WO2019003498A1 - Led device and control method therefor - Google Patents

Led device and control method therefor Download PDF

Info

Publication number
WO2019003498A1
WO2019003498A1 PCT/JP2018/008359 JP2018008359W WO2019003498A1 WO 2019003498 A1 WO2019003498 A1 WO 2019003498A1 JP 2018008359 W JP2018008359 W JP 2018008359W WO 2019003498 A1 WO2019003498 A1 WO 2019003498A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
load switching
led
control
load
Prior art date
Application number
PCT/JP2018/008359
Other languages
French (fr)
Japanese (ja)
Inventor
友一 坂下
義章 石黒
章太 渡辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018535072A priority Critical patent/JP6726283B2/en
Publication of WO2019003498A1 publication Critical patent/WO2019003498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to an LED device configured to connect a plurality of LED (Light Emitting Diode) elements in parallel to apply the same power supply voltage, and a control method thereof.
  • LED Light Emitting Diode
  • LEDs light emitting diodes
  • a light source using a plurality of LEDs is also used for automobile headlights.
  • the LEDs not only have high efficiency, but also have a small light source and can limit the lighting area. Therefore, an ADB (Adaptive Driving Beam) is mounted to light only the necessary area using a plurality of LEDs.
  • the ADB assigns an LED to each irradiation range, and when an oncoming vehicle or the like is detected, turns on / off / light-controls the LED corresponding to the detection portion.
  • an LED device used for such an ADB there is an LED device connected in parallel to a plurality of LED groups consisting of a plurality of LED elements connected in series and connected to an LED-driven power supply (for example, Patent Document 1) reference).
  • a switching element is connected to each LED group, and the driving timing of each switching element is divided into one cycle of pulse energization divided by the number of LED groups, that is, LED When five groups are connected in parallel, it is characterized in that control is performed by being shifted by 1 ⁇ 5 cycle. With such a configuration, it is possible to prevent the rapid rise of the power supply that supplies current to each LED, and to suppress the generation of noise.
  • Patent Document 1 discloses an LED device that performs pulse energization with the same pulse width for each LED group, but as the control of the LED device is advanced in recent years, the LED lighting pulse width of the LED group may be different. Control is expected to be performed. For example, in the case of the LED device used in the above-described ADB, it is assumed that lighting is performed along a curve of the road, and the lighting pulse width of each LED group is changed to positively illuminate the direction in which the road continues There is a case.
  • the LED groups are 5 parallel and the current flows in each LED group within 90%, 70%, 50%, 30%, and 10%, respectively, 1A flows in each LED group.
  • the lighting pulse width is determined by shifting the drive start timing, which is a feature of Patent Document 1, by 1 ⁇ 5 cycle, the output current of the power supply will change from 0A to 5A.
  • the maximum current of the power supply supplied to the LED element is increased as in this example, not only the generation of noise increases but also the loss of the power source for supplying the current to the LED element increases.
  • the present invention has been made to solve the problems as described above, and in an LED device in which a plurality of LED elements are connected in parallel, at least one switching element among switching elements connected in series to each LED element
  • the LED device capable of suppressing the maximum current of the power supply that supplies power to the LED element even when the length of the on period of the switch is different from the length of the on period of the other switching elements
  • the aim is to get
  • An LED device includes: a load module unit including a plurality of LED elements connected in parallel and a plurality of load switching elements connected in series to each of the plurality of LED elements; Turning on the plurality of switching elements based on a lighting control command value indicating a ratio of a period during which current flows to the LED element in the control period of the power conversion unit that converts the power into power and outputs it to the load module unit
  • a control unit that determines a period and controls a plurality of load switching devices to turn on or off, the control unit including an on period of at least one of the plurality of load switching devices; Is divided into a plurality of on periods within the control period, and at least one of the divided plurality of on periods is different
  • the load switching element determines the ON period to start so as to correspond to the timing of the off, characterized by.
  • a load module unit including a plurality of LED elements connected in parallel and a plurality of load switching elements connected in series to each of the plurality of LED elements;
  • a power conversion unit that converts the input power from the power supply and outputs the power to the load module unit;
  • a control unit that controls the on periods of the plurality of load switching devices by controlling the plurality of load switching devices on or off.
  • a control method of an LED device comprising: a first step of taking in a lighting control command value indicating a ratio of a period during which current of a plurality of LED elements flows in each control cycle; and a plurality of control units
  • the length of the on period of at least one of the switching elements connected in series to each LED element is the length of the on period of the other switching elements Even under different conditions, the maximum current of the power supply that supplies power to the LED element can be suppressed, and the loss of the power supply can be reduced.
  • FIG. 1 is a block diagram showing a configuration of the LED device according to Embodiment 1 of the present invention.
  • the same or similar components are denoted by the same reference numerals.
  • load switching elements 12-1 to 12-N when there are a plurality of identical or similar components as load switching elements, they are distinguished by adding "-" and numerals / symbols like load switching elements 12-1 to 12-N.
  • load switching elements 12-1 to 12-N when not distinguishing each component of the same or similar component which exists in multiple numbers, or collectively naming, it abbreviate
  • the LED device shown in the first embodiment of the present invention comprises a power supply main circuit unit 1, a power supply control unit 2 for controlling the power supply main circuit unit 1, and a DC power supply 5 for supplying power to the power supply main circuit unit 1.
  • the power supply main circuit unit 1 includes a DC / DC converter 3 as a power conversion unit and a load module unit 4 having a plurality of LED elements, and the DC power supply 5 has one terminal of the DC / DC converter 3 (here, The load module unit 4 is connected to the other input terminal of the DC / DC converter 3 (here, it is referred to as an output terminal for convenience).
  • the DC / DC converter 3 is a power conversion unit, converts the power input from the DC power supply 5 and outputs the power to the load module unit 4.
  • the DC / DC converter 3 is configured of a switching element 6, a diode 7, a reactor 8, and a capacitor 9.
  • the switching element 6 is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the switching element 6 and the reactor 8 are provided on the positive side bus connected to the positive side input terminal of the DC / DC converter 3.
  • the diode 7 is connected on the cathode side to the connection point between the switching element and the reactor, and on the anode side to the negative bus connected to the negative input terminal of the DC / DC converter 3.
  • the DC / DC converter 3 adjusts the amount of current supplied to the load module unit 4 to a desired value by controlling the on / off of the switching element 6 according to the control signal output from the power supply control unit 2, Power is supplied to a load module unit 4 provided with a certain LED element.
  • the DC / DC converter 3 is not limited to the configuration shown in FIG. 1 and may be any circuit as long as it is a circuit that performs power conversion and outputs a desired amount of current. For example, a step-up chopper circuit, a flyback converter, an H-type buck-boost converter, or a single-ended primary-inductance converter (SEPIC) may be used.
  • the load module unit 4 has a plurality of LED elements 11 connected in parallel, and in the example shown in FIG. 1, the LED device includes N (N is an integer of 2 or more) LED elements 11-1 to N The first to Nth LED elements are provided. Although each LED element 11 is described as a plurality of LED elements connected in series, the number of LED elements does not have to be plural, and the present invention can be applied even in the case of one.
  • a load switching element 12 is connected in series to each LED element 11.
  • the load switching elements are connected to each of the LED elements 11-1 to N. 12-1 to 12 N (first to Nth load switching elements) are connected in series.
  • the load switching element 12 may be any type, for example, a MOSFET can be used.
  • the LED element 11 and the load switching element 12 connected to the LED element 11 are collectively referred to as an LED drive string. That is, the load module unit 4 has a configuration in which a plurality of LED drive strings are connected in parallel.
  • the load switching elements 12-1 to 12-N are controlled to be on or off in accordance with the load switch signals 13-1 to 13-N output from the power supply control unit 2.
  • the load switching element 12 When the load switching element 12 is on, the corresponding LED elements 11-1 to N are electrically conducted and power is supplied, and when the load switching elements 12-1 to N are off, the inside of the load module unit 4
  • the LED elements 11-1 to N corresponding to the respective load switching elements 12-1 to N become electrically nonconductive and the power supply is stopped.
  • the power supply main circuit unit 1 further includes a current detection unit 10 that detects a circuit current flowing through the reactor 8, the load module unit 4, etc.
  • the circuit current is detected as a voltage value using a resistor, an operational amplifier, etc. .
  • the current detection unit 10 is provided inside the load module unit 4, and the current detection unit 10 is connected to the negative output terminal of the DC / DC converter 3.
  • the DC power supply 5 is a power supply that outputs DC power, and is, for example, a battery. It is needless to say that any power supply can be used as long as it can output DC power.
  • the power supply control unit 2 includes a current control unit 18 and a command value generation unit 19, and the power supply main circuit based on the detection result by the current detection unit 10 of the power supply main circuit unit 1 and the lighting control command 14 input from the outside.
  • Control part 1 That is, the load switch signal 13 and the switch signal 17 are output to the switching element 6 and the load switching element 12, and the switching element 6 and the load switching element 12 are controlled to be on or off.
  • the control unit 15 is, for example, a microcomputer, and according to a control method to be described later, load switch signals 13-1 to 13-N for controlling the load switching devices 12-1 to 12-N and switching devices of the DC / DC converter 3 A switch signal 17 for controlling 6 is calculated.
  • the lighting control command 14 is input from the outside.
  • the lighting control command 14 includes a lighting control command value corresponding to each LED element 11.
  • the lighting control command value indicates the ratio of the period in which each load switching element 12 is turned on in the control period, that is, the ratio of the period in which current is supplied to each LED element 11 within the control period.
  • the lighting control command value is set for each load switching element 12 and for each control cycle.
  • the method of setting the lighting control command value may be any method, for example, in the case of being used as a headlight of a car, so that the car brightly illuminates the direction in which the road continues along the curve of the road.
  • the setting method can be performed to increase the ratio of the period in which the current of the corresponding LED element flows.
  • the operation of the LED device according to the first embodiment will be described. First, the operation of the entire LED device will be described.
  • the DC power output from the DC power supply 5 is input to the DC / DC converter 3.
  • the amount of current supplied to the load module unit 4 is desired by controlling the on / off of the switching element 6 according to the switch signal 17 output from the power supply control unit 2
  • the electric power is supplied to the load module unit 4 constituted by the LED elements 11-1 to N and the load switching elements 12-1 to N.
  • the load module unit 4 performs on / off control of the load switching element 12 based on the load switch signal 13 from the command value generation unit 19.
  • the load module unit 4 supplied with power is supplied with power to the LED element 11 connected to the load switching element 12 set to ON, and the powered LED element 11 is lit.
  • the DC / DC converter 3 controls the on / off of the switching element 6 in accordance with the switch signal 17 generated in the control unit 15 to control the amount of current to a desired value.
  • the target command value of the output current of the DC / DC converter 3 calculated in the command value generation unit 19 is the number of ONs of the load switching elements 12-1 to N set in the command value generation unit 19 described later. And the current value flowing to the LED elements 11-1 to N. That is, the command value generation unit 19 determines the target command of the output current from the product of the number of load switching elements 12 set to ON among the load switching elements 12-1 to N and the current value supplied to the LED element 11.
  • the target command value of the output current of the DC / DC converter 3 is 3A by multiplication of 3 and 1A.
  • Set to The command value generation unit 19 outputs the set target command value to the current control unit 18.
  • the current control unit 18 calculates an error by subtracting the target command value set by the command value generation unit 19 and the current detection signal 16 detected by the current detection unit 10 of the power supply main circuit unit 1. The resulting error is output to the PI control unit 20.
  • the PI control unit 20 performs PI calculation and the like to calculate the control amount so as to reduce the error.
  • the calculated control amount is compared with the carrier frequency output from the carrier frequency output unit 21 to generate the switch signal 17 of the switching element 6 of the DC / DC converter 3 and output it to the DC / DC converter 3.
  • the DC / DC converter 3 to which the switch signal 17 is input from the power supply control unit 2 turns the switching element 6 on and off based on this signal, and adjusts the amount of current output to the load module unit 4.
  • the load switching elements 12-1 to 12-N turn on / off each load switching element based on the load switch signal 13 generated in the command value generation unit 19, and turn on the LED element of the LED element 11 in a desired pattern.
  • FIG. 3 is an explanatory diagram of a method of generating a lighting pattern of the LED device according to Embodiment 1 of the present invention.
  • FIG. 3 shows a lighting pattern generation method in the case where the LED elements 11 are 5 parallel, that is, N is 5 in FIG.
  • the present invention is not limited to the case where the LED elements 11 are arranged in 5 parallels, and the lighting pattern is similarly set even when the LED elements 11 are smaller than 5 parallels or more than 5 parallels. Can be generated.
  • the percentage (%) shown on the left is the lighting control command value (I LED1 to I LED5 ) of each of the LED elements 11-1 to N, that is, the current of each LED element 11-1 to N within the control period. Indicates the percentage of the period during which For example, the LED element 11-3 for which the lighting control command value is set to 50% indicates that the load switching element 12-3 is set to ON only for a 50% period in one control cycle, and the current flows.
  • the numerical value on the left of the arrow ( ⁇ ) is the lighting control command value
  • the numerical value on the right of the arrow ( ⁇ ) is the load switch signal 13 for driving the load switching element 12 in the command value generation unit 19. Shows the value after the lighting pattern is generated.
  • the load switching element 12 in which the ratio of 40% + 10% is described indicates that the on period is divided into two in one control cycle.
  • the load switching element 12-3 is controlled to be on at the same time as the control cycle start timing, continues the on period for a period of 10% of one control period, and one period before the on period is set.
  • the load switching element 12 in the example shown in FIG. 3, the load switching element 12-2 in the example shown in FIG. Show.
  • the control cycle of the load switching element 12 is determined in advance, and the control unit 15 sets the on period of each load switching element 12 for each control cycle.
  • the control unit 15 is set to determine the on period of the load switching elements 12-1 to N in this order.
  • the on period of the load switching element 12-1 is set, and the load switching element 12 is set.
  • the on period is determined so that the timing of controlling to turn on by -1 is turned on simultaneously with the start timing of the control cycle.
  • the on period refers to a period from the timing when the control is on to the timing when the control is off next, and is set based on the lighting control command value input from the outside.
  • the on period of the load switching element 12-2 is determined.
  • the control unit 15 controls the load switching element 12 to be turned on in response to the timing at which the different load switching elements 12 are turned off within the control period. That is, the on period is set to turn on the load switching device 12-2 simultaneously with the timing at which the load switching device 12-1 is controlled to be off.
  • the setting of the on period is repeated sequentially for each load switching element 12, the on period of the load switching element 12-N is determined, and the process ends. That is, when n is an integer from 1 to N-1, the control unit 15 causes the load switching element 12-n to turn off in response to the timing at which the load switching element 12- (n + 1) switches. Control on.
  • the timing at which the load switching element 12-2 is controlled to be turned off is determined based on the load control command value of the load switching element 12-2, but from the timing at which the load switching element 12-2 is controlled to be controlled
  • the on period of the load switching device 12-2 is divided into two.
  • One of the two ON control timings is controlled to be ON corresponding to the start timing of the control cycle, and one switching is performed corresponding to the timing when the other load switching element 12-1 is OFF. Control the element on. The details of the control method will be described below.
  • the lighting control command values (I LED1 to I LED5 ) of the respective LED elements 11-1 to 5 are 90%, 70%, 50%, 30%, and 10%, respectively. This means that 90% of the LED element 11-1 in one control period, 70% of the LED element 11-2 in one control period, 50% of the LED element 11-3 in one control period, the LED element 11-4 And 30% during one control period, and 10% of the LED element 11-5 during one control period.
  • the right side of FIG. 3 shows time on the horizontal axis, and load switch signals 13-1 to 5 actually applied to the load switching elements 12-1 to 5 from the top to the fifth stage.
  • the fifth and subsequent figures show target command values of the output current set in the current control unit 18 when it is assumed that 1A flows to each LED, and as a result of control, the output current of the DC / DC converter 3 and Become.
  • FIG. 4 is a flowchart illustrating the lighting pattern generation method.
  • a lighting pattern command generation method in the command value generation unit 19 will be described with reference to FIG. (1)
  • the lighting control command value of the lighting control command 14 input from the outside is taken in at a predetermined timing (step S101). Here, as many lighting control commands as the number of LED elements 11 connected in parallel are required.
  • the load switching element 12, which is the starting point of the optional load switching elements 12, is set, and the order of the load switching elements 12 for determining the on period is set (step S102).
  • the order of setting the load switching element 12 as the starting point and the on period may be set in advance.
  • the ON period of the load switching element 12 set as the starting point ie, the lighting pattern of the LED element 11 connected to the load switching element 12 set as the starting point, is determined from the start timing of the control cycle according to the lighting control command value (Step S103).
  • n is an integer from 1 to N-1 and the on period of the load switching element 12- (n + 1) is set, the lighting control command value (I LEDn ) of each load switching element 12-n is 100%.
  • the difference value (I subn ) is calculated (step S104).
  • step S105 (5) the difference value (I subn) found when the lighting is larger than the control command value (I LEDn + 1) of the load switching element 12-(n + 1) is (step S105: Yes), the load from the off timing of the load switching element 12-n The on setting of the lighting control command value (I LEDn + 1 ) of the switching element 12- (n + 1) is performed. Further, the lighting control command value (I LEDn + 1 ) of the load switching element 12- (n + 1) is changed to the value of I LEDn + 1 + I LEDn to prepare for setting of the next on period of the load switching element 12 (step S106).
  • Step S105: No the control from the off timing of the load switching element 12-n performs setting of the on-period to the end timing of the period, performing on setting the start timing of the amount corresponding control period of a value obtained by subtracting the I subn from I LEDn + 1 (I LEDn + 1 -I sub). Further, I LEDn + 1 is changed to a value of I LEDn + 1 -I sub to prepare for the next LED lighting pattern generation (step S107).
  • the above steps S104 to S107 are executed N-1 times to set the on periods of all the load switching elements 12.
  • the conditions of the lighting control command value of FIG. 3 will be described as an example.
  • 90%, 70%, 50%, 30%, and 10% are taken in as the lighting control command values I LED1 to I LED 5 of the lighting control command 14 (step S101).
  • the load switching element 12-1 is set as the starting point (step S102). Further, the load switching elements 12-1 to 5 are set to determine the on period in this order.
  • the on period of the load switching element 12-1 is determined as 90% of the lighting control command value from the start timing of the control cycle (step S103).
  • the difference value I sub1 obtained by subtracting the difference between 100% and I LED1 is 10% (step S104), and I sub1 is smaller than 70% of I LED2.
  • the on period is divided into two and setting is performed.
  • the on period is set from the off timing of the load switching element 12-1 to the end timing of the control cycle.
  • the I LED2 -I sub1 60% provided to determine the ON period of the next load switching element 12 (step S107).
  • (5) Determine the on period of the load switching element 12-3.
  • the value I sub2 obtained by subtracting the difference between 100% and I LED2 is 40% (step S104), and I sub2 is smaller than I LED3.
  • the on setting is set from the off timing of the load switching element 12-2 to the end of the control period
  • (6) Determine the on period of the load switching element 12-4.
  • the difference value I sub3 obtained by subtracting the difference between 100% and I LED3 is 90%, and I sub3 is larger than I LED 4 so that the ON period of 30% of I LED 4 is set from the off timing of the load switching element 12-3.
  • the output current of the DC / DC converter 3 is controlled at 3 A or 2 A, there is no large current fluctuation, and the maximum current can be suppressed. I understand that.
  • the predetermined timing for capturing the command value of the lighting control command 14 described above may be set earlier than the control cycle of the LED by the time necessary to perform the lighting pattern generation from the lighting control command. desirable.
  • the lighting control command is indicated by a percentage value, but may be an analog signal or the like.
  • the load switching element 12-1 is used as the starting point, but it goes without saying that the same effect can be obtained even if the lighting pattern is formed in any order regardless of which point is the starting point. Yes.
  • the present invention is not limited to this.
  • a dead time may be provided in consideration of an error in timing of controlling on and off. That is, the control unit 15 may turn on the load switching element 12- (n + 1) after a predetermined period has elapsed from the timing of turning off the load switching element 12-n. By thus providing the dead time, it is possible to reliably shift the on timing of the load switching element.
  • a plurality of LED elements are connected in parallel, and the LED device that controls the load switching element connected in series with the plurality of LED elements is externally input
  • the on period of the load switching element as the starting point is started from the start timing of the control cycle based on the lighting control command to be turned on, and the on period of the load switching elements other than the starting point is the off of the load switching element of the previous order. From the relationship between the timing and the end timing of the control cycle, it is determined whether to divide the lighting pattern into two.
  • the ON setting is performed for the lighting control from the OFF timing of the load switching element of the previous order, and when dividing, from the OFF timing of the load switching element of the previous order to the end timing of the control cycle And, it is set to continue for the remaining on period from the start timing of the control cycle.
  • the DC / DC converter 3 is a step-down chopper circuit.
  • the present invention is not limited to this as long as a desired current is supplied to the LED, and a step-up chopper circuit or a flyback converter may be used.
  • the lighting pattern when the lighting pattern is generated, the lighting control command 14 from the outside is taken into the control unit 15 and generated.
  • the present invention is not limited to this. A lighting pattern may be generated based on the lighting control command.
  • the LED device and the control method thereof according to the first embodiment the case where the control cycle is considered only for one cycle is shown.
  • a method of reducing the switching loss of switching elements connected in series to LED elements in a plurality of continuous control cycles will be described.
  • the configuration of the LED device according to the second embodiment is the same as the case shown in FIG.
  • the first to Nth load switching elements are determined in this order as the on period, and the second and subsequent cycles are one.
  • the load switching element which is turned on at the end timing of the control cycle in the control period immediately before is set as the starting point, and the on period is set in order from the load switching element set as the starting point. The details will be described below.
  • FIG. 4 newly adds a control cycle 2 with the control cycle of the on period of the load switching element 12 shown in FIG. 3 as the control cycle 1.
  • the lighting control command values for control cycle 2 are shown in the right column on the left side of FIG. 4, and the lighting control command values for load switching elements 12-1 to 5 in control cycle 2 (30% for I LED1 to I LED5 respectively) , 30%, 40%, 40%, 50%.
  • the feature of the LED device according to the second embodiment lies in the method of setting the on period of the load switching element 12 as the starting point.
  • the control period 1 determines the on period of each load switching element 12 from the load switching element 12-1 as in the case of the first embodiment.
  • the load switching element 12 which is set to ON at the end timing of the control cycle 1 is set as a starting point.
  • the example shown in FIG. 4 shows the case where the load switching element 12-3 is the starting point of the control cycle 2.
  • the method of setting the on period of the load switching element 12-3 is the same as the method of setting the on period of the load switching element 12-1 shown in the first embodiment, and the description thereof will be omitted.
  • the order of setting the on period is the order of the load switching elements 12-3, 4, 5, 1, 2.
  • the method of setting the on period other than the load switching element 12-3 is the same as that of the first embodiment.
  • the control method in the case where there are a plurality of control cycles is shown.
  • the load switching element As described above, according to the LED device and the control method thereof according to the second embodiment, the control method in the case where there are a plurality of control cycles is shown.
  • the load switching element By setting the load switching element as a starting point and applying the lighting pattern generation method according to the first embodiment, it is possible to reduce the number of ON / OFF of the lighting control command used as the starting point, and connect in series with the LED. It is possible to reduce the switching loss of the switching element. Further, as in the first embodiment, it is possible to always suppress the maximum current of the DC / DC converter regardless of the on period, and to obtain the effect of suppressing the loss of the DCDC converter. Become.
  • SYMBOLS 1 power supply main circuit unit 2 power supply control unit, 3 DC / DC converter, 4 load module unit 4, 5 DC power supply, 6 switching element, 7 diode, 8 reactor, 9 capacitor, 10 current detection unit, 11 LED element, 12 Load switching elements, 13 load switch signals, 14 lighting control commands, 15 control units, 16 current detection signals, 17 switch signals, 18 current control units, 19 command value generation units, 20 PI control units, 21 carrier frequency output units

Abstract

The purpose of the present invention is to obtain an LED device capable of limiting the maximum current from a power source that supplies power to an LED element. This is achieved by an LED device comprising a load module unit having a plurality of LED elements connected in parallel and a plurality of load-switching elements connected in series to each of the plurality of LED elements, and a control unit for controlling the plurality of load-switching elements to turn on or off, wherein the control unit divides the on-period of at least one load-switching element among the plurality of load-switching elements into a plurality of on-periods in the control cycle, and sets on-periods so that at least one of the plurality of on-periods resulting from the division begins when a different load-switching element is timed to turn off.

Description

LED装置およびその制御方法LED device and control method thereof
 この発明は、複数のLED(Light Emitting Diode)素子を並列に接続して同じ電源電圧を印加するように構成されたLED装置およびその制御方法に関する。 The present invention relates to an LED device configured to connect a plurality of LED (Light Emitting Diode) elements in parallel to apply the same power supply voltage, and a control method thereof.
 近年、省エネルギーの観点からさまざま光源に関してLED(発光ダイオード)の採用が加速している。例えば、自動車のヘッドライトにも複数のLEDを用いた光源が用いられている。LEDは効率がよいだけでなく、光源が小さく点灯エリアを限定することができることから、複数のLEDを使って、必要なエリアだけを点灯するADB(Adaptive Driving Beam)が搭載されている。ADBは、照射範囲ごとにLEDを割り当て、対向車等を検知した際には、検知部分に対応したLEDを点灯/消灯/調光制御する。 In recent years, adoption of LEDs (light emitting diodes) has been accelerated for various light sources from the viewpoint of energy saving. For example, a light source using a plurality of LEDs is also used for automobile headlights. The LEDs not only have high efficiency, but also have a small light source and can limit the lighting area. Therefore, an ADB (Adaptive Driving Beam) is mounted to light only the necessary area using a plurality of LEDs. The ADB assigns an LED to each irradiation range, and when an oncoming vehicle or the like is detected, turns on / off / light-controls the LED corresponding to the detection portion.
 このようなADBに用いられるLED装置として、直列に接続された複数のLED素子からなるLEDグループを複数個並列に接続してLED駆動の電源に接続されたLED装置がある(例えば、特許文献1参照)。特許文献1に示されたLED装置では、LEDグループごとにスイッチング素子が接続されており、各スイッチング素子の駆動タイミングを、パルス通電の1周期をLEDグループの数で除した周期ずつ、すなわち、LEDグループが5個並列に接続されている場合には、1/5周期ずつずらして制御することを特徴としている。このような構成とすることで、各LEDに電流を供給する電源の急激な立ち上がりを防止することができ、ノイズの発生を抑制することができる。 As an LED device used for such an ADB, there is an LED device connected in parallel to a plurality of LED groups consisting of a plurality of LED elements connected in series and connected to an LED-driven power supply (for example, Patent Document 1) reference). In the LED device shown in Patent Document 1, a switching element is connected to each LED group, and the driving timing of each switching element is divided into one cycle of pulse energization divided by the number of LED groups, that is, LED When five groups are connected in parallel, it is characterized in that control is performed by being shifted by 1⁄5 cycle. With such a configuration, it is possible to prevent the rapid rise of the power supply that supplies current to each LED, and to suppress the generation of noise.
特開2008-91311号公報JP, 2008-91311, A
 特許文献1では、各LEDグループに対して同一パルス幅でパルス通電を行うLED装置について開示されているが、近年のLED装置の制御の高度化に伴い、LEDグループのLED点灯パルス幅が異なるような制御を行うことが想定されている。例えば、上述のADBに用いられるLED装置の場合、道路のカーブに沿って点灯させることが想定され、道が続いていく方向を積極的に明るく照らすように各LEDグループの点灯パルス幅を変更する場合がある。特許文献1に示すようなパルス通電の1周期をLEDグループの数で除した周期ずつずらしたタイミングに固定して制御する方式に、各LEDグループのLED点灯パルスのオン時間幅が異なる条件を適用した場合に、LEDに電流を供給する電源の最大電流が大きくなる場合があるという課題がある。 Patent Document 1 discloses an LED device that performs pulse energization with the same pulse width for each LED group, but as the control of the LED device is advanced in recent years, the LED lighting pulse width of the LED group may be different. Control is expected to be performed. For example, in the case of the LED device used in the above-described ADB, it is assumed that lighting is performed along a curve of the road, and the lighting pulse width of each LED group is changed to positively illuminate the direction in which the road continues There is a case. In the method shown in Patent Document 1 in which one cycle of pulse energization is fixed at timing shifted by each cycle divided by the number of LED groups and controlled, the condition that the ON time width of LED lighting pulse of each LED group is different is applied In this case, there is a problem that the maximum current of the power supply for supplying the current to the LED may be increased.
 例えば、LEDグループが5並列であり、各LEDグループに制御周期内で電流を流す期間をそれぞれ90%、70%、50%、30%、10%とし、各LEDグループに1Aを流すことを想定した場合において、特許文献1の特徴である駆動開始タイミングを1/5周期ずつずらして点灯パルス幅を決定すると、電源の出力電流は0A~5Aまで変化することとなる。この例のようにLED素子への供給電源の最大電流が大きくなると、ノイズの発生が大きくなるだけでなく、LED素子に電流を供給する電源の損失が大きくなる、という課題があった。 For example, assuming that the LED groups are 5 parallel and the current flows in each LED group within 90%, 70%, 50%, 30%, and 10%, respectively, 1A flows in each LED group. In this case, if the lighting pulse width is determined by shifting the drive start timing, which is a feature of Patent Document 1, by 1⁄5 cycle, the output current of the power supply will change from 0A to 5A. When the maximum current of the power supply supplied to the LED element is increased as in this example, not only the generation of noise increases but also the loss of the power source for supplying the current to the LED element increases.
 この発明は、上記のような課題を解決するためになされたものであり、複数のLED素子を並列接続したLED装置において、各LED素子に直列に接続されたスイッチング素子のうち少なくとも1つのスイッチング素子のオン期間の長さが他のスイッチング素子のオン期間の長さと異なる条件とした場合においても、LED素子へ電力を供給する供給電源の最大電流を抑制することができるLED装置におよびその制御方法を得ることを目的とする。 The present invention has been made to solve the problems as described above, and in an LED device in which a plurality of LED elements are connected in parallel, at least one switching element among switching elements connected in series to each LED element The LED device capable of suppressing the maximum current of the power supply that supplies power to the LED element even when the length of the on period of the switch is different from the length of the on period of the other switching elements The aim is to get
 この発明に係るLED装置は、それぞれが並列に接続された複数のLED素子、および複数のLED素子のそれぞれに直列に接続された複数の負荷スイッチング素子、を有する負荷モジュール部と、電源からの入力電力を電力変換して負荷モジュール部に出力する電力変換部と、負荷スイッチング素子の制御周期のうちのLED素子に電流を流す期間の割合を示す点灯制御指令値に基づいて複数のスイッチング素子のオン期間を決定し、複数の負荷スイッチング素子をオンまたはオフに制御する制御部と、を備えたLED装置であって、制御部は、複数の負荷スイッチング素子のうち少なくとも1つの負荷スイッチング素子のオン期間を制御周期内において複数のオン期間に分割し、分割した複数のオン期間のうち少なくとも1回を異なる負荷スイッチング素子がオフとなるタイミングに対応させて開始するようにオン期間を決定すること、を特徴とする。 An LED device according to the present invention includes: a load module unit including a plurality of LED elements connected in parallel and a plurality of load switching elements connected in series to each of the plurality of LED elements; Turning on the plurality of switching elements based on a lighting control command value indicating a ratio of a period during which current flows to the LED element in the control period of the power conversion unit that converts the power into power and outputs it to the load module unit A control unit that determines a period and controls a plurality of load switching devices to turn on or off, the control unit including an on period of at least one of the plurality of load switching devices; Is divided into a plurality of on periods within the control period, and at least one of the divided plurality of on periods is different The load switching element determines the ON period to start so as to correspond to the timing of the off, characterized by.
 また、この発明に係るLED装置の制御方法は、それぞれが並列に接続された複数のLED素子および複数のLED素子のそれぞれに直列に接続された複数の負荷スイッチング素子を有する負荷モジュール部と、電源からの入力電力を電力変換して負荷モジュール部に出力する電力変換部と、複数の負荷スイッチング素子をオンまたはオフに制御することにより複数の負荷スイッチング素子のオン期間を制御する制御部と、を備えたLED装置の制御方法であって、制御部が、各制御周期における複数のLED素子の電流を流す期間の割合を示す点灯制御指令値を取込む第1ステップと、制御部が、複数の負荷スイッチング素子についてオン期間を決定する順番を設定する第2ステップと、制御部が、第2ステップにおいて起点に設定した負荷スイッチング素子のオン期間を、制御期間の開始タイミングから、当該負荷スイッチング素子に対応する点灯制御指令値分だけオン期間に決定する第3ステップと、制御部が、起点に設定した負荷スイッチング素子以外の負荷スイッチング素子のオン期間を、当該負荷スイッチング素子の前にオン期間を決定した負荷スイッチング素子をオフに制御するタイミングに対応させてオンに制御するように決定する第4ステップと、を備えることを特徴とする。 Further, according to a control method of an LED device according to the present invention, a load module unit including a plurality of LED elements connected in parallel and a plurality of load switching elements connected in series to each of the plurality of LED elements; A power conversion unit that converts the input power from the power supply and outputs the power to the load module unit; and a control unit that controls the on periods of the plurality of load switching devices by controlling the plurality of load switching devices on or off. A control method of an LED device, comprising: a first step of taking in a lighting control command value indicating a ratio of a period during which current of a plurality of LED elements flows in each control cycle; and a plurality of control units The second step of setting the order in which the on period is determined for the load switching element, and the control unit sets the starting point in the second step The third step of determining the on period of the load switching element as the on period by the lighting control command value corresponding to the load switching element from the start timing of the control period, and the load switching element other than the load switching element set as the starting point And a fourth step of determining the on period of the load switching device to be controlled to be on corresponding to the timing of controlling the load switching device whose on period has been determined before the load switching device to turn off. It is characterized by
 本発明により、複数のLED素子を並列接続したLED装置において、各LED素子に直列に接続されたスイッチング素子のうち少なくとも1つのスイッチング素子のオン期間の長さが他のスイッチング素子のオン期間の長さと異なる条件とした場合においても、LED素子へ電力を供給する供給電源の最大電流を抑制することができ、供給電源の損失を小さくすることが可能となる。 According to the present invention, in the LED device in which a plurality of LED elements are connected in parallel, the length of the on period of at least one of the switching elements connected in series to each LED element is the length of the on period of the other switching elements Even under different conditions, the maximum current of the power supply that supplies power to the LED element can be suppressed, and the loss of the power supply can be reduced.
本発明の実施の形態1に係るLED装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the LED apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るLED装置の制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of the LED apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るLED装置の点灯パターン生成方法の説明図の構成を示すブロック図である。It is a block diagram which shows the structure of explanatory drawing of the lighting pattern production | generation method of the LED apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るLED装置の制御方法を説明するフローチャートである。It is a flowchart explaining the control method of the LED apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るLED装置の点灯パターン生成方法の説明図である。It is explanatory drawing of the lighting pattern production | generation method of the LED apparatus which concerns on Embodiment 2 of this invention.
実施の形態1.
 本発明の実施の形態1に係るLED装置について図面を参照して説明する。図1は、本発明の実施の形態1に係るLED装置の構成を示すブロック図である。図面または以下の説明において、同一または同様の構成要素を示す場合には同一の符号を付すものとする。また、負荷スイッチング素子のように、同一または同様の構成要素が複数存在する場合には、負荷スイッチング素子12-1~Nのように「-」および数字・記号を付して区別する。なお、複数存在する同一または同様の構成要素の各構成要素を区別しない場合、または総称する場合には、例えば、負荷スイッチング素子12のように、「-」および数字・記号を省略して説明する。
Embodiment 1
An LED device according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of the LED device according to Embodiment 1 of the present invention. In the drawings or the following description, the same or similar components are denoted by the same reference numerals. In addition, when there are a plurality of identical or similar components as load switching elements, they are distinguished by adding "-" and numerals / symbols like load switching elements 12-1 to 12-N. In addition, when not distinguishing each component of the same or similar component which exists in multiple numbers, or collectively naming, it abbreviate | omits "-" and a number and a symbol like the load switching element 12, for example, and demonstrates. .
 本発明の実施の形態1に示すLED装置は、電源主回路部1、この電源主回路部1を制御する電源制御部2、電源主回路部1に電力を供給する直流電源5から構成されている。電源主回路部1は、電力変換部としてのDC/DCコンバータ3および複数のLED素子を有する負荷モジュール部4を備えており、直流電源5はDC/DCコンバータ3の一方の端子(ここでは、便宜的に入力端子とする)に接続されており、DC/DCコンバータ3の他方の端子(ここでは、便宜的に出力端子とする)に負荷モジュール部4が接続されている。 The LED device shown in the first embodiment of the present invention comprises a power supply main circuit unit 1, a power supply control unit 2 for controlling the power supply main circuit unit 1, and a DC power supply 5 for supplying power to the power supply main circuit unit 1. There is. The power supply main circuit unit 1 includes a DC / DC converter 3 as a power conversion unit and a load module unit 4 having a plurality of LED elements, and the DC power supply 5 has one terminal of the DC / DC converter 3 (here, The load module unit 4 is connected to the other input terminal of the DC / DC converter 3 (here, it is referred to as an output terminal for convenience).
 DC/DCコンバータ3は、電力変換部であり、直流電源5からの入力電力を電力変換して負荷モジュール部4に出力している。DC/DCコンバータ3は、スイッチング素子6、ダイオード7、リアクトル8、コンデンサ9により構成されており、スイッチング素子6は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。図1に示す例ではDC/DCコンバータ3の正側の入力端子に接続された正側母線に、スイッチング素子6およびリアクトル8が設けられている。ダイオード7は、カソード側がスイッチング素子とリアクトルとの接続点に接続され、アノード側がDC/DCコンバータ3の負側の入力端子に接続された負側母線とに接続されている。また、コンデンサ9は、一方の端子がリアクトル8と正側の出力端子との間の正側母線に接続され、コンデンサ9のもう一方の端子は負側母線に接続される。DC/DCコンバータ3は、電源制御部2から出力される制御信号に応じてスイッチング素子6のオンオフを制御することで、負荷モジュール部4に供給する電流量を所望の値に調整し、負荷であるLED素子を備える負荷モジュール部4に対して電力を供給する。なお、DC/DCコンバータ3は、図1に示した構成に限るものではないことは言うまでもなく、電力変換を行い所望の電流量を出力する回路であればどのようなものであってもよい。例えば、昇圧チョッパ回路、フライバックコンバータ、H型昇降圧コンバータ、SEPIC(Single-Ended Primary-Inductance Converter)であってもよい。 The DC / DC converter 3 is a power conversion unit, converts the power input from the DC power supply 5 and outputs the power to the load module unit 4. The DC / DC converter 3 is configured of a switching element 6, a diode 7, a reactor 8, and a capacitor 9. The switching element 6 is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). In the example shown in FIG. 1, the switching element 6 and the reactor 8 are provided on the positive side bus connected to the positive side input terminal of the DC / DC converter 3. The diode 7 is connected on the cathode side to the connection point between the switching element and the reactor, and on the anode side to the negative bus connected to the negative input terminal of the DC / DC converter 3. In addition, one terminal of the capacitor 9 is connected to the positive busbar between the reactor 8 and the positive output terminal, and the other terminal of the capacitor 9 is connected to the negative busbar. The DC / DC converter 3 adjusts the amount of current supplied to the load module unit 4 to a desired value by controlling the on / off of the switching element 6 according to the control signal output from the power supply control unit 2, Power is supplied to a load module unit 4 provided with a certain LED element. It goes without saying that the DC / DC converter 3 is not limited to the configuration shown in FIG. 1 and may be any circuit as long as it is a circuit that performs power conversion and outputs a desired amount of current. For example, a step-up chopper circuit, a flyback converter, an H-type buck-boost converter, or a single-ended primary-inductance converter (SEPIC) may be used.
 負荷モジュール部4は、複数のLED素子11が並列に接続されており、図1に示す例では、LED装置は、N個(Nは2以上の整数)のLED素子11-1~N(第1~第NのLED素子)を備えている。各LED素子11は、複数のLED素子が直列に接続されたものとして説明するが、LED素子数は必ずしも複数である必要はなく、1つの場合であっても本発明を適用可能である。また、各LED素子11には、それぞれ負荷スイッチング素子12が、各LED素子11に対して直列に接続されており、図1に示す例では、LED素子11-1~Nのそれぞれに負荷スイッチング素子12-1~N(第1~第Nの負荷スイッチング素子)が直列に接続されている。ここで、負荷スイッチング素子12はどのようなものでもよいが、例えば、MOSFETを用いることができる。 The load module unit 4 has a plurality of LED elements 11 connected in parallel, and in the example shown in FIG. 1, the LED device includes N (N is an integer of 2 or more) LED elements 11-1 to N The first to Nth LED elements are provided. Although each LED element 11 is described as a plurality of LED elements connected in series, the number of LED elements does not have to be plural, and the present invention can be applied even in the case of one. In each LED element 11, a load switching element 12 is connected in series to each LED element 11. In the example shown in FIG. 1, the load switching elements are connected to each of the LED elements 11-1 to N. 12-1 to 12 N (first to Nth load switching elements) are connected in series. Here, although the load switching element 12 may be any type, for example, a MOSFET can be used.
 ここで、LED素子11とこのLED素子11に接続された負荷スイッチング素子12とを合わせて、LED駆動ストリングと称することとする。すなわち、負荷モジュール部4は複数のLED駆動ストリングが並列に接続された構成となっている。LED駆動ストリングにおいて、電源制御部2から出力される各負荷スイッチ信号13-1~Nに応じて各負荷スイッチング素子12-1~Nがオンまたはオフに制御される。負荷スイッチング素子12がオンのときは、対応する各LED素子11-1~Nが電気的に導通状態となり電力が供給され、負荷スイッチング素子12-1~Nがオフのときは負荷モジュール部4内の各負荷スイッチング素子12-1~Nに対応する各LED素子11-1~Nが電気的に非導通状態となり電力供給が停止される。 Here, the LED element 11 and the load switching element 12 connected to the LED element 11 are collectively referred to as an LED drive string. That is, the load module unit 4 has a configuration in which a plurality of LED drive strings are connected in parallel. In the LED drive string, the load switching elements 12-1 to 12-N are controlled to be on or off in accordance with the load switch signals 13-1 to 13-N output from the power supply control unit 2. When the load switching element 12 is on, the corresponding LED elements 11-1 to N are electrically conducted and power is supplied, and when the load switching elements 12-1 to N are off, the inside of the load module unit 4 The LED elements 11-1 to N corresponding to the respective load switching elements 12-1 to N become electrically nonconductive and the power supply is stopped.
 また、電源主回路部1は、リアクトル8や負荷モジュール部4等に流れる回路電流を検出する電流検出部10を備えており、例えば、回路電流を抵抗やオペアンプ等を用いて電圧値として検出する。図1に示す例では、負荷モジュール部4の内部に電流検出部10を設けており、DC/DCコンバータ3の負側の出力端子に電流検出部10が接続されている。 The power supply main circuit unit 1 further includes a current detection unit 10 that detects a circuit current flowing through the reactor 8, the load module unit 4, etc. For example, the circuit current is detected as a voltage value using a resistor, an operational amplifier, etc. . In the example shown in FIG. 1, the current detection unit 10 is provided inside the load module unit 4, and the current detection unit 10 is connected to the negative output terminal of the DC / DC converter 3.
 直流電源5は、直流電力を出力する電源であり、例えば、バッテリである。なお、直流電力を出力する電源であればどのようなものであってもよいことはいうまでもない。 The DC power supply 5 is a power supply that outputs DC power, and is, for example, a battery. It is needless to say that any power supply can be used as long as it can output DC power.
 電源制御部2は、電流制御部18と指令値生成部19を備えており、電源主回路部1の電流検出部10による検出結果および外部から入力される点灯制御指令14に基づいて電源主回路部1の制御を行う。すなわち、スイッチング素子6および負荷スイッチング素子12に対して、負荷スイッチ信号13およびスイッチ信号17を出力し、スイッチング素子6および負荷スイッチング素子12のオンまたはオフに制御することにより、電源主回路部1の制御を行う。また、制御部15は、例えばマイコンであり、後述する制御方法にしたがって、負荷スイッチング素子12-1~Nを制御するための負荷スイッチ信号13-1~Nと、DC/DCコンバータ3のスイッチング素子6を制御するスイッチ信号17を演算する。 The power supply control unit 2 includes a current control unit 18 and a command value generation unit 19, and the power supply main circuit based on the detection result by the current detection unit 10 of the power supply main circuit unit 1 and the lighting control command 14 input from the outside. Control part 1. That is, the load switch signal 13 and the switch signal 17 are output to the switching element 6 and the load switching element 12, and the switching element 6 and the load switching element 12 are controlled to be on or off. Take control. The control unit 15 is, for example, a microcomputer, and according to a control method to be described later, load switch signals 13-1 to 13-N for controlling the load switching devices 12-1 to 12-N and switching devices of the DC / DC converter 3 A switch signal 17 for controlling 6 is calculated.
 実施の形態1に係るLED装置では、上述したように外部より点灯制御指令14が入力される構成となっている。ここで、点灯制御指令14は、各LED素子11に対応した点灯制御指令値を含んでいる。点灯制御指令値は、各負荷スイッチング素子12を制御周期のうちのオンにする期間の割合、すなわち、各LED素子11に制御周期内で電流を流す期間の割合を示している。また、この点灯制御指令値は、負荷スイッチング素子12ごと、および制御周期ごとに設定される。点灯制御指令値の設定方法はどのようなものであってもよいが、例えば、自動車のヘッドライトに用いられる場合において、自動車が道路のカーブに沿って道が続いていく方向を明るく照らすように、対応するLED素子の電流を流す期間の割合を増やすような設定方法を行うことができる。 In the LED device according to the first embodiment, as described above, the lighting control command 14 is input from the outside. Here, the lighting control command 14 includes a lighting control command value corresponding to each LED element 11. The lighting control command value indicates the ratio of the period in which each load switching element 12 is turned on in the control period, that is, the ratio of the period in which current is supplied to each LED element 11 within the control period. The lighting control command value is set for each load switching element 12 and for each control cycle. The method of setting the lighting control command value may be any method, for example, in the case of being used as a headlight of a car, so that the car brightly illuminates the direction in which the road continues along the curve of the road. The setting method can be performed to increase the ratio of the period in which the current of the corresponding LED element flows.
 本実施の形態1に係るLED装置の動作について説明する。まず、LED装置全体の動作について説明する。
 直流電源5より出力された直流電力は、DC/DCコンバータ3に入力される。直流電力が入力されたDC/DCコンバータ3では、電源制御部2から出力されるスイッチ信号17に応じて、スイッチング素子6のオンオフを制御することで、負荷モジュール部4に供給する電流量を所望の値に調整し、LED素子11-1~Nと負荷スイッチング素子12-1~Nとにより構成される負荷モジュール部4に対して電力を供給する。負荷モジュール部4では、指令値生成部19からの負荷スイッチ信号13に基づいて負荷スイッチング素子12をオンオフ制御する。電力を供給された負荷モジュール部4は、オンに設定された負荷スイッチング素子12に接続されたLED素子11に電力供給され、電力供給されたLED素子11が点灯することとなる。
The operation of the LED device according to the first embodiment will be described. First, the operation of the entire LED device will be described.
The DC power output from the DC power supply 5 is input to the DC / DC converter 3. In the DC / DC converter 3 to which DC power is input, the amount of current supplied to the load module unit 4 is desired by controlling the on / off of the switching element 6 according to the switch signal 17 output from the power supply control unit 2 The electric power is supplied to the load module unit 4 constituted by the LED elements 11-1 to N and the load switching elements 12-1 to N. The load module unit 4 performs on / off control of the load switching element 12 based on the load switch signal 13 from the command value generation unit 19. The load module unit 4 supplied with power is supplied with power to the LED element 11 connected to the load switching element 12 set to ON, and the powered LED element 11 is lit.
 次に、DC/DCコンバータ3における制御動作について、図2を用いて説明する。DC/DCコンバータ3では、制御部15において生成されるスイッチ信号17に応じて、スイッチング素子6のオンオフを制御し、電流量を所望の値に制御する。制御部15では、指令値生成部19において算出したDC/DCコンバータ3の出力電流の目標指令値を、後述する指令値生成部19において設定される各負荷スイッチング素子12-1~Nのオン数と、LED素子11-1~Nに流す電流値に基づいて決定する。すなわち、指令値生成部19は、負荷スイッチング素子12-1~Nのうちのオンに設定される負荷スイッチング素子12の数と、LED素子11に流す電流値との乗算値から出力電流の目標指令値を生成する。例えば、負荷スイッチング素子12のオン数が3で、各LED素子11に流す電流をそれぞれ1Aとする場合、DC/DCコンバータ3の出力電流の目標指令値は、オン数3と1Aの乗算で3Aに設定する。指令値生成部19は、設定した目標指令値を電流制御部18に出力する。 Next, the control operation of the DC / DC converter 3 will be described with reference to FIG. The DC / DC converter 3 controls the on / off of the switching element 6 in accordance with the switch signal 17 generated in the control unit 15 to control the amount of current to a desired value. In the control unit 15, the target command value of the output current of the DC / DC converter 3 calculated in the command value generation unit 19 is the number of ONs of the load switching elements 12-1 to N set in the command value generation unit 19 described later. And the current value flowing to the LED elements 11-1 to N. That is, the command value generation unit 19 determines the target command of the output current from the product of the number of load switching elements 12 set to ON among the load switching elements 12-1 to N and the current value supplied to the LED element 11. Generate a value For example, when the number of ONs of the load switching element 12 is 3 and the current supplied to each LED element 11 is 1 A, the target command value of the output current of the DC / DC converter 3 is 3A by multiplication of 3 and 1A. Set to The command value generation unit 19 outputs the set target command value to the current control unit 18.
 電流制御部18では、指令値生成部19で設定された目標指令値と、電源主回路部1の電流検出部10により検出した電流検出信号16との減算を行うことで誤差を算出し、算出した誤差をPI制御部20に出力する。PI制御部20では、PI演算等を行って、誤差が小さくなるよう制御量の演算を行う。演算された制御量とキャリア周波数出力部21より出力されるキャリア周波数との比較を行って、DC/DCコンバータ3のスイッチング素子6のスイッチ信号17を生成し、DC/DCコンバータ3に出力する。電源制御部2から、スイッチ信号17が入力されたDC/DCコンバータ3は、本信号に基づいてスイッチング素子6をオンオフさせ、負荷モジュール部4に出力する電流量の調整を行う。 The current control unit 18 calculates an error by subtracting the target command value set by the command value generation unit 19 and the current detection signal 16 detected by the current detection unit 10 of the power supply main circuit unit 1. The resulting error is output to the PI control unit 20. The PI control unit 20 performs PI calculation and the like to calculate the control amount so as to reduce the error. The calculated control amount is compared with the carrier frequency output from the carrier frequency output unit 21 to generate the switch signal 17 of the switching element 6 of the DC / DC converter 3 and output it to the DC / DC converter 3. The DC / DC converter 3 to which the switch signal 17 is input from the power supply control unit 2 turns the switching element 6 on and off based on this signal, and adjusts the amount of current output to the load module unit 4.
 ここで、上記では、マイコン等のデジタル演算処理での説明をしたがこれに限らず、アナログ制御でも実行できることは言うまでもない。また、制御量の演算を行う方法として、PI演算を例として説明したが、目標値に収束させるための制御であればどのような制御でもよく、例えば、PID制御やH∞制御でもよい。 Here, in the above, the description has been made of digital arithmetic processing of a microcomputer or the like, but it is needless to say that the present invention is not limited to this and analog control can also be executed. Also, as a method of calculating the control amount, PI calculation has been described as an example, but any control may be used as long as it is control for causing the target value to converge, for example, PID control or H∞ control.
 次に、負荷モジュール部4の負荷スイッチング素子12の制御動作について説明する。負荷スイッチング素子12-1~Nは、指令値生成部19において生成される負荷スイッチ信号13に基づいて、各負荷スイッチング素子をオンオフ動作させ、所望のパターンにLED素子11のLED素子を点灯させる。 Next, the control operation of the load switching element 12 of the load module unit 4 will be described. The load switching elements 12-1 to 12-N turn on / off each load switching element based on the load switch signal 13 generated in the command value generation unit 19, and turn on the LED element of the LED element 11 in a desired pattern.
 指令値生成部19での負荷スイッチ信号13の生成方法について、図3を用いて説明を行う。図3に、本発明の実施の形態1に係るLED装置の点灯パターンの生成方法の説明図を示す。図3は、LED素子11が5並列の場合、すなわち、図1においてNを5とした場合の点灯パターン生成方法を示したものである。なお、LED素子11が5並列の場合に限定されるものではないことはいうまでもなく、LED素子11が5並列より少ない場合、または、5並列より多い場合であっても同様に点灯パターンを生成できる。 The method of generating the load switch signal 13 in the command value generation unit 19 will be described with reference to FIG. FIG. 3 is an explanatory diagram of a method of generating a lighting pattern of the LED device according to Embodiment 1 of the present invention. FIG. 3 shows a lighting pattern generation method in the case where the LED elements 11 are 5 parallel, that is, N is 5 in FIG. Needless to say, the present invention is not limited to the case where the LED elements 11 are arranged in 5 parallels, and the lighting pattern is similarly set even when the LED elements 11 are smaller than 5 parallels or more than 5 parallels. Can be generated.
 図3において、左側に示すパーセンテージ(%)は、各LED素子11-1~Nの点灯制御指令値(ILED1~ILED5)、すなわち、各LED素子11-1~Nに制御周期内で電流を流す期間の割合を示している。例えば、点灯制御指令値が50%とされたLED素子11-3は、1制御周期中の50%の期間だけ負荷スイッチング素子12-3をオンに設定し、電流を流すことを示す。また、図3において、矢印(⇒)の左側の数値は点灯制御指令値を、矢印(⇒)の右側の数値は指令値生成部19において、負荷スイッチング素子12を駆動するための負荷スイッチ信号13の点灯パターン生成後の値を示している。負荷スイッチング素子12-3のように、40%+10%と2つの割合が記載されている負荷スイッチング素子12は、オン期間を1制御周期中で2回に分けることを示す。図3に示す例では、負荷スイッチング素子12-3は、制御周期開始タイミングと同時にオンに制御して、1制御期間の10%の期間分オン期間を継続し、オン期間を設定した1つ前の順番の負荷スイッチング素子12(図3に示す例では、負荷スイッチング素子12-2)のオフに制御するタイミングと同時にオンに制御して1制御周期の40%の期間だけオンに設定することを示す。 In FIG. 3, the percentage (%) shown on the left is the lighting control command value (I LED1 to I LED5 ) of each of the LED elements 11-1 to N, that is, the current of each LED element 11-1 to N within the control period. Indicates the percentage of the period during which For example, the LED element 11-3 for which the lighting control command value is set to 50% indicates that the load switching element 12-3 is set to ON only for a 50% period in one control cycle, and the current flows. Further, in FIG. 3, the numerical value on the left of the arrow (⇒) is the lighting control command value, and the numerical value on the right of the arrow (⇒) is the load switch signal 13 for driving the load switching element 12 in the command value generation unit 19. Shows the value after the lighting pattern is generated. Like the load switching element 12-3, the load switching element 12 in which the ratio of 40% + 10% is described indicates that the on period is divided into two in one control cycle. In the example shown in FIG. 3, the load switching element 12-3 is controlled to be on at the same time as the control cycle start timing, continues the on period for a period of 10% of one control period, and one period before the on period is set. At the same time when the load switching element 12 (in the example shown in FIG. 3, the load switching element 12-2 in the example shown in FIG. Show.
 本発明の実施の形態1に係るLED装置では、負荷スイッチング素子12の制御周期があらかじめ定められており、制御周期ごとに制御部15が、各負荷スイッチング素子12のオン期間を設定する。また、制御部15は、負荷スイッチング素子12-1~Nをこの順番でオン期間を決定するように設定されており、まず、負荷スイッチング素子12-1のオン期間を設定し、負荷スイッチング素子12-1のオンに制御するタイミングを、制御周期の開始タイミングと同時にオンするようにオン期間を決定する。ここで、オン期間とはオンに制御したタイミングから次にオフに制御するタイミングまでの期間を指し、外部から入力される点灯制御指令値に基づいて設定される。 In the LED device according to the first embodiment of the present invention, the control cycle of the load switching element 12 is determined in advance, and the control unit 15 sets the on period of each load switching element 12 for each control cycle. In addition, the control unit 15 is set to determine the on period of the load switching elements 12-1 to N in this order. First, the on period of the load switching element 12-1 is set, and the load switching element 12 is set. The on period is determined so that the timing of controlling to turn on by -1 is turned on simultaneously with the start timing of the control cycle. Here, the on period refers to a period from the timing when the control is on to the timing when the control is off next, and is set based on the lighting control command value input from the outside.
 次に、負荷スイッチング素子12-2のオン期間の決定を行う。制御部15は、制御周期内において、負荷スイッチング素子12を、異なる負荷スイッチング素子12をオフさせるタイミングに対応させてオンするように制御する。すなわち、負荷スイッチング素子12-1がオフに制御されるタイミングと同時に負荷スイッチング素子12-2をオンするようにオン期間を設定する。このオン期間の設定を各負荷スイッチング素子12に関して順番に繰り返し、負荷スイッチング素子12-Nのオン期間の決定を行って終了する。すなわち、nを1~N-1の整数とした場合に、制御部15は、負荷スイッチング素子12-nをオフにするタイミングに対応させて、負荷スイッチング素子12-(n+1)のスイッチング素子をオンに制御する。 Next, the on period of the load switching element 12-2 is determined. The control unit 15 controls the load switching element 12 to be turned on in response to the timing at which the different load switching elements 12 are turned off within the control period. That is, the on period is set to turn on the load switching device 12-2 simultaneously with the timing at which the load switching device 12-1 is controlled to be off. The setting of the on period is repeated sequentially for each load switching element 12, the on period of the load switching element 12-N is determined, and the process ends. That is, when n is an integer from 1 to N-1, the control unit 15 causes the load switching element 12-n to turn off in response to the timing at which the load switching element 12- (n + 1) switches. Control on.
 また、負荷スイッチング素子12-2をオフに制御するタイミングは、負荷スイッチング素子12-2の負荷制御指令値に基づいて決定されるが、負荷スイッチング素子12-2のオンに制御するタイミングから、制御周期の終了タイミングまでの期間が、負荷スイッチング素子12-2に関する点灯制御指令値以下である場合、負荷スイッチング素子12-2のオン期間を2回に分ける。この2回のオンに制御するタイミングのうちの1回を制御周期の開始タイミングに対応させてオンに制御し、1回を他の負荷スイッチング素子12-1がオフとなるタイミングに対応させてスイッチング素子をオンに制御する。
 以下に、制御方法の詳細について説明する。
Further, the timing at which the load switching element 12-2 is controlled to be turned off is determined based on the load control command value of the load switching element 12-2, but from the timing at which the load switching element 12-2 is controlled to be controlled When the period until the end timing of the cycle is equal to or less than the lighting control command value for the load switching device 12-2, the on period of the load switching device 12-2 is divided into two. One of the two ON control timings is controlled to be ON corresponding to the start timing of the control cycle, and one switching is performed corresponding to the timing when the other load switching element 12-1 is OFF. Control the element on.
The details of the control method will be described below.
 図3に示す例を用いて、本実施の形態1に係るLED装置の制御方法の詳細を説明する。図3に示す例では、各LED素子11-1~5の点灯制御指令値(ILED1~ILED5)をそれぞれ90%、70%、50%、30%、10%としている。これは、LED素子11-1を1制御期間中の90%、LED素子11-2を1制御期間中の70%、LED素子11-3を1制御期間中の50%、LED素子11-4を1制御期間中の30%、LED素子11-5を1制御期間中の10%分だけ電流を流すことを示す。また、図3の右側の図は、横軸に時間を、上から5段目までは、実際に負荷スイッチング素子12-1~5に与える負荷スイッチ信号13-1~5を示している。5段目以降の図は、各LEDに1Aを流す想定をした場合の電流制御部18に設定する出力電流の目標指令値であり、制御された結果として、DC/DCコンバータ3の出力電流となる。 Details of a control method of the LED device according to the first embodiment will be described using an example shown in FIG. In the example shown in FIG. 3, the lighting control command values (I LED1 to I LED5 ) of the respective LED elements 11-1 to 5 are 90%, 70%, 50%, 30%, and 10%, respectively. This means that 90% of the LED element 11-1 in one control period, 70% of the LED element 11-2 in one control period, 50% of the LED element 11-3 in one control period, the LED element 11-4 And 30% during one control period, and 10% of the LED element 11-5 during one control period. The right side of FIG. 3 shows time on the horizontal axis, and load switch signals 13-1 to 5 actually applied to the load switching elements 12-1 to 5 from the top to the fifth stage. The fifth and subsequent figures show target command values of the output current set in the current control unit 18 when it is assumed that 1A flows to each LED, and as a result of control, the output current of the DC / DC converter 3 and Become.
 図4に、点灯パターン生成方法を説明するフローチャートを示す。図4を参照して指令値生成部19における点灯パターン指令生成方法を説明する。
(1) 予め定めたタイミングで外部より入力される点灯制御指令14の点灯制御指令値を取込む(ステップS101)。ここで点灯制御指令は、並列接続されるLED素子11の数だけ必要となる。
(2) 任意の負荷スイッチング素子12のうち起点となる負荷スイッチング素子12を設定し、オン期間を決定する負荷スイッチング素子12の順番を設定する(ステップS102)。なお、起点となる負荷スイッチング素子12およびオン期間を設定する順番は、事前に設定しておいてもよい。
(3) 起点に設定した負荷スイッチング素子12のオン期間、すなわち起点に設定した負荷スイッチング素子12に接続されたLED素子11の点灯パターンを、制御周期の開始タイミングから点灯制御指令値の通りに決定する(ステップS103)。
(4) nを1~N-1の整数とし、負荷スイッチング素子12-(n+1)のオン期間を設定する場合において、100%と各負荷スイッチング素子12-nの点灯制御指令値(ILEDn)との差分をとり、差分値(Isubn)を算出する(ステップS104)。
(5) 差分値(Isubn)が、負荷スイッチング素子12-(n+1)の点灯制御指令値(ILEDn+1)より大きい場合は(ステップS105:Yes)、負荷スイッチング素子12-nのオフタイミングから負荷スイッチング素子12-(n+1)の点灯制御指令値(ILEDn+1)の分のオン設定を行う。また、負荷スイッチング素子12-(n+1)の点灯制御指令値(ILEDn+1)をILEDn+1+ILEDnの数値に変更して、次の負荷スイッチング素子12のオン期間の設定に備える(ステップS106)。
(6) 差分値(Isubn)が、負荷スイッチング素子12-(n+1)の点灯制御指令値(ILEDn+1)より小さい場合は(ステップS105:No)、負荷スイッチング素子12-nのオフタイミングから制御周期の終了タイミングまでオン期間の設定を行うとともに、ILEDn+1からIsubnを減算した値(ILEDn+1-Isub)の分だけ制御周期の開始タイミングからオン設定を行う。また、ILEDn+1をILEDn+1-Isubの数値に変更して次のLED点灯パターン生成に備える(ステップS107)。
 上記のステップS104~S107をN-1回実行して、すべての負荷スイッチング素子12のオン期間を設定する。
FIG. 4 is a flowchart illustrating the lighting pattern generation method. A lighting pattern command generation method in the command value generation unit 19 will be described with reference to FIG.
(1) The lighting control command value of the lighting control command 14 input from the outside is taken in at a predetermined timing (step S101). Here, as many lighting control commands as the number of LED elements 11 connected in parallel are required.
(2) The load switching element 12, which is the starting point of the optional load switching elements 12, is set, and the order of the load switching elements 12 for determining the on period is set (step S102). The order of setting the load switching element 12 as the starting point and the on period may be set in advance.
(3) The ON period of the load switching element 12 set as the starting point, ie, the lighting pattern of the LED element 11 connected to the load switching element 12 set as the starting point, is determined from the start timing of the control cycle according to the lighting control command value (Step S103).
(4) When n is an integer from 1 to N-1 and the on period of the load switching element 12- (n + 1) is set, the lighting control command value (I LEDn ) of each load switching element 12-n is 100%. And the difference value (I subn ) is calculated (step S104).
(5) the difference value (I subn) found when the lighting is larger than the control command value (I LEDn + 1) of the load switching element 12-(n + 1) is (step S105: Yes), the load from the off timing of the load switching element 12-n The on setting of the lighting control command value (I LEDn + 1 ) of the switching element 12- (n + 1) is performed. Further, the lighting control command value (I LEDn + 1 ) of the load switching element 12- (n + 1) is changed to the value of I LEDn + 1 + I LEDn to prepare for setting of the next on period of the load switching element 12 (step S106).
(6) the difference value (I subn) found when the lighting control command value of the load switching element 12- (n + 1) (I LEDn + 1) smaller than (Step S105: No), the control from the off timing of the load switching element 12-n performs setting of the on-period to the end timing of the period, performing on setting the start timing of the amount corresponding control period of a value obtained by subtracting the I subn from I LEDn + 1 (I LEDn + 1 -I sub). Further, I LEDn + 1 is changed to a value of I LEDn + 1 -I sub to prepare for the next LED lighting pattern generation (step S107).
The above steps S104 to S107 are executed N-1 times to set the on periods of all the load switching elements 12.
 ここで、図3の点灯制御指令値の条件を例に説明を行う。
(1) 予め定めたタイミングで、点灯制御指令14の点灯制御指令値ILED1~ILED5として、90%、70%、50%、30%、10%を取込む(ステップS101)。
(2) 負荷スイッチング素子12-1を起点に設定する(ステップS102)。また、負荷スイッチング素子12-1~5をこの順番でオン期間を決定するように設定する。
(3) 負荷スイッチング素子12-1のオン期間を、制御周期の開始タイミングから点灯制御指令値の90%として決定する(ステップS103)。
(4) 負荷スイッチング素子12-2のオン期間を決定する。100%とILED1の差分をとった差分値Isub1は10%となり(ステップS104)、Isub1はILED2である70%より小さくなるため、オン期間を2つに分割しそれぞれ設定を行う。1つめのオン期間は、負荷スイッチング素子12-1のオフタイミングから制御周期の終了タイミングまでオン期間を設定する。また、2つ目のオン期間は、ILED2からIsub1を減算した値ILED2-Isub1=70%-10%=60%の分だけ制御周期の開始タイミングからオン期間の設定を行う。さらに、ILED2をILED2-Isub1=60%に変更して次の負荷スイッチング素子12のオン期間の決定に備える(ステップS107)。
(5) 負荷スイッチング素子12-3のオン期間を決定する。100%とILED2の差分をとった値Isub2は40%となり(ステップS104)、Isub2はILED3より小さくなるため、負荷スイッチング素子12-2のオフタイミングから制御周期の最後までオン設定を行い、ILED3からIsub2を減算した値ILED3-Isub1=50%-40%=10%の分だけ制御周期の最初からオン設定を行い、ILED3をILED3-Isub2=10%に変更して次の負荷スイッチング素子12のオン期間の決定に備える(ステップS107)。
(6) 負荷スイッチング素子12-4のオン期間を決定する。100%とILED3の差分をとった差分値Isub3は90%となり、Isub3はILED4より大きくなるため、負荷スイッチング素子12-3のオフタイミングからILED4の30%分のオン期間の設定を行い、ILED4をILED4+ILED3=30%+10%=40%に値を変更して次の負荷スイッチング素子12のオン期間の決定に備える(ステップS106)。
(7) 負荷スイッチング素子12-5のオン期間を決定する。100%とILED4の差分をとった差分値Isub4は60%となり、Isub4はILED5より大きくなるため、負荷スイッチング素子12-4のオフタイミングからILED5の10%分のオン設定を行う(ステップS106)。
 LED素子の並列数が5つであるため、オン期間の設定はここで終了となる。
Here, the conditions of the lighting control command value of FIG. 3 will be described as an example.
(1) At predetermined timings, 90%, 70%, 50%, 30%, and 10% are taken in as the lighting control command values I LED1 to I LED 5 of the lighting control command 14 (step S101).
(2) The load switching element 12-1 is set as the starting point (step S102). Further, the load switching elements 12-1 to 5 are set to determine the on period in this order.
(3) The on period of the load switching element 12-1 is determined as 90% of the lighting control command value from the start timing of the control cycle (step S103).
(4) Determine the on period of the load switching element 12-2. The difference value I sub1 obtained by subtracting the difference between 100% and I LED1 is 10% (step S104), and I sub1 is smaller than 70% of I LED2. Therefore , the on period is divided into two and setting is performed. In the first on period, the on period is set from the off timing of the load switching element 12-1 to the end timing of the control cycle. In the second on period, the on period is set from the start timing of the control cycle by a value I LED2 −I sub1 = 70% −10% = 60% obtained by subtracting I sub1 from I LED2 . Further, by changing the I LED2 to I LED2 -I sub1 = 60% provided to determine the ON period of the next load switching element 12 (step S107).
(5) Determine the on period of the load switching element 12-3. The value I sub2 obtained by subtracting the difference between 100% and I LED2 is 40% (step S104), and I sub2 is smaller than I LED3. Therefore , the on setting is set from the off timing of the load switching element 12-2 to the end of the control period And set I LED3 to I LED3 -I sub2 = 10% from the beginning of the control cycle by a value obtained by subtracting I sub2 from I LED3 by I LED3 -I sub1 = 50% -40% = 10%. It changes and prepares for determination of the ON period of the next load switching element 12 (Step S107).
(6) Determine the on period of the load switching element 12-4. The difference value I sub3 obtained by subtracting the difference between 100% and I LED3 is 90%, and I sub3 is larger than I LED 4 so that the ON period of 30% of I LED 4 is set from the off timing of the load switching element 12-3. And change the value of I LED4 to I LED4 + I LED3 = 30% + 10% = 40% to prepare for the determination of the on period of the next load switching element 12 (step S106).
(7) Determine the on period of the load switching element 12-5. 100% and the difference value I sub4 taken the difference between I LED 4 is becomes 60%, I sub4 since larger than I LED 5, for 10% of the on-set of I LED 5 from the OFF timing of the load switching element 12-4 (Step S106).
Since the number of parallel LED elements is five, the setting of the on period ends here.
 上記のように負荷スイッチング素子12のオン期間を決定することで、DC/DCコンバータ3の出力電流は、3Aもしくは2Aで制御されることとなり、大きな電流変動がなく、最大電流を抑制できていることが分かる。 By determining the on period of the load switching element 12 as described above, the output current of the DC / DC converter 3 is controlled at 3 A or 2 A, there is no large current fluctuation, and the maximum current can be suppressed. I understand that.
 ここで、上記の点灯制御指令14の指令値を取込む予め定めたタイミングとは、LEDの制御周期に対し、点灯制御指令から点灯パターン生成を行うために必要な時間だけ前に設定することが望ましい。また、上記の例では、点灯制御指令をパーセンテージの数値で示したが、アナログ信号等でも構わない。また、上記の例では、負荷スイッチング素子12-1を起点とした場合について示したが、どれを起点にしても、どのような順番に点灯パターンを形成しても同じ効果が得られることは言うまでもない。 Here, the predetermined timing for capturing the command value of the lighting control command 14 described above may be set earlier than the control cycle of the LED by the time necessary to perform the lighting pattern generation from the lighting control command. desirable. In the above example, the lighting control command is indicated by a percentage value, but may be an analog signal or the like. In the above example, the load switching element 12-1 is used as the starting point, but it goes without saying that the same effect can be obtained even if the lighting pattern is formed in any order regardless of which point is the starting point. Yes.
 なお、ここでは負荷スイッチング素子12のオンタイミングの設定を他の負荷スイッチング素子のオフタイミングと同時とする場合について説明したが、これに限ったものではない。例えば、負荷スイッチンス素子周辺回路のバラツキが原因で、負荷スイッチング素子のオンタイミングが重なってしまった場合、瞬時的に大きな電流を流す必要が生じる。これを防ぐために、オンおよびオフに制御するタイミングの誤差を考慮したデッドタイムを設けてもよい。すなわち、制御部15は、負荷スイッチング素子12-nをオフにするタイミングから予め定められた期間経過後に負荷スイッチング素子12-(n+1)をオンに制御するようにしてもよい。このように、デッドタイムを設けることにより、負荷スイッチング素子のオンタイミングを確実にずらすことができる。 Although the case where the setting of the on timing of the load switching element 12 is made simultaneous with the off timing of the other load switching elements has been described here, the present invention is not limited to this. For example, when the on timings of the load switching elements overlap due to the variation of the load switching element peripheral circuit, it is necessary to flow a large current instantaneously. In order to prevent this, a dead time may be provided in consideration of an error in timing of controlling on and off. That is, the control unit 15 may turn on the load switching element 12- (n + 1) after a predetermined period has elapsed from the timing of turning off the load switching element 12-n. By thus providing the dead time, it is possible to reliably shift the on timing of the load switching element.
 このように、実施の形態1に係るLED装置によれば、複数のLED素子が並列に接続され、この複数のLED素子と直列に接続された負荷スイッチング素子を制御するLED装置において、外部から入力される点灯制御指令に基づいて、起点となる負荷スイッチング素子のオン期間を制御周期の開始タイミングから開始し、起点以外の負荷スイッチング素子のオン期間を、1つ前の順番の負荷スイッチング素子のオフタイミングと制御周期の終了タイミングとの関係から、点灯パターンを2つに分割する、しないを決定する。分割しない場合は1つ前の順番の負荷スイッチング素子のオフタイミングから点灯制御の分だけオン設定を行い、分割する場合は1つ前の順番の負荷スイッチング素子のオフタイミングから制御周期の終了タイミングまでと、制御周期の開始タイミングから残りのオン期間分継続するように設定する。 As described above, according to the LED device according to the first embodiment, a plurality of LED elements are connected in parallel, and the LED device that controls the load switching element connected in series with the plurality of LED elements is externally input The on period of the load switching element as the starting point is started from the start timing of the control cycle based on the lighting control command to be turned on, and the on period of the load switching elements other than the starting point is the off of the load switching element of the previous order. From the relationship between the timing and the end timing of the control cycle, it is determined whether to divide the lighting pattern into two. When not dividing, the ON setting is performed for the lighting control from the OFF timing of the load switching element of the previous order, and when dividing, from the OFF timing of the load switching element of the previous order to the end timing of the control cycle And, it is set to continue for the remaining on period from the start timing of the control cycle.
 これにより、点灯制御指令がどのような場合においても、DC/DCコンバータの最大電流を抑制することができ、DC/DCコンバータの損失を抑制することが可能となる。なお、実施の形態1では、DC/DCコンバータ3を降圧チョッパ回路としたが、LEDに所望の電流を供給するものであればこれに限らず、昇圧チョッパ回路やフライバックコンバータ等でもかまわない。
 また、実施の形態1では、点灯パターンを生成する際、制御部15に外部からの点灯制御指令14を取込んで生成することとしたがこれに限らず、例えば、制御装置内部で予め定めた点灯制御指令を基に点灯パターンを生成しても構わない。
Thereby, the maximum current of the DC / DC converter can be suppressed and the loss of the DC / DC converter can be suppressed regardless of the lighting control command. In the first embodiment, the DC / DC converter 3 is a step-down chopper circuit. However, the present invention is not limited to this as long as a desired current is supplied to the LED, and a step-up chopper circuit or a flyback converter may be used.
Further, in the first embodiment, when the lighting pattern is generated, the lighting control command 14 from the outside is taken into the control unit 15 and generated. However, the present invention is not limited to this. A lighting pattern may be generated based on the lighting control command.
 実施の形態2.
 実施の形態1で示したLED装置およびその制御方法では、制御周期を1周期分のみで考えた場合を示した。実施の形態2では、連続する複数の制御周期におけるLED素子に直列に接続されたスイッチング素子のスイッチング損失を軽減する方法について示す。実施の形態2に係るLED装置の構成は、図1に示した場合と同様であり、説明を省略する。実施の形態2に係るLED装置では、連続する複数の制御周期のうち、1周期目は、第1~第Nの負荷スイッチング素子をこの順番でオン期間を決定し、2周期目以降は、1つ前の制御周期において当該制御周期の終了タイミングにオンとなっている負荷スイッチング素子を起点に設定し、起点に設定された負荷スイッチング素子から順にオン期間を設定する。以下に、その詳細について説明する。
Second Embodiment
In the LED device and the control method thereof according to the first embodiment, the case where the control cycle is considered only for one cycle is shown. In the second embodiment, a method of reducing the switching loss of switching elements connected in series to LED elements in a plurality of continuous control cycles will be described. The configuration of the LED device according to the second embodiment is the same as the case shown in FIG. In the LED device according to the second embodiment, of the plurality of continuous control cycles, the first to Nth load switching elements are determined in this order as the on period, and the second and subsequent cycles are one. The load switching element which is turned on at the end timing of the control cycle in the control period immediately before is set as the starting point, and the on period is set in order from the load switching element set as the starting point. The details will be described below.
 図4に、実施の形態2に係るLED装置の各負荷スイッチング素子12のオン期間の決定方法を用いた場合の点灯パターンを示す。図4は、上述した図3に示した負荷スイッチング素子12のオン期間の制御周期を制御周期1として、新たに制御周期2を追加したものである。また、制御周期2の点灯制御指令値を図4の左側の右列に示しており、制御周期2における負荷スイッチング素子12-1~5の点灯制御指令値(ILED1~ILED5をそれぞれ30%、30%、40%、40%、50%としている。 The lighting pattern at the time of using the determination method of the ON period of each load switching element 12 of the LED apparatus which concerns on FIG. 4 at Embodiment 2 is shown. FIG. 4 newly adds a control cycle 2 with the control cycle of the on period of the load switching element 12 shown in FIG. 3 as the control cycle 1. The lighting control command values for control cycle 2 are shown in the right column on the left side of FIG. 4, and the lighting control command values for load switching elements 12-1 to 5 in control cycle 2 (30% for I LED1 to I LED5 respectively) , 30%, 40%, 40%, 50%.
 実施の形態2に係るLED装置の特徴は、起点となる負荷スイッチング素子12のオン期間の設定方法にある。制御周期1は、実施の形態1で示した場合と同様に負荷スイッチング素子12-1を起点として各負荷スイッチング素子12のオン期間を決定する。一方、制御周期2では、制御周期1の終了タイミングにおいてオン設定となっている負荷スイッチング素子12を起点として設定することを特徴とする。図4に示す例では、負荷スイッチング素子12-3を制御周期2の起点とした場合について示している。負荷スイッチング素子12-3のオン期間の設定方法は、実施の形態1に示した負荷スイッチング素子12-1のオン期間の設定方法と同様であり説明を省略する。また、オン期間を設定する順番を負荷スイッチング素子12-3,4,5,1,2の順番としている。負荷スイッチング素子12-3以外のオン期間を設定方法は、実施の形態1と同様である。前制御周期の終了タイミングにおいてオン設定となっている負荷スイッチング素子12を起点に設定することにより、負荷スイッチング素子12におけるオンおよびオフの回数を減らすことができ、負荷スイッチング素子12のスイッチング損失を軽減することができる。 The feature of the LED device according to the second embodiment lies in the method of setting the on period of the load switching element 12 as the starting point. The control period 1 determines the on period of each load switching element 12 from the load switching element 12-1 as in the case of the first embodiment. On the other hand, in the control cycle 2, the load switching element 12 which is set to ON at the end timing of the control cycle 1 is set as a starting point. The example shown in FIG. 4 shows the case where the load switching element 12-3 is the starting point of the control cycle 2. The method of setting the on period of the load switching element 12-3 is the same as the method of setting the on period of the load switching element 12-1 shown in the first embodiment, and the description thereof will be omitted. Further, the order of setting the on period is the order of the load switching elements 12-3, 4, 5, 1, 2. The method of setting the on period other than the load switching element 12-3 is the same as that of the first embodiment. By setting the load switching element 12 that is turned on at the end timing of the previous control cycle as the starting point, the number of times of on and off in the load switching element 12 can be reduced, and the switching loss of the load switching element 12 is reduced. can do.
 このように、実施の形態2に係るLED装置およびその制御方法によれば、制御周期が複数の場合での制御方法を示したものであり、1つ前の制御周期における終了タイミングでオン設定となっている負荷スイッチング素子を起点に設定して、実施の形態1での点灯パターン生成方法を適用することで、その起点にした点灯制御指令のオンオフ回数を減らすことができ、LEDに直列に接続したスイッチング素子のスイッチング損失を軽減することが可能となる。また、実施の形態1と同じように、オン期間がどのような場合においても、常にDC/DCコンバータの最大電流を抑制することができ、DCDCコンバータの損失を抑制する効果を得ることが可能となる。 As described above, according to the LED device and the control method thereof according to the second embodiment, the control method in the case where there are a plurality of control cycles is shown. By setting the load switching element as a starting point and applying the lighting pattern generation method according to the first embodiment, it is possible to reduce the number of ON / OFF of the lighting control command used as the starting point, and connect in series with the LED. It is possible to reduce the switching loss of the switching element. Further, as in the first embodiment, it is possible to always suppress the maximum current of the DC / DC converter regardless of the on period, and to obtain the effect of suppressing the loss of the DCDC converter. Become.
 1 電源主回路部、2 電源制御部、3 DC/DCコンバータ、4 負荷モジュール部4、5 直流電源、6 スイッチング素子、7 ダイオード、8 リアクトル、9 コンデンサ、10 電流検出部、11 LED素子、12 負荷スイッチング素子、13 負荷スイッチ信号、14 点灯制御指令、15 制御部、16 電流検出信号、17 スイッチ信号、18 電流制御部、19 指令値生成部、20 PI制御部、21 キャリア周波数出力部 DESCRIPTION OF SYMBOLS 1 power supply main circuit unit, 2 power supply control unit, 3 DC / DC converter, 4 load module unit 4, 5 DC power supply, 6 switching element, 7 diode, 8 reactor, 9 capacitor, 10 current detection unit, 11 LED element, 12 Load switching elements, 13 load switch signals, 14 lighting control commands, 15 control units, 16 current detection signals, 17 switch signals, 18 current control units, 19 command value generation units, 20 PI control units, 21 carrier frequency output units

Claims (9)

  1.  それぞれが並列に接続された複数のLED素子、および前記複数のLED素子のそれぞれに直列に接続された複数の負荷スイッチング素子、を有する負荷モジュール部と、
     電源からの入力電力を電力変換して前記負荷モジュール部に出力する電力変換部と、
     前記負荷スイッチング素子の制御周期のうちの前記LED素子に電流を流す期間の割合を示す点灯制御指令値に基づいて前記複数の負荷スイッチング素子のオン期間を決定し、前記複数の負荷スイッチング素子をオンまたはオフに制御する制御部と、
     を備えたLED装置であって、
     前記制御部は、前記複数の負荷スイッチング素子のうち少なくとも1つの負荷スイッチング素子のオン期間を前記制御周期内において複数のオン期間に分割し、分割した前記複数のオン期間のうち少なくとも1回を異なる前記負荷スイッチング素子がオフとなるタイミングに対応させて開始するようにオン期間を決定すること、
     を特徴とするLED装置。
    A load module unit having a plurality of LED elements connected in parallel and a plurality of load switching elements connected in series to each of the plurality of LED elements;
    A power conversion unit that converts input power from a power supply and outputs the power to the load module unit;
    The on period of the plurality of load switching devices is determined based on the lighting control command value indicating the ratio of the period during which current flows to the LED element in the control period of the load switching device, and the plurality of load switching devices are turned on. Or a control unit that controls off,
    An LED device comprising
    The control unit divides an on period of at least one load switching element among the plurality of load switching elements into a plurality of on periods in the control cycle, and at least one of the divided on periods is different. Determining an on period to start corresponding to the timing at which the load switching element is turned off;
    LED device characterized by
  2.  前記制御部は、前記複数のオン期間のうちの1回を前記制御周期の開始タイミングに対応させて開始するようにオン期間を決定すること、
     を特徴とする請求項1に記載のLED装置。
    The control unit may determine the on period so as to start one of the plurality of on periods in correspondence with the start timing of the control cycle.
    The LED device according to claim 1, characterized in that
  3.  Nを2以上の整数とし、nを1~N-1の整数とした場合、
     前記負荷モジュール部は、第1~第NのLED素子と第1~第Nの負荷スイッチング素子とを有するとともに、前記第1~第NのLED素子および前記第1~第Nの負荷スイッチング素子はそれぞれ直列に接続されており、
     前記制御部は、
     前記第1~第Nの負荷スイッチング素子をこの順番でオン期間を決定し、
     前記第1の負荷スイッチング素子のオン期間を、前記制御周期の開始タイミングに対応させて開始させるとともに、前記第1の負荷スイッチング素子に対応する前記点灯制御指令値分だけオン期間が継続するように決定し、
     前記第n+1の負荷スイッチング素子のオン期間の開始するタイミングを、前記第nの負荷スイッチング素子をオフに制御するタイミングに対応させて決定し、決定した前記第n+1の負荷スイッチング素子のオン期間を開始するタイミングから前記制御周期の終了タイミングまでの期間が前記第n+1の負荷スイッチング素子に関する点灯制御指令値以下であった場合、前記第n+1の負荷スイッチング素子のオン期間を前記制御周期内において複数に分割し、前記複数のオン期間のうちの1回を前記制御周期の開始タイミングに対応させてオン期間を開始させ、他の1回を前記第nの負荷スイッチング素子がオフとなるタイミングに対応させてオン期間が開始するように決定すること、
     を特徴とする請求項1または2のいずれかに記載のLED装置。
    When N is an integer of 2 or more and n is an integer of 1 to N-1,
    The load module portion has first to Nth LED elements and first to Nth load switching elements, and the first to Nth LED elements and the first to Nth load switching elements are Each is connected in series,
    The control unit
    Determining the on period of the first to Nth load switching elements in this order;
    The ON period of the first load switching element is started corresponding to the start timing of the control cycle, and the ON period is continued by the lighting control command value corresponding to the first load switching element. Decide
    The start timing of the on period of the (n + 1) th load switching device is determined according to the timing of controlling the nth load switching device to be off, and the determined on period of the (n + 1) th load switching device is started When the period from the timing to the end timing of the control cycle is equal to or less than the lighting control command value for the (n + 1) th load switching element, the on period of the (n + 1) th load switching element is divided into plural in the control cycle. And one of the plurality of on periods is made to correspond to the start timing of the control cycle to start the on period, and the other one is made to correspond to the timing when the nth load switching element is turned off. Determining that the on period starts
    The LED device according to claim 1 or 2, characterized in that
  4.  前記制御部は、前記第n+1の負荷スイッチング素子のオン期間を、前記第nの負荷スイッチング素子をオフにするタイミングと同時に開始するように決定すること、
     を特徴とする請求項3に記載のLED装置。
    The control unit may determine the on period of the (n + 1) th load switching device to start simultaneously with the timing at which the nth load switching device is turned off.
    The LED device according to claim 3, characterized in that
  5.  前記制御部は、前記第n+1の負荷スイッチング素子のオン期間を、前記第nの負荷スイッチング素子をオフにするタイミングから予め定められた期間経過後に開始するように決定すること、
     を特徴とする請求項3に記載のLED装置。
    The control unit may determine the on period of the (n + 1) th load switching device to start after a predetermined period has elapsed from the timing of turning off the nth load switching device;
    The LED device according to claim 3, characterized in that
  6.  前記制御部は、連続する複数の制御周期で負荷スイッチング素子のオン期間を決定する場合において、
     1周期目は、前記第1~第Nの負荷スイッチング素子をこの順番でオン期間を決定し、
     2周期目以降は、1つ前の制御周期において当該制御周期の終了タイミングにオンとなっている前記負荷スイッチング素子を起点に設定し、前記起点に設定された負荷スイッチング素子から順にオン期間を設定すること、
     を特徴とする請求項3に記載のLED装置。
    In the case where the control unit determines the on period of the load switching element in a plurality of continuous control cycles,
    In the first cycle, the first to Nth load switching elements are determined in this order in the on period,
    In the second and subsequent cycles, the load switching element which is turned on at the end timing of the control cycle in the control cycle immediately before is set as the starting point, and the on period is set in order from the load switching element set as the starting point. To do,
    The LED device according to claim 3, characterized in that
  7.  前記電力変換部は、昇圧チョッパ回路、フライバックコンバータ、H型昇降圧コンバータ、SEPICによって構成されること、
     を特徴とする請求項1~6のいずれか1項に記載のLED装置。
    The power conversion unit is configured by a boost chopper circuit, a flyback converter, an H-type buck-boost converter, and SEPIC.
    The LED device according to any one of claims 1 to 6, characterized in that
  8.  それぞれが並列に接続された複数のLED素子および前記複数のLED素子のそれぞれに直列に接続された複数の負荷スイッチング素子を有する負荷モジュール部と、
     電源からの入力電力を電力変換して前記負荷モジュール部に出力する電力変換部と、
     前記複数の負荷スイッチング素子をオンまたはオフに制御することにより前記複数の負荷スイッチング素子のオン期間を制御する制御部と、
     を備えたLED装置の制御方法であって、
     前記制御部が、各制御周期における前記複数のLED素子の電流を流す期間の割合を示す点灯制御指令値を取込む第1ステップと、
     前記制御部が、前記複数の負荷スイッチング素子についてオン期間を決定する順番を設定する第2ステップと、
     前記制御部が、前記第2ステップにおいて起点に設定した負荷スイッチング素子のオン期間を、制御期間の開始タイミングから、当該負荷スイッチング素子に対応する前記点灯制御指令値分だけオン期間に決定する第3ステップと、
     前記制御部が、前記起点に設定した負荷スイッチング素子以外の負荷スイッチング素子のオン期間を、当該負荷スイッチング素子の前にオン期間を決定した前記負荷スイッチング素子をオフに制御するタイミングに対応させてオンに制御するように決定する第4ステップと、
     を備えることを特徴とするLED装置の制御方法。
    A load module unit having a plurality of LED elements connected in parallel and a plurality of load switching elements connected in series with each of the plurality of LED elements;
    A power conversion unit that converts input power from a power supply and outputs the power to the load module unit;
    A control unit configured to control an on period of the plurality of load switching devices by controlling the plurality of load switching devices to be on or off;
    A control method of an LED device provided with
    A first step of taking in a lighting control command value indicating a ratio of a period in which the current of the plurality of LED elements flows in each control cycle;
    A second step of setting an order in which the control unit determines an on period for the plurality of load switching elements;
    The control unit determines the on period of the load switching element set as the starting point in the second step to the on period by the lighting control command value corresponding to the load switching element from the start timing of the control period. Step and
    The control unit turns on an on period of a load switching device other than the load switching device set as the starting point in accordance with a timing at which the load switching device whose on period is determined before the load switching device is controlled to be off. A fourth step to decide to control
    A method of controlling an LED device, comprising:
  9.  Nを2以上の整数とし、nを1~N-1の整数とした場合、
     前記負荷モジュール部は、第1~第NのLED素子と第1~第Nの負荷スイッチング素子とを有するとともに、前記第1~第NのLED素子および第1~第Nの負荷スイッチング素子はそれぞれ直列に接続されており、
     前記第2ステップにおいて、前記制御部は、前記第1~第Nの負荷スイッチング素子をこの順番でオン期間を決定し、
     前記第3ステップにおいて、前記制御部は、前記第1の負荷スイッチング素子のオン期間を決定し、
     前記第4ステップにおいて、前記制御部は、前記第n+1の負荷スイッチング素子のオン期間の開始するタイミングを、前記第nの負荷スイッチング素子をオフに制御するタイミングに対応させて決定し、決定した前記第n+1の負荷スイッチング素子のオン期間を開始するタイミングから前記制御周期の終了タイミングまでの期間が前記第n+1の負荷スイッチング素子に関する点灯制御指令値以下であった場合、前記第n+1の負荷スイッチング素子のオン期間を前記制御周期内において複数に分割し、前記複数のオン期間のうちの1回を前記制御周期の開始タイミングに対応させてオン期間を開始させ、他の1回を前記第nの負荷スイッチング素子がオフとなるタイミングに対応させてオン期間が開始するように決定すること、
     を特徴とする請求項8に記載のLED装置の制御方法。
    When N is an integer of 2 or more and n is an integer of 1 to N-1,
    The load module portion has first to Nth LED elements and first to Nth load switching elements, and the first to Nth LED elements and the first to Nth load switching elements are respectively Connected in series,
    In the second step, the control unit determines the on period of the first to Nth load switching elements in this order,
    In the third step, the control unit determines an on period of the first load switching element;
    In the fourth step, the control unit determines the timing at which the on period of the (n + 1) th load switching device starts to correspond to the timing at which the nth load switching device is controlled to be off, and is determined When the period from the start of the on period of the (n + 1) th load switching device to the end timing of the control cycle is equal to or less than the lighting control command value for the (n + 1) th load switching device, the (n + 1) th load switching device The on period is divided into a plurality of portions in the control period, one of the plurality of on periods is made to correspond to the start timing of the control period to start the on period, and the other one is the nth load Determining that the on period starts corresponding to the timing at which the switching element is turned off;
    The control method of the LED apparatus of Claim 8 characterized by the above-mentioned.
PCT/JP2018/008359 2017-06-27 2018-03-05 Led device and control method therefor WO2019003498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535072A JP6726283B2 (en) 2017-06-27 2018-03-05 LED device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-125119 2017-06-27
JP2017125119 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019003498A1 true WO2019003498A1 (en) 2019-01-03

Family

ID=64740498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008359 WO2019003498A1 (en) 2017-06-27 2018-03-05 Led device and control method therefor

Country Status (2)

Country Link
JP (2) JP6726283B2 (en)
WO (1) WO2019003498A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402324B2 (en) 2019-10-15 2023-12-20 ヴァレオ ビジョン Lighting system with pixelated light source and current sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138673A (en) * 2009-12-28 2011-07-14 Panasonic Corp Backlighting device and image display apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138673A (en) * 2009-12-28 2011-07-14 Panasonic Corp Backlighting device and image display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402324B2 (en) 2019-10-15 2023-12-20 ヴァレオ ビジョン Lighting system with pixelated light source and current sensor
US11877366B2 (en) 2019-10-15 2024-01-16 Valeo Vision Lighting system comprising a pixelated light source and a current sensor

Also Published As

Publication number Publication date
JP2019194992A (en) 2019-11-07
JPWO2019003498A1 (en) 2019-06-27
JP6726283B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
CN106060996B (en) Lamp circuit
JP6784967B2 (en) LED backlight drive circuit and its drive method, and liquid crystal display device
JP5190390B2 (en) Light-emitting element lighting control device
CN102448223B (en) Semiconductor light source apparatus and semiconductor light source control method
JP2009134933A (en) Led lighting device, and headlight for vehicle
JP6667154B2 (en) Lighting device, vehicle lighting device, and vehicle using the same
CN108934108A (en) Light-emitting actuating device, lamps apparatus for vehicle
JP2010040400A (en) Light-emitting diode lighting device
EP2519079A1 (en) Solid light-emitting element lighting device and illumination fixture using the same
WO2017018128A1 (en) Lighting circuit, vehicular light
CN105611686A (en) LED drive method and LED drive device
JP5422068B2 (en) LED lighting device and vehicle headlamp
US20200128636A1 (en) Method for driving a plurality of light emitting diodes and drive circuit
JP5911887B2 (en) Lamp controlled driver for serial / parallel solid-state lighting devices
Umar et al. PWM dimming for high brightness LED based automotive lighting applications
JP6726283B2 (en) LED device and control method thereof
KR101028460B1 (en) Power supply for driving power led using microcontroller
JP5857220B2 (en) LED driving device, lighting device, and lighting fixture
JP2016091727A (en) Vehicular lighting fixture system
JP5748901B2 (en) LED lighting device
JP7010130B2 (en) Vehicle lighting
KR100750734B1 (en) Circuit and method for driving light source
WO2021010325A1 (en) Lighting circuit and vehicular lamp
JP6287429B2 (en) LED lighting device
CN112602378B (en) Lighting circuit and vehicle lamp

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535072

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824008

Country of ref document: EP

Kind code of ref document: A1