WO2019003579A1 - Laminate having heat shielding capability - Google Patents

Laminate having heat shielding capability Download PDF

Info

Publication number
WO2019003579A1
WO2019003579A1 PCT/JP2018/015598 JP2018015598W WO2019003579A1 WO 2019003579 A1 WO2019003579 A1 WO 2019003579A1 JP 2018015598 W JP2018015598 W JP 2018015598W WO 2019003579 A1 WO2019003579 A1 WO 2019003579A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
reflective layer
visible light
less
glass
Prior art date
Application number
PCT/JP2018/015598
Other languages
French (fr)
Japanese (ja)
Inventor
一色 眞誠
信孝 青峰
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019003579A1 publication Critical patent/WO2019003579A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a laminate having heat shielding performance.
  • heat shielding members such as window glass and vehicle glass are required to have high solar heat shielding performance (hereinafter, referred to as “heat shielding performance”).
  • heat shielding performance high solar heat shielding performance
  • a transparent metal reflection layer is provided on the outdoor side of the window glass, which can suppress the heat of the sun from entering the room.
  • the heat shielding performance of the heat shielding member can be represented by a solar radiation shielding coefficient (SC value).
  • SC value is the solar radiation shielding performance when the solar radiation shielding performance of float glass of 3 mm thickness is 1, and it is the value obtained by dividing the solar radiation heat gain rate (g value: defined in ISO 9050: 2003) by 0.88 And the smaller the value, the higher the heat shielding performance.
  • the heat shielding member so far has sought to improve the heat shielding performance, and has not received much attention for other characteristics.
  • the heat shielding member such as a window glass and a vehicle glass
  • the configuration in which the indoor situation can be easily viewed from the outside can be a problem from the viewpoint of privacy.
  • a window glass for privacy protection a glass that scatters light such as frosted glass is used.
  • the configuration of the heat shielding member is considered in consideration of the improvement of the heat shielding performance and the privacy protection.
  • Patent Document 1 describes an optical body capable of suppressing the heat island phenomenon.
  • this optical body can not be said to be sufficient in any of heat shielding performance and privacy protection.
  • the present invention has been made in view of such a background, and it is an object of the present invention to provide a laminate having antiglare property and consideration for privacy while having good heat shielding performance. Do.
  • the present invention is a laminate having a heat shielding performance, A first member having first and second surfaces; A second member having third and fourth surfaces; A reflective layer disposed between the first member and the second member; Have The difference ⁇ n in refractive index between the first member and the second member is less than 0.05, The reflective layer forms a first uneven interface with the second surface of the first member, and a second uneven layer with the third surface of the second member. Form an interface,
  • the laminate has a first side corresponding to the side of the first surface of the first member, and a second side corresponding to the side of the fourth surface of the second member.
  • the energy reflectance Re is 60% or more
  • the visible light reflectance Rv including the diffusion component is 40% or more
  • the visible light regular reflectance Rvt is Less than 30%
  • the transmittance Tv of visible light transmitted from the first side to the second side of the laminate is 1% or more and less than 30%.
  • FIG. 5 schematically shows a cross section of a laminate having a heat shielding performance according to another embodiment of the present invention.
  • FIG. 7 schematically shows a cross section of a laminate having a heat shielding performance according to still another embodiment of the present invention.
  • FIG. 7 schematically shows a cross section of a laminate having a heat shielding performance according to still another embodiment of the present invention.
  • FIG. 1 schematically shows a cross section of a laminate having a heat shielding performance according to an embodiment of the present invention (hereinafter, referred to as “first laminate”).
  • the first stack 100 has a first side 102 and a second side 104.
  • the first stacked body 100 includes a first member 110, a second member 120, and a reflective layer 130 disposed between the two.
  • the first member 110 has a first surface 112 and a second surface 114.
  • the first surface 112 is a flat surface
  • the second surface 114 is an uneven surface.
  • the second member 120 has a third surface 122 and a fourth surface 124.
  • the third surface 122 is an irregular surface
  • the fourth surface 124 is a flat surface.
  • the first surface 112 of the first member 110 corresponds to the first side 102 of the first stack 100
  • the fourth surface 124 of the second member 120 corresponds to the first surface of the first stack 100. It corresponds to the second side 104.
  • the reflective layer 130 is disposed on the first member 110 along the uneven shape of the second surface 114 of the first member 110.
  • the reflective layer 130 is disposed on the first member 110 in contact with the asperities of the second surface 114. Since the reflective layer 130 is relatively thin, a concavo-convex shape corresponding to the concavo-convex shape of the second surface 114 of the first member 110 is generated on the second member 120 side of the reflective layer 130.
  • the second member 120 is disposed on the reflective layer 130 in such a manner as to fill up the unevenness of the reflective layer 130.
  • the reflective layer 130 forms a first uneven interface 132 with the second surface 114 of the first member 110, and with the third surface 122 of the second member 120, A second uneven interface 134 is formed.
  • the refractive index difference ⁇ n between the first member 110 and the second member 120 is less than 0.05.
  • the refractive index difference ⁇ n is preferably less than 0.04.
  • the reflective layer 130 reflects most of the light in the near infrared region incident from the first side 102, and visible light incident from the first side 102. Most of the light in the area is also designed to be reflected.
  • the energy reflectance Re is 60% or more
  • the visible light reflectance Rv including the diffusion component is 40% or more.
  • the visible light regular reflectance Rvt is 30% or less
  • the Tv is configured to be 1% or more and less than 30%.
  • visible light regular reflectance Rvt means the reflectance of specularly reflected light generated when the surface to be measured is irradiated with visible light.
  • visible light reflectance Rv containing a diffused component means a reflectance obtained from all reflected light including scattered light which is generated when the surface to be measured is irradiated with visible light.
  • Such "visible light reflectance Rv including a diffused component” can be evaluated by a spectrophotometric method in which a measurement sample is placed at the reflection measurement port of the integrating sphere.
  • the energy reflectance Re means an energy reflectance including a diffuse component.
  • the SC value in the first stacked body 100, the SC value can be significantly suppressed, and it is possible to exhibit significantly high thermal insulation.
  • an SC value of 0.2 or less when evaluated from the first side 102, an SC value of 0.2 or less can be obtained.
  • the visible light transmittance Tv is suppressed to 1% or more and less than 30%. For this reason, in the first laminate 100, visible light transmitted from the first side 102 to the second side 104 is significantly suppressed, and the privacy problem as described above can also be alleviated.
  • the visible light regular reflectance Rvt on the first side 102 is suppressed to 30% or less. In this case, since much of the reflected light that may be generated by the visible light incident on the first stacked body 100 is scattered, the antiglare property of the first stacked body 100 can be enhanced.
  • the energy reflectance Re, the visible light reflectance Rv including the diffusion component, and the visible light regular reflectance Rvt described above are the structure of the reflective layer 130, for example, the number of stacked layers constituting the multilayer film, the material of each layer (and This can be achieved by appropriately adjusting the refractive index) and / or the thickness of each layer.
  • the visible light regular reflectance Rvt can be obtained, for example, by adjusting the form of the unevenness of the second surface 114 of the first member 110.
  • the difference ⁇ n in refractive index between the first member 110 and the second member 120 is controlled to be less than 0.05. For this reason, it becomes difficult to produce an angular deviation between the incident angle of visible light incident on the first laminate 100 and the emission angle of visible light emitted from the first laminate 100. Therefore, for example, when the surroundings are viewed from the second side 104 to the first side 102 of the first stacked body 100, it is possible to enhance the sharpness of the image.
  • the present invention it is possible to provide a laminate having good heat shielding performance, antiglare property, and privacy. Moreover, in the laminated body which concerns, a favorable clearness can be acquired with respect to a transmission image.
  • each member constituting the first laminate 100 will be described in more detail.
  • the referential mark shown in FIG. 1 is used.
  • First member 110 The material of the first member 110 is not particularly limited as long as it is “transparent”.
  • transparent means that the visible light transmittance has a property of 50% or more.
  • the first member 110 may be made of resin, plastic or glass. Also, the first member 110 may be colored.
  • the thickness of the first member 110 is not particularly limited, and a thin thickness in the form of a thin film (for example, 0.03 mm to 0.1 mm) to a thick thickness in the form of a substrate (for example 0.5 mm to 10 mm) Various thicknesses can be selected.
  • the second surface 114 of the first member 110 has an irregular surface.
  • the form of the unevenness is not particularly limited as long as the above-mentioned features can be exhibited.
  • the second surface 114 may be a so-called "anti-glare" treated surface.
  • such anti-glare treatment may be performed by wet or dry etching or sandblasting the glass substrate.
  • such an uneven surface may be configured, for example, by curing the resin in a state where the uneven member is pressed against the surface of the uncured resin.
  • the second surface 114 preferably has a root mean square gradient of the scale-limited surface (Sdq) defined by ISO 25178-2: 2012 of 0.05 or more and less than 0.6.
  • Sdq scale-limited surface
  • the visible light regular reflectance Rvt can be suppressed to 30% or less by the inclination formed on the uneven surface.
  • Sdq is less than 0.6, the film thickness of the reflective film 130 provided on the second surface 114 can be made uniform.
  • Sdq is more preferably 0.07 or more and less than 0.5, and particularly preferably 0.09 or more and less than 0.4.
  • the film thickness deviation of the reflective film 130 is preferably 10% or less, more preferably 5% or less, and particularly preferably 4% or less.
  • the 2nd surface 114 is 1 micrometer-30 micrometers in average length RSm of the roughness curve element prescribed
  • RSm average length of the roughness curve element prescribed
  • the transmitted image definition C (0.25) defined in JIS K 7374: 2007 can be 80% or more.
  • a haze can be suppressed to 10% or less as RSm is 1 micrometer or more.
  • the RSm is more preferably 3 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the material of the second member 120 is not particularly limited as long as it is “transparent”.
  • the second member 120 may be made of resin, plastic or glass.
  • the second member 120 may be made of a material different from that of the first member 110.
  • the second member 120 is selected such that the difference ⁇ n between the refractive index of the second member 120 and the refractive index of the first member 110 is less than 0.05.
  • various thicknesses can be selected for the second member 120 as well.
  • Reflective layer 130 When the reflective layer 130 is evaluated as the first stacked body 100, the energy reflectance Re as described above, the visible light reflectance Rv including a diffused component, the visible light regular reflectance Rvt, the visible light transmittance Tv, and the like
  • the configuration is not particularly limited as long as it is possible to achieve
  • the reflective layer 130 may be configured of a multilayer film.
  • the multilayer film may have, for example, an alternately stacked structure of a high refractive index film (for example, refractive index ⁇ 2) and a low refractive index film (for example, refractive index ⁇ 2).
  • a high refractive index film for example, refractive index ⁇ 2
  • a low refractive index film for example, refractive index ⁇ 2
  • examples of the high refractive index film include titania and the like.
  • membrane, a silica etc. are mentioned, for example.
  • the reflective layer 130 may include a silver layer and have a more complex multilayer structure as described below.
  • the thickness (total thickness) of the reflective layer 130 is preferably in the range of 1 nm to 500 nm, more preferably in the range of 50 nm to 300 nm, and particularly preferably in the range of 100 nm to 250 nm.
  • the reflective layer 130 may be formed on the uneven surface (the second surface 114) of the first member 110 by a general film forming technique such as, for example, a vapor deposition method, a sputtering method, a PVD method, or a CVD method. it can.
  • a general film forming technique such as, for example, a vapor deposition method, a sputtering method, a PVD method, or a CVD method. it can.
  • the second concavo-convex interface 134 formed in the reflective layer 130 preferably has the same Sdq and RSm as the second surface 114.
  • the first laminate 100 having the characteristics as described above may be used, for example, in the form of a film. It is assumed that such a film is stuck to the surface of a glass member such as window glass and vehicle glass, for example. In this case, the first laminate 100 is applied such that the first side 102 is the "outdoor" side of the glass member and the second side 104 is the "indoor" side.
  • FIG. 2 the cross section of the laminated body (henceforth a "2nd laminated body") which has the thermal insulation performance by another embodiment of this invention is shown roughly.
  • the second stack 200 has a first side 202 and a second side 204.
  • the second stacked body 200 also has a first member 210, a second member 220, and a reflective layer 230 disposed between the two.
  • the second stacked body 200 has a first additional member 240.
  • the first member 210 has a first surface 212 and a second surface 214.
  • the first surface 212 is not necessarily a flat surface, but is preferably a flat surface.
  • the second surface 214 is an uneven surface.
  • the second member 220 has a third surface 222 and a fourth surface 224.
  • the third surface 222 is an irregular surface
  • the fourth surface 224 is a flat surface.
  • the first additional member 240 is disposed on the side of the first surface 212 of the first member 210.
  • the first additional member 240 has a fifth surface 242 and a sixth surface 244, and the first additional member 240 contacts the sixth surface 244 with the first surface 212 of the first member 210. It will be arranged as
  • the fifth surface 242 of the first additional member 240 corresponds to the first side 202 of the second stack 200.
  • the fourth surface 224 of the second member 220 corresponds to the second side 204 of the second stack 200.
  • the reflective layer 230 is formed on the first member 210 along the concavo-convex shape of the second surface 214 of the first member 210. Will be placed.
  • the reflective layer 230 is disposed on the first member 210 in contact with the asperities of the second surface 214. Since the reflective layer 230 is relatively thin, an uneven shape corresponding to the uneven shape of the second surface 214 of the first member 210 is generated on the second member 220 side of the reflective layer 230.
  • the second member 120 is disposed on the reflective layer 230 in such a manner as to fill up the unevenness of the reflective layer 230.
  • the reflective layer 230 forms a first uneven interface 232 with the second surface 214 of the first member 210, and with the third surface 222 of the second member 220, A second uneven interface 234 is formed.
  • the refractive index difference ⁇ n between the first member 210 and the second member 220 is less than 0.05. Also, the refractive index difference between the first member 210 and the first additional member 240 is approximately zero, for example less than 0.02.
  • the reflective layer 230 reflects most of the light in the near infrared region incident from the first side 202 and at the same time in the visible light region incident from the first side 202. It is designed to reflect most of the light as well.
  • the energy reflectance Re is 60% or more
  • the visible light reflectance Rv including the diffusion component is 40% or more.
  • the visible light regular reflectance Rvt is 30% or less
  • the transmittance of visible light transmitted from the first side 202 to the second side 204 is configured to be 1% or more and less than 30%.
  • the same effect as that of the first laminate 100 can be obtained. That is, in the second stacked body 200, it is possible to obtain a significantly suppressed SC value, and it is possible to exhibit a significantly high thermal insulation. For example, in the second stacked body 200, when evaluated from the first side 202, an SC value of 0.2 or less can be obtained.
  • the second laminate 200 visible light transmitted from the first side 202 to the second side 204 is significantly suppressed, and the problem of privacy can also be alleviated.
  • the antiglare property can be enhanced.
  • the second laminate 200 when the surroundings are viewed from the second side 204 toward the first side 202, it is possible to obtain good sharpness for the transmission image.
  • each member constituting the second stacked body 200 will be described in more detail.
  • the configuration of the second member 220 and the reflective layer 230 among the members the above description can be referred to. Therefore, the features of the first member 210 and the first additional member 240 will be mainly described here. Also, when referring to each member, the reference numerals shown in FIG. 2 are used.
  • the first member 210 is made of a transparent material such as resin, plastic or glass as described above. Also, the first member 210 may be colored.
  • the thickness of the first member 210 is not particularly limited, and may be a thin thickness (for example, 0.03 mm to 0.1 mm) in the form of a thin film.
  • the second surface 214 of the first member 210 has an irregular surface.
  • the form of the unevenness is not particularly limited as long as the above-mentioned features can be exhibited.
  • the second surface 214 may be a so-called "anti-glare" treated surface.
  • the first member 210 may be formed by disposing a wet coating layer having asperities on a first additional member 240 described later.
  • the second surface 214 and the second uneven interface 234 preferably have the same Sdq and RSm as the second surface 114, respectively.
  • the thickness of the reflective layer 230 is preferably the same as that of the reflective layer 130.
  • the material of the first additional member 240 is not particularly limited as long as it is “transparent”.
  • the first member 110 may be made of resin, plastic or glass.
  • the form and thickness of the first member 110 are not particularly limited.
  • the first member 110 may be in the form of a substrate having a relatively large thickness capable of supporting it.
  • the first additional member 240 may be formed of a flat glass substrate, and the first member 210 may be formed of an antiglare film.
  • the second laminate 200 having the above-mentioned features may be applied as a glass member such as window glass and vehicle glass (in particular, rear glass and roof glass, hereinafter the same).
  • At least the first additional member 240 is formed of a glass substrate. Also, in this case, the second laminate 200 is used with the first side 202 being the “outdoor” side of the glass member and the second side 104 being the “indoor” side.
  • the glare caused by the light reflected from the glass member is significantly reduced, and it is possible to view a clear transmission image with little distortion when viewing the outside from indoors.
  • FIG. 3 the cross section of the laminated body (henceforth a "3rd laminated body") which has the thermal insulation performance by further another embodiment of this invention is shown roughly.
  • the third stack 300 has a first side 302 and a second side 304.
  • the third stacked body 300 includes a first member 310, a second member 320, and a reflective layer 330 disposed therebetween.
  • the third stacked body 300 has a second additional member 350.
  • the first member 310 has a first surface 312 and a second surface 314.
  • the first surface 312 is a flat surface and the second surface 314 is an irregular surface.
  • the second member 320 has a third surface 322 and a fourth surface 324.
  • the third surface 322 is an uneven surface.
  • the fourth surface 324 is not necessarily a flat surface, but is preferably a flat surface.
  • the second additional member 350 is disposed on the side of the fourth surface 324 of the second member 320.
  • the second additional member 350 has a seventh surface 352 and an eighth surface 354, and the second additional member 350 makes the seventh surface 352 contact the fourth surface 324 of the second member 320. It will be arranged as
  • the eighth surface 354 of the second additional member 350 corresponds to the second side 304 of the third stack 300.
  • the first surface 312 of the first member 310 corresponds to the first side 302 of the third stack 300.
  • the reflective layer 330 is formed on the first member 310 along the concavo-convex shape of the second surface 314 of the first member 310. Will be placed.
  • the reflective layer 330 is disposed on the first member 310 in contact with the asperities of the second surface 314. Since the reflective layer 330 is relatively thin, a concavo-convex shape corresponding to the concavo-convex shape of the second surface 314 of the first member 310 is generated on the second member 320 side of the reflective layer 330.
  • the second member 320 is disposed on the reflective layer 330 in such a manner as to fill up the unevenness of the reflective layer 330.
  • the reflective layer 330 forms a first uneven interface 332 with the second surface 314 of the first member 310, and with the third surface 322 of the second member 320, A second uneven interface 334 is formed.
  • the refractive index difference ⁇ n between the first member 310 and the second member 320 is less than 0.05. Also, the refractive index difference between the second member 320 and the second additional member 350 is approximately 0 (zero), for example less than 0.01.
  • the reflective layer 330 reflects most of the light in the near infrared region incident from the first side 302, and at the same time in the visible light region incident from the first side 302. It is designed to reflect most of the light as well.
  • the energy reflectance Re is 60% or more
  • the visible light reflectance Rv including the diffusion component is 40% or more.
  • the visible light regular reflectance Rvt is 30% or less, and the transmittance of visible light transmitted from the first side 302 to the second side 304
  • the Tv is configured to be 1% or more and less than 30%.
  • the same effect as that of the first stacked body 100 can be obtained. That is, in the third stacked body 300, a significantly suppressed SC value can be obtained, and a significantly high heat shield can be exhibited. For example, in the third stacked body 300, when evaluated from the first side 302, an SC value of 0.2 or less can be obtained.
  • the third laminate 300 visible light transmitted from the first side 302 to the second side 304 is significantly suppressed, and the problem of privacy can be alleviated.
  • the antiglare property can be enhanced.
  • the third stacked body 300 when the surroundings are viewed from the second side 304 toward the first side 302, it is possible to obtain good sharpness for the transmission image.
  • each member constituting the third stacked body 300 will be described in more detail.
  • the configuration of the second member 320 and the reflective layer 330 among the members the above description can be referred to. Therefore, the features of the first member 310 and the second additional member 350 will be mainly described here. Also, when referring to each member, the reference numerals shown in FIG. 3 are used.
  • the material of the first member 310 is not particularly limited as long as the material is “transparent”.
  • the first member 310 may be made of resin, plastic or glass.
  • the thickness of the first member 310 is not particularly limited, and a thin thickness in the form of a thin film (for example, 0.03 mm to 0.3 mm) to a thick thickness in the form of a substrate (for example 0.3 mm to 10 mm) Various thicknesses can be selected.
  • the second surface 314 of the first member 310 has an irregular surface.
  • the form of the unevenness is not particularly limited as long as the above-mentioned features can be exhibited.
  • the second surface 314 may be a so-called "anti-glare" treated surface.
  • such antiglare treatment may be performed by wet or dry etching or sandblasting the glass substrate.
  • Second surface 314 and second relief interface 334 preferably have similar Sdq and RSm to second surface 114, respectively.
  • the thickness of the reflective layer 330 is preferably the same as that of the reflective layer 130.
  • the material of the second additional member 350 is not particularly limited as long as it is “transparent”.
  • the second additional member 350 may be made of resin, plastic or glass.
  • the form and thickness of the second additional member 350 are not particularly limited.
  • the second additional member 350 may be in the form of a substrate having a relatively thick thickness.
  • the second additional member 350 may be made of a glass substrate.
  • the third laminate 300 having the above-mentioned features may be applied as a glass member such as a window glass and a glass for a vehicle, for example.
  • the third laminate 300 when the third laminate 300 is applied to a glass for a vehicle, the first member 310 and the second additional member 350 are both formed of a glass substrate, and the second member 320 is a resin film (so-called Intermediate film). Further, in this case, the third stacked body 300 is used such that the first side 302 is the outside of the vehicle glass and the second side 304 is the inside of the vehicle.
  • FIG. 4 the cross section of the laminated body (henceforth a "4th laminated body") which has the thermal insulation performance by further another embodiment of this invention is shown roughly.
  • the fourth stacked body 400 has a configuration in which the second stacked body 200 described above and the third stacked body 300 are combined. That is, the fourth stacked body 400 has the first side 402 and the second side 404, and the first additional member 440, the first member 410, the reflective layer 430, and the second member 420. And the second additional member 450 in this order.
  • the reflective layer 430 reflects most of the light in the near infrared region incident from the first side 402, and at the same time, in the visible light region incident from the first side 402. It is designed to reflect most of the light as well.
  • the energy reflectance Re is 60% or more
  • the visible light reflectance Rv including the diffusion component is 40% or more
  • the visible light regular reflectance Rvt when evaluated on the first side 402, the visible light regular reflectance Rvt is 30% or less, and the transmittance of visible light transmitted from the first side 402 to the second side 404
  • the Tv is configured to be 1% or more and less than 30%.
  • the same effect as that of the first stacked body 100 can be obtained. That is, in the fourth stacked body 400, it is possible to obtain a significantly suppressed SC value, and it is possible to exhibit a significantly high thermal insulation. For example, in the fourth stacked body 400, when evaluated from the first side 402, an SC value of 0.2 or less can be obtained.
  • the fourth stacked body 400 much of the reflected light that may be generated by the visible light incident on the fourth stacked body 400 is scattered, so that the antiglare property can be enhanced.
  • the fourth stacked body 400 when the surroundings are viewed from the second side 404 to the first side 402, it is possible to obtain good sharpness for the transmission image.
  • Second surface 414 and second relief interface 434 preferably have similar Sdq and RSm to second surface 114, respectively.
  • the thickness of the reflective layer 430 is preferably the same as that of the reflective layer 130.
  • the fourth stacked body 400 may be applied as, for example, a glass member such as a window glass and a glass for a vehicle.
  • the first additional member 440 and the second additional member 450 are formed of a glass substrate.
  • the first member 410 has a refractive index similar to that of the first additional member 440 and is made of a resin film having asperities
  • the second member 420 is made of a resin film (so-called intermediate film). It is good.
  • the first side 402 is the outdoor (or outside of the car, and so forth) side of the glass member
  • the second side 404 is the indoor (or in car, below) side. To be used.
  • a first glass substrate to be the first member 310 and a second glass substrate to be the second additional member 350 are prepared.
  • the antiglare treatment on the second surface 314 of the first glass substrate is preferably an etching treatment, a sand blasting treatment or a deposition treatment.
  • the second surface 314 can be etched with a hydrogen fluoride (HF) aqueous solution having a concentration of 15 to 50% to form a fine uneven shape on the second surface 314.
  • HF hydrogen fluoride
  • the Sdq and RSm of the second surface 314 can be controlled by changing the concentration of HF aqueous solution used for the etching process and the processing time.
  • a chemical solution in which potassium fluoride is mixed with a hydrogen fluoride aqueous solution, or a mixed chemical solution of hydrogen fluoride and hydrogen chloride may be used.
  • a known wet coating method spray coating method, electrostatic coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method , Bar coat method, flexo coat method, slit coat method, roll coat method, etc.
  • the film formed by the deposition treatment include a film containing silica as a main component.
  • the main component is a film containing 70% by mass in terms of oxide content.
  • the membrane may contain fine particles, and the fine particles may be scaly, spherical or the like. By using the fine particles, a desired uneven shape can be formed.
  • the reflective layer 330 is disposed on the second surface 314 of the first member 310.
  • the reflective layer is formed by, for example, a film forming technique such as sputtering.
  • the second member 320 is placed on the reflective layer 330.
  • the second member 320 is made of, for example, a resin such as a thermosetting or ultraviolet (UV) curable resin.
  • a second glass substrate is placed on the second member 320. Thereafter, the second glass substrate is placed on the reflective layer 330 such that the second member 320 is in contact with the reflective layer 330.
  • a resin may be provided on one surface of the second glass substrate, and the second glass substrate may be provided on the reflective layer 330.
  • the second member 320 is cured.
  • the assembly is heated to a predetermined temperature, thereby curing the second member 320.
  • the assembly is irradiated with UV light, thereby curing the second member 320.
  • the first glass substrate having the reflective layer 330 and the second glass substrate are bonded via the second member 320, and the third stacked body 300 is configured. Ru.
  • the third stacked body 300 can be manufactured by such a method.
  • Examples 1 to 6 and Examples 9 to 11 are Examples, and Example 7 is a Comparative Example.
  • Example 8 is a reference example.
  • Example 1 A laminate having a configuration as shown in FIG. 3 was produced by the following method.
  • a glass substrate (soda lime glass) having a thickness of 2 mm was prepared as a first member.
  • One surface (referred to as a second surface) of this glass substrate was immersed in a frost treatment solution containing 2 wt% hydrogen fluoride and 3 wt% potassium fluoride for 3 minutes to perform pre-etching treatment. Furthermore, after the glass substrate was washed, it was immersed in an aqueous solution containing 7.5 wt% hydrogen fluoride and 7.5 wt% hydrogen chloride for 18 minutes (main etching treatment) to form unevenness on the second surface.
  • a reflective layer was formed on the second surface of the glass substrate by sputtering.
  • the reflective layer is made of zinc oxide film (5 nm (target film thickness; target same as the following)) / silver film (68 nm) / aluminum-doped zinc oxide film (5 nm) / zinc-doped tin oxide film (80 nm) / zinc oxide film (5 nm) / A seven-layer structure of silver film (68 nm) / aluminum-doped zinc oxide film (5 nm) was used. The thickness (total thickness) of the reflective layer was targeted at 236 nm.
  • the aluminum-doped zinc oxide film was formed by introducing argon gas from a target having a weight ratio of aluminum oxide to zinc oxide of 5:95. Further, the zinc-doped tin oxide film was formed by reactive sputtering by introducing oxygen gas using a target having a weight ratio of zinc to tin of 50:50.
  • Another glass substrate (soda lime glass) having a thickness of 2 mm was prepared as a second additional member. Moreover, the resin layer as a 2nd member was installed in one surface of this glass substrate.
  • the resin layer was made of thermoplastic polyvinyl butyral.
  • the second assembly was stacked on the first assembly.
  • the reflective layer of the first assembly and the resin layer of the second assembly were in contact with each other, and they were laminated. Thereafter, the resin layer was cured to bond the second assembly and the first assembly to each other.
  • Example 1 a laminate according to Example 1 was produced.
  • the thickness of the resin layer was approximately 750 ⁇ m.
  • the difference ⁇ n of the refractive index between the first member (glass substrate) and the resin layer is 0.02.
  • Example 2 A laminate was produced in the same manner as in Example 1. However, in this example 2, the laminated body was manufactured by setting the processing time of the main etching of the second surface of the first member to 9 minutes. As a result, a larger unevenness was formed on the second surface of the first member as compared with Example 1.
  • Example 3 A laminate was produced in the same manner as in Example 1. However, in the third example, the configuration of the reflective layer was changed from that of the first example. That is, the reflective layer is zinc oxide film (5 nm) / silver film (41 nm) / aluminum-doped zinc oxide film (5 nm) / zinc-doped tin oxide film (79 nm) / zinc oxide film (5 nm) / silver film (23 nm) / It was set as 7 layer structure of the aluminum dope zinc oxide film (5 nm). The thickness (total thickness) of the reflective layer was targeted at 163 nm.
  • the aluminum-doped zinc oxide film was formed by introducing argon gas from a target having a weight ratio of aluminum oxide to zinc oxide of 5:95. Further, the zinc-doped tin oxide film was formed by reactive sputtering by introducing oxygen gas using a target having a weight ratio of zinc to tin of 50:50.
  • Example 4 A laminate was produced in the same manner as in Example 2. However, in Example 4, the configuration of Example 3 described above was adopted as the reflective layer. The other preparation conditions are the same as in Example 2.
  • Example 5 A laminate was produced in the same manner as in Example 1. However, in Example 5, the configuration of the reflective layer was changed from that of Example 1. That is, the reflective layer is zinc oxide film (7 nm) / silver film (25 nm) / aluminum-doped zinc oxide film (7.5 nm) / zinc tin oxide film (77 nm) / zinc oxide film (7 nm) / silver film (10 nm) / 8-layer structure of aluminum-doped zinc oxide film (7.5 nm) / zinc tin oxide film (24 nm). The thickness (total thickness) of the reflective layer was targeted at 165 nm.
  • the aluminum-doped zinc oxide film was formed by introducing argon gas from a target having a weight ratio of aluminum oxide to zinc oxide of 5:95. Further, the zinc-doped tin oxide film was formed by reactive sputtering by introducing oxygen gas using a target having a weight ratio of zinc to tin of 50:50.
  • Example 6 A laminate was produced in the same manner as in Example 2. However, in the sixth example, the configuration of the fifth example described above is adopted as the reflective layer. The other preparation conditions are the same as in Example 2.
  • Example 7 A laminate was produced in the same manner as in Example 1. However, in this example 7, the etching process was not performed on the first member. Therefore, the second surface of the first member was relatively smooth, and the above-mentioned reflective layer was deposited on the smooth surface.
  • Example 9 A laminate was produced in the same manner as in Example 2 except that in the pre-etching treatment for the second surface of the first member, the immersion time in the frost treatment liquid was 6 minutes.
  • the configuration of the reflective layer was the same as in Example 5.
  • Example 10 In the main etching process for the second surface of the first member, a laminate was produced in the same manner as in Example 2 except that the treatment time was 1 minute.
  • Example 11 In the main etching process for the second surface of the first member, a laminate was produced in the same manner as in Example 1 except that the treatment time was 30 minutes.
  • the energy transmittance Te, the energy reflectance Re, the energy absorption rate Ae, and the solar heat gain rate (g value) were evaluated.
  • the solar radiation shielding coefficient (SC value) was calculated
  • the visible light transmittance Tv, the energy transmittance Te, the energy reflectance Re, the energy absorptivity Ae, and the solar heat acquisition rate are all measured light from the side of the first member of the laminate. It is a value measured by irradiation.
  • the visible light reflectance including the diffusion component is represented by Rv (1) , which is the value measured on the side of the first member in each laminate, and the value measured on the side of the second member is Rv ( Represented by 2) .
  • Rvt (1) the value measured on the first member side
  • Rvt (2) the value measured on the second member side
  • a spectrophotometer (U-4100: manufactured by Hitachi, Ltd.) was used, and each optical parameter was evaluated by a method in accordance with ISO 9050: 2003.
  • the visible light regular reflectance Rvt (1) irradiates the measurement light from the side of the first member of each laminate at an angle inclined 5 ° with respect to the normal, and the regular reflection light generated at this time is It evaluated by detecting.
  • the visible light regular reflectance Rvt (2) irradiates the measurement light from the side of the second member of each stack at an angle inclined 5 ° with respect to the normal, and the specularly reflected light generated at this time It was evaluated by detecting
  • the visible light reflectance Rv (1) containing the diffusion component uses an integrating sphere of diameter 60 ⁇ attached to the measuring instrument, and the measuring light is transmitted to the normal from the side of the first member of each laminate The light was irradiated at an angle of 8.degree. And evaluated by detecting the light generated at this time.
  • the visible light reflectance Rv (2) containing the diffusion component is irradiated from the side of the second member of each stack at an angle inclined by 8 ° with respect to the normal, and the light generated at this time is detected It evaluated by doing.
  • the energy reflectance Re was evaluated by the same method as the visible light reflectance Rv (1) containing the diffusion component. However, light of a solar radiation wavelength range was used as measurement light.
  • the surface shape was measured using a laser microscope (VK-X250 manufactured by Keyence Corporation). A 50 ⁇ objective was used. The measurement conditions were a high definition mode, the measurement pitch was 0.1 ⁇ m, and the RPD function was on.
  • RSm was determined using multi-line roughness measurement of Keyence analysis software. For multi-line setting, select “10” for the number of surroundings and “30” for the interval, select “roughness” for measurement type, “none” for both ⁇ s and ⁇ c for cutoff, and check for correction of termination effect Put in and measured.
  • Sdq was determined using analysis software SPIP (Image Metrology).
  • the measured surface shape data is read by analysis software SPIP (Image Metrology), S-filtering (1 ⁇ m) of the Analyze menu is applied, and Roughness Analysis is performed.
  • Plane Correction was performed on "Subtract Plane", and Sdq values were obtained by including Sdq in the output parameters to obtain Sdq values.
  • Example 8 shows each optical parameter calculated from the optical body described in JP 2012-3027 A for reference.
  • the conventional optical body shown in the column of Example 8 has an SC value of more than 0.5 and does not have a very good heat shielding function. Further, in this optical body, the visible light transmittance Tv is about 42%, and the visible light reflectance Rv (1) including the diffusion component is 11%. In such an optical body, there is a problem from the viewpoint of privacy because the indoor situation seems to be easily visible from the outside.
  • the visible light transmittance Tv is less than 30%, and the visible light reflectance Rv (1) including the diffusion component is 40% or more. ing. Therefore, in these laminates, privacy can be protected.
  • the visible light regular reflectance Rvt (1) is 30% or less. Therefore, in these laminates, when viewed from the side of the first member, the glare can be significantly reduced.
  • Example 1 to Example 6 and Example 9 to Example 11 were confirmed to have good heat shielding performance and also to have good properties from the viewpoint of antiglare property and privacy protection. .
  • the film thickness deviation was measured from SEM observation of the cross section.
  • Cross-sections are made by breaking glass to make active cross-sections, then flatten the cross-sections with ion milling device E-3500 (manufactured by Hitachi High-Technologies Corporation), apply osmium coating, FE-SEM SU-70 (Hitachi High-Technologies) ) At a magnification of 250,000. Five observation images were taken, film thicknesses at five locations were measured in each image, and standard deviations of 25 data were obtained.
  • first laminated body 102 first side 104 second side 110 first member 112 first surface 114 second surface 120 second member 122 third surface 124 fourth surface 130 reflective layer 132 First uneven interface 134 second uneven interface 200 second laminate 202 first side 204 second side 210 first member 212 first surface 214 second surface 220 second member 222 third The surface 224 fourth surface 230 reflective layer 232 first uneven interface 234 second uneven interface 240 first additional member 242 fifth surface 244 sixth surface 300 third laminate 302 first side 304 Second side 310 first member 312 first surface 314 second surface 320 second member 322 third surface 324 Fourth surface 330 reflective layer 332 first uneven interface 334 second uneven interface 350 second additional member 352 seventh surface 354 eighth surface 400 fourth laminated body 402 first side 404 second Side 410 First member 412 First surface 414 Second surface 420 Second member 422 Third surface 424 Fourth surface 430 Reflective layer 432 First interface 434 Second interface 440 First additional member 442 fifth surface 444 sixth surface 450 second additional member 452 seventh surface 454 eighth surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

This laminate has a first member having first and second surfaces, a second member having third and fourth surfaces, and a reflective layer disposed between the first member and the second member, wherein: the difference in refractive index between the first member and the second member is less than 0.05; the laminate has a first side corresponding to the first surface side of the first member and a second side corresponding to the fourth surface side of the second member; the reflectivity Rv of visible light, including the diffuse component, as measured from the first side of the laminate is at least 40%; the specular reflection Rvt of visible light is at most 30%; the energy reflectivity Re is at least 60%; and the transmittance Tv of visible light transmitted from the first side toward the second side of the laminate is at least 1% and less than 30%.

Description

遮熱性能を有する積層体Laminate having heat shielding performance
 本発明は、遮熱性能を有する積層体に関する。 The present invention relates to a laminate having heat shielding performance.
 近年の省エネ意識の高まりを受け、窓ガラスおよび車両用ガラスなどの遮熱部材には、高い日射熱遮蔽性能(以下、「遮熱性能」と称する)が要求されるようになってきた。また、この要望に答えるため、遮熱部材に関して、様々な研究開発が進められ、その成果として、いくつかの構成が提案されている。 In response to the recent increase in energy saving awareness, heat shielding members such as window glass and vehicle glass are required to have high solar heat shielding performance (hereinafter, referred to as “heat shielding performance”). Moreover, in order to respond to this request, various researches and developments have been advanced with respect to heat shield members, and several configurations have been proposed as a result.
 例えば、low-Eガラスと呼ばれる最近の窓ガラスでは、窓ガラスの屋外側に透明な金属反射層が設置されており、これにより太陽の熱が室内に進入することを抑制することができる。 For example, in a recent window glass called low-E glass, a transparent metal reflection layer is provided on the outdoor side of the window glass, which can suppress the heat of the sun from entering the room.
 なお、一般に、遮熱部材の遮熱性能は、日射遮蔽係数(SC値)で表すことができる。SC値とは、3mm厚のフロートガラスの日射遮蔽性能を1とした時の日射遮蔽性能であり、部材の日射熱取得率(g値:ISO9050:2003に規定)を0.88で除した値とほぼ同じであり、この値が小さいほど、遮熱性能が高いことを意味する。 Generally, the heat shielding performance of the heat shielding member can be represented by a solar radiation shielding coefficient (SC value). The SC value is the solar radiation shielding performance when the solar radiation shielding performance of float glass of 3 mm thickness is 1, and it is the value obtained by dividing the solar radiation heat gain rate (g value: defined in ISO 9050: 2003) by 0.88 And the smaller the value, the higher the heat shielding performance.
特開2012-3027号公報JP, 2012-3027, A
 高い遮熱性能を実現するため、これまでに各種遮熱部材が提案されている。 In order to realize high heat shielding performance, various heat shielding members have been proposed so far.
 しかしながら、これまでに提案された遮熱部材においても、遮熱性能の向上効果は、未だ十分であるとは言い難い。 However, even with the heat shield members proposed so far, the improvement effect of the heat shield performance is not yet sufficient.
 また、これまでの遮熱部材は、遮熱性能の向上を追求するあまり、その他の特性については、あまり着目されてこなかったという経緯がある。 In addition, the heat shielding member so far has sought to improve the heat shielding performance, and has not received much attention for other characteristics.
 例えば、窓ガラスおよび車両用ガラスのような遮熱部材を外部から見たとき、しばしば、不快な眩しさを感じる場合がある。そのような眩しさは、できる限り抑制することが望ましい。その一方で、窓ガラスおよび車両用ガラスにおいて、屋内の状況が屋外から容易に視認できる構成は、プライバシーの観点から問題となり得る。(なお、従来、プライバシー保護用の窓ガラスとして、すりガラスなど光を散乱するものが用いられている。しかしながら、この場合、屋内から屋外の景色を見ることができなくなってしまうという問題がある。)
 このように、遮熱性能の向上およびプライバシー保護の観点を考慮して、遮熱部材の構成を検討した例は見られない。
For example, when the heat shielding member such as a window glass and a vehicle glass is viewed from the outside, it may often feel unpleasant glare. It is desirable to suppress such glare as much as possible. On the other hand, in the window glass and the vehicle glass, the configuration in which the indoor situation can be easily viewed from the outside can be a problem from the viewpoint of privacy. (Conventionally, as a window glass for privacy protection, a glass that scatters light such as frosted glass is used. However, in this case, there is a problem that it is not possible to see an outdoor scene from indoors.)
As described above, there is no example in which the configuration of the heat shielding member is considered in consideration of the improvement of the heat shielding performance and the privacy protection.
 例えば、特許文献1には、ヒートアイランド現象を抑制することが可能な光学体が記載されている。しかしながら、この光学体は、遮熱性能およびプライバシー保護のいずれの点においても、十分であるとは言い難い。 For example, Patent Document 1 describes an optical body capable of suppressing the heat island phenomenon. However, this optical body can not be said to be sufficient in any of heat shielding performance and privacy protection.
 本発明は、このような背景に鑑みなされたものであり、本発明では、良好な遮熱性能を有するとともに、防眩性を有し、プライバシーにも配慮した積層体を提供することを目的とする。 The present invention has been made in view of such a background, and it is an object of the present invention to provide a laminate having antiglare property and consideration for privacy while having good heat shielding performance. Do.
 本発明では、遮熱性能を有する積層体であって、
 第1および第2の表面を有する第1の部材と、
 第3および第4の表面を有する第2の部材と、
 前記第1の部材と前記第2の部材の間に配置された反射層と、
 を有し、
 前記第1の部材と前記第2の部材の間の屈折率の差Δnは、0.05未満であり、
 前記反射層は、前記第1の部材の前記第2の表面との間で、第1の凹凸界面を形成し、前記第2の部材の前記第3の表面との間で、第2の凹凸界面を形成し、
 当該積層体は、前記第1の部材の前記第1の表面の側に対応する第1の側と、前記第2の部材の前記第4の表面の側に対応する第2の側とを有し、
 当該積層体の前記第1の側で測定した場合、エネルギー反射率Reは、60%以上であり、拡散成分を含む可視光反射率Rvは、40%以上であり、可視光正反射率Rvtは、30%以下であり、
 当該積層体の前記第1の側から前記第2の側に向かって透過する可視光の透過率Tvは、1%以上30%未満である、積層体が提供される。
In the present invention, it is a laminate having a heat shielding performance,
A first member having first and second surfaces;
A second member having third and fourth surfaces;
A reflective layer disposed between the first member and the second member;
Have
The difference Δn in refractive index between the first member and the second member is less than 0.05,
The reflective layer forms a first uneven interface with the second surface of the first member, and a second uneven layer with the third surface of the second member. Form an interface,
The laminate has a first side corresponding to the side of the first surface of the first member, and a second side corresponding to the side of the fourth surface of the second member. And
When measured on the first side of the laminate, the energy reflectance Re is 60% or more, the visible light reflectance Rv including the diffusion component is 40% or more, and the visible light regular reflectance Rvt is Less than 30%,
There is provided a laminate, wherein the transmittance Tv of visible light transmitted from the first side to the second side of the laminate is 1% or more and less than 30%.
 本発明では、良好な遮熱性能を有するとともに、防眩性を有し、プライバシーにも配慮した積層体を提供することができる。 In the present invention, it is possible to provide a laminate having good heat shielding performance, antiglare property, and privacy.
本発明の一実施形態による遮熱性能を有する積層体の断面を概略的に示した図である。It is the figure which showed roughly the cross section of the layered product which has thermal insulation performance by one embodiment of the present invention. 本発明の別の実施形態による遮熱性能を有する積層体の断面を概略的に示した図である。FIG. 5 schematically shows a cross section of a laminate having a heat shielding performance according to another embodiment of the present invention. 本発明のさらに別の実施形態による遮熱性能を有する積層体の断面を概略的に示した図である。FIG. 7 schematically shows a cross section of a laminate having a heat shielding performance according to still another embodiment of the present invention. 本発明のさらに別の実施形態による遮熱性能を有する積層体の断面を概略的に示した図である。FIG. 7 schematically shows a cross section of a laminate having a heat shielding performance according to still another embodiment of the present invention.
 以下、図面を参照して、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (本発明の一実施形態による遮熱性能を有する積層体)
 図1には、本発明の一実施形態による遮熱性能を有する積層体(以下、「第1の積層体」と称する)の断面を概略的に示す。
(Laminated body having heat shielding performance according to one embodiment of the present invention)
FIG. 1 schematically shows a cross section of a laminate having a heat shielding performance according to an embodiment of the present invention (hereinafter, referred to as “first laminate”).
 図1に示すように、第1の積層体100は、第1の側102および第2の側104を有する。また、第1の積層体100は、第1の部材110と、第2の部材120と、両者の間に配置された反射層130とを有する。 As shown in FIG. 1, the first stack 100 has a first side 102 and a second side 104. In addition, the first stacked body 100 includes a first member 110, a second member 120, and a reflective layer 130 disposed between the two.
 第1の部材110は、第1の表面112および第2の表面114を有する。第1の表面112は平坦表面であり、第2の表面114は、凹凸表面である。 The first member 110 has a first surface 112 and a second surface 114. The first surface 112 is a flat surface, and the second surface 114 is an uneven surface.
 第2の部材120は、第3の表面122および第4の表面124を有する。第3の表面122は凹凸表面であり、第4の表面124は、平坦表面である。 The second member 120 has a third surface 122 and a fourth surface 124. The third surface 122 is an irregular surface, and the fourth surface 124 is a flat surface.
 第1の部材110の第1の表面112は、第1の積層体100の第1の側102に対応し、第2の部材120の第4の表面124は、第1の積層体100の第2の側104に対応している。 The first surface 112 of the first member 110 corresponds to the first side 102 of the first stack 100, and the fourth surface 124 of the second member 120 corresponds to the first surface of the first stack 100. It corresponds to the second side 104.
 反射層130は、第1の部材110の第2の表面114の凹凸形状に沿って第1の部材110の上に配置される。換言すれば、反射層130は、第2の表面114の凹凸と接触するようにして、第1の部材110の上に配置される。なお、反射層130は比較的薄いため、反射層130の第2の部材120の側には、第1の部材110の第2の表面114の凹凸形状に対応した、凹凸形状が生じる。第2の部材120は、そのような反射層130の凹凸を埋めるようにして、反射層130の上に配置される。 The reflective layer 130 is disposed on the first member 110 along the uneven shape of the second surface 114 of the first member 110. In other words, the reflective layer 130 is disposed on the first member 110 in contact with the asperities of the second surface 114. Since the reflective layer 130 is relatively thin, a concavo-convex shape corresponding to the concavo-convex shape of the second surface 114 of the first member 110 is generated on the second member 120 side of the reflective layer 130. The second member 120 is disposed on the reflective layer 130 in such a manner as to fill up the unevenness of the reflective layer 130.
 その結果、反射層130は、第1の部材110の第2の表面114との間で、第1の凹凸界面132を形成し、第2の部材120の第3の表面122との間で、第2の凹凸界面134を形成する。 As a result, the reflective layer 130 forms a first uneven interface 132 with the second surface 114 of the first member 110, and with the third surface 122 of the second member 120, A second uneven interface 134 is formed.
 第1の部材110と第2の部材120の間の屈折率の差Δnは、0.05未満である。屈折率の差Δnは、0.04未満であることが好ましい。 The refractive index difference Δn between the first member 110 and the second member 120 is less than 0.05. The refractive index difference Δn is preferably less than 0.04.
 ここで、第1の積層体100において、反射層130は、第1の側102から入射される近赤外領域の光の大部分を反射するとともに、第1の側102から入射される可視光領域の光の大部分も反射するように設計されている。 Here, in the first stacked body 100, the reflective layer 130 reflects most of the light in the near infrared region incident from the first side 102, and visible light incident from the first side 102. Most of the light in the area is also designed to be reflected.
 より具体的には、第1の積層体100は、第1の側102で評価した場合、エネルギー反射率Reが60%以上となり、拡散成分を含む可視光反射率Rvが40%以上となるように構成される。 More specifically, when the first laminate 100 is evaluated on the first side 102, the energy reflectance Re is 60% or more, and the visible light reflectance Rv including the diffusion component is 40% or more. Configured
 また、第1の積層体100は、第1の側102で評価した場合、可視光正反射率Rvtが30%以下となり、第1の側102から第2の側104に透過する可視光の透過率Tvが1%以上30%未満となるように構成されている。 In addition, when the first laminate 100 is evaluated on the first side 102, the visible light regular reflectance Rvt is 30% or less, and the transmittance of visible light transmitted from the first side 102 to the second side 104 The Tv is configured to be 1% or more and less than 30%.
 なお、本願において、「可視光正反射率Rvt」は、被測定面に可視光を照射した際に生じる、正反射光の反射率を意味する。これに対して「拡散成分を含む可視光反射率Rv」とは、被測定面に可視光を照射した際に生じる、散乱光を含む全ての反射光から得られる反射率を意味する。そのような「拡散成分を含む可視光反射率Rv」は、積分球の反射測定ポートに測定サンプルを設置した分光測定法により、評価することができる。エネルギー反射率Reは拡散成分を含むエネルギー反射率を意味する。 In the present application, “visible light regular reflectance Rvt” means the reflectance of specularly reflected light generated when the surface to be measured is irradiated with visible light. On the other hand, "visible light reflectance Rv containing a diffused component" means a reflectance obtained from all reflected light including scattered light which is generated when the surface to be measured is irradiated with visible light. Such "visible light reflectance Rv including a diffused component" can be evaluated by a spectrophotometric method in which a measurement sample is placed at the reflection measurement port of the integrating sphere. The energy reflectance Re means an energy reflectance including a diffuse component.
 以上のような構成により、第1の積層体100では、SC値を有意に抑制することができ、有意に高い遮熱性を発揮することが可能となる。例えば、第1の積層体100では、第1の側102から評価した場合、0.2以下のSC値を得ることができる。 With the above-described configuration, in the first stacked body 100, the SC value can be significantly suppressed, and it is possible to exhibit significantly high thermal insulation. For example, in the first laminate 100, when evaluated from the first side 102, an SC value of 0.2 or less can be obtained.
 また、第1の積層体100では、可視光の透過率Tvが1%以上30%未満に抑制されている。このため、第1の積層体100では、第1の側102から第2の側104に透過される可視光が有意に抑制され、前述のようなプライバシーの問題も、軽減することができる。 In the first laminate 100, the visible light transmittance Tv is suppressed to 1% or more and less than 30%. For this reason, in the first laminate 100, visible light transmitted from the first side 102 to the second side 104 is significantly suppressed, and the privacy problem as described above can also be alleviated.
 さらに、第1の積層体100では、第1の側102における可視光正反射率Rvtが30%以下に抑制されている。この場合、第1の積層体100に入射された可視光によって生じ得る反射光の多くが散乱されるため、第1の積層体100の防眩性を高めることができる。 Furthermore, in the first stacked body 100, the visible light regular reflectance Rvt on the first side 102 is suppressed to 30% or less. In this case, since much of the reflected light that may be generated by the visible light incident on the first stacked body 100 is scattered, the antiglare property of the first stacked body 100 can be enhanced.
 なお、前述のエネルギー反射率Re、拡散成分を含む可視光反射率Rv、および可視光正反射率Rvtは、反射層130の構造、例えば、多層膜を構成する層の積層数、各層の材料(および屈折率)、および/または各層の厚さなどを適宜調整することにより、達成することができる。また、可視光正反射率Rvtは、例えば、第1の部材110の第2の表面114の凹凸の形態を調整することにより、得ることができる。 The energy reflectance Re, the visible light reflectance Rv including the diffusion component, and the visible light regular reflectance Rvt described above are the structure of the reflective layer 130, for example, the number of stacked layers constituting the multilayer film, the material of each layer (and This can be achieved by appropriately adjusting the refractive index) and / or the thickness of each layer. In addition, the visible light regular reflectance Rvt can be obtained, for example, by adjusting the form of the unevenness of the second surface 114 of the first member 110.
 さらに、第1の積層体100では、第1の部材110と第2の部材120の間の屈折率の差Δnが0.05未満に制御されている。このため、第1の積層体100に入射される可視光の入射角と、第1の積層体100から出射される可視光の出射角の間で、角度のずれが生じ難くなる。従って、例えば、第1の積層体100の第2の側104から第1の側102に向かって周囲を視認した際に、像の鮮明性を高めることが可能となる。 Furthermore, in the first stacked body 100, the difference Δn in refractive index between the first member 110 and the second member 120 is controlled to be less than 0.05. For this reason, it becomes difficult to produce an angular deviation between the incident angle of visible light incident on the first laminate 100 and the emission angle of visible light emitted from the first laminate 100. Therefore, for example, when the surroundings are viewed from the second side 104 to the first side 102 of the first stacked body 100, it is possible to enhance the sharpness of the image.
 このように、本発明の一実施形態では、良好な遮熱性能を有するとともに、防眩性を有し、プライバシーにも配慮した積層体を提供することができる。また、係る積層体では、透過像に対して良好な鮮明性を得ることができる。 Thus, in one embodiment of the present invention, it is possible to provide a laminate having good heat shielding performance, antiglare property, and privacy. Moreover, in the laminated body which concerns, a favorable clearness can be acquired with respect to a transmission image.
 (各部材の特徴)
 次に、第1の積層体100を構成する各部材について、より詳しく説明する。なお、各部材を参照する際には、図1に示した参照符号を使用する。
(Characteristics of each member)
Next, each member constituting the first laminate 100 will be described in more detail. In addition, when referring to each member, the referential mark shown in FIG. 1 is used.
 (第1の部材110)
 第1の部材110の材質は、「透明」である限り、特に限られない。ここで、「透明」とは、可視光透過率が、50%以上の性質を意味する。
(First member 110)
The material of the first member 110 is not particularly limited as long as it is “transparent”. Here, "transparent" means that the visible light transmittance has a property of 50% or more.
 例えば、第1の部材110は、樹脂、プラスチックまたはガラスなどで構成されても良い。また、第1の部材110は、着色されていても良い。 For example, the first member 110 may be made of resin, plastic or glass. Also, the first member 110 may be colored.
 第1の部材110の厚さは、特に限られず、薄膜の形態の薄い厚さ(例えば、0.03mm~0.1mm)から、基板の形態の厚い厚さ(例えば、0.5mm~10mm)まで、各種厚さを選択することができる。 The thickness of the first member 110 is not particularly limited, and a thin thickness in the form of a thin film (for example, 0.03 mm to 0.1 mm) to a thick thickness in the form of a substrate (for example 0.5 mm to 10 mm) Various thicknesses can be selected.
 前述のように、第1の部材110の第2の表面114は、凹凸表面を有する。この凹凸の形態は、前述の特徴が発揮できる限り、特に限られない。例えば、第2の表面114は、いわゆる「アンチグレア」処理された表面であっても良い。 As mentioned above, the second surface 114 of the first member 110 has an irregular surface. The form of the unevenness is not particularly limited as long as the above-mentioned features can be exhibited. For example, the second surface 114 may be a so-called "anti-glare" treated surface.
 例えば、第1の部材110がガラス基板で構成される場合、そのようなアンチグレア処理は、ガラス基板を湿式または乾式でエッチングしたり、サンドブラスト処理したりすることにより、実施されても良い。 For example, when the first member 110 is formed of a glass substrate, such anti-glare treatment may be performed by wet or dry etching or sandblasting the glass substrate.
 また、第1の部材110が樹脂で構成される場合、そのような凹凸表面は、例えば、未硬化の樹脂の表面に凹凸部材を押し付けた状態で樹脂を硬化させることにより、構成されても良い。 Also, when the first member 110 is made of resin, such an uneven surface may be configured, for example, by curing the resin in a state where the uneven member is pressed against the surface of the uncured resin. .
 第2の表面114は、ISO25178-2:2012に規定される二乗平均平方根傾斜Sdq(root mean square gradient of the scale-limited surface)が0.05以上0.6未満であることが好ましい。Sdqが0.05以上であると、凹凸表面に形成された傾斜により可視光正反射率Rvtを30%以下に抑制することができる。Sdqが0.6未満であると、第2の表面114上に設けられる反射膜130の膜厚を均一にすることができる。Sdqは、0.07以上0.5未満であることがより好ましく、0.09以上0.4未満であることが特に好ましい。反射膜130の膜厚偏差は、10%以下であることが好ましく、5%以下であることがさらに好ましく、4%以下であることが特に好ましい。 The second surface 114 preferably has a root mean square gradient of the scale-limited surface (Sdq) defined by ISO 25178-2: 2012 of 0.05 or more and less than 0.6. When the Sdq is 0.05 or more, the visible light regular reflectance Rvt can be suppressed to 30% or less by the inclination formed on the uneven surface. When Sdq is less than 0.6, the film thickness of the reflective film 130 provided on the second surface 114 can be made uniform. Sdq is more preferably 0.07 or more and less than 0.5, and particularly preferably 0.09 or more and less than 0.4. The film thickness deviation of the reflective film 130 is preferably 10% or less, more preferably 5% or less, and particularly preferably 4% or less.
 また、第2の表面114は、JISB0601:2001に規定される粗さ曲線要素の平均長さRSmが1μm以上30μm以下であることが好ましい。RSmが30μm以下であると、屋内から屋外を透視するときの鮮明性が高まり、JIS K7374:2007に規定される透過像鮮明度C(0.25)を80%以上にすることができる。RSmが1μm以上であると、ヘイズを10%以下に抑えることができる。RSmは、3μm以上25μm以下であることがより好ましく、5μm以上20μm以下であることが特に好ましい。 Moreover, it is preferable that the 2nd surface 114 is 1 micrometer-30 micrometers in average length RSm of the roughness curve element prescribed | regulated to JISB0601: 2001. When the RSm is 30 μm or less, the sharpness when viewing through indoors and outdoors is enhanced, and the transmitted image definition C (0.25) defined in JIS K 7374: 2007 can be 80% or more. A haze can be suppressed to 10% or less as RSm is 1 micrometer or more. The RSm is more preferably 3 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less.
 (第2の部材120)
 第2の部材120の材質は、「透明」である限り、特に限られない。例えば、第2の部材120は、樹脂、プラスチックまたはガラスなどで構成されても良い。なお、第2の部材120は、第1の部材110とは異なる材料で構成されても良い。ただし、前述のように、第2の部材120は、該第2の部材120の屈折率と第1の部材110の屈折率との差Δnが、0.05未満となるように選定される。
(Second member 120)
The material of the second member 120 is not particularly limited as long as it is “transparent”. For example, the second member 120 may be made of resin, plastic or glass. The second member 120 may be made of a material different from that of the first member 110. However, as described above, the second member 120 is selected such that the difference Δn between the refractive index of the second member 120 and the refractive index of the first member 110 is less than 0.05.
 第2の部材120においても、第1の部材110と同様、各種厚さを選定することができる。 Similarly to the first member 110, various thicknesses can be selected for the second member 120 as well.
 (反射層130)
 反射層130は、第1の積層体100として評価した際に、前述のようなエネルギー反射率Re、拡散成分を含む可視光反射率Rv、可視光正反射率Rvt、および可視光の透過率Tv等を達成することができる限り、その構成は特に限られない。
(Reflective layer 130)
When the reflective layer 130 is evaluated as the first stacked body 100, the energy reflectance Re as described above, the visible light reflectance Rv including a diffused component, the visible light regular reflectance Rvt, the visible light transmittance Tv, and the like The configuration is not particularly limited as long as it is possible to achieve
 例えば、反射層130は、多層膜で構成されても良い。多層膜は、例えば、高屈折率膜(例えば、屈折率≧2)と低屈折率膜(例えば、屈折率<2)の交互積層構造を有しても良い。高屈折率膜としては、例えば、チタニアなどが挙げられる。また、低屈折率膜としては、例えば、シリカなどが挙げられる。 For example, the reflective layer 130 may be configured of a multilayer film. The multilayer film may have, for example, an alternately stacked structure of a high refractive index film (for example, refractive index ≧ 2) and a low refractive index film (for example, refractive index <2). Examples of the high refractive index film include titania and the like. Moreover, as a low refractive index film | membrane, a silica etc. are mentioned, for example.
 あるいは、反射層130は、銀の層を含み、後述するような、より複雑な多層構造を有しても良い。 Alternatively, the reflective layer 130 may include a silver layer and have a more complex multilayer structure as described below.
 反射層130の厚さ(総厚)は、1nm~500nmの範囲であることが好ましく、50nm~300nmの範囲であることがより好ましく、100nm~250nmの範囲であることが特に好ましい。 The thickness (total thickness) of the reflective layer 130 is preferably in the range of 1 nm to 500 nm, more preferably in the range of 50 nm to 300 nm, and particularly preferably in the range of 100 nm to 250 nm.
 反射層130は、例えば、蒸着法、スパッタ法、PVD法、またはCVD法など、一般的な成膜技術により、第1の部材110の凹凸表面(第2の表面114)に成膜することができる。 The reflective layer 130 may be formed on the uneven surface (the second surface 114) of the first member 110 by a general film forming technique such as, for example, a vapor deposition method, a sputtering method, a PVD method, or a CVD method. it can.
 反射層130に形成された第2の凹凸界面134は、第2の表面114と同様なSdq及びRSmを有することが好ましい。 The second concavo-convex interface 134 formed in the reflective layer 130 preferably has the same Sdq and RSm as the second surface 114.
 (第1の積層体100)
 前述のような特徴を有する第1の積層体100は、例えば、フィルムの形態で使用されても良い。そのようなフィルムは、例えば、窓ガラスおよび車両用ガラスなどのガラス部材の表面に貼付して使用することが想定される。この場合、第1の積層体100は、第1の側102がガラス部材の「屋外」側となり、第2の側104が「屋内」側となるようにして適用される。
(First laminated body 100)
The first laminate 100 having the characteristics as described above may be used, for example, in the form of a film. It is assumed that such a film is stuck to the surface of a glass member such as window glass and vehicle glass, for example. In this case, the first laminate 100 is applied such that the first side 102 is the "outdoor" side of the glass member and the second side 104 is the "indoor" side.
 そのようなガラス部材では、前述の効果により、日射の屋内への進入が有意に遮蔽されるとともに、屋外から屋内を視認することが難しくなり、屋内のプライバシーを確保することが可能となる。また、ガラス部材から反射される反射光による眩しさが有意に軽減される。さらに、屋内から屋外を視認した際に、歪みのない透過像を見ることが可能となる。 With such a glass member, due to the above-described effects, it is possible to significantly block the entry of solar radiation into the indoor, and it becomes difficult to view the indoor from the outside, and it is possible to secure the privacy of the indoor. Moreover, the glare by the reflected light reflected from a glass member is reduced significantly. Furthermore, when viewing the inside from the inside, it is possible to see a transmission image without distortion.
 (本発明の別の実施形態による遮熱性能を有する積層体)
 次に、図2を参照して、本発明の別の実施形態による遮熱性能を有する積層体について説明する。
(Laminated body having heat shielding performance according to another embodiment of the present invention)
Next, with reference to FIG. 2, a laminate having a heat shielding performance according to another embodiment of the present invention will be described.
 図2には、本発明の別の実施形態による遮熱性能を有する積層体(以下、「第2の積層体」と称する)の断面を概略的に示す。 In FIG. 2, the cross section of the laminated body (henceforth a "2nd laminated body") which has the thermal insulation performance by another embodiment of this invention is shown roughly.
 図2に示すように、第2の積層体200は、第1の側202および第2の側204を有する。また、第2の積層体200は、第1の部材210と、第2の部材220と、両者の間に配置された反射層230とを有する。さらに、第2の積層体200は、第1の追加部材240を有する。 As shown in FIG. 2, the second stack 200 has a first side 202 and a second side 204. The second stacked body 200 also has a first member 210, a second member 220, and a reflective layer 230 disposed between the two. Furthermore, the second stacked body 200 has a first additional member 240.
 第1の部材210は、第1の表面212および第2の表面214を有する。第1の表面212は、必ずしも平坦表面である必要はないが、平坦表面であることが好ましい。これに対して、第2の表面214は、凹凸表面である。 The first member 210 has a first surface 212 and a second surface 214. The first surface 212 is not necessarily a flat surface, but is preferably a flat surface. On the other hand, the second surface 214 is an uneven surface.
 第2の部材220は、第3の表面222および第4の表面224を有する。第3の表面222は凹凸表面であり、第4の表面224は、平坦表面である。 The second member 220 has a third surface 222 and a fourth surface 224. The third surface 222 is an irregular surface, and the fourth surface 224 is a flat surface.
 第1の追加部材240は、第1の部材210の第1の表面212の側に設置される。第1の追加部材240は、第5の表面242および第6の表面244を有し、第1の追加部材240は、第6の表面244が第1の部材210の第1の表面212と接するようにして配置される。 The first additional member 240 is disposed on the side of the first surface 212 of the first member 210. The first additional member 240 has a fifth surface 242 and a sixth surface 244, and the first additional member 240 contacts the sixth surface 244 with the first surface 212 of the first member 210. It will be arranged as
 従って、第1の追加部材240の第5の表面242は、第2の積層体200の第1の側202に対応する。一方、第2の部材220の第4の表面224は、第2の積層体200の第2の側204に対応する。 Thus, the fifth surface 242 of the first additional member 240 corresponds to the first side 202 of the second stack 200. On the other hand, the fourth surface 224 of the second member 220 corresponds to the second side 204 of the second stack 200.
 前述の第1の積層体100の場合と同様、第2の積層体200において、反射層230は、第1の部材210の第2の表面214の凹凸形状に沿って第1の部材210の上に配置される。換言すれば、反射層230は、第2の表面214の凹凸と接触するようにして、第1の部材210の上に配置される。なお、反射層230は比較的薄いため、反射層230の第2の部材220の側には、第1の部材210の第2の表面214の凹凸形状に対応した、凹凸形状が生じる。第2の部材120は、そのような反射層230の凹凸を埋めるようにして、反射層230の上に配置される。 As in the case of the first laminate 100 described above, in the second laminate 200, the reflective layer 230 is formed on the first member 210 along the concavo-convex shape of the second surface 214 of the first member 210. Will be placed. In other words, the reflective layer 230 is disposed on the first member 210 in contact with the asperities of the second surface 214. Since the reflective layer 230 is relatively thin, an uneven shape corresponding to the uneven shape of the second surface 214 of the first member 210 is generated on the second member 220 side of the reflective layer 230. The second member 120 is disposed on the reflective layer 230 in such a manner as to fill up the unevenness of the reflective layer 230.
 その結果、反射層230は、第1の部材210の第2の表面214との間で、第1の凹凸界面232を形成し、第2の部材220の第3の表面222との間で、第2の凹凸界面234を形成する。 As a result, the reflective layer 230 forms a first uneven interface 232 with the second surface 214 of the first member 210, and with the third surface 222 of the second member 220, A second uneven interface 234 is formed.
 第1の部材210と第2の部材220の間の屈折率の差Δnは、0.05未満である。また、第1の部材210と第1の追加部材240の間の屈折率差は、ほぼ0(ゼロ)であり、例えば0.02未満である。 The refractive index difference Δn between the first member 210 and the second member 220 is less than 0.05. Also, the refractive index difference between the first member 210 and the first additional member 240 is approximately zero, for example less than 0.02.
 第2の積層体200においても、反射層230は、第1の側202から入射される近赤外領域の光の大部分を反射するとともに、第1の側202から入射される可視光領域の光の大部分も反射するように設計されている。 Also in the second stacked body 200, the reflective layer 230 reflects most of the light in the near infrared region incident from the first side 202 and at the same time in the visible light region incident from the first side 202. It is designed to reflect most of the light as well.
 より具体的には、第2の積層体200は、第1の側202で評価した場合、エネルギー反射率Reが60%以上となり、拡散成分を含む可視光反射率Rvが40%以上となるように構成される。 More specifically, when the second stacked body 200 is evaluated on the first side 202, the energy reflectance Re is 60% or more, and the visible light reflectance Rv including the diffusion component is 40% or more. Configured
 また、第2の積層体200は、第1の側202で評価した場合、可視光正反射率Rvtが30%以下となり、第1の側202から第2の側204に透過する可視光の透過率Tvが1%以上30%未満となるように構成されている。 In addition, when the second stacked body 200 is evaluated on the first side 202, the visible light regular reflectance Rvt is 30% or less, and the transmittance of visible light transmitted from the first side 202 to the second side 204 The Tv is configured to be 1% or more and less than 30%.
 従って、第2の積層体200においても、第1の積層体100と同様の効果を得ることができる。すなわち、第2の積層体200では、有意に抑制されたSC値を得ることができ、有意に高い遮熱性を発揮することができる。例えば、第2の積層体200では、第1の側202から評価した場合、0.2以下のSC値を得ることができる。 Therefore, also in the second laminate 200, the same effect as that of the first laminate 100 can be obtained. That is, in the second stacked body 200, it is possible to obtain a significantly suppressed SC value, and it is possible to exhibit a significantly high thermal insulation. For example, in the second stacked body 200, when evaluated from the first side 202, an SC value of 0.2 or less can be obtained.
 また、第2の積層体200では、第1の側202から第2の側204に透過される可視光が有意に抑制され、プライバシーの問題も軽減することができる。 Further, in the second laminate 200, visible light transmitted from the first side 202 to the second side 204 is significantly suppressed, and the problem of privacy can also be alleviated.
 また、第2の積層体200では、該第2の積層体200に入射された可視光によって生じ得る反射光の多くが散乱されるため、防眩性を高めることができる。 Further, in the second laminate 200, since much of the reflected light that may be generated by the visible light incident on the second laminate 200 is scattered, the antiglare property can be enhanced.
 さらに、第2の積層体200では、第2の側204から第1の側202に向かって周囲を視認した際に、透過像に対する良好な鮮明性を得ることが可能となる。 Furthermore, in the second laminate 200, when the surroundings are viewed from the second side 204 toward the first side 202, it is possible to obtain good sharpness for the transmission image.
 (各部材の特徴)
 次に、第2の積層体200を構成する各部材について、より詳しく説明する。ただし、各部材のうち、第2の部材220および反射層230の構成については、前述の記載が参照できる。そこで、ここでは主として、第1の部材210および第1の追加部材240の特徴について説明する。また、各部材を参照する際には、図2に示した参照符号を使用する。
(Characteristics of each member)
Next, each member constituting the second stacked body 200 will be described in more detail. However, regarding the configuration of the second member 220 and the reflective layer 230 among the members, the above description can be referred to. Therefore, the features of the first member 210 and the first additional member 240 will be mainly described here. Also, when referring to each member, the reference numerals shown in FIG. 2 are used.
 (第1の部材210)
 第1の部材210は、前述のように、樹脂、プラスチックまたはガラスなどの透明な材料で構成される。また、第1の部材210は、着色されていても良い。
(First member 210)
The first member 210 is made of a transparent material such as resin, plastic or glass as described above. Also, the first member 210 may be colored.
 第1の部材210の厚さは、特に限られず、薄膜の形態の薄い厚さ(例えば、0.03mm~0.1mm)であっても良い。 The thickness of the first member 210 is not particularly limited, and may be a thin thickness (for example, 0.03 mm to 0.1 mm) in the form of a thin film.
 前述のように、第1の部材210の第2の表面214は、凹凸表面を有する。この凹凸の形態は、前述の特徴が発揮できる限り、特に限られない。例えば、第2の表面214は、いわゆる「アンチグレア」処理された表面であっても良い。 As mentioned above, the second surface 214 of the first member 210 has an irregular surface. The form of the unevenness is not particularly limited as long as the above-mentioned features can be exhibited. For example, the second surface 214 may be a so-called "anti-glare" treated surface.
 また、第1の部材210は、後述の第1の追加部材240の上に、凹凸を有する湿式コーティング層を設置することにより、形成されても良い。 Alternatively, the first member 210 may be formed by disposing a wet coating layer having asperities on a first additional member 240 described later.
 第2の表面214および第2の凹凸界面234は、それぞれ、第2の表面114と同様なSdqおよびRSmを有することが好ましい。 The second surface 214 and the second uneven interface 234 preferably have the same Sdq and RSm as the second surface 114, respectively.
 また、反射層230の厚さは、反射層130と同様であることが好ましい。 The thickness of the reflective layer 230 is preferably the same as that of the reflective layer 130.
 (第1の追加部材240)
 第1の追加部材240の材質は、「透明」である限り、特に限られない。例えば、第1の部材110は、樹脂、プラスチックまたはガラスなどで構成されても良い。
(First additional member 240)
The material of the first additional member 240 is not particularly limited as long as it is “transparent”. For example, the first member 110 may be made of resin, plastic or glass.
 また、第1の部材110の形態および厚さは、特に限られない。例えば、第1の部材210が薄膜状の場合、第1の部材110は、これを支持することが可能な、比較的厚い厚さを有する基板の形態であっても良い。例えば、第1の追加部材240を、平坦なガラス基板で構成し、第1の部材210を、アンチグレア処理されたフィルムで構成しても良い。 Also, the form and thickness of the first member 110 are not particularly limited. For example, if the first member 210 is in the form of a thin film, the first member 110 may be in the form of a substrate having a relatively large thickness capable of supporting it. For example, the first additional member 240 may be formed of a flat glass substrate, and the first member 210 may be formed of an antiglare film.
 (第2の積層体200)
 前述のような特徴を有する第2の積層体200は、例えば、窓ガラスおよび車両用ガラス(特に、リアガラスおよびルーフガラス。以下、同じ)などのガラス部材として、適用されても良い。
(Second stack 200)
The second laminate 200 having the above-mentioned features may be applied as a glass member such as window glass and vehicle glass (in particular, rear glass and roof glass, hereinafter the same).
 この場合、少なくとも第1の追加部材240は、ガラス基板で構成される。また、その場合、第2の積層体200は、第1の側202がガラス部材の「屋外」側となり、第2の側104が「屋内」側となるようにして使用される。 In this case, at least the first additional member 240 is formed of a glass substrate. Also, in this case, the second laminate 200 is used with the first side 202 being the “outdoor” side of the glass member and the second side 104 being the “indoor” side.
 そのようなガラス部材では、前述の効果により、日射の屋内への進入が有意に遮蔽されるとともに、屋外から屋内を視認することが難しくなり、屋内のプライバシーを確保することが可能となる。 With such a glass member, due to the above-described effects, it is possible to significantly block the entry of solar radiation into the indoor, and it becomes difficult to view the indoor from the outside, and it is possible to secure the privacy of the indoor.
 また、ガラス部材から反射される反射光による眩しさが有意に軽減されるとともに、屋内から屋外を視認した際に、歪みの少ない鮮明な透過像を見ることが可能となる。 Further, the glare caused by the light reflected from the glass member is significantly reduced, and it is possible to view a clear transmission image with little distortion when viewing the outside from indoors.
 (本発明のさらに別の実施形態による遮熱性能を有する積層体)
 次に、図3を参照して、本発明のさらに別の実施形態による遮熱性能を有する積層体について説明する。
(Laminated body having heat shielding performance according to still another embodiment of the present invention)
Next, with reference to FIG. 3, a laminate having a heat shielding performance according to still another embodiment of the present invention will be described.
 図3には、本発明のさらに別の実施形態による遮熱性能を有する積層体(以下、「第3の積層体」と称する)の断面を概略的に示す。 In FIG. 3, the cross section of the laminated body (henceforth a "3rd laminated body") which has the thermal insulation performance by further another embodiment of this invention is shown roughly.
 図3に示すように、第3の積層体300は、第1の側302および第2の側304を有する。また、第3の積層体300は、第1の部材310と、第2の部材320と、両者の間に配置された反射層330とを有する。さらに、第3の積層体300は、第2の追加部材350を有する。 As shown in FIG. 3, the third stack 300 has a first side 302 and a second side 304. In addition, the third stacked body 300 includes a first member 310, a second member 320, and a reflective layer 330 disposed therebetween. Furthermore, the third stacked body 300 has a second additional member 350.
 第1の部材310は、第1の表面312および第2の表面314を有する。第1の表面312は、平坦表面であり、第2の表面314は、凹凸表面である。 The first member 310 has a first surface 312 and a second surface 314. The first surface 312 is a flat surface and the second surface 314 is an irregular surface.
 第2の部材320は、第3の表面322および第4の表面324を有する。第3の表面322は凹凸表面である。これに対して、第4の表面324は、必ずしも平坦表面である必要はないが、平坦表面であることが好ましい。 The second member 320 has a third surface 322 and a fourth surface 324. The third surface 322 is an uneven surface. On the other hand, the fourth surface 324 is not necessarily a flat surface, but is preferably a flat surface.
 第2の追加部材350は、第2の部材320の第4の表面324の側に設置される。第2の追加部材350は、第7の表面352および第8の表面354を有し、第2の追加部材350は、第7の表面352が第2の部材320の第4の表面324と接するようにして配置される。 The second additional member 350 is disposed on the side of the fourth surface 324 of the second member 320. The second additional member 350 has a seventh surface 352 and an eighth surface 354, and the second additional member 350 makes the seventh surface 352 contact the fourth surface 324 of the second member 320. It will be arranged as
 従って、第2の追加部材350の第8の表面354は、第3の積層体300の第2の側304に対応する。一方、第1の部材310の第1の表面312は、第3の積層体300の第1の側302に対応する。 Thus, the eighth surface 354 of the second additional member 350 corresponds to the second side 304 of the third stack 300. On the other hand, the first surface 312 of the first member 310 corresponds to the first side 302 of the third stack 300.
 前述の第1の積層体100の場合と同様、第3の積層体300において、反射層330は、第1の部材310の第2の表面314の凹凸形状に沿って第1の部材310の上に配置される。換言すれば、反射層330は、第2の表面314の凹凸と接触するようにして、第1の部材310の上に配置される。なお、反射層330は比較的薄いため、反射層330の第2の部材320の側には、第1の部材310の第2の表面314の凹凸形状に対応した、凹凸形状が生じる。第2の部材320は、そのような反射層330の凹凸を埋めるようにして、反射層330の上に配置される。 As in the case of the first laminate 100 described above, in the third laminate 300, the reflective layer 330 is formed on the first member 310 along the concavo-convex shape of the second surface 314 of the first member 310. Will be placed. In other words, the reflective layer 330 is disposed on the first member 310 in contact with the asperities of the second surface 314. Since the reflective layer 330 is relatively thin, a concavo-convex shape corresponding to the concavo-convex shape of the second surface 314 of the first member 310 is generated on the second member 320 side of the reflective layer 330. The second member 320 is disposed on the reflective layer 330 in such a manner as to fill up the unevenness of the reflective layer 330.
 その結果、反射層330は、第1の部材310の第2の表面314との間で、第1の凹凸界面332を形成し、第2の部材320の第3の表面322との間で、第2の凹凸界面334を形成する。 As a result, the reflective layer 330 forms a first uneven interface 332 with the second surface 314 of the first member 310, and with the third surface 322 of the second member 320, A second uneven interface 334 is formed.
 第1の部材310と第2の部材320の間の屈折率の差Δnは、0.05未満である。また、第2の部材320と第2の追加部材350の間の屈折率差は、ほぼ0(ゼロ)であり、例えば0.01未満である。 The refractive index difference Δn between the first member 310 and the second member 320 is less than 0.05. Also, the refractive index difference between the second member 320 and the second additional member 350 is approximately 0 (zero), for example less than 0.01.
 第3の積層体300においても、反射層330は、第1の側302から入射される近赤外領域の光の大部分を反射するとともに、第1の側302から入射される可視光領域の光の大部分も反射するように設計されている。 Also in the third stacked body 300, the reflective layer 330 reflects most of the light in the near infrared region incident from the first side 302, and at the same time in the visible light region incident from the first side 302. It is designed to reflect most of the light as well.
 より具体的には、第3の積層体300は、第1の側302で評価した場合、エネルギー反射率Reが60%以上となり、拡散成分を含む可視光反射率Rvが40%以上となるように構成される。 More specifically, when the third stacked body 300 is evaluated on the first side 302, the energy reflectance Re is 60% or more, and the visible light reflectance Rv including the diffusion component is 40% or more. Configured
 また、第3の積層体300は、第1の側302で評価した場合、可視光正反射率Rvtが30%以下となり、第1の側302から第2の側304に透過する可視光の透過率Tvが1%以上30%未満となるように構成されている。 In the third stacked body 300, when evaluated on the first side 302, the visible light regular reflectance Rvt is 30% or less, and the transmittance of visible light transmitted from the first side 302 to the second side 304 The Tv is configured to be 1% or more and less than 30%.
 従って、第3の積層体300においても、第1の積層体100と同様の効果を得ることができる。すなわち、第3の積層体300では、有意に抑制されたSC値を得ることができ、有意に高い遮熱性を発揮することができる。例えば、第3の積層体300では、第1の側302から評価した場合、0.2以下のSC値を得ることができる。 Therefore, also in the third stacked body 300, the same effect as that of the first stacked body 100 can be obtained. That is, in the third stacked body 300, a significantly suppressed SC value can be obtained, and a significantly high heat shield can be exhibited. For example, in the third stacked body 300, when evaluated from the first side 302, an SC value of 0.2 or less can be obtained.
 また、第3の積層体300では、第1の側302から第2の側304に透過される可視光が有意に抑制され、プライバシーの問題も軽減することができる。 Further, in the third laminate 300, visible light transmitted from the first side 302 to the second side 304 is significantly suppressed, and the problem of privacy can be alleviated.
 また、第3の積層体300では、該第3の積層体300に入射された可視光によって生じ得る反射光の多くが散乱されるため、防眩性を高めることができる。 Further, in the third laminate 300, since much of the reflected light that may be generated by the visible light incident on the third laminate 300 is scattered, the antiglare property can be enhanced.
 さらに、第3の積層体300では、第2の側304から第1の側302に向かって周囲を視認した際に、透過像に対する良好な鮮明性を得ることが可能となる。 Furthermore, in the third stacked body 300, when the surroundings are viewed from the second side 304 toward the first side 302, it is possible to obtain good sharpness for the transmission image.
 (各部材の特徴)
 次に、第3の積層体300を構成する各部材について、より詳しく説明する。ただし、各部材のうち、第2の部材320、および反射層330の構成については、前述の記載が参照できる。そこで、ここでは主として、第1の部材310および第2の追加部材350の特徴について説明する。また、各部材を参照する際には、図3に示した参照符号を使用する。
(Characteristics of each member)
Next, each member constituting the third stacked body 300 will be described in more detail. However, regarding the configuration of the second member 320 and the reflective layer 330 among the members, the above description can be referred to. Therefore, the features of the first member 310 and the second additional member 350 will be mainly described here. Also, when referring to each member, the reference numerals shown in FIG. 3 are used.
 (第1の部材310)
 第1の部材310は、の材質は、「透明」である限り、特に限られない。例えば、第1の部材310は、樹脂、プラスチックまたはガラスなどで構成されても良い。
(First member 310)
The material of the first member 310 is not particularly limited as long as the material is “transparent”. For example, the first member 310 may be made of resin, plastic or glass.
 第1の部材310の厚さは、特に限られず、薄膜の形態の薄い厚さ(例えば、0.03mm~0.3mm)から、基板の形態の厚い厚さ(例えば、0.3mm~10mm)まで、各種厚さを選択することができる。 The thickness of the first member 310 is not particularly limited, and a thin thickness in the form of a thin film (for example, 0.03 mm to 0.3 mm) to a thick thickness in the form of a substrate (for example 0.3 mm to 10 mm) Various thicknesses can be selected.
 前述のように、第1の部材310の第2の表面314は、凹凸表面を有する。この凹凸の形態は、前述の特徴が発揮できる限り、特に限られない。例えば、第2の表面314は、いわゆる「アンチグレア」処理された表面であっても良い。 As mentioned above, the second surface 314 of the first member 310 has an irregular surface. The form of the unevenness is not particularly limited as long as the above-mentioned features can be exhibited. For example, the second surface 314 may be a so-called "anti-glare" treated surface.
 例えば、第1の部材310がガラス基板で構成される場合、そのようなアンチグレア処理は、ガラス基板を湿式または乾式でエッチングしたり、サンドブラスト処理したりすることにより、実施されても良い。 For example, when the first member 310 is formed of a glass substrate, such antiglare treatment may be performed by wet or dry etching or sandblasting the glass substrate.
 第2の表面314および第2の凹凸界面334は、それぞれ、第2の表面114と同様なSdqおよびRSmを有することが好ましい。 Second surface 314 and second relief interface 334 preferably have similar Sdq and RSm to second surface 114, respectively.
 また、反射層330の厚さは、反射層130と同様であることが好ましい。 The thickness of the reflective layer 330 is preferably the same as that of the reflective layer 130.
 (第2の追加部材350)
 第2の追加部材350の材質は、「透明」である限り、特に限られない。例えば、第2の追加部材350は、樹脂、プラスチックまたはガラスなどで構成されても良い。
(Second additional member 350)
The material of the second additional member 350 is not particularly limited as long as it is “transparent”. For example, the second additional member 350 may be made of resin, plastic or glass.
 また、第2の追加部材350の形態および厚さは、特に限られない。例えば、第2の追加部材350は、比較的厚い厚さを有する基板の形態であっても良い。例えば、第2の追加部材350は、ガラス基板で構成しても良い。 Also, the form and thickness of the second additional member 350 are not particularly limited. For example, the second additional member 350 may be in the form of a substrate having a relatively thick thickness. For example, the second additional member 350 may be made of a glass substrate.
 (第3の積層体300)
 前述のような特徴を有する第3の積層体300は、例えば、窓ガラスおよび車両用ガラスなどのガラス部材として、適用されても良い。
(Third stack 300)
The third laminate 300 having the above-mentioned features may be applied as a glass member such as a window glass and a glass for a vehicle, for example.
 例えば、第3の積層体300を車両用ガラスに適用する場合、第1の部材310および第2の追加部材350は、いずれもガラス基板で構成され、第2の部材320は、樹脂膜(いわゆる中間膜)で構成される。また、その場合、第3の積層体300は、第1の側302が車両用ガラスの車外側となり、第2の側304が車内側となるようにして使用される。 For example, when the third laminate 300 is applied to a glass for a vehicle, the first member 310 and the second additional member 350 are both formed of a glass substrate, and the second member 320 is a resin film (so-called Intermediate film). Further, in this case, the third stacked body 300 is used such that the first side 302 is the outside of the vehicle glass and the second side 304 is the inside of the vehicle.
 そのような車両用ガラスでは、前述の効果により、日射の車内への進入が有意に遮蔽されるとともに、車外から車内を視認することが難しくなり、車内のプライバシーを確保することが可能となる。また、ガラス部材から反射される反射光による眩しさが有意に軽減される。さらに、屋内から屋外を視認した際に、歪みのない透過像を見ることが可能となる。 With such a glass for a vehicle, by the above-described effects, it is possible to significantly block the ingress of solar radiation into the interior of the vehicle, and it becomes difficult to visually identify the interior of the vehicle from the exterior of the vehicle, and privacy in the interior of the vehicle can be secured. Moreover, the glare by the reflected light reflected from a glass member is reduced significantly. Furthermore, when viewing the inside from the inside, it is possible to see a transmission image without distortion.
 (本発明のさらに別の実施形態による遮熱性能を有する積層体)
 次に、図4を参照して、本発明のさらに別の実施形態による遮熱性能を有する積層体について説明する。
(Laminated body having heat shielding performance according to still another embodiment of the present invention)
Next, with reference to FIG. 4, a laminate having a heat shielding performance according to still another embodiment of the present invention will be described.
 図4には、本発明のさらに別の実施形態による遮熱性能を有する積層体(以下、「第4の積層体」と称する)の断面を概略的に示す。 In FIG. 4, the cross section of the laminated body (henceforth a "4th laminated body") which has the thermal insulation performance by further another embodiment of this invention is shown roughly.
 図4に示すように、第4の積層体400は、前述の第2の積層体200と、第3の積層体300とを組み合わせた構成を有する。すなわち、第4の積層体400は、第1の側402および第2の側404を有し、第1の追加部材440と、第1の部材410と、反射層430と、第2の部材420と、第2の追加部材450とを、この順に有する。 As shown in FIG. 4, the fourth stacked body 400 has a configuration in which the second stacked body 200 described above and the third stacked body 300 are combined. That is, the fourth stacked body 400 has the first side 402 and the second side 404, and the first additional member 440, the first member 410, the reflective layer 430, and the second member 420. And the second additional member 450 in this order.
 各部材については、前述の第2の積層体200および第3の積層体300に関する説明が参照できるため、ここではこれ以上説明しない。ただし、図4に示すように、第4の積層体400に含まれる各部材には、400番台の参照符号が使用されていることに留意する必要がある。 The respective members can be referred to the descriptions of the second stack 200 and the third stack 300 described above, and thus will not be further described here. However, as shown in FIG. 4, it should be noted that reference numerals in the 400s are used for each member included in the fourth stacked body 400.
 第4の積層体400においても、反射層430は、第1の側402から入射される近赤外領域の光の大部分を反射するとともに、第1の側402から入射される可視光領域の光の大部分も反射するように設計されている。 Also in the fourth stacked body 400, the reflective layer 430 reflects most of the light in the near infrared region incident from the first side 402, and at the same time, in the visible light region incident from the first side 402. It is designed to reflect most of the light as well.
 より具体的には、第4の積層体400は、第1の側402で評価した場合、エネルギー反射率Reが60%以上となり、拡散成分を含む可視光反射率Rvが40%以上となるように構成される。 More specifically, when the fourth stacked body 400 is evaluated on the first side 402, the energy reflectance Re is 60% or more, and the visible light reflectance Rv including the diffusion component is 40% or more. Configured
 また、第4の積層体400は、第1の側402で評価した場合、可視光正反射率Rvtが30%以下となり、第1の側402から第2の側404に透過する可視光の透過率Tvが1%以上30%未満となるように構成されている。 Further, in the fourth laminate 400, when evaluated on the first side 402, the visible light regular reflectance Rvt is 30% or less, and the transmittance of visible light transmitted from the first side 402 to the second side 404 The Tv is configured to be 1% or more and less than 30%.
 従って、第4の積層体400においても、第1の積層体100と同様の効果を得ることができる。すなわち、第4の積層体400では、有意に抑制されたSC値を得ることができ、有意に高い遮熱性を発揮することができる。例えば、第4の積層体400では、第1の側402から評価した場合、0.2以下のSC値を得ることができる。 Therefore, also in the fourth stacked body 400, the same effect as that of the first stacked body 100 can be obtained. That is, in the fourth stacked body 400, it is possible to obtain a significantly suppressed SC value, and it is possible to exhibit a significantly high thermal insulation. For example, in the fourth stacked body 400, when evaluated from the first side 402, an SC value of 0.2 or less can be obtained.
 また、第4の積層体400では、第1の側402から第2の側404に透過される可視光が有意に抑制され、プライバシーの問題も軽減することができる。 Further, in the fourth stacked body 400, visible light transmitted from the first side 402 to the second side 404 is significantly suppressed, and the problem of privacy can also be alleviated.
 また、第4の積層体400では、該第4の積層体400に入射された可視光によって生じ得る反射光の多くが散乱されるため、防眩性を高めることができる。 Further, in the fourth stacked body 400, much of the reflected light that may be generated by the visible light incident on the fourth stacked body 400 is scattered, so that the antiglare property can be enhanced.
 さらに、第4の積層体400では、第2の側404から第1の側402に向かって周囲を視認した際に、透過像に対する良好な鮮明性を得ることが可能となる。 Furthermore, in the fourth stacked body 400, when the surroundings are viewed from the second side 404 to the first side 402, it is possible to obtain good sharpness for the transmission image.
 (第4の積層体400)
 第4の積層体400を構成する各部材については、前述の記載が参照できる。
(Fourth stack 400)
The above description can be referred to for each member constituting the fourth stacked body 400.
 第2の表面414および第2の凹凸界面434は、それぞれ、第2の表面114と同様なSdqおよびRSmを有することが好ましい。 Second surface 414 and second relief interface 434 preferably have similar Sdq and RSm to second surface 114, respectively.
 また、反射層430の厚さは、反射層130と同様であることが好ましい。 The thickness of the reflective layer 430 is preferably the same as that of the reflective layer 130.
 ここでは主として、第4の積層体400の適用例について説明する。また、各部材を参照する際には、図4に示した参照符号を使用する。 Here, an application example of the fourth stacked body 400 will be mainly described. Further, when referring to each member, the reference numerals shown in FIG. 4 are used.
 第4の積層体400は、例えば、窓ガラスおよび車両用ガラスなどのガラス部材として、適用されても良い。 The fourth stacked body 400 may be applied as, for example, a glass member such as a window glass and a glass for a vehicle.
 この場合、第1の追加部材440および第2の追加部材450は、ガラス基板で構成される。また、第1の部材410は、第1の追加部材440と同様の屈折率を有し、凹凸を有する樹脂フィルムで構成され、第2の部材420は、樹脂膜(いわゆる中間膜)で構成されても良い。 In this case, the first additional member 440 and the second additional member 450 are formed of a glass substrate. In addition, the first member 410 has a refractive index similar to that of the first additional member 440 and is made of a resin film having asperities, and the second member 420 is made of a resin film (so-called intermediate film). It is good.
 また、その場合、第4の積層体400は、第1の側402がガラス部材の屋外(または車外。以下同様)側となり、第2の側404が屋内(または車内。以下同様)側となるようにして使用される。 Also, in this case, in the fourth laminate 400, the first side 402 is the outdoor (or outside of the car, and so forth) side of the glass member, and the second side 404 is the indoor (or in car, below) side. To be used.
 そのような車両用ガラスでは、前述の効果により、日射の車内への進入が有意に遮蔽されるとともに、車外から車内を視認することが難しくなり、車内のプライバシーを確保することが可能となる。また、ガラス部材から反射される反射光による眩しさが有意に軽減される。さらに、屋内から屋外を視認した際に、歪みのない透過像を見ることが可能となる。 With such a glass for a vehicle, by the above-described effects, it is possible to significantly block the ingress of solar radiation into the interior of the vehicle, and it becomes difficult to visually identify the interior of the vehicle from the exterior of the vehicle, and privacy in the interior of the vehicle can be secured. Moreover, the glare by the reflected light reflected from a glass member is reduced significantly. Furthermore, when viewing the inside from the inside, it is possible to see a transmission image without distortion.
 (本発明の一実施形態による遮熱性能を有する積層体の製造方法)
 次に、本発明の一実施形態による遮熱性能を有する積層体の製造方法について説明する。
(Method of manufacturing laminate having heat shielding performance according to one embodiment of the present invention)
Next, a method of manufacturing a laminate having a heat shielding performance according to an embodiment of the present invention will be described.
 なお、ここでは、一例として、図3に示した第3の積層体300を例に、その製造方法の一例について説明する。従って、各部材を参照する際には、図3に示した参照符号を使用する。 Here, as an example, an example of the manufacturing method will be described by taking the third stacked body 300 shown in FIG. 3 as an example. Therefore, when referring to each member, the reference numerals shown in FIG. 3 are used.
 ただし、以下の記載が本発明のその他の実施形態による積層体にも適用可能であることは、当業者には明らかである。 However, it is apparent to one skilled in the art that the following description is also applicable to a laminate according to another embodiment of the present invention.
 第3の積層体300を製造する際には、まず、第1の部材310となる第1のガラス基板、および第2の追加部材350となる第2のガラス基板が準備される。 When manufacturing the third stacked body 300, first, a first glass substrate to be the first member 310 and a second glass substrate to be the second additional member 350 are prepared.
 次に、第1のガラス基板の一方の表面に、アンチグレア処理が施工される。これにより、第2の表面314に凹凸を有する第1の部材310が作製される。 Next, antiglare treatment is applied to one surface of the first glass substrate. Thereby, the first member 310 having the unevenness on the second surface 314 is manufactured.
 第1のガラス基板の第2の表面314に対するアンチグレア処理は、エッチング処理、サンドブラスト処理又は堆積処理であることが好ましい。 The antiglare treatment on the second surface 314 of the first glass substrate is preferably an etching treatment, a sand blasting treatment or a deposition treatment.
 エッチング処理である場合、第2の表面314を、濃度15~50%のフッ化水素(HF)水溶液でエッチング処理することにより、第2の表面314に微細な凹凸形状を形成できる。エッチング処理に使用するHF水溶液の濃度や処理時間を変えることで、第2の表面314のSdqおよびRSmを制御できる。エッチング処理には、フッ化水素水溶液にフッ化カリウムを混合した薬液や、フッ化水素と塩化水素の混合薬液を使用してもよい。
また、堆積処理として、公知のウェットコート法(スプレーコート法、静電塗装法、スピンコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等)を使用できる。堆積処理により形成する膜としては、シリカを主成分とする膜が挙げられる。ここで主成分とは酸化物換算含有量で70質量%含む膜である。膜は、微粒子を含有してよく、微粒子としては、鱗片状、球状などを使用できる。微粒子を使用することで、所望の凹凸形状を形成できる。
In the case of the etching process, the second surface 314 can be etched with a hydrogen fluoride (HF) aqueous solution having a concentration of 15 to 50% to form a fine uneven shape on the second surface 314. The Sdq and RSm of the second surface 314 can be controlled by changing the concentration of HF aqueous solution used for the etching process and the processing time. For the etching process, a chemical solution in which potassium fluoride is mixed with a hydrogen fluoride aqueous solution, or a mixed chemical solution of hydrogen fluoride and hydrogen chloride may be used.
In addition, as a deposition treatment, a known wet coating method (spray coating method, electrostatic coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method , Bar coat method, flexo coat method, slit coat method, roll coat method, etc. can be used. Examples of the film formed by the deposition treatment include a film containing silica as a main component. Here, the main component is a film containing 70% by mass in terms of oxide content. The membrane may contain fine particles, and the fine particles may be scaly, spherical or the like. By using the fine particles, a desired uneven shape can be formed.
 次に、第1の部材310の第2の表面314上に、反射層330が設置される。反射層は、例えば、スパッタ法などの成膜技術により形成される。 Next, the reflective layer 330 is disposed on the second surface 314 of the first member 310. The reflective layer is formed by, for example, a film forming technique such as sputtering.
 次に、反射層330の上に、第2の部材320が設置される。第2の部材320は、例えば、熱硬化性または紫外線(UV)硬化性樹脂のような樹脂で構成される。次に、第2の部材320の上に、第2のガラス基板が設置される。その後、第2の部材320が反射層330と接するようにして、第2のガラス基板が反射層330の上に設置される。 Next, the second member 320 is placed on the reflective layer 330. The second member 320 is made of, for example, a resin such as a thermosetting or ultraviolet (UV) curable resin. Next, a second glass substrate is placed on the second member 320. Thereafter, the second glass substrate is placed on the reflective layer 330 such that the second member 320 is in contact with the reflective layer 330.
 あるいは、第2のガラス基板の一方の表面に、樹脂を設置しておき、この第2のガラス基板を、反射層330の上に設置しても良い。 Alternatively, a resin may be provided on one surface of the second glass substrate, and the second glass substrate may be provided on the reflective layer 330.
 次に、この状態で、第2の部材320が硬化される。例えば、第2の部材320が熱硬化性樹脂で構成される場合、組立体が所定の温度に加熱され、これにより、第2の部材320が硬化される。あるいは、第2の部材320がUV硬化性樹脂で構成される場合、組立体にUV光が照射され、これにより、第2の部材320が硬化される。 Next, in this state, the second member 320 is cured. For example, if the second member 320 is comprised of a thermosetting resin, the assembly is heated to a predetermined temperature, thereby curing the second member 320. Alternatively, if the second member 320 is comprised of a UV curable resin, the assembly is irradiated with UV light, thereby curing the second member 320.
 第2の部材320が硬化されると、反射層330を有する第1のガラス基板と第2のガラス基板とが、第2の部材320を介して接合され、第3の積層体300が構成される。 When the second member 320 is cured, the first glass substrate having the reflective layer 330 and the second glass substrate are bonded via the second member 320, and the third stacked body 300 is configured. Ru.
 このような方法により、第3の積層体300を製造することができる。 The third stacked body 300 can be manufactured by such a method.
 以下、本発明の実施例について説明する。なお、以下の記載において、例1~例6および例9~例11は実施例であり、例7は比較例である。例8は参考例である。 Hereinafter, examples of the present invention will be described. In the following description, Examples 1 to 6 and Examples 9 to 11 are Examples, and Example 7 is a Comparative Example. Example 8 is a reference example.
 (例1)
 以下の方法で、図3に示したような構成を有する積層体を作製した。
(Example 1)
A laminate having a configuration as shown in FIG. 3 was produced by the following method.
 まず、第1の部材として、厚さ2mmのガラス基板(ソーダライムガラス)を準備した。 First, a glass substrate (soda lime glass) having a thickness of 2 mm was prepared as a first member.
 このガラス基板の一方の表面(第2の表面とする)を、2wt%フッ化水素および3wt%フッ化カリウムを含むフロスト処理液に3分間浸漬して、予備エッチング処理を行った。さらに、ガラス基板を洗浄後、7.5wt%フッ化水素および7.5wt%塩化水素を含む水溶液中に18分間浸漬し(本エッチング処理)、第2の表面に凹凸を形成した。 One surface (referred to as a second surface) of this glass substrate was immersed in a frost treatment solution containing 2 wt% hydrogen fluoride and 3 wt% potassium fluoride for 3 minutes to perform pre-etching treatment. Furthermore, after the glass substrate was washed, it was immersed in an aqueous solution containing 7.5 wt% hydrogen fluoride and 7.5 wt% hydrogen chloride for 18 minutes (main etching treatment) to form unevenness on the second surface.
 次に、スパッタ法により、ガラス基板の第2の表面に、反射層を成膜した。 Next, a reflective layer was formed on the second surface of the glass substrate by sputtering.
 反射層は、酸化亜鉛膜(5nm(目標膜厚。以下同じ))/銀膜(68nm)/アルミニウムドープ酸化亜鉛膜(5nm)/亜鉛ドープ酸化スズ膜(80nm)/酸化亜鉛膜(5nm)/銀膜(68nm)/アルミニウムドープ酸化亜鉛膜(5nm)の7層構造とした。反射層の厚さ(総厚さ)は、236nmを目標とした。 The reflective layer is made of zinc oxide film (5 nm (target film thickness; target same as the following)) / silver film (68 nm) / aluminum-doped zinc oxide film (5 nm) / zinc-doped tin oxide film (80 nm) / zinc oxide film (5 nm) / A seven-layer structure of silver film (68 nm) / aluminum-doped zinc oxide film (5 nm) was used. The thickness (total thickness) of the reflective layer was targeted at 236 nm.
 アルミニウムドープ酸化亜鉛膜は、酸化アルミニウムと酸化亜鉛の重量比が5:95からなるターゲットよりアルゴンガスを導入して成膜した。また、亜鉛ドープ酸化スズ膜は、亜鉛とスズの重量比が50:50からなるターゲットを用いて酸素ガスを導入し、反応性スパッタにより成膜した。 The aluminum-doped zinc oxide film was formed by introducing argon gas from a target having a weight ratio of aluminum oxide to zinc oxide of 5:95. Further, the zinc-doped tin oxide film was formed by reactive sputtering by introducing oxygen gas using a target having a weight ratio of zinc to tin of 50:50.
 これにより、ガラス基板の凹凸表面上に反射層が設置された第1の組立体が得られた。 Thereby, the first assembly in which the reflective layer was provided on the uneven surface of the glass substrate was obtained.
 次に、第2の追加部材として、厚さ2mmの別のガラス基板(ソーダライムガラス)を準備した。また、このガラス基板の一方の表面に、第2の部材としての樹脂層を設置した。樹脂層は、熱可塑性のポリビニルブチラールとした。 Next, another glass substrate (soda lime glass) having a thickness of 2 mm was prepared as a second additional member. Moreover, the resin layer as a 2nd member was installed in one surface of this glass substrate. The resin layer was made of thermoplastic polyvinyl butyral.
 これにより、ガラス基板と樹脂層とからなる第2の組立体が得られた。 Thereby, the 2nd assembly which consists of a glass substrate and a resin layer was obtained.
 次に、第1の組立体の上に、第2の組立体を積層した。この際には、第1の組立体の反射層と、第2の組立体の樹脂層とが相互に接するようにして、両者を積層した。その後、樹脂層を硬化させ、第2の組立体と第1の組立体を相互に接合させた。 Next, the second assembly was stacked on the first assembly. At this time, the reflective layer of the first assembly and the resin layer of the second assembly were in contact with each other, and they were laminated. Thereafter, the resin layer was cured to bond the second assembly and the first assembly to each other.
 これにより、例1に係る積層体が作製された。樹脂層の厚さは、おおよそ750μmであった。なお、例1に係る積層体において、第1の部材(ガラス基板)と樹脂層の間の屈折率の差Δn=0.02である。 Thus, a laminate according to Example 1 was produced. The thickness of the resin layer was approximately 750 μm. In the laminate according to Example 1, the difference Δn of the refractive index between the first member (glass substrate) and the resin layer is 0.02.
 (例2)
 例1と同様の方法により、積層体を作製した。ただし、この例2では、第1の部材の第2の表面の本エッチングの処理時間を9分間として、積層体を作製した。その結果、第1の部材の第2の表面には、例1に比べてより大きな凹凸が形成された。
(Example 2)
A laminate was produced in the same manner as in Example 1. However, in this example 2, the laminated body was manufactured by setting the processing time of the main etching of the second surface of the first member to 9 minutes. As a result, a larger unevenness was formed on the second surface of the first member as compared with Example 1.
 その他の作製条件は、例1の場合と同様である。 The other preparation conditions are the same as in Example 1.
 これにより、例2に係る積層体が作製された。 Thus, a laminate according to Example 2 was produced.
 (例3)
 例1と同様の方法により、積層体を作製した。ただし、この例3では、反射層の構成を、例1の場合とは変化させた。すなわち、反射層は、酸化亜鉛膜(5nm)/銀膜(41nm)/アルミニウムドープ酸化亜鉛膜(5nm)/亜鉛ドープ酸化スズ膜(79nm)/酸化亜鉛膜(5nm)/銀膜(23nm)/アルミニウムドープ酸化亜鉛膜(5nm)の7層構造とした。反射層の厚さ(総厚さ)は、163nmを目標とした。
(Example 3)
A laminate was produced in the same manner as in Example 1. However, in the third example, the configuration of the reflective layer was changed from that of the first example. That is, the reflective layer is zinc oxide film (5 nm) / silver film (41 nm) / aluminum-doped zinc oxide film (5 nm) / zinc-doped tin oxide film (79 nm) / zinc oxide film (5 nm) / silver film (23 nm) / It was set as 7 layer structure of the aluminum dope zinc oxide film (5 nm). The thickness (total thickness) of the reflective layer was targeted at 163 nm.
 アルミニウムドープ酸化亜鉛膜は、酸化アルミニウムと酸化亜鉛の重量比が5:95からなるターゲットよりアルゴンガスを導入して成膜した。また、亜鉛ドープ酸化スズ膜は、亜鉛とスズの重量比が50:50からなるターゲットを用いて酸素ガスを導入し、反応性スパッタにより成膜した。 The aluminum-doped zinc oxide film was formed by introducing argon gas from a target having a weight ratio of aluminum oxide to zinc oxide of 5:95. Further, the zinc-doped tin oxide film was formed by reactive sputtering by introducing oxygen gas using a target having a weight ratio of zinc to tin of 50:50.
 その他の作製条件は、例1の場合と同様である。 The other preparation conditions are the same as in Example 1.
 これにより、例3に係る積層体が作製された。 Thus, a laminate according to Example 3 was produced.
 (例4)
 例2と同様の方法により、積層体を作製した。ただし、この例4では、反射層として、前述の例3の構成を採用した。その他の作製条件は、例2の場合と同様である。
(Example 4)
A laminate was produced in the same manner as in Example 2. However, in Example 4, the configuration of Example 3 described above was adopted as the reflective layer. The other preparation conditions are the same as in Example 2.
 これにより、例4に係る積層体が作製された。 Thus, a laminate according to Example 4 was produced.
 (例5)
 例1と同様の方法により、積層体を作製した。ただし、この例5では、反射層の構成を、例1の場合とは変化させた。すなわち、反射層は、酸化亜鉛膜(7nm)/銀膜(25nm)/アルミニウムドープ酸化亜鉛膜(7.5nm)/亜鉛スズ酸化膜(77nm)/酸化亜鉛膜(7nm)/銀膜(10nm)/アルミニウムドープ酸化亜鉛膜(7.5nm)/亜鉛スズ酸化膜(24nm)の8層構造とした。反射層の厚さ(総厚さ)は、165nmを目標とした。
(Example 5)
A laminate was produced in the same manner as in Example 1. However, in Example 5, the configuration of the reflective layer was changed from that of Example 1. That is, the reflective layer is zinc oxide film (7 nm) / silver film (25 nm) / aluminum-doped zinc oxide film (7.5 nm) / zinc tin oxide film (77 nm) / zinc oxide film (7 nm) / silver film (10 nm) / 8-layer structure of aluminum-doped zinc oxide film (7.5 nm) / zinc tin oxide film (24 nm). The thickness (total thickness) of the reflective layer was targeted at 165 nm.
 アルミニウムドープ酸化亜鉛膜は、酸化アルミニウムと酸化亜鉛の重量比が5:95からなるターゲットよりアルゴンガスを導入して成膜した。また、亜鉛ドープ酸化スズ膜は、亜鉛とスズの重量比が50:50からなるターゲットを用いて酸素ガスを導入し、反応性スパッタにより成膜した。 The aluminum-doped zinc oxide film was formed by introducing argon gas from a target having a weight ratio of aluminum oxide to zinc oxide of 5:95. Further, the zinc-doped tin oxide film was formed by reactive sputtering by introducing oxygen gas using a target having a weight ratio of zinc to tin of 50:50.
 その他の作製条件は、例1の場合と同様である。 The other preparation conditions are the same as in Example 1.
 これにより、例5に係る積層体が作製された。 Thus, a laminate according to Example 5 was produced.
 (例6)
 例2と同様の方法により、積層体を作製した。ただし、この例6では、反射層として、前述の例5の構成を採用した。その他の作製条件は、例2の場合と同様である。
(Example 6)
A laminate was produced in the same manner as in Example 2. However, in the sixth example, the configuration of the fifth example described above is adopted as the reflective layer. The other preparation conditions are the same as in Example 2.
 これにより、例6に係る積層体が作製された。 Thus, a laminate according to Example 6 was produced.
 (例7)
 例1と同様の方法により、積層体を作製した。ただし、この例7では、第1の部材に対してエッチング処理を実施しなかった。従って、第1の部材の第2の表面は、比較的平滑であり、この平滑な表面上に、前述の反射層が成膜された。
(Example 7)
A laminate was produced in the same manner as in Example 1. However, in this example 7, the etching process was not performed on the first member. Therefore, the second surface of the first member was relatively smooth, and the above-mentioned reflective layer was deposited on the smooth surface.
 その他の作製条件は、例1の場合と同様である。 The other preparation conditions are the same as in Example 1.
 これにより、例7に係る積層体が作製された。 Thus, a laminate according to Example 7 was produced.
 (例9)
 第1の部材の第2の表面に対する予備エッチング処理において、フロスト処理液に浸漬する時間を6分間とした以外は、例2と同様の方法により、積層体を作製した。反射層の構成は、例5と同様とした。
(Example 9)
A laminate was produced in the same manner as in Example 2 except that in the pre-etching treatment for the second surface of the first member, the immersion time in the frost treatment liquid was 6 minutes. The configuration of the reflective layer was the same as in Example 5.
 (例10)
 第1の部材の第2の表面に対する本エッチング処理において、処理時間を1分間とした以外は、例2と同様の方法により、積層体を作製した。
(Example 10)
In the main etching process for the second surface of the first member, a laminate was produced in the same manner as in Example 2 except that the treatment time was 1 minute.
 (例11)
 第1の部材の第2の表面に対する本エッチング処理において、処理時間を30分とした以外は、例1と同様の方法により、積層体を作製した。
(Example 11)
In the main etching process for the second surface of the first member, a laminate was produced in the same manner as in Example 1 except that the treatment time was 30 minutes.
 (評価)
 前述の方法で作製した各積層体を用いて、以下の評価を実施した。
(Evaluation)
The following evaluation was implemented using each laminated body produced by the above-mentioned method.
 (光学特性および遮熱性の評価)
 例1~例7に係る積層体を用いて、可視光透過率Tv、拡散成分を含む可視光反射率Rv(1)およびRv(2)、可視光正反射率Rvt(1)およびRvt(2)、エネルギー透過率Te、エネルギー反射率Re、エネルギー吸収率Ae、ならびに日射熱取得率(g値)をそれぞれ評価した。また、得られた結果から、日射遮蔽係数(SC値)を求めた。
(Evaluation of optical characteristics and heat shielding properties)
A visible light transmittance Tv, visible light reflectance Rv (1) and Rv (2) including diffused components, visible light regular reflectance Rvt (1) and Rvt (2) , using the laminate according to Examples 1 to 7. The energy transmittance Te, the energy reflectance Re, the energy absorption rate Ae, and the solar heat gain rate (g value) were evaluated. Moreover, the solar radiation shielding coefficient (SC value) was calculated | required from the obtained result.
 ここで、可視光透過率Tv、エネルギー透過率Te、エネルギー反射率Re、エネルギー吸収率Ae、ならびに日射熱取得率(g値)は、いずれも積層体の第1の部材の側から測定光を照射することにより測定された値とする。 Here, the visible light transmittance Tv, the energy transmittance Te, the energy reflectance Re, the energy absorptivity Ae, and the solar heat acquisition rate (g value) are all measured light from the side of the first member of the laminate. It is a value measured by irradiation.
 一方、拡散成分を含む可視光反射率は、各積層体において、第1の部材の側で測定された値をRv(1)で表し、第2の部材の側で測定された値をRv(2)で表す。同様に、可視光正反射率は、各積層体において、第1の部材の側で測定された値をRvt(1)で表し、第2の部材の側で測定された値をRvt(2)で表すものとする。 On the other hand, the visible light reflectance including the diffusion component is represented by Rv (1) , which is the value measured on the side of the first member in each laminate, and the value measured on the side of the second member is Rv ( Represented by 2) . Similarly, for the visible light regular reflectance, in each laminate, the value measured on the first member side is represented by Rvt (1) , and the value measured on the second member side is represented by Rvt (2) It shall represent.
 測定には、分光光度計(U-4100:日立製作所製)を使用し、ISO9050:2003に準拠した方法で、各光学パラメータを評価した。 For measurement, a spectrophotometer (U-4100: manufactured by Hitachi, Ltd.) was used, and each optical parameter was evaluated by a method in accordance with ISO 9050: 2003.
 なお、可視光正反射率Rvt(1)は、測定光を、各積層体の第1の部材の側から、法線に対して5°傾斜した角度で照射し、この際に生じる正反射光を検出することにより評価した。同様に、可視光正反射率Rvt(2)は、測定光を、各積層体の第2の部材の側から、法線に対して5°傾斜した角度で照射し、この際に生じる正反射光を検出することにより評価した。 The visible light regular reflectance Rvt (1) irradiates the measurement light from the side of the first member of each laminate at an angle inclined 5 ° with respect to the normal, and the regular reflection light generated at this time is It evaluated by detecting. Similarly, the visible light regular reflectance Rvt (2) irradiates the measurement light from the side of the second member of each stack at an angle inclined 5 ° with respect to the normal, and the specularly reflected light generated at this time It was evaluated by detecting
 また、拡散成分を含む可視光反射率Rv(1)は、測定器に付属の直径60φの積分球を使用し、測定光を、各積層体の第1の部材の側から、法線に対して8°傾斜した角度で照射し、この際に生じる光を検出することにより評価した。同様に、拡散成分を含む可視光反射率Rv(2)は、各積層体の第2の部材の側から、法線に対して8°傾斜した角度で照射し、この際に生じる光を検出することにより評価した。 In addition, the visible light reflectance Rv (1) containing the diffusion component uses an integrating sphere of diameter 60φ attached to the measuring instrument, and the measuring light is transmitted to the normal from the side of the first member of each laminate The light was irradiated at an angle of 8.degree. And evaluated by detecting the light generated at this time. Similarly, the visible light reflectance Rv (2) containing the diffusion component is irradiated from the side of the second member of each stack at an angle inclined by 8 ° with respect to the normal, and the light generated at this time is detected It evaluated by doing.
 また、エネルギー反射率Reは、拡散成分を含む可視光反射率Rv(1)と同様の方法で評価した。ただし、測定光として、日射波長域の光を使用した。 Further, the energy reflectance Re was evaluated by the same method as the visible light reflectance Rv (1) containing the diffusion component. However, light of a solar radiation wavelength range was used as measurement light.
 SC値は、得られたg値から、
 
   SC値=g値/0.88
 
により算出した。
The SC value is obtained from the obtained g value

SC value = g value / 0.88

Calculated by
 (SdqおよびRsm)
 レーザー顕微鏡(キーエンス製VK-X250)を用いて表面形状を測定した。50倍の対物レンズを用いた。測定条件は高精細モード、測定ピッチは0.1μm、RPD機能はオンとした。
(Sdq and Rsm)
The surface shape was measured using a laser microscope (VK-X250 manufactured by Keyence Corporation). A 50 × objective was used. The measurement conditions were a high definition mode, the measurement pitch was 0.1 μm, and the RPD function was on.
 RSmは、キーエンス製解析ソフトウェアの複数線粗さ計測を用いて求めた。複数線設定は、周囲本数に「10」本、間隔に「30」本飛ばしを、計測種別は「粗さ」、カットオフはλs、λcとも「なし」を選択し、終端効果の補正にチェックを入れて計測を行った。 RSm was determined using multi-line roughness measurement of Keyence analysis software. For multi-line setting, select “10” for the number of surroundings and “30” for the interval, select “roughness” for measurement type, “none” for both λs and λc for cutoff, and check for correction of termination effect Put in and measured.
 Sdqは、解析ソフトSPIP(Image Metorology社)を用いて求めた。測定した表面形状データを解析ソフトSPIP(Image Metorology社)で読み込み、AnalyzeメニューのS-filtering(1μm)を適用し、Roughness Analysisを行う。Roughness Analysisの際に、Plane Correctionを「Subtract Plane」で行い、出力パラメータにSdqを含めて解析を行うことで、Sdq値を得た。 Sdq was determined using analysis software SPIP (Image Metrology). The measured surface shape data is read by analysis software SPIP (Image Metrology), S-filtering (1 μm) of the Analyze menu is applied, and Roughness Analysis is performed. At Roughness Analysis, Plane Correction was performed on "Subtract Plane", and Sdq values were obtained by including Sdq in the output parameters to obtain Sdq values.
 以下の表1には、各積層体において得られた結果をまとめて示す。 Table 1 below summarizes the results obtained for each laminate.
Figure JPOXMLDOC01-appb-T000001
 表1において、「例8」の欄には、参考のため、特開2012-3027号公報に記載の光学体から算出された、各光学パラメータを示した。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the column of “Example 8” shows each optical parameter calculated from the optical body described in JP 2012-3027 A for reference.
 表1の結果から、例7に係る積層体では、可視光正反射率Rvt(1)およびRvt(2)が、いずれも50%を超える高い値を示すことがわかる。このような積層体では、光の反射により、観者が不快な眩しさを感じる可能性がある。 From the results of Table 1, it can be seen that in the laminate according to Example 7, the visible light regular reflectances Rvt (1) and Rvt (2) both show high values exceeding 50%. In such a laminate, the reflection of light may cause the viewer to feel unpleasant glare.
 また、例8の欄に示した従来の光学体は、SC値が0.5を超えており、あまり良好な熱遮蔽機能を有しない。また、この光学体においては、可視光透過率Tvが約42%となっており、拡散成分を含む可視光反射率Rv(1)が11%となっている。このような光学体では、屋内の状況が屋外から容易に視認できると思われるため、プライバシーの観点から問題がある。 Moreover, the conventional optical body shown in the column of Example 8 has an SC value of more than 0.5 and does not have a very good heat shielding function. Further, in this optical body, the visible light transmittance Tv is about 42%, and the visible light reflectance Rv (1) including the diffusion component is 11%. In such an optical body, there is a problem from the viewpoint of privacy because the indoor situation seems to be easily visible from the outside.
 これに対して、例1~例6および例9~例11に係る積層体では、いずれもSC値が0.2以下となっており、良好な熱遮蔽性能を有することがわかる。 On the other hand, in the laminates according to Examples 1 to 6 and 9 to 11, all have SC values of 0.2 or less, and it can be seen that they have good heat shielding performance.
 また、例1~例6および例9~例11に係る積層体では、いずれも可視光透過率Tvが30%未満で、拡散成分を含む可視光反射率Rv(1)が40%以上となっている。従って、これらの積層体では、プライバシーの保護を図ることができる。 In each of the laminates according to Examples 1 to 6 and 9 to 11, the visible light transmittance Tv is less than 30%, and the visible light reflectance Rv (1) including the diffusion component is 40% or more. ing. Therefore, in these laminates, privacy can be protected.
 さらに、例1~例6および例9~例11に係る積層体では、いずれも可視光正反射率Rvt(1)が30%以下となっている。このため、これらの積層体では、第1の部材の側から視認した際に、眩しさを有意に低減することができる。 Furthermore, in each of the laminates according to Examples 1 to 6 and 9 to 11, the visible light regular reflectance Rvt (1) is 30% or less. Therefore, in these laminates, when viewed from the side of the first member, the glare can be significantly reduced.
 このように、例1~例6および例9~例11に係る積層体は、良好な遮熱性能を有する上、防眩性およびプライバシー保護の観点からも良好な特性を有することが確認された。 Thus, the laminates according to Example 1 to Example 6 and Example 9 to Example 11 were confirmed to have good heat shielding performance and also to have good properties from the viewpoint of antiglare property and privacy protection. .
 (透過像鮮明度の評価)
 次に、例1~例6に係る積層体を用いて、透過像鮮明度を評価した。
(Evaluation of transmission image definition)
Next, the laminates according to Examples 1 to 6 were used to evaluate the transmitted image clarity.
 この評価は、JIS-K7374に基づき、スガ試験機製ICM-1Tを用いて測定した。 This evaluation was measured based on JIS-K7374 using ICM-1T manufactured by Suga Test Instruments.
 (ヘイズ)
 JIS-K7136に基づき、スガ試験機製ヘーズメーターHZ-V3を用いて測定した。
(Haze)
Based on JIS-K7136, it measured using Suga Test Instruments make haze meter HZ-V3.
 (反射膜の膜厚偏差)
 膜厚偏差は断面のSEM観察から測定した。断面は、ガラスを折ることで活断面を作成し、次にイオンミリング装置E-3500(日立ハイテクノロジー社製)で断面を平坦にし、オスミウムコートをし、FE-SEM SU-70(日立ハイテクノロジー社製)にて、倍率25万倍にて観察した。5箇所の観察像を撮影し、各画像で5箇所の膜厚を測定し、25個のデータの標準偏差を求めた。
(Film thickness deviation of reflective film)
The film thickness deviation was measured from SEM observation of the cross section. Cross-sections are made by breaking glass to make active cross-sections, then flatten the cross-sections with ion milling device E-3500 (manufactured by Hitachi High-Technologies Corporation), apply osmium coating, FE-SEM SU-70 (Hitachi High-Technologies) ) At a magnification of 250,000. Five observation images were taken, film thicknesses at five locations were measured in each image, and standard deviations of 25 data were obtained.
 以下の表2には、各積層体において、1mm幅の光学くしを用いた際の透過像鮮明度C(1.0)、C(0.25)、ヘイズ、および反射膜の膜厚偏差をまとめて示す。 In Table 2 below, in each laminate, transmission image sharpness C (1.0), C (0.25), haze, and film thickness deviation of the reflective film when using an optical comb of 1 mm width It shows collectively.
Figure JPOXMLDOC01-appb-T000002
 例1~例6に係る積層体では、いずれにおいても、90を超える良好な透過像鮮明度が得られた。また、例1~例6、例9および例11に係る積層体では、第1の部材の第2の表面のRSmが1μm以上であり、ヘイズが10%以下となった。さらに、例1~6、例10および例11に係る積層体では、第1の部材の第2の表面のSdqが0.6以下であり、反射膜の膜厚偏差を5%以下に抑えることができ、面内における熱遮蔽性能、プライバシー保護性および防眩性を確保することができた。
Figure JPOXMLDOC01-appb-T000002
In all of the laminates according to Examples 1 to 6, good transmitted image sharpness of over 90 was obtained. Further, in the laminates according to Examples 1 to 6, 9 and 11, the RSm of the second surface of the first member was 1 μm or more, and the haze was 10% or less. Furthermore, in the laminates according to Examples 1 to 6, 10, and 11, Sdq of the second surface of the first member is 0.6 or less, and the thickness deviation of the reflective film is suppressed to 5% or less. It was possible to secure in-plane heat shielding performance, privacy protection and antiglare properties.
 本願は、2017年6月27日に出願した日本国特許出願2017-125287号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 The present application claims priority based on Japanese Patent Application No. 2017-125287 filed on June 27, 2017, the entire contents of which are incorporated herein by reference.
 100   第1の積層体
 102   第1の側
 104   第2の側
 110   第1の部材
 112   第1の表面
 114   第2の表面
 120   第2の部材
 122   第3の表面
 124   第4の表面
 130   反射層
 132   第1の凹凸界面
 134   第2の凹凸界面
 200   第2の積層体
 202   第1の側
 204   第2の側
 210   第1の部材
 212   第1の表面
 214   第2の表面
 220   第2の部材
 222   第3の表面
 224   第4の表面
 230   反射層
 232   第1の凹凸界面
 234   第2の凹凸界面
 240   第1の追加部材
 242   第5の表面
 244   第6の表面
 300   第3の積層体
 302   第1の側
 304   第2の側
 310   第1の部材
 312   第1の表面
 314   第2の表面
 320   第2の部材
 322   第3の表面
 324   第4の表面
 330   反射層
 332   第1の凹凸界面
 334   第2の凹凸界面
 350   第2の追加部材
 352   第7の表面
 354   第8の表面
 400   第4の積層体
 402   第1の側
 404   第2の側
 410   第1の部材
 412   第1の表面
 414   第2の表面
 420   第2の部材
 422   第3の表面
 424   第4の表面
 430   反射層
 432   第1の界面
 434   第2の界面
 440   第1の追加部材
 442   第5の表面
 444   第6の表面
 450   第2の追加部材
 452   第7の表面
 454   第8の表面
100 first laminated body 102 first side 104 second side 110 first member 112 first surface 114 second surface 120 second member 122 third surface 124 fourth surface 130 reflective layer 132 First uneven interface 134 second uneven interface 200 second laminate 202 first side 204 second side 210 first member 212 first surface 214 second surface 220 second member 222 third The surface 224 fourth surface 230 reflective layer 232 first uneven interface 234 second uneven interface 240 first additional member 242 fifth surface 244 sixth surface 300 third laminate 302 first side 304 Second side 310 first member 312 first surface 314 second surface 320 second member 322 third surface 324 Fourth surface 330 reflective layer 332 first uneven interface 334 second uneven interface 350 second additional member 352 seventh surface 354 eighth surface 400 fourth laminated body 402 first side 404 second Side 410 First member 412 First surface 414 Second surface 420 Second member 422 Third surface 424 Fourth surface 430 Reflective layer 432 First interface 434 Second interface 440 First additional member 442 fifth surface 444 sixth surface 450 second additional member 452 seventh surface 454 eighth surface

Claims (11)

  1.  遮熱性能を有する積層体であって、
     第1および第2の表面を有する第1の部材と、
     第3および第4の表面を有する第2の部材と、
     前記第1の部材と前記第2の部材の間に配置された反射層と、
     を有し、
     前記第1の部材と前記第2の部材の間の屈折率の差Δnは、0.05未満であり、
     前記反射層は、前記第1の部材の前記第2の表面との間で、第1の凹凸界面を形成し、前記第2の部材の前記第3の表面との間で、第2の凹凸界面を形成し、
     当該積層体は、前記第1の部材の前記第1の表面の側に対応する第1の側と、前記第2の部材の前記第4の表面の側に対応する第2の側とを有し、
     当該積層体の前記第1の側で測定した場合、エネルギー反射率Reは、60%以上であり、拡散成分を含む可視光反射率Rvは、40%以上であり、可視光正反射率Rvtは、30%以下であり、
     当該積層体の前記第1の側から前記第2の側に向かって透過する可視光の透過率Tvは、1%以上30%未満である、積層体。
    A laminate having a heat shielding performance,
    A first member having first and second surfaces;
    A second member having third and fourth surfaces;
    A reflective layer disposed between the first member and the second member;
    Have
    The difference Δn in refractive index between the first member and the second member is less than 0.05,
    The reflective layer forms a first uneven interface with the second surface of the first member, and a second uneven layer with the third surface of the second member. Form an interface,
    The laminate has a first side corresponding to the side of the first surface of the first member, and a second side corresponding to the side of the fourth surface of the second member. And
    When measured on the first side of the laminate, the energy reflectance Re is 60% or more, the visible light reflectance Rv including the diffusion component is 40% or more, and the visible light regular reflectance Rvt is Less than 30%,
    The laminated body whose transmittance | permeability Tv of the visible light permeate | transmitted toward the said 2nd side from the said 1st side of the said laminated body is 1% or more and less than 30%.
  2.  当該積層体は、SC値が0.25以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the laminate has an SC value of 0.25 or less.
  3.  前記反射層は、100nm~300nmの範囲の厚さを有する、請求項1または2に記載の積層体。 The laminate according to claim 1, wherein the reflective layer has a thickness in the range of 100 nm to 300 nm.
  4.  前記反射層は、多層膜で構成される、請求項1乃至3のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the reflective layer is composed of a multilayer film.
  5.  前記第1の部材は、ガラス基板である、請求項1乃至4のいずれか一つに記載の積層体。 The layered product according to any one of claims 1 to 4 in which said 1st member is a glass substrate.
  6.  さらに、前記第1の部材の前記第1の表面の側に、第1の追加部材を有し、
     前記第1の部材は樹脂で構成され、前記第1の追加部材はガラス基板で構成される、請求項1乃至4のいずれか一つに記載の積層体。
    Furthermore, a first additional member is provided on the side of the first surface of the first member,
    The laminate according to any one of claims 1 to 4, wherein the first member is made of a resin, and the first additional member is made of a glass substrate.
  7.  前記第2の部材は、樹脂で構成される、請求項1乃至6のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the second member is made of a resin.
  8.  さらに、前記第2の部材の前記第4の表面の側に、第2の追加部材を有し、
     前記第2の追加部材はガラス基板で構成される、請求項1乃至7のいずれか一つに記載の積層体。
    Furthermore, a second additional member is provided on the side of the fourth surface of the second member,
    The layered product according to any one of claims 1 to 7 in which said 2nd additional member comprises a glass substrate.
  9.  当該積層体は、窓ガラスまたは車両用ガラスである、請求項8に記載の積層体。 The laminate according to claim 8, wherein the laminate is a window glass or a vehicle glass.
  10.  前記第2の表面は、ISO25178-2:2012に規定される二乗平均平方根傾斜Sdq(root mean square gradient of the scale-limited surface)が0.05以上0.6未満である、請求項1乃至9のいずれか1つに記載の積層体。 The second surface has a root mean square gradient of the scale-limited surface (Sdq) defined in ISO 25178-2: 2012 of 0.05 or more and less than 0.6. The laminate according to any one of the above.
  11.  前記第2の表面は、JISB0601:2001に規定される粗さ曲線要素の平均長さRSmが1μm以上30μm以下である、請求項1乃至10のいずれか1つに記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the second surface has an average length RSm of a roughness curvilinear element defined in JIS B 0601: 2001 of 1 μm to 30 μm.
PCT/JP2018/015598 2017-06-27 2018-04-13 Laminate having heat shielding capability WO2019003579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125287A JP2020138325A (en) 2017-06-27 2017-06-27 Laminate having heat shielding performance
JP2017-125287 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019003579A1 true WO2019003579A1 (en) 2019-01-03

Family

ID=64742076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015598 WO2019003579A1 (en) 2017-06-27 2018-04-13 Laminate having heat shielding capability

Country Status (2)

Country Link
JP (1) JP2020138325A (en)
WO (1) WO2019003579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023118044A (en) * 2022-02-11 2023-08-24 チャン チュン ペトロケミカル カンパニー リミテッド Polymer film and uses of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256040A (en) * 1999-03-08 2000-09-19 Nippon Sheet Glass Co Ltd Glass panel for automobile window
JP2002533565A (en) * 1998-12-18 2002-10-08 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Method and apparatus for producing a silver-based low-e coating without using a metal primer layer and articles of manufacture thereby
JP2011221197A (en) * 2010-04-08 2011-11-04 Suntechopt Co Ltd Anti-glare diffusion film
JP2014509963A (en) * 2011-01-31 2014-04-24 サン−ゴバン グラス フランス Transparent member with diffuse reflection
JP2016089366A (en) * 2014-10-30 2016-05-23 大日本印刷株式会社 Building laminate and daylighting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533565A (en) * 1998-12-18 2002-10-08 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Method and apparatus for producing a silver-based low-e coating without using a metal primer layer and articles of manufacture thereby
JP2000256040A (en) * 1999-03-08 2000-09-19 Nippon Sheet Glass Co Ltd Glass panel for automobile window
JP2011221197A (en) * 2010-04-08 2011-11-04 Suntechopt Co Ltd Anti-glare diffusion film
JP2014509963A (en) * 2011-01-31 2014-04-24 サン−ゴバン グラス フランス Transparent member with diffuse reflection
JP2016089366A (en) * 2014-10-30 2016-05-23 大日本印刷株式会社 Building laminate and daylighting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023118044A (en) * 2022-02-11 2023-08-24 チャン チュン ペトロケミカル カンパニー リミテッド Polymer film and uses of the same
JP7405927B2 (en) 2022-02-11 2023-12-26 チャン チュン ペトロケミカル カンパニー リミテッド Polymer film and its use

Also Published As

Publication number Publication date
JP2020138325A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US10831092B2 (en) Layered element made of transparent layers providing directional diffuse reflection
JP7192829B2 (en) Image display transparent member, image display system and image display method
KR102482628B1 (en) Transparent layered element containing display area
CN102141641B (en) Optical element and manufacture method thereof
EP3825288B1 (en) Anti-reflective coated glass article
TW201411227A (en) Display element having buried scattering anti-glare layer
CN108369368B (en) Reflective transparent screen
KR20150038015A (en) Cover glass for photoelectric conversion device
CN109073803A (en) Optical body, window material and roller shutter
WO2012157655A1 (en) Heat ray-shielding material, laminated structure, and laminated glass
WO2019138751A1 (en) Image display device
WO2019003579A1 (en) Laminate having heat shielding capability
US12055735B2 (en) Antiglare film having specified surface roughness and surface inclination
WO2017170277A1 (en) Optical body and glass material
WO2020236542A1 (en) Solar control composite film
JP2019066832A (en) Picture projection structure and transparent screen
KR20190049277A (en) Optical antireflection film and manufacturing method of the same
WO2021138030A1 (en) Solar control composite film
US12117626B2 (en) Composite laminate for transparent elements with diffuse reflection
WO2023195498A1 (en) Anti-reflective film-attached transparent substrate and image display device
KR20220002404A (en) Transparent elements with diffuse reflection
JP2022053388A (en) Glass material and window material
KR20120020050A (en) Vehicle windshield comprising anti-reflective glass with superhydrophilic and antifogging properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP