WO2019003368A1 - 回転機の診断装置、診断方法および回転機システム - Google Patents

回転機の診断装置、診断方法および回転機システム Download PDF

Info

Publication number
WO2019003368A1
WO2019003368A1 PCT/JP2017/023862 JP2017023862W WO2019003368A1 WO 2019003368 A1 WO2019003368 A1 WO 2019003368A1 JP 2017023862 W JP2017023862 W JP 2017023862W WO 2019003368 A1 WO2019003368 A1 WO 2019003368A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating machine
load current
rotating
load
diagnosis
Prior art date
Application number
PCT/JP2017/023862
Other languages
English (en)
French (fr)
Inventor
牧 晃司
哲司 加藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2019526053A priority Critical patent/JP6752368B2/ja
Priority to PCT/JP2017/023862 priority patent/WO2019003368A1/ja
Publication of WO2019003368A1 publication Critical patent/WO2019003368A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present invention relates to a diagnosis device for a rotating machine used in a drive system that drives a plurality of rotating machines with one power conversion device, and a drive that drives a plurality of rotating machines with one power conversion device
  • the present invention relates to a diagnostic method of a rotating machine of a system.
  • Patent Document 1 detects the load current of each of two motors having the same drive condition with a current sensor, and the difference between the detected currents is a standard. A technique is disclosed that determines an abnormality when the value is exceeded.
  • Patent Document 2 a distribution indicating correlation between a plurality of motors is calculated, and based on the distribution, an abnormality is determined, and which motor is the abnormality is determined.
  • a motor monitoring device is disclosed.
  • the present invention has been made to solve the problems of the prior art as described above.
  • the diagnostic method of a rotating machine for solving the above problems measures the sum of load currents of a plurality of rotating machines, and identifies information derived from a desired load current of the rotating machine from increase and decrease of the sum of load currents.
  • the present invention is to compare the identified load current with a normal load current to determine whether the rotating machine is normal or abnormal.
  • a diagnostic device for a rotating machine for solving the above problems includes: a current data acquiring unit for acquiring a total sum of load currents of a plurality of rotating machines; a diagnostic unit for diagnosing the state of each rotating machine based on current data And an output unit for outputting a diagnosis result, wherein the diagnosis unit identifies a load current of each rotating machine from data of a period during which the total sum of load currents increases and decreases, and performs a state diagnosis for each rotating machine.
  • a rotating machine system for solving the above-mentioned problems measures a total of load currents of a plurality of rotating machines, a plurality of rotating machines, a power conversion device connected to the plurality of rotating machines and supplying power, and the plurality of rotating machines And a diagnosis unit that diagnoses the state of each rotating machine based on the information from the current sensor, and a display unit that displays the result of diagnosis by the diagnosis unit.
  • an increase in the load current of each rotating machine is extracted from the increase and decrease of the sum of the load currents measured in a period in which the number of the rotating machines to which the load is applied changes at a substantially constant speed. And an abnormality is detected by the difference with the normal state of the increase in the load current of each said rotary machine extracted.
  • the tip of the object is placed on the plurality of rotating machines
  • the sum of the load currents is measured during the passage time, or during the passage of the rear end of the object over the plurality of rotating machines, or both.
  • the present invention can also use any one or more of the phase currents of the rotating machine.
  • a current sensor that measures the sum of the load currents of the rotating machine is installed on at least one phase feed line. Or it installs in the feed line of at least 2 phase, respectively. Alternatively, install them on the feed lines of all phases.
  • the diagnostic device of the present invention detects an abnormality using an absolute value of an increase in load current of each rotating machine.
  • an increase in load current of each rotating machine is extracted for each frequency, and an abnormality is detected using a peak value of a specific frequency component.
  • an abnormality is detected using the level of the spectrum around the fundamental frequency.
  • the diagnostic device of the present invention extracts an increase in load current of each of the rotating machines with respect to two phases, and detects an abnormality using a Lissajous figure drawn on a plane having these as axes.
  • an increase in the load current of each rotating machine is extracted for all phases, and an abnormality is detected using a locus drawn in a multi-dimensional space around them.
  • the diagnostic device of the present invention diagnoses using information on the weight of the object in addition to the increase in load current of each of the rotating machines. Alternatively, diagnosis is performed using temperature information of the environment in which each of the rotating machines is installed.
  • the diagnosis method according to the present invention is substantially the same as the drive system including a plurality of rotating machines for transporting an object and a power conversion device for supplying power to the rotating machines at one time.
  • the period during which the tip of the object passes over the plurality of rotating machines, or the period during which the rear end of the object passes over the plurality of rotating machines, or both The sum of the load currents is measured, and the increase in load current of each rotating machine during transportation is extracted.
  • an abnormality is detected using an absolute value of an increase in load current of each rotating machine.
  • an increase in load current of each rotating machine is extracted for each frequency, and an abnormality is detected using a peak value of a specific frequency component.
  • an abnormality is detected using the level of the spectrum around the fundamental frequency.
  • an increase in load current of each rotating machine is extracted with respect to two phases, and an abnormality is detected using a Lissajous figure drawn on a plane having these axes as axes.
  • an increase in the load current of each rotating machine is extracted for all phases, and an abnormality is detected using a locus drawn in a multi-dimensional space around them.
  • diagnosis is performed using information on the weight of the object in addition to the increase in load current of each of the rotating machines.
  • diagnosis is performed using temperature information of the environment in which each of the rotating machines is installed.
  • Example 1, 2 of the diagnostic apparatus of a rotary machine The basic composition figure of Example 1, 2 of the diagnostic apparatus of a rotary machine.
  • the diagnostic apparatus of a rotary machine WHEREIN: The schematic diagram of the waveform of the sum total of the load current in a part of period during which an object front-end
  • the schematic diagram of increase of the sum total of load current in the period which an object rear end passes.
  • the diagnostic apparatus of a rotary machine WHEREIN The schematic diagram of the waveform of the sum total of the load current in a part of period during which an object rear end part passes.
  • FIG. 10 is a basic configuration diagram of a fourth embodiment of a diagnosis device for a rotating machine.
  • the object of the present invention is a method of diagnosing a rotating machine system (drive system) including a plurality of rotating machines and a power converter for supplying power to the plurality of rotating machines at once, a rotating machine system incorporating the diagnostic system and a diagnostic system It is.
  • the diagnosis device includes a data acquisition unit that acquires current sensor information, a diagnosis unit that analyzes data, diagnoses the state of each rotating machine, and an output unit that outputs a diagnosis result of each rotating machine or the entire rotating machine system. Prepare.
  • the inventors of the present invention studied separately detecting abnormalities in individual motors based on the sum of currents of a plurality of motors, for example, when driving a plurality of motors with a single inverter.
  • the load applied to each rotating machine may fluctuate or the load applied to the rotating machines may not be uniform, for example, when transporting an object. Therefore, the load current for each rotating machine can be specified by measuring the sum of the load currents and extracting the desired load fluctuation of the rotating machine among them. Therefore, diagnosis of each rotating machine can be performed based on current sensor information that measures the total sum of load currents of a plurality of rotating machines. As a result, it becomes unnecessary to install a current sensor for each rotating machine.
  • the number of rotating machines with load increases, and when the rear end passes a plurality of rotating machines, the number of rotating machines with load decreases.
  • the plot of the sum of the load current during the period in which the number of rotating machines to which the load is applied increases or decreases depending on the transport speed and the measurement frequency, or may be stepwise.
  • the plurality of rotating machines are connected to one power conversion device for controlling them, and the sensor is installed at a position where the total load current of the plurality of rotating machines can be measured.
  • a current sensor that measures the sum of load currents is installed at a point where current flows in a plurality of rotating machines of the rotating machine system.
  • the power converter may be incorporated and installed in the power converter, or may be installed between the power converter and the rotating machine.
  • the current sensor may be installed, for example, on a feeder of one phase among the three-phase currents for feeding the rotating machine, or may be installed on feeders of two or three phases.
  • a sensor for diagnosis may be used in combination with a current sensor for controlling a rotating machine.
  • a current sensor for controlling a rotating machine it is possible to divide the data with large fluctuation into data for diagnosis, without fluctuation and data in a fixed state for control, etc. for each data, or to store it once in memory and use the same data.
  • the current sensor already installed in the inverter can measure the sum of the load currents of all the motors.
  • a diagnostic device using only a current sensor installed in the inverter can be realized.
  • the diagnosis unit identifies load current information during a period in which the number of rotating machines to which the load is applied increases or decreases, identifies an increase or decrease in load current of each rotating machine, and corrects the variation of the extracted load current of each rotating machine Make a comparison with the status to determine whether it is normal or abnormal. From the abnormal value of the load current, insulation deterioration of the rotating machine, bearing deterioration, etc. can be judged.
  • the load applied to each rotating machine changes as the object moves.
  • the load current of each rotating machine increases when the tip of the object arrives, and when the tip of the object passes, the load increase of the next rotating machine starts.
  • the decrease starts when the rear end of the object reaches each rotating machine, and the load disappears after the rear end of the object passes.
  • the amount of change associated with each rotating machine can be extracted from the amount of change (increase or decrease) in the total of the load current, and can be used to diagnose the state of each rotating machine. Judgment of normality / abnormality by comparing the extracted load current value with the amount of increase when the front end passes and the amount of decrease when the rear end passes, or on the other hand, with the previously determined normal state .
  • the absolute value of the swing width of the increase in load current, or the peak value of a specific frequency component when the increase or decrease is classified by frequency is preferably performed using the level of the spectrum around the fundamental frequency.
  • the frictional force fluctuates irregularly, causing fluctuation in the fundamental frequency of the load current, and a phenomenon in which the spectrum at the bottom of both sides of the peak relatively swells Can be seen. If the rise is measured, it is possible to detect a bearing abnormality.
  • the output unit outputs, for example, at least one of normal and abnormal as a result of determination by the diagnosis unit.
  • the result may be displayed as an image, or an abnormality may be notified by an alarm or the like.
  • control sensor installed in the power converter may be used to utilize a part of obtained data.
  • a sensor may be provided for each power conversion device to facilitate comparison with the control signal.
  • a spare sensor may be installed at a position where the same total load current can be measured.
  • a sensor mounted at a position where the total load current can be measured extracts increase and decrease of the load current of the rotating machine.
  • normality / abnormality is diagnosed based on the load current increase / decrease extracted for each rotary machine Do. For example, it is possible to store in advance the load current increase in the normal state of each rotating machine, and to detect an abnormality based on the difference from the normal state.
  • the load current value during the period until the tip of the object gets on the next motor from the moment the tip of the object gets on one motor is measured, 1
  • the value of the load current value of the previous period it is possible to extract an increase in load current by each motor.
  • the normal pattern may be machine learning data based on the result of repeatedly measuring the increase and decrease of the load current. It is also possible to divide the fluctuation of the total of the measured load current into each rotating machine, diagnose the condition and detect the abnormality, or detect the abnormality from the measurement result of the total of the measured load current. It is also possible to identify the rotating machine that has become abnormal by In any case, it is possible to identify a rotating machine having an abnormality by evaluating the fluctuation of the total of the load current by dividing the time zone.
  • the diagnostic device and diagnostic method for a rotating machine of the present invention in a drive system in which a plurality of rotating machines are driven by one power conversion device, individual currents can be obtained from the sum of currents of the plurality of rotating machines. It is possible to separate and detect abnormalities in the rotating machine of. Therefore, it is possible to reduce the cost and effort of installing the sensor. In addition, it is also possible to diagnose the rotating machine system by a sensor that measures the existing total load current value.
  • FIG. 1 is a diagram for explaining a diagnostic device of a rotating machine system according to a first embodiment.
  • the rotating machine system for transporting the object 10 includes N rotating machines 1 to 5 for transporting and driving the object, and a power converter 21 for supplying power to all the rotating machines at one time.
  • N is an integer of 2 or more, and may be 40 to 50. In FIG. 1, five or more are illustrated.
  • the power supplied by the power converter is distributed to the rotating machine via the collective starter board 20.
  • a plurality of rotating machine systems may be arranged to move an object from the rotating machine system to the rotating machine system.
  • a current sensor 11 that measures a phase current of a certain one phase (for example, U phase) and a current data acquisition unit 24 that acquires information from the current sensor
  • a diagnosis unit 22 that diagnoses the rotating machine system
  • a display unit 23 that displays the result of diagnosis by the diagnosis unit.
  • the load current of the rotating machine is larger than that in the non-loaded state. Therefore, if the sum of the load current during that period is measured and a part of the fluctuation value is specified as the load current of each rotating machine, the load current value increases without measuring the load current value of each rotating machine It can extract minutes.
  • diagnosis may be performed using data of any one of the periods, or diagnosis may be performed using data of both periods.
  • data of both periods may be used for all rotating machines, which period of data may be used for each rotating machine, or data of both periods may be used? May be selected.
  • a period in which the front end passes over the plurality of rotating machines and in the second embodiment, a period in which the rear end passes over the plurality of rotating machines.
  • FIG. 2 shows a schematic diagram amplitude absolute value of the sum of the load current in the load on the rotating machine according (t n) until) increases.
  • FIG. 3 shows a schematic view of the waveform of the sum of the load current in part during the synchronization.
  • the period during which the object is not on any rotating machine is referred to as the idle period, and the period during which all objects are on the rotating machine is referred to as the full load period.
  • the idle period The period during which the object is not on any rotating machine
  • the full load period The period during which all objects are on the rotating machine.
  • the amplitude absolute value is used as an index of increase and decrease of the total of the load current, for diagnosis, the waveform of the total of the load current itself, the peak value of a specific frequency component or the spectrum around the fundamental frequency Other data may be used, such as the level of
  • FIG. 4 is a flowchart (part 1) for explaining a method of diagnosing a rotating machine using an increase in the total sum of load currents.
  • the total of load currents for N rotating machines is measured by the current sensor 11 from the idling period to the full load period (step S100).
  • time t 1 at which the total sum of load currents turns to increase from a constant, and time t N at which the total sum of load currents turns to constant from an increase are detected (step S 101).
  • the determination of the increase may be performed on the amplitude absolute value, or may be performed on the peak value of a specific frequency component or the level of the spectrum around the fundamental frequency.
  • the plot of the absolute value of the amplitude of the sum of the load current may be linear or curved or may be stepwise depending on the measurement of the transport speed or the load current value.
  • the measurement frequency of the current value is sufficient for the moving speed of the object, and the step-like data is acquired as the absolute value of the amplitude of the sum of the load current.
  • step S104 extraction of time-series data of the sum is extracted (step S104), and the difference with the data of the immediately preceding period is obtained to extract the increase in load current of each rotating machine at the time of transportation of the object (step S105).
  • the difference may be determined with respect to the amplitude absolute value, or may be determined with respect to the peak value of a specific frequency component or the level of the spectrum around the fundamental frequency.
  • the state of the rotating machine is diagnosed from the value of the increase in load current extracted for each rotating machine. For example, it is determined whether there is a statistically significant difference or a difference greater than or equal to a predetermined threshold compared to the value in the normal state which is measured in advance or learned, and if there is a difference, it is abnormal And (step S106).
  • an external factor affecting the load current value such as information on the weight of an object to be transported, or temperature information on the environment in which each rotating machine is installed may be added. It is possible to suppress the variation of the diagnosis result due to the change of the external factor.
  • maintenance management can be optimized by considering environmental factors.
  • the display method may be a display, a lamp, a buzzer or the like that appeals to the human senses, or may be recorded on paper or an electronic file.
  • the case where the front end of the object reaches the rotating machine group and the total load current increases is described as an example, but the rear end of the object passes and the rotating machine is sequentially released, Even when the total load current decreases, it is possible to similarly identify the fluctuation of the load current of each rotating machine and diagnose the state.
  • emphasis will be placed on parts different from the first embodiment.
  • FIG. 5 is a schematic view of the reduction of the total load current in a period in which the rear end of the object passes over the plurality of rotating machines. Further, FIG. 6 shows a schematic view of the waveform of the sum of the load current in part during the synchronization.
  • the total of the load current decreases stepwise as the number of the rotating machines to which the load of the object is applied decreases.
  • the absolute value of amplitude is used as an index of increase and decrease of the total of the load current in FIG. 5, the peak value of a specific frequency component or the level of the spectrum around the fundamental frequency may be used.
  • FIG. 7 is a flowchart (part 2) for explaining a method of diagnosing a rotating machine using a decrease in the total sum of load currents.
  • the total of load currents for N rotating machines is measured by the current sensor 11 from the full load period to the idle period (step S200).
  • a time t ′ 1 at which the total sum of load currents turns to a decrease from a constant and a time t ′ N at which the total sum of load currents turns to a constant after a decrease is detected (step S201).
  • the determination of the reduction may be performed on the amplitude absolute value, or may be performed on the peak value of a specific frequency component or the level of the spectrum around the fundamental frequency.
  • step S204 extraction of time-series data of the total of the load current at step S204 is extracted (step S204), and the difference from the data of the immediately preceding period is obtained to extract the increase in load current of each rotating machine at the time of transporting the object ( Step S205).
  • the difference may be determined with respect to the amplitude absolute value, or may be determined with respect to the peak value of a specific frequency component or the level of the spectrum around the fundamental frequency.
  • the value of the increase in load current extracted for each rotating machine has a statistically significant difference compared to the value in the normal state learned in advance, or the difference between the values determined in advance is greater than a predetermined threshold It is determined whether there is a difference, and if there is a difference, it is diagnosed as abnormal (step S206).
  • information on the weight of the object or temperature information on the environment in which the rotating machines are installed may be added to suppress variations in the diagnosis result due to changes in external factors.
  • the display method may be a display, a lamp, a buzzer or the like that appeals to the human senses, or may be recorded on paper or an electronic file.
  • the abnormality of each rotating machine is separated from the sum of the currents of the plurality of rotating machines Can realize a detectable diagnostic device.
  • the first embodiment is a diagnosis when the total sum of load currents is increased
  • the second embodiment is a diagnosis when the total sum of load currents is reduced.
  • either one or both may be combined and implemented. .
  • FIG. 8A is a basic configuration diagram of a third embodiment of a diagnosis device for a rotating machine.
  • the difference from the first and second embodiments is that a current sensor for measuring the sum of the load currents of the rotary machine is installed on feeder lines of two phases (for example, U phase and W phase). With such a configuration, the load current of each rotating machine is extracted using data obtained from each sensor.
  • FIG. 9 is a basic configuration diagram of a fourth embodiment of the diagnosis device for a rotating machine.
  • the difference from the first to third embodiments is that a current sensor for measuring the sum of the load currents of the rotary machine is installed on the feeder lines of all phases. With such a configuration, the load current of each rotating machine is extracted using data obtained from each sensor.
  • this invention is not limited to such an Example.
  • the case of a three-phase motor using three feeders is shown as a rotating machine, rotating machines having different numbers of phases may be used.
  • a rotary machine system for conveying an object is taken as an example of an object, the present invention is not limited to the object conveyance, and can be applied to a rotary machine system in which a rotary machine to which a load is applied changes with time. It goes without saying that the present invention can be practiced in various forms without departing from the scope of the present invention.

Abstract

物体を搬送する複数の回転機の電流の総和から、個々の回転機の異常を分離して検知可能な診断装置を実現する。 回転機の負荷電流の総和を計測する電流センサと、電流センサからの情報により回転機を診断する診断部と、診断部で診断した結果を表示する表示部とを備え、物体の荷重が加わる前記回転機の台数が略一定速で増減する期間の負荷電流の総和を計測し、その増減から前記物体の搬送時の前記各回転機の負荷電流の増加分を抽出し、その正常状態との差分により異常を検知する。

Description

回転機の診断装置、診断方法および回転機システム
 本発明は、1台の電力変換装置で複数の回転機を駆動しているドライブシステムに使用される回転機の診断装置、及び1台の電力変換装置で複数の回転機を駆動しているドライブシステムの回転機の診断方法に関するものである。
 モータや発電機といった回転機が突発故障により停止すると、大きな損害が発生する。特に工場設備等に用いられるモータの突発故障による停止は、生産設備の稼働率低下や生産計画の見直しを余儀なくされるなど、影響が大きい。そのため、運転状態における高精度な状態診断を実現し、モータの突発故障を防止するニーズが高まっている。
 そのようなニーズを受けて、特開平7-194186号公報(特許文献1)では、駆動条件が同一の2台のモータの各々の負荷電流を電流センサで検出し、検出電流間の差が基準値を超えるときに異常と判定する技術が開示されている。
 また特開2017-32567号公報(特許文献2)では、複数のモータ間の相関関係を示す分布を演算し、その分布に基づいて異常判定すると共に、その異常がどのモータによるものかを判定するモータの監視装置が開示されている。
特開平7-194186号 特開2017-32567号
 特許文献1および2の技術では、モータ毎に電流センサを設置する必要があるので、センサのコストや、センサの設置の手間がかかるという問題があった。
 本発明は、上記のような従来技術が抱える問題を解決するためになされたものである。
 上記課題を解決する本発明の回転機の診断方法は、複数の回転機の負荷電流の総和を計測し、負荷電流の総和の増減から、所望の回転機の負荷電流に由来する情報を特定し、特定された負荷電流を、正常状態の負荷電流と比較し、回転機の正常または異常を判断することにある。
 また、上記課題を解決する本発明の回転機の診断装置は、複数の回転機の負荷電流の総和を取得する電流データ取得部と、電流データに基づき各回転機の状態診断を行う診断部と、診断結果を出力する出力部とを備え、前記診断部で、負荷電流の総和が増減する期間のデータより、各回転機の負荷電流を特定し、回転機ごとの状態診断を行うことにある。
 また、上記課題を解決する本発明の回転機システムは、複数の回転機と、前記複数の回転機に接続され、給電を行う電力変換装置と、前記複数の回転機の負荷電流の総和を計測する電流センサと、前記電流センサからの情報により各回転機のそれぞれの状態を診断する診断部と、前記診断部で診断した結果を表示する表示部とを備える。
 そして負荷が加わる前記回転機の台数が略一定速で増減する期間に計測された前記負荷電流の総和の増減から、各回転機の負荷電流の増加分を抽出する。そして抽出された前記各回転機の負荷電流の増加分の正常状態との差分により異常を検知する。
 より具体的には、物体を搬送する回転機システムなど、物体の移動に伴い、物体の荷重が加わる回転機の台数が増減する場合に、前記物体の先端部が前記複数の回転機の上を通過する期間、もしくは前記物体の後端部が前記複数の回転機の上を通過する期間、もしくはその両方において、前記負荷電流の総和を計測する。
 また本発明は、回転機の相電流のいずれか、または複数を使用できる。具体的には、前記回転機の負荷電流の総和を計測する電流センサを、少なくとも1つの相の給電線に設置する。もしくは、少なくとも2つの相の給電線にそれぞれ設置する。もしくは、全ての相の給電線にそれぞれ設置する。
 また本発明の診断装置は、前記各回転機の負荷電流の増加分の振幅絶対値を用いて異常を検知する。もしくは、前記各回転機の負荷電流の増加分を周波数毎に抽出し、特定の周波数成分のピーク値を用いて異常を検知する。もしくは、基本周波数周辺のスペクトルのレベルを用いて異常を検知する。
 また本発明の診断装置は、前記各回転機の負荷電流の増加分を2つの相に対して抽出し、それらを軸とする平面上に描かれたリサジュー図形を用いて異常を検知する。もしくは、前記各回転機の負荷電流の増加分を全ての相に対して抽出し、それらを軸とする多次元空間に描かれた軌跡を用いて異常を検知する。
 また本発明の診断装置は、前記各回転機の負荷電流の増加分に加えて、前記物体の重量の情報を用いて診断する。もしくは、前記各回転機が設置されている環境の温度情報を用いて診断する。
 本発明の診断方法は、物体を搬送する複数の回転機と、前記回転機に一括で給電する電力変換装置とを備えたドライブシステムに対し、前記物体の荷重が加わる前記回転機の台数が略一定速で増減する期間の前記負荷電流の総和を計測するステップと、前記負荷電流の総和の増減から前記物体の搬送時の各回転機の負荷電流の増加分を抽出するステップと、抽出された前記各回転機の負荷電流の増加分の正常状態との差分により異常を検知するステップとを備える。
 より具体的には、前記物体の先端部が前記複数の回転機の上を通過する期間、もしくは前記物体の後端部が前記複数の回転機の上を通過する期間、もしくはその両方において、前記負荷電流の総和を計測し、搬送時の各回転機の負荷電流の増加分を抽出する。
 また本発明の診断方法は、前記各回転機の負荷電流の増加分の振幅絶対値を用いて異常を検知する。もしくは、前記各回転機の負荷電流の増加分を周波数毎に抽出し、特定の周波数成分のピーク値を用いて異常を検知する。もしくは、基本周波数周辺のスペクトルのレベルを用いて異常を検知する。
 また本発明の診断方法は、前記各回転機の負荷電流の増加分を2つの相に対して抽出し、それらを軸とする平面上に描かれたリサジュー図形を用いて異常を検知する。もしくは、前記各回転機の負荷電流の増加分を全ての相に対して抽出し、それらを軸とする多次元空間に描かれた軌跡を用いて異常を検知する。
 また本発明の診断方法は、前記各回転機の負荷電流の増加分に加えて、前記物体の重量の情報を用いて診断する。もしくは、前記各回転機が設置されている環境の温度情報を用いて診断する。
 上記構成によれば、1台の電力変換装置で複数の回転機を駆動しているドライブシステムにおいて、複数の回転機の電流の総和から、個々の回転機の異常を分離して検知できる。したがって、低コストで設置の手間がかからない回転機の診断を実現できる。
回転機の診断装置の実施例1、2の基本構成図。 回転機の診断装置において、物体先端部が通過する期間における負荷電流の総和の増加の模式図。 回転機の診断装置において、物体先端部が通過する期間の一部における負荷電流の総和の波形の模式図。 回転機の診断装置におけるフローチャートその1。 回転機の診断装置において、物体後端部が通過する期間における負荷電流の総和の増加の模式図。 回転機の診断装置において、物体後端部が通過する期間の一部における負荷電流の総和の波形の模式図。 回転機の診断装置におけるフローチャートその2。 回転機の診断装置の実施例3の基本構成図と、2つの相を軸とする平面に表示した電流データ。 回転機の診断装置の実施例4の基本構成図。
 本発明の対象は、複数の回転機と、複数の回転機に一括で給電する電力変換装置とを備える回転機システム(ドライブシステム)の診断方法、診断装置、及び診断装置を組み込んだ回転機システムである。
 診断装置は、電流センサ情報を取得するデータ取得部と、データを分析し、各回転機の状態診断を行う診断部と、各回転機または回転機システム全体の診断結果を出力する出力部とを備える。
 本願発明者らは、一台のインバータで複数のモータを駆動している場合等に、複数のモータの電流の総和より個々のモータの異常を分離して検知することを検討した。複数の回転機を備える回転機システムは、物体を搬送する場合等、回転機毎にかかる負荷が変動したり、回転機にかかる負荷が一様でない場合がある。従って、負荷電流の総和を計測し、そのうち所望の回転機の負荷変動を抽出することにより、回転機毎の負荷電流を特定できる。従って、複数の回転機の負荷電流の総和を計測する電流センサ情報に基づき各回転機の診断を行うことができる。その結果、回転機毎の電流センサの設置が不要となる。
 先端部が複数の回転機を通過するときには、負荷のかかる回転機の台数が増加し、後端部が複数の回転機を通過するときには、負荷のかかる回転機の台数が減少する。負荷のかかる回転機の台数が増減する期間の、負荷電流の総和のプロットは、搬送速度や測定頻度により直線・曲線となる場合も、階段状となる場合も想定される。
 複数の回転機は、それらを制御するための一の電力変換装置に接続されており、複数の回転機の負荷電流の総和を測定可能な位置にセンサが設置される。
 負荷電流の総和を計測する電流センサは、回転機システムの複数の回転機の電流が流れる箇所に設置する。電力変換装置に組み込み、電力変換装置の中に設置されても、電力変換装置と回転機との間に設置されてもよい。例えば3相モータの場合、電流センサは、例えば回転機に給電する3相電流のうち1相の給電線に設置しても、2相、3相の給電線にそれぞれ設置してもよい。
 また、診断用のセンサを、回転機制御用の電流センサと併用してもよい。その場合、変動が大きいデータを診断用、変動がなく、一定状態のデータを制御用等、データ毎に分けて使用することも可能であるし、一旦メモリに記憶させて同じデータを使用することもできる。例えば、インバータに既設の電流センサでは、すべてのモータの負荷電流の合計が計測できる。性能によっては、インバータに設置した電流センサのみを用いた診断装置も実現可能となる。
 診断部は、負荷のかかる回転機の数が増減する期間の負荷電流情報を特定し、各回転機の負荷電流の増減分を特定し、抽出された各回転機の負荷電流の変動について、正常状態との比較を行い、正常または異常を判断する。負荷電流の異常値より、回転機の絶縁劣化や、軸受劣化等が判断可能である。
 たとえば、回転機と接続され、回転するローラーやコンベアを複数並べ、上を通過させることにより物体を搬送する機械では、物体の移動に伴い、それぞれの回転機にかかる負荷が変化する。各回転機の負荷電流は、物体の先端部が到達したときに増加し、物体の先端部が通過したときに次の回転機の負荷の増加が始まる。また、物体の後端部が各回転機に到達したときに減少が始まり、物体の後端部が通過した後は負荷がなくなる。
 したがって、負荷電流の総和の変化量(増減)より、各回転機と関連付けた変化量を抽出し、各回転機の状態の診断に使用できる。抽出した負荷電流値を、先端部が通過するときの増加分と後端部が通過するときの減少分の両方、または一方で、事前に特定した正常状態との比較により正常・異常を判断する。
 比較には、負荷電流の増加分の振り幅の絶対値や、増減分を周波数ごとに分類した際の特定の周波数成分のピーク値を用いることができる。特に、基本周波数周辺のスペクトルのレベルを用いて検知することが好ましい。軸受のグリースの劣化や不足により潤滑が不十分になると、摩擦力が不規則に変動することにより、負荷電流の基本周波数に揺らぎが生じ、そのピークの両側の裾のスペクトルが相対的に盛り上がる現象が見られる。その盛り上がりを計測すれば、軸受の異常を検知できる。
 各回転機の負荷電流のデータは、複数の相において取得することができるため、2相または3相の電流データを使って状態の診断、異常の検知ができる。複数の相に対して抽出された電流データを、それらを軸とする二次元または三次元上に表示し、描かれた軌跡を用いると判断の精度が向上する。
 出力部は、診断部で判断された結果、例えば正常または異常の少なくともいずれかを出力する。結果を画像表示してもよいし、アラーム等により異常を通知してもよい。
 上記のようなシステムによれば、複数の回転機にそれぞれセンサを設置せずとも、各回転機の状態を診断可能である。
 例えば、高温・多湿の過酷な環境下で使用される場合には、モータの一般的な寿命よりも短い期間で故障する傾向があり、定期的な保守では突発故障を完全に防ぐのは難しい。また、多数(例えば数百台)のモータを使用するシステムでは、全装置をそれぞれ監視するのは手間がかかり、一部抽出では突発故障を検知できない可能性がある。本発明では、複数の回転機を一のセンサデータより診断するため、このような場合に有効と思われる。
 既に運転中の回転機システムに取り付けることも可能である。また、電力変換装置内に設置されている制御用センサを使用し、得られるデータの一部を活用してもよい。
 複数の電力変換装置を使用するような大型のシステムの場合には、制御信号との対比を容易とするため、電力変換装置ごとにセンサを設置してもよい。
 また、センサが回転機よりも壊れやすいことを考慮し、同じ負荷電流の総和を測定可能な位置に、予備のセンサを設置してもよい。
 負荷電流の総和を測定可能な位置に取り付けられたセンサは、回転機の負荷電流の増減を抽出する。負荷電流の増減と、各回転機に与えられた負荷との対比により、負荷電流の増減を各回転機に関連付け、各回転機毎に抽出された負荷電流増減分を元に正常・異常を診断する。例えば、事前に各回転機の正常状態時の負荷電流増加分を記憶し、正常状態との差分により、異常を検知することとすることができる。
 ある回転機に負荷がかかった瞬間より、他の回転機に負荷がかかるまでの期間の負荷電流を計測し、その前の負荷電流値を引き算することで、各回転機に係る増加分を抽出できる。
 回転機システムでは同様の動作をするため、増加分の正常パターンを機械学習し、その正常パターンとのずれで異常を検知することとしてもよい。負荷電流値は負荷の大きさ、環境要因等で変化するため、正常パターンにこれらの条件を追加考慮した結果に基づき比較することも可能である。
 複数のモータを一台のインバータで駆動する物体搬送装置では、あるモータに物体の先端部が乗った瞬間より次のモータに物体の先端部が乗るまでの期間の負荷電流値を計測し、1つ前の期間の負荷電流値の値を引き算することで、各モータによる負荷電流の増加分を抽出できる。
 また、負荷電流の総和の時間変化をモニタし、その正常パターンとのずれで異常を検知でき、また異常検知した箇所より異常が発生したモータを特定できる。正常パターンは、負荷電流の増減を繰り返し測定した結果に基づく機械学習データとしてもよい。測定した負荷電流の総和の変動を各回転機毎に分けて状態を診断し異常の検知を行うことも、測定した負荷電流の総和の測定結果より異常を検知した場合に、変動を各回転機に振り分けて、異常となった回転機を特定することも可能である。いずれの場合であっても負荷電流の総和の変動を、時間帯を区切って評価することで、異常のある回転機を特定可能である。
 このように、本発明の回転機の診断装置および診断方法によれば、1台の電力変換装置で複数の回転機を駆動しているドライブシステムにおいて、複数の回転機の電流の総和から、個々の回転機の異常を分離して検知できる。従って、センサの設置のコストや手間を抑制することが可能である。また、既設の合計負荷電流値を測定するセンサにより、回転機システムの診断を行うことも可能となる。
 以下、本発明の実施例を、図面を用いて説明する。
 図1は、実施例1の回転機システムの診断装置を説明する図である。
 物体10を搬送する回転機システムは、物体を搬送駆動するためのN台の回転機1~5と、全部の回転機に一括で給電する電力変換装置21を備える。Nは2以上の整数であり、40~50となる場合もある。図1では5以上で例示している。電力変換装置が供給する電力は、集合始動器盤20を経由して回転機に分配される。
 ここでは回転機として、給電線を3本利用する三相モータを使用する場合を示す。電力変換装置より、回転機の相ごとに、複数の回転機の負荷電流の総和が流される。
 回転機システムは一台ではなく、複数台並べて配置し、回転機システムから回転機システムへ物体を移動させてもよい。
 さらに、回転機システムを構成する各回転機の状態を診断するため、ある1相(例えばU相)の相電流を計測する電流センサ11と、電流センサからの情報を取得する電流データ取得部24と、回転機システムを診断する診断部22と、診断部で診断した結果を表示する表示部23とを備える。
 搬送される物体が各回転機の上に乗っている期間、当該回転機の負荷電流は、負荷がかかっていない状態に比して大きい。従って、その期間の負荷電流の総和を計測し、一部の変動値を各回転機の負荷電流として特定すれば、各回転機のそれぞれの負荷電流値を計測することなしに負荷電流値の増加分を抽出できる。
 そのため、物体の荷重が加わる回転機の台数が略一定速で増減する期間を選択し、かつその範囲で期間を限定すれば、前記負荷電流の総和の増減から前記物体の搬送時の各回転機の負荷電流の増加分を抽出できる。
 前記物体の荷重が加わる前記回転機の台数が略一定速で増減する期間としては、前記物体の先端部が前記複数の回転機の上を通過する期間、及び前記物体の後端部が前記複数の回転機の上を通過する期間が考えられる。物体の荷重がかかる回転機の台数は、物体が搬送されてきて先端より荷重がかかり始めてから全荷重がかかるまでと、物体の後端が通過して荷重がなくなるまで、搬送速度と連動して増減する。また、負荷電流値の総和も、負荷のかかった回転機に応じ増減する。本発明では、そのいずれか一方の期間のデータを用いて診断してもよいし、両方の期間のデータを用いて診断してもよい。両方の期間のデータを用いる場合、全ての回転機に対して両方の期間のデータを用いてもよいし、回転機毎にどちらの期間のデータを用いるか、あるいは両方の期間のデータを用いるかを選択してもよい。なお、実施例1では先端部が前記複数の回転機の上を通過する期間、実施例2では後端部が前記複数の回転機の上を通過する期間を説明している。
 図2に、物体の先端部が図1の複数の回転機(#1~#N)の上を通過する期間(空転期間Δののち、物体の搬送が開始(t)されてから、全回転機に負荷がかかる(t)まで)における負荷電流の総和の振幅絶対値が増加する模式図を示す。また、図3に、同期間の一部における負荷電流の総和の波形の模式図を示す。
 物体がいずれの回転機の上にも乗っていない期間を空転期間、全ての回転機の上に乗っている期間を全負荷期間と呼称すると、空転期間から全負荷期間にかけて、前記物体の荷重が加わる前記回転機の台数が増加する毎に、負荷電流の総和が階段状に増加する。
 物体が回転機#1にのり、先端部が回転機#2にのっていない時(t~t)には、回転機#1の負荷電流のみが増加する。従って、負荷電流の総和の増加分は、回転機#1に由来するものと特定できる。同様に、物体が回転機#1と#2にのり、回転機#3にのっていない状態(t~t)において、回転機#1の負荷電流増加分を除くことで、回転機#2に由来する負荷電流の総和の増加分が特定できる。
 なお図2では、負荷電流の総和の増減の指標として振幅絶対値を用いているが、診断には、負荷電流の総和の波形そのものや、特定の周波数成分のピーク値、あるいは基本周波数周辺のスペクトルのレベルなど、他のデータを用いてもよい。
 図4は、負荷電流の総和の増加を用いた回転機の診断方法を説明するフローチャート(その1)である。
 最初に、空転期間から全負荷期間にかけて、回転機N台分の負荷電流の総和を電流センサ11で計測する(ステップS100)。
 次に、計測したデータから、負荷電流の総和が一定から増加に転じる時刻t、及び負荷電流の総和が増加から一定に転じる時刻tNを検出する(ステップS101)。
 増加の判定は、振幅絶対値に対して実行してもよいし、特定の周波数成分のピーク値、あるいは基本周波数周辺のスペクトルのレベルに対して実行してもよい。
 負荷電流の総和が増加する期間(空転期間が終了したtから全負荷期間が開始するtNまで)が特定できたら、その期間内で負荷電流の総和が階段状に増加する時刻(t~tn-1)をそれぞれ検出し、各回転機の負荷電流が増加した時刻tk(k=1,2,…,N)とする(ステップS102)。
 なお、負荷電流の総和の振幅絶対値のプロットは、搬送速度や負荷電流値の測定頻度により、直線・曲線となる場合も、階段状となる場合も想定される。本実施例では、物体の移動速度に対し電流値の測定頻度が十分であり、負荷電流の総和の振り幅絶対値として、階段状のデータを取得した場合を想定している。一方、負荷電流の計測精度が十分でないなどの理由で、階段状の増加パターンが見られない場合は、前記物体の荷重が加わる前記回転機の台数が一定速で増加すると仮定して、t=t+(k-1)×(tN-t)/(N-1) と推定する。
 続いて空転期間及び全負荷期間における負荷電流の総和の時系列データの抽出(ステップS103)、及び期間[t, tk+1] (k=1,2,…,N-1)における負荷電流の総和の時系列データの抽出(ステップS104)を行い、直前の期間のデータとの差分を求めることで、前記物体の搬送時の各回転機の負荷電流の増加分を抽出する(ステップS105)。差分は、振幅絶対値に対して求めてもよいし、特定の周波数成分のピーク値、あるいは基本周波数周辺のスペクトルのレベルに対して求めてもよい。
 そして各回転機に対して抽出した負荷電流の増加分の値により、回転機の状態を診断する。例えば、事前に計測したり、学習した正常状態での値と比較して統計的に有意な差異があるか、もしくはあらかじめ定めた閾値以上の差異があるかを判定し、もし差異があれば異常と診断する(ステップS106)。
 なお、診断に当たっては、負荷電流値に影響を与える外部要因、例えば搬送する物体の重量の情報、あるいは各回転機が設置されている環境の温度情報などを追加してもよい。外部要因の変化による診断結果のばらつきを抑えることができる。また、厳しい環境下で運転を行う回転機システムでは、環境要因を考慮することで、保守管理を最適化することが可能となる。
 最後に、以上の診断結果を表示して診断を完了する(ステップS107)。表示方法はディスプレイ、ランプ、ブザーなど人間の五感に訴えるものでもよいし、紙や電子ファイルに記録されるものでもよい。
 実施例1では、物体の先端が回転機群に到達し、負荷電流の総和が増加する場合を例として説明したが、物体の後端部が通過し、回転機が順に解放されることで、負荷電流の総和が減少する場合であっても、同様に各回転機の負荷電流の変動を特定し、状態を診断することが可能である。本実施例では、実施例1と異なる部分に重点を置いて説明する。
 図5に、前記物体の後端部が前記複数の回転機の上を通過する期間における負荷電流の総和の減少の模式図を示す。また図6に、同期間の一部における負荷電流の総和の波形の模式図を示す。
 全負荷期間から空転期間にかけて、前記物体の荷重が加わる前記回転機の台数が減少する毎に、負荷電流の総和が階段状に減少する。なお図5では負荷電流の総和の増減の指標として振幅絶対値を用いているが、特定の周波数成分のピーク値、あるいは基本周波数周辺のスペクトルのレベルを用いてもよい。
 図7は、負荷電流の総和の減少を用いた回転機の診断方法を説明するフローチャート(その2)である。
 最初に、全負荷期間から空転期間にかけて、回転機N台分の負荷電流の総和を前記電流センサ11で計測する(ステップS200)。次に、計測したデータから、負荷電流の総和が一定から減少に転じる時刻t'1、及び負荷電流の総和が減少から一定に転じる時刻t'Nを検出する(ステップS201)。減少の判定は、振幅絶対値に対して実行してもよいし、特定の周波数成分のピーク値、あるいは基本周波数周辺のスペクトルのレベルに対して実行してもよい。
 負荷電流の総和が減少する期間が特定できたら、その期間内で負荷電流の総和が階段状に減少する時刻を検出し、各回転機の負荷電流が減少した時刻t'k(k=1,2,…,N)とする(ステップS202)。
 負荷電流の計測精度が十分でないなどの理由で階段状の減少パターンが見られない場合は、前記物体の荷重が加わる前記回転機の台数が一定速で減少すると仮定して、t'k=t'1+(k-1)×(t'N-t'1)/(N-1) と推定する。
 続いて全負荷期間及び空転期間における負荷電流の総和の時系列データの抽出(ステップS203)、及び期間[t'k, t'k+1] (k=1,2,…,N-1)における負荷電流の総和の時系列データの抽出(ステップS204)を行い、直前の期間のデータとの差分を求めることで、前記物体の搬送時の各回転機の負荷電流の増加分を抽出する(ステップS205)。
 差分は、振幅絶対値に対して求めてもよいし、特定の周波数成分のピーク値、あるいは基本周波数周辺のスペクトルのレベルに対して求めてもよい。そして各回転機に対して抽出した負荷電流の増加分の値が、事前に学習した正常状態での値と比較して統計的に有意な差異があるか、もしくはあらかじめ定めた閾値以上の差異があるかを判定し、もし差異があれば異常と診断する(ステップS206)。
 なお診断に当たっては、前記物体の重量の情報、あるいは前記各回転機が設置されている環境の温度情報などを追加して、外部要因の変化による診断結果のばらつきを抑えてもよい。
 最後に、以上の診断結果を表示して診断を完了する(ステップS207)。表示方法はディスプレイ、ランプ、ブザーなど人間の五感に訴えるものでもよいし、紙や電子ファイルに記録されるものでもよい。
 以上により、実施例1、2によれば、1台の電力変換装置で複数の回転機を駆動しているドライブシステムにおいて、複数の回転機の電流の総和から、個々の回転機の異常を分離して検知可能な診断装置を実現できる。実施例1は負荷電流の総和が増加する場合の診断、実施例2は負荷電流の総和が減少する場合の診断であるが、これらはいずれか一方でも、両方を組み合わせて実施することとしてもよい。
 図8(A)は、回転機の診断装置の実施例3の基本構成図である。実施例1、2との相違点は、前記回転機の負荷電流の総和を計測する電流センサを、2つの相(例えばU相とW相)の給電線に設置している点である。このような構成により、それぞれのセンサから得られるデータを用い、各回転機の負荷電流を抽出する。
 2つの相のデータの相関を取ることでより微弱な異常兆候を検知したり、特定の相にしか現れない異常の検知確率を高めたりできる。例えば、図8(B)のように2つの相のデータを軸とする平面上にデータを蓄積することで、繰り返し周波数が不明であっても容易に1周期単位のデータに畳み込むことができる。異なる周期に属するデータを重畳させることで、計測のサンプリング速度を実質的に高めることができる。
 図9は、回転機の診断装置の実施例4の基本構成図である。実施例1~3との相違点は、前記回転機の負荷電流の総和を計測する電流センサを、全ての相の給電線に設置している点である。このような構成により、それぞれのセンサから得られるデータを用い、各回転機の負荷電流を抽出する。
 3相のデータの相関を取ることでより微弱な異常兆候を検知したり、特定の相にしか現れない異常の検知確率を高めたりできる。例えば、複数の相のデータを軸とする多次元空間に軌跡を描く形でデータを蓄積することで、計測のサンプリング速度を実質的に高めることができる。もしくは、任意の2つの相のデータを選択し、実施例3と同様にリサジュー図形を描く形でデータを蓄積することも可能である。
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に限定されるものではない。例えば、実施例1~4では回転機として、給電線を3本利用する三相モータの場合を示したが、異なる相数の回転機であってもよい。また、対象物として、物体を搬送する回転機システムを例としたが、物体搬送に限らず、負荷のかかる回転機が経時変化する回転機システムに適用できる。他にも本発明の要旨を逸脱しない範囲において種々なる形態で実施しうることは言うまでもない。
 1           回転機#1
 2           回転機#2
 3           回転機#3
 4           回転機#4
 5           回転機#N
 10          搬送される物体
 11,12,13    電流センサ
 20        集合始動器盤
 21        電力変換装置
 22          診断部
 23        表示部
 24     電流データ取得部

Claims (22)

  1.  複数の回転機と、前記複数の回転機に一括で給電する電力変換装置と、前記複数の回転機の負荷電流の総和を計測する電流センサと、前記電流センサからの情報により前記回転機を診断する診断部と、前記診断部で診断した結果を表示する表示部とを備え、
    前記診断部は、前記複数の回転機の負荷電流の総和の情報から、前記負荷電流の総和の変動を抽出し、いずれかの回転機に由来する負荷電流の増加分または減少分を抽出し、
    前記回転機の負荷電流の増加分または減少分の一方若しくは両方に基づき回転機を診断することを特徴とする回転機システム。
  2.  前記回転機システムは、物体を搬送する回転機システムであり、前記負荷電流の総和が前記物体の荷重が加わる回転機の台数が増減することにより変動することを特徴とする請求項1記載の回転機システム。
  3.  前記診断部は、事前に計測した正常状態の回転機の負荷電流の増加分または減少分のデータを備え、前記抽出した回転機の負荷電流の増加分または減少分と、前記の正常状態のデータとの差分により、回転機の正常または異常を診断することを特徴とする請求項1記載の回転機システム。
  4.  前記診断部は、前記回転機の負荷電流の増加分または減少分の振幅絶対値を用いることを特徴とする請求項1記載の回転機システム。
  5.  前記診断部は、前記回転機の負荷電流の増加分または減少分のうち、特定の周波数成分のピーク値を用いて診断することを特徴とする請求項1記載の回転機システム。
  6.  前記診断部は、前記回転機の負荷電流の増加分または減少分を周波数毎に抽出し、基本周波数周辺のスペクトルのレベルを用いて診断することを特徴とする請求項1記載の回転機システム。
  7.  前記診断部は、前記回転機の2以上の相の負荷電流の増加分または減少分を、各相のデータを軸とする平面上または多次元空間に表示し、得られる軌跡を用いて診断することを特徴とする請求項1記載の回転機システム。
  8.  前記診断部は、負荷となる物体の重量の情報、前記回転機が設置されている環境の温度情報の少なくともいずれかを用いて診断することを特徴とする請求項1記載の回転機システム。
  9.  前記診断部は、前記負荷電流の総和の増加曲線または減少曲線から、いずれかの回転機に由来する負荷電流を、増加分または減少分として抽出することを特徴とする請求項1記載の回転機システム。
  10.  前記回転機の負荷電流の総和を計測する電流センサは、前記回転機に接続される少なくとも1つの相の給電線に設置されていることを特徴とする請求項1記載の回転機システム。
  11.  前記回転機の負荷電流の総和を計測する電流センサは、前記回転機に接続される少なくとも2つの相の給電線にそれぞれ設置されていることを特徴とする請求項1記載の回転機システム。
  12.  前記回転機の負荷電流の総和を計測する電流センサは、前記回転機に接続される複数の相の給電線にそれぞれ設置されていることを特徴とする請求項1記載の回転機システム。
  13.  複数の回転機の診断を行う回転機診断装置であって、
    前記複数の回転機に給電される負荷電流の総和を取得する電流データ取得部と、
    前記電流データより、前記負荷電流の総和の変動を抽出し、いずれかの回転機に由来する負荷電流の増加分または減少分を抽出し、前記回転機の負荷電流の増加分または減少分の一方若しくは両方に基づき回転機を診断する診断部と、診断結果を出力する出力部とを備えることを特徴とする回転機診断装置。
  14.  前記診断部は、事前に計測した正常状態の回転機の負荷電流の増加分または減少分のデータを備え、前記抽出した回転機の負荷電流の増加分または減少分と、前記の正常状態のデータとの差分により、回転機の正常または異常を検知することを特徴とする請求項13記載の回転機診断装置。
  15.  前記診断部は、前記回転機の負荷電流の増加分または減少分の振幅絶対値、及び特定の周波数成分のピーク値の、一方または両方を用いることを特徴とする請求項13記載の回転機診断装置。
  16.  前記診断部は、前記回転機の負荷電流の増加分または減少分を周波数毎に抽出し、基本周波数周辺のスペクトルのレベルを用いて診断することを特徴とする請求項13記載の回転機診断装置。
  17.  前記診断部は、前記回転機の2以上の相の負荷電流の増加分または減少分を、各相のデータを軸とする平面上または多次元空間に表示し、得られる軌跡を用いて診断することを特徴とする請求項13記載の回転機診断装置。
  18.  複数の回転機の診断を行う回転機診断方法であって、
     前記複数の回転機に給電される負荷電流の総和を計測し、
     計測された負荷電流の総和の情報より前記負荷電流の総和の変動を抽出し、
     いずれかの回転機に由来する負荷電流の増加分または減少分の情報を抽出し、当該回転機の負荷電流情報とし、
     前記回転機の負荷電流の情報を、正常状態の回転機の負荷電流のデータと比較することにより回転機の正常または異常を診断し、
     診断結果を出力することを特徴とする回転機診断方法。
  19.  前記複数の回転機は、所定の期間に負荷のかかる回転機の台数が略一定速で増減しており、
     前記所定の期間の負荷電流の総和に基づき診断を行うことを特徴とする請求項18記載の回転機診断方法。
  20.  前記複数の回転機は、物体の搬送を行う回転機であって、
     前記負荷電流の総和の計測は、前記物体の先端部が前記複数の回転機の上を通過する期間、または前記物体の後端部が前記複数の回転機の上を通過する期間に行われ、
     回転機に由来する負荷電流の増加分または減少分の情報の抽出は、前記物体の先端部または後端部が前記回転機の上を通過する期間の情報を抽出することにより行われる、
    ことを特徴とする請求項18記載の回転機診断方法。
  21.  回転機の診断は、前記回転機の負荷電流の振幅絶対値、前記回転機の特定の周波数の負荷電流、の少なくともいずれかまたは複数により行われることを特徴とする請求項18記載の回転機診断方法。
  22.  前記負荷電流の総和の計測は2以上の相に対して行われ、
     前記回転機の2以上の相の負荷電流の情報を、それぞれを軸とする平面または多次元空間に表示して、
     前記回転機の診断は、前記表示結果を用いて行われることを特徴とする請求項18記載の回転機診断方法。
PCT/JP2017/023862 2017-06-29 2017-06-29 回転機の診断装置、診断方法および回転機システム WO2019003368A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526053A JP6752368B2 (ja) 2017-06-29 2017-06-29 回転機の診断装置、診断方法および回転機システム
PCT/JP2017/023862 WO2019003368A1 (ja) 2017-06-29 2017-06-29 回転機の診断装置、診断方法および回転機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023862 WO2019003368A1 (ja) 2017-06-29 2017-06-29 回転機の診断装置、診断方法および回転機システム

Publications (1)

Publication Number Publication Date
WO2019003368A1 true WO2019003368A1 (ja) 2019-01-03

Family

ID=64740489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023862 WO2019003368A1 (ja) 2017-06-29 2017-06-29 回転機の診断装置、診断方法および回転機システム

Country Status (2)

Country Link
JP (1) JP6752368B2 (ja)
WO (1) WO2019003368A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678593A (ja) * 1992-08-24 1994-03-18 Meidensha Corp モータの監視装置
JP2001054299A (ja) * 1999-08-06 2001-02-23 Hitachi Ltd 交流電動機の並列運転制御装置
JP3602825B2 (ja) * 2000-04-12 2004-12-15 財団法人電力中央研究所 電気機器の消費電力推定システム並びに方法及びこれを利用した異常警告システム
JP2011147317A (ja) * 2010-01-18 2011-07-28 Toshiba Mitsubishi-Electric Industrial System Corp 交流電動機の監視装置
JP2013003004A (ja) * 2011-06-17 2013-01-07 Mitsubishi Electric Corp 絶縁劣化診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678593A (ja) * 1992-08-24 1994-03-18 Meidensha Corp モータの監視装置
JP2001054299A (ja) * 1999-08-06 2001-02-23 Hitachi Ltd 交流電動機の並列運転制御装置
JP3602825B2 (ja) * 2000-04-12 2004-12-15 財団法人電力中央研究所 電気機器の消費電力推定システム並びに方法及びこれを利用した異常警告システム
JP2011147317A (ja) * 2010-01-18 2011-07-28 Toshiba Mitsubishi-Electric Industrial System Corp 交流電動機の監視装置
JP2013003004A (ja) * 2011-06-17 2013-01-07 Mitsubishi Electric Corp 絶縁劣化診断装置

Also Published As

Publication number Publication date
JPWO2019003368A1 (ja) 2020-01-16
JP6752368B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
JP5875734B2 (ja) 電動機の診断装置および開閉装置
US10024758B2 (en) Abnormality detecting device having function for detecting abnormality of machine tool, and abnormality detecting method
US9050894B2 (en) System and method for predicting mechanical failure of a motor
EP2807096B1 (en) System and method for monitoring the condition of a conveyor belt
US9887662B2 (en) Motor control device
US10585008B2 (en) Brake inspection device and brake inspection method
CN108572006B (zh) 状态诊断装置
US10038399B2 (en) Electric motor control device
Zoubek et al. Frequency response analysis for rolling-bearing damage diagnosis
US11945657B2 (en) System and method for condition monitoring during the operation of a conveyor system
JP2017032567A (ja) モータの監視装置および方法
JP7109656B2 (ja) 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
CN106167007A (zh) 用于机动车的制动装置和用于对所述制动装置的损坏进行探测的方法
EP3260838B1 (en) Abnormality diagnosis system
US7249287B2 (en) Methods and apparatus for providing alarm notification
Hofmeister et al. Prognostic health management (PHM) of electrical systems using condition-based data for anomaly and prognostic reasoning
JP2007112565A (ja) 駆動系診断装置
WO2019003368A1 (ja) 回転機の診断装置、診断方法および回転機システム
MY197715A (en) Voltage sensor diagnostic device and voltage sensor diagnostic method
CN107210694B (zh) 用于监测发电设施的运行的方法和设备
US20160328892A1 (en) Method and computer program for the monitoring of a thrust reverser having hydraulic actuators
EP3290894B1 (en) Inspection probe
CN106489234B (zh) 监测碰撞的方法
CN105246814A (zh) 电梯设备
JPH0695059B2 (ja) 電動機電流による機械設備の診断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915487

Country of ref document: EP

Kind code of ref document: A1