WO2019003532A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2019003532A1
WO2019003532A1 PCT/JP2018/013048 JP2018013048W WO2019003532A1 WO 2019003532 A1 WO2019003532 A1 WO 2019003532A1 JP 2018013048 W JP2018013048 W JP 2018013048W WO 2019003532 A1 WO2019003532 A1 WO 2019003532A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
indoor
outdoor
filling amount
Prior art date
Application number
PCT/JP2018/013048
Other languages
English (en)
French (fr)
Inventor
慎太郎 真田
板倉 俊二
佑 廣崎
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to EP18825209.2A priority Critical patent/EP3647688A4/en
Priority to CN201880041917.2A priority patent/CN110785617B/zh
Priority to US16/621,496 priority patent/US11293647B2/en
Priority to AU2018293858A priority patent/AU2018293858B2/en
Publication of WO2019003532A1 publication Critical patent/WO2019003532A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00075Indoor units, e.g. fan coil units receiving air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00077Indoor units, e.g. fan coil units receiving heat exchange fluid entering and leaving the unit as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature

Definitions

  • the present invention relates to an air conditioner using a refrigerant.
  • an air conditioner having a refrigerant circuit in which at least one outdoor unit and at least one indoor unit are connected by a refrigerant pipe operates a compressor including, in the outdoor unit, the refrigerant filled in the refrigerant circuit. Cooling operation or heating operation is performed by circulating in the refrigerant circuit.
  • a bypass pipe which branches a part of the refrigerant flowing out from the outdoor heat exchanger functioning as a condenser during the cooling operation and returns it to the suction side of the compressor, and the refrigerant flowing in this bypass pipe
  • an air conditioning apparatus which has a subcooling heat exchanger which cools the refrigerant which flowed out of an outdoor heat exchanger by the above (for example, refer to patent documents 1).
  • the refrigerant circuit is filled with a predetermined amount (a sufficient amount to exhibit the operation capability required by the air conditioner installed).
  • the refrigerant filled in the refrigerant circuit is an HFC refrigerant such as R410A which is nonflammable but has a high global warming potential (GWP, hereinafter referred to as “GWP”), a slight GWP but a low GWP.
  • GWP global warming potential
  • R 32 HFC refrigerant having no carbon double bond in the composition
  • HFO-1234yf expressed as HFC refrigerant having halogenated hydrocarbon in the composition, expressed as “HFO refrigerant”
  • the condensation pressure in the heat exchanger (outdoor heat exchanger during cooling operation / indoor heat exchanger during heating operation) functioning as a condenser decreases and the condensation temperature decreases.
  • the condensation temperature decreases, the temperature difference between the refrigerant in the condenser and the air inside the condenser (open air during cooling operation / room air during heating operation) decreases, so the condensation capacity may decrease and the air conditioning capacity of the air conditioner may decrease. was there.
  • the condensation temperature decreases and the temperature difference between the refrigerant and the air inside the condenser becomes small, the refrigerant flowing out of the condenser may not be condensed and may become a gas-liquid two-phase state, and the gas-liquid two-phase state
  • a refrigerant noise is generated when the refrigerant of the above passes through the expansion valve.
  • the controllability of the expansion valve is reduced by the refrigerant in the gas-liquid two-phase state passing through the expansion valve.
  • the present invention solves the problems described above, and while filling the refrigerant circuit while preventing the problems such as the decrease in the controllability of the expansion valve and the generation of the refrigerant noise and the decrease in the air conditioning performance. It is an object of the present invention to provide an air conditioner capable of reducing the amount of refrigerant to be
  • an outdoor unit having a compressor and an outdoor heat exchanger and an indoor unit having an indoor heat exchanger are connected by a liquid pipe and a gas pipe to form a refrigerant circuit.
  • An expansion valve is provided in any of the outdoor unit, the indoor unit, and the liquid pipe, and the filling amount of the refrigerant filling the refrigerant circuit is set to a filling amount larger than the lower limit filling amount and smaller than the upper limit filling amount. .
  • the upper limit filling amount is 0 degrees of the degree of subcooling of refrigerant at the refrigerant outlet of the outdoor heat exchanger or the indoor heat exchanger that functions as a condenser when performing a cooling operation or a heating operation under a predetermined rated condition, And it is the filling amount to which the dryness of the refrigerant
  • the lower limit filling amount is the condensation temperature of the refrigerant in the outdoor heat exchanger or the indoor heat exchanger functioning as a condenser, and the temperature of air sucked into the outdoor unit or the indoor unit and heat-exchanged with the refrigerant inside the condenser.
  • the controllability decreases and the refrigerant noise is generated by setting the amount of refrigerant filled in the refrigerant circuit to a filling amount larger than the lower limit filling amount and smaller than the upper limit filling amount.
  • FIG. 1 is an explanatory view of an air conditioner according to an embodiment of the present invention, in which (A) is a refrigerant circuit diagram and (B) is a block diagram of outdoor unit control means.
  • FIG. 2 is a Mollier diagram showing a refrigeration cycle at the time of cooling operation in the embodiment of the present invention, where (A) is the lower limit of the refrigerant circuit when the refrigerant circuit is filled with the upper limit filling amount. It shows the case where the filling amount of refrigerant is filled.
  • the air conditioner 1 includes one outdoor unit 2 and three indoor units connected in parallel to the outdoor unit 2 by a liquid pipe 8 and a gas pipe 9. 5a to 5c are provided. Specifically, one end of the liquid pipe 8 is connected to the closing valve 25 of the outdoor unit 2 and the other end is branched and connected to the liquid pipe connection portions 53a to 53c of the indoor units 5a to 5c. Further, one end of the gas pipe 9 is connected to the closing valve 26 of the outdoor unit 2 and the other end is branched and connected to the gas pipe connection portions 54a to 54c of the indoor units 5a to 5c. Thus, the refrigerant circuit 100 of the air conditioner 1 is formed.
  • the capacity of the outdoor unit 2 is 14 kW
  • the indoor units 5a to 5c are an example of device information necessary for determining the amount of refrigerant to be charged into the refrigerant circuit 100 by a method described later.
  • the capacity of all of the above is 4.5 kW
  • the inner diameter of the liquid pipe 8 is 7.5 mm
  • the inner diameter of the gas pipe is 13.9 mm
  • the lengths of the liquid pipe 8 and the gas pipe 9 are both 15 m).
  • the outdoor unit 2 includes a compressor 20, a four-way valve 21, an outdoor heat exchanger 22, a subcooling heat exchanger 23, an outdoor expansion valve 24, and a closing valve 25 to which one end of a liquid pipe 8 is connected; A closing valve 26 to which one end of the gas pipe 9 is connected, an accumulator 27, an outdoor fan 28, and a bypass expansion valve 29 are provided. Then, the respective units excluding the outdoor fan 28 are connected to one another by respective refrigerant pipes which will be described in detail below to form an outdoor unit refrigerant circuit 20 which forms a part of the refrigerant circuit 100.
  • the compressor 20 is a variable capacity compressor that can change its operating capacity by being driven by a motor (not shown) whose rotational speed is controlled by an inverter.
  • the refrigerant discharge side of the compressor 20 is connected to a port a of a four-way valve 21 described later by a discharge pipe 41, and the refrigerant suction side of the compressor 20 is connected to a refrigerant outflow side of the accumulator 27 by a suction pipe 42 It is done.
  • the four-way valve 21 is a valve for switching the flow direction of the refrigerant, and has four ports a, b, c, d.
  • the port a is connected to the refrigerant discharge side of the compressor 20 by the discharge pipe 41 as described above.
  • the port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 22 by a refrigerant pipe 43.
  • the port c is connected to the refrigerant inflow side of the accumulator 27 by a refrigerant pipe 46.
  • the port d is connected to the closing valve 26 by the outdoor unit gas pipe 45.
  • the outdoor heat exchanger 22 is, for example, a fin-and-tube heat exchanger, and exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28 described later.
  • One refrigerant inlet / outlet of the outdoor heat exchanger 22 is connected with the port b of the four-way valve 21 by the refrigerant pipe 43 as described above, and the other refrigerant inlet / outlet is connected with the closing valve 25 by the outdoor unit liquid pipe 44.
  • the outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44.
  • the outdoor expansion valve 24 is an electronic expansion valve, and its opening degree is fully open during cooling operation. Further, during the heating operation, the opening degree is adjusted such that the temperature of the refrigerant discharged from the compressor 20 becomes a predetermined target temperature.
  • the subcooling heat exchanger 23 is disposed between the outdoor expansion valve 24 and the closing valve 25.
  • the supercooling heat exchanger 23 is, for example, a double-pipe heat exchanger, and is disposed such that an inner pipe (not shown) of the double pipe heat exchanger becomes a part of a bypass pipe 47 described later. It is arranged to be a part of the fluid line 44.
  • heat exchange is performed between the low pressure refrigerant that is decompressed by the bypass expansion valve 29 described later and flows through the inner pipe and the high pressure refrigerant that flows out of the outdoor heat exchanger 22 during the cooling operation and flows through the outer pipe.
  • bypass pipe 47 One end of the bypass pipe 47 is connected to a connection point S 1 between the subcooling heat exchanger 23 and the closing valve 25 in the outdoor unit liquid pipe 44, and the other end is connected to a connection point S 2 of the outdoor unit gas pipe 45.
  • the inner pipe (not shown) of the subcooling heat exchanger 23 is a part of the bypass pipe 47, and the connection point S1 of the bypass pipe 47 on the side of the subcooling heat exchanger 23 and the subcooling heat exchanger 23
  • a bypass expansion valve 29 is provided between the inner pipes of the
  • the bypass expansion valve 29 is an electronic expansion valve, and at the time of cooling operation, the opening degree is adjusted to decompress a part of the refrigerant flowing out from the outdoor heat exchanger 22, and the outdoor unit through the supercooling heat exchanger 23. The amount of refrigerant flowing into the gas pipe 45 is adjusted.
  • the bypass expansion valve 29 is fully closed.
  • the accumulator 27 is connected at the refrigerant inflow side to the port c of the four-way valve 21 by the refrigerant pipe 46 and connected at the refrigerant outflow side to the refrigerant suction side of the compressor 20 by the suction pipe 42.
  • the accumulator 27 separates the refrigerant flowing from the refrigerant pipe 46 into the inside of the accumulator 27 into a gas refrigerant and a liquid refrigerant, and sucks only the gas refrigerant into the compressor 20.
  • the outdoor fan 28 is formed of a resin material and disposed in the vicinity of the outdoor heat exchanger 22.
  • the outdoor fan 28 is rotated by a fan motor (not shown) to take in the outside air from the suction port (not shown) to the inside of the outdoor unit 2 and exchange the heat with the refrigerant in the outdoor heat exchanger 22 from the outlet (not shown) Released to the outside of the
  • the outdoor unit 2 is provided with various sensors.
  • a discharge pressure sensor 31 for detecting a discharge pressure which is a pressure of the refrigerant discharged from the compressor 20 and a temperature of the refrigerant discharged from the compressor 20 are provided to the discharge pipe 41.
  • a discharge temperature sensor 33 is provided to detect a certain discharge temperature.
  • a suction pressure sensor 32 for detecting the pressure of the refrigerant sucked into the compressor 20 and a suction temperature sensor 34 for detecting the temperature of the refrigerant sucked into the compressor 20 in the vicinity of the refrigerant inlet of the accumulator 27 in the refrigerant pipe 46 And are provided.
  • a first liquid temperature sensor 35 for detecting the temperature of the refrigerant flowing out of the outdoor heat exchanger 22 during the cooling operation is provided there is.
  • a second liquid temperature sensor 36 for detecting is provided.
  • an outside air temperature sensor 37 for detecting the temperature of the outside air flowing into the inside of the outdoor unit 2, that is, the outside air temperature is provided.
  • the outdoor unit 2 is provided with an outdoor unit control means 200.
  • the outdoor unit control means 200 is mounted on a control board stored in an electric component box (not shown) of the outdoor unit 2.
  • the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.
  • the storage unit 220 is composed of a ROM and a RAM, and stores control programs of the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 20 and the outdoor fan 28, and the like.
  • the communication unit 230 is an interface that communicates with the indoor units 5a to 5c.
  • the sensor input unit 240 takes in detection results of various sensors of the outdoor unit 2 and outputs the detection results to the CPU 210.
  • the CPU 210 takes in the detection result of each sensor of the outdoor unit 2 described above via the sensor input unit 240. Further, the CPU 210 takes in control signals transmitted from the indoor units 5a to 5c via the communication unit 230. The CPU 210 performs drive control of the compressor 20 and the outdoor fan 28 based on the acquired detection result and control signal. Further, the CPU 210 performs switching control of the four-way valve 21 based on the acquired detection result and control signal. Furthermore, the CPU 210 adjusts the opening degree of the outdoor expansion valve 24 based on the captured detection result and control signal. ⁇ Configuration of indoor unit>
  • the three indoor units 5a to 5c are branched into the indoor heat exchangers 51a to 51c, the indoor expansion valves 52a to 52c, and the liquid pipe connection portions 53a to 53c to which the other end of the branched liquid pipe 8 is connected.
  • Gas pipe connection portions 54a to 54c to which the other end of the gas pipe 9 is connected, and indoor fans 55a to 55c are provided.
  • the respective units other than the indoor fans 55a to 55c are connected to one another by respective refrigerant pipes described in detail below to form indoor unit refrigerant circuits 50a to 50c forming a part of the refrigerant circuit 100.
  • each configuration of the indoor unit 5b, 5c corresponding to each configuration in the indoor unit 5a is obtained by changing the end of the number given to each configuration in the indoor unit 5a from a to b or c. It becomes.
  • the indoor heat exchanger 51a exchanges heat between the refrigerant and indoor air taken into the interior of the indoor unit 5a from a suction port (not shown) by rotation of an indoor fan 55a described later, and one refrigerant inlet / outlet is a liquid pipe connection 53a and the indoor unit liquid pipe 71a are connected, and the other refrigerant inlet / outlet is connected by the gas pipe connection part 54a and the indoor unit gas pipe 72a.
  • the indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.
  • the liquid pipe 8 is connected to the liquid pipe connection portion 53a by welding, a flare nut or the like
  • the gas pipe 9 is connected to the gas pipe connection portion 54a by welding, a flare nut or the like.
  • the indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a.
  • the indoor expansion valve 52a is an electronic expansion valve, and when the indoor heat exchanger 51a functions as an evaporator, that is, when the indoor unit 5a performs a cooling operation, the opening degree is the refrigerant outlet of the indoor heat exchanger 51a (gas The degree of refrigerant superheat at the pipe connection portion 54a side is adjusted to be the target degree of refrigerant superheat.
  • the opening degree of the indoor expansion valve 52a is the refrigerant outlet (liquid pipe connection portion of the indoor heat exchanger 51a).
  • the degree of refrigerant supercooling on the side 53a) is adjusted to be the target degree of refrigerant subcooling.
  • the target refrigerant superheating degree and the target refrigerant supercooling degree are values for the indoor unit 5a to exhibit a sufficient heating capacity or cooling capacity.
  • the indoor fan 55a is formed of a resin material and disposed in the vicinity of the indoor heat exchanger 51a.
  • the indoor fan 55a is rotated by a fan motor (not shown) to take in the indoor air from the suction port (not shown) into the indoor unit 5a, and the indoor air heat-exchanged with the refrigerant in the indoor heat exchanger 51a from the blowout port (not shown) Supply to the room.
  • the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a, there is provided a liquid side temperature sensor 61a for detecting the temperature of the refrigerant flowing into the indoor heat exchanger 51a or flowing out from the indoor heat exchanger 51a. It is done.
  • the indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51a or flowing into the indoor heat exchanger 51a.
  • an indoor temperature sensor 63a for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the indoor temperature is provided.
  • the indoor unit 5a is equipped with the indoor unit control means. Similar to the outdoor unit control unit 200, the indoor unit control unit includes a CPU, a storage unit, a communication unit that communicates with the outdoor unit 2, and a sensor input unit that takes in detection values of the above-described temperature sensors. . ⁇ Operation of air conditioner>
  • FIG. 1 (A) the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 at the time of the air conditioning operation of the air conditioning apparatus 1 in the present embodiment will be described using FIG. 1 (A).
  • the indoor units 5a to 5c perform the cooling operation, and the detailed description of the heating operation is omitted.
  • the arrow in FIG. 1 (A) has shown the flow of the refrigerant
  • the CPU 210 of the outdoor unit control means 200 indicates a state in which the four-way valve 21 is indicated by a solid line, that is, port a and port of the four-way valve 21. It switches so that b may communicate and port c and port d may communicate.
  • the refrigerant circuit 100 has a cooling cycle in which the outdoor heat exchanger 22 functions as a condenser and the indoor heat exchangers 51a to 51c function as an evaporator.
  • the high-pressure refrigerant discharged from the compressor 20 flows through the discharge pipe 41, flows into the four-way valve 21, and flows from the four-way valve 21 into the outdoor heat exchanger 22 via the refrigerant pipe 43.
  • the refrigerant flowing into the outdoor heat exchanger 22 exchanges heat with the outside air taken into the interior of the outdoor unit 2 by the rotation of the outdoor fan 28 and condenses.
  • the refrigerant that has flowed out of the outdoor heat exchanger 22 into the outdoor unit liquid pipe 44 passes through the outdoor expansion valve 24 whose opening degree is fully opened, and flows into (a not-shown outer pipe of the subcooling heat exchanger 23). Part of the refrigerant flowing out of the subcooling heat exchanger 23 into the outdoor unit liquid pipe 44 is diverted to the bypass pipe 47, and the remaining refrigerant flows into the liquid pipe 8 via the closing valve 25.
  • the refrigerant flowing into the outer pipe (not shown) from the outdoor unit liquid pipe 44 exchanges heat with the refrigerant that has been depressurized by the bypass expansion valve 29 and flows into the inner pipe (not shown) from the bypass pipe 47.
  • the refrigerant that has flowed out of the subcooling heat exchanger 23 into the bypass pipe 47 flows to the outdoor unit gas pipe 45.
  • the refrigerant that has flowed out of the subcooling heat exchanger 23 into the outdoor unit liquid pipe 44 flows into the liquid pipe 8 through the closing valve 25 as described above.
  • the degree of opening of the bypass expansion valve 29 is adjusted so that the degree of superheat of the refrigerant flowing out of the subcooling heat exchanger 23 into the bypass pipe 47 becomes a predetermined value (for example, 3 degrees).
  • the refrigerant flowing through the liquid pipe 8 flows into the indoor units 5a to 5c through the liquid pipe connection portions 53a to 53c.
  • the refrigerant flowing into the indoor units 5a to 5c flows through the indoor unit liquid pipes 71a to 71c, is decompressed by the indoor expansion valves 52a to 52c, and flows into the indoor heat exchangers 51a to 51c.
  • the refrigerant flowing into the indoor heat exchangers 51a to 51c exchanges heat with the indoor air taken into the interior of the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c, and is evaporated.
  • the indoor heat exchangers 51a to 51c function as evaporators, and the indoor heat exchangers 51a to 51c exchange heat with the refrigerant to blow out the indoor air from the outlet (not shown) into the room.
  • the room where the indoor units 5a to 5c are installed is cooled.
  • the refrigerant flowing out of the indoor heat exchangers 51a to 51c flows through the indoor unit gas pipes 72a to 72c and flows into the gas pipe 9 through the gas pipe connection portions 54a to 54c.
  • the refrigerant flowing through the gas pipe 9 flows into the outdoor unit 2 via the closing valve 26.
  • the refrigerant flowing into the outdoor unit 2 flows in the order of the outdoor unit gas pipe 45, the four-way valve 21, the refrigerant pipe 46, the accumulator 27, and the suction pipe 42, and is drawn into the compressor 20 and compressed again.
  • the CPU 210 When the indoor units 5a to 5c perform the heating operation, the CPU 210 indicates a state in which the four-way valve 21 is indicated by a broken line, that is, port a and port d of the four-way valve 21 communicate with each other. Switch to communication.
  • the refrigerant circuit 100 becomes a heating cycle in which the outdoor heat exchanger 22 functions as an evaporator and the indoor heat exchangers 51a to 51c function as a condenser. ⁇ Determination of refrigerant charge>
  • the refrigerant circuit 100 is filled with a refrigerant whose amount is smaller than the upper limit filling amount which is the upper limit value of the filling amount described below and larger than the lower limit filling amount which is the lower limit value of the filling amount.
  • FIG. 2 is a Mollier diagram showing a refrigeration cycle when the air conditioner 1 is performing a cooling operation, the vertical axis is the pressure of refrigerant (unit: MPa), and the horizontal axis is specific enthalpy (unit: kJ / kg) is shown.
  • Point A in FIG. 2 corresponds to point A in FIG. 1, that is, the state of the refrigerant on the refrigerant suction side of the compressor 20.
  • Point B in FIG. 2 corresponds to point B in FIG. 1, that is, the state of the refrigerant on the refrigerant discharge side of the compressor 20.
  • the point C in FIG. 2 corresponds to the point C in FIG.
  • the point X in FIG. 2 corresponds to the point X in FIG. 1, that is, the state of the refrigerant at the refrigerant outlet side of the outdoor heat exchanger 22.
  • the point Y in FIG. 2 corresponds to the point Y in FIG. 1, that is, the state of the refrigerant on the refrigerant inflow side of the indoor expansion valves 52a to 52c of the indoor units 5a to 5c.
  • the upper limit filling amount which is the upper limit of the refrigerant filling the refrigerant circuit 100, will be described.
  • the upper limit of the filling amount is the condition for rating the air conditioner 1, that is, the outdoor dry bulb temperature: 35 ° C./wet bulb temperature: 24 ° C., and the indoor dry bulb temperature: 27 ° C./wet bulb temperature: 19 ° C.
  • the refrigerant at the refrigerant outlet side of the outdoor heat exchanger 22 functioning as a point X shown in FIG. 1 as shown in FIG. This is the amount of refrigerant that
  • the refrigerant condenses on the refrigerant outlet side of the outdoor heat exchanger 22 during the cooling operation under rated conditions (the gas refrigerant flowing into the outdoor heat exchanger 22 becomes all liquid refrigerant) ) Is the filling amount.
  • the refrigeration cycle when the outdoor unit 2 is filled with the refrigerant of the upper limit filling amount in advance and the cooling operation is performed is a Mollier diagram shown in FIG. 2 (A).
  • the low temperature refrigerant of pressure Pl (state of point A in FIG. 2A) sucked into the compressor 20 is compressed by the compressor 20 and the high temperature refrigerant of pressure Ph (> Pl) (FIG. 2) It becomes the state of the point B of (A)) and is discharged from the compressor 20.
  • the refrigerant discharged from the compressor 20 flows into the outdoor heat exchanger 22 through the four-way valve 21, exchanges heat with the outdoor air in the outdoor heat exchanger 22, condenses, and the refrigerant outlet side of the outdoor heat exchanger 22
  • the refrigerant flowing out of the outdoor heat exchanger 22 passes through the fully-opened outdoor expansion valve 24, flows into the subcooling heat exchanger 23, is cooled by the subcooling heat exchanger 23, and has a pressure Ph as well. And it becomes a low temperature refrigerant of refrigerant (point Y of Drawing 2 (A)) of refrigerant overcooling degree> 0 deg, and flows out from supercooling heat exchanger 23.
  • the refrigerant that has flowed out of the subcooling heat exchanger 23 flows out of the outdoor unit 2 via the closing valve 25 and flows through the liquid pipe 8 to be branched to the indoor units 5a to 5c.
  • the refrigerant flowing into the indoor units 5a to 5c through the liquid pipe connection portions 53a to 53c is reduced to a pressure P1 by the indoor expansion valves 52a to 52c (state of point C in FIG. 2A) indoor heat exchanger It flows into 51a to 51c, exchanges heat with indoor air, evaporates, and becomes superheated steam (state of point A in FIG. 2A) and flows out from the indoor heat exchangers 51a to 51c. Then, the refrigerant flowing out of the indoor heat exchangers 51a to 51c flows into the outdoor unit 2 through the gas pipe connection portions 54a to 54c, the gas pipe 9, and the closing valve 26, and again through the four-way valve 21 and the accumulator 27. It is sucked into the compressor 20.
  • the condensation pressure (corresponding to the pressure Ph of FIG. 2A) in the outdoor heat exchanger 22 when the outdoor unit 2 is filled in advance with a refrigerant having an amount larger than the above-described upper limit filling amount and cooling operation is performed under rated conditions is The pressure is higher than the pressure Ph when the upper limit filling amount is filled in advance.
  • the liquid refrigerant which fills up to a certain point on the inner side of the outdoor heat exchanger 22 from the refrigerant outlet side of the outdoor heat exchanger 22 as described above stays in the outdoor heat exchanger 22.
  • the refrigerant circuit 100 is filled with the refrigerant of the upper limit filling amount
  • the specific enthalpy difference necessary to exert the necessary cooling capacity can be secured.
  • the refrigerant circuit 100 is filled with the refrigerant in an amount equal to or more than the upper limit filling amount, it is considered that the refrigerant remaining in the outdoor heat exchanger 22 is extra.
  • the upper limit filling amount is determined as the upper limit value of the amount of refrigerant filling the refrigerant circuit 100, the specific enthalpy required to exhibit the cooling capacity necessary for the indoor units 5a to 5c. An extra amount of refrigerant can be prevented from being charged while securing the difference. ⁇ About the lower limit filling amount>
  • the lower limit filling amount is an overload condition of the air conditioner 1, for example, an upper limit temperature of each dry bulb temperature / wet bulb temperature of the outdoor / indoor where the air conditioner 1 can perform cooling operation (for example, dry bulb temperature of the outdoor) : 43 ° C./wet bulb temperature: 26 ° C., and indoor dry bulb temperature: 32 ° C./wet bulb temperature: 23 ° C.), when the cooling operation is performed, point Y shown in FIG.
  • the air conditioner 1 performs the cooling operation in an environment where the respective dry bulb temperature / wet bulb temperature in the outdoor / indoor is higher than the rated condition, ie, condensation compared to the rated condition.
  • the refrigerant condenses off at the refrigerant inlet side of the indoor expansion valves 52a to 52c (the refrigerant passing through the indoor expansion valves 52a to 52c Amount of refrigerant).
  • the refrigeration cycle when the cooling operation is performed by filling the outdoor unit 2 with the refrigerant of the lower limit filling amount in advance is a Mollier diagram shown in FIG. 2 (B).
  • the low-temperature and pressure Pl refrigerant (the state at point A in FIG. 2B) sucked into the compressor 20 is compressed by the compressor 20 and the high-temperature refrigerant with pressure Ph (> Pl) (figure It becomes a state of point B of 2 (B) and is discharged from the compressor 20.
  • the refrigerant discharged from the compressor 20 flows into the outdoor heat exchanger 22 through the four-way valve 21, exchanges heat with the outdoor air in the outdoor heat exchanger 22, condenses, and the refrigerant outlet side of the outdoor heat exchanger 22 At this point in time, the refrigerant is not completely condensed, and is still in a gas-liquid two-phase state (state of point X in FIG. 2 (B)).
  • FIG. 2 (A) in the case of description of an upper limit filling amount about this (process of point Y-> point C-> point A), description is abbreviate
  • the condensation pressure in the outdoor heat exchanger 22 (corresponding to the pressure Ph in FIG. 2B) pre-filling the lower limit filling amount Lower than the pressure Ph.
  • the temperature difference between the condensation temperature and the outside air temperature decreases, and even if the refrigerant is cooled by the outdoor heat exchanger 22, the refrigerant does not condense even if it is cooled, and the refrigerant is further cooled by the supercooling heat exchanger 23.
  • the refrigerant in the gas-liquid two-phase state may flow through the indoor expansion valves 52a to 52c of the indoor units 5a to 5c.
  • Ratio of the average value of the refrigerant density of 0.3 to 1.0 and the average value of the refrigerant density of 0.3 to 1.0 of the used refrigerant ⁇ 1 saturated liquid refrigerant of the reference refrigerant of 50 ° C.
  • the tube volume Vc of the heat exchanger functioning as a condenser, the tube volume Ve of the heat exchanger functioning as an evaporator, and the tube volume Vo of the outdoor heat exchanger 22 are each heat It is the volume of the not shown path of the exchanger and is known at the time of installation of the air conditioner 1 (before installation, the outdoor unit and the indoor unit according to the scale and the number of rooms of the building where the air conditioner 1 is installed) Because it is selected. Therefore, these respective volumes Vc, Ve and Vo all become constants.
  • the inner volume Vc of the heat exchanger that functions as a condenser is the volume of the outdoor heat exchanger 22, and the heat exchanger that functions as an evaporator
  • the inner pipe volume Ve is the total inner pipe volume of the indoor heat exchangers 51a to 51c.
  • ⁇ c, ⁇ e, and ⁇ l are ratios of the refrigerant density of the reference refrigerant and the refrigerant used under the conditions described above.
  • the reference refrigerant is an arbitrarily determined refrigerant, for example, an R410A refrigerant generally used in an air conditioner.
  • ⁇ c, ⁇ e, and ⁇ l are the ratio of the refrigerant density of the reference refrigerant and the refrigerant used, even if the refrigerant to be filled in the refrigerant circuit 100 of the air conditioner 1 is changed, It can be used without change.
  • condensing temperature 50 ° C. which is a condition for determining ⁇ c, is a value obtained by converting a general condensing pressure during cooling operation of the air conditioner 1 into a temperature, and also when determining ⁇ e.
  • the condition “evaporation temperature of 10 ° C.” is obtained by converting a general evaporation pressure during cooling operation of the air conditioner 1 into a temperature.
  • the dryness of the refrigerant 0.3 which is the condition at the time of calculating the refrigerant density used to determine ⁇ e, is the dryness of the refrigerant at point C shown in FIG. 2 (A).
  • a1, b1, c1 are coefficients determined by conducting the test described later.
  • the first term “ ⁇ c1 ⁇ Vc”, the second term “ ⁇ e1 ⁇ Ve”, and the third term “ ⁇ 1 ⁇ Vo” in Formula 1 respectively indicate the subcooling heat exchanger 23 during the cooling operation under the overload condition.
  • Amount of refrigerant present in the outdoor heat exchanger 22 functioning as a condenser when the degree of refrigerant supercooling on the refrigerant outlet side of the refrigerant is 0 ° and the degree of refrigerant dryness is 0 (here, “the amount of refrigerant is the heat exchange Represents the mass of the refrigerant present in the unit (hereinafter referred to simply as “the amount of refrigerant” unless necessary), the amount of refrigerant present in the indoor heat exchangers 51a to 51c functioning as an evaporator, and the outdoor heat It represents the amount of refrigerant present in the refrigerant circuit 100 other than the exchanger 22 and the indoor heat exchangers 51a to 51c.
  • “ ⁇ 1” of the third term “ ⁇ 1 ⁇ Vo” of Formula 1 is distributed to the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c under the overload condition.
  • the outdoor heat exchanger 22 and the indoor heat exchanger are obtained by dividing the volume of the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c by the volume of the pipe of the outdoor heat exchanger 22 based on the average density of the refrigerant. It is a value obtained by multiplying the ratio of the volume of the refrigerant circuit 100 other than 51a to 51c and the volume in the pipe of the outdoor heat exchanger 22.
  • the volume of the refrigerant circuit 100 is a total value of volumes of refrigerant pipes and devices through which the refrigerant flows in the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c.
  • the refrigerant existing in all locations of the refrigerant circuit 100 excluding the heat exchangers described above The quantities need to be calculated and summed. Specifically, the volume obtained by multiplying the volume of the portion other than each heat exchanger of the refrigerant circuit 100 by the density of the refrigerant present in the portion is totaled, and all the heat exchangers of the refrigerant circuit 100 except the above-described heat exchangers are added. Calculate the amount of refrigerant present at the location.
  • the volume of the portion excluding the heat exchangers of the refrigerant circuit 100 described above has various values according to the required capacity, and the inside of the heat exchanger functioning as a condenser or an evaporator and the refrigerant circuit 100
  • the state of the stagnating refrigerant is different from the locations excluding the heat exchangers. Therefore, it takes a lot of labor to calculate the amount of refrigerant present in all the locations of the refrigerant circuit 100 excluding the heat exchangers for each air conditioner.
  • the present embodiment there is a correlation between the volume of the refrigerant circuit 100 other than the heat exchangers and the volume of the outdoor heat exchanger 22 provided in the outdoor unit 2, that is, a large capacity.
  • the pipe volume of the outdoor heat exchanger is increased, and the volume of the portion of the refrigerant circuit other than each heat exchanger is also increased accordingly, and the outdoor heat exchanger is subjected to an overload condition.
  • the volume of the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c is obtained by dividing the volume of the refrigerant circuit 100 other than the space 22 and the indoor heat exchangers 51a to 51c by the volume of the pipe of the outdoor heat exchanger 22 Of the refrigerant circuit 100 by multiplying the ratio of the volume of the refrigerant in the outdoor heat exchanger 22 by the average density of the refrigerant distributed in the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c. It calculates the amount of refrigerant present in a portion other than the outer heat exchanger 22 and the indoor heat exchangers 51a ⁇ 51c.
  • the refrigerant circuit 100 of the air conditioner 1 is filled with a predetermined amount of refrigerant (an amount sufficient to start the cooling operation).
  • a predetermined amount of refrigerant an amount sufficient to start the cooling operation.
  • the refrigerant cylinder is connected to a charging port (not shown) of the refrigerant circuit 100 to start charging, and the refrigerant cylinder is placed on a weight scale or the like so that the weight of the refrigerant cylinder is the predetermined amount of refrigerant. Once the weight is reduced, the filling is temporarily stopped.
  • the installation environment of the air conditioner 1 is set as the overload condition described above (outdoor dry bulb temperature: 43 ° C./wet bulb temperature 26 ° C., indoor dry bulb temperature: 32 ° C./wet bulb temperature: 23 ° C.)
  • the refrigerant circuit 100 is switched to the cooling cycle to start the cooling operation.
  • the charging of the refrigerant is resumed, and the refrigerant outlet side of the supercooling heat exchanger 23, that is, the indoor expansion valve is restarted every predetermined time (for example, every 30 seconds).
  • the degree of refrigerant supercooling and the degree of refrigerant dryness on the refrigerant inflow side (point Y in FIG. 1A) of 52a to 52c are confirmed.
  • the degree of refrigerant supercooling on the refrigerant outlet side of the subcooling heat exchanger 23 is determined from the high pressure saturation temperature obtained using the high pressure detected by the discharge pressure sensor 31 (corresponding to the pressure Ph in FIG. 2B).
  • the refrigerant temperature detected by the second liquid temperature sensor 36 is obtained by subtraction.
  • the degree of dryness of the refrigerant is checked, for example, by inserting a sight glass into the refrigerant outlet side of the supercooling heat exchanger 23 and visually confirming (if the refrigerant is in a gas-liquid two-phase state, the refrigerant becomes white and cloudy; It becomes transparent).
  • the refrigerant supercooling degree is taken in via the sensor input unit 240 by the CPU 210 of the outdoor unit control means 200, through the sensor input unit 240, the high pressure detected by the discharge pressure sensor 31 and the refrigerant temperature detected by the second liquid temperature sensor 36.
  • the degree of refrigerant supercooling calculated using the high pressure and the refrigerant temperature may be displayed on the display unit of the outdoor unit 2 (not shown).
  • the outdoor fan 28 of the outdoor unit 2 and the indoor fans 55a to 55c of the indoor units 5a to 5c are each driven at a predetermined rotation number determined in advance. Ru.
  • the outdoor expansion valve 24 of the outdoor unit 2 is fully open.
  • the degree of opening of the bypass expansion valve 29 of the outdoor unit 2 is adjusted such that the degree of superheat of the refrigerant flowing out of the subcooling heat exchanger 23 into the bypass pipe 47 becomes a predetermined value (for example, 3 degrees).
  • the degree of opening of each of the indoor expansion valves 52a to 52c of the indoor units 5a to 5c is adjusted so that the degree of refrigerant superheat on the refrigerant outlet side of the indoor heat exchangers 51a to 51c becomes a predetermined value (for example, 2 degrees). .
  • the refrigerant circuit 100 is started The amount of the reduced amount of the refrigerant cylinder is reduced to the amount of refrigerant charged, that is, the lower limit amount.
  • each coefficient of a1, b1, c1 is determined such that the lower limit filling amount calculated by Formula 1 for each combination becomes the lower limit filling amount obtained in the test performed in each combination.
  • ⁇ 2 Density of refrigerant distributed in refrigerant piping of the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c under rated conditions, and other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c
  • the volume Vc of the heat exchanger functioning as a condenser, the volume Ve of the heat exchanger functioning as an evaporator, the volume Vo of the outdoor heat exchanger 22, ⁇ c, ⁇ e , ⁇ 1 are constant as in the equations 1 to 4.
  • a2, b2 and c2 are coefficients determined by conducting the test.
  • the first term “ ⁇ c2 ⁇ Vc”, the second term “ ⁇ e2 ⁇ Ve”, and the third term “ ⁇ 2 ⁇ Vo” in Formula 5 respectively indicate the refrigerant of the outdoor heat exchanger 22 during the cooling operation under rated conditions.
  • the amount of refrigerant present in the outdoor heat exchanger 22 functioning as a condenser when the degree of refrigerant supercooling on the outlet side is 0 deg and the degree of refrigerant dryness is 0, to the indoor heat exchangers 51 a to 51 c functioning as an evaporator It represents the amount of refrigerant present and the amount of refrigerant present in the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c.
  • “ ⁇ 2” of the third term “ ⁇ 2 ⁇ Vo” of Formula 5 is a refrigerant distributed to refrigerant circuits 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c under rated conditions
  • the outdoor heat exchanger 22 and the indoor heat exchanger 51a are obtained by dividing the volume of the refrigerant circuit 100 other than the outdoor heat exchanger 22 and the indoor heat exchangers 51a to 51c by the volume of the outdoor heat exchanger 22 This value is a value obtained by multiplying the ratio of the volume of the refrigerant circuit 100 other than 51c to the volume in the pipe of the outdoor heat exchanger 22.
  • the way of thinking of "(alpha) 2" is the same as "(alpha) 1", detailed description is abbreviate
  • the lower limit filling amount is filled into the refrigerant circuit 100 by the method described above, and then the installation environment of the air conditioner 1 is changed from the overload condition to the rated conditions described above (dry bulb temperature outdoors: 35 ° C / wet bulb temperature 24 ° C, Change the indoor dry bulb temperature: 27 ° C./wet bulb temperature: 19 ° C.) and restart the refrigerant charging.
  • the degree of refrigerant supercooling on the refrigerant outlet side of the outdoor heat exchanger 22 (point X in FIG. 1A) is dried every predetermined time (for example, every 30 seconds). Check the degree.
  • the degree of refrigerant supercooling on the refrigerant outlet side of the subcooling heat exchanger 23 is determined from the high pressure saturation temperature obtained using the high pressure detected by the discharge pressure sensor 31 (corresponding to the pressure Ph in FIG. 2A).
  • the refrigerant temperature detected by the first liquid temperature sensor 35 is obtained by subtraction.
  • coolant dryness inserts a sight glass in the refrigerant
  • the refrigerant supercooling degree is taken in via the sensor input unit 240 by the CPU 210 of the outdoor unit control means 200, through the sensor input unit 240, the high pressure detected by the discharge pressure sensor 31 and the refrigerant temperature detected by the first liquid temperature sensor 35.
  • the degree of refrigerant supercooling calculated using the high pressure and the refrigerant temperature may be displayed on the display unit of the outdoor unit 2 (not shown).
  • the outdoor expansion valve 24 of the outdoor unit 2 When performing the cooling operation while charging the refrigerant, the outdoor expansion valve 24 of the outdoor unit 2 is fully opened, and the bypass expansion valve 29 of the outdoor unit 2 and the indoor expansion valves 52a to 52c of the indoor units 5a to 5c. Each opening degree is adjusted so that the degree of refrigerant supercooling on the refrigerant outlet side of the outdoor heat exchanger 22 described above becomes 0 degree.
  • the driving of the outdoor fan 28 of the outdoor unit 2 and the indoor fans 55a to 55c of the indoor units 5a to 5c is the same as when the refrigerant of the lower limit filling amount described above is filled.
  • the refrigerant circuit 100 is The charging of the refrigerant is stopped, and the reduced amount of the weight of the refrigerant cylinder is taken as the amount of the charged refrigerant, that is, the maximum amount of the refrigerant.
  • the process described above is performed by a combination of plural types in which the number and capacity of the indoor units connected to the outdoor unit 2 are different, as in the case of obtaining the lower limit filling amount. Then, the respective coefficients a2, b2 and c2 are determined such that the upper limit filling amount calculated by Formula 5 for each combination becomes the upper limit filling amount obtained in the test performed in each combination.
  • the lower limit filling amount and the upper limit filling amount are obtained by the method described above, and the refrigerant circuit 100 is filled with the refrigerant in an amount within the range defined by the lower limit filling amount and the upper limit filling amount.
  • the calculated upper limit charging amount is the upper limit amount of the amount of refrigerant that can be charged into the outdoor unit 2 at the time of shipment according to the regulation related to the refrigerant charging amount (for example, "international maritime dangerous goods regulations (IMDG)" According to the International Maritime Hazardous Substances Regulation, if the upper limit is less than 12 kg, all outdoor unit 2 is filled with refrigerant in an amount within the range defined by the lower limit filling amount and the upper limit filling amount.
  • the outdoor unit 2 may be shipped.
  • the outdoor unit 2 is shipped by filling the above-mentioned regulatory upper limit amount at the time of production of the outdoor unit 2 Then, the difference between the upper limit amount and the lower limit filling amount may be filled at the installation place.
  • the air conditioning apparatus 1 of the present embodiment sets the amount of refrigerant to be filled in the refrigerant circuit 100 as the amount of filling of the range defined by the lower limit amount and the maximum amount of refrigerant. As a result, it is possible to reduce the filling amount while suppressing the refrigerant noise and the decrease in the controllability of the indoor expansion valves 52a to 52c generated due to the small filling amount, and securing the condensing capacity.
  • the air conditioner 1 is obtained by the cooling operation. This is because, in the air conditioner 1 of the present embodiment, the amount of refrigerant required in the refrigerant circuit 100 is larger in the cooling operation than in the heating operation.
  • the refrigerant condensed in the indoor heat exchangers 51a to 51c of the indoor units 5a to 5c is decompressed by the indoor expansion valves 52a to 52c and flows to the outdoor unit 2 through the liquid pipe 8
  • the refrigerant condensed in the outdoor heat exchanger 22 of the outdoor unit 2 is not decompressed (the outdoor expansion valve 24 is fully open) during the cooling operation while the two-phase state is established, and the indoor units 5a to 5c via the liquid pipe 8 When it flows to the
  • an air conditioner in which the amount of refrigerant required in the refrigerant circuit is larger in the heating operation than in the cooling operation for example, the indoor expansion valve is not provided in each indoor unit, and the outdoor unit
  • the air conditioner may be in a heating operation.
  • the refrigerant condensed by the outdoor heat exchanger of the outdoor unit during the cooling operation is decompressed by the expansion valves and flows to the indoor units through the liquid pipes, so that the gas-liquid two-phase state
  • the refrigerant condensed in the indoor heat exchangers of the indoor units is not decompressed (because the expansion valve is not provided in each indoor unit), and the outdoor unit is It is because it becomes a liquid refrigerant when it flows.
  • the refrigerant charge amount becomes the upper limit charge amount
  • all the outdoor heat exchange functions as a condenser.
  • the refrigerant charge amount at the refrigerant outlet side of the cooler 22 at the refrigerant outlet side is 0 deg and the refrigerant dryness degree is the upper limit charge amount, and the refrigerant at the refrigerant inlet side of the indoor expansion valves 52a to 52c of the indoor units 5a to 5c.
  • the refrigerant charging amount when the degree of supercooling is 0 deg and the degree of refrigerant dryness is 0 is the lower limit charging amount.
  • each variable of Numerical formula 1-8 in embodiment described above is an illustration about the case where each apparatus conditions of the air conditioning apparatus 1 are the numerical value mentioned above, each apparatus conditions of the air conditioning apparatus 1 carry out this implementation.
  • values different from the form for example, the capacities of the outdoor unit and the indoor unit are different from the present embodiment, and the number of indoor units connected to the outdoor unit are different, It changes according to.
  • the refrigerant supercooling on the refrigerant outlet side of the subcooling heat exchanger 23 The degree and the dryness of the refrigerant have been described as the degree of refrigerant supercooling and the degree of dryness of the refrigerant at the refrigerant inflow side of the indoor expansion valves 52a to 52c being the same.
  • the indoor expansion valve 52a A temperature sensor and a sight glass may be provided on the refrigerant inflow side of 52 c to directly detect the degree of refrigerant supercooling and the degree of refrigerant dryness on the refrigerant inflow side of the indoor expansion valves 52 a to 52 c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

空気調和装置(1)の冷媒回路(100)に充填する冷媒量を、下限充填量と上限充填量で規定される範囲とする。下限充填量は、凝縮器として機能する室外熱交換器(22)において冷媒が凝縮しづらい過負荷条件下で冷房運転を行ったときに、過冷却熱交換器(23)の冷媒出口側における冷媒過冷却度が0degかつ冷媒乾き度が0となる充填量である。一方、上限充填量は、過負荷条件よりは室外熱交換器(22)において冷媒が凝縮しやすい定格条件下で冷房運転を行ったときに、室外熱交換器(22)の冷媒出口側における冷媒過冷却度が0degかつ冷媒乾き度が0となる充填量である。

Description

空気調和装置
 本発明は、冷媒を使用した空気調和装置に関する。
 従来、少なくとも1台の室外機と少なくとも1台の室内機が冷媒配管で接続された冷媒回路を有する空気調和装置は、冷媒回路に充填した冷媒を、室外機に備える圧縮機を駆動することで冷媒回路内に循環させて冷房運転あるいは暖房運転を行っている。また、上記のような冷媒回路に、冷房運転時に凝縮器として機能する室外熱交換器から流出した冷媒の一部を分岐して圧縮機の吸入側に戻すバイパス管と、このバイパス管を流れる冷媒によって室外熱交換器から流出した冷媒を冷却する過冷却熱交換器を有する空気調和装置が存在する(例えば、特許文献1参照)。
 上記のような空気調和装置では、冷媒回路に所定量(設置された空気調和装置で要求される運転能力を発揮するために十分な量)の冷媒が充填される。冷媒回路に充填される冷媒としては、不燃性であるが地球温暖化係数(Global Warming Potential=GWP、以降、「GWP」と記載する)が高いR410AのようなHFC冷媒、GWPは低いが微燃性であるR32(組成中に炭素の二重結合を持たないHFC冷媒)やHFO-1234yf(組成中にハロゲン化炭化水素を持つHFC冷媒、「HFO冷媒」と表現される)、等がある。
 近年では、地球温暖化防止のため、GWPが高い冷媒を使用する場合は冷媒回路に充填する冷媒量を低減することが求められている。また、低GWPの冷媒を使用する場合であっても、これらの冷媒は上述したように微燃性を有する為、万が一冷媒回路から漏洩した冷媒の密度が着火に至る濃度となることを防ぐために、冷媒回路に充填する冷媒量はできる限り低減することが望ましい。
特開2010-65999号公報
 冷媒回路に充填する冷媒量が少なくなるほど、凝縮器として機能する熱交換器(冷房運転時は室外熱交換器/暖房運転時は室内熱交換器)における凝縮圧力が低下して凝縮温度が低下する。凝縮温度が低下すると凝縮器内部の冷媒と空気(冷房運転時は外気/暖房運転時は室内空気)の温度差が小さくなるため、凝縮能力が低下して空気調和装置の空調能力が低下する恐れがあった。
 また、凝縮温度が低下して凝縮器内部の冷媒と空気の温度差が小さくなると、凝縮器から流出する冷媒が凝縮し切らずに気液二相状態となる恐れがあり、気液二相状態の冷媒が膨張弁を通過することで冷媒音が発生するという問題があった。さらには、気液二相状態の冷媒が膨張弁を通過することで膨張弁の制御性が低下するという問題があった。この制御性低下の問題は、膨張弁の開度調整が通常は液冷媒が通過することを想定してなされることに起因するものであり、気液二相状態の冷媒ではガス冷媒と液冷媒の比率が不明であることから、液冷媒が通過することを想定した膨張弁の開度調整では、適切な冷媒流量の制御が行えない状態となるためである。
 本発明は以上述べた問題点を解決するものであって、膨張弁の制御性の低下や冷媒音の発生といった不具合をなくしつつ、また、空調性能が低下することを防ぎつつ、冷媒回路に充填する冷媒量を低減できる空気調和装置を提供することを目的とする。
 上記の課題を解決するために、本発明の空気調和装置は、圧縮機と室外熱交換器を有する室外機と室内熱交換器を有する室内機が液管とガス管で接続されて冷媒回路を形成し、室外機あるいは室内機あるいは液管のうちのいずれかに膨張弁を設け、冷媒回路に充填する冷媒の充填量を、下限充填量より多く上限充填量より少ない充填量とするものである。上限充填量は、所定の定格条件下で冷房運転あるいは暖房運転を行っているときに、凝縮器として機能する室外熱交換器あるいは室内熱交換器の冷媒出口における冷媒の過冷却度が0degとなり、かつ、凝縮器として機能する室外熱交換器あるいは室内熱交換器の冷媒出口における冷媒の乾き度が0となる充填量である。また、下限充填量は、凝縮器として機能する室外熱交換器あるいは室内熱交換器における冷媒の凝縮温度と、室外機あるいは室内機に吸い込まれて凝縮器内部の冷媒と熱交換する空気の温度との温度差が、定格条件と比べて小さくなる所定の過負荷条件下で冷房運転あるいは暖房運転を行っているときに、膨張弁の冷媒入口における冷媒の過冷却度が0degとなり、かつ、膨張弁の冷媒入口における冷媒の乾き度が0となる充填量である。
 上記のように構成した本発明の空気調和装置によれば、冷媒回路に充填する冷媒量を下限充填量より多く上限充填量より少ない充填量とすることで、制御性の低下や冷媒音の発生といった不具合をなくしつつ、また、空調性能が低下することを防ぎつつ、冷媒回路に充填する冷媒充填量を低減できる。
図1は、本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。 図2は、本発明の実施形態における、冷房運転時の冷凍サイクルを表すモリエル線図であり、(A)は冷媒回路に上限充填量の冷媒を充填した場合、(B)は冷媒回路に下限充填量の冷媒を充填した場合を表す。
 以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
 図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に液管8およびガス管9で並列に接続された3台の室内機5a~5cを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a~5cの各液管接続部53a~53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a~5cの各ガス管接続部54a~54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が形成されている。
 尚、本実施形態の空気調和装置1では、冷媒回路100に充填する冷媒量を後述する方法で決定する際に必要な装置情報の一例として、室外機2の能力は14kW、室内機5a~5cの能力は全て4.5kW、液管8の内径が7.5mm、ガス管の内径が13.9mm、液管8とガス管9の長さはともに15m)とする。
 <室外機の構成>
 まずは、室外機2について説明する。室外機2は、圧縮機20と、四方弁21と、室外熱交換器22と、過冷却熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、アキュムレータ27と、室外ファン28と、バイパス膨張弁29を備えている。そして、室外ファン28を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を形成している。
 圧縮機20は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機20の冷媒吐出側は、後述する四方弁21のポートaと吐出管41で接続されており、また、圧縮機20の冷媒吸入側は、アキュムレータ27の冷媒流出側と吸入管42で接続されている。
 四方弁21は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機20の冷媒吐出側と吐出管41で接続されている。ポートbは、室外熱交換器22の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、アキュムレータ27の冷媒流入側と冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管45で接続されている。
 室外熱交換器22は、例えばフィンアンドチューブ式の熱交換器であり、冷媒と、後述する室外ファン28の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器22の一方の冷媒出入口は、上述したように四方弁21のポートbと冷媒配管43で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管44で接続されている。
 室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、冷房運転時はその開度が全開とされる。また、暖房運転時は、圧縮機20から吐出される冷媒温度が所定の目標温度となるようにその開度が調整される。
 過冷却熱交換器23は、室外膨張弁24と閉鎖弁25の間に配置される。過冷却熱交換器23は例えば二重管熱交換器であり、二重管熱交換器の図示しない内管が後述するバイパス管47の一部となるように配置され、図示しない外管が室外機液管44の一部となるように配置される。過冷却熱交換器23では、後述するバイパス膨張弁29で減圧されて内管を流れる低圧冷媒と、冷房運転時に室外熱交換器22から流出して外管を流れる高圧冷媒が熱交換を行う。
 バイパス管47は、一端が室外機液管44における過冷却熱交換器23と閉鎖弁25の間の接続点S1に接続され、他端が室外機ガス管45の接続点S2に接続されている。上述したように、過冷却熱交換器23の図示しない内管はバイパス管47の一部とされており、バイパス管47の過冷却熱交換器23側の接続点S1と過冷却熱交換器23の内管の間にバイパス膨張弁29が設けられている。バイパス膨張弁29は電子膨張弁であり、冷房運転時はその開度が調整されることで室外熱交換器22から流出した冷媒の一部を減圧し過冷却熱交換器23を介して室外機ガス管45に流す冷媒量を調整する。尚、暖房運転時は、バイパス膨張弁29は全閉とされる。
 アキュムレータ27は、前述したように、冷媒流入側が四方弁21のポートcと冷媒配管46で接続されるとともに、冷媒流出側が圧縮機20の冷媒吸入側と吸入管42で接続されている。アキュムレータ27は、冷媒配管46からアキュムレータ27の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機20に吸入させる。
 室外ファン28は樹脂材で形成されており、室外熱交換器22の近傍に配置されている。室外ファン28は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器22において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。
 以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機20から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力センサ31と、圧縮機20から吐出される冷媒の温度である吐出温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ27の冷媒流入口近傍には、圧縮機20に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機20に吸入される冷媒の温度を検出する吸入温度センサ34とが設けられている。
 室外機液管44における室外熱交換器22と室外膨張弁24の間には、冷房運転時に室外熱交換器22から流出する冷媒の温度を検出するための第1液温度センサ35が設けられている。室外機液管44における過冷却熱交換器23と閉鎖弁25の間には、冷房運転時に過冷却熱交換器23から流出する、すなわち、後述する室内機5a~5cに流入する冷媒の温度を検出する第2液温度センサ36が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ37が備えられている。
 また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。
 記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機20や室外ファン28の制御状態等を記憶している。通信部230は、室内機5a~5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
 CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a~5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機20や室外ファン28の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁21の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整を行う。
 <室内機の構成>
 次に、3台の室内機5a~5cについて説明する。3台の室内機5a~5cは、室内熱交換器51a~51cと、室内膨張弁52a~52cと、分岐した液管8の他端が接続された液管接続部53a~53cと、分岐したガス管9の他端が接続されたガス管接続部54a~54cと、室内ファン55a~55cを備えている。そして、室内ファン55a~55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a~50cを形成している。
 尚、室内機5a~5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5a中の各構成に付与した番号の末尾をaからbまたはcにそれぞれ変更したものが、室内機5a中の各構成と対応する室内機5b、5cの各構成となる。
 室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部53aと室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aと室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。尚、液管接続部53aには液管8が溶接やフレアナット等により接続され、また、ガス管接続部54aにはガス管9が溶接やフレアナット等により接続されている。
 室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合すなわち室内機5aが冷房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(ガス管接続部54a側)での冷媒過熱度が目標冷媒過熱度となるように調整される。また、室内膨張弁52aは、室内熱交換器51aが凝縮器として機能する場合すなわち室内機5aが暖房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(液管接続部53a側)での冷媒過冷却度が目標冷媒過冷却度となるように調整される。ここで、目標冷媒過熱度や目標冷媒過冷却度は、室内機5aで十分な暖房能力あるいは冷房能力が発揮されるための値である。
 室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。
 以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ63aが備えられている。
 また、図示と詳細な説明は省略するが、室内機5aには、室内機制御手段が備えられている。室内機制御手段は、室外機制御手段200と同様に、CPUと、記憶部と、室外機2と通信を行う通信部と、上述した各温度センサの検出値を取り込むセンサ入力部を備えている。
 <空気調和装置の動作>
 次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a~5cが冷房運転を行う場合について説明し、暖房運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、冷房運転時の冷媒の流れを示している。
 図1(A)に示すように、室内機5a~5cが冷房運転を行う場合、室外機制御手段200のCPU210は、四方弁21を実線で示す状態、すなわち、四方弁21のポートaとポートbが連通するよう、また、ポートcとポートdが連通するよう、切り換える。これにより、冷媒回路100は、室外熱交換器22が凝縮器として機能するとともに室内熱交換器51a~51cが蒸発器として機能する冷房サイクルとなる。
 圧縮機20から吐出された高圧の冷媒は、吐出管41を流れて四方弁21に流入し、四方弁21から冷媒配管43を介して室外熱交換器22に流入する。室外熱交換器22に流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器22から室外機液管44に流出した冷媒は、開度が全開とされている室外膨張弁24を通過して過冷却熱交換器23(の図示しない外管)に流入する。過冷却熱交換器23から室外機液管44に流出した冷媒の一部はバイパス管47に分流し、残りの冷媒は閉鎖弁25を介して液管8に流入する。
 過冷却熱交換器23において、室外機液管44から図示しない外管に流入した冷媒と、バイパス膨張弁29で減圧されてバイパス管47から図示しない内管に流入した冷媒が熱交換する。過冷却熱交換器23からバイパス管47に流出した冷媒は、室外機ガス管45へと流れる。過冷却熱交換器23から室外機液管44に流出した冷媒は、前述したように閉鎖弁25を介して液管8に流入する。尚、バイパス膨張弁29の開度は、過冷却熱交換器23からバイパス管47に流出した冷媒の過熱度が所定値(例えば、3deg)となるように調整される。
 液管8を流れる冷媒は、液管接続部53a~53cを介して室内機5a~5cに流入する。室内機5a~5cに流入した冷媒は、室内機液管71a~71cを流れ、室内膨張弁52a~52cで減圧されて室内熱交換器51a~51cに流入する。室内熱交換器51a~51cに流入した冷媒は、室内ファン55a~55cの回転により室内機5a~5cの内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器51a~51cが蒸発器として機能し、室内熱交換器51a~51cで冷媒と熱交換を行って冷却された室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a~5cが設置された室内の冷房が行われる。
 室内熱交換器51a~51cから流出した冷媒は室内機ガス管72a~72cを流れ、ガス管接続部54a~54cを介してガス管9に流入する。ガス管9を流れる冷媒は、閉鎖弁26を介して室外機2に流入する。室外機2に流入した冷媒は、室外機ガス管45、四方弁21、冷媒配管46、アキュムレータ27、吸入管42の順に流れ、圧縮機20に吸入されて再び圧縮される。
 尚、室内機5a~5cが暖房運転を行う場合、CPU210は、四方弁21を破線で示す状態、すなわち、四方弁21のポートaとポートdが連通するよう、また、ポートbとポートcが連通するように切り換える。これにより、冷媒回路100が、室外熱交換器22が蒸発器として機能するとともに室内熱交換器51a~51cが凝縮器として機能する暖房サイクルとなる。
 <冷媒充填量の決定>
 次に、図1および図2を用いて、本実施形態の空気調和装置1において、冷媒回路100に充填する冷媒量の決定方法について説明する。本実施形態では、以下に説明する充填量の上限値である上限充填量より少なく、充填量の下限値である下限充填量より多い量の冷媒を冷媒回路100に充填する。
 図2に示すのは、空気調和装置1が冷房運転を行っているときの冷凍サイクルを示すモリエル線図であり、縦軸が冷媒の圧力(単位:MPa)、横軸が比エンタルピ(単位:kJ/kg)を示す。図2における点Aが図1における点A、つまり、圧縮機20の冷媒吸入側での冷媒の状態に対応する。図2における点Bが図1における点B、つまり、圧縮機20の冷媒吐出側での冷媒の状態に対応する。図2における点Cが図1における点C、つまり、室内機5a~5cの室内熱交換器51a~51cの冷媒流入側での冷媒の状態に対応する。図2における点Xが図1における点X、つまり、室外熱交換器22の冷媒出口側での冷媒の状態に対応する。図2における点Yが図1における点Y、つまり、室内機5a~5cの室内膨張弁52a~52cの冷媒流入側での冷媒の状態に対応する。
 <上限充填量について>
 まず、冷媒回路100に充填する冷媒の上限となる上限充填量について説明する。上限充填量とは、空気調和装置1を定格条件、つまり、屋外の乾球温度:35℃/湿球温度:24℃、および、室内の乾球温度:27℃/湿球温度:19℃、の条件下で冷房運転を行ったときに、図1に示す点Xすなわち凝縮器として機能する室外熱交換器22の冷媒出口側での冷媒が、冷媒過冷却度=0degかつ冷媒乾き度=0となる冷媒量である。
 つまり、上限充填量とは、定格条件下での冷房運転時において、室外熱交換器22の冷媒出口側で冷媒が凝縮し切る(室外熱交換器22に流入したガス冷媒が全て液冷媒となる)充填量である。そして、室外機2に上限充填量の冷媒を予め充填して冷房運転を行ったときの冷凍サイクルが図2(A)に示すモリエル線図となる。
 具体的には、圧縮機20に吸入された圧力Plの低温冷媒(図2(A)の点Aの状態)は、圧縮機20で圧縮されて圧力Ph(>Pl)の高温冷媒(図2(A)の点Bの状態)となって圧縮機20から吐出される。圧縮機20から吐出された冷媒は、四方弁21を介して室外熱交換器22に流入し、室外熱交換器22で外気と熱交換を行って凝縮して室外熱交換器22の冷媒出口側で圧力Phであり、かつ、冷媒過冷却度=0degかつ冷媒乾き度=0の低温冷媒(図2(A)の点Xの状態)となる。
 室外熱交換器22から流出した冷媒は、全開とされている室外膨張弁24を通過して過冷却熱交換器23に流入し、過冷却熱交換器23で冷却されてさらに圧力Phであり、かつ、冷媒過冷却度>0degの冷媒(図2(A)の点Y)の低温冷媒となって過冷却熱交換器23から流出する。過冷却熱交換器23から流出した冷媒は閉鎖弁25を介して室外機2から流出し液管8を流れて室内機5a~5cに分流する。
 室内機5a~5cに液管接続部53a~53cを介して流入した冷媒は、室内膨張弁52a~52cにより圧力Plまで減圧されて(図2(A)の点Cの状態)室内熱交換器51a~51cに流入し、室内空気と熱交換して蒸発して過熱蒸気となり(図2(A)の点Aの状態)室内熱交換器51a~51cから流出する。そして、室内熱交換器51a~51cから流出した冷媒は、ガス管接続部54a~54c、ガス管9、閉鎖弁26を介して室外機2に流入し、四方弁21、アキュムレータ27を介して再び圧縮機20に吸入される。
 室外機2に上述した上限充填量より多い量の冷媒を予め充填して定格条件で冷房運転を行った場合の室外熱交換器22における凝縮圧力(図2(A)の圧力Phに相当)は、予め上限充填量を充填した場合の圧力Phより高くなる。これにより、凝縮温度と外気温度の温度差が大きくなって、室外熱交換器22の冷媒出口側より室外熱交換器22の内部側のある地点で冷媒が全て凝縮し、その地点から冷媒出口側までの間は液冷媒で満たされることとなる。
 つまり、上記のような室外熱交換器22の冷媒出口側より室外熱交換器22の内部側のある地点までを満たす液冷媒は室外熱交換器22内部に滞留することになる。一方、冷媒回路100に上限充填量の冷媒が充填されていれば、室外熱交換器22の冷媒出口側での冷媒が冷媒過冷却度=0degかつ冷媒乾き度=0となり、室内機5a~5cで必要な冷房能力発揮するのに必要な比エンタルピ差を確保できる。
 以上のことから、冷媒回路100に上限充填量以上の量の冷媒を充填したときは、室外熱交換器22内部に滞留する冷媒が余分なものと考えられる。本実施形態の空気調和装置1では、冷媒回路100に充填する冷媒量の上限値として上記上限充填量を定めているので、室内機5a~5cで必要な冷房能力発揮するのに必要な比エンタルピ差を確保しつつ、余分な量の冷媒が充填されることを防ぐことができる。
 <下限充填量について>
 次に、冷媒回路100に充填する冷媒の下限となる下限充填量について説明する。下限充填量とは、空気調和装置1を過負荷条件、例えば、空気調和装置1が冷房運転を行える屋外/室内のそれぞれの乾球温度/湿球温度の上限温度(例えば、屋外の乾球温度:43℃/湿球温度:26℃、および、室内の乾球温度:32℃/湿球温度:23℃)、で冷房運転を行ったときに、図1に示す点Yすなわち室内機5a~5cの室内膨張弁52a~52cの冷媒入口側での冷媒が、冷媒過冷却度=0degかつ冷媒乾き度=0となる冷媒量である。
 つまり、下限充填量とは、定格条件よりも屋外/室内のそれぞれの乾球温度/湿球温度が高い環境で空気調和装置1が冷房運転を行う、すなわち、定格条件である場合と比べて凝縮器として機能する室外熱交換器22で冷媒が凝縮しにくい環境下において、室内膨張弁52a~52cの冷媒入口側で冷媒が凝縮し切る(室内膨張弁52a~52cを通過する冷媒が液冷媒となる)冷媒の充填量である。そして、室外機2に下限充填量の冷媒を予め充填して冷房運転を行ったときの冷凍サイクルが図2(B)に示すモリエル線図となる。
 具体的には、圧縮機20に吸入された低温かつ圧力Plの冷媒(図2(B)の点Aの状態)は、圧縮機20で圧縮されて圧力Ph(>Pl)の高温冷媒(図2(B)の点Bの状態)となって圧縮機20から吐出される。圧縮機20から吐出された冷媒は、四方弁21を介して室外熱交換器22に流入し、室外熱交換器22で外気と熱交換を行って凝縮して室外熱交換器22の冷媒出口側で圧力Phの低温冷媒となるが、この時点では冷媒は完全に凝縮し切っておらず、まだ気液二相状態である(図2(B)の点Xの状態)。
  室外熱交換器22から流出した気液二相状態の冷媒は、全開とされている室外膨張弁24を通過して過冷却熱交換器23に流入し、過冷却熱交換器23で冷却されて圧力Phであり、かつ、冷媒過冷却度=0degかつ冷媒乾き度=0の低温冷媒(図2(B)の点Yの状態)となって過冷却熱交換器23から流出する。過冷却熱交換器23から流出した冷媒は閉鎖弁25を介して室外機2から流出し液管8を流れて室内機5a~5cに分流する。尚、これ以降(点Y→点C→点Aの過程)については、上限充填量の説明の際に図2(A)を用いて説明した内容と同じであるため、説明は省略する。
 室外機2に上述した下限充填量より少ない量の冷媒を予め充填した場合は、室外熱交換器22における凝縮圧力(図2(B)の圧力Phに相当)が下限充填量を予め充填した場合の圧力Phと比べて低くなる。このような場合は、凝縮温度と外気温度の温度差が小さくなって室外熱交換器22で冷媒を冷却しても冷媒が凝縮し切らず、過冷却熱交換器23で冷媒を更に冷却しても気液二相状態の冷媒が室内機5a~5cの室内膨張弁52a~52cを流れる恐れがある。
 上記のような状態では、気液二相状態の冷媒が室内膨張弁52a~52cを通過する際に冷媒音が発生する恐れがある。また、室内膨張弁52a~52cの開度調整は、本来室内膨張弁52a~52cを液冷媒が通過することを想定してなされるものであるため、室内膨張弁52a~52cを通過する冷媒が気液二相状態であれば、室内膨張弁52a~52cの制御性が低下する。
 以上記載したことを考慮して、本実施形態では下限充填量を、前述した過負荷条件で室内膨張弁52a~52cの冷媒入口側での冷媒が冷媒過冷却度=0degかつ冷媒乾き度=0となる冷媒量と定めている。室外機2に予め下限量以上の量の冷媒を充填すれば、室内膨張弁52a~52cにおける冷媒音の発生や制御性の低下を抑制できる。
 <下限充填量と上限充填量の算出方法>
 次に、下限充填量と上限充填量の算出方法について説明する。
 <下限充填量の算出方法>
 まず、下限充填量は以下の数式1~4を用いて算出する。これら数式1~4は、予め試験等を行って求められる。
 
 下限充填量=(ρc1×Vc+ρe1×Ve+α1×Vo)×10-3 
            ・・・数式1
  ρc1=a1×βc ・・・数式2
  ρe1=b1×βe ・・・数式3
  α1=c1×βl  ・・・数式4
 
  ρc1:過負荷条件での室外熱交換器22内部の平均冷媒密度
  ρe1:過負荷条件での室内熱交換器51a~51c内部の平均冷媒密度
  α1 :過負荷条件で、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の冷媒配管に分布する平均冷媒密度と、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積を、室外熱交換器22の管内容積に関連付けた係数
  Vc :凝縮器として機能する熱交換器の管内容積
  Ve :蒸発器として機能する熱交換器の管内容積
  Vo :室外熱交換器22の管内容積
  βc :凝縮温度50℃における、基準冷媒の乾き度0~1.0の冷媒密度の平均値と、使用冷媒の乾き度0~1.0の冷媒密度の平均値との比率
  βe :蒸発温度10℃における、基準冷媒の乾き度0.3~1.0の冷媒密度の平均値と、使用冷媒の乾き度0.3~1.0の冷媒密度の平均値との比率
  βl :50℃の基準冷媒の飽和液冷媒の密度と、50℃の使用冷媒の飽和液冷媒の密度との比率
  a1、b1、c1:試験によって求めた係数
 
 上記数式1~4の各値のうち、凝縮器として機能する熱交換器の管内容積Vcと蒸発器として機能する熱交換器の管内容積Veと室外熱交換器22の管内容積Voは、各熱交換器が有する図示しないパスの容積であり、空気調和装置1の設置時には判明している(空気調和装置1を設置する建物の規模や部屋数に応じた室外機や室内機を、設置前に選定するので)ものである。従って、これら各容積Vc、Ve、Voは全て定数となる。例えば、本実施形態の空気調和装置1が冷房運転を行うときは、凝縮器として機能する熱交換器の管内容積Vcは室外熱交換器22の管内容積であり、蒸発器として機能する熱交換器の管内容積Veは室内熱交換器51a~51cの合計管内容積である。
 また、βc、βe、およびβlは、それぞれが上述した条件下での基準冷媒と使用冷媒の冷媒密度の比率である。ここで、基準冷媒は任意に定められる冷媒であり、例えば、空気調和装置で一般的に使用されるR410A冷媒とする。また、使用冷媒とは、実際に冷媒回路に充填して空気調和装置で使用する冷媒であり、例えばR32冷媒とする。従って、基準冷媒と使用冷媒が同じであれば、βc、βe、およびβlは全て1となる。また、基準冷媒が例えばR410A冷媒、使用冷媒がR32冷媒であれば、βc=0.80、βe=0.73、βl=0.93となる。
 このように、βc、βe、およびβlを基準冷媒と使用冷媒の冷媒密度の比率としておけば、空気調和装置1の冷媒回路100に充填する冷媒が変更された場合であっても、数式1を変更することなく用いることができる。尚、βcを決定する際の条件である「凝縮温度50℃」は、空気調和装置1の冷房運転時の一般的な凝縮圧力を温度に換算したものであり、また、βeを決定する際の条件である「蒸発温度10℃」は、空気調和装置1の冷房運転時の一般的な蒸発圧力を温度に換算したものである。また、βeの決定に使用する冷媒密度を算出する際の条件である「冷媒の乾き度0.3」とは、図2(A)に示す点Cでの冷媒の乾き度である。
 一方、a1、b1、c1は、後述する試験を行うことによって決定される係数である。
 数式1における第1項「ρc1×Vc」、第2項「ρe1×Ve」、および、第3項「α1×Vo」はそれぞれ、過負荷条件下での冷房運転時に、過冷却熱交換器23の冷媒出口側での冷媒過冷却度が0degかつ冷媒乾き度が0となるときの、凝縮器として機能する室外熱交換器22に存在する冷媒量(ここで「冷媒量」とは、熱交換器に存在する冷媒の質量を表す。以下、必要がある場合を除き単に「冷媒量」と記載する)、蒸発器として機能する室内熱交換器51a~51cに存在する冷媒量、および、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100に存在する冷媒量を表す。
 また、数式1の第3項「α1×Vo」の「α1」は、具体的には、過負荷条件下で室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100に分布する冷媒の平均密度に、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積を室外熱交換器22の管内容積で除して求める室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積と室外熱交換器22の管内容積との比率を乗じた値である。ここで、冷媒回路100の容積とは、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100で冷媒が流通する冷媒配管や装置の容積の合計値である。
 本来、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100に存在する冷媒量を算出するためには、冷媒回路100の上記各熱交換器を除く全ての箇所に存在する冷媒量を算出して合計する必要がある。具体的には、冷媒回路100の各熱交換器以外の箇所の容積に、当該箇所に存在する冷媒の密度を乗じたものを合計して、冷媒回路100の上記各熱交換器を除く全ての箇所に存在する冷媒量を算出する。しかし、上述した冷媒回路100の各熱交換器を除く箇所の容積は、求められる能力に応じて様々な値となり、また、凝縮器や蒸発器として機能する熱交換器の内部と冷媒回路100の各熱交換器を除く箇所とでは、滞留する冷媒の状態が異なる。従って、冷媒回路100の上記各熱交換器を除く全ての箇所に存在する冷媒量を空気調和装置毎に算出するのは多大な労力を要する。
 そこで、本実施形態では、冷媒回路100の各熱交換器以外の箇所の容積と、室外機2に備えられる室外熱交換器22の管内容積との間に相関関係がある、つまり、大きな能力を求められる空気調和装置では室外熱交換器の管内容積が大きくなり、これに伴って冷媒回路の各熱交換器以外の箇所の容積も大きくなることに着目し、過負荷条件で、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積を室外熱交換器22の管内容積で除して求める室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積と室外熱交換器22の管内容積との比率を、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100に分布する冷媒の平均密度を乗じることで、冷媒回路100の室外熱交換器22および室内熱交換器51a~51c以外の箇所に存在する冷媒量を算出している。
 次に、数式2~4で使用する係数a1、b1、c1の決定方法について説明する。まず、空気調和装置1の冷媒回路100に所定量の冷媒(冷房運転を開始できる程度の量)を充填する。冷媒回路100への冷媒の充填は、冷媒ボンベを冷媒回路100の図示しない充填ポートに接続して充填を開始し、冷媒ボンベを重量計等に乗せて冷媒ボンベの重量が上記所定量の冷媒の重さ分だけ減少すれば、充填を一旦止める。次に、空気調和装置1の設置環境を前述した過負荷条件(屋外の乾球温度:43℃/湿球温度26℃、室内の乾球温度:32℃/湿球温度:23℃)とし、冷媒回路100を冷房サイクルに切り換えて冷房運転を開始する。
 冷房運転を開始して冷媒回路100における冷媒圧力が安定すれば冷媒の充填を再開し、所定時間毎(例えば、30秒毎)に、過冷却熱交換器23の冷媒出口側つまりは室内膨張弁52a~52cの冷媒流入側(図1(A)の点Y)での冷媒過冷却度と冷媒乾き度を確認する。尚、過冷却熱交換器23の冷媒出口側での冷媒過冷却度は、吐出圧力センサ31で検出した高圧(図2(B)の圧力Phに相当)を用いて求めた高圧飽和温度から、第2液温度センサ36で検出した冷媒温度を減じて求める。また、冷媒乾き度は、例えばサイトグラスを過冷却熱交換器23の冷媒出口側に挿入して目視で確認する(冷媒が気液二相状態であれば冷媒が白く濁り、液冷媒であれば透明となる)。尚、上記冷媒過冷却度は、室外機制御手段200のCPU210が、吐出圧力センサ31で検出した高圧と第2液温度センサ36で検出した冷媒温度をセンサ入力部240を介して取り込み、取り込んだ高圧と冷媒温度を用いて算出した冷媒過冷却度を、図示しない室外機2の表示部に表示するようにすればよい。
 上述の冷媒を充填しつつ冷房運転を行っているときは、室外機2の室外ファン28および室内機5a~5cの室内ファン55a~55cは、各々が予め定められた所定の回転数で駆動される。室外機2の室外膨張弁24は全開とされる。室外機2のバイパス膨張弁29は、過冷却熱交換器23からバイパス管47に流出する冷媒の過熱度が所定値(例えば、3deg)となるように、その開度が調整される。室内機5a~5cの室内膨張弁52a~52cは、室内熱交換器51a~51cの冷媒出口側における冷媒過熱度が所定値(例えば、2deg)となるように、それぞれの開度が調整される。
 上記のように冷房運転を行いながら冷媒の充填を進め、過冷却熱交換器23の冷媒出口側での冷媒過冷却度が0degとなり、かつ、冷媒乾き度が0となれば、冷媒回路100への冷媒の充填を停止し、冷媒ボンベの重量の減少分を充填した冷媒量、つまり、下限量とする。
 以上説明した工程を、室外機2に接続される室内機の台数や能力が各々異なる組合せで複数種類について行う。つまり、本実施形態以外の室外機2と室内機の組合せ複数種類について、各々の場合の下限量を求める。そして、各組合せについて数式1で算出した下限充填量が、各組合せで実施した試験で得た下限充填量となるような、a1、b1、c1の各係数を決定する。一例として、R410A冷媒である場合の、a1=310、b1=150、c1=250、となる。そして、a1、b1、c1の各係数が決定すれば、これら各係数とβc、βe、βlを用いて数式2~4を使ってρc1、ρe1、α1が算出できる。例えば、基準冷媒と使用冷媒が同じR410A冷媒の場合は、βc=βe=βl=1であるので、ρc1=310、ρe1=150、α1=250となる。
 <上限充填量の算出方法>
 次に、上限充填量は以下の数式5~8を用いて算出する。これら数式5~8は、前述した数式1~4と同様に予め試験等を行って求められる。
 
 上限充填量=(ρc2×Vc+ρe2×Ve+α2×Vc)×10-3 
            ・・・数式5
  ρc2=a2×βc ・・・数式6
  ρe2=b2×βe ・・・数式7
  α2=c2×βl  ・・・数式8
 
  ρc2:定格条件での室外熱交換器22内部の平均冷媒密度(>ρc1)
  ρe2:定格条件での室内熱交換器51a~51c内部の平均冷媒密度(>ρe1)
  α2 :定格条件で、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の冷媒配管に分布する冷媒の密度と、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積を、室外熱交換器22の管内容積に関連付けた係数(>α1)
  a2、b2、c2:試験によって求めた係数(a2>a1、b2>b1、c2>c1)
 ※Vc、Ve、Vo、βc、βe、βlの各値については、数式1~4と同じ。
 
 上記数式5~8の各値のうち、凝縮器として機能する熱交換器の管内容積Vc、蒸発器として機能する熱交換器の管内容積Ve、室外熱交換器22の管内容積Vo、βc、βe、βlは、数式1~4と同じで定数となる。一方、a2、b2、c2は、試験を行うことによって決定される係数である。
 数式5における第1項「ρc2×Vc」、第2項「ρe2×Ve」、および、第3項「α2×Vo」はそれぞれ、定格条件下での冷房運転時に、室外熱交換器22の冷媒出口側での冷媒過冷却度が0degかつ冷媒乾き度が0となるときの、凝縮器として機能する室外熱交換器22に存在する冷媒量、蒸発器として機能する室内熱交換器51a~51cに存在する冷媒量、および、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100に存在する冷媒量を表す。
 また、数式5の第3項「α2×Vo」の「α2」は、具体的には、定格条件下で室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100に分布する冷媒の平均密度に、室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積を室外熱交換器22の管内容積で除して求める室外熱交換器22および室内熱交換器51a~51c以外の冷媒回路100の容積と室外熱交換器22の管内容積との比率を乗じた値である。尚、「α2」の考えかたは「α1」と同様であるため、詳細な説明は省略する。
 次に、数式6~8で使用する係数a2、b2、c2の決定方法について説明する。まず、前述した方法で下限充填量を冷媒回路100に充填した後、空気調和装置1の設置環境を過負荷条件から前述した定格条件(屋外の乾球温度:35℃/湿球温度24℃、室内の乾球温度:27℃/湿球温度:19℃)に変更して、冷媒の充填を再開する。
 冷媒の充填を再開してからは、所定時間毎(例えば、30秒毎)に、室外熱交換器22の冷媒出口側(図1(A)の点X)での冷媒過冷却度と冷媒乾き度を確認する。尚、過冷却熱交換器23の冷媒出口側での冷媒過冷却度は、吐出圧力センサ31で検出した高圧(図2(A)の圧力Phに相当)を用いて求めた高圧飽和温度から、第1液温度センサ35で検出した冷媒温度を減じて求める。また、冷媒乾き度は、例えばサイトグラスを室外熱交換器22の冷媒出口側に挿入して目視で確認する(確認方法は前述の通り)。尚、上記冷媒過冷却度は、室外機制御手段200のCPU210が、吐出圧力センサ31で検出した高圧と第1液温度センサ35で検出した冷媒温度をセンサ入力部240を介して取り込み、取り込んだ高圧と冷媒温度を用いて算出した冷媒過冷却度を、図示しない室外機2の表示部に表示するようにすればよい。
 冷媒を充填しつつ冷房運転を行っているときは、室外機2の室外膨張弁24は全開とされるとともに、室外機2のバイパス膨張弁29および室内機5a~5cの室内膨張弁52a~52cは、上述した室外熱交換器22の冷媒出口側における冷媒過冷却度が0degとなるようにそれぞれの開度が調整される。尚、室外機2の室外ファン28および室内機5a~5cの室内ファン55a~55cの駆動は、前述した下限充填量の冷媒を充填した際と同じである。
 上記のように冷房運転を行いながら冷媒の充填を進め、室外熱交換器22の冷媒出口側での冷媒過冷却度が0degとなり、かつ、冷媒乾き度が0となれば、冷媒回路100への冷媒の充填を停止し、冷媒ボンベの重量の減少分を充填した冷媒量、つまり、最大冷媒量とする。
 以上説明した工程を、下限充填量を求めたときと同様に、室外機2に接続される室内機の台数や能力が各々異なる複数種類の組合せで行う。そして、各組合せについて数式5で算出した上限充填量が、各組合せで実施した試験で得た上限充填量となるような、a2、b2、c2の各係数を決定する。一例として、R410A冷媒である場合の、a2=420、b2=180、c1=290、となる。そして、a2、b2、c2の各係数が決定すれば、これら各係数とβc、βe、βlを用いて数式6~8を使ってρc2、ρe2、α2が算出できる。例えば、基準冷媒と使用冷媒が同じR410A冷媒の場合は、βc=βe=βl=1であるので、ρc1=420、ρe1=180、α1=290となる。
 <室外機2への冷媒の充填>
 以上説明した方法で、下限充填量と上限充填量を求め、これら下限充填量と上限充填量で定められる範囲内の量の冷媒を、冷媒回路100に充填する。冷媒回路100への充填は、算出した上限充填量が、冷媒充填量に関わる規制(例えば、「国際海上危険物規定(IMDG)」)によって出荷時に室外機2に充填できる冷媒量の上限量(国際海上危険物規定では、上限量が12kg)よりも少ない場合は、下限充填量と上限充填量で定められる範囲内の量の冷媒を、室外機2の生産時に室外機2に全て充填して室外機2を出荷すればよい。
 また、算出した下限充填量が、冷媒充填量に関わる上記規制で定められる上限量よりも多い場合は、上記の規制上の上限量を室外機2の生産時に充填して室外機2を出荷し、その後設置場所にて上限量と下限充填量の差分を充填してもよい。
 以上説明したように、本実施形態の空気調和装置1は、冷媒回路100に充填する冷媒量を下限量と最大冷媒量で定められる範囲の充填量とする。これにより、充填量が少ないことに起因して発生する室内膨張弁52a~52cにおける冷媒音や制御性の低下を抑制しつつ、また、凝縮能力を確保しつつ、充填量を低減できる。
 以上説明した実施形態では、数式1~8の各変数を試験で求める際に、空気調和装置1を冷房運転して求めた。これは、本実施形態の空気調和装置1では、暖房運転時より冷房運転時の方が冷媒回路100で必要とされる冷媒量が多くなるためである。つまり、暖房運転時は室内機5a~5cの室内熱交換器51a~51cで凝縮した冷媒が室内膨張弁52a~52cで減圧されて、液管8を介して室外機2に流れる際に気液二相状態となるのに対し、冷房運転時は室外機2の室外熱交換器22で凝縮した冷媒が減圧されず(室外膨張弁24は全開)、液管8を介して室内機5a~5cに流れる際に液冷媒となっているためである。
 これに対し、冷房運転時より暖房運転時の方が冷媒回路で必要とされる冷媒量が多くなる空気調和装置、例えば、各室内機に室内膨張弁が設けられず、室外機に室内機の台数と同じ個数の膨張弁が設けられて、室外機と各室内機が室内機の台数と同じ組数のガス管および液管で接続される空気調和装置では、数式1~8の各変数を試験で求める際に、空気調和装置を暖房運転とすればよい。このような空気調和装置では、冷房運転時は室外機の室外熱交換器で凝縮した冷媒が各膨張弁で減圧されて、各液管を介して各室内機に流れる際に気液二相状態となるのに対し、暖房運転時は各室内機の室内熱交換器で凝縮した冷媒が減圧されず(各室内機に膨張弁が設けられていないので)、各液管を介して室外機に流れる際に液冷媒となっているためである。
 尚、上記のような暖房運転で各変数を決める空気調和装置では、凝縮器として機能する全ての室内熱交換器の冷媒出口側における冷媒過冷却度=0degかつ冷媒乾き度=0となるときの冷媒充填量が上限充填量となり、全ての膨張弁の冷媒入口側における冷媒過冷却度=0degかつ冷媒乾き度=0となるときの冷媒充填量が下限充填量となる。
 また、本実施形態の空気調和装置1において室外機2に複数個の室外熱交換器22を有する場合や、室外機2が複数台設けられるものにおいては、凝縮器として機能する全ての室外熱交換器22の冷媒出口側における冷媒過冷却度=0degかつ冷媒乾き度=0となるときの冷媒充填量が上限充填量となり、室内機5a~5cの室内膨張弁52a~52cの冷媒入口側における冷媒過冷却度=0degかつ冷媒乾き度=0となるときの冷媒充填量が下限充填量となる。
 また、以上説明した実施形態における数式1~8の各変数は、空気調和装置1の各装置条件が前述した数値である場合についての例示であるが、空気調和装置1の各装置条件が本実施形態と異なる値、例えば、室外機や室内機の能力が本実施形態と異なる、室外機に接続される室内機の台数が異なる、という場合には、数式1~8の各変数が各装置条件に応じて変化する。
 また、以上説明した実施形態では、下限充填量の算出に用いる数式2~4で使用する係数a1、b1、c1の決定する際に、過冷却熱交換器23の冷媒出口側での冷媒過冷却度および冷媒乾き度が、室内膨張弁52a~52cの冷媒流入側での冷媒過冷却度および冷媒乾き度が同じとして説明した。これに対し、過冷却熱交換器23を設けない場合や、液管8の長さが長く(例えば、20m以上)て液管8による冷媒の圧力損失が大きい場合には、室内膨張弁52a~52cの冷媒流入側に温度センサとサイトグラスを設けて、室内膨張弁52a~52cの冷媒流入側での冷媒過冷却度および冷媒乾き度を直接検出すればよい。
 1 空気調和装置
 2 室外機
 5a~5c 室内機
 20 圧縮機
 22 室外熱交換器
 23 過冷却熱交換器
 24 室外膨張弁
 29 バイパス膨張弁
 31 吐出圧力センサ
 35 第1液温度センサ
 36 第2液温度センサ
 51a~51c 室内熱交換器
 52a~52c 室内膨張弁
 100 冷媒回路
 200 室外機制御手段
 210 CPU
 220 記憶部

Claims (3)

  1.  圧縮機と室外熱交換器を有する室外機と、室内熱交換器を有する室内機が液管とガス管で接続されて冷媒回路を構成し、前記室外機あるいは前記室内機あるいは前記液管のうちの少なくともいずれか一つに膨張弁を設ける空気調和装置であって、
     前記冷媒回路に充填する冷媒の充填量を、下限充填量より多く上限充填量より少ない充填量とし、
     前記上限充填量は、所定の定格条件下で冷房運転あるいは暖房運転を行っているときに、凝縮器として機能する前記室外熱交換器あるいは前記室内熱交換器の冷媒出口における冷媒の過冷却度が0degとなり、かつ、凝縮器として機能する前記室外熱交換器あるいは前記室内熱交換器の冷媒出口における冷媒の乾き度が0となる充填量であり、
     前記下限充填量は、凝縮器として機能する前記室外熱交換器あるいは前記室内熱交換器における冷媒の凝縮温度と、前記室外機あるいは前記室内機に吸い込まれて凝縮器内部の冷媒と熱交換する空気の温度との温度差が、前記定格条件と比べて小さくなる所定の過負荷条件下で冷房運転あるいは暖房運転を行っているときに、前記膨張弁の冷媒入口における冷媒の過冷却度が0degとなり、かつ、前記膨張弁の冷媒入口における冷媒の乾き度が0となる充填量である、
     ことを特徴とする空気調和装置。
  2.  前記下限充填量より多く前記上限充填量より少ない充填量の冷媒を、前記室外機に予め充填する、
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記室外機は、凝縮器として機能する前記室外熱交換器あるいは前記室内熱交換器から流出した冷媒を冷却する過冷却熱交換器を有し、
     前記下限充填量は、前記過負荷条件下での冷房運転において、前記過冷却熱交換器の冷媒出口における冷媒の過冷却度が0degとなり、かつ、前記過冷却熱交換器の冷媒出口における冷媒の乾き度が0となる充填量である、
     ことを特徴とする請求項1または請求項2に記載の空気調和装置。
PCT/JP2018/013048 2017-06-30 2018-03-28 空気調和装置 WO2019003532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18825209.2A EP3647688A4 (en) 2017-06-30 2018-03-28 AIR CONDITIONING DEVICE
CN201880041917.2A CN110785617B (zh) 2017-06-30 2018-03-28 空调装置
US16/621,496 US11293647B2 (en) 2017-06-30 2018-03-28 Air conditioner
AU2018293858A AU2018293858B2 (en) 2017-06-30 2018-03-28 Air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017128449A JP2019011899A (ja) 2017-06-30 2017-06-30 空気調和装置
JP2017-128449 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003532A1 true WO2019003532A1 (ja) 2019-01-03

Family

ID=64741315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013048 WO2019003532A1 (ja) 2017-06-30 2018-03-28 空気調和装置

Country Status (6)

Country Link
US (1) US11293647B2 (ja)
EP (1) EP3647688A4 (ja)
JP (1) JP2019011899A (ja)
CN (1) CN110785617B (ja)
AU (1) AU2018293858B2 (ja)
WO (1) WO2019003532A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935720B2 (ja) * 2017-10-12 2021-09-15 ダイキン工業株式会社 冷凍装置
JP7469583B2 (ja) * 2019-06-12 2024-04-17 ダイキン工業株式会社 空調機
JP7445140B2 (ja) * 2021-06-11 2024-03-07 ダイキン工業株式会社 空気調和機、空気調和機の設置方法、及び、室外機
CN113720047A (zh) * 2021-09-26 2021-11-30 青岛海信日立空调系统有限公司 一种空调系统
WO2023073872A1 (ja) * 2021-10-28 2023-05-04 三菱電機株式会社 冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045792A (ja) * 2006-08-11 2008-02-28 Denso Corp 冷媒量検知方法、冷媒量検知装置、および冷媒量検知装置を備える空調装置。
JP2010065999A (ja) 2009-12-25 2010-03-25 Daikin Ind Ltd 空気調和装置
JP2015105808A (ja) * 2013-12-02 2015-06-08 日立アプライアンス株式会社 空気調和機
JP2016099056A (ja) * 2014-11-21 2016-05-30 株式会社富士通ゼネラル 空気調和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177762A (ja) 1989-12-07 1991-08-01 Mitsubishi Electric Corp 冷凍サイクルの冷媒封入量検知装置
JP2001227822A (ja) 2000-02-17 2001-08-24 Mitsubishi Electric Corp 冷凍空調装置
ES2509964T3 (es) 2004-06-11 2014-10-20 Daikin Industries, Ltd. Acondicionador de aire
US7380404B2 (en) 2005-01-05 2008-06-03 Carrier Corporation Method and control for determining low refrigerant charge
JP4120676B2 (ja) 2005-12-16 2008-07-16 ダイキン工業株式会社 空気調和装置
US9568226B2 (en) * 2006-12-20 2017-02-14 Carrier Corporation Refrigerant charge indication
JP5164527B2 (ja) 2007-11-02 2013-03-21 日立アプライアンス株式会社 空気調和機
JP4975052B2 (ja) * 2009-03-30 2012-07-11 三菱電機株式会社 冷凍サイクル装置
JP5705453B2 (ja) 2010-04-21 2015-04-22 三菱重工業株式会社 空気調和装置の冷媒充填方法
US8466798B2 (en) 2011-05-05 2013-06-18 Emerson Electric Co. Refrigerant charge level detection
JP5445577B2 (ja) * 2011-12-29 2014-03-19 ダイキン工業株式会社 冷凍装置およびその異冷媒充填検出方法
US20150267951A1 (en) 2014-03-21 2015-09-24 Lennox Industries Inc. Variable refrigerant charge control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045792A (ja) * 2006-08-11 2008-02-28 Denso Corp 冷媒量検知方法、冷媒量検知装置、および冷媒量検知装置を備える空調装置。
JP2010065999A (ja) 2009-12-25 2010-03-25 Daikin Ind Ltd 空気調和装置
JP2015105808A (ja) * 2013-12-02 2015-06-08 日立アプライアンス株式会社 空気調和機
JP2016099056A (ja) * 2014-11-21 2016-05-30 株式会社富士通ゼネラル 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647688A4

Also Published As

Publication number Publication date
US11293647B2 (en) 2022-04-05
CN110785617B (zh) 2022-03-18
US20200158352A1 (en) 2020-05-21
AU2018293858B2 (en) 2021-03-25
EP3647688A1 (en) 2020-05-06
AU2018293858A1 (en) 2020-01-16
EP3647688A4 (en) 2021-04-21
CN110785617A (zh) 2020-02-11
JP2019011899A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
CN111201411B (zh) 制冷装置
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
WO2019003532A1 (ja) 空気調和装置
JP5040975B2 (ja) 漏洩診断装置
US9494363B2 (en) Air-conditioning apparatus
EP3205954B1 (en) Refrigeration cycle device
WO2016051606A1 (ja) 空気調和装置
KR101074322B1 (ko) 공기 조화 장치
US9933192B2 (en) Air-conditioning apparatus
EP3222924B1 (en) Air conditioning device
WO2016208042A1 (ja) 空気調和装置
JPH0835725A (ja) 非共沸混合冷媒を用いた冷凍空調装置
JP2015222157A (ja) 空気調和装置
JP2011064357A (ja) 漏洩診断方法、及び漏洩診断装置
JP6762422B2 (ja) 冷凍サイクル装置
JP2020003154A (ja) 空気調和機
JP6537629B2 (ja) 空気調和装置
WO2017119105A1 (ja) 空気調和装置
JP2017067397A (ja) 冷凍装置
JP2009210143A (ja) 空気調和装置および冷媒量判定方法
JP2014070835A (ja) 冷凍装置
WO2020255355A1 (ja) 室外ユニット、冷凍サイクル装置および冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018293858

Country of ref document: AU

Date of ref document: 20180328

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018825209

Country of ref document: EP

Effective date: 20200130