advance the correspondence between the range of the product of the gain and the band (numerical range) and the excitation light source to be selected.
  • the light source drive circuit 61 stores in advance information indicating a correspondence such that the range “0 or more and less than T1” corresponds to the excitation light source 31 and the range “more than T1 and less than T2” corresponds to the excitation light source 32. ing.
  • each range is determined so as not to overlap and to be continuous across the boundary.
  • the smaller the value range is, the smaller the power consumption is associated with the excitation light source.
  • the light source drive circuit 61 selects the excitation light source 31 corresponding to the range “0 or more and less than T1”.
  • the light source drive circuit 61 drives one selected excitation light source, and causes the excitation light source to output excitation light. At this time, the light source drive circuit 61 causes the excitation light source to output excitation light at the excitation light output intensity corresponding to the product of the gain and the band.
  • the light source drive circuit 61 increases the pump light output intensity as the product of the gain and the band is larger, and lowers the pump light output intensity as the product of the gain and the band is smaller.
  • the light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 81 after selecting one excitation light source based on the product of the gain and the band.
  • the gain control circuit 51 periodically notifies the light source drive circuit 61 of the gain, for example.
  • the band monitor 3 also periodically notifies the light source drive circuit 61 of the band, for example.
  • the light source drive circuit 61 changes the pump light output intensity of the pump light from the pump light source outputting the pump light according to the product of the gain and the band, when the gain and the band are newly notified.
  • the light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 81 after selecting one excitation light source once based on the product of the gain and the band. Therefore, when the gain and the band are newly notified, the light source drive circuit 61 controls the excitation light output intensity, but does not reselect the excitation light source for outputting the excitation light.
  • the output monitor 81 monitors the excitation light output intensity of the excitation light output from the light output end of the excitation light sources 31 to 3N.
  • the output monitor 81 may include, for example, a photodiode as a sensor for monitoring the excitation light output intensity.
  • the sensor for monitoring the excitation light output intensity may be a sensor other than a photodiode.
  • the output monitor 81 monitors the excitation light output intensity of the excitation light output from the excitation light source driven by the light source drive circuit 61.
  • the output monitor 81 stores in advance a range of excitation light output intensity determined for each excitation light source.
  • the output monitor 81 has, for example, a range “0 or more and less than R1 (see FIG. 2)” of the excitation light output intensity defined for the excitation light source 31 and a range “R1 or more than R2 determined for the excitation light source 32
  • the range “R2 or more and less than R3 (see FIG. 2)” of the excitation light output intensity determined for the excitation light source 33 and the like are stored in advance.
  • the range of excitation light output intensity determined for each excitation light source is determined so as not to overlap and to be continuous across the boundary.
  • the light source drive circuit 61 changes the excitation light output intensity of the excitation light from the excitation light source outputting the excitation light according to the product after the change.
  • the output monitor 81 The light source drive circuit 61 is instructed to switch the excitation light source for outputting the excitation light to the excitation light source corresponding to the adjacent range of the range. Further, the output monitor 81 instructs the switch control circuit 91 to connect the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71.
  • the light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 81.
  • the switch control circuit 91 connects the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71 according to the instruction of the output monitor 81. Note that connecting the input end and the output end of the switch 71 means that the excitation light input to the input end is output from the output end. It can be said that the switch control circuit 91 controls the input terminal connected to the output terminal O1.
  • the switch 71 provided with N input ends and one output end O1 is referred to as an N ⁇ 1 switch 71.
  • the N ⁇ 1 switch 71 is a switch that can operate on 0.98 ⁇ m band excitation light and 1.48 ⁇ m band excitation light, or both, and is a switch having a maximum insertion loss of 1 dB or less.
  • the optical multiplexer 41 combines the excitation light output from the output end O1 of the N ⁇ 1 switch 71 into an optical signal Lin.
  • the individual excitation light sources 31 to 3N are each realized by, for example, a semiconductor laser diode.
  • the first signal strength monitor 1, the second signal strength monitor 2, and the band monitor 3 are each realized by a dedicated sensor.
  • the gain control circuit 51, the light source drive circuit 61, the output monitor 81, and the switch control circuit 91 are each realized by, for example, a dedicated processor.
  • the processor operating as the output monitor 81 includes a sensor for monitoring the excitation light output intensity.
  • the gain control circuit 51, the light source drive circuit 61, the output monitor 81, and the switch control circuit 91 may be realized by one processor having the function of each element.
  • An optical signal Lin is input to the optical fiber 21.
  • the wavelength of the light signal Lin is 1.55 ⁇ m band.
  • the first optical isolator 11 limits the propagation direction of the optical signal to a fixed direction.
  • the band monitor 3 monitors the band (the band used for signal transmission) of the optical signal Lin passing through the optical fiber 21 and notifies the light source drive circuit 61 of the band.
  • the traffic the amount of communication
  • the band monitored by the band monitor 3 is also a small value.
  • the first signal strength monitor 1 monitors the signal strength of the optical signal Lin and notifies the gain control circuit 51 of the signal strength.
  • the gain control circuit 51 is a gain between the signal strength of the optical signal Lin notified from the first signal strength monitor 1 and the signal strength to be constant so that the signal strength of the output optical signal Lout becomes constant. That is, the gain at the time of amplifying the signal strength of the optical signal Lin to a predetermined signal strength is calculated. As described above, the gain control circuit 51 stores in advance the value of the signal strength to be constant after amplification, and the gain control circuit 51 calculates the gain of the signal strength of the optical signal Lin and the signal strength thereof. do it. The gain control circuit 51 notifies the light source drive circuit 61 of the calculated gain.
  • the traffic tends to increase as the operation time passes, and the band of the optical signal Lin (the band used for signal transmission) tends to increase. Also, the gain calculated by the gain control circuit 51 tends not to change much. However, the band of the optical signal Lin may be reduced. Also, the gain does not always change at all.
  • the light source drive circuit 61 calculates the product of the gain notified from the gain control circuit 51 and the band notified from the band monitor 3.
  • the excitation light source 31 corresponds to the range “0 or more and less than T1”
  • the correspondence relationship such as the excitation light source 32 corresponds to the range “T1 or more and less than T2” Information to be shown is stored in advance.
  • the light source drive circuit 61 selects one excitation light source corresponding to the range to which the calculated product belongs, from the plurality of excitation light sources 31 to 3N.
  • the optical fiber amplifier is in an initial state of operation start, and the band value of the input optical signal Lin is a small value.
  • the product of the gain and the band is also small, and the product of the gain and the band belongs to the range “0 or more and less than T1”.
  • the light source drive circuit 61 selects the excitation light source 31 corresponding to the range “0 or more and less than T1”.
  • the light source drive circuit 61 drives the selected excitation light source 31 and causes the excitation light source 31 to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band.
  • the light source drive circuit 61 increases the pumping light output intensity as the product of the gain and the band increases, and the pumping light output intensity decreases as the product of the gain and the band decreases.
  • the pumping light output intensity vs. power consumption characteristic has the highest efficiency.
  • the excitation light source is As already described, it is preferable that the power consumption be proportional to the excitation light output intensity. Then, assuming that the excitation light output intensity and the power consumption have an ideal proportional relationship, the proportional relationship can be represented by a straight line 19 indicated by a broken line in FIG. Under the determined excitation light output intensity, the excitation light source with the highest efficiency of the excitation light output intensity versus the power consumption characteristic is the coordinate represented by (the determined excitation light output intensity, the consumed power), It is an excitation light source closest to the straight line.
  • the value of the pump light output intensity corresponding to the product of the gain and the band is “a” shown in FIG.
  • the power consumption of the excitation light source 31 is the smallest.
  • the coordinates (a, power consumption) corresponding to the excitation light source 31 are closest to the straight line 19. Therefore, when the value of the product of the gain and the band is small and the pumping light output intensity is also small, the pumping light output intensity vs. power consumption characteristic of the pumping light source 31 has the highest efficiency.
  • the input end I1 and the output end O1 may be connected in the initial state in the N ⁇ 1 switch 71 based on the fact that the traffic by the optical signal is small.
  • the light source drive circuit 61 selects the excitation light source based on the product of the gain and the band
  • the light source drive circuit 61 switches the connection between the input end corresponding to the excitation light source and the output end O1.
  • the switch control circuit 91 may connect the instructed input end and the output end O1 according to the instruction. In this case, the light source drive circuit 61 and the switch control circuit 91 are connected.
  • the excitation light source 31 is driven by the light source drive circuit 61, and outputs excitation light of the excitation light output intensity determined by the light source drive circuit 61.
  • the excitation light is input to the input end I1 corresponding to the excitation light source 31 in the N ⁇ 1 switch 71, and the N ⁇ 1 switch 71 outputs the excitation light input to the input end I1 from the output end O1. Since the N ⁇ 1 switch 71 is a switch having a maximum insertion loss of 1 dB or less, almost all the excitation light input from the input end is output from the output end O1.
  • the optical multiplexer 41 combines the excitation light output from the output end O1 of the N ⁇ 1 switch 71 into an optical signal Lin.
  • the mode in which the optical multiplexer 41 combines the excitation light into the optical signal may be a core individual system or another system.
  • the core individual system is a system in which excitation light is combined with an optical signal passing through the inside of the core by inputting the excitation light to the core in the optical fiber 21.
  • the optical multiplexer 41 may combine the excitation light with the optical signal passing through the core by inputting the excitation light to the cladding present around the core in the optical fiber 21.
  • the signal intensity of the optical signal Lin is amplified when the optical signal Lin in which the excitation light is synthesized passes through the addition range of the rare earth ion (erbium ion in this example) in the optical fiber 21.
  • the pump light of the pump light output intensity according to the product of the band of the optical signal Lin and the gain calculated by the gain control circuit 51 is synthesized.
  • the signal strength of the light signal Lin is amplified to a constant signal strength and output as the light signal Lout.
  • the second signal strength monitor 2 monitors the signal strength of the optical signal Lout, and notifies the gain control circuit 51 of the signal strength.
  • the gain control circuit 51 confirms that the signal strength of the optical signal Lout has a predetermined constant value based on the signal strength notified from the second signal strength monitor 2. If the signal strength of the optical signal Lout does not reach a predetermined constant value, the gain control circuit 51 adjusts the calculated gain thereafter.
  • the second optical isolator 12 limits the propagation direction of the optical signal to a fixed direction.
  • the gain control circuit 51 periodically notifies the light source drive circuit 61 of the gain, for example.
  • the band monitor 3 also periodically notifies the light source drive circuit 61 of the band, for example. Then, the light source drive circuit 61 controls the excitation light output intensity of the excitation light from the excitation light source outputting the excitation light according to the product of the gain and the band. Therefore, when the product of the gain and the band changes, the excitation light output intensity of the excitation light output from the excitation light source driven by the light source drive circuit 61 also changes.
  • the output monitor 81 monitors the excitation light output intensity of the excitation light output from the light output end of each of the excitation light sources 31 to 3N. Then, when the excitation light output intensity of the excitation light of the excitation light source outputting the excitation light becomes the boundary value of the range of the excitation light output intensity defined for the excitation light source, the output monitor 81 It instructs the light source drive circuit 61 to switch the excitation light source outputting the excitation light to the excitation light source corresponding to the range of the excitation light output intensity adjacent to the boundary value. The light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction.
  • the output monitor 81 instructs the switch control circuit 91 to connect the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71.
  • the switch control circuit 91 connects the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71 according to the instruction.
  • the light source drive circuit 61 increases the pump light output intensity of the pump light to be output to the pump light source 31, and the pump light output intensity becomes the boundary value R1 (see FIG. 2).
  • the adjacent range via the boundary value R1 is “R1 or more and less than R2 (see FIG. 2)
  • the range “R1 or more and less than R2” is a range defined for the excitation light source 32.
  • the output monitor 81 instructs the light source drive circuit 61 to switch the excitation light source outputting the excitation light from the excitation light source 31 to the excitation light source 32, and the light source drive circuit 61 outputs the excitation light.
  • the excitation light source 31 is switched to the excitation light source 32.
  • the output monitor 81 instructs the switch control circuit 91 to connect the input end I2 of the switch 71 corresponding to the excitation light source 32 after switching to the output end O1 of the switch 71, and performs switch control
  • the circuit 91 connects the input end I2 and the output end O1.
  • the product of the gain and the band increases, and when the excitation light output intensity exceeds the boundary value R1, the excitation light source that outputs the excitation light is switched from the excitation light source 31 to the excitation light source 32. Then, the excitation light output from the excitation light source 32 is synthesized by the optical multiplexer 41 into the optical signal Lin.
  • the switching of the excitation light source in the case of reducing excitation light output intensity is the same.
  • the excitation light source 32 outputs an excitation light source.
  • the pump light output intensity becomes the boundary value R1 (see FIG. 2) due to the decrease of the product of the gain and the band.
  • the adjacent range via the boundary value R1 is “0 or more and less than R1 (see FIG. 2)”.
  • This range “0 or more and less than R1” is a range defined for the excitation light source 31.
  • the output monitor 81 instructs the light source drive circuit 61 to switch the excitation light source for outputting the excitation light from the excitation light source 32 to the excitation light source 31, and the light source drive circuit 61 outputs the excitation light.
  • the excitation light source 32 is switched to the excitation light source 31.
  • the output monitor 81 instructs the switch control circuit 91 to connect the input end I1 of the switch 71 corresponding to the excitation light source 31 after switching and the output end O1 of the switch 71, and performs switch control
  • the circuit 91 connects the input end I1 to the output end O1.
  • the product of the gain and the band decreases, and when the excitation light output intensity exceeds the boundary value R1, the excitation light source that outputs the excitation light is switched from the excitation light source 32 to the excitation light source 31. Then, the excitation light output from the excitation light source 31 is synthesized by the optical multiplexer 41 into the optical signal Lin.
  • the optical fiber amplifier comprises a plurality of excitation light sources each having different excitation light output intensity versus power consumption characteristics. Then, the light source drive circuit 61 selects one pumping light source based on the product of the gain notified from the gain control circuit 51 and the band notified by the band monitor 3 (the band of the input light Lin). Therefore, the light source drive circuit 61 can output the excitation light from the excitation light source which has the highest efficiency of the excitation light output intensity versus the power consumption characteristic. Therefore, high power utilization efficiency can be realized.
  • the light source drive circuit 61 causes the excitation light source to output excitation light at an excitation light output intensity corresponding to the above product.
  • the output monitor 81 instructs the light source drive circuit 61 to switch the excitation light source when the product of the gain and the band changes and the excitation light output intensity reaches the boundary value of the excitation light output intensity range defined for the excitation light source. . Further, the output monitor 81 instructs the switch control circuit 91 to connect the input end I1 of the switch 71 corresponding to the switched excitation light source 31 and the output end O1 of the switch 71.
  • the optical fiber amplifier causes the pump light source to output the pump light with the highest efficiency of the pump light output intensity versus the power consumption. be able to. Also in this respect, high power utilization efficiency can be realized.
  • FIG. 3 is a schematic view showing the difference in power consumption between the general optical fiber amplifier shown in FIG. 9 and the optical fiber amplifier according to the present invention.
  • the horizontal axis shown in FIG. 3 indicates the passage of time (year).
  • the left vertical axis shows traffic. As traffic increases, the bandwidth used for signaling also increases.
  • the right vertical axis indicates power consumption.
  • the solid line graph shown in FIG. 3 indicates changes in traffic. Generally, after the start of operation of the optical fiber amplifier, the traffic increases with the passage of time, and the band of the input signal Lin also increases. In addition, as shown in FIG. 3, temporary increase in traffic due to disaster or the like may occur.
  • the graph of the alternate long and short dash line shown in FIG. 3 schematically shows the change in power consumption in the general optical fiber amplifier (see FIG.
  • the broken line graph shown in FIG. 3 schematically shows the change of the power consumption of the present invention according to the change of the traffic shown in FIG.
  • the power consumption of the present invention is lower than the general optical fiber amplifier shown in FIG. 9, and according to the present invention, high power utilization efficiency can be realized.
  • the light source drive circuit 61 may select the excitation light source based on only the band notified from the band monitor 3. However, the light source drive circuit 61 causes the selected excitation light source to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band.
  • the light source drive circuit 61 stores in advance the correspondence between the range (numerical range) of the band and the excitation light source to be selected.
  • the light source drive circuit 61 stores in advance information indicating a correspondence such that the range “0 or more and less than W1” corresponds to the excitation light source 31 and the range “W1 or more and less than W2” corresponds to the excitation light source 32.
  • each range is determined so as not to overlap and to be continuous across the boundary.
  • the smaller the value range is, the smaller the power consumption is associated with the excitation light source.
  • the light source drive circuit 61 selects the excitation light source 31 corresponding to the range “0 or more and less than W1”. Then, the light source drive circuit 61 causes the pumping light source 31 to output pumping light at a pumping light output intensity corresponding to the product of the gain (the gain notified from the gain control circuit 51) and the band thereof.
  • the value of the band notified from the band monitor 3 is small and, for example, the excitation light source 31 is selected. Further, the gain notified from the gain control circuit 51 is large, the value of the product of the gain and the band is large, and the pumping light output intensity determined for the pumping light source 31 according to the product of the gain and the band is determined. Greater than the upper limit of Then, the light source drive circuit 61 causes the selected excitation light source 31 to output excitation light at the excitation light output intensity R1. As a result, the output monitor 81 immediately instructs switching of the excitation light source that outputs the excitation light. As described above, in the above modification, the output monitor 81 may instruct switching of the excitation light source immediately after the light source drive circuit 61 selects the excitation light source and causes the excitation light source to output excitation light. .
  • FIG. 4 is a block diagram showing a configuration example of an optical fiber amplifier according to a second embodiment of the present invention.
  • the same components as in the first embodiment are given the same reference numerals as in FIG. 1 and the description will be omitted.
  • the optical fiber amplifier according to the second embodiment includes a switching instruction circuit 83 and a plurality of excitation light output intensity monitors 82 instead of the output monitor 81 according to the first embodiment.
  • the excitation light output intensity monitor 82 and the excitation light sources 31 to 3N correspond one to one, and the individual excitation light output intensity monitors 82 are integrated into the corresponding excitation light sources.
  • Each excitation light output intensity monitor 82 is connected to the switching instruction circuit 83.
  • the switching instruction circuit 83 is connected to the light source drive circuit 61 and the switch control circuit 91.
  • each excitation light output intensity monitor 82 monitors the excitation light output intensity of the excitation light output from the light output end of the corresponding excitation light source, and the monitoring result (excitation light output intensity of the output excitation light) Is notified to the switching instruction circuit 83.
  • the switching instruction circuit 83 stores in advance a range of excitation light output intensity determined for each excitation light source.
  • the switching instruction circuit 83 has, for example, a range “0 or more and less than R1 (see FIG. 2)” of excitation light output intensity determined for the excitation light source 31 and a range “R1 or more R2 for excitation light output intensity determined for the excitation light source 32”. Less than (see FIG. 2), a range of “R2 or more and less than R3 (see FIG. 2)” of the excitation light output intensity determined for the excitation light source 33, etc. are stored in advance. This point is the same as the output monitor 81 in the first embodiment.
  • the switching instruction circuit 83 receives notification of the excitation light output intensity from the excitation light output intensity monitor 82 corresponding to the excitation light source outputting the excitation light. Then, when the excitation light output intensity reaches a boundary value of the range of excitation light output intensities defined for the excitation light source, the switching instruction circuit 83 sends the excitation light to the light source drive circuit 61. It is instructed to switch the excitation light source to be output to the excitation light source corresponding to the range of the adjacent excitation light output intensity via the boundary value.
  • the light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction.
  • the switch control circuit 91 instructs the switch control circuit 91 to connect the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71.
  • the switch control circuit 91 connects the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71 according to the instruction.
  • the switching instruction circuit 83 and the plurality of excitation light output intensity monitors 82 are a part (a plurality of excitation light output intensity monitors 82) for monitoring the excitation light output intensity of the excitation light in the output monitor 81 in the first embodiment It has a configuration separated into a portion (switching instruction circuit 83) for realizing other functions.
  • the function of the portion including the switching instruction circuit 83 and the plurality of excitation light output intensity monitors 82 is the same as the function of the output monitor 81 in the first embodiment.
  • Each excitation light output intensity monitor 82 is realized by, for example, a photodiode.
  • the switching instruction circuit 83 is realized by, for example, a dedicated processor.
  • the gain control circuit 51, the light source drive circuit 61, the switching instruction circuit 83, and the switch control circuit 91 may be realized by one processor having the function of each element.
  • the configuration in which the switching instruction circuit 83 and the plurality of excitation light output intensity monitors 82 are provided instead of the output monitor 81 is also applicable to each embodiment described later.
  • FIG. 5 is a block diagram showing a configuration example of an optical fiber amplifier according to a third embodiment of the present invention.
  • the same components as in the first embodiment are given the same reference numerals as in FIG. 1 and the description will be omitted.
  • the optical fiber amplifier according to the third embodiment includes one optical fiber 21 a instead of the optical fiber 21 in the first embodiment.
  • the optical fiber 21 in the first embodiment is an optical fiber including one core
  • the optical fiber 21 a in the third embodiment is a multi-core optical fiber including a plurality of cores.
  • the optical fiber 21a will be described as including K cores.
  • the optical fiber 21a is doped with rare earth ions (here, erbium ions).
  • rare earth ions here, erbium ions.
  • erbium ions are added in the range from position A to position B shown in FIG.
  • a plurality of optical signals Lin1 to LinK are input to the optical fiber amplifier of the present embodiment. Then, the optical fiber amplifier amplifies each optical signal, and outputs the amplified optical signal as optical signals Lout1 to LoutK.
  • a fiber bundle fan out 87 is provided on the upstream side of the first signal strength monitor 1, and the optical fiber 21a and K optical fibers 911 to 91 K are connected via the fiber bundle fan out 87. It is done.
  • Each of the K optical fibers 911 to 91K includes one core.
  • first optical isolators 111, 112,..., 11K are separately connected to the K optical fibers 911 to 91K, respectively (see FIG. 5).
  • a fiber bundle fan-in 88 is provided downstream of the second signal strength monitor 2, and the optical fiber 21a and K optical fibers 921 to 92 K are connected via the fiber bundle fan-in 88. ing.
  • Each of the K optical fibers 921 to 92K includes one core.
  • second optical isolators 121, 122, ..., 12K are separately connected to the K optical fibers 921 to 92K, respectively (see Fig. 5).
  • the fiber bundle fan-out 87 and the fiber bundle fan-in 88 are members of a common configuration.
  • Each of the fiber bundle fan-out 87 and the fiber bundle fan-in 88 is a member for connecting a plurality of optical fibers each including one core and a single optical fiber 21 a including a plurality of cores. More specifically, it is a member for connecting one core respectively contained in a plurality of optical fibers and each core contained in one optical fiber 21a in a one-to-one manner.
  • K optical fibers 911 to 91K exist on the upstream side
  • one optical fiber 21a exists on the downstream side (see FIG. 5).
  • the fiber bundle fan-in 88 one optical fiber 21a exists on the upstream side, and K optical fibers 921 to 92K exist on the downstream side (see FIG. 5).
  • the input optical signals Lin1 to LinK are separately input to the optical fibers 911 to 91K.
  • the output optical signals Lout1 to LoutK are separately output from the optical fibers 921 to 92K.
  • the optical multiplexer 41a in the present embodiment is an optical multiplexer that combines excitation light into an optical fiber 21a including a plurality of cores by a clad collective method.
  • the optical fiber 21a has a configuration in which a plurality of cores are provided in a clad.
  • the cladding batch method is a method in which pumping light is combined with an optical signal passing through each core in the optical fiber 21a by inputting the pumping light into the cladding.
  • the optical signals Lin1 to LinK are separately input to the optical fibers 911 to 91K, respectively.
  • the first optical isolators 111 to 11 K respectively provided in the optical fibers 911 to 91 K restrict the propagation direction of the input optical signal to a fixed direction.
  • optical signals Lin1 to LinK input to the K optical fibers 911 to 91K pass through the fiber bundle fan-out 87 to pass through the cores respectively present in one optical fiber 21a.
  • the band monitor 3 is configured to transmit the entire band of the optical signals Lin1 to LinK passing through the optical fiber 21a (a band used for signal transmission ) And notify the light source drive circuit 61 of the band.
  • the first signal strength monitor 1 monitors the signal strength of the entire optical signals Lin1 to LinK passing through the optical fiber 21a, and notifies the gain control circuit 51 of the signal strength.
  • the subsequent operations of the gain control circuit 51, the light source drive circuit 61, the excitation light sources 31 to 3N, the output monitor 81, the switch control circuit 91, the N ⁇ 1 switch 71, and the optical multiplexer 41a are the gain control in the first embodiment. Operations of the circuit 51, the light source drive circuit 61, the excitation light sources 31 to 3N, the output monitor 81, the switch control circuit 91, the N ⁇ 1 switch 71, and the optical multiplexer 41 are the same.
  • the switch control circuit 91 selects one excitation light source as in the first embodiment.
  • the optical multiplexer 41a combines the excitation light by the clad collective method with the optical signals passing through the cores in the optical fiber 21a.
  • the N ⁇ 1 switch 71 is used together with a multi-mode output excitation light source. Further, the insertion loss of the N ⁇ 1 switch 71 is preferably small. Therefore, it is preferable that the N ⁇ 1 switch 71 be a mechanical control optical switch using, for example, a piezo actuator or the like.
  • the second signal strength monitor 2 monitors the signal strength of the entire amplified optical signals Lout1 to LoutK passing through the optical fiber 21a, and notifies the gain control circuit 51 of the signal strength.
  • the gain control circuit 51 confirms that the signal strength of the entire optical signal after amplification is a predetermined constant value based on the signal strength notified from the second signal strength monitor 2. If the signal intensity of the entire optical signal after amplification does not reach a predetermined constant value, the gain control circuit 51 adjusts the calculated gain. This point is the same as that of the first embodiment.
  • the optical signals Lout1 to LoutK amplified in the optical fiber 21a are branched from the one optical fiber 21a by passing through the fiber bundle fan-in 88, and pass through the respective separate optical fibers 921 to 92K. go.
  • high power utilization efficiency can be realized as in the first embodiment. Furthermore, signal intensities can be amplified simultaneously for a plurality of optical signals.
  • FIG. 6 is a block diagram showing a configuration example of an optical fiber amplification system according to a fourth embodiment of the present invention.
  • the optical fiber amplification system of the present embodiment comprises a plurality of the optical fiber amplifiers of the first embodiment of the present invention or the optical fiber amplifiers of the second embodiment of the present invention. Let the number of optical fiber amplifiers be K.
  • the optical fiber amplification system shown in FIG. 6 comprises a plurality of optical fiber amplifiers 10.
  • Each optical fiber amplifier 10 is either the optical fiber amplifier according to the first embodiment of the present invention (see FIG. 1) or the optical fiber amplifier according to the second embodiment of the present invention (see FIG. 4). Good.
  • the optical fiber amplification system of the present embodiment includes an optical fiber 221 in addition to the plurality of optical fiber amplifiers 10.
  • the optical fiber 221 will be referred to as an external optical fiber 221 in distinction from the optical fibers 21 (see FIGS. 1 and 4) provided in each of the optical fiber amplifiers 10.
  • the optical fiber amplification system includes a first signal strength monitor 201, a second signal strength monitor 202, a gain control circuit 251, a light source drive circuit 261, and an optical multiplexer 241.
  • the first signal strength monitor 201, the second signal strength monitor 202, the gain control circuit 251, the light source drive circuit 261, and the optical multiplexer 241 are respectively provided in the respective optical fiber amplifiers 10 with similar elements and sections.
  • the first external signal strength monitor 201, the second external signal strength monitor 202, the external gain control circuit 251, the external light source drive circuit 261, and the external light multiplexer 241 will be separately described.
  • the optical fiber amplification system comprises one excitation light source 231 outside each optical fiber amplifier 10.
  • the optical fiber amplification system comprises a fiber bundle fan-out 287, a fiber bundle fan-in 288, and a plurality of optical fibers 931 to 93 K connected upstream of the fiber bundle fan-out 287.
  • the following description is given assuming that the number of optical fibers connected upstream of the fiber bundle fan-out 287 is K.
  • the external optical fiber 221 is one, and the external optical fiber 221 is a multi-core optical fiber including a plurality of cores.
  • the external optical fiber 221 will be described as including K cores.
  • the external optical fiber 221 is doped with rare earth ions (here, erbium ions).
  • erbium ions are added in the range from the position A 'to the position B' shown in FIG.
  • a plurality of optical signals Lin1 to LinK are input.
  • the input optical signals Lin1 to LinK are separately input to the optical fibers 931 to 93K.
  • Each of the K optical fibers 931 to 93K includes one core.
  • the first external signal strength monitor 201 is connected on the upstream side of the start position A 'of the addition range of erbium ions. Further upstream, a fiber bundle fan out 287 is provided. The fiber bundle fanout 287 connects the K optical fibers 931 to 93 K and the external optical fiber 221. Further, optical isolators 211, 212,..., 21K are individually connected to the K optical fibers 931 to 93K, respectively (see FIG. 6). Hereinafter, the optical isolators 221 to 21 K will be referred to as external optical isolators 211 to 21 K, separately from the first optical isolator 11 and the second optical isolator 12 provided in each optical fiber amplifier 10.
  • a fiber bundle fan-in 288 is provided downstream of the second external signal strength monitor 202, and the fiber bundle fan-in 288 connects the external optical fiber 221 and the optical fiber 21 of each optical fiber amplifier 10 Ru. That is, the K cores in the external optical fiber 221 correspond to the cores in the optical fiber 21 in the K respective optical fiber amplifiers 10, and the corresponding cores are connected by the fiber bundle fan-in 288. It is connected.
  • fiber bundle fan-out and fiber bundle fan-in are members of a common configuration. Specifically, one core included in each of the plurality of optical fibers and each core included in one optical fiber (here, the outer optical fiber 221) are paired with each other. It is a member to be connected to
  • the first external signal strength monitor 201 and the second external signal strength monitor 202 are connected to the external gain control circuit 251, respectively. Further, the external gain control circuit 251 is connected to the external light source drive circuit 261.
  • the external light source drive circuit 261 is connected to the excitation light source 231, and the excitation light source 231 is connected to the external light multiplexer 241.
  • the first external signal strength monitor 201 and the second external signal strength monitor 202 monitor the signal strength of the optical signal passing through the external optical fiber 221 and notify the external gain control circuit 251 of the signal strength.
  • the external gain control circuit 251 calculates gains of the signal strengths of all the optical signals Lin1 to LinK and the signal strengths to be constant so that the signal strengths of all the optical signals after amplification become constant values.
  • the external gain control circuit 251 notifies the external light source drive circuit 261 of the gain.
  • the external gain control circuit 251 and the external light source drive circuit 261 are each realized by, for example, a dedicated processor. Also, for example, the external gain control circuit 251 and the external light source drive circuit 261 may be realized by one processor having the function of each element.
  • the optical signals Lin1 to LinK are separately input to the optical fibers 931 to 93K.
  • the external optical isolators 211 to 21 K provided in the respective optical fibers 931 to 93 K restrict the input optical signal propagation direction to a fixed direction.
  • optical signals Lin1 to LinK separately input to the K optical fibers 931 to 93K pass through the fiber bundle fan-out 287 to pass through the respective cores present in one external optical fiber 221. .
  • the first signal strength monitor 201 monitors the signal strength of the entire optical signals Lin1 to LinK, and performs external gain control.
  • the circuit 251 is notified of the signal strength.
  • the external gain control circuit 251 calculates the gains of the signal strength notified from the first signal strength monitor 201 and the signal strength to be constant so that the signal strength of the entire optical signal after amplification becomes constant. Do. In other words, the external gain control circuit 251 calculates the gain when amplifying the signal strength of all the optical signals Lin1 to LinK to a predetermined signal strength. The external gain control circuit 251 stores in advance the value of the signal strength to be constant after amplification, and the external gain control circuit 251 determines the signal strength notified from the first signal strength monitor 201 and the signal strength thereof. It is sufficient to calculate the gain with
  • the external light source drive circuit 261 drives only the excitation light source 231.
  • the external light source drive circuit 261 causes the excitation light source 231 to output excitation light at an excitation light output intensity corresponding to the gain notified from the external gain control circuit 251.
  • the external light source drive circuit 261 increases the pumping light output intensity as the gain value increases, and decreases the pumping light output intensity as the gain value decreases.
  • the excitation light output from the excitation light source 231 is input to the external light multiplexer 241.
  • the external optical multiplexer 241 combines the excitation light with the optical signals passing through the respective cores in the external optical fiber 221 by the clad collective method. That is, the external optical multiplexer 241 combines the excitation light into the respective optical signals Lin1 to LinK by inputting the excitation light to the cladding of the external optical fiber 221.
  • the signal intensity of each optical signal is amplified as each optical signal combined with the excitation light passes through the addition range of erbium ions in the external optical fiber 221.
  • the second external signal strength monitor 202 monitors the signal strength of the entire optical signal after amplification and notifies the external gain control circuit 251 of the signal strength.
  • the external gain control circuit 251 confirms that the signal strength of each amplified optical signal is a predetermined constant by the signal strength notified from the second signal strength monitor 2. If the signal strength is not a predetermined constant value, the external gain control circuit 251 adjusts the calculated gain. This operation is similar to the operation of the gain control circuit 51 provided in each optical fiber amplifier 10.
  • Each optical signal amplified in the external optical fiber 221 is branched from one external optical fiber 221 by passing through the fiber bundle fan-in 288, and is input to K separate optical fiber amplifiers 10 respectively. Ru.
  • the individual optical signals branched by passing the fiber bundle fan-in 288 correspond to the optical signal Lin in the first embodiment or the second embodiment.
  • each optical fiber amplifier 10 to which the optical signal is input is similar to the operation of the optical fiber amplifier of the first embodiment or the optical fiber amplifier of the second embodiment.
  • Each optical fiber amplifier 10 comprises one optical fiber 21 (see FIGS. 1 and 4), and the optical fiber 21 includes one core.
  • the optical multiplexer 41 (see FIG. 1 and FIG. 4) in the optical fiber amplifier 10 combines the excitation light into an optical signal by, for example, a core individual system.
  • optical signals output from each of the K optical fiber amplifiers 10 are referred to as optical signals Lout1 to LoutK.
  • optical signals Lin1 to LinK are amplified by one external optical fiber 221, they are again amplified by K separate optical fiber amplifiers 10 and output as optical signals Lout1 to LoutK. .
  • the optical fiber amplification system of the present embodiment includes the optical fiber amplifier 10 of the first embodiment or the second embodiment. Therefore, the same effect as the first embodiment and the second embodiment can be obtained.
  • each excitation light source 231 that outputs excitation light to the external optical fiber 221.
  • variations in amplification of the optical signals Lin1 to LinK in the external optical fiber 221 may occur.
  • each optical signal is then amplified again by the K optical fiber amplifiers 10 respectively. Therefore, the variation in amplification occurring in each optical signal in the external optical fiber 221 can be adjusted by the respective optical fiber amplifiers 10.
  • FIG. 7 is a block diagram showing a configuration example of an optical fiber amplifier according to a fifth embodiment of the present invention.
  • a plurality of optical signals Lin1 to LinK are input to the optical fiber amplifier of the fifth embodiment, and the respective optical signals are output as optical signals Lout1 to LoutK after amplification.
  • Each optical signal passes through a separate optical fiber.
  • the optical signals Lin1 to LinK are input to the optical fiber amplifier as a plurality of optical signals, and the optical fiber amplifier includes K optical fibers 271 to 27K as an example. explain.
  • Each of the optical fibers 271 to 27K includes one core.
  • rare earth ions here, erbium ions
  • the doping range of erbium ions in the individual optical fibers is the same as the doping range of erbium ions in the optical fiber 21 in the first embodiment.
  • the optical fiber amplifier includes, for each optical fiber, a first optical isolator, a first signal intensity monitor, an optical multiplexer, a second signal intensity monitor, a second optical isolator, and a gain. It has a control circuit.
  • the optical fiber amplifier comprises K first optical isolators 311 to 31 K, K first signal intensity monitors 811 to 81 K, K optical multiplexers 411 to 41 K, and K second Signal strength monitors 821 to 82K, K second optical isolators 321 to 32K, and K gain control circuits 511 to 51K.
  • the first optical isolators 311 to 31 K are all the same as the first optical isolator 11 in the first embodiment.
  • the second optical isolators 321 to 32 K are all similar to the second optical isolator 12 in the first embodiment.
  • the first signal strength monitors 811 to 81 K are all the same as the first signal strength monitor 1 in the first embodiment.
  • the second signal strength monitors 821 to 82K are all the same as the second signal strength monitor 2 in the first embodiment.
  • the optical multiplexers 411 to 41 K are all the same as the optical multiplexer 41 in the first embodiment.
  • the gain control circuits 511 to 51K are all similar to the gain control circuit 51 in the first embodiment. The description of the above-described elements similar to those of the first embodiment is omitted.
  • connection mode of the first optical isolator, the first signal intensity monitor, the optical multiplexer, the second signal intensity monitor, the second optical isolator, and the gain control circuit in each of the optical fibers 271 to 27 K is the first It is similar to the connection aspect of those elements in the embodiment of.
  • the first signal strength monitor 811 is connected upstream of the start position (not shown in FIG. 7) of the addition range of erbium ions, and the first optical isolator 311 is further upstream. It is connected.
  • the second signal intensity monitor 821 is connected downstream of the end position (not shown in FIG.
  • the second optical isolator 321 is connected further downstream. It is done.
  • the first signal strength monitor 811 and the second signal strength monitor 821 are connected to the gain control circuit 511, respectively.
  • an optical coupler 411 is provided in the addition range of erbium ions in the optical fiber 271.
  • the optical fiber 271 has been described as an example, the same applies to the other optical fibers 272 to 27K.
  • the optical fiber amplifier includes a band monitor 53, a light source drive circuit 561, a plurality (here, M) of excitation light sources 31 to 3M, an output monitor 581, and switch control.
  • a circuit 591 and an M ⁇ K switch 571 are provided.
  • the band monitor 53 is connected between the first optical isolator and the first signal strength monitor in each of the optical fibers 271 to 27K. Further, the band monitor 53 is connected to the light source drive circuit 561. The gain control circuits 511 to 51 K are also connected to the light source drive circuit 561.
  • the excitation light sources 31 to 3 M are connected to the light source drive circuit 561. As in the first embodiment, the respective excitation light sources 31 to 3 M are excitation light sources having different excitation light output intensity versus power consumption characteristics.
  • the excitation light output intensity versus power consumption characteristics of each of the excitation light sources 31 to 3 M may be changed, for example, by changing the maximum heat absorption amount of the Peltier cooler provided in each of the excitation light sources.
  • the M ⁇ K switch 571 is a switch having M input ends for excitation light and K output ends for excitation light.
  • the input ends I1 to IM of the M ⁇ K switch 571 correspond to the excitation light sources 31 to 3M on a one-to-one basis, and the input ends I1 to IM are connected to the corresponding excitation light sources.
  • the output ends O1 to OK of the M ⁇ K switch 571 correspond to the optical fibers 271 to 27K on a one-to-one basis, and the output ends O1 to OK correspond to the optical couplers 411 to 41K provided in the corresponding optical fibers. It is connected.
  • the output monitor 581 is connected to the light source drive circuit 561 and the switch control circuit 591. Further, the light source drive circuit 561 is connected to the switch control circuit 591. The switch control circuit 591 is connected to the M ⁇ K switch 571.
  • the band monitor 53 monitors the band of the optical signal passing through the optical fiber (the band used for signal transmission) for each of the optical fibers 271 to 27 K, and the band of the optical signal obtained for each of the optical fibers 271 to 27 K Each light source drive circuit 561 is notified.
  • each of the gain control circuits 511 to 51 K notifies the light source drive circuit 561 of the calculated gains.
  • the light source drive circuit 561 obtains a set of gain and band for each optical fiber. Then, the light source drive circuit 561 calculates the product of the gain and the standby for each optical fiber. The light source drive circuit 561 selects one pumping light source to which pumping light is to be output for each optical fiber based on the product of the gain and the standby. Therefore, the light source drive circuit 561 selects K excitation light sources.
  • the method by which the light source drive circuit 561 selects one excitation light source for each individual optical fiber is the same as in the first embodiment. That is, the light source drive circuit 561 stores in advance the correspondence between the range (numerical range) of the product of the gain and the band and the excitation light source to be selected. For example, the light source drive circuit 561 stores in advance information indicating a correspondence relationship such that the excitation light source 31 corresponds to the range “0 or more and less than T1” and the excitation light source 32 corresponds to the range “T1 or more and less than T2”. ing.
  • the light source drive circuit 561 selects the excitation light source 31 corresponding to the range “0 or more and less than T1” as the excitation light source that outputs the excitation light to the optical fiber 271.
  • the product of the gain and the band obtained from the optical fiber 272 belongs to the range “T1 or more and less than T2”.
  • the light source drive circuit 561 selects the excitation light source 32 corresponding to the range “T1 or more and less than T2” as the excitation light source for outputting the excitation light to the optical fiber 272.
  • the light source drive circuit 561 drives the respective selected excitation light sources, and causes the excitation light sources to output excitation light. At this time, the light source drive circuit 561 causes the excitation light source to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band obtained from the optical fiber corresponding to the excitation light source. For example, it is assumed that the light source drive circuit 561 selects the excitation light source 31 as an excitation light source that outputs excitation light to the optical fiber 271. In this case, the light source drive circuit 561 causes the excitation light source 31 to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band obtained from the optical fiber 271. The light source drive circuit 561 increases the pump light output intensity as the product of the gain and the band is larger, and lowers the pump light output intensity as the product of the gain and the band is smaller. The light source drive circuit 561 similarly drives other selected excitation light sources.
  • the light source drive circuit 561 selects the excitation light source, and the M ⁇ K switch corresponding to the input end of the M ⁇ K switch 71 corresponding to the excitation light source and the optical multiplexer provided in the optical fiber.
  • the switch control circuit 591 is instructed to connect with the output end of 71.
  • the excitation light source 31 is selected as the excitation light source for outputting the excitation light to the optical fiber 271.
  • the light source drive circuit 561 instructs the switch control circuit 591 to connect the input end I1 corresponding to the excitation light source 31 and the output end O1 corresponding to the optical multiplexer 411 provided in the optical fiber 271.
  • the light source drive circuit 561 instructs the switch control circuit 591 to connect the input end and the output end for K sets.
  • the switch control circuit 591 connects the designated input end and the output end according to the instruction of the light source drive circuit 561.
  • the light source drive circuit 561 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 581 after selecting the excitation light source once for each of the optical fibers.
  • the output monitor 581 monitors the excitation light output intensity of the excitation light output from the light output end of the excitation light sources 31 to 3M. Specifically, the output monitor 581 monitors the excitation light output intensity of the excitation light output from the K excitation light sources driven by the light source drive circuit 561.
  • the output monitor 581 stores the range of the excitation light output intensity which is determined in advance for each excitation light source.
  • the output monitor 581 is, for example, a range “0 or more and less than R1 (see FIG. 2)” of excitation light output intensity determined for the excitation light source 31 and a range “R1 or more and less than R2 determined for the excitation light source 32
  • the range “R2 or more and less than R3 (see FIG. 2)” of the excitation light output intensity determined for the excitation light source 33 and the like are stored in advance. This point is the same as that of the first embodiment.
  • the light source drive circuit 561 outputs the excitation light to the optical fiber when the product of the gain and the band changes due to a change in one or both of the gain and the band obtained from the optical fiber for each optical fiber.
  • the excitation light output intensity in the excitation light source is changed.
  • the output monitor 581 outputs the excitation light output intensity of the excitation light output from any excitation light source outputting the excitation light at the boundary value of the range of the excitation light output intensity defined for the excitation light source.
  • the light source drive circuit 561 is instructed to switch the excitation light source for outputting the excitation light to the excitation light source corresponding to the adjacent range of the range.
  • the light source drive circuit 561 switches the excitation light source for outputting the excitation light according to the instruction.
  • the output monitor 581 causes the switch control circuit 591 to connect the output end to which the input end corresponding to the excitation light source before switching is connected to the input end corresponding to the excitation light source after switching. To direct.
  • the switch control circuit 591 switches the connection between the input end and the output end of the M ⁇ K switch according to the instruction.
  • the gain control circuits 511 to 51K, the light source drive circuit 561, the output monitor 581, and the switch control circuit 591 are realized by, for example, dedicated processors. Further, the gain control circuits 511 to 51K, the light source drive circuit 561, the output monitor 581, and the switch control circuit 591 may be realized by one processor having the function of each element.
  • the optical fiber amplifier according to the fifth embodiment performs the same process on each of the input optical signals Lin1 to LinK.
  • an example of the operation of the fifth embodiment will be described by taking the optical signal Lin1 as an example.
  • description is abbreviate
  • the first optical isolator 311 limits the propagation direction of the optical signal to a certain direction.
  • the band monitor 53 monitors the band of the optical signal Lin1 passing through the optical fiber 271, and notifies the light source drive circuit 561 of the band.
  • the first signal strength monitor 811 monitors the signal strength of the optical signal Lin1, and notifies the gain control circuit 511 of the signal strength.
  • the gain control circuit 511 is a gain between the signal strength of the optical signal Lin1 notified from the first signal strength monitor 811 and the signal strength to be constant so that the signal strength of the output optical signal Lout1 becomes constant. That is, the gain at the time of amplifying the signal strength of the optical signal Lin1 to a predetermined signal strength is calculated.
  • the gain control circuit 511 notifies the light source drive circuit 561 of the calculated gain.
  • the light source drive circuit 561 calculates the product of the notified gain and the band, and selects the excitation light source that outputs the excitation light to the optical fiber 271 according to the product.
  • the light source drive circuit 561 selects the excitation light source 31 and demonstrates.
  • the light source drive circuit 561 is connected to connect the input end I1 of the M ⁇ K switch 571 corresponding to the excitation light source 31 and the output end O1 corresponding to the optical coupler 411 provided in the optical fiber 271.
  • the control circuit 591 is instructed.
  • the switch control circuit 591 connects the input end I1 and the output end O1 according to the instruction.
  • the light source drive circuit 561 causes the excitation light source 31 to output excitation light at the excitation light output intensity corresponding to the product of the gain and the band.
  • the excitation light is input to the input end I1 of the M ⁇ K switch 571 and output from the output end O1.
  • the optical multiplexer 411 combines the excitation light into the optical signal Lin1. As a result, the signal strength of the light signal Lin1 is amplified to a constant signal strength and is output as the light signal Lout1.
  • the second signal strength monitor 821 monitors the signal strength of the optical signal Lout1, and notifies the gain control circuit 511 of the signal strength.
  • the gain control circuit 511 confirms that the signal strength of the optical signal Lout1 has a predetermined constant value based on the signal strength notified from the second signal strength monitor 821. If the signal strength of the optical signal Lout does not reach a predetermined constant value, the gain control circuit 511 adjusts the calculated gain thereafter.
  • the second optical isolator 321 restricts the propagation direction of the optical signal Lout1 to a fixed direction.
  • the optical fiber amplifier performs the same processing on other input optical signals Lin2 to LinK. As a result, the input optical signals Lin1 to LinK are respectively amplified.
  • the output monitor 581 is a boundary of the range of the excitation light output intensity in which the excitation light output intensity of the excitation light output from any excitation light source outputting the excitation light is determined for the excitation light source
  • the light source drive circuit 561 is instructed to switch the excitation light source for outputting the excitation light to the excitation light source corresponding to the adjacent range of the range.
  • the light source drive circuit 561 switches the excitation light source for outputting the excitation light according to the instruction. For example, it is assumed that the excitation light output intensity of the excitation light output from the excitation light source 31 becomes R1 (see FIG. 2).
  • the M ⁇ K switch 571 it is assumed that the input end I1 and the output end O1 are connected.
  • the output monitor 581 switches the excitation light source for outputting the excitation light from the excitation light source 31 to the excitation light source 32 based on the fact that the excitation light output intensity of the excitation light output from the excitation light source 31 becomes R1.
  • the driver circuit 561 is instructed.
  • the light source drive circuit 561 switches the excitation light source that outputs excitation light from the excitation light source 31 to the excitation light source 32.
  • the output monitor 581 instructs the switch control circuit 591 to connect the output end O1 to the input end I2 corresponding to the excitation light source 32 after switching.
  • the switch control circuit 591 disconnects the input end I1 from the output end O1 and connects the input end I2 of the M ⁇ K switch 571 to the output end O1.
  • the pumping light output from the pumping light source 32 is combined with the optical signal Lin1 by the optical multiplexer 411, and the signal intensity of the optical signal Lin1 is amplified.
  • switching of the excitation light source for outputting excitation light to the optical fiber 271 has been described as an example.
  • the operations of the output monitor 581, the light source drive circuit 561 and the switch control circuit 591 in the case of switching the excitation light source for outputting the excitation light to another optical fiber are similar to the above.
  • the optical fiber amplifier of the present embodiment includes an M ⁇ K switch 571. Therefore, an increase in the number of excitation light sources can be prevented.
  • N ⁇ 1 switch in the first embodiment N pumping light sources are required for each optical fiber, so if the number of optical fibers is K, N ⁇ K excitation light sources are required.
  • the optical multiplexer is disposed upstream of the erbium ion doping range of the optical fiber, and the case where the optical signal and the excitation light propagate in the same direction in the optical fiber is taken as an example.
  • the aspect which amplifies the signal strength of an optical signal in such an aspect is called forward pumping.
  • the optical multiplexer is disposed downstream in the erbium ion doping range of the optical fiber, and the propagation direction of the optical signal and the propagation direction of the excitation light in the optical fiber are opposite to each other
  • An optical multiplexer may input excitation light to an optical fiber so that The aspect which amplifies the signal strength of an optical signal in such an aspect is called backward pumping. In each embodiment of the present invention, backward excitation may be employed.
  • an optical multiplexer may be provided outside the doped range of erbium ions in the optical fiber.
  • an optical multiplexer may be provided upstream of the start position (for example, position A illustrated in FIG. 1) of the addition range of erbium ions in the optical fiber.
  • an optical multiplexer may be provided downstream of the end position (for example, position B illustrated in FIG. 1) of the addition range of erbium ions in the optical fiber.
  • the optical isolators shown in the above embodiments are provided for the purpose of preventing the oscillation of the optical fiber amplifier caused by the multiple reflection of the optical signal.
  • the optical isolator may not be provided.
  • FIG. 8 is a block diagram showing an outline of the present invention.
  • the optical fiber amplifier of the present invention comprises an optical fiber 1021, a plurality of light sources 1031 to 103N, a light source driving means 1061, a combining means 1041, and a switch 1071.
  • the optical fiber 1021 passes an optical signal and amplifies the signal intensity of the optical signal when the excitation light is combined with the optical signal. It is an optical fiber.
  • the light sources 1031 to 103N are a plurality of light sources that output excitation light, and are a plurality of light sources having different excitation light output intensity versus power consumption characteristics. .
  • the light source driving unit 1061 (for example, the light source driving circuit 61, the light source driving circuit 561, and the like) causes the light source to output excitation light.
  • the combining means 1041 (for example, the optical multiplexer 41, the optical multiplexer 41a, the optical multiplexers 411 to 41K, etc.) combines the excitation light output from the light source into an optical signal.
  • the switch 1071 (for example, the N ⁇ 1 switch 71, the M ⁇ K switch 571, etc.) has an input end of excitation light corresponding to each light source, and an output for outputting the excitation light to the combining means 1041 Have an end.
  • An optical fiber for passing an optical signal and amplifying the signal intensity of the optical signal when excitation light is combined with the optical signal;
  • a plurality of light sources for outputting the excitation light, the plurality of light sources each having different excitation light output intensity versus power consumption characteristics;
  • Light source driving means for outputting excitation light from the light source;
  • Combining means for combining excitation light output from the light source with the optical signal;
  • An optical fiber amplifier comprising an input end of excitation light corresponding to each light source and a switch having an output end for outputting the excitation light to the combining means for each individual light source.
  • Switch control means for controlling an input end connected to the output end in the switch;
  • the light source driving means monitors the excitation light output intensity of the excitation light output from the light source, and when the excitation light output intensity becomes a boundary value of the range of the excitation light output intensity defined for the light source,
  • switching instruction means for instructing switching of the light source for outputting the excitation light and instructing the switch control means to connect the input end corresponding to the switched light source to the output end.
  • Optical fiber amplifier for controlling an input end connected to the output end in the switch.
  • Gain calculating means for calculating gains of the signal strength of the optical signal input to the optical fiber and the predetermined signal strength;
  • band monitor means for monitoring a band used for signal transmission in the optical signal input to the optical fiber,
  • the light source driving means selects a light source for outputting excitation light based on at least the band, and outputs excitation light at an excitation light output intensity corresponding to a product of the gain and the band from the light source.
  • Gain calculating means for calculating gains of the signal strength of the optical signal input to the optical fiber and the predetermined signal strength;
  • band monitor means for monitoring a band used for signal transmission in the optical signal input to the optical fiber,
  • the light source driving means selects a light source for outputting pumping light based on the product of the gain and the band, and the pumping light is output from the light source at a pumping light output intensity corresponding to the product of the gain and the band.
  • the optical fiber amplifier according to any one of Appendixes 1 to 4.
  • Each optical fiber has a combining means
  • the switch has an output end corresponding to the combining means for each individual combining means
  • the optical fiber amplifier according to Appendix 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light for each optical fiber.
  • optical fiber amplifier according to any one of Appendixes 1 to 10, wherein the optical fiber is an optical fiber doped with rare earth ions.
  • a plurality of optical fiber amplifiers according to Appendix 6 or Appendix 7, Comprising a plurality of cores corresponding to the cores in the optical fibers in each of the optical fiber amplifiers, and one external optical fiber provided outside the plurality of optical fiber amplifiers,
  • An optical fiber amplification system comprising one external light source for outputting excitation light to the external optical fiber.
  • the present invention is preferably applied to an optical fiber amplifier and an optical fiber amplification system that amplifies the signal strength of an optical signal.

Abstract

Provided is an optical fiber amplifier that is capable of achieving high power utilization efficiency. An optical fiber 1021 allows an optical signal to pass therethrough and amplifies signal intensity of the optical signal when the optical signal is synthesized with excitation light. A plurality of light sources 1031-103N output excitation light, and have excitation light output intensity-power consumption characteristics different from one another. A light source driving means 1061 causes the light sources to output the excitation light. A synthesizing means 1041 synthesizes the excitation light outputted from the light sources with the optical signal. A switch 1071 has excitation light input terminals corresponding to the respective light sources, and an output terminal for outputting the excitation light to the synthesizing means 1041.

Description

光ファイバ増幅器および光ファイバ増幅システムOptical fiber amplifier and optical fiber amplification system
 本発明は、光信号の信号強度を増幅させる光ファイバ増幅器および光ファイバ増幅システムに関する。 The present invention relates to an optical fiber amplifier and an optical fiber amplification system that amplifies the signal strength of an optical signal.
 光信号の信号強度を増幅させる光ファイバ増幅器の例が、特許文献1に記載されている。特許文献1には、光信号が入力される希土類添加ファイバに、励起光源から出力される励起光を入力することで、光信号の信号強度を増幅する構成が記載されている。特許文献2にも同様の構成が記載されている。 Patent Document 1 describes an example of an optical fiber amplifier that amplifies the signal strength of an optical signal. Patent Document 1 describes a configuration for amplifying the signal intensity of an optical signal by inputting the excitation light output from the excitation light source into a rare earth-doped fiber into which an optical signal is input. A similar configuration is described in Patent Document 2 as well.
 このような光ファイバ増幅器は、高効率・高利得であり、利得がほぼ偏波無依存であることから光ファイバ通信システムの光信号中継用の増幅器として用いられる。 Such an optical fiber amplifier is used as an amplifier for relaying an optical signal of an optical fiber communication system because it has high efficiency and high gain, and its gain is almost polarization independent.
 また、特許文献3には、入力される光信号が1.55μm帯の光信号であることが開示され、励起光が1.48μm帯の光であることが開示されている。また、特許文献3には、現用励起光源と待機用励起光源とを備える構成が開示されている。 Further, Patent Document 3 discloses that an input optical signal is an optical signal in the 1.55 μm band, and discloses that excitation light is light in the 1.48 μm band. Further, Patent Document 3 discloses a configuration including a current excitation light source and a standby excitation light source.
特開平11-112434号公報Japanese Patent Application Laid-Open No. 11-112434 特開平9-116506号公報Japanese Patent Laid-Open No. 9-116506 特開平6-326383号公報Japanese Patent Application Laid-Open No. 6-326383
 一般的な光ファイバ増幅器の例として、図9に例示する光ファイバ増幅器が考えられる。図9に例示する光ファイバ121は、希土類イオンが添加された光ファイバである。ここでは、光ファイバ121にエルビウムイオンが添加された場合を例にして説明する。なお、ここでは、図9に示す位置Aから位置Bまでの範囲に、エルビウムイオンが添加されているものとして説明する。光ファイバ121には、図9に示すように、第1の光アイソレータ171と、第1の信号強度モニタ101と、光合波器141と、第2の信号強度モニタ102と、第2の光アイソレータ172とが設けられる。 As an example of a general optical fiber amplifier, the optical fiber amplifier illustrated in FIG. 9 can be considered. The optical fiber 121 illustrated in FIG. 9 is an optical fiber to which rare earth ions are added. Here, the case where erbium ion is added to the optical fiber 121 will be described as an example. Here, it is assumed that erbium ions are added in the range from position A to position B shown in FIG. In the optical fiber 121, as shown in FIG. 9, a first optical isolator 171, a first signal intensity monitor 101, an optical multiplexer 141, a second signal intensity monitor 102, and a second optical isolator 172 are provided.
 また、光ファイバ増幅器は、利得制御回路151と、1つの励起光源131と、光源駆動回路161とを備える。 Further, the optical fiber amplifier includes a gain control circuit 151, one excitation light source 131, and a light source drive circuit 161.
 光ファイバ121には、光信号Linが入力され、信号強度増幅後の光信号Loutが出力される。第1の光アイソレータ171および第2の光アイソレータ172は、光信号の伝搬方向を一定方向に制限する。 The optical signal Lin is input to the optical fiber 121, and the optical signal Lout after signal strength amplification is output. The first optical isolator 171 and the second optical isolator 172 restrict the propagation direction of the optical signal in a certain direction.
 第1の信号強度モニタ101は、入力される光信号Linの信号強度をモニタし、利得制御回路151にその信号強度を通知する。利得制御回路151は、出力される光信号Loutの信号強度が一定になるように、光信号Linの信号強度と、一定とすべき信号強度との利得を算出する。なお、第2の信号強度モニタ102は、光信号Loutの信号強度をモニタし、利得制御回路151にその信号強度を通知する。利得制御回路151は、第2の信号強度モニタ102から通知された信号強度によって、光信号Loutの信号強度が所定の一定値になっていることを確認する。 The first signal strength monitor 101 monitors the signal strength of the input optical signal Lin, and notifies the gain control circuit 151 of the signal strength. The gain control circuit 151 calculates gains of the signal strength of the optical signal Lin and the signal strength to be constant so that the signal strength of the output optical signal Lout becomes constant. The second signal strength monitor 102 monitors the signal strength of the optical signal Lout and notifies the gain control circuit 151 of the signal strength. The gain control circuit 151 confirms that the signal strength of the optical signal Lout has a predetermined constant value based on the signal strength notified from the second signal strength monitor 102.
 利得制御回路151は、上記のように算出した利得を光源駆動回路161に通知する。光源駆動回路161は、励起光源131を駆動し、利得に応じた励起光出力強度で、励起光源131から励起光を出力させる。 The gain control circuit 151 notifies the light source drive circuit 161 of the gain calculated as described above. The light source drive circuit 161 drives the excitation light source 131 and causes the excitation light source 131 to output excitation light at an excitation light output intensity corresponding to the gain.
 光合波器141は、励起光源131から出力された励起光を光信号Linに合成させる。エルビウムイオンが添加された光ファイバ121において、光信号Linに励起光が合成されることで、光信号Linの信号強度が増幅され、信号強度増幅後の光信号Loutが出力される。 The optical multiplexer 141 combines the excitation light output from the excitation light source 131 into an optical signal Lin. In the optical fiber 121 to which erbium ions are added, the pump light is combined with the light signal Lin, whereby the signal strength of the light signal Lin is amplified, and the light signal Lout after signal strength amplification is output.
 光信号は、一般的に、1.55μm帯の光信号である。また、励起光は、一般的に、1.48μm帯の光または0.98μm帯の光である。 The light signal is generally a 1.55 μm band light signal. The excitation light is generally light in the 1.48 μm band or light in the 0.98 μm band.
 図9に例示する一般的な光ファイバ増幅器が用いられる光ファイバ通信システムは、通信の高速化および大容量化に重要な役割を担っている。そして、通信容量の増大に対応できるように、波長多重化の関連技術の開発が盛んに行われている。 An optical fiber communication system in which a general optical fiber amplifier illustrated in FIG. 9 is used plays an important role in speeding up and increasing the capacity of communication. And, in order to cope with the increase of communication capacity, development of related technology of wavelength multiplexing is actively carried out.
 そして、光ファイバ増幅器を長期にわたり効率よく運用するために、運用初期には、「信号伝達に用いられる帯域」を狭くし、トラフィックの増大に合わせて、波長多重化によって「信号伝達に用いられる帯域」を広くする手法がとられる。このように、運用開始後のトラフィックの増大に合わせて、「信号伝達に用いられる帯域」が変化する。なお、「信号伝達に用いられる帯域」は、スペクトラム、WDM(Wavelength Division Multiplexing)の信号使用率、あるいは、波長充填率とも称することができる。以下、「信号伝達に用いられる帯域」を、単に、帯域と記す場合がある。 Then, in order to operate the optical fiber amplifier efficiently for a long period of time, at the beginning of operation, narrow the "band used for signal transmission" and, according to the increase in traffic, "band used for signal transmission by wavelength multiplexing. Methods to broaden the Thus, the "band used for signal transmission" changes in accordance with the increase in traffic after the start of operation. The “band used for signal transmission” can also be referred to as a spectrum, a signal usage rate of wavelength division multiplexing (WDM), or a wavelength filling rate. Hereinafter, “a band used for signal transmission” may be simply referred to as a band.
 図9に示す光ファイバ増幅器は、1つの励起光源131を備える。そして、励起光源131は、光信号の最大の帯域に合わせて設計される。すなわち、「信号伝達に用いられる帯域」が広くなった場合に、励起光出力強度が高い励起光を出力できるように、励起光源131は設計される。図10は、そのような励起光源131の励起光出力強度対消費電力特性を示す模式図である。図10に示す横軸は、励起光源の励起光出力強度である。なお、励起光出力強度は、ほぼ「信号伝達に用いられる帯域」に比例すると言える。また、図10に示す縦軸は、励起光源の消費電力である。上記のように、「信号伝達に用いられる帯域」が広くなった場合に、励起光出力強度が高い励起光を出力できるように設計された励起光源131では、帯域が狭い場合でも、消費電力はそれほど低下しない。すると、例えば、運用開始後のように、帯域を狭くした状態では、消費電力が大きくなってしまう。 The optical fiber amplifier shown in FIG. 9 includes one excitation light source 131. Then, the excitation light source 131 is designed in accordance with the maximum band of the optical signal. That is, the excitation light source 131 is designed so that excitation light with high excitation light output intensity can be output when the “band used for signal transmission” becomes wide. FIG. 10 is a schematic view showing the excitation light output intensity versus power consumption characteristics of such an excitation light source 131. As shown in FIG. The horizontal axis shown in FIG. 10 is the excitation light output intensity of the excitation light source. Here, it can be said that the excitation light output intensity is approximately proportional to the "band used for signal transmission". The vertical axis shown in FIG. 10 is the power consumption of the excitation light source. As described above, when the “band used for signal transmission” becomes wide, the pumping light source 131 designed to be able to output pumping light with high pumping light output intensity consumes less power even if the band is narrow. It doesn't fall that much. Then, for example, in the state where the band is narrowed as in the operation start, the power consumption increases.
 図10に破線に示すように、消費電力が励起光出力強度に比例することが好ましい。しかし、上述のように、帯域が狭い場合でも、消費電力はそれほど低下せず、帯域を狭くした状態では、消費電力が大きくなってしまう。 As indicated by a broken line in FIG. 10, the power consumption is preferably proportional to the excitation light output intensity. However, as described above, even when the band is narrow, the power consumption does not decrease so much, and when the band is narrowed, the power consumption becomes large.
 また、低消費電力化を優先し、帯域を狭くした状態で消費電力が小さくなるように設計した場合には、帯域を広くしたときに、励起光出力強度が高い励起光を出力できない。 When priority is given to reducing power consumption and the power consumption is designed to be small in a narrow band, when the band is broadened, it is not possible to output pumping light with high pumping light output intensity.
 そこで、本発明は、高い電力利用効率を実現可能な光ファイバ増幅器および光ファイバ増幅システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an optical fiber amplifier and an optical fiber amplification system capable of realizing high power utilization efficiency.
 本発明による光ファイバ増幅器は、光信号を通過させ、その光信号に励起光が合成されると、その光信号の信号強度を増幅する光ファイバと、励起光を出力する複数の光源であって、励起光出力強度対消費電力特性がそれぞれ異なる複数の光源と、光源から励起光を出力させる光源駆動手段と、光源から出力された励起光を光信号に合成させる合成手段と、個々の光源毎に光源に対応する励起光の入力端を有し、励起光を合成手段に出力するための出力端を有するスイッチとを備えることを特徴とする。 The optical fiber amplifier according to the present invention is an optical fiber that passes an optical signal and amplifies the signal intensity of the optical signal when the excitation light is combined with the optical signal, and a plurality of light sources that output the excitation light. A plurality of light sources having different excitation light output intensity versus power consumption characteristics, light source driving means for outputting excitation light from the light sources, combining means for synthesizing excitation lights output from the light sources into optical signals, and each individual light source And a switch having an input end of excitation light corresponding to the light source and an output end for outputting the excitation light to the synthesizing means.
 本発明によれば、高い電力利用効率を実現することができる。 According to the present invention, high power utilization efficiency can be realized.
本発明の第1の実施形態の光ファイバ増幅器の構成例を示すブロック図である。It is a block diagram showing an example of composition of an optical fiber amplifier of a 1st embodiment of the present invention. 複数の励起光源の励起光出力強度対消費電力特性を表す模式図である。It is a schematic diagram showing the excitation light output intensity versus power consumption characteristic of several excitation light sources. 一般的な光ファイバ増幅器と、本発明による光ファイバ増幅器との消費電力の差を示す模式図である。It is a schematic diagram which shows the difference of the power consumption of a general optical fiber amplifier and the optical fiber amplifier by this invention. 本発明の第2の実施形態の光ファイバ増幅器の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical fiber amplifier of the 2nd Embodiment of this invention. 本発明の第3の実施形態の光ファイバ増幅器の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical fiber amplifier of the 3rd Embodiment of this invention. 本発明の第4の実施形態の光ファイバ増幅システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical fiber amplification system of the 4th Embodiment of this invention. 本発明の第5の実施形態の光ファイバ増幅器の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical fiber amplifier of the 5th Embodiment of this invention. 本発明の概要を示すブロック図である。It is a block diagram showing an outline of the present invention. 一般的な光ファイバ増幅器の例を示す模式図である。It is a schematic diagram which shows the example of a common optical fiber amplifier. 一般的な光ファイバ増幅器に設けられる励起光源の励起光出力強度対消費電力特性を示す模式図である。It is a schematic diagram which shows the excitation light output intensity versus power consumption characteristic of the excitation light source provided in a common optical fiber amplifier.
 以下、本発明の実施形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 前述の場合と同様に、各実施形態において、「信号伝達に用いられる帯域」を、単に、帯域と記す場合がある。前述のように、「信号伝達に用いられる帯域」は、スペクトラム、WDMの信号使用率、あるいは、波長充填率とも称することができる。 As in the case described above, in each embodiment, "a band used for signal transmission" may be simply referred to as a band. As mentioned above, the "band used for signal transmission" can also be called spectrum, WDM signal usage rate, or wavelength filling rate.
実施形態1.
 図1は、本発明の第1の実施形態の光ファイバ増幅器の構成例を示すブロック図である。第1の実施形態の光ファイバ増幅器は、第1の信号強度モニタ1と、第2の信号強度モニタ2と、帯域モニタ3と、第1の光アイソレータ11と、第2の光アイソレータ12と、光ファイバ21と、複数の励起光源31~3Nと、光合波器41と、利得制御回路51と、光源駆動回路61と、スイッチ71と、出力モニタ81と、スイッチ制御回路91とを備える。
Embodiment 1
FIG. 1 is a block diagram showing an example of configuration of an optical fiber amplifier according to a first embodiment of the present invention. The optical fiber amplifier according to the first embodiment includes a first signal strength monitor 1, a second signal strength monitor 2, a bandwidth monitor 3, a first optical isolator 11, and a second optical isolator 12. An optical fiber 21, a plurality of excitation light sources 31 to 3 N, an optical multiplexer 41, a gain control circuit 51, a light source drive circuit 61, a switch 71, an output monitor 81, and a switch control circuit 91.
 光ファイバ21は、希土類イオンが添加された光ファイバである。ここでは、光ファイバ21にエルビウムイオンが添加されている場合を例にして説明する。また、図1に示す位置Aから位置Bまでの範囲に、エルビウムイオンが添加されているものとして説明する。 The optical fiber 21 is an optical fiber doped with rare earth ions. Here, the case where erbium ion is added to the optical fiber 21 will be described as an example. Further, it is assumed that erbium ions are added in the range from position A to position B shown in FIG.
 また、第1の実施形態の光ファイバ増幅器は1本の光ファイバ21を備える。本実施形態において、光ファイバ21は、1本のコアを含む。 Also, the optical fiber amplifier of the first embodiment includes one optical fiber 21. In the present embodiment, the optical fiber 21 includes one core.
 光ファイバ21は、光信号を通過させる。光ファイバ21に、希土類イオン(本例では、エルビウムイオン)が添加されていることによって、その光信号に励起光が合成されると、その光信号の信号強度は増幅される。 The optical fiber 21 passes an optical signal. When the optical fiber 21 is doped with a rare earth ion (in this example, an erbium ion) and the excitation light is synthesized to the optical signal, the signal intensity of the optical signal is amplified.
 すなわち、光ファイバ21は、光信号を通過させ、その光信号に励起光が合成されると、その光信号の信号強度を増幅する光ファイバである。 That is, the optical fiber 21 is an optical fiber that passes the optical signal and amplifies the signal intensity of the optical signal when the excitation light is combined with the optical signal.
 図1に示す例において、光ファイバ21に入力される光信号をLinと記す。また、光ファイバから出力される増幅後の光信号をLoutと記す。また、便宜的に、光ファイバ21において、光信号Linが入力される側を上流側と記し、光信号Loutが出力される側を下流側と記す。 In the example shown in FIG. 1, the optical signal input to the optical fiber 21 is denoted as Lin. Also, the amplified optical signal output from the optical fiber is referred to as Lout. Further, for convenience, in the optical fiber 21, the side to which the optical signal Lin is input is referred to as the upstream side, and the side to which the optical signal Lout is output is referred to as the downstream side.
 光ファイバ21において、エルビウムイオンの添加範囲の開始位置Aよりも上流側に、第1の信号強度モニタ1が接続され、さらに上流側に第1の光アイソレータ11が接続されている。また、光ファイバ21において、エルビウムイオンの添加範囲の終了位置Bよりも下流側に第2の信号強度モニタ2が接続され、さらに下流側に第2の光アイソレータが接続されている。 In the optical fiber 21, the first signal intensity monitor 1 is connected upstream of the start position A of the erbium ion doping range, and the first optical isolator 11 is connected further upstream. Further, in the optical fiber 21, the second signal intensity monitor 2 is connected downstream of the end position B of the addition range of erbium ions, and the second optical isolator is connected further downstream.
 また、第1の信号強度モニタ1および第2の信号強度モニタ2はそれぞれ、利得制御回路51に接続されている。さらに、利得制御回路51は、光源駆動回路61に接続されている。 The first signal strength monitor 1 and the second signal strength monitor 2 are connected to the gain control circuit 51, respectively. Furthermore, the gain control circuit 51 is connected to the light source drive circuit 61.
 また、第1の光アイソレータ11と第1の信号強度モニタ1との間に、帯域モニタ3が接続されている。さらに、帯域モニタ3は、光源駆動回路61に接続されている。 In addition, a band monitor 3 is connected between the first optical isolator 11 and the first signal strength monitor 1. Further, the band monitor 3 is connected to the light source drive circuit 61.
 光源駆動回路61には、各励起光源31~3Nが接続されている。 The excitation light sources 31 to 3 N are connected to the light source drive circuit 61.
 スイッチ71は、個々の励起光源毎に、励起光源に対応する励起光の入力端を備える。図1に示す例では、スイッチ71は、入力端I1~INを備える。例えば、入力端I1は励起光源31に対応し、入力端I2は励起光源32に対応している。スイッチ71の他の入力端もそれぞれ1つの励起光源に対応している。 The switch 71 includes an input end of excitation light corresponding to the excitation light source for each individual excitation light source. In the example shown in FIG. 1, the switch 71 includes input ends I1 to IN. For example, the input end I1 corresponds to the excitation light source 31, and the input end I2 corresponds to the excitation light source 32. The other inputs of the switch 71 also correspond to one excitation light source.
 各励起光源31~3Nの光出力端は、スイッチ71の対応する入力端I1~INに接続されている。例えば、励起光源31の光出力端は、スイッチ71の入力端I1に接続されている。 The light output ends of the respective excitation light sources 31 to 3N are connected to the corresponding input ends I1 to IN of the switch 71. For example, the light output end of the excitation light source 31 is connected to the input end I1 of the switch 71.
 また、スイッチ71は、入力された励起光を光合波器41に出力するための出力端O1を備えている。本実施形態では、スイッチ71は、1つの出力端O1を備えている。出力端O1は、光合波器41に接続されている。また、光合波器41は、光ファイバ21におけるエルビウムイオンの添加範囲内に設けられている。 The switch 71 also includes an output end O1 for outputting the input excitation light to the optical multiplexer 41. In the present embodiment, the switch 71 includes one output end O1. The output end O1 is connected to the optical multiplexer 41. Further, the optical multiplexer 41 is provided in the addition range of erbium ions in the optical fiber 21.
 また、各励起光源31~3Nの光出力端は、出力モニタ81に接続されている。 The light output terminals of the excitation light sources 31 to 3N are connected to the output monitor 81.
 出力モニタ81は、光源駆動回路61およびスイッチ制御回路91に接続されている。スイッチ制御回路91は、スイッチ71に接続されている。 The output monitor 81 is connected to the light source drive circuit 61 and the switch control circuit 91. The switch control circuit 91 is connected to the switch 71.
 次に、個々の要素について説明する。 Next, individual elements will be described.
 各励起光源31~3Nは、それぞれ、励起光出力強度対消費電力特性が異なる励起光源である。図2は、複数の励起光源の励起光出力強度対消費電力特性を表す模式図である。図2に示す横軸は、励起光源の励起光出力強度である。なお、励起光出力強度は、ほぼ「信号伝達に用いられる帯域」に比例すると言える。後述のように、利得制御回路51によって算出される利得はあまり変化しない傾向があるためである。図2に示す縦軸は、励起光源の消費電力である。図2では、励起光源31~35の特性の例を模式的に示している。消費電力が小さいほど、励起光出力強度の上限値が小さい。例えば、図2に示す例では、低消費電力化の観点からは、励起光源31,32,33,34,35の順に好ましい。ただし、励起光源31は、励起光出力強度R1までの励起光を出力できるが、それ以上の励起光出力強度の励起光は出力できない。同様に、励起光源32,33,34が出力できる励起光の励起光出力強度の上限は、それぞれR2,R3,R4である。 The respective excitation light sources 31 to 3N are excitation light sources having different excitation light output intensity versus power consumption characteristics. FIG. 2 is a schematic diagram showing excitation light output intensity versus power consumption characteristics of a plurality of excitation light sources. The horizontal axis shown in FIG. 2 is the excitation light output intensity of the excitation light source. Here, it can be said that the excitation light output intensity is approximately proportional to the "band used for signal transmission". As will be described later, the gain calculated by the gain control circuit 51 tends not to change much. The vertical axis shown in FIG. 2 is the power consumption of the excitation light source. FIG. 2 schematically shows an example of the characteristics of the excitation light sources 31 to 35. The lower the power consumption, the smaller the upper limit of the excitation light output intensity. For example, in the example shown in FIG. 2, from the viewpoint of reducing power consumption, the excitation light sources 31, 32, 33, 34, 35 are preferred in this order. However, although the excitation light source 31 can output excitation light up to the excitation light output intensity R1, it can not output excitation light with a higher excitation light output intensity. Similarly, the upper limit of the excitation light output intensity of the excitation light that can be output by the excitation light sources 32, 33, 34 is R2, R3, R4, respectively.
 例えば、励起光出力強度a(図2参照)の励起光を出力する場合、消費電力が最も小さい励起光源31から励起光を出力することが好ましい。また、励起光出力強度b(図2参照)の励起光を出力する場合、R1<bであるので、励起光源31は使用できない。この場合、励起光源31以外で最も消費電力が小さい励起光源32から励起光を出力することが好ましい。 For example, in the case of outputting the excitation light of the excitation light output intensity a (see FIG. 2), it is preferable to output the excitation light from the excitation light source 31 with the lowest power consumption. Further, in the case of outputting the excitation light of the excitation light output intensity b (see FIG. 2), since R1 <b, the excitation light source 31 can not be used. In this case, it is preferable to output excitation light from the excitation light source 32 which consumes the least power other than the excitation light source 31.
 本発明では、励起光出力強度対消費電力特性がそれぞれ異なる複数の励起光源の中から適切な励起光源を選択することによって、高い電力利用効率を実現する。 In the present invention, high power utilization efficiency is realized by selecting an appropriate excitation light source from among a plurality of excitation light sources having different excitation light output intensity versus power consumption characteristics.
 また、個々の励起光源31~3Nは、それぞれペルチエ冷却器を備える。そして、個々の励起光源に対応する個々のペルチエ冷却器の最大吸熱量は、それぞれ異なる。このように、励起光源に設けられるペルチエ冷却器の最大吸熱量をそれぞれ異なるようにすることで、各励起光源31~3Nの励起光出力強度対消費電力特性を変えることができる。ただし、ペルチエ冷却器の最大吸熱量だけでなく、他の要素も変化させて、各励起光源31~3Nの励起光出力強度対消費電力特性を変えてもよい。 Each of the excitation light sources 31 to 3N is provided with a Peltier cooler, respectively. And, the maximum heat absorption of the individual Peltier coolers corresponding to the individual excitation light sources is different. As described above, by making the maximum heat absorption amount of the Peltier coolers provided in the excitation light sources different from each other, it is possible to change the excitation light output intensity vs. power consumption characteristics of the respective excitation light sources 31 to 3N. However, not only the maximum heat absorption amount of the Peltier cooler but also other factors may be changed to change the excitation light output intensity versus power consumption characteristics of each of the excitation light sources 31 to 3N.
 各励起光源31~3Nが出力する励起光の波長は共通である。例えば、各励起光源31~3Nが出力する励起光の波長は、1.48μm帯で共通である。また、例えば、各励起光源31~3Nが出力する励起光の波長は、0.98μm帯で共通であってもよい。 The wavelength of the excitation light output from each of the excitation light sources 31 to 3N is common. For example, the wavelength of the excitation light output from each of the excitation light sources 31 to 3N is common to the 1.48 μm band. Further, for example, the wavelength of the excitation light output from each of the excitation light sources 31 to 3N may be common in the 0.98 μm band.
 入力される光信号をLinの波長は、1.55μm帯である。 The wavelength of the input light signal Lin is 1.55 μm band.
 第1の光アイソレータ11および第2の光アイソレータ12は、光信号の伝搬方向を一定方向に制限する。 The first optical isolator 11 and the second optical isolator 12 restrict the propagation direction of the optical signal in a fixed direction.
 第1の信号強度モニタ1は、入力される光信号Linの信号強度をモニタし、利得制御回路51にその信号強度を通知する。 The first signal strength monitor 1 monitors the signal strength of the input optical signal Lin, and notifies the gain control circuit 51 of the signal strength.
 利得制御回路51は、出力される光信号Loutの信号強度が一定になるように、第1の信号強度モニタ1から通知された光信号Linの信号強度と、一定とすべき信号強度との利得を算出する。換言すれば、利得制御回路51は、光ファイバ21内で光信号Linの信号強度を所定の信号強度に増幅する際の利得を算出する。利得制御回路51は、増幅後における一定とすべき信号強度の値を予め記憶しておき、利得制御回路51は、光信号Linの信号強度とその信号強度との利得を算出すればよい。 The gain control circuit 51 is a gain between the signal strength of the optical signal Lin notified from the first signal strength monitor 1 and the signal strength to be constant so that the signal strength of the output optical signal Lout becomes constant. Calculate In other words, the gain control circuit 51 calculates the gain when amplifying the signal strength of the optical signal Lin in the optical fiber 21 to a predetermined signal strength. The gain control circuit 51 may store in advance the value of the signal strength to be constant after amplification, and the gain control circuit 51 may calculate the gain of the signal strength of the optical signal Lin and the signal strength thereof.
 また、第2の信号強度モニタ2は、出力される光信号Loutの信号強度をモニタし、利得制御回路51にその信号強度を通知する。利得制御回路51は、第2の信号強度モニタ2から通知された信号強度によって、光信号Loutの信号強度が所定の一定値になっていることを確認する。光信号Loutの信号強度が所定の一定値になっていなければ、利得制御回路51は、算出した利得を調整する。例えば、光信号Loutの信号強度を100で一定にすべきであるとする。第2の信号強度モニタ2から通知された実際の光信号Loutの信号強度が100より大きければ、利得制御回路51は、算出した利得の値を小さくするように調整する。また、第2の信号強度モニタ2から通知された実際の光信号Loutの信号強度が100より小さければ、利得制御回路51は、算出した利得の値を大きくするように調整する。 Further, the second signal strength monitor 2 monitors the signal strength of the optical signal Lout to be outputted, and notifies the gain control circuit 51 of the signal strength. The gain control circuit 51 confirms that the signal strength of the optical signal Lout has a predetermined constant value based on the signal strength notified from the second signal strength monitor 2. If the signal strength of the optical signal Lout does not reach a predetermined constant value, the gain control circuit 51 adjusts the calculated gain. For example, it is assumed that the signal strength of the optical signal Lout should be constant at 100. If the signal strength of the actual optical signal Lout notified from the second signal strength monitor 2 is larger than 100, the gain control circuit 51 adjusts so as to reduce the value of the calculated gain. In addition, if the signal strength of the actual optical signal Lout notified from the second signal strength monitor 2 is smaller than 100, the gain control circuit 51 adjusts so as to increase the value of the calculated gain.
 利得制御回路51は、算出した利得を光源駆動回路61に通知する。 The gain control circuit 51 notifies the light source drive circuit 61 of the calculated gain.
 帯域モニタ3は、光ファイバ21を通過する光信号Linの帯域(信号伝達に用いられる帯域)をモニタし、光源駆動回路61にその帯域を通知する。 The band monitor 3 monitors the band (the band used for signal transmission) of the optical signal Lin passing through the optical fiber 21 and notifies the light source drive circuit 61 of the band.
 光源駆動回路61は、利得制御回路51から通知された利得と、帯域モニタ3から通知された帯域との積を算出する。そして、光源駆動回路61は、その利得と帯域との積に基づいて、励起光を出力させる励起光源を、複数の励起光源31~3Nの中から1つ選択する。 The light source drive circuit 61 calculates the product of the gain notified from the gain control circuit 51 and the band notified from the band monitor 3. Then, based on the product of the gain and the band, the light source drive circuit 61 selects one of the plurality of excitation light sources 31 to 3N that causes excitation light to be output.
 光源駆動回路61は、利得と帯域との積の範囲(数値範囲)と、選択する励起光源との対応関係を予め記憶している。光源駆動回路61は、例えば、範囲“0以上T1未満”と励起光源31とが対応し、範囲“T1以上T2未満”と励起光源32とが対応する等の対応関係を示す情報を予め記憶している。ここで、各範囲は重複せず境界を挟んで連続するように定められる。また、値の小さい範囲ほど、消費電力が小さな励起光源に対応付けられる。 The light source drive circuit 61 stores in advance the correspondence between the range of the product of the gain and the band (numerical range) and the excitation light source to be selected. For example, the light source drive circuit 61 stores in advance information indicating a correspondence such that the range “0 or more and less than T1” corresponds to the excitation light source 31 and the range “more than T1 and less than T2” corresponds to the excitation light source 32. ing. Here, each range is determined so as not to overlap and to be continuous across the boundary. In addition, the smaller the value range is, the smaller the power consumption is associated with the excitation light source.
 例えば、上記の例において、利得と帯域との積が範囲“0以上T1未満”に属しているとする。この場合、光源駆動回路61は、範囲“0以上T1未満”に対応する励起光源31を選択する。 For example, in the above example, it is assumed that the product of the gain and the band belongs to the range “0 or more and less than T1”. In this case, the light source drive circuit 61 selects the excitation light source 31 corresponding to the range “0 or more and less than T1”.
 光源駆動回路61は、選択した1つの励起光源を駆動し、その励起光源に励起光を出力させる。このとき、光源駆動回路61は、利得と帯域との積に応じた励起光出力強度で、その励起光源から励起光を出力させる。光源駆動回路61は、利得と帯域との積の値が大きいほど、励起光出力強度を高くし、利得と帯域との積の値が小さいほど、励起光出力強度を低くする。 The light source drive circuit 61 drives one selected excitation light source, and causes the excitation light source to output excitation light. At this time, the light source drive circuit 61 causes the excitation light source to output excitation light at the excitation light output intensity corresponding to the product of the gain and the band. The light source drive circuit 61 increases the pump light output intensity as the product of the gain and the band is larger, and lowers the pump light output intensity as the product of the gain and the band is smaller.
 光源駆動回路61は、一旦、利得と帯域との積に基づいて1つの励起光源を選択した後には、出力モニタ81の指示に従って、励起光を出力させる励起光源を切り替える。 The light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 81 after selecting one excitation light source based on the product of the gain and the band.
 利得制御回路51は、例えば、定期的に利得を光源駆動回路61に通知する。帯域モニタ3も、例えば、定期的に帯域を光源駆動回路61に通知する。光源駆動回路61は、新たに利得および帯域が通知された場合、励起光を出力させている励起光源からの励起光の励起光出力強度を、その利得と帯域の積に応じて変化させる。上記のように、光源駆動回路61は、一旦、利得と帯域との積に基づいて1つの励起光源を選択した後には、出力モニタ81の指示に従って、励起光を出力させる励起光源を切り替える。従って、新たに利得および帯域が通知された場合、光源駆動回路61は、励起光出力強度を制御するが、励起光を出力させる励起光源を選択し直すことはしない。 The gain control circuit 51 periodically notifies the light source drive circuit 61 of the gain, for example. The band monitor 3 also periodically notifies the light source drive circuit 61 of the band, for example. The light source drive circuit 61 changes the pump light output intensity of the pump light from the pump light source outputting the pump light according to the product of the gain and the band, when the gain and the band are newly notified. As described above, the light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 81 after selecting one excitation light source once based on the product of the gain and the band. Therefore, when the gain and the band are newly notified, the light source drive circuit 61 controls the excitation light output intensity, but does not reselect the excitation light source for outputting the excitation light.
 出力モニタ81は、励起光源31~3Nの光出力端から出力される励起光の励起光出力強度をモニタする。出力モニタ81は、励起光出力強度をモニタするためのセンサとして、例えば、フォトダイオードを備えていればよい。ただし、励起光出力強度をモニタするためのセンサは、フォトダイオード以外のセンサであってもよい。 The output monitor 81 monitors the excitation light output intensity of the excitation light output from the light output end of the excitation light sources 31 to 3N. The output monitor 81 may include, for example, a photodiode as a sensor for monitoring the excitation light output intensity. However, the sensor for monitoring the excitation light output intensity may be a sensor other than a photodiode.
 具体的には、出力モニタ81は、光源駆動回路61によって駆動されている励起光源から出力される励起光の励起光出力強度をモニタする。 Specifically, the output monitor 81 monitors the excitation light output intensity of the excitation light output from the excitation light source driven by the light source drive circuit 61.
 また、出力モニタ81は、予め励起光源毎に定められた励起光出力強度の範囲を記憶している。出力モニタ81は、例えば、励起光源31に定められた励起光出力強度の範囲“0以上R1未満(図2参照)”、励起光源32に定められた励起光出力強度の範囲“R1以上R2未満(図2参照)”、励起光源33に定められた励起光出力強度の範囲“R2以上R3未満(図2参照)”等を予め記憶している。励起光源毎に定められた励起光出力強度の範囲は、重複せず境界を挟んで連続するように定められる。 Further, the output monitor 81 stores in advance a range of excitation light output intensity determined for each excitation light source. The output monitor 81 has, for example, a range “0 or more and less than R1 (see FIG. 2)” of the excitation light output intensity defined for the excitation light source 31 and a range “R1 or more than R2 determined for the excitation light source 32 The range “R2 or more and less than R3 (see FIG. 2)” of the excitation light output intensity determined for the excitation light source 33 and the like are stored in advance. The range of excitation light output intensity determined for each excitation light source is determined so as not to overlap and to be continuous across the boundary.
 利得制御回路51が算出した利得と帯域モニタ3がモニタした光信号Linの帯域のうち、いずれか一方、または、両方が変化することによって、利得と帯域との積が変化したとする。すると、光源駆動回路61は、変化後の積に応じて、励起光を出力させている励起光源からの励起光の励起光出力強度を変化させる。出力モニタ81は、光源駆動回路61によって駆動されている励起光源から出力される励起光の励起光出力強度が、その励起光源に対して定められている励起光出力強度の範囲の境界値になると、励起光を出力させる励起光源を、その範囲の隣りの範囲に対応する励起光源に切り替えるように光源駆動回路61に対して指示する。また、出力モニタ81は、スイッチ制御回路91に対して、切り替え後の励起光源に対応するスイッチ71の入力端と、スイッチ71の出力端O1とを接続させることを指示する。 It is assumed that the product of the gain and the band is changed by changing either one or both of the gain calculated by the gain control circuit 51 and the band of the optical signal Lin monitored by the band monitor 3. Then, the light source drive circuit 61 changes the excitation light output intensity of the excitation light from the excitation light source outputting the excitation light according to the product after the change. When the output light intensity of the excitation light output from the excitation light source driven by the light source drive circuit 61 becomes equal to the boundary value of the range of the excitation light output intensity defined for the excitation light source, the output monitor 81 The light source drive circuit 61 is instructed to switch the excitation light source for outputting the excitation light to the excitation light source corresponding to the adjacent range of the range. Further, the output monitor 81 instructs the switch control circuit 91 to connect the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71.
 光源駆動回路61は、出力モニタ81の指示に従って、励起光を出力させる励起光源を切り替える。 The light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 81.
 また、スイッチ制御回路91は、出力モニタ81の指示に従って、切り替え後の励起光源に対応するスイッチ71の入力端と、スイッチ71の出力端O1とを接続させる。なお、スイッチ71の入力端と出力端とを接続させるとは、その入力端に入力された励起光がその出力端から出力される状態にすることを意味する。スイッチ制御回路91は出力端O1に接続させる入力端を制御していると言うことができる。 Further, the switch control circuit 91 connects the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71 according to the instruction of the output monitor 81. Note that connecting the input end and the output end of the switch 71 means that the excitation light input to the input end is output from the output end. It can be said that the switch control circuit 91 controls the input terminal connected to the output terminal O1.
 以下、図1に示すように、N個の入力端と1個の出力端O1とを備えるスイッチ71を、N×1スイッチ71と記す。 Hereinafter, as shown in FIG. 1, the switch 71 provided with N input ends and one output end O1 is referred to as an N × 1 switch 71.
 なお、N×1スイッチ71は、0.98μm帯の励起光または1.48μm帯の励起光、あるいは、その両方に対して動作可能なスイッチであり、最大挿入損失が1dB以下のスイッチである。 The N × 1 switch 71 is a switch that can operate on 0.98 μm band excitation light and 1.48 μm band excitation light, or both, and is a switch having a maximum insertion loss of 1 dB or less.
 光合波器41は、N×1スイッチ71の出力端O1から出力された励起光を、光信号Linに合成させる。 The optical multiplexer 41 combines the excitation light output from the output end O1 of the N × 1 switch 71 into an optical signal Lin.
 個々の励起光源31~3Nはそれぞれ、例えば、半導体レーザダイオードによって実現される。第1の信号強度モニタ1、第2の信号強度モニタ2、および、帯域モニタ3は、それぞれ専用のセンサによって実現される。 The individual excitation light sources 31 to 3N are each realized by, for example, a semiconductor laser diode. The first signal strength monitor 1, the second signal strength monitor 2, and the band monitor 3 are each realized by a dedicated sensor.
 また、利得制御回路51、光源駆動回路61、出力モニタ81、および、スイッチ制御回路91は、例えば、それぞれ専用のプロセッサによって実現される。出力モニタ81として動作するプロセッサは、励起光出力強度をモニタするためのセンサを含む。また、利得制御回路51、光源駆動回路61、出力モニタ81、および、スイッチ制御回路91が、それぞれの要素の機能を有する1つのプロセッサによって実現されてもよい。 Further, the gain control circuit 51, the light source drive circuit 61, the output monitor 81, and the switch control circuit 91 are each realized by, for example, a dedicated processor. The processor operating as the output monitor 81 includes a sensor for monitoring the excitation light output intensity. Further, the gain control circuit 51, the light source drive circuit 61, the output monitor 81, and the switch control circuit 91 may be realized by one processor having the function of each element.
 次に、第1の実施形態の光ファイバ増幅器の動作の例について説明する。 Next, an example of the operation of the optical fiber amplifier according to the first embodiment will be described.
 光ファイバ21には、光信号Linが入力される。光信号をLinの波長は、1.55μm帯である。第1の光アイソレータ11は、光信号の伝搬方向を一定方向に制限する。 An optical signal Lin is input to the optical fiber 21. The wavelength of the light signal Lin is 1.55 μm band. The first optical isolator 11 limits the propagation direction of the optical signal to a fixed direction.
 帯域モニタ3は、光ファイバ21を通過する光信号Linの帯域(信号伝達に用いられる帯域)をモニタし、光源駆動回路61にその帯域を通知する。ここで、光ファイバ増幅器の運用初期段階では、光信号によるトラフィック(通信量)が少なく、帯域モニタ3によってモニタされる帯域の値も小さい値である。 The band monitor 3 monitors the band (the band used for signal transmission) of the optical signal Lin passing through the optical fiber 21 and notifies the light source drive circuit 61 of the band. Here, at the initial stage of operation of the optical fiber amplifier, the traffic (the amount of communication) by the optical signal is small, and the value of the band monitored by the band monitor 3 is also a small value.
 また、第1の信号強度モニタ1は、光信号Linの信号強度をモニタし、利得制御回路51にその信号強度を通知する。 The first signal strength monitor 1 monitors the signal strength of the optical signal Lin and notifies the gain control circuit 51 of the signal strength.
 利得制御回路51は、出力される光信号Loutの信号強度が一定になるように、第1の信号強度モニタ1から通知された光信号Linの信号強度と、一定とすべき信号強度との利得(すなわち、光信号Linの信号強度を所定の信号強度に増幅する際の利得)を算出する。前述のように、利得制御回路51は、増幅後における一定とすべき信号強度の値を予め記憶しておき、利得制御回路51は、光信号Linの信号強度とその信号強度との利得を算出すればよい。利得制御回路51は、算出した利得を光源駆動回路61に通知する。 The gain control circuit 51 is a gain between the signal strength of the optical signal Lin notified from the first signal strength monitor 1 and the signal strength to be constant so that the signal strength of the output optical signal Lout becomes constant. That is, the gain at the time of amplifying the signal strength of the optical signal Lin to a predetermined signal strength is calculated. As described above, the gain control circuit 51 stores in advance the value of the signal strength to be constant after amplification, and the gain control circuit 51 calculates the gain of the signal strength of the optical signal Lin and the signal strength thereof. do it. The gain control circuit 51 notifies the light source drive circuit 61 of the calculated gain.
 なお、運用時間の経過に伴い、トラフィックが増加し、光信号Linの帯域(信号伝達に用いられる帯域)は増加する傾向がある。また、利得制御回路51によって算出される利得はあまり変化しない傾向がある。ただし、光信号Linの帯域が減少することがあってもよい。また、利得は全く変化しないとは限らない。 The traffic tends to increase as the operation time passes, and the band of the optical signal Lin (the band used for signal transmission) tends to increase. Also, the gain calculated by the gain control circuit 51 tends not to change much. However, the band of the optical signal Lin may be reduced. Also, the gain does not always change at all.
 光源駆動回路61は、利得制御回路51から通知された利得と、帯域モニタ3から通知された帯域との積を算出する。既に説明したように、光源駆動回路61は、例えば、範囲“0以上T1未満”と励起光源31とが対応し、範囲“T1以上T2未満”と励起光源32とが対応する等の対応関係を示す情報を予め記憶している。また、値の小さい範囲ほど、消費電力が小さな励起光源に対応付けられる。光源駆動回路61は、算出した積が属する範囲に対応する励起光源を、複数の励起光源31~3Nの中から1つ選択する。 The light source drive circuit 61 calculates the product of the gain notified from the gain control circuit 51 and the band notified from the band monitor 3. As described above, in the light source drive circuit 61, for example, the excitation light source 31 corresponds to the range “0 or more and less than T1”, and the correspondence relationship such as the excitation light source 32 corresponds to the range “T1 or more and less than T2” Information to be shown is stored in advance. In addition, the smaller the value range is, the smaller the power consumption is associated with the excitation light source. The light source drive circuit 61 selects one excitation light source corresponding to the range to which the calculated product belongs, from the plurality of excitation light sources 31 to 3N.
 ここでは、光ファイバ増幅器は運用開始初期の状態であり、入力される光信号Linの帯域の値は、小さい値であるとする。そして、利得と帯域の積も小さく、利得と帯域の積は、範囲“0以上T1未満”に属しているものとする。このとき、光源駆動回路61は、範囲“0以上T1未満”に対応する励起光源31を選択する。 Here, it is assumed that the optical fiber amplifier is in an initial state of operation start, and the band value of the input optical signal Lin is a small value. The product of the gain and the band is also small, and the product of the gain and the band belongs to the range “0 or more and less than T1”. At this time, the light source drive circuit 61 selects the excitation light source 31 corresponding to the range “0 or more and less than T1”.
 そして、光源駆動回路61は、選択した励起光源31を駆動し、利得と帯域との積に応じた励起光出力強度で、励起光源31から励起光を出力させる。既に説明したように、光源駆動回路61は、利得と帯域との積の値が大きいほど、励起光出力強度を高くし、利得と帯域との積の値が小さいほど、励起光出力強度を低くする。 Then, the light source drive circuit 61 drives the selected excitation light source 31 and causes the excitation light source 31 to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band. As described above, the light source drive circuit 61 increases the pumping light output intensity as the product of the gain and the band increases, and the pumping light output intensity decreases as the product of the gain and the band decreases. Do.
 ここで、光源駆動回路61によって選択された励起光源31は、利得と帯域との積に応じた励起光出力強度の励起光を出力する際に、励起光出力強度対消費電力特性が最も高効率となる励起光源である。既に説明したように、消費電力が励起光出力強度に比例することが好ましい。そして、励起光出力強度と消費電力とが理想的な比例関係にあると仮定した場合、その比例関係は、図2に破線で示す直線19で表すことができる。定められた励起光出力強度のもとで、励起光出力強度対消費電力特性が最も高効率となる励起光源とは、(定められた励起光出力強度,消費電力)で表される座標が、その直線に最も近い励起光源である。 Here, when the pumping light source 31 selected by the light source driving circuit 61 outputs the pumping light of the pumping light output intensity corresponding to the product of the gain and the band, the pumping light output intensity vs. power consumption characteristic has the highest efficiency. The excitation light source is As already described, it is preferable that the power consumption be proportional to the excitation light output intensity. Then, assuming that the excitation light output intensity and the power consumption have an ideal proportional relationship, the proportional relationship can be represented by a straight line 19 indicated by a broken line in FIG. Under the determined excitation light output intensity, the excitation light source with the highest efficiency of the excitation light output intensity versus the power consumption characteristic is the coordinate represented by (the determined excitation light output intensity, the consumed power), It is an excitation light source closest to the straight line.
 例えば、利得と帯域との積に応じた励起光出力強度の値が図2に示す“a”であるとする。励起光出力強度aの励起光を出力する場合、励起光源31の消費電力が最も小さい。励起光出力強度a付近において、励起光源毎に定まる(a,消費電力)という座標の中で、励起光源31に対応する(a,消費電力)という座標が、直線19に最も近い。従って、利得と帯域との積の値が小さく、励起光出力強度も小さくする場合、励起光源31の励起光出力強度対消費電力特性が最も高効率となる。 For example, it is assumed that the value of the pump light output intensity corresponding to the product of the gain and the band is “a” shown in FIG. When the excitation light of the excitation light output intensity a is output, the power consumption of the excitation light source 31 is the smallest. In the vicinity of the excitation light output intensity a, among the coordinates (a, power consumption) determined for each excitation light source, the coordinates (a, power consumption) corresponding to the excitation light source 31 are closest to the straight line 19. Therefore, when the value of the product of the gain and the band is small and the pumping light output intensity is also small, the pumping light output intensity vs. power consumption characteristic of the pumping light source 31 has the highest efficiency.
 なお、運用初期段階では光信号によるトラフィックが少ないことに基づいて、N×1スイッチ71において、初期状態で入力端I1と出力端O1とが接続されていてもよい。あるいは、光源駆動回路61が利得と帯域との積に基づいて励起光源を選択した場合には、光源駆動回路61がその励起光源に対応する入力端と出力端O1との接続をスイッチ制御回路91に指示し、スイッチ制御回路91はその指示に従って、指示された入力端と出力端O1とを接続させてもよい。この場合、光源駆動回路61とスイッチ制御回路91とが接続される構成となる。 In the initial stage of operation, the input end I1 and the output end O1 may be connected in the initial state in the N × 1 switch 71 based on the fact that the traffic by the optical signal is small. Alternatively, when the light source drive circuit 61 selects the excitation light source based on the product of the gain and the band, the light source drive circuit 61 switches the connection between the input end corresponding to the excitation light source and the output end O1. , And the switch control circuit 91 may connect the instructed input end and the output end O1 according to the instruction. In this case, the light source drive circuit 61 and the switch control circuit 91 are connected.
 励起光源31は、光源駆動回路61によって駆動され、光源駆動回路61が定めた励起光出力強度の励起光を出力する。その励起光はN×1スイッチ71において、励起光源31に対応する入力端I1に入力され、N×1スイッチ71は、入力端I1に入力されたその励起光を出力端O1から出力する。N×1スイッチ71は、最大挿入損失が1dB以下のスイッチであるので、入力端から入力された励起光は、ほとんど全部、出力端O1から出力される。 The excitation light source 31 is driven by the light source drive circuit 61, and outputs excitation light of the excitation light output intensity determined by the light source drive circuit 61. The excitation light is input to the input end I1 corresponding to the excitation light source 31 in the N × 1 switch 71, and the N × 1 switch 71 outputs the excitation light input to the input end I1 from the output end O1. Since the N × 1 switch 71 is a switch having a maximum insertion loss of 1 dB or less, almost all the excitation light input from the input end is output from the output end O1.
 光合波器41は、N×1スイッチ71の出力端O1から出力された励起光を、光信号Linに合成させる。 The optical multiplexer 41 combines the excitation light output from the output end O1 of the N × 1 switch 71 into an optical signal Lin.
 光合波器41が励起光を光信号に合成させる態様は、コア個別方式であっても、他の方式であってもよい。コア個別方式は、励起光を、光ファイバ21内のコアに入力することによって、コア内を通過する光信号に励起光を合成する方式である。あるいは、光合波器41は、光ファイバ21において、コアの周囲に存在するクラッドに励起光を入力することによって、コア内を通過する光信号に励起光を合成させてもよい。 The mode in which the optical multiplexer 41 combines the excitation light into the optical signal may be a core individual system or another system. The core individual system is a system in which excitation light is combined with an optical signal passing through the inside of the core by inputting the excitation light to the core in the optical fiber 21. Alternatively, the optical multiplexer 41 may combine the excitation light with the optical signal passing through the core by inputting the excitation light to the cladding present around the core in the optical fiber 21.
 励起光が合成された光信号Linが、光ファイバ21における希土類イオン(本例ではエルビウムイオン)の添加範囲を通過することで、光信号Linの信号強度は増幅される。光信号Linには、光信号Linの帯域および利得制御回路51によって算出された利得の積に応じた励起光出力強度の励起光が合成される。この結果、光信号Linの信号強度は一定の信号強度に増幅され、光信号Loutとして出力される。 The signal intensity of the optical signal Lin is amplified when the optical signal Lin in which the excitation light is synthesized passes through the addition range of the rare earth ion (erbium ion in this example) in the optical fiber 21. In the optical signal Lin, the pump light of the pump light output intensity according to the product of the band of the optical signal Lin and the gain calculated by the gain control circuit 51 is synthesized. As a result, the signal strength of the light signal Lin is amplified to a constant signal strength and output as the light signal Lout.
 このとき、第2の信号強度モニタ2は、光信号Loutの信号強度をモニタし、利得制御回路51にその信号強度を通知する。利得制御回路51は、第2の信号強度モニタ2から通知された信号強度によって、光信号Loutの信号強度が所定の一定値になっていることを確認する。光信号Loutの信号強度が所定の一定値になっていなければ、利得制御回路51は、以後、算出した利得を調整する。 At this time, the second signal strength monitor 2 monitors the signal strength of the optical signal Lout, and notifies the gain control circuit 51 of the signal strength. The gain control circuit 51 confirms that the signal strength of the optical signal Lout has a predetermined constant value based on the signal strength notified from the second signal strength monitor 2. If the signal strength of the optical signal Lout does not reach a predetermined constant value, the gain control circuit 51 adjusts the calculated gain thereafter.
 また、第2の光アイソレータ12は、光信号の伝搬方向を一定方向に制限する。 The second optical isolator 12 limits the propagation direction of the optical signal to a fixed direction.
 利得制御回路51は、例えば、定期的に利得を光源駆動回路61に通知する。帯域モニタ3も、例えば、定期的に帯域を光源駆動回路61に通知する。すると、光源駆動回路61は、励起光を出力させている励起光源からの励起光の励起光出力強度を、その利得と帯域の積に応じて制御する。従って、利得と帯域の積が変化すると、光源駆動回路61によって駆動されている励起光源から出力される励起光の励起光出力強度も変化する。 The gain control circuit 51 periodically notifies the light source drive circuit 61 of the gain, for example. The band monitor 3 also periodically notifies the light source drive circuit 61 of the band, for example. Then, the light source drive circuit 61 controls the excitation light output intensity of the excitation light from the excitation light source outputting the excitation light according to the product of the gain and the band. Therefore, when the product of the gain and the band changes, the excitation light output intensity of the excitation light output from the excitation light source driven by the light source drive circuit 61 also changes.
 出力モニタ81は、各励起光源31~3Nの光出力端から出力される励起光の励起光出力強度をモニタする。そして、出力モニタ81は、励起光を出力している励起光源の励起光の励起光出力強度が、その励起光源に対して定められた励起光出力強度の範囲の境界値になったときに、光源駆動回路61に対して、励起光を出力する励起光源を、その境界値を介した隣りの励起光出力強度の範囲に対応する励起光源に切り替えることを指示する。光源駆動回路61は、その指示に従って、励起光を出力させる励起光源を切り替える。 The output monitor 81 monitors the excitation light output intensity of the excitation light output from the light output end of each of the excitation light sources 31 to 3N. Then, when the excitation light output intensity of the excitation light of the excitation light source outputting the excitation light becomes the boundary value of the range of the excitation light output intensity defined for the excitation light source, the output monitor 81 It instructs the light source drive circuit 61 to switch the excitation light source outputting the excitation light to the excitation light source corresponding to the range of the excitation light output intensity adjacent to the boundary value. The light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction.
 また、出力モニタ81は、スイッチ制御回路91に対して、切り替え後の励起光源に対応するスイッチ71の入力端と、スイッチ71の出力端O1とを接続させることを指示する。スイッチ制御回路91は、その指示に従って、切り替え後の励起光源に対応するスイッチ71の入力端と、スイッチ71の出力端O1とを接続させる。 Further, the output monitor 81 instructs the switch control circuit 91 to connect the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71. The switch control circuit 91 connects the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71 according to the instruction.
 以下、図2を参照して、出力モニタ81の指示に基づく励起光源の切り替えの例を説明する。例えば、利得と帯域の積が増加したことによって、光源駆動回路61が、励起光源31に出力させる励起光の励起光出力強度を増加させ、励起光出力強度が境界値R1(図2参照)になったとする。そして、励起光源31に定められた励起光出力強度の範囲“0以上R1未満(図2参照)”からみて、境界値R1を介した隣りの範囲は、“R1以上R2未満(図2参照)”であり、この範囲“R1以上R2未満”は、励起光源32に定められた範囲である。従って、出力モニタ81は、励起光を出力する励起光源を、励起光源31から励起光源32に切り替えることを光源駆動回路61に指示し、光源駆動回路61は、励起光を出力する励起光源を、励起光源31から励起光源32に切り替える。 Hereinafter, an example of switching of the excitation light source based on the instruction of the output monitor 81 will be described with reference to FIG. For example, as the product of gain and band increases, the light source drive circuit 61 increases the pump light output intensity of the pump light to be output to the pump light source 31, and the pump light output intensity becomes the boundary value R1 (see FIG. 2). Suppose that it became. Then, as viewed from the range “0 or more and less than R1 (see FIG. 2)” of the excitation light output intensity defined for the excitation light source 31, the adjacent range via the boundary value R1 is “R1 or more and less than R2 (see FIG. 2) The range “R1 or more and less than R2” is a range defined for the excitation light source 32. Therefore, the output monitor 81 instructs the light source drive circuit 61 to switch the excitation light source outputting the excitation light from the excitation light source 31 to the excitation light source 32, and the light source drive circuit 61 outputs the excitation light. The excitation light source 31 is switched to the excitation light source 32.
 このとき、出力モニタ81は、スイッチ制御回路91に対して、切り替え後の励起光源32に対応するスイッチ71の入力端I2と、スイッチ71の出力端O1とを接続させることを指示し、スイッチ制御回路91は、入力端I2と出力端O1とを接続させる。 At this time, the output monitor 81 instructs the switch control circuit 91 to connect the input end I2 of the switch 71 corresponding to the excitation light source 32 after switching to the output end O1 of the switch 71, and performs switch control The circuit 91 connects the input end I2 and the output end O1.
 この結果、利得と帯域の積が増加し、励起光出力強度が境界値R1を超える場合、励起光を出力する励起光源が、励起光源31から励起光源32に切り替えられる。そして、励起光源32が出力する励起光が光合波器41によって光信号Linに合成される。 As a result, the product of the gain and the band increases, and when the excitation light output intensity exceeds the boundary value R1, the excitation light source that outputs the excitation light is switched from the excitation light source 31 to the excitation light source 32. Then, the excitation light output from the excitation light source 32 is synthesized by the optical multiplexer 41 into the optical signal Lin.
 上記の例では、励起光出力強度を増加させる場合の例を示したが、励起光出力強度を減少させる場合の励起光源の切り替えも同様である。例えば、励起光源32が励起光源を出力しているとする。そして、利得と帯域の積が減少したことによって、励起光出力強度が境界値R1(図2参照)になったとする。励起光源32に定められた励起光出力強度の範囲“R1以上R2未満(図2参照)”からみて、境界値R1を介した隣りの範囲は、“0以上R1未満(図2参照)”であり、この範囲“0以上R1未満”は、励起光源31に定められた範囲である。従って、出力モニタ81は、励起光を出力する励起光源を、励起光源32から励起光源31に切り替えることを光源駆動回路61に指示し、光源駆動回路61は、励起光を出力する励起光源を、励起光源32から励起光源31に切り替える。 Although the above-mentioned example showed the example in the case of making excitation light output intensity increase, the switching of the excitation light source in the case of reducing excitation light output intensity is the same. For example, it is assumed that the excitation light source 32 outputs an excitation light source. Then, it is assumed that the pump light output intensity becomes the boundary value R1 (see FIG. 2) due to the decrease of the product of the gain and the band. As seen from the range “R1 or more and less than R2 (see FIG. 2)” of the excitation light output intensity defined for the excitation light source 32, the adjacent range via the boundary value R1 is “0 or more and less than R1 (see FIG. 2)”. This range “0 or more and less than R1” is a range defined for the excitation light source 31. Therefore, the output monitor 81 instructs the light source drive circuit 61 to switch the excitation light source for outputting the excitation light from the excitation light source 32 to the excitation light source 31, and the light source drive circuit 61 outputs the excitation light. The excitation light source 32 is switched to the excitation light source 31.
 このとき、出力モニタ81は、スイッチ制御回路91に対して、切り替え後の励起光源31に対応するスイッチ71の入力端I1と、スイッチ71の出力端O1とを接続させることを指示し、スイッチ制御回路91は、入力端I1と出力端O1とを接続させる。 At this time, the output monitor 81 instructs the switch control circuit 91 to connect the input end I1 of the switch 71 corresponding to the excitation light source 31 after switching and the output end O1 of the switch 71, and performs switch control The circuit 91 connects the input end I1 to the output end O1.
 この結果、利得と帯域の積が減少し、励起光出力強度が境界値R1を超える場合、励起光を出力する励起光源が、励起光源32から励起光源31に切り替えられる。そして、励起光源31が出力する励起光が光合波器41によって光信号Linに合成される。 As a result, the product of the gain and the band decreases, and when the excitation light output intensity exceeds the boundary value R1, the excitation light source that outputs the excitation light is switched from the excitation light source 32 to the excitation light source 31. Then, the excitation light output from the excitation light source 31 is synthesized by the optical multiplexer 41 into the optical signal Lin.
 なお、利得と帯域の積が変化する態様としては、帯域のみが変化することで積が変化する態様、利得のみが変化することで積が変化する態様、利得と帯域の両方が変化することで積が変化する態様がある。利得と帯域の積が変化する態様は、これらのいずれでもよい。 In addition, as an aspect in which the product of gain and band changes, an aspect in which the product changes by changing only the band, an aspect in which the product changes by changing only the gain, and a change in both gain and band There is an aspect in which the product changes. The manner in which the product of the gain and the band changes may be any of these.
 本実施形態によれば、光ファイバ増幅器は、励起光出力強度対消費電力特性がそれぞれ異なる複数の励起光源を備える。そして、光源駆動回路61は、利得制御回路51から通知された利得と帯域モニタ3から通知された帯域(入力光Linの帯域)との積に基づいて1つの励起光源を選択する。従って、光源駆動回路61は、励起光出力強度対消費電力特性が最も高効率となる励起光源から励起光を出力させることができる。よって、高い電力利用効率を実現することができる。 According to the present embodiment, the optical fiber amplifier comprises a plurality of excitation light sources each having different excitation light output intensity versus power consumption characteristics. Then, the light source drive circuit 61 selects one pumping light source based on the product of the gain notified from the gain control circuit 51 and the band notified by the band monitor 3 (the band of the input light Lin). Therefore, the light source drive circuit 61 can output the excitation light from the excitation light source which has the highest efficiency of the excitation light output intensity versus the power consumption characteristic. Therefore, high power utilization efficiency can be realized.
 さらに、光源駆動回路61は、励起光源から、上記の積に応じた励起光出力強度で励起光を出力させる。利得と帯域との積が変化し、励起光出力強度が励起光源に定められた励起光出力強度の範囲の境界値になると、出力モニタ81が、光源駆動回路61に励起光源の切り替えを指示する。さらに、出力モニタ81は、スイッチ制御回路91に対して、切り替え後の励起光源31に対応するスイッチ71の入力端I1と、スイッチ71の出力端O1とを接続させることを指示する。従って、利得と帯域との積の変化に応じて励起光出力強度が変化しても、光ファイバ増幅器は、励起光出力強度対消費電力特性が最も高効率となる励起光源から励起光を出力させることができる。この点においても、高い電力利用効率を実現することができる。 Furthermore, the light source drive circuit 61 causes the excitation light source to output excitation light at an excitation light output intensity corresponding to the above product. The output monitor 81 instructs the light source drive circuit 61 to switch the excitation light source when the product of the gain and the band changes and the excitation light output intensity reaches the boundary value of the excitation light output intensity range defined for the excitation light source. . Further, the output monitor 81 instructs the switch control circuit 91 to connect the input end I1 of the switch 71 corresponding to the switched excitation light source 31 and the output end O1 of the switch 71. Therefore, even if the pump light output intensity changes according to the change of the product of the gain and the band, the optical fiber amplifier causes the pump light source to output the pump light with the highest efficiency of the pump light output intensity versus the power consumption. be able to. Also in this respect, high power utilization efficiency can be realized.
 図3は、図9に示す一般的な光ファイバ増幅器と、本発明による光ファイバ増幅器との消費電力の差を示す模式図である。図3に示す横軸は、時間(年)の経過を示す。左側の縦軸は、トラフィックを示す。トラフィックが増大すると、信号伝達に用いられる帯域も増大する。右側の縦軸は消費電力を示す。また、図3に示す実線のグラフは、トラフィックの変化を示す。一般に、光ファイバ増幅器の運用開始後、時間の経過とともにトラフィックは増加し、入力信号Linの帯域も増加する。また、図3に示すような、災害等による一時的なトラフィックの増加も起こり得る。図3に示す一点鎖線のグラフは、図3に示すトラフィックの変化に応じた一般的な光ファイバ増幅器(図9参照)における消費電力の変化を模式的に示す。図3に示す破線のグラフは、図3に示すトラフィックの変化に応じた本発明の消費電力の変化を模式的に示す。本発明の消費電力の方が、図9に示す一般的な光ファイバ増幅器よりも低く、本発明によれば、高い電力利用効率を実現できる。 FIG. 3 is a schematic view showing the difference in power consumption between the general optical fiber amplifier shown in FIG. 9 and the optical fiber amplifier according to the present invention. The horizontal axis shown in FIG. 3 indicates the passage of time (year). The left vertical axis shows traffic. As traffic increases, the bandwidth used for signaling also increases. The right vertical axis indicates power consumption. Also, the solid line graph shown in FIG. 3 indicates changes in traffic. Generally, after the start of operation of the optical fiber amplifier, the traffic increases with the passage of time, and the band of the input signal Lin also increases. In addition, as shown in FIG. 3, temporary increase in traffic due to disaster or the like may occur. The graph of the alternate long and short dash line shown in FIG. 3 schematically shows the change in power consumption in the general optical fiber amplifier (see FIG. 9) according to the change in traffic shown in FIG. The broken line graph shown in FIG. 3 schematically shows the change of the power consumption of the present invention according to the change of the traffic shown in FIG. The power consumption of the present invention is lower than the general optical fiber amplifier shown in FIG. 9, and according to the present invention, high power utilization efficiency can be realized.
 次に、第1の実施形態の変形例を説明する。以下に示す変形例は、後述の各実施形態に適用可能である。前述のように、利得制御回路51によって算出される利得はあまり変化しない傾向がある。このため、光源駆動回路61は、帯域モニタ3から通知された帯域のみに基づいて、励起光源を選択してもよい。ただし、光源駆動回路61は、選択した励起光源から、利得と帯域との積に応じた励起光出力強度で励起光を出力させる。 Next, a modification of the first embodiment will be described. The modifications shown below are applicable to each embodiment described later. As described above, the gain calculated by the gain control circuit 51 tends not to change much. Therefore, the light source drive circuit 61 may select the excitation light source based on only the band notified from the band monitor 3. However, the light source drive circuit 61 causes the selected excitation light source to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band.
 この場合、光源駆動回路61は、帯域の範囲(数値範囲)と、選択する励起光源との対応関係を予め記憶している。光源駆動回路61は、例えば、範囲“0以上W1未満”と励起光源31とが対応し、範囲“W1以上W2未満”と励起光源32とが対応する等の対応関係を示す情報を予め記憶する。ここで、各範囲は重複せず境界を挟んで連続するように定められる。また、値の小さい範囲ほど、消費電力が小さな励起光源に対応付けられる。 In this case, the light source drive circuit 61 stores in advance the correspondence between the range (numerical range) of the band and the excitation light source to be selected. For example, the light source drive circuit 61 stores in advance information indicating a correspondence such that the range “0 or more and less than W1” corresponds to the excitation light source 31 and the range “W1 or more and less than W2” corresponds to the excitation light source 32. . Here, each range is determined so as not to overlap and to be continuous across the boundary. In addition, the smaller the value range is, the smaller the power consumption is associated with the excitation light source.
 例えば、上記の例において、帯域モニタ3から通知された入力信号Linの帯域(信号伝達に用いられる帯域)の値が、範囲“0以上W1未満”に属しているとする。この場合、光源駆動回路61は、範囲“0以上W1未満”に対応する励起光源31を選択する。そして、光源駆動回路61は、その励起光源31から、利得(利得制御回路51から通知された利得)とその帯域との積に応じた励起光出力強度で励起光を出力させる。 For example, in the above example, it is assumed that the value of the band (the band used for signal transmission) of the input signal Lin notified from the band monitor 3 belongs to the range “0 or more and less than W1”. In this case, the light source drive circuit 61 selects the excitation light source 31 corresponding to the range “0 or more and less than W1”. Then, the light source drive circuit 61 causes the pumping light source 31 to output pumping light at a pumping light output intensity corresponding to the product of the gain (the gain notified from the gain control circuit 51) and the band thereof.
 この場合においても、第1の実施形態と同様の効果が得られる。 Also in this case, the same effect as that of the first embodiment can be obtained.
 なお、上記の変形例において、帯域モニタ3から通知された帯域の値が小さく、例えば、励起光源31が選択されたとする。また、利得制御回路51から通知された利得が大きく、利得と帯域の積の値が大きくなり、利得と帯域の積に応じた励起光出力強度が、励起光源31に定められた励起光出力強度の上限よりも大きいとする。すると、光源駆動回路61は、選択した励起光源31に、励起光出力強度R1で励起光を出力させ、その結果、出力モニタ81が、直ちに、励起光を出力する励起光源の切り替えを指示する。このように、上記の変形例では、光源駆動回路61が励起光源を選択し、その励起光源から励起光を出力させた後、直ちに、出力モニタ81が励起光源の切り替えを指示する場合があり得る。 In the above modification, it is assumed that the value of the band notified from the band monitor 3 is small and, for example, the excitation light source 31 is selected. Further, the gain notified from the gain control circuit 51 is large, the value of the product of the gain and the band is large, and the pumping light output intensity determined for the pumping light source 31 according to the product of the gain and the band is determined. Greater than the upper limit of Then, the light source drive circuit 61 causes the selected excitation light source 31 to output excitation light at the excitation light output intensity R1. As a result, the output monitor 81 immediately instructs switching of the excitation light source that outputs the excitation light. As described above, in the above modification, the output monitor 81 may instruct switching of the excitation light source immediately after the light source drive circuit 61 selects the excitation light source and causes the excitation light source to output excitation light. .
実施形態2.
 図4は、本発明の第2の実施形態の光ファイバ増幅器の構成例を示すブロック図である。第1の実施形態と同様の構成要素には、図1と同一の符号を付し、説明を省略する。
Embodiment 2
FIG. 4 is a block diagram showing a configuration example of an optical fiber amplifier according to a second embodiment of the present invention. The same components as in the first embodiment are given the same reference numerals as in FIG. 1 and the description will be omitted.
 第2の実施形態の光ファイバ増幅器は、第1の実施形態における出力モニタ81の代わりに、切り替え指示回路83および複数の励起光出力強度モニタ82を備える。励起光出力強度モニタ82と励起光源31~3Nは、一対一に対応し、個々の励起光出力強度モニタ82は、対応する励起光源に集積される。 The optical fiber amplifier according to the second embodiment includes a switching instruction circuit 83 and a plurality of excitation light output intensity monitors 82 instead of the output monitor 81 according to the first embodiment. The excitation light output intensity monitor 82 and the excitation light sources 31 to 3N correspond one to one, and the individual excitation light output intensity monitors 82 are integrated into the corresponding excitation light sources.
 各励起光出力強度モニタ82は、切り替え指示回路83に接続されている。切り替え指示回路83は、光源駆動回路61およびスイッチ制御回路91に接続されている。 Each excitation light output intensity monitor 82 is connected to the switching instruction circuit 83. The switching instruction circuit 83 is connected to the light source drive circuit 61 and the switch control circuit 91.
 そして、個々の励起光出力強度モニタ82は、対応する励起光源の光出力端から出力される励起光の励起光出力強度をモニタし、そのモニタ結果(出力される励起光の励起光出力強度)を切り替え指示回路83に通知する。 Then, each excitation light output intensity monitor 82 monitors the excitation light output intensity of the excitation light output from the light output end of the corresponding excitation light source, and the monitoring result (excitation light output intensity of the output excitation light) Is notified to the switching instruction circuit 83.
 切り替え指示回路83は、予め励起光源毎に定められた励起光出力強度の範囲を記憶している。切り替え指示回路83は、例えば、励起光源31に定められた励起光出力強度の範囲“0以上R1未満(図2参照)”、励起光源32に定められた励起光出力強度の範囲“R1以上R2未満(図2参照)”、励起光源33に定められた励起光出力強度の範囲“R2以上R3未満(図2参照)”等を予め記憶している。この点は、第1の実施形態における出力モニタ81と同様である。 The switching instruction circuit 83 stores in advance a range of excitation light output intensity determined for each excitation light source. The switching instruction circuit 83 has, for example, a range “0 or more and less than R1 (see FIG. 2)” of excitation light output intensity determined for the excitation light source 31 and a range “R1 or more R2 for excitation light output intensity determined for the excitation light source 32”. Less than (see FIG. 2), a range of “R2 or more and less than R3 (see FIG. 2)” of the excitation light output intensity determined for the excitation light source 33, etc. are stored in advance. This point is the same as the output monitor 81 in the first embodiment.
 そして、切り替え指示回路83は、励起光を出力している励起光源に対応する励起光出力強度モニタ82から励起光出力強度の通知を受ける。そして、切り替え指示回路83は、その励起光出力強度が、その励起光源に対して定められた励起光出力強度の範囲の境界値になったときに、光源駆動回路61に対して、励起光を出力する励起光源を、その境界値を介した隣りの励起光出力強度の範囲に対応する励起光源に切り替えることを指示する。光源駆動回路61は、その指示に従って、励起光を出力させる励起光源を切り替える。 Then, the switching instruction circuit 83 receives notification of the excitation light output intensity from the excitation light output intensity monitor 82 corresponding to the excitation light source outputting the excitation light. Then, when the excitation light output intensity reaches a boundary value of the range of excitation light output intensities defined for the excitation light source, the switching instruction circuit 83 sends the excitation light to the light source drive circuit 61. It is instructed to switch the excitation light source to be output to the excitation light source corresponding to the range of the adjacent excitation light output intensity via the boundary value. The light source drive circuit 61 switches the excitation light source for outputting the excitation light according to the instruction.
 また、スイッチ制御回路91に対して、切り替え後の励起光源に対応するスイッチ71の入力端と、スイッチ71の出力端O1とを接続させることを指示する。スイッチ制御回路91は、その指示に従って、切り替え後の励起光源に対応するスイッチ71の入力端と、スイッチ71の出力端O1とを接続させる。 Further, it instructs the switch control circuit 91 to connect the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71. The switch control circuit 91 connects the input end of the switch 71 corresponding to the switched excitation light source and the output end O1 of the switch 71 according to the instruction.
 切り替え指示回路83および複数の励起光出力強度モニタ82は、第1の実施形態における出力モニタ81を、励起光の励起光出力強度をモニタする部分(複数の励起光出力強度モニタ82)と、それ以外の機能を実現する部分(切り替え指示回路83)とに分離した構成である。切り替え指示回路83と複数の励起光出力強度モニタ82とを含む部分の機能は、第1の実施形態における出力モニタ81の機能と同様である。 The switching instruction circuit 83 and the plurality of excitation light output intensity monitors 82 are a part (a plurality of excitation light output intensity monitors 82) for monitoring the excitation light output intensity of the excitation light in the output monitor 81 in the first embodiment It has a configuration separated into a portion (switching instruction circuit 83) for realizing other functions. The function of the portion including the switching instruction circuit 83 and the plurality of excitation light output intensity monitors 82 is the same as the function of the output monitor 81 in the first embodiment.
 各励起光出力強度モニタ82は、例えば、フォトダイオードで実現される。切り替え指示回路83は、例えば、専用のプロセッサによって実現される。利得制御回路51、光源駆動回路61、切り替え指示回路83、および、スイッチ制御回路91が、それぞれの要素の機能を有する1つのプロセッサによって実現されていてもよい。 Each excitation light output intensity monitor 82 is realized by, for example, a photodiode. The switching instruction circuit 83 is realized by, for example, a dedicated processor. The gain control circuit 51, the light source drive circuit 61, the switching instruction circuit 83, and the switch control circuit 91 may be realized by one processor having the function of each element.
 第2の実施形態においても、第1の実施形態と同様の効果が得られる。 Also in the second embodiment, the same effects as in the first embodiment can be obtained.
 出力モニタ81の代わりに、切り替え指示回路83および複数の励起光出力強度モニタ82を備える構成とすることは、後述の各実施形態にも適用可能である。 The configuration in which the switching instruction circuit 83 and the plurality of excitation light output intensity monitors 82 are provided instead of the output monitor 81 is also applicable to each embodiment described later.
実施形態3.
 図5は、本発明の第3の実施形態の光ファイバ増幅器の構成例を示すブロック図である。第1の実施形態と同様の構成要素には、図1と同一の符号を付し、説明を省略する。
Embodiment 3
FIG. 5 is a block diagram showing a configuration example of an optical fiber amplifier according to a third embodiment of the present invention. The same components as in the first embodiment are given the same reference numerals as in FIG. 1 and the description will be omitted.
 第3の実施形態の光ファイバ増幅器は、第1の実施形態における光ファイバ21の代わりに、1本の光ファイバ21aを備える。第1の実施形態における光ファイバ21が1本のコアを含む光ファイバであるのに対して、第3の実施形態における光ファイバ21aは、複数本のコアを含むマルチコア光ファイバである。本実施形態では、光ファイバ21aがK本のコアを含んでいるものとして説明する。 The optical fiber amplifier according to the third embodiment includes one optical fiber 21 a instead of the optical fiber 21 in the first embodiment. The optical fiber 21 in the first embodiment is an optical fiber including one core, whereas the optical fiber 21 a in the third embodiment is a multi-core optical fiber including a plurality of cores. In this embodiment, the optical fiber 21a will be described as including K cores.
 光ファイバ21aには、希土類イオン(ここでは、エルビウムイオンとする。)が添加されている。ここでは、図5に示す位置Aから位置Bまでの範囲にエルビウムイオンが添加されているものとして説明する。 The optical fiber 21a is doped with rare earth ions (here, erbium ions). Here, it is assumed that erbium ions are added in the range from position A to position B shown in FIG.
 また、本実施形態の光ファイバ増幅器には、複数の光信号Lin1~LinKが入力される。そして、光ファイバ増幅器は、各光信号を増幅し、増幅後の光信号を、光信号Lout1~LoutKとして出力する。 In addition, a plurality of optical signals Lin1 to LinK are input to the optical fiber amplifier of the present embodiment. Then, the optical fiber amplifier amplifies each optical signal, and outputs the amplified optical signal as optical signals Lout1 to LoutK.
 本実施形態では、第1の信号強度モニタ1の上流側にファイババンドルファンアウト87が設けられ、ファイババンドルファンアウト87を介して、光ファイバ21aと、K本の光ファイバ911~91Kとが接続されている。K本の光ファイバ911~91Kはそれぞれ、1本のコアを含む。また、K本の光ファイバ911~91Kには、それぞれ別個に、第1の光アイソレータ111,112,・・・,11Kが接続されている(図5参照)。 In the present embodiment, a fiber bundle fan out 87 is provided on the upstream side of the first signal strength monitor 1, and the optical fiber 21a and K optical fibers 911 to 91 K are connected via the fiber bundle fan out 87. It is done. Each of the K optical fibers 911 to 91K includes one core. In addition, first optical isolators 111, 112,..., 11K are separately connected to the K optical fibers 911 to 91K, respectively (see FIG. 5).
 同様に、第2の信号強度モニタ2の下流側にはファイババンドルファンイン88が設けられ、ファイババンドルファンイン88を介して、光ファイバ21aと、K本の光ファイバ921~92Kとが接続されている。K本の光ファイバ921~92Kはそれぞれ、1本のコアを含む。また、K本の光ファイバ921~92Kには、それぞれ別個に、第2の光アイソレータ121,122,・・・,12Kが接続されている(図5参照。) Similarly, a fiber bundle fan-in 88 is provided downstream of the second signal strength monitor 2, and the optical fiber 21a and K optical fibers 921 to 92 K are connected via the fiber bundle fan-in 88. ing. Each of the K optical fibers 921 to 92K includes one core. In addition, second optical isolators 121, 122, ..., 12K are separately connected to the K optical fibers 921 to 92K, respectively (see Fig. 5).
 ファイババンドルファンアウト87およびファイババンドルファンイン88は、共通の構成の部材である。ファイババンドルファンアウト87およびファイババンドルファンイン88は、いずれも、それぞれが1本のコアを含む複数の光ファイバと、複数のコアを含む1本の光ファイバ21aとを接続させる部材である。より具体的には、複数の光ファイバ内にそれぞれ含まれている1本のコアと、1本の光ファイバ21a内に含まれている個々のコアとを、一対一に接続させる部材である。ファイババンドルファンアウト87では、K本の光ファイバ911~91Kが上流側に存在し、1本の光ファイバ21aが下流側に存在する(図5参照)。また、ファイババンドルファンイン88では、1本の光ファイバ21aが上流側に存在し、K本の光ファイバ921~92Kが下流側に存在する(図5参照)。 The fiber bundle fan-out 87 and the fiber bundle fan-in 88 are members of a common configuration. Each of the fiber bundle fan-out 87 and the fiber bundle fan-in 88 is a member for connecting a plurality of optical fibers each including one core and a single optical fiber 21 a including a plurality of cores. More specifically, it is a member for connecting one core respectively contained in a plurality of optical fibers and each core contained in one optical fiber 21a in a one-to-one manner. In the fiber bundle fan-out 87, K optical fibers 911 to 91K exist on the upstream side, and one optical fiber 21a exists on the downstream side (see FIG. 5). Further, in the fiber bundle fan-in 88, one optical fiber 21a exists on the upstream side, and K optical fibers 921 to 92K exist on the downstream side (see FIG. 5).
 入力される光信号Lin1~LinKは、光ファイバ911~91Kに別個に入力される。 The input optical signals Lin1 to LinK are separately input to the optical fibers 911 to 91K.
 同様に、出力される光信号Lout1~LoutKは、光ファイバ921~92Kから別個に出力される。 Similarly, the output optical signals Lout1 to LoutK are separately output from the optical fibers 921 to 92K.
 また、本実施形態における光合波器41aは、複数本のコアを含む光ファイバ21aに対して励起光を、クラッド一括方式によって合成する光合波器である。光ファイバ21aは、クラッド内に複数本のコアが設けられる構成となっている。クラッド一括方式は、クラッドに励起光を入力することによって、光ファイバ21a内のそれぞれのコアを通過する光信号に励起光を合成させる方式である。 In addition, the optical multiplexer 41a in the present embodiment is an optical multiplexer that combines excitation light into an optical fiber 21a including a plurality of cores by a clad collective method. The optical fiber 21a has a configuration in which a plurality of cores are provided in a clad. The cladding batch method is a method in which pumping light is combined with an optical signal passing through each core in the optical fiber 21a by inputting the pumping light into the cladding.
 第3の実施形態では、光信号Lin1~LinKがそれぞれ光ファイバ911~91Kに別個に入力される。各光ファイバ911~91Kにそれぞれ設けられた第1の光アイソレータ111~11Kは、入力された光信号の伝搬方向を一定方向に制限する。 In the third embodiment, the optical signals Lin1 to LinK are separately input to the optical fibers 911 to 91K, respectively. The first optical isolators 111 to 11 K respectively provided in the optical fibers 911 to 91 K restrict the propagation direction of the input optical signal to a fixed direction.
 K本の光ファイバ911~91Kに入力された光信号Lin1~LinKは、ファイババンドルファンアウト87を通過することによって、1本の光ファイバ21a内に存在するそれぞれ別々のコアを通過する。 The optical signals Lin1 to LinK input to the K optical fibers 911 to 91K pass through the fiber bundle fan-out 87 to pass through the cores respectively present in one optical fiber 21a.
 上記のように、光信号Lin1~LinKが1本の光ファイバ21a内を通過する状態で、帯域モニタ3は、光ファイバ21aを通過する光信号Lin1~LinK全体の帯域(信号伝達に用いられる帯域)をモニタし、光源駆動回路61にその帯域を通知する。 As described above, in a state where the optical signals Lin1 to LinK pass through one optical fiber 21a, the band monitor 3 is configured to transmit the entire band of the optical signals Lin1 to LinK passing through the optical fiber 21a (a band used for signal transmission ) And notify the light source drive circuit 61 of the band.
 また、第1の信号強度モニタ1は、光ファイバ21aを通過する光信号Lin1~LinK全体の信号強度をモニタし、利得制御回路51にその信号強度を通知する。 In addition, the first signal strength monitor 1 monitors the signal strength of the entire optical signals Lin1 to LinK passing through the optical fiber 21a, and notifies the gain control circuit 51 of the signal strength.
 以降の利得制御回路51、光源駆動回路61、励起光源31~3N、出力モニタ81、スイッチ制御回路91、N×1スイッチ71、および光合波器41aの動作は、第1の実施形態における利得制御回路51、光源駆動回路61、励起光源31~3N、出力モニタ81、スイッチ制御回路91、N×1スイッチ71、および光合波器41の動作と同様である。スイッチ制御回路91は、第1の実施形態と同様に、1つの励起光源を選択する。 The subsequent operations of the gain control circuit 51, the light source drive circuit 61, the excitation light sources 31 to 3N, the output monitor 81, the switch control circuit 91, the N × 1 switch 71, and the optical multiplexer 41a are the gain control in the first embodiment. Operations of the circuit 51, the light source drive circuit 61, the excitation light sources 31 to 3N, the output monitor 81, the switch control circuit 91, the N × 1 switch 71, and the optical multiplexer 41 are the same. The switch control circuit 91 selects one excitation light source as in the first embodiment.
 ただし、本実施形態では、光合波器41aは、光ファイバ21a内のそれぞれのコアを通過する光信号に対して、クラッド一括方式によって励起光を合成させる。 However, in the present embodiment, the optical multiplexer 41a combines the excitation light by the clad collective method with the optical signals passing through the cores in the optical fiber 21a.
 また、本実施形態では、十分な励起光出力強度を得られるようにするため、励起光源31~3Nとして、それぞれマルチモード出力の励起光源を用いることが好ましい。この場合、N×1スイッチ71は、マルチモード出力の励起光源とともに使用される。また、N×1スイッチ71の挿入損失は小さいことが好ましい。そのため、N×1スイッチ71は、例えば、ピエゾアクチュエータ等を用いた機械式制御の光スイッチであることが好ましい。 Further, in this embodiment, in order to obtain sufficient excitation light output intensity, it is preferable to use excitation light sources of multi-mode output as the excitation light sources 31 to 3N, respectively. In this case, the N × 1 switch 71 is used together with a multi-mode output excitation light source. Further, the insertion loss of the N × 1 switch 71 is preferably small. Therefore, it is preferable that the N × 1 switch 71 be a mechanical control optical switch using, for example, a piezo actuator or the like.
 また、第2の信号強度モニタ2は、光ファイバ21aを通過する増幅後の光信号Lout1~LoutK全体の信号強度をモニタし、利得制御回路51にその信号強度を通知する。利得制御回路51は、第2の信号強度モニタ2から通知された信号強度によって、増幅後の光信号全体の信号強度が所定の一定値になっていることを確認する。増幅後の光信号全体の信号強度が所定の一定値になっていなければ、利得制御回路51は、算出した利得を調整する。この点は、第1の実施形態と同様である。 Further, the second signal strength monitor 2 monitors the signal strength of the entire amplified optical signals Lout1 to LoutK passing through the optical fiber 21a, and notifies the gain control circuit 51 of the signal strength. The gain control circuit 51 confirms that the signal strength of the entire optical signal after amplification is a predetermined constant value based on the signal strength notified from the second signal strength monitor 2. If the signal intensity of the entire optical signal after amplification does not reach a predetermined constant value, the gain control circuit 51 adjusts the calculated gain. This point is the same as that of the first embodiment.
 光ファイバ21a内で増幅された光信号Lout1~LoutKは、ファイババンドルファンイン88を通過することによって、1本の光ファイバ21aから分岐して、それぞれ別々の光ファイバ921~92K内を通過して行く。 The optical signals Lout1 to LoutK amplified in the optical fiber 21a are branched from the one optical fiber 21a by passing through the fiber bundle fan-in 88, and pass through the respective separate optical fibers 921 to 92K. go.
 本実施形態によれば、第1の実施形態と同様に、高い電力利用効率を実現できる。さらに、複数の光信号に対して、同時に、信号強度を増幅させることができる。 According to the present embodiment, high power utilization efficiency can be realized as in the first embodiment. Furthermore, signal intensities can be amplified simultaneously for a plurality of optical signals.
実施形態4
 図6は、本発明の第4の実施形態の光ファイバ増幅システムの構成例を示すブロック図である。本実施形態の光ファイバ増幅システムは、本発明の第1の実施形態の光ファイバ増幅器、または、本発明の第2の実施形態の光ファイバ増幅器を、複数個備える。光ファイバ増幅器の数をK個とする。
Embodiment 4
FIG. 6 is a block diagram showing a configuration example of an optical fiber amplification system according to a fourth embodiment of the present invention. The optical fiber amplification system of the present embodiment comprises a plurality of the optical fiber amplifiers of the first embodiment of the present invention or the optical fiber amplifiers of the second embodiment of the present invention. Let the number of optical fiber amplifiers be K.
 図6に示す光ファイバ増幅システムは、複数の光ファイバ増幅器10を備える。各光ファイバ増幅器10は、本発明の第1の実施形態の光ファイバ増幅器(図1参照)であっても、本発明の第2の実施形態の光ファイバ増幅器(図4参照)であってもよい。 The optical fiber amplification system shown in FIG. 6 comprises a plurality of optical fiber amplifiers 10. Each optical fiber amplifier 10 is either the optical fiber amplifier according to the first embodiment of the present invention (see FIG. 1) or the optical fiber amplifier according to the second embodiment of the present invention (see FIG. 4). Good.
 本実施形態の光ファイバ増幅システムは、複数の光ファイバ増幅器10に加えて、光ファイバ221を備える。以下、各光ファイバ増幅器10が内部に備える光ファイバ21(図1、図4を参照)と区別して、光ファイバ221を外部光ファイバ221と記す。 The optical fiber amplification system of the present embodiment includes an optical fiber 221 in addition to the plurality of optical fiber amplifiers 10. Hereinafter, the optical fiber 221 will be referred to as an external optical fiber 221 in distinction from the optical fibers 21 (see FIGS. 1 and 4) provided in each of the optical fiber amplifiers 10.
 また、光ファイバ増幅システムは、第1の信号強度モニタ201と、第2の信号強度モニタ202と、利得制御回路251と、光源駆動回路261と、光合波器241とを備える。以下、第1の信号強度モニタ201、第2の信号強度モニタ202、利得制御回路251、光源駆動回路261および光合波器241をそれぞれ、各光ファイバ増幅器10に設けられている同様の要素と区別して、第1の外部信号強度モニタ201、第2の外部信号強度モニタ202、外部利得制御回路251、外部光源駆動回路261、外部光合波器241と記す。光ファイバ増幅システムは、各光ファイバ増幅器10の外部に、1つの励起光源231を備える。 In addition, the optical fiber amplification system includes a first signal strength monitor 201, a second signal strength monitor 202, a gain control circuit 251, a light source drive circuit 261, and an optical multiplexer 241. Hereinafter, the first signal strength monitor 201, the second signal strength monitor 202, the gain control circuit 251, the light source drive circuit 261, and the optical multiplexer 241 are respectively provided in the respective optical fiber amplifiers 10 with similar elements and sections. The first external signal strength monitor 201, the second external signal strength monitor 202, the external gain control circuit 251, the external light source drive circuit 261, and the external light multiplexer 241 will be separately described. The optical fiber amplification system comprises one excitation light source 231 outside each optical fiber amplifier 10.
 さらに、光ファイバ増幅システムは、ファイババンドルファンアウト287と、ファイババンドルファンイン288と、ファイババンドルファンアウト287の上流側に接続される複数の光ファイバ931~93Kとを備える。以下、ファイババンドルファンアウト287の上流側に接続される光ファイバの本数がKであるものとして説明する。 Further, the optical fiber amplification system comprises a fiber bundle fan-out 287, a fiber bundle fan-in 288, and a plurality of optical fibers 931 to 93 K connected upstream of the fiber bundle fan-out 287. The following description is given assuming that the number of optical fibers connected upstream of the fiber bundle fan-out 287 is K.
 外部光ファイバ221は、1本であり、その外部光ファイバ221は、複数本のコアを含むマルチコア光ファイバである。以下、外部光ファイバ221がK本のコアを含んでいるものとして説明する。 The external optical fiber 221 is one, and the external optical fiber 221 is a multi-core optical fiber including a plurality of cores. Hereinafter, the external optical fiber 221 will be described as including K cores.
 外部光ファイバ221には、希土類イオン(ここでは、エルビウムイオンとする。)が添加されている。ここでは、図6に示す位置A’から位置B’までの範囲にエルビウムイオンが添加されているものとして説明する。 The external optical fiber 221 is doped with rare earth ions (here, erbium ions). Here, it is assumed that erbium ions are added in the range from the position A 'to the position B' shown in FIG.
 また、本実施形態では、複数の光信号Lin1~LinKが入力される。入力される光信号Lin1~LinKは、光ファイバ931~93Kに別個に入力される。K本の光ファイバ931~93Kは、それぞれ1本のコアを含む。 Further, in the present embodiment, a plurality of optical signals Lin1 to LinK are input. The input optical signals Lin1 to LinK are separately input to the optical fibers 931 to 93K. Each of the K optical fibers 931 to 93K includes one core.
 外部光ファイバ221において、エルビウムイオンの添加範囲の開始位置A’よりも上流側に、第1の外部信号強度モニタ201が接続されている。さらに上流側にはファイババンドルファンアウト287が設けられている。ファイババンドルファンアウト287によって、K本の光ファイバ931~93Kと、外部光ファイバ221とが接続される。また、K本の光ファイバ931~93Kには、それぞれ個別に、光アイソレータ211,212,・・・,21Kが接続されている(図6参照)。以下、光アイソレータ221~21Kを、各光ファイバ増幅器10に設けられている第1の光アイソレータ11および第2の光アイソレータ12と区別して、外部光アイソレータ211~21Kと記す。 In the external optical fiber 221, the first external signal strength monitor 201 is connected on the upstream side of the start position A 'of the addition range of erbium ions. Further upstream, a fiber bundle fan out 287 is provided. The fiber bundle fanout 287 connects the K optical fibers 931 to 93 K and the external optical fiber 221. Further, optical isolators 211, 212,..., 21K are individually connected to the K optical fibers 931 to 93K, respectively (see FIG. 6). Hereinafter, the optical isolators 221 to 21 K will be referred to as external optical isolators 211 to 21 K, separately from the first optical isolator 11 and the second optical isolator 12 provided in each optical fiber amplifier 10.
 また、第2の外部信号強度モニタ202の下流側にはファイババンドルファンイン288が設けられ、ファイババンドルファンイン288によって、外部光ファイバ221と、各光ファイバ増幅器10の光ファイバ21とが接続される。すなわち、外部光ファイバ221内のK本のコアは、K個のそれぞれの光ファイバ増幅器10内の光ファイバ21内のコアと対応していて、対応しているコア同士がファイババンドルファンイン288によって接続されている。 Also, a fiber bundle fan-in 288 is provided downstream of the second external signal strength monitor 202, and the fiber bundle fan-in 288 connects the external optical fiber 221 and the optical fiber 21 of each optical fiber amplifier 10 Ru. That is, the K cores in the external optical fiber 221 correspond to the cores in the optical fiber 21 in the K respective optical fiber amplifiers 10, and the corresponding cores are connected by the fiber bundle fan-in 288. It is connected.
 前述のように、ファイババンドルファンアウトおよびファイババンドルファンインは、共通の構成の部材である。具体的には、複数の光ファイバ内にそれぞれ含まれている1本のコアと、1本の光ファイバ(ここでは、外部光ファイバ221)内に含まれている個々のコアとを、一対一に接続させる部材である。 As mentioned above, fiber bundle fan-out and fiber bundle fan-in are members of a common configuration. Specifically, one core included in each of the plurality of optical fibers and each core included in one optical fiber (here, the outer optical fiber 221) are paired with each other. It is a member to be connected to
 また、第1の外部信号強度モニタ201および第2の外部信号強度モニタ202は、それぞれ外部利得制御回路251に接続されている。さらに、外部利得制御回路251は、外部光光源駆動回路261に接続されている。 The first external signal strength monitor 201 and the second external signal strength monitor 202 are connected to the external gain control circuit 251, respectively. Further, the external gain control circuit 251 is connected to the external light source drive circuit 261.
 外部光光源駆動回路261は、励起光源231に接続され、励起光源231は、外部光合波器241に接続されている。 The external light source drive circuit 261 is connected to the excitation light source 231, and the excitation light source 231 is connected to the external light multiplexer 241.
 第1の外部信号強度モニタ201および第2の外部信号強度モニタ202は、外部光ファイバ221を通過する光信号の信号強度をモニタし、その信号強度を、外部利得制御回路251に通知する。外部利得制御回路251は、増幅後の各光信号全体の信号強度が一定値になるように、光信号Lin1~LinK全体の信号強度と、一定とすべき信号強度との利得を算出する。外部利得制御回路251は、その利得を外部光源駆動回路261に通知する。 The first external signal strength monitor 201 and the second external signal strength monitor 202 monitor the signal strength of the optical signal passing through the external optical fiber 221 and notify the external gain control circuit 251 of the signal strength. The external gain control circuit 251 calculates gains of the signal strengths of all the optical signals Lin1 to LinK and the signal strengths to be constant so that the signal strengths of all the optical signals after amplification become constant values. The external gain control circuit 251 notifies the external light source drive circuit 261 of the gain.
 外部利得制御回路251および外部光光源駆動回路261は、例えば、それぞれ専用のプロセッサで実現される。また、例えば、外部利得制御回路251および外部光光源駆動回路261が、それぞれの要素の機能を有する1つのプロセッサによって実現されてもよい。 The external gain control circuit 251 and the external light source drive circuit 261 are each realized by, for example, a dedicated processor. Also, for example, the external gain control circuit 251 and the external light source drive circuit 261 may be realized by one processor having the function of each element.
 第6の実施形態における動作の例を説明する。 An example of the operation in the sixth embodiment will be described.
 まず、光信号Lin1~LinKが光ファイバ931~93Kに別個に入力される。各光ファイバ931~93Kにそれぞれ設けられた外部光アイソレータ211~21Kは、入力された光信号伝搬方向を一定方向に制限する。 First, the optical signals Lin1 to LinK are separately input to the optical fibers 931 to 93K. The external optical isolators 211 to 21 K provided in the respective optical fibers 931 to 93 K restrict the input optical signal propagation direction to a fixed direction.
 K本の光ファイバ931~93Kに別個に入力された光信号Lin1~LinKは、ファイババンドルファンアウト287を通過することによって、1本の外部光ファイバ221内に存在するそれぞれ別々のコアを通過する。 The optical signals Lin1 to LinK separately input to the K optical fibers 931 to 93K pass through the fiber bundle fan-out 287 to pass through the respective cores present in one external optical fiber 221. .
 上記のように、光信号Lin1~LinKが1本の外部光ファイバ221内を通過する状態で、第1の信号強度モニタ201は、光信号Lin1~LinK全体の信号強度をモニタし、外部利得制御回路251にその信号強度を通知する。 As described above, in a state where the optical signals Lin1 to LinK pass through one external optical fiber 221, the first signal strength monitor 201 monitors the signal strength of the entire optical signals Lin1 to LinK, and performs external gain control. The circuit 251 is notified of the signal strength.
 外部利得制御回路251は、増幅後の各光信号全体の信号強度が一定になるように、第1の信号強度モニタ201から通知された信号強度と、一定とすべき信号強度との利得を算出する。換言すれば、外部利得制御回路251は、光信号Lin1~LinK全体の信号強度を所定の信号強度に増幅する際の利得を算出する。外部利得制御回路251は、増幅後における一定とすべき信号強度の値を予め記憶しておき、外部利得制御回路251は、第1の信号強度モニタ201から通知された信号強度と、その信号強度との利得を算出すればよい。 The external gain control circuit 251 calculates the gains of the signal strength notified from the first signal strength monitor 201 and the signal strength to be constant so that the signal strength of the entire optical signal after amplification becomes constant. Do. In other words, the external gain control circuit 251 calculates the gain when amplifying the signal strength of all the optical signals Lin1 to LinK to a predetermined signal strength. The external gain control circuit 251 stores in advance the value of the signal strength to be constant after amplification, and the external gain control circuit 251 determines the signal strength notified from the first signal strength monitor 201 and the signal strength thereof. It is sufficient to calculate the gain with
 外部光源駆動回路261は励起光源231のみを駆動する。外部光源駆動回路261は、外部利得制御回路251から通知された利得に応じた励起光出力強度で、励起光源231から励起光を出力させる。外部光源駆動回路261は、利得の値が大きいほど励起光出力強度を高くし、利得の値が小さいほど励起光出力強度を低くする。 The external light source drive circuit 261 drives only the excitation light source 231. The external light source drive circuit 261 causes the excitation light source 231 to output excitation light at an excitation light output intensity corresponding to the gain notified from the external gain control circuit 251. The external light source drive circuit 261 increases the pumping light output intensity as the gain value increases, and decreases the pumping light output intensity as the gain value decreases.
 励起光源231が出力した励起光は、外部光合波器241に入力される。外部光合波器241は、外部光ファイバ221内のそれぞれのコアを通過する光信号に対して、クラッド一括方式によって励起光を合成させる。すなわち、外部光合波器241は、外部光ファイバ221のクラッドに励起光を入力することによって、励起光を各光信号Lin1~LinKに合成させる。 The excitation light output from the excitation light source 231 is input to the external light multiplexer 241. The external optical multiplexer 241 combines the excitation light with the optical signals passing through the respective cores in the external optical fiber 221 by the clad collective method. That is, the external optical multiplexer 241 combines the excitation light into the respective optical signals Lin1 to LinK by inputting the excitation light to the cladding of the external optical fiber 221.
 励起光が合成された各光信号が、外部光ファイバ221におけるエルビウムイオンの添加範囲を通過することで、各光信号の信号強度は増幅される。 The signal intensity of each optical signal is amplified as each optical signal combined with the excitation light passes through the addition range of erbium ions in the external optical fiber 221.
 また、第2の外部信号強度モニタ202は、増幅後の各光信号全体の信号強度をモニタし、外部利得制御回路251にその信号強度を通知する。外部利得制御回路251は、第2の信号強度モニタ2から通知された信号強度によって、増幅後の各光信号の信号強度が所定の一定になっていることを確認する。その信号強度が所定の一定値になっていなければ、外部利得制御回路251は、算出した利得を調整する。この動作は、各光ファイバ増幅器10に設けられた利得制御回路51の動作と同様である。 In addition, the second external signal strength monitor 202 monitors the signal strength of the entire optical signal after amplification and notifies the external gain control circuit 251 of the signal strength. The external gain control circuit 251 confirms that the signal strength of each amplified optical signal is a predetermined constant by the signal strength notified from the second signal strength monitor 2. If the signal strength is not a predetermined constant value, the external gain control circuit 251 adjusts the calculated gain. This operation is similar to the operation of the gain control circuit 51 provided in each optical fiber amplifier 10.
 外部光ファイバ221内で増幅された各光信号は、ファイババンドルファンイン288を通過することによって、1本の外部光ファイバ221から分岐して、それぞれ別々のK個の光ファイバ増幅器10に入力される。 Each optical signal amplified in the external optical fiber 221 is branched from one external optical fiber 221 by passing through the fiber bundle fan-in 288, and is input to K separate optical fiber amplifiers 10 respectively. Ru.
 ファイババンドルファンイン288を通過することによって分岐した個々の光信号は、第1の実施形態または第2の実施形態における光信号Linに相当する。 The individual optical signals branched by passing the fiber bundle fan-in 288 correspond to the optical signal Lin in the first embodiment or the second embodiment.
 光信号が入力された各光ファイバ増幅器10の動作は、第1の実施形態の光ファイバ増幅器の動作、または、第2の実施形態の光ファイバ増幅器の動作と同様である。 The operation of each optical fiber amplifier 10 to which the optical signal is input is similar to the operation of the optical fiber amplifier of the first embodiment or the optical fiber amplifier of the second embodiment.
 各光ファイバ増幅器10は、それぞれ1本の光ファイバ21(図1、図4を参照)を備え、その光ファイバ21は1本のコアを含む。光ファイバ増幅器10内の光合波器41(図1、図4参照)は、例えば、コア個別方式で励起光を光信号に合成させる。 Each optical fiber amplifier 10 comprises one optical fiber 21 (see FIGS. 1 and 4), and the optical fiber 21 includes one core. The optical multiplexer 41 (see FIG. 1 and FIG. 4) in the optical fiber amplifier 10 combines the excitation light into an optical signal by, for example, a core individual system.
 K個の光ファイバ増幅器10それぞれから出力される光信号を、光信号Lout1~LoutKとする。 The optical signals output from each of the K optical fiber amplifiers 10 are referred to as optical signals Lout1 to LoutK.
 本実施形態では、光信号Lin1~LinKは、1本の外部光ファイバ221で増幅された後、それぞれ別々のK個の光ファイバ増幅器10で再度、増幅され、光信号Lout1~LoutKとして出力される。 In the present embodiment, after the optical signals Lin1 to LinK are amplified by one external optical fiber 221, they are again amplified by K separate optical fiber amplifiers 10 and output as optical signals Lout1 to LoutK. .
 本実施形態の光ファイバ増幅システムは、第1の実施形態または第2の実施形態の光ファイバ増幅器10を備える。従って、第1の実施形態や第2の実施形態と同様の効果が得られる。 The optical fiber amplification system of the present embodiment includes the optical fiber amplifier 10 of the first embodiment or the second embodiment. Therefore, the same effect as the first embodiment and the second embodiment can be obtained.
 本実施形態では、外部光ファイバ221に対して励起光を出力する励起光源231は1つである。すると、外部光ファイバ221内での各光信号Lin1~LinKの増幅にばらつきが生じ得る。しかし、その後、各光信号は、それぞれK個の光ファイバ増幅器10で再度、増幅される。従って、外部光ファイバ221内で各光信号に生じた増幅のばらつきを、それぞれの光ファイバ増幅器10で調整することができる。 In the present embodiment, there is one excitation light source 231 that outputs excitation light to the external optical fiber 221. Then, variations in amplification of the optical signals Lin1 to LinK in the external optical fiber 221 may occur. However, each optical signal is then amplified again by the K optical fiber amplifiers 10 respectively. Therefore, the variation in amplification occurring in each optical signal in the external optical fiber 221 can be adjusted by the respective optical fiber amplifiers 10.
実施形態5.
 図7は、本発明の第5の実施形態の光ファイバ増幅器の構成例を示すブロック図である。第5の実施形態の光ファイバ増幅器には、複数の光信号Lin1~LinKが入力され、その各光信号は、増幅後に、光信号Lout1~LoutKとして出力される。各光信号は、それぞれ、別々の光ファイバを通過する。
Embodiment 5
FIG. 7 is a block diagram showing a configuration example of an optical fiber amplifier according to a fifth embodiment of the present invention. A plurality of optical signals Lin1 to LinK are input to the optical fiber amplifier of the fifth embodiment, and the respective optical signals are output as optical signals Lout1 to LoutK after amplification. Each optical signal passes through a separate optical fiber.
 以下、第5の実施形態では、複数の光信号として、光信号Lin1~LinKが光ファイバ増幅器に入力され、光ファイバ増幅器は、K本の光ファイバ271~27Kを備えている場合を例にして説明する。 In the fifth embodiment, the optical signals Lin1 to LinK are input to the optical fiber amplifier as a plurality of optical signals, and the optical fiber amplifier includes K optical fibers 271 to 27K as an example. explain.
 光ファイバ271~27Kは、いずれも1本のコアを含む。 Each of the optical fibers 271 to 27K includes one core.
 また、光ファイバ271~27Kにはそれぞれ、希土類イオン(ここでは、エルビウムイオンとする。)が添加されている。個々の光ファイバにおけるエルビウムイオンの添加範囲は、第1の実施形態における光ファイバ21におけるエルビウムイオンの添加範囲と同様である。 Further, rare earth ions (here, erbium ions) are added to the optical fibers 271 to 27K. The doping range of erbium ions in the individual optical fibers is the same as the doping range of erbium ions in the optical fiber 21 in the first embodiment.
 また、第5の実施形態では、光ファイバ増幅器は、光ファイバ毎に、第1の光アイソレータ、第1の信号強度モニタ、光合波器、第2の信号強度モニタ、第2の光アイソレータおよび利得制御回路を備える。 In the fifth embodiment, the optical fiber amplifier includes, for each optical fiber, a first optical isolator, a first signal intensity monitor, an optical multiplexer, a second signal intensity monitor, a second optical isolator, and a gain. It has a control circuit.
 従って、光ファイバ増幅器は、K個の第1の光アイソレータ311~31Kと、K個の第1の信号強度モニタ811~81Kと、K個の光合波器411~41Kと、K個の第2の信号強度モニタ821~82Kと、K個の第2の光アイソレータ321~32Kと、K個の利得制御回路511~51Kとを備える。 Therefore, the optical fiber amplifier comprises K first optical isolators 311 to 31 K, K first signal intensity monitors 811 to 81 K, K optical multiplexers 411 to 41 K, and K second Signal strength monitors 821 to 82K, K second optical isolators 321 to 32K, and K gain control circuits 511 to 51K.
 第1の光アイソレータ311~31Kはいずれも、第1の実施形態における第1の光アイソレータ11と同様である。また、第2の光アイソレータ321~32Kはいずれも、第1の実施形態における第2の光アイソレータ12と同様である。第1の信号強度モニタ811~81Kはいずれも、第1の実施形態における第1の信号強度モニタ1と同様である。また、第2の信号強度モニタ821~82Kはいずれも、第1の実施形態における第2の信号強度モニタ2と同様である。光合波器411~41Kはいずれも、第1の実施形態における光合波器41と同様である。また、利得制御回路511~51Kはいずれも、第1の実施形態における利得制御回路51と同様である。第1の実施形態と同様の上記の要素については説明を省略する。 The first optical isolators 311 to 31 K are all the same as the first optical isolator 11 in the first embodiment. The second optical isolators 321 to 32 K are all similar to the second optical isolator 12 in the first embodiment. The first signal strength monitors 811 to 81 K are all the same as the first signal strength monitor 1 in the first embodiment. The second signal strength monitors 821 to 82K are all the same as the second signal strength monitor 2 in the first embodiment. The optical multiplexers 411 to 41 K are all the same as the optical multiplexer 41 in the first embodiment. The gain control circuits 511 to 51K are all similar to the gain control circuit 51 in the first embodiment. The description of the above-described elements similar to those of the first embodiment is omitted.
 また、個々の光ファイバ271~27Kにおける第1の光アイソレータ、第1の信号強度モニタ、光合波器、第2の信号強度モニタ、第2の光アイソレータおよび利得制御回路の接続態様は、第1の実施形態におけるそれらの要素の接続態様と同様である。例えば、光ファイバ271において、エルビウムイオンの添加範囲の開始位置(図7において図示略)よりも上流側に、第1の信号強度モニタ811が接続され、さらに上流側に第1の光アイソレータ311が接続されている。また、光ファイバ271において、エルビウムイオンの添加範囲の終了位置(図7において図示略)よりも下流側に第2の信号強度モニタ821が接続され、さらに下流側に第2の光アイソレータ321が接続されている。また、第1の信号強度モニタ811および第2の信号強度モニタ821はそれぞれ、利得制御回路511に接続されている。また、光ファイバ271におけるエルビウムイオンの添加範囲内に光合波器411が設けられている。ここでは、光ファイバ271を例にして説明したが、他の光ファイバ272~27Kでも同様である。 In addition, the connection mode of the first optical isolator, the first signal intensity monitor, the optical multiplexer, the second signal intensity monitor, the second optical isolator, and the gain control circuit in each of the optical fibers 271 to 27 K is the first It is similar to the connection aspect of those elements in the embodiment of. For example, in the optical fiber 271, the first signal strength monitor 811 is connected upstream of the start position (not shown in FIG. 7) of the addition range of erbium ions, and the first optical isolator 311 is further upstream. It is connected. Further, in the optical fiber 271, the second signal intensity monitor 821 is connected downstream of the end position (not shown in FIG. 7) of the addition range of erbium ions, and the second optical isolator 321 is connected further downstream. It is done. The first signal strength monitor 811 and the second signal strength monitor 821 are connected to the gain control circuit 511, respectively. In addition, an optical coupler 411 is provided in the addition range of erbium ions in the optical fiber 271. Here, although the optical fiber 271 has been described as an example, the same applies to the other optical fibers 272 to 27K.
 また、第5の実施形態では、光ファイバ増幅器は、帯域モニタ53と、光源駆動回路561と、複数(ここではM個とする。)の励起光源31~3Mと、出力モニタ581と、スイッチ制御回路591と、M×Kスイッチ571とを備える。 In the fifth embodiment, the optical fiber amplifier includes a band monitor 53, a light source drive circuit 561, a plurality (here, M) of excitation light sources 31 to 3M, an output monitor 581, and switch control. A circuit 591 and an M × K switch 571 are provided.
 帯域モニタ53は、各光ファイバ271~27Kにおける第1の光アイソレータと第1の信号強度モニタとの間に接続されている。さらに、帯域モニタ53は、光源駆動回路561に接続されている。また、各利得制御回路511~51Kも光源駆動回路561に接続されている。 The band monitor 53 is connected between the first optical isolator and the first signal strength monitor in each of the optical fibers 271 to 27K. Further, the band monitor 53 is connected to the light source drive circuit 561. The gain control circuits 511 to 51 K are also connected to the light source drive circuit 561.
 光源駆動回路561には、各励起光源31~3Mが接続されている。第1の実施形態と同様に、各励起光源31~3Mは、それぞれ、励起光出力強度対消費電力特性が異なる励起光源である。各励起光源31~3Mの励起光出力強度対消費電力特性は、例えば、個々の励起光源に設けられるペルチエ冷却器の最大吸熱量を変えることで変化させればよい。 The excitation light sources 31 to 3 M are connected to the light source drive circuit 561. As in the first embodiment, the respective excitation light sources 31 to 3 M are excitation light sources having different excitation light output intensity versus power consumption characteristics. The excitation light output intensity versus power consumption characteristics of each of the excitation light sources 31 to 3 M may be changed, for example, by changing the maximum heat absorption amount of the Peltier cooler provided in each of the excitation light sources.
 M×Kスイッチ571は、励起光の入力端をM個有し、励起光の出力端をK個有しているスイッチである。M×Kスイッチ571の入力端I1~IMは、励起光源31~3Mと一対一に対応し、各入力端I1~IMは、対応する励起光源に接続されている。また、M×Kスイッチ571の出力端O1~OKは、光ファイバ271~27Kと一対一に対応し、各出力端O1~OKは、対応する光ファイバに設けられた光合波器411~41Kに接続されている。ただし、本実施形態において、MとKの大小関係は、K<MまたはK=Mである。 The M × K switch 571 is a switch having M input ends for excitation light and K output ends for excitation light. The input ends I1 to IM of the M × K switch 571 correspond to the excitation light sources 31 to 3M on a one-to-one basis, and the input ends I1 to IM are connected to the corresponding excitation light sources. Also, the output ends O1 to OK of the M × K switch 571 correspond to the optical fibers 271 to 27K on a one-to-one basis, and the output ends O1 to OK correspond to the optical couplers 411 to 41K provided in the corresponding optical fibers. It is connected. However, in the present embodiment, the magnitude relationship between M and K is K <M or K = M.
 出力モニタ581は、光源駆動回路561およびスイッチ制御回路591に接続されている。また、光源駆動回路561はスイッチ制御回路591に接続されている。スイッチ制御回路591は、M×Kスイッチ571に接続されている。 The output monitor 581 is connected to the light source drive circuit 561 and the switch control circuit 591. Further, the light source drive circuit 561 is connected to the switch control circuit 591. The switch control circuit 591 is connected to the M × K switch 571.
 帯域モニタ53は、光ファイバ271~27K毎に、光ファイバ内を通過する光信号の帯域(信号伝達に用いられる帯域)をモニタし、光ファイバ271~27K毎に得られた光信号の帯域をそれぞれ光源駆動回路561に通知する。 The band monitor 53 monitors the band of the optical signal passing through the optical fiber (the band used for signal transmission) for each of the optical fibers 271 to 27 K, and the band of the optical signal obtained for each of the optical fibers 271 to 27 K Each light source drive circuit 561 is notified.
 また、各利得制御回路511~51Kはそれぞれ、算出した利得を光源駆動回路561に通知する。 Further, each of the gain control circuits 511 to 51 K notifies the light source drive circuit 561 of the calculated gains.
 この結果、光源駆動回路561は、光ファイバ毎に、利得と帯域との組を得る。そして、光源駆動回路561は、光ファイバ毎に、利得と待機の積を算出する。光源駆動回路561は、利得と待機の積に基づいて、光ファイバ毎に、励起光を出力すべき1つの励起光源を選択する。従って、光源駆動回路561は、K個の励起光源を選択することになる。 As a result, the light source drive circuit 561 obtains a set of gain and band for each optical fiber. Then, the light source drive circuit 561 calculates the product of the gain and the standby for each optical fiber. The light source drive circuit 561 selects one pumping light source to which pumping light is to be output for each optical fiber based on the product of the gain and the standby. Therefore, the light source drive circuit 561 selects K excitation light sources.
 光源駆動回路561が、個々の光ファイバ毎に、1つの励起光源を選択する方法は、第1の実施形態と同様である。すなわち、光源駆動回路561は、利得と帯域との積の範囲(数値範囲)と、選択する励起光源との対応関係を予め記憶している。光源駆動回路561は、例えば、範囲“0以上T1未満”と励起光源31とが対応し、範囲“T1以上T2未満”と励起光源32とが対応する等の対応関係を示す情報を予め記憶している。 The method by which the light source drive circuit 561 selects one excitation light source for each individual optical fiber is the same as in the first embodiment. That is, the light source drive circuit 561 stores in advance the correspondence between the range (numerical range) of the product of the gain and the band and the excitation light source to be selected. For example, the light source drive circuit 561 stores in advance information indicating a correspondence relationship such that the excitation light source 31 corresponds to the range “0 or more and less than T1” and the excitation light source 32 corresponds to the range “T1 or more and less than T2”. ing.
 例えば、光ファイバ271から得られた利得と帯域の積が範囲“0以上T1未満”に属しているとする。この場合、光源駆動回路561は、光ファイバ271に励起光を出力する励起光源として、範囲“0以上T1未満”に対応する励起光源31を選択する。また、例えば、光ファイバ272から得られた利得と帯域の積が範囲“T1以上T2未満”に属しているとする。この場合、光源駆動回路561は、光ファイバ272に励起光を出力する励起光源として、範囲“T1以上T2未満” に対応する励起光源32を選択する。 For example, it is assumed that the product of the gain and the band obtained from the optical fiber 271 belongs to the range “0 or more and less than T1”. In this case, the light source drive circuit 561 selects the excitation light source 31 corresponding to the range “0 or more and less than T1” as the excitation light source that outputs the excitation light to the optical fiber 271. Also, for example, it is assumed that the product of the gain and the band obtained from the optical fiber 272 belongs to the range “T1 or more and less than T2”. In this case, the light source drive circuit 561 selects the excitation light source 32 corresponding to the range “T1 or more and less than T2” as the excitation light source for outputting the excitation light to the optical fiber 272.
 光源駆動回路561は、選択したそれぞれの励起光源を駆動し、その励起光源に励起光を出力させる。このとき、光源駆動回路561は、励起光源に対応する光ファイバから得られた利得と帯域との積に応じた励起光出力強度で、励起光源から励起光を出力させる。例えば、光源駆動回路561は、光ファイバ271に励起光を出力する励起光源として、励起光源31を選択したとする。この場合、光源駆動回路561は、光ファイバ271から得られた利得と帯域との積に応じた励起光出力強度で、励起光源31から励起光を出力させる。光源駆動回路561は、利得と帯域との積の値が大きいほど、励起光出力強度を高くし、利得と帯域との積の値が小さいほど、励起光出力強度を低くする。光源駆動回路561は、選択した他の励起光源についても同様に駆動する。 The light source drive circuit 561 drives the respective selected excitation light sources, and causes the excitation light sources to output excitation light. At this time, the light source drive circuit 561 causes the excitation light source to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band obtained from the optical fiber corresponding to the excitation light source. For example, it is assumed that the light source drive circuit 561 selects the excitation light source 31 as an excitation light source that outputs excitation light to the optical fiber 271. In this case, the light source drive circuit 561 causes the excitation light source 31 to output excitation light at an excitation light output intensity corresponding to the product of the gain and the band obtained from the optical fiber 271. The light source drive circuit 561 increases the pump light output intensity as the product of the gain and the band is larger, and lowers the pump light output intensity as the product of the gain and the band is smaller. The light source drive circuit 561 similarly drives other selected excitation light sources.
 さらに、光源駆動回路561は、光ファイバ毎に励起光源を選択すると、その励起光源に対応するM×Kスイッチ71の入力端と、光ファイバに設けられた光合波器に対応するM×Kスイッチ71の出力端とを接続させることを、スイッチ制御回路591に指示する。例えば、上記のように、光ファイバ271に励起光を出力する励起光源として、励起光源31を選択したとする。この場合、光源駆動回路561は、励起光源31に対応する入力端I1と、光ファイバ271に設けられた光合波器411に対応する出力端O1とを接続させることをスイッチ制御回路591に指示する。光源駆動回路561は、スイッチ制御回路591に対して、入力端と出力端の接続の指示をK組分行う。スイッチ制御回路591は、光源駆動回路561の指示に従って、指定された入力端と出力端とを接続させる。 Furthermore, when the excitation light source is selected for each optical fiber, the light source drive circuit 561 selects the excitation light source, and the M × K switch corresponding to the input end of the M × K switch 71 corresponding to the excitation light source and the optical multiplexer provided in the optical fiber. The switch control circuit 591 is instructed to connect with the output end of 71. For example, as described above, it is assumed that the excitation light source 31 is selected as the excitation light source for outputting the excitation light to the optical fiber 271. In this case, the light source drive circuit 561 instructs the switch control circuit 591 to connect the input end I1 corresponding to the excitation light source 31 and the output end O1 corresponding to the optical multiplexer 411 provided in the optical fiber 271. . The light source drive circuit 561 instructs the switch control circuit 591 to connect the input end and the output end for K sets. The switch control circuit 591 connects the designated input end and the output end according to the instruction of the light source drive circuit 561.
 光源駆動回路561は、一旦、個々の光ファイバ毎に励起光源を選択した後には、出力モニタ581の指示に従って、励起光を出力させる励起光源を切り替える。 The light source drive circuit 561 switches the excitation light source for outputting the excitation light according to the instruction of the output monitor 581 after selecting the excitation light source once for each of the optical fibers.
 出力モニタ581は、励起光源31~3Mの光出力端から出力される励起光の励起光出力強度をモニタする。具体的には、出力モニタ581は、光源駆動回路561によって駆動されているK個の励起光源から出力される励起光の励起光出力強度をモニタする。 The output monitor 581 monitors the excitation light output intensity of the excitation light output from the light output end of the excitation light sources 31 to 3M. Specifically, the output monitor 581 monitors the excitation light output intensity of the excitation light output from the K excitation light sources driven by the light source drive circuit 561.
 また、出力モニタ581は、予め励起光源毎に定められた励起光出力強度の範囲を記憶している。出力モニタ581は、例えば、励起光源31に定められた励起光出力強度の範囲“0以上R1未満(図2参照)”、励起光源32に定められた励起光出力強度の範囲“R1以上R2未満(図2参照)”、励起光源33に定められた励起光出力強度の範囲“R2以上R3未満(図2参照)”等を予め記憶している。この点は、第1の実施形態と同様である。 Further, the output monitor 581 stores the range of the excitation light output intensity which is determined in advance for each excitation light source. The output monitor 581 is, for example, a range “0 or more and less than R1 (see FIG. 2)” of excitation light output intensity determined for the excitation light source 31 and a range “R1 or more and less than R2 determined for the excitation light source 32 The range “R2 or more and less than R3 (see FIG. 2)” of the excitation light output intensity determined for the excitation light source 33 and the like are stored in advance. This point is the same as that of the first embodiment.
 光源駆動回路561は、光ファイバ毎に、光ファイバから得られる利得および帯域のいずれか一方または両方が変化したことによって、利得と帯域の積が変化した場合に、その光ファイバに励起光を出力する励起光源における励起光出力強度を変化させる。出力モニタ581は、励起光を出力しているいずれかの励起光源から出力される励起光の励起光出力強度が、その励起光源に対して定められている励起光出力強度の範囲の境界値になると、励起光を出力させる励起光源を、その範囲の隣りの範囲に対応する励起光源に切り替えるように光源駆動回路561に指示する。光源駆動回路561は、その指示に従って、励起光を出力させる励起光源を切り替える。 The light source drive circuit 561 outputs the excitation light to the optical fiber when the product of the gain and the band changes due to a change in one or both of the gain and the band obtained from the optical fiber for each optical fiber. The excitation light output intensity in the excitation light source is changed. The output monitor 581 outputs the excitation light output intensity of the excitation light output from any excitation light source outputting the excitation light at the boundary value of the range of the excitation light output intensity defined for the excitation light source. Then, the light source drive circuit 561 is instructed to switch the excitation light source for outputting the excitation light to the excitation light source corresponding to the adjacent range of the range. The light source drive circuit 561 switches the excitation light source for outputting the excitation light according to the instruction.
 また、出力モニタ581は、スイッチ制御回路591に対して、切り替え前の励起光源に対応する入力端が接続されていた出力端と、切り替え後の励起光源に対応する入力端とを接続させるように指示する。スイッチ制御回路591は、その指示に従って、M×Kスイッチの入力端と出力端との接続を切り替える。 Further, the output monitor 581 causes the switch control circuit 591 to connect the output end to which the input end corresponding to the excitation light source before switching is connected to the input end corresponding to the excitation light source after switching. To direct. The switch control circuit 591 switches the connection between the input end and the output end of the M × K switch according to the instruction.
 本実施形態において、利得制御回路511~51K、光源駆動回路561、出力モニタ581、および、スイッチ制御回路591は、例えば、それぞれ専用のプロセッサによって実現される。また、利得制御回路511~51K、光源駆動回路561、出力モニタ581、および、スイッチ制御回路591が、それぞれの要素の機能を有する1つのプロセッサによって実現されてもよい。 In the present embodiment, the gain control circuits 511 to 51K, the light source drive circuit 561, the output monitor 581, and the switch control circuit 591 are realized by, for example, dedicated processors. Further, the gain control circuits 511 to 51K, the light source drive circuit 561, the output monitor 581, and the switch control circuit 591 may be realized by one processor having the function of each element.
 第5の実施形態の光ファイバ増幅器は、入力されるそれぞれの光信号Lin1~LinKに対して同様の処理を行う。以下、光信号Lin1を例にして、第5の実施形態の動作の例を説明する。なお、第1の実施形態で既に説明した事項については、適宜説明を省略する。 The optical fiber amplifier according to the fifth embodiment performs the same process on each of the input optical signals Lin1 to LinK. Hereinafter, an example of the operation of the fifth embodiment will be described by taking the optical signal Lin1 as an example. In addition, about the matter already demonstrated by 1st Embodiment, description is abbreviate | omitted suitably.
 光ファイバ271に光信号Lin1が入力されると、第1の光アイソレータ311は、その光信号の伝搬方向を一定方向に制限する。 When the optical signal Lin1 is input to the optical fiber 271, the first optical isolator 311 limits the propagation direction of the optical signal to a certain direction.
 帯域モニタ53は、光ファイバ271を通過する光信号Lin1の帯域をモニタし、光源駆動回路561にその帯域を通知する。 The band monitor 53 monitors the band of the optical signal Lin1 passing through the optical fiber 271, and notifies the light source drive circuit 561 of the band.
 また、第1の信号強度モニタ811は、光信号Lin1の信号強度をモニタし、利得制御回路511にその信号強度を通知する。利得制御回路511は、出力される光信号Lout1の信号強度が一定になるように、第1の信号強度モニタ811から通知された光信号Lin1の信号強度と、一定とすべき信号強度との利得(すなわち、光信号Lin1の信号強度を所定の信号強度に増幅する際の利得)を算出する。利得制御回路511は、算出した利得を光源駆動回路561に通知する。 In addition, the first signal strength monitor 811 monitors the signal strength of the optical signal Lin1, and notifies the gain control circuit 511 of the signal strength. The gain control circuit 511 is a gain between the signal strength of the optical signal Lin1 notified from the first signal strength monitor 811 and the signal strength to be constant so that the signal strength of the output optical signal Lout1 becomes constant. That is, the gain at the time of amplifying the signal strength of the optical signal Lin1 to a predetermined signal strength is calculated. The gain control circuit 511 notifies the light source drive circuit 561 of the calculated gain.
 光源駆動回路561は、通知された利得と帯域との積を算出し、その積に応じて、光ファイバ271に対して励起光を出力する励起光源を選択する。ここでは、光源駆動回路561が励起光源31を選択したものして説明する。 The light source drive circuit 561 calculates the product of the notified gain and the band, and selects the excitation light source that outputs the excitation light to the optical fiber 271 according to the product. Here, the light source drive circuit 561 selects the excitation light source 31 and demonstrates.
 そして、光源駆動回路561は、励起光源31に対応するM×Kスイッチ571の入力端I1と、光ファイバ271に設けられた光合波器411に対応する出力端O1とを接続させることを、スイッチ制御回路591に指示する。スイッチ制御回路591は、その指示に従って、入力端I1と出力端O1とを接続させる。 The light source drive circuit 561 is connected to connect the input end I1 of the M × K switch 571 corresponding to the excitation light source 31 and the output end O1 corresponding to the optical coupler 411 provided in the optical fiber 271. The control circuit 591 is instructed. The switch control circuit 591 connects the input end I1 and the output end O1 according to the instruction.
 さらに、光源駆動回路561は、上記の利得と帯域との積に応じた励起光出力強度で、励起光源31から励起光を出力させる。その励起光は、M×Kスイッチ571の入力端I1に入力され、出力端O1から出力される。光合波器411は、その励起光を、光信号Lin1に合成させる。この結果、光信号Lin1の信号強度は一定の信号強度に増幅され、光信号Lout1として出力される。 Further, the light source drive circuit 561 causes the excitation light source 31 to output excitation light at the excitation light output intensity corresponding to the product of the gain and the band. The excitation light is input to the input end I1 of the M × K switch 571 and output from the output end O1. The optical multiplexer 411 combines the excitation light into the optical signal Lin1. As a result, the signal strength of the light signal Lin1 is amplified to a constant signal strength and is output as the light signal Lout1.
 このとき、第2の信号強度モニタ821は、光信号Lout1の信号強度をモニタし、利得制御回路511にその信号強度を通知する。利得制御回路511は、第2の信号強度モニタ821から通知された信号強度によって、光信号Lout1の信号強度が所定の一定値になっていることを確認する。光信号Loutの信号強度が所定の一定値になっていなければ、利得制御回路511は、以後、算出した利得を調整する。 At this time, the second signal strength monitor 821 monitors the signal strength of the optical signal Lout1, and notifies the gain control circuit 511 of the signal strength. The gain control circuit 511 confirms that the signal strength of the optical signal Lout1 has a predetermined constant value based on the signal strength notified from the second signal strength monitor 821. If the signal strength of the optical signal Lout does not reach a predetermined constant value, the gain control circuit 511 adjusts the calculated gain thereafter.
 また、第2の光アイソレータ321は、光信号Lout1の伝搬方向を一定方向に制限する。 The second optical isolator 321 restricts the propagation direction of the optical signal Lout1 to a fixed direction.
 光ファイバ増幅器は、入力される他の光信号Lin2~LinKに関しても同様の処理を行う。この結果、入力される各光信号Lin1~LinKは、それぞれ増幅される。 The optical fiber amplifier performs the same processing on other input optical signals Lin2 to LinK. As a result, the input optical signals Lin1 to LinK are respectively amplified.
 また、出力モニタ581は、励起光を出力しているいずれかの励起光源から出力される励起光の励起光出力強度が、その励起光源に対して定められている励起光出力強度の範囲の境界値になると、励起光を出力させる励起光源を、その範囲の隣りの範囲に対応する励起光源に切り替えるように光源駆動回路561に指示する。光源駆動回路561は、その指示に従って、励起光を出力させる励起光源を切り替える。例えば、励起光源31から出力される励起光の励起光出力強度がR1(図2参照)になったとする。ここで、M×Kスイッチ571において、入力端I1と出力端O1とが接続されているとする。出力モニタ581は、励起光源31から出力される励起光の励起光出力強度がR1になったことに基づいて、励起光を出力する励起光源を、励起光源31から励起光源32に切り替えることを光源駆動回路561に指示する。光源駆動回路561は、励起光を出力する励起光源を、励起光源31から励起光源32に切り替える。 In addition, the output monitor 581 is a boundary of the range of the excitation light output intensity in which the excitation light output intensity of the excitation light output from any excitation light source outputting the excitation light is determined for the excitation light source When it reaches the value, the light source drive circuit 561 is instructed to switch the excitation light source for outputting the excitation light to the excitation light source corresponding to the adjacent range of the range. The light source drive circuit 561 switches the excitation light source for outputting the excitation light according to the instruction. For example, it is assumed that the excitation light output intensity of the excitation light output from the excitation light source 31 becomes R1 (see FIG. 2). Here, in the M × K switch 571, it is assumed that the input end I1 and the output end O1 are connected. The output monitor 581 switches the excitation light source for outputting the excitation light from the excitation light source 31 to the excitation light source 32 based on the fact that the excitation light output intensity of the excitation light output from the excitation light source 31 becomes R1. The driver circuit 561 is instructed. The light source drive circuit 561 switches the excitation light source that outputs excitation light from the excitation light source 31 to the excitation light source 32.
 また、出力モニタ581は、出力端O1と切り替え後の励起光源32に対応する入力端I2とを接続させることを、スイッチ制御回路591に指示する。スイッチ制御回路591は、その指示に従い、入力端I1と出力端O1との接続を切り、M×Kスイッチ571の入力端I2と出力端O1とを接続させる。この結果、励起光源32から出力された励起光が光合波器411によって光信号Lin1に合成され、光信号Lin1の信号強度が増幅される。 The output monitor 581 instructs the switch control circuit 591 to connect the output end O1 to the input end I2 corresponding to the excitation light source 32 after switching. In accordance with the instruction, the switch control circuit 591 disconnects the input end I1 from the output end O1 and connects the input end I2 of the M × K switch 571 to the output end O1. As a result, the pumping light output from the pumping light source 32 is combined with the optical signal Lin1 by the optical multiplexer 411, and the signal intensity of the optical signal Lin1 is amplified.
 上記の説明では、光ファイバ271に励起光を出力する励起光源の切り替えを例に説明した。他の光ファイバに励起光を出力する励起光源の切り替える場合における出力モニタ581、光源駆動回路561およびスイッチ制御回路591の動作も上記と同様である。 In the above description, switching of the excitation light source for outputting excitation light to the optical fiber 271 has been described as an example. The operations of the output monitor 581, the light source drive circuit 561 and the switch control circuit 591 in the case of switching the excitation light source for outputting the excitation light to another optical fiber are similar to the above.
 本実施形態においても、第1の実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained.
 さらに、本実施形態によれば、複数の光信号Lin1~LinKの信号強度を個別に増幅させることができる。 Furthermore, according to the present embodiment, it is possible to individually amplify the signal strengths of the plurality of optical signals Lin1 to LinK.
 さらに、本実施形態の光ファイバ増幅器は、M×Kスイッチ571を備える。従って、励起光源の数の増加を防止することができる。例えば、第1の実施形態におけるN×1スイッチを用いた場合には、1本の光ファイバ毎に、N個の励起光源が必要になるため、光ファイバの本数がK本であれば、N×K個の励起光源が必要になる。本実施形態では、M×Kスイッチ571を用いるので、K<MまたはK=Mを満足していれば、K本の光ファイバに対してM個の励起光源を設ければよく、励起光源の数の増加を防止できる。 Furthermore, the optical fiber amplifier of the present embodiment includes an M × K switch 571. Therefore, an increase in the number of excitation light sources can be prevented. For example, when the N × 1 switch in the first embodiment is used, N pumping light sources are required for each optical fiber, so if the number of optical fibers is K, N × K excitation light sources are required. In this embodiment, since the M × K switch 571 is used, it is sufficient to provide M excitation light sources for K optical fibers if K <M or K = M is satisfied. It can prevent the increase of the number.
  また、上記の各実施形態では、光合波器を、光ファイバにおけるエルビウムイオンの添加範囲内における上流側に配置して、光ファイバ内において光信号と励起光が同一方向に伝搬する場合を例にして説明した。このような態様で光信号の信号強度を増幅する態様を前方励起と呼ぶ。 In each of the above embodiments, the optical multiplexer is disposed upstream of the erbium ion doping range of the optical fiber, and the case where the optical signal and the excitation light propagate in the same direction in the optical fiber is taken as an example. Explained. The aspect which amplifies the signal strength of an optical signal in such an aspect is called forward pumping.
 本発明の各実施形態は、光合波器を、光ファイバにおけるエルビウムイオンの添加範囲内における下流側に配置して、光ファイバ内において光信号の伝搬方向と、励起光の伝搬方向とが逆方向になるように、光合波器が励起光を光ファイバに入力してもよい。このような態様で光信号の信号強度を増幅する態様を後方励起と呼ぶ。本発明の各実施形態において、後方励起を採用してもよい。 In each embodiment of the present invention, the optical multiplexer is disposed downstream in the erbium ion doping range of the optical fiber, and the propagation direction of the optical signal and the propagation direction of the excitation light in the optical fiber are opposite to each other An optical multiplexer may input excitation light to an optical fiber so that The aspect which amplifies the signal strength of an optical signal in such an aspect is called backward pumping. In each embodiment of the present invention, backward excitation may be employed.
 また、各実施形態では、光ファイバにおけるエルビウムイオンの添加範囲内に光合波器を設ける場合を例にして説明した。上記の各実施形態で、光ファイバにおけるエルビウムイオンの添加範囲外に光合波器が設けられてもよい。例えば、前方励起を採用する場合では、光ファイバにおけるエルビウムイオンの添加範囲の開始位置(例えば、図1に例示する位置A)よりも上流側に光合波器が設けられてもよい。また、例えば、後方励起を採用する場合では、光ファイバにおけるエルビウムイオンの添加範囲の終了位置(例えば、図1に例示する位置B)よりも下流側に光合波器が設けられてもよい。 Further, in each embodiment, the case where the optical multiplexer is provided in the addition range of erbium ions in the optical fiber has been described as an example. In each of the above embodiments, an optical multiplexer may be provided outside the doped range of erbium ions in the optical fiber. For example, in the case of adopting forward pumping, an optical multiplexer may be provided upstream of the start position (for example, position A illustrated in FIG. 1) of the addition range of erbium ions in the optical fiber. Also, for example, in the case of employing backward pumping, an optical multiplexer may be provided downstream of the end position (for example, position B illustrated in FIG. 1) of the addition range of erbium ions in the optical fiber.
 また、上記の各実施形態で示した光アイソレータは、光信号の多重反射に起因する光ファイバ増幅器の発振を防止する目的で設けられる。上記の各実施形態において、光ファイバとして長尺の光ファイバを用いることで反射減衰量が高い状態が保たれている場合には、光アイソレータを設けない構成としてもよい。 In addition, the optical isolators shown in the above embodiments are provided for the purpose of preventing the oscillation of the optical fiber amplifier caused by the multiple reflection of the optical signal. In each of the above-described embodiments, if a long optical fiber is used as the optical fiber to maintain a high return loss, the optical isolator may not be provided.
 次に、本発明の概要について説明する。図8は、本発明の概要を示すブロック図である。本発明の光ファイバ増幅器は、光ファイバ1021と、複数の光源1031~103Nと、光源駆動手段1061と、合成手段1041と、スイッチ1071とを備える。 Next, an outline of the present invention will be described. FIG. 8 is a block diagram showing an outline of the present invention. The optical fiber amplifier of the present invention comprises an optical fiber 1021, a plurality of light sources 1031 to 103N, a light source driving means 1061, a combining means 1041, and a switch 1071.
 光ファイバ1021(例えば、光ファイバ21、光ファイバ21a、光ファイバ271~27K等)は、光信号を通過させ、その光信号に励起光が合成されると、その光信号の信号強度を増幅する光ファイバである。 The optical fiber 1021 (for example, the optical fiber 21, the optical fiber 21a, the optical fibers 271 to 27K, etc.) passes an optical signal and amplifies the signal intensity of the optical signal when the excitation light is combined with the optical signal. It is an optical fiber.
 光源1031~103N(例えば、励起光源31~3N、励起光源31~3M等)は、励起光を出力する複数の光源であって、励起光出力強度対消費電力特性がそれぞれ異なる複数の光源である。 The light sources 1031 to 103N (for example, excitation light sources 31 to 3N, excitation light sources 31 to 3M, etc.) are a plurality of light sources that output excitation light, and are a plurality of light sources having different excitation light output intensity versus power consumption characteristics. .
 光源駆動手段1061(例えば、光源駆動回路61、光源駆動回路561等)は、光源から励起光を出力させる。 The light source driving unit 1061 (for example, the light source driving circuit 61, the light source driving circuit 561, and the like) causes the light source to output excitation light.
 合成手段1041(例えば、光合波器41、光合波器41a、光合波器411~41K等)は、光源から出力された励起光を光信号に合成させる。 The combining means 1041 (for example, the optical multiplexer 41, the optical multiplexer 41a, the optical multiplexers 411 to 41K, etc.) combines the excitation light output from the light source into an optical signal.
 スイッチ1071(例えば、N×1スイッチ71、M×Kスイッチ571等)は、個々の光源毎に光源に対応する励起光の入力端を有し、励起光を合成手段1041に出力するための出力端を有する。 The switch 1071 (for example, the N × 1 switch 71, the M × K switch 571, etc.) has an input end of excitation light corresponding to each light source, and an output for outputting the excitation light to the combining means 1041 Have an end.
 そのような構成によって、高い電力利用効率を実現することができる。 With such a configuration, high power utilization efficiency can be realized.
 上記の本発明の各実施形態は、以下の付記のようにも記載され得るが、以下に限定されるわけではない。 Although each embodiment of the above-mentioned present invention may be described as the following supplementary notes, it is not necessarily limited to the following.
(付記1)
 光信号を通過させ、前記光信号に励起光が合成されると、前記光信号の信号強度を増幅する光ファイバと、
 前記励起光を出力する複数の光源であって、励起光出力強度対消費電力特性がそれぞれ異なる複数の光源と、
 光源から励起光を出力させる光源駆動手段と、
 前記光源から出力された励起光を前記光信号に合成させる合成手段と、
 個々の光源毎に光源に対応する励起光の入力端を有し、励起光を前記合成手段に出力するための出力端を有するスイッチとを備える
 ことを特徴とする光ファイバ増幅器。
(Supplementary Note 1)
An optical fiber for passing an optical signal and amplifying the signal intensity of the optical signal when excitation light is combined with the optical signal;
A plurality of light sources for outputting the excitation light, the plurality of light sources each having different excitation light output intensity versus power consumption characteristics;
Light source driving means for outputting excitation light from the light source;
Combining means for combining excitation light output from the light source with the optical signal;
An optical fiber amplifier comprising an input end of excitation light corresponding to each light source and a switch having an output end for outputting the excitation light to the combining means for each individual light source.
(付記2)
 スイッチにおいて出力端に接続させる入力端を制御するスイッチ制御手段を備え、
 光源から出力される励起光の励起光出力強度をモニタし、前記励起光出力強度が、前記光源に対して定められている励起光出力強度の範囲の境界値となったときに、光源駆動手段に、励起光を出力させる光源の切り替えを指示するとともに、前記スイッチ制御手段に、切り替え後の光源に対応する入力端を出力端に接続させるように指示する切り替え指示手段を備える
 付記1に記載の光ファイバ増幅器。
(Supplementary Note 2)
Switch control means for controlling an input end connected to the output end in the switch;
The light source driving means monitors the excitation light output intensity of the excitation light output from the light source, and when the excitation light output intensity becomes a boundary value of the range of the excitation light output intensity defined for the light source, And switching instruction means for instructing switching of the light source for outputting the excitation light and instructing the switch control means to connect the input end corresponding to the switched light source to the output end. Optical fiber amplifier.
(付記3)
 複数の光源は、それぞれペルチエ冷却器を備え、個々の光源に対応する個々のペルチエ冷却器の最大吸熱量はそれぞれ異なる
 付記1または付記2に記載の光ファイバ増幅器。
(Supplementary Note 3)
The optical fiber amplifier according to Appendix 1 or 2, wherein the plurality of light sources each include a Peltier cooler, and the maximum heat absorption amount of the individual Peltier coolers corresponding to the individual light sources is different.
(付記4)
 光ファイバに入力される光信号の信号強度と、所定の信号強度との利得を算出する利得算出手段と、
 光ファイバに入力される光信号における、信号伝達に用いられる帯域をモニタする帯域モニタ手段とを備え、
 光源駆動手段は、少なくとも前記帯域に基づいて、励起光を出力させる光源を選択し、前記光源から、前記利得と前記帯域との積に応じた励起光出力強度で、励起光を出力させる
 付記1から付記3のうちのいずれかに記載の光ファイバ増幅器。
(Supplementary Note 4)
Gain calculating means for calculating gains of the signal strength of the optical signal input to the optical fiber and the predetermined signal strength;
And band monitor means for monitoring a band used for signal transmission in the optical signal input to the optical fiber,
The light source driving means selects a light source for outputting excitation light based on at least the band, and outputs excitation light at an excitation light output intensity corresponding to a product of the gain and the band from the light source. 4. An optical fiber amplifier according to any of the preceding claims.
(付記5)
 光ファイバに入力される光信号の信号強度と、所定の信号強度との利得を算出する利得算出手段と、
 光ファイバに入力される光信号における、信号伝達に用いられる帯域をモニタする帯域モニタ手段とを備え、
 光源駆動手段は、前記利得と前記帯域との積に基づいて、励起光を出力させる光源を選択し、前記光源から、前記利得と前記帯域との積に応じた励起光出力強度で、励起光を出力させる
 付記1から付記4のうちのいずれかに記載の光ファイバ増幅器。
(Supplementary Note 5)
Gain calculating means for calculating gains of the signal strength of the optical signal input to the optical fiber and the predetermined signal strength;
And band monitor means for monitoring a band used for signal transmission in the optical signal input to the optical fiber,
The light source driving means selects a light source for outputting pumping light based on the product of the gain and the band, and the pumping light is output from the light source at a pumping light output intensity corresponding to the product of the gain and the band. The optical fiber amplifier according to any one of Appendixes 1 to 4.
(付記6)
 1本のコアを有する1本の光ファイバを備え、
 光源駆動手段は、励起光を出力させる光源を1つ選択する
 付記4または付記5に記載の光ファイバ増幅器。
(Supplementary Note 6)
Equipped with one optical fiber with one core,
The optical fiber amplifier according to Appendix 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light.
(付記7)
 合成手段は、コア個別方式によって、光信号に励起光を合成させる
 付記6に記載の光ファイバ増幅器。
(Appendix 7)
The optical fiber amplifier according to claim 6, wherein the combining means combines the excitation light into the optical signal by a core individual system.
(付記8)
 複数本のコアを有する1本の光ファイバを備え、
 光源駆動手段は、励起光を出力させる光源を1つ選択する
 付記4または付記5に記載の光ファイバ増幅器。
(Supplementary Note 8)
One fiber with multiple cores,
The optical fiber amplifier according to Appendix 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light.
(付記9)
 合成手段は、クラッド一括方式によって、光信号に励起光を合成させる
 付記8に記載の光ファイバ増幅器。
(Appendix 9)
The optical fiber amplifier according to claim 8, wherein the combining means combines the excitation light into the optical signal by a clad collective method.
(付記10)
 1本のコアを有する複数本の光ファイバを備え、
 光ファイバ毎に合成手段を備え、
 スイッチは、個々の合成手段毎に合成手段に対応する出力端を有し、
 光源駆動手段は、光ファイバ毎に、励起光を出力させる光源を1つ選択する
 付記4または付記5に記載の光ファイバ増幅器。
(Supplementary Note 10)
With multiple optical fibers with one core,
Each optical fiber has a combining means,
The switch has an output end corresponding to the combining means for each individual combining means,
The optical fiber amplifier according to Appendix 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light for each optical fiber.
(付記11)
 光ファイバは、希土類イオンが添加された光ファイバである
 付記1から付記10のうちのいずれかに記載の光ファイバ増幅器。
(Supplementary Note 11)
The optical fiber amplifier according to any one of Appendixes 1 to 10, wherein the optical fiber is an optical fiber doped with rare earth ions.
(付記12)
 付記6または付記7に記載の光ファイバ増幅器を複数備え、
 それぞれの光ファイバ増幅器内の光ファイバ内のコアに対応する複数のコアを含み、複数の光ファイバ増幅器の外部に設けられる1本の外部光ファイバを備え、
 前記外部光ファイバに対して励起光を出力する1つの外部光源を備える
 ことを特徴とする光ファイバ増幅システム。
(Supplementary Note 12)
A plurality of optical fiber amplifiers according to Appendix 6 or Appendix 7,
Comprising a plurality of cores corresponding to the cores in the optical fibers in each of the optical fiber amplifiers, and one external optical fiber provided outside the plurality of optical fiber amplifiers,
An optical fiber amplification system comprising one external light source for outputting excitation light to the external optical fiber.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. The configurations and details of the present invention can be modified in various ways that those skilled in the art can understand within the scope of the present invention.
 この出願は、2017年6月28日に出願された日本特許出願2017-126622を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-126622 filed on June 28, 2017, the entire disclosure of which is incorporated herein.
産業上の利用の可能性Industrial Applicability
 本発明は、光信号の信号強度を増幅させる光ファイバ増幅器および光ファイバ増幅システムに好適に適用される。 The present invention is preferably applied to an optical fiber amplifier and an optical fiber amplification system that amplifies the signal strength of an optical signal.
 1 第1の信号強度モニタ
 2 第2の信号強度モニタ
 3 帯域モニタ
 11 第1の光アイソレータ
 12 第2の光アイソレータ
 21 光ファイバ
 31~3N 励起光源
 41 光合波器
 51 利得制御回路
 61 光源駆動回路
 71 スイッチ
 81 出力モニタ
 91 スイッチ制御回路
DESCRIPTION OF SYMBOLS 1 1st signal strength monitor 2 2nd signal strength monitor 3 band monitor 11 1st optical isolator 12 2nd optical isolator 21 optical fiber 31-3N excitation light source 41 optical multiplexer 51 gain control circuit 61 light source drive circuit 71 Switch 81 Output monitor 91 Switch control circuit

Claims (12)

  1.  光信号を通過させ、前記光信号に励起光が合成されると、前記光信号の信号強度を増幅する光ファイバと、
     前記励起光を出力する複数の光源であって、励起光出力強度対消費電力特性がそれぞれ異なる複数の光源と、
     光源から励起光を出力させる光源駆動手段と、
     前記光源から出力された励起光を前記光信号に合成させる合成手段と、
     個々の光源毎に光源に対応する励起光の入力端を有し、励起光を前記合成手段に出力するための出力端を有するスイッチとを備える
     ことを特徴とする光ファイバ増幅器。
    An optical fiber for passing an optical signal and amplifying the signal intensity of the optical signal when excitation light is combined with the optical signal;
    A plurality of light sources for outputting the excitation light, the plurality of light sources each having different excitation light output intensity versus power consumption characteristics;
    Light source driving means for outputting excitation light from the light source;
    Combining means for combining excitation light output from the light source with the optical signal;
    An optical fiber amplifier comprising an input end of excitation light corresponding to each light source and a switch having an output end for outputting the excitation light to the combining means for each individual light source.
  2.  スイッチにおいて出力端に接続させる入力端を制御するスイッチ制御手段を備え、
     光源から出力される励起光の励起光出力強度をモニタし、前記励起光出力強度が、前記光源に対して定められている励起光出力強度の範囲の境界値となったときに、光源駆動手段に、励起光を出力させる光源の切り替えを指示するとともに、前記スイッチ制御手段に、切り替え後の光源に対応する入力端を出力端に接続させるように指示する切り替え指示手段を備える
     請求項1に記載の光ファイバ増幅器。
    Switch control means for controlling an input end connected to the output end in the switch;
    The light source driving means monitors the excitation light output intensity of the excitation light output from the light source, and when the excitation light output intensity becomes a boundary value of the range of the excitation light output intensity defined for the light source, And a switching instruction unit that instructs the switch control unit to connect the input end corresponding to the switched light source to the output end. Optical fiber amplifier.
  3.  複数の光源は、それぞれペルチエ冷却器を備え、個々の光源に対応する個々のペルチエ冷却器の最大吸熱量はそれぞれ異なる
     請求項1または請求項2に記載の光ファイバ増幅器。
    The optical fiber amplifier according to claim 1 or 2, wherein the plurality of light sources each include a Peltier cooler, and the maximum heat absorption amount of the individual Peltier coolers corresponding to the individual light sources is different.
  4.  光ファイバに入力される光信号の信号強度と、所定の信号強度との利得を算出する利得算出手段と、
     光ファイバに入力される光信号における、信号伝達に用いられる帯域をモニタする帯域モニタ手段とを備え、
     光源駆動手段は、少なくとも前記帯域に基づいて、励起光を出力させる光源を選択し、前記光源から、前記利得と前記帯域との積に応じた励起光出力強度で、励起光を出力させる
     請求項1から請求項3のうちのいずれか1項に記載の光ファイバ増幅器。
    Gain calculating means for calculating gains of the signal strength of the optical signal input to the optical fiber and the predetermined signal strength;
    And band monitor means for monitoring a band used for signal transmission in the optical signal input to the optical fiber,
    The light source driving means selects a light source for outputting pumping light based on at least the band, and outputs the pumping light with a pumping light output intensity corresponding to the product of the gain and the band from the light source. The optical fiber amplifier according to any one of claims 1 to 3.
  5.  光ファイバに入力される光信号の信号強度と、所定の信号強度との利得を算出する利得算出手段と、
     光ファイバに入力される光信号における、信号伝達に用いられる帯域をモニタする帯域モニタ手段とを備え、
     光源駆動手段は、前記利得と前記帯域との積に基づいて、励起光を出力させる光源を選択し、前記光源から、前記利得と前記帯域との積に応じた励起光出力強度で、励起光を出力させる
     請求項1から請求項4のうちのいずれか1項に記載の光ファイバ増幅器。
    Gain calculating means for calculating gains of the signal strength of the optical signal input to the optical fiber and the predetermined signal strength;
    And band monitor means for monitoring a band used for signal transmission in the optical signal input to the optical fiber,
    The light source driving means selects a light source for outputting pumping light based on the product of the gain and the band, and the pumping light is output from the light source at a pumping light output intensity corresponding to the product of the gain and the band. The optical fiber amplifier according to any one of claims 1 to 4.
  6.  1本のコアを有する1本の光ファイバを備え、
     光源駆動手段は、励起光を出力させる光源を1つ選択する
     請求項4または請求項5に記載の光ファイバ増幅器。
    Equipped with one optical fiber with one core,
    The optical fiber amplifier according to claim 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light.
  7.  合成手段は、コア個別方式によって、光信号に励起光を合成させる
     請求項6に記載の光ファイバ増幅器。
    The optical fiber amplifier according to claim 6, wherein the combining means combines the excitation light into the optical signal by a core individual system.
  8.  複数本のコアを有する1本の光ファイバを備え、
     光源駆動手段は、励起光を出力させる光源を1つ選択する
     請求項4または請求項5に記載の光ファイバ増幅器。
    One fiber with multiple cores,
    The optical fiber amplifier according to claim 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light.
  9.  合成手段は、クラッド一括方式によって、光信号に励起光を合成させる
     請求項8に記載の光ファイバ増幅器。
    The optical fiber amplifier according to claim 8, wherein the combining means combines the excitation light into the optical signal by a clad collective method.
  10.  1本のコアを有する複数本の光ファイバを備え、
     光ファイバ毎に合成手段を備え、
     スイッチは、個々の合成手段毎に合成手段に対応する出力端を有し、
     光源駆動手段は、光ファイバ毎に、励起光を出力させる光源を1つ選択する
     請求項4または請求項5に記載の光ファイバ増幅器。
    With multiple optical fibers with one core,
    Each optical fiber has a combining means,
    The switch has an output end corresponding to the combining means for each individual combining means,
    The optical fiber amplifier according to claim 4 or 5, wherein the light source driving means selects one light source for outputting the excitation light for each optical fiber.
  11.  光ファイバは、希土類イオンが添加された光ファイバである
     請求項1から請求項10のうちのいずれか1項に記載の光ファイバ増幅器。
    The optical fiber amplifier according to any one of claims 1 to 10, wherein the optical fiber is an optical fiber doped with rare earth ions.
  12.  請求項6または請求項7に記載の光ファイバ増幅器を複数備え、
     それぞれの光ファイバ増幅器内の光ファイバ内のコアに対応する複数のコアを含み、複数の光ファイバ増幅器の外部に設けられる1本の外部光ファイバを備え、
     前記外部光ファイバに対して励起光を出力する1つの外部光源を備える
     ことを特徴とする光ファイバ増幅システム。
    A plurality of optical fiber amplifiers according to claim 6 or claim 7,
    Comprising a plurality of cores corresponding to the cores in the optical fibers in each of the optical fiber amplifiers, and one external optical fiber provided outside the plurality of optical fiber amplifiers,
    An optical fiber amplification system comprising one external light source for outputting excitation light to the external optical fiber.
PCT/JP2018/021042 2017-06-28 2018-05-31 Optical fiber amplifier and optical fiber amplification system WO2019003797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526735A JP6891957B2 (en) 2017-06-28 2018-05-31 Fiber optic amplifier and fiber optic amplification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126622 2017-06-28
JP2017126622 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019003797A1 true WO2019003797A1 (en) 2019-01-03

Family

ID=64741388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021042 WO2019003797A1 (en) 2017-06-28 2018-05-31 Optical fiber amplifier and optical fiber amplification system

Country Status (2)

Country Link
JP (1) JP6891957B2 (en)
WO (1) WO2019003797A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009395A (en) * 2017-06-28 2019-01-17 日本電気株式会社 Optical fiber amplifier and optical fiber amplifier system
WO2023017585A1 (en) * 2021-08-11 2023-02-16 日本電気株式会社 Optical amplification system, optical amplification method, and storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126848A (en) * 1997-07-01 1999-01-29 Mitsubishi Electric Corp High-reliability optical amplifier
JP2002072262A (en) * 2000-08-25 2002-03-12 Fujitsu Ltd Optical amplifier
US20030117697A1 (en) * 2001-10-31 2003-06-26 Peter Krummrich Pumping source with a number of pumping lasers for the Raman amplification of a WDM signal with minimized four-wave mixing
JP2006173526A (en) * 2004-12-20 2006-06-29 Topcon Corp Solid laser equipment
JP2011018833A (en) * 2009-07-10 2011-01-27 Fujitsu Ltd Temperature control method, temperature control apparatus, and optical device
JP2012175091A (en) * 2011-02-24 2012-09-10 Nec Corp Optical amplifier controller
JP2013098413A (en) * 2011-11-02 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier system and optical amplification method
JP2013123205A (en) * 2011-11-07 2013-06-20 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier system and optical amplification method
JP2014135508A (en) * 2010-03-16 2014-07-24 Ofs Fitel Llc Multi-core fiber for transmission and amplification, and mechanism for emitting pump light to amplifier core
JP2015200728A (en) * 2014-04-07 2015-11-12 富士通株式会社 Optical branch unit, optical amplification device, and optical amplification method
JP2017034064A (en) * 2015-07-31 2017-02-09 日本電信電話株式会社 Optical amplifier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126848A (en) * 1997-07-01 1999-01-29 Mitsubishi Electric Corp High-reliability optical amplifier
JP2002072262A (en) * 2000-08-25 2002-03-12 Fujitsu Ltd Optical amplifier
US20030117697A1 (en) * 2001-10-31 2003-06-26 Peter Krummrich Pumping source with a number of pumping lasers for the Raman amplification of a WDM signal with minimized four-wave mixing
JP2006173526A (en) * 2004-12-20 2006-06-29 Topcon Corp Solid laser equipment
JP2011018833A (en) * 2009-07-10 2011-01-27 Fujitsu Ltd Temperature control method, temperature control apparatus, and optical device
JP2014135508A (en) * 2010-03-16 2014-07-24 Ofs Fitel Llc Multi-core fiber for transmission and amplification, and mechanism for emitting pump light to amplifier core
JP2012175091A (en) * 2011-02-24 2012-09-10 Nec Corp Optical amplifier controller
JP2013098413A (en) * 2011-11-02 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier system and optical amplification method
JP2013123205A (en) * 2011-11-07 2013-06-20 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier system and optical amplification method
JP2015200728A (en) * 2014-04-07 2015-11-12 富士通株式会社 Optical branch unit, optical amplification device, and optical amplification method
JP2017034064A (en) * 2015-07-31 2017-02-09 日本電信電話株式会社 Optical amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009395A (en) * 2017-06-28 2019-01-17 日本電気株式会社 Optical fiber amplifier and optical fiber amplifier system
WO2023017585A1 (en) * 2021-08-11 2023-02-16 日本電気株式会社 Optical amplification system, optical amplification method, and storage medium

Also Published As

Publication number Publication date
JPWO2019003797A1 (en) 2019-11-21
JP6891957B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6642583B2 (en) Optical repeater and control method of optical repeater
JP2019513302A (en) Optical amplifier, optical network including optical amplifier, and amplification method of optical signal
US10965375B2 (en) Optical node device
JP2015167158A (en) multi-core fiber amplifier
JP7160117B2 (en) Optical amplification device, optical transmission system and optical amplification method
WO2019003797A1 (en) Optical fiber amplifier and optical fiber amplification system
JP4415746B2 (en) Raman amplifier
US11374377B2 (en) Optical amplifying apparatus and method of amplifying optical signal
JP2669483B2 (en) Optical amplifier repeater circuit
WO2020137820A1 (en) Optical amplifier, optical amplifier equalizing method, and transmission system
JP7188085B2 (en) Multi-core optical fiber amplifier and optical amplification method using multi-core optical fiber amplification medium
EP1115185A2 (en) Wavelength-division-multiplexing optical fiber amplifier
CN105051990B (en) Optical amplifier and its control method
JP6904108B2 (en) Fiber optic amplifier and fiber optic amplification system
US11870208B2 (en) Optical fiber amplifier, optical fiber amplifier control method, and transmission system
JP2000114624A (en) Bi-directional excitation light direct amplifying device
JP2009004526A (en) Optical amplifier
WO2023084707A1 (en) Light amplification device and light amplification method
JP2000114625A (en) Direct optical amplification device
JP7416226B2 (en) Optical amplification device and optical amplification method
WO2022202737A1 (en) Optical amplifier, optical relay, and optical communication system
JP3923060B2 (en) Optical amplifier
JP2002057387A (en) Multi-channel optical fiber amplifier and its control method
JP2012186443A (en) Ultracompact optical fiber amplifier
JP2000261077A (en) Optical circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823011

Country of ref document: EP

Kind code of ref document: A1