WO2019003367A1 - Power system state estimation device and method, and power system stabilization system - Google Patents

Power system state estimation device and method, and power system stabilization system Download PDF

Info

Publication number
WO2019003367A1
WO2019003367A1 PCT/JP2017/023861 JP2017023861W WO2019003367A1 WO 2019003367 A1 WO2019003367 A1 WO 2019003367A1 JP 2017023861 W JP2017023861 W JP 2017023861W WO 2019003367 A1 WO2019003367 A1 WO 2019003367A1
Authority
WO
WIPO (PCT)
Prior art keywords
state estimation
power system
calculation
value
estimation device
Prior art date
Application number
PCT/JP2017/023861
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 辻井
顕エドワード 川喜田
正俊 熊谷
渡辺 雅浩
輝 菊池
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2019526052A priority Critical patent/JP7012720B2/en
Priority to PCT/JP2017/023861 priority patent/WO2019003367A1/en
Publication of WO2019003367A1 publication Critical patent/WO2019003367A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a power system state estimation apparatus and method, and a power system stabilization system.
  • the state estimation calculation may not converge depending on, for example, the case where voltage values of adjacent measurement values differ significantly.
  • the state estimation calculation does not converge, generally the calculated value in the previous calculation is used, so a large divergence from the current system state occurs, and the reliability of the obtained estimation result (power flow state) decreases. There is. In particular, this problem is considered to occur in areas where the power system monitoring function and measurement accuracy are insufficient.
  • Patent Document 1 Japanese Patent Application No. 2013-213334 (Patent Document 1) in the field of state estimation calculation.
  • Patent Document 1 it is described that the current and the current phase angle measured by the phase measuring device are converted into pseudo measured values which are pseudo measured values, and state estimation calculation is performed.
  • Patent Document 2 Japanese Patent Application No. 2016-25715 is in the field of correction control for absorbing systematic changes during a state estimation calculation interval.
  • pre-calculation means for calculating the correction amount indicating the influence amount of the control target generator and the control target generator generated in each failure is measured from the generator to be controlled when any failure occurs. While generating a model for determining the transient stability of the power system based on the actual measurement value, reflecting the correction amount on the generated model, and fusing the post calculation means for performing control according to the control pattern It is stated that appropriate power system stabilization control can be realized.
  • the present invention relates to a system state calculation unit for performing state estimation calculation based on a plurality of system measurement data in a power system state estimation device, and a current system based on the result of the state estimation calculation.
  • a deviation determination unit that determines a degree of deviation from a state
  • a correction amount distribution generation unit that generates a correction amount distribution model of state estimation based on a predetermined predicted value or plan value and a result of the state estimation calculation
  • And a correction unit that corrects the result of the state estimation calculation based on the correction amount distribution model when the degree is equal to or more than a predetermined threshold value.
  • the correction amount from the system state change degree (the demand forecast value, the output prediction value of new energy, the output value of the large scale power source) and the state estimation calculation result
  • the current flow condition can be grasped by correcting the estimated state calculation result.
  • FIG. 1 is a diagram showing an example of the software configuration of a power system state estimation apparatus 10 to which an embodiment of the present invention is applied, a demand forecast database DB1, a new energy output forecast database DB2, a large scale power output database DB3, A system state measurement value database DB4, a state estimation calculation correction result database DB5, a state estimation calculation unit 11, a correction amount distribution creation unit 12, a state estimation calculation result deviation determination unit 13, and a state estimation calculation result correction unit 14 are provided.
  • the demand forecast value D1 in the area unit or connection point (node) unit is stored.
  • the output predicted value D2 of the new energy in units of regions and connection points (nodes) is stored.
  • the output value D3 of the large scale power supply is stored.
  • system condition measurement value database DB4 a system condition measurement value D4 measured by a system condition measurement device such as SCADA or PMU is stored.
  • the state estimation calculation correction result database DB5 stores the state estimation calculation result D5 after correction.
  • State estimation calculation unit 11 performs state estimation calculation with system state measurement value D4 as an input, and outputs state estimation calculation result D7.
  • a correction amount distribution model is created with the state estimation calculation result D7, the demand forecast value D1, the output forecast value D2 of new energy and the output value D3 of the large-scale power source as input, and the correction amount distribution model Output D6.
  • State estimation calculation result divergence determination unit 13 receives system state measurement value D4 and state estimation calculation result D7 as input to determine the degree of divergence between the current system state, and outputs necessity necessity D8 of state estimation calculation result correction. .
  • State estimation calculation result correction unit 14 receives correction amount distribution model D6, system state measurement value D4 and state estimation calculation result D7 to calculate a state estimation calculation result correction amount, and outputs state estimation calculation result correction value D5.
  • FIG. 2 shows an example of a hardware configuration of a power system in which a plurality of measurement data are stored in a database via a communication network, and a power system state estimation device 10 to which an embodiment of the present invention is applied.
  • the power system is a system in which a plurality of synchronous generators 130 and loads 150 are interconnected with one another via a bus (node) 110, a transformer 120, a transmission line 140, and the like.
  • reference numeral 160 exemplifies an assumed failure point in the power system.
  • various measuring instruments for the purpose of protection, control and monitoring of the electric power system are appropriately installed, and the signal detected by the measuring instrument is communicated by the state estimating device 10 of the electric power system via the communication network 300. It is sent to the part 23.
  • node numbers shown in the figure are appropriately assigned to the nodes 110. For example, a current transformer CT, a voltage transformer PT, and the like are installed as existing measuring instruments at nodes of other node numbers.
  • the power system state estimation device 10 is configured by a computer system, and a display unit 21 such as a display device, an input unit 22 such as a keyboard or a mouse, a communication unit 23, a CPU 24, a memory 25, and various database DBs are bus lines 26. It is connected to the.
  • the database of the power flow monitor 10 includes a demand forecast database DB1, a new energy output forecast database DB2, a large-scale power output database DB3, a system state measurement value database DB4, and a state estimation calculation correction result database DB5.
  • the display unit 21 may use, for example, a printer device or an audio output device in place of or in addition to the display device.
  • the input unit 22 can include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
  • the communication unit 23 includes a circuit and a communication protocol for connecting to the communication network 300.
  • the CPU 24 executes a calculation program to instruct image data to be displayed, search data in various databases, and the like.
  • the CPU 24 may be configured as one or more semiconductor chips, or may be configured as a computer device such as a calculation server.
  • the memory 25 is configured as, for example, a RAM (Random Access Memory), and stores a computer program, and stores calculation result data, image data, and the like necessary for each process.
  • the screen data stored in the memory 25 is sent to the display unit 21 and displayed.
  • FIG. 3 shows a flowchart showing the entire processing example of the power system state estimation device 10.
  • the state of the power system is estimated based on the system state measurement value D4 in which measurement data at a plurality of measurement points are stored.
  • FIG. 4 shows a processing flowchart showing an example of the state estimation calculation performed in the first processing step S1 of FIG.
  • the state value X is set such that the relational expression of the equation (2) Decide.
  • Z is the observed value of active power P, reactive power Q, voltage V, etc.
  • X is the power system state (voltage V, voltage phase ⁇ , etc.)
  • F (X) is the state value (circuit connection state and impedance) It is determined by the circuit equation determined from
  • the residual ⁇ is calculated, and the measurement value having a large residual is removed or is replaced with an alternative pseudo measurement value (instead of using the past measurement value data), error data Do the removal.
  • the calculated residual ⁇ is compared with a specified value. If the residual ⁇ is equal to or less than the specified value, the process flow of the state estimation calculation is ended, and if it is equal to or more than the specified value, the process returns to the processing step S5. Note that such power system state estimation calculation is an established calculation method, and can be calculated using a general algorithm.
  • the state value X determined that the residual ⁇ is equal to or less than the specified value is output and stored as a state estimation calculation result (state amount estimated value) D7.
  • a state estimation calculation result divergence degree indicating the degree of divergence between the system state measurement value D4 and the state estimation calculation result D7 is calculated.
  • the degree of deviation is, for example, the total value of the voltage phase difference between D4 and D7 at each system condition measuring device point.
  • a state estimation calculation correction result is calculated by inputting the system state measurement value D4 and the state estimation calculation result D7 to a correction amount distribution model D6 described later.
  • FIG. 5 is an example of a software configuration diagram of the correction distribution creation unit 12 in the state estimation device, and includes a tidal current calculation unit 15 and a correction distribution model unit 16.
  • the tidal current calculation unit 15 performs tidal current calculation with the state estimation calculation result D7, the demand forecast value D1, the output predicted value D2 of new energy and the output value D3 of the large-scale power source as input, and outputs the tidal current calculation result D9.
  • the correction distribution model generation unit 16 receives the tidal current calculation result D9 as an input, generates a correction distribution model, and outputs a correction amount distribution model D6.
  • FIG. 6 shows a flowchart showing processing of a method of creating a correction amount distribution model used in processing step S4.
  • the system situation change up to the next state estimation calculation using demand forecast value D1, output prediction value D2 of new energy, output value D3 of large scale power source, system state measurement value D4 and state estimation calculation result D7 Predict the quantity.
  • the system status change amount is the change amount of the demand, the new energy output, and the large-scale power source output during the state estimation calculation interval.
  • the process of the preparation method of the correction amount distribution model used by process step S4 is shown using the electric power system example of FIG.
  • be the maximum change forecast value (new energy output forecast value D2) up to the next state estimation calculation of new energy output connected to node 700, and let the current output of new energy be P RES (t) from the system status measurement value D4.
  • the amount of change in the system status based on Pres (t) is in the range of Pres (t) ⁇ ⁇ Pres (t + 1) ⁇ Pres (t) + ⁇ .
  • an input value Pres (t + 1) is given for each fixed step width of the system condition change amount prediction range (Pres (t) - ⁇ ⁇ Pres (t + 1) ⁇ Pres (t) + ⁇ ), Perform tidal current calculation.
  • Active power P, reactive power Q, and voltage V which are values necessary for power flow calculation, take an estimated value with a width for new energy output as input, while other input values used for power flow calculation are previous state estimation
  • the calculation result is D7.
  • the difference between the tidal current calculation value at the time of giving the new energy output predicted value and the state estimation calculation result D7 for each system state measuring device point, and the value necessary for tidal current calculation A certain effective power P, reactive power Q, and voltage V are input, and a correction amount distribution model is output.
  • the correction distribution model of FIG. 8 is created.
  • three axes are shown for simplicity.
  • the active power of the transmission line 1 is Pse1 and the active power of the transmission line 2 is Pse2 as the state estimation calculation result
  • the active powers of the transmission lines 1 and 2 at the system condition measuring device installation point are calculated as the power flow calculation result. It is assumed that Ppf1 and Ppf2 and the effective power of the transmission line 3 whose state estimated value is to be corrected is Ppf3.
  • the correction amount distribution (Ppf3) corresponding to Ppf distribution (Ppf1, Ppf2) when creating the correction amount distribution model of FIG. 8 and apply the system state measurement values (Pobserve1, Pobserve 2) when using the correction amount distribution model.
  • the correction amount (Pse_cor3) can be obtained. That is, when using the correction amount distribution model, in the processing step S4, the state estimation calculation results Pse1 and Pse2 and the system state measurement values Pobserve1 and Pobserve2 are input to the correction amount distribution model to obtain a state estimation calculation correction result.
  • the active power Pse_cor3 of the transmission line 3 can be calculated.
  • processing step S4 current data is compared with past data, and system state measurement value D4 in past time series data in which demand value D1, output value D2 of new energy, and output value D3 of large-scale power source are closest.
  • a correction distribution model indicating the relationship between the state estimation calculation result D7 is created and selected, and the system state measurement value D4 and the state estimation calculation result D7 are input to the correction distribution model to calculate the state estimation correction result D5. It is also good.
  • the correction distribution model is created using past data, not using the previous state estimation calculation result and the systematic change prediction value. If the past data is not complete enough, a large amount of data may be generated by Monte Carlo simulation.
  • the system state change degree (the demand forecast value D1, the output prediction value D2 of new energy, the output value D3 of the large scale power source) and the state estimation calculation result
  • the correction amount distribution model D6 is created from D4 and the system state measurement value D4 and the state estimation calculation result D7 diverge, the system state measurement value D4 and the state estimation calculation result D7 are input to the correction amount distribution model D6, By calculating the state estimation calculation result D5, it is possible to grasp the tidal current state close to the current situation.
  • FIG. 9 is a diagram illustrating an example of a software configuration of the power system state estimation device according to the second embodiment.
  • the state estimation device for a power system according to the second embodiment shown in FIG. 9 is obtained by adding the loss interpolation unit 17 and the post-correction accuracy verification unit 18 to the configuration of the first embodiment.
  • the loss interpolation unit 17 outputs a loss interpolation value D10 when a loss occurs with the system state measurement value D4 as an input.
  • the post-correction accuracy verification unit 18 performs accuracy verification on the basis of the system state measurement value D4, which is a state quantity having a measurement value.
  • the system state measurement value D4 is a state quantity having a measurement value.
  • the system status is, for example, the total value of the active power P of the transmission line at the system status measurement device installation point.
  • FIG. 10 is a flowchart showing the entire processing example of the power system state estimation apparatus according to the second embodiment.
  • processing step S11 of loss interpolation and processing step S12 of accuracy verification after correction are added to the flowchart of FIG. It is.
  • processing step S11 which is a difference from the first embodiment
  • a loss interpolation value D10 is calculated when a loss occurs in the system state measurement value D4.
  • Note that such loss interpolation is an established calculation method and can be calculated using a general algorithm.
  • processing step S5 which is a difference with Example 1
  • state estimation calculation result D7 before amendment and state estimation calculation result D5 after amendment are compared with system state measurement value D4, and system state measurement value D4 is made into a true value. In this case, the closer value of the state estimation calculation result D7 before correction and the state estimation calculation result D5 after correction is taken as a final state estimation result.
  • the accuracy of the state estimation calculation result can be improved by the lossy interpolation.
  • the accuracy of the state estimation calculation result after correction is poor, it is possible to grasp an accurate tidal flow state by using it for selecting estimated values of other state quantities.
  • State estimation is widely used as an input value of a monitoring system or stabilization system in a power system.
  • an application method of state estimation to a system stability system of synchronous stability (transient stability) will be described.
  • FIG. 11 is a diagram of an exemplary software configuration of the power system state estimation device according to the third embodiment.
  • the power system state estimation device of the third embodiment shown in FIG. 11 is obtained by adding a controller result database DB6, a stability calculation unit 17, and a controller determination unit 18 to the configuration of the first embodiment.
  • a controller result D12 described later is stored in the controller result database DB6.
  • Stability calculation unit 17 performs stability calculation to analyze out-of-synchronization of the generator caused by a fault such as lightning with the state estimation calculation result D5 after correction as an input, and the internal phase angle for each generator is calculated.
  • the stability calculation result D11 such as series data is output.
  • the power control determination unit 18 receives the stability calculation result D11, determines a generator (power control) to disconnect the generator where the synchronization has occurred from the grid to prevent the spread of the failure, and determines the power control. Output the result D12.
  • FIG. 12 is a flowchart showing the entire processing example of the power system state estimation device according to the third embodiment, where processing step S13 of stability calculation and processing step S14 of electric controller determination are added to the flowchart of FIG. It is an example.
  • processing step S13 which is a difference with the first embodiment, stability calculation for each contingency case is performed, and time-series data etc. of the internal phase angle of each generator for each failure point are calculated.
  • step S14 which is a difference from the first embodiment, the generator in which the out-of-synchronization has occurred for each failure case is determined as the electronically controlled generator.
  • the third embodiment when the power flow fluctuates during the state estimation interval, it is possible to prevent the excess and the excess power control by correcting the corrected number of controlled devices in advance by the state estimation calculation result correction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The present invention addresses the problem of the possible occurrence of a large deviation from a current system state when a state estimation calculation does not converge or when a power flow state has abruptly changed. In order to solve this problem, a power system state estimation device according to the present invention is provided with: a system state calculation unit for performing a state estimation calculation on the basis of a plurality of system measurement data; a deviation determination unit for determining the degree of deviation from a current system state on the basis of the result of the state estimation calculation; a correction amount distribution creation unit for creating a correction amount distribution model for state estimation on the basis of a predetermined predicted value or planned value and the result of the state estimation calculation; and a correction unit for, when the degree of deviation is a predetermined threshold value or more, correcting the result of the state estimation calculation on the basis of the correction amount distribution model.

Description

電力系統の状態推定装置および方法、電力系統の安定化システムPower system state estimation device and method, power system stabilization system
 本発明は、電力系統の状態推定装置および方法、電力系統の安定化システムに関する。 The present invention relates to a power system state estimation apparatus and method, and a power system stabilization system.
 電力系統の潮流(有効電力P、無効電力Q、電圧V、電圧位相δ)状態を把握することは、電力系統の監視制御に有効であるとともに、潮流計算等の解析モデルを構築するためにも有用である。現状の電力系統に近い状態を解析モデルで再現することで、今後起こりうる電力系統状態を予測することや、電力系統故障に備えた安定化対策を事前に行うことが可能となる。なお一般に電力系統の状態は、電力系統に設置された計測センサで測定された電気量(有効電力P、無効電力Q、電圧V、電圧位相δ、電流I)の計測値を利用して、一定インターバルで行われる状態推定計算によって把握される。 Understanding the status of power flow (active power P, reactive power Q, voltage V, voltage phase δ) in the power system is effective for monitoring and controlling the power system, and is also for constructing analytical models such as power flow calculation. It is useful. By reproducing a state close to the current power system using an analysis model, it is possible to predict a possible power system state in the future, and to perform stabilization measures in preparation for a power system failure in advance. In general, the state of the power system is constant using the measured values of the electric quantity (active power P, reactive power Q, voltage V, voltage phase δ, current I) measured by the measurement sensor installed in the power system. It is grasped by state estimation calculation performed at intervals.
 電力系統の状態を把握するためには、電力系統の電力方程式を解くために十分な数の計測値を用意し可観測状態とすることが重要であるが、電力系統の構成や潮流条件(線路の抵抗成分が大きい区間が存在する場合、無効電力潮流が大きい区間が存在する場合、隣接する計測値の例えば電圧値が大きく異なる場合等)によっては、状態推定計算が収束しない場合が生じる。状態推定計算が収束しない場合、一般的には前回計算における算出値を用いるため、現在の系統状態との大きな乖離が発生し、得られた推定結果(潮流状態)の信頼性が低下するという課題がある。特に、電力系統の監視機能・計測精度が不十分な地域において、当課題が発生すると考えられる。 In order to understand the state of the power system, it is important to prepare a sufficient number of measurement values to solve the power equation of the power system and to make it an observable state. In the case where there is a section where the resistance component of is large, and when the section where the reactive power flow is large exists, the state estimation calculation may not converge depending on, for example, the case where voltage values of adjacent measurement values differ significantly. When the state estimation calculation does not converge, generally the calculated value in the previous calculation is used, so a large divergence from the current system state occurs, and the reliability of the obtained estimation result (power flow state) decreases. There is. In particular, this problem is considered to occur in areas where the power system monitoring function and measurement accuracy are insufficient.
 また、従来の大規模電源(火力発電、水力発電、原子力発電等)減少と共に新エネルギー(風力発電、太陽光発電等)拡大が見込まれている。新エネルギーは気象条件によって、出力が時々刻々変動することが知られている。状態推定計算インターバル中において、新エネルギー出力変動により潮流状態が急変すると、現在の系統状態との大きな乖離が発生し、得られた推定結果の信頼性が低下するという課題がある。特に、新エネルギーが大量に導入される地域において、当課題が発生すると考えられる。 Along with the decrease in conventional large-scale power sources (thermal power generation, hydroelectric power generation, nuclear power generation, etc.), expansion of new energy (wind power generation, solar power generation, etc.) is expected. It is known that new energy fluctuates with time depending on weather conditions. During the state estimation calculation interval, when the power flow state suddenly changes due to the new energy output fluctuation, a large deviation from the current system state occurs, and the reliability of the obtained estimation result is reduced. In particular, this problem is considered to occur in areas where a large amount of new energy is introduced.
 状態推定計算分野において、特願2013-213334(特許文献1)がある。この文献には、位相計測器より計測された電流および電流位相角を疑似的な計測値である擬似計測値に変換し、状態推定計算を行うと記載されている。 There is Japanese Patent Application No. 2013-213334 (Patent Document 1) in the field of state estimation calculation. In this document, it is described that the current and the current phase angle measured by the phase measuring device are converted into pseudo measured values which are pseudo measured values, and state estimation calculation is performed.
 状態推定計算インターバル中の系統変化を吸収するための補正制御分野において、特願2016-25715(特許文献2)がある。この文献には、各故障において生じる制御対象および制御対象外の発電機の動揺による影響量を示す修正量を算出する事前演算手段と、何らかの故障が発生すると、制御対象の発電機から計測される実計測値に基づいて、電力系統の過渡安定度を判別するためのモデルを生成するとともに、修正量を当該生成したモデルに反映した上で、制御パターンに従って制御を行う事後演算手段を融合することで適切な電力系統の安定化制御を実現できると記載されている。 Japanese Patent Application No. 2016-25715 (Patent Document 2) is in the field of correction control for absorbing systematic changes during a state estimation calculation interval. In this document, pre-calculation means for calculating the correction amount indicating the influence amount of the control target generator and the control target generator generated in each failure is measured from the generator to be controlled when any failure occurs. While generating a model for determining the transient stability of the power system based on the actual measurement value, reflecting the correction amount on the generated model, and fusing the post calculation means for performing control according to the control pattern It is stated that appropriate power system stabilization control can be realized.
特開2015-77034JP 2015-77034 特願2016-25715Japanese Patent Application No. 2016-25715
 しかし、特許文献1の電力系統の状態推定装置では、背景技術に記載した通り、状態推定計算が収束しない場合や潮流状態が急変した場合に現在の系統状態との大きな乖離が発生する可能性がある。 However, in the power system state estimation device of Patent Document 1, as described in the background art, a large deviation from the current system state may occur when the state estimation calculation does not converge or when the power flow state suddenly changes. is there.
 また、特許文献2の電力系統安定化システムでは、状態推定で算出した値が現在の系統状態との大きな乖離が発生した場合に事後演算を行うことで制御を行うが、故障後の演算時間を考慮しなければならないため、制御動作のタイミングが遅れる可能性がある。 Further, in the power system stabilization system of Patent Document 2, although the value calculated in the state estimation causes a large deviation from the current system state, control is performed by performing post operation, but the operation time after failure is Because it must be taken into consideration, the timing of the control operation may be delayed.
 上記課題を解決する為に本発明は、電力系統の状態推定装置において、複数の系統計測データに基づいて状態推定計算を行う系統状態計算部と、前記状態推定計算の結果に基づいて現在の系統状態との乖離度を判定する乖離判定部と、所定の予測値又は計画値、及び前記状態推定計算の結果に基づいて状態推定の補正量分布モデルを作成する補正量分布作成部と、前記乖離度が所定の閾値以上の場合に、前記状態推定計算の結果を前記補正量分布モデルに基づいて補正する補正部と、を備える。 In order to solve the above problems, the present invention relates to a system state calculation unit for performing state estimation calculation based on a plurality of system measurement data in a power system state estimation device, and a current system based on the result of the state estimation calculation. A deviation determination unit that determines a degree of deviation from a state; a correction amount distribution generation unit that generates a correction amount distribution model of state estimation based on a predetermined predicted value or plan value and a result of the state estimation calculation; And a correction unit that corrects the result of the state estimation calculation based on the correction amount distribution model when the degree is equal to or more than a predetermined threshold value.
 本発明によれば、状態推定計算インターバル中に潮流が急変した場合において、系統状況変化度(需要予測値、新エネルギーの出力予測値、大規模電源の出力値)と状態推定計算結果から補正量分布モデルを作成しておき、状態推定計算結果と系統状態推定値が乖離した場合、状態推定計算結果を補正することで、現在の潮流状況を把握できる。 According to the present invention, when the power flow suddenly changes during the state estimation calculation interval, the correction amount from the system state change degree (the demand forecast value, the output prediction value of new energy, the output value of the large scale power source) and the state estimation calculation result If a distribution model is created and the estimated state calculation result and the estimated system state value diverge, the current flow condition can be grasped by correcting the estimated state calculation result.
電力系統の状態推定装置のソフト構成図の例である。It is an example of the software block diagram of the state estimation apparatus of an electric power grid | system. 複数の計測データが通信ネットワークを介してデータベースに格納される電力系統、及び電力系統の状態推定装置のハード構成図の例である。It is an example of the electric power system by which several measurement data are stored in a database via a communication network, and the hardware block diagram of the state estimation apparatus of an electric power system. 電力系統の状態推定装置の処理の全体を示すフローチャートの例である。It is an example of the flowchart which shows the whole process of the state estimation apparatus of an electric power grid | system. 状態推定の処理を示すフローチャートの例である。It is an example of the flowchart which shows the process of state estimation. 状態推定装置における補正分布作成部のソフト構成図の例である。It is an example of the software block diagram of the correction distribution creation part in state estimating device. 補正量分布モデルの作成方法の処理を示すフローチャートの例である。It is an example of the flowchart which shows the process of the preparation method of a correction amount distribution model. 新エネルギー1台が接続された電力系統図の例である。It is an example of the electric power system diagram to which one new energy was connected. 補正分布モデルの例である。It is an example of a correction distribution model. 欠損補間部と補正後精度検証部を追加した電力系統の状態推定装置のソフト構成図の例である。It is an example of the software block diagram of the state estimation apparatus of the electric power system which added the defect | deletion interpolation part and the precision verification part after correction | amendment. 欠損補間と補正後精度検証の処理を追加した電力系統の状態推定装置の処理の全体を示すフローチャートの例である。It is an example of the flowchart which shows the whole process of the state estimation apparatus of the electric power system which added the process of a defect interpolation and the precision verification after correction | amendment. 安定性計算部と電制機決定部と電制機結果データベースを追加した電力系統の状態推定装置のソフト構成図の例である。It is an example of the software block diagram of the state estimation apparatus of the electric power system which added the stability calculation part, the electric controller determination part, and the electric controller result database. 安定性計算と電制機決定の処理を追加した電力系統の状態推定装置の処理の全体を示すフローチャートの例である。It is an example of the flowchart which shows the whole process of the state estimation apparatus of the electric power system which added the process of stability calculation and the electric controller determination.
 以下、本発明の実施に好適な実施例について説明する。尚、下記はあくまでも実施の例に過ぎず、下記具体的内容に発明自体が限定されることを意図するものではない。 Hereinafter, preferred embodiments for carrying out the present invention will be described. The following is merely an example of the embodiment, and the invention itself is not intended to be limited to the following specific contents.
 本発明の実施例1について、以下に説明する。 The first embodiment of the present invention will be described below.
 図1は、本発明の一実施形態が適用された電力系統の状態推定装置10のソフト構成例を示す図であり、需要予測データベースDB1、新エネ出力予測データベースDB2、大規模電源出力データベースDB3、系統状態測定値データベースDB4、状態推定計算補正結果データベースDB5、状態推定計算部11、補正量分布作成部12、状態推定計算結果乖離判定部13、状態推定計算結果補正部14、を備える。 FIG. 1 is a diagram showing an example of the software configuration of a power system state estimation apparatus 10 to which an embodiment of the present invention is applied, a demand forecast database DB1, a new energy output forecast database DB2, a large scale power output database DB3, A system state measurement value database DB4, a state estimation calculation correction result database DB5, a state estimation calculation unit 11, a correction amount distribution creation unit 12, a state estimation calculation result deviation determination unit 13, and a state estimation calculation result correction unit 14 are provided.
 需要予測データベースDB1においては、地域単位や接続地点(ノード)単位の需要予測値D1を格納しておく。 In the demand forecasting database DB1, the demand forecast value D1 in the area unit or connection point (node) unit is stored.
 新エネ出力予測データベースDB2においては、地域単位や接続地点(ノード)単位の新エネルギーの出力予測値D2を格納しておく。 In the new energy output prediction database DB2, the output predicted value D2 of the new energy in units of regions and connection points (nodes) is stored.
 大規模電源出力データベースDB3においては、大規模電源の出力値D3を格納しておく。 In the large scale power supply output database DB3, the output value D3 of the large scale power supply is stored.
 系統状態測定値データベースDB4においては、SCADAやPMU等の系統状態測定装置より測定された系統状態測定値D4を格納しておく。 In the system condition measurement value database DB4, a system condition measurement value D4 measured by a system condition measurement device such as SCADA or PMU is stored.
 状態推定計算補正結果データベースDB5においては、補正後の状態推定計算結果D5を格納する。 The state estimation calculation correction result database DB5 stores the state estimation calculation result D5 after correction.
 状態推定計算部11においては、系統状態測定値D4を入力として状態推定計算を行い、状態推定計算結果D7を出力する。 State estimation calculation unit 11 performs state estimation calculation with system state measurement value D4 as an input, and outputs state estimation calculation result D7.
 補正量分布作成部12においては、状態推定計算結果D7と需要予測値D1と新エネルギーの出力予測値D2と大規模電源の出力値D3を入力として補正量分布モデルを作成し、補正量分布モデルD6を出力する。 In the correction amount distribution creating unit 12, a correction amount distribution model is created with the state estimation calculation result D7, the demand forecast value D1, the output forecast value D2 of new energy and the output value D3 of the large-scale power source as input, and the correction amount distribution model Output D6.
 状態推定計算結果乖離判定部13においては、系統状態測定値D4と状態推定計算結果D7を入力として現在の系統状態との乖離度を判定し、状態推定計算結果補正の必要性有無D8を出力する。 State estimation calculation result divergence determination unit 13 receives system state measurement value D4 and state estimation calculation result D7 as input to determine the degree of divergence between the current system state, and outputs necessity necessity D8 of state estimation calculation result correction. .
 状態推定計算結果補正部14において、補正量分布モデルD6と系統状態測定値D4と状態推定計算結果D7を入力として状態推定計算結果補正量を算出し、状態推定計算結果補正値D5を出力する。 State estimation calculation result correction unit 14 receives correction amount distribution model D6, system state measurement value D4 and state estimation calculation result D7 to calculate a state estimation calculation result correction amount, and outputs state estimation calculation result correction value D5.
 図2は、複数の計測データが通信ネットワークを介してデータベースに格納される電力系統と、本発明の一実施形態が適用された電力系統の状態推定装置10のハード構成例を示している。 FIG. 2 shows an example of a hardware configuration of a power system in which a plurality of measurement data are stored in a database via a communication network, and a power system state estimation device 10 to which an embodiment of the present invention is applied.
 前記の電力系統は、複数の同期発電機130及び負荷150が母線(ノード)110、変圧器120、送電線路140等を介して相互に連系されたシステムである。なお図2において、160は当該電力系統における想定故障個所を例示している。ノード110には、電力系統の保護、制御、監視の目的での各種の計測器が適宜設置されており、計測器で検知した信号は通信ネットワーク300を介して電力系統の状態推定装置10の通信部23に送られる。なお図2では、ノード110に対して図示したノード番号を適宜付与して示している。その他のノード番号のノードには、既存の計測器として例えば電流変成器CT、電圧変成器PT等が設置されている。 The power system is a system in which a plurality of synchronous generators 130 and loads 150 are interconnected with one another via a bus (node) 110, a transformer 120, a transmission line 140, and the like. In FIG. 2, reference numeral 160 exemplifies an assumed failure point in the power system. In the node 110, various measuring instruments for the purpose of protection, control and monitoring of the electric power system are appropriately installed, and the signal detected by the measuring instrument is communicated by the state estimating device 10 of the electric power system via the communication network 300. It is sent to the part 23. In FIG. 2, node numbers shown in the figure are appropriately assigned to the nodes 110. For example, a current transformer CT, a voltage transformer PT, and the like are installed as existing measuring instruments at nodes of other node numbers.
 電力系統の状態推定装置10は計算機システムで構成されており、ディスプレイ装置等の表示部21、キーボードやマウス等の入力部22、通信部23、CPU24、メモリ25、および各種データベースDBがバス線26に接続されている。電力系統の潮流監視装置10のデータベースとしては、需要予測データベースDB1、新エネ出力予測データベースDB2、大規模電源出力データベースDB3、系統状態測定値データベースDB4、状態推定計算補正結果データベースDB5を備える。 The power system state estimation device 10 is configured by a computer system, and a display unit 21 such as a display device, an input unit 22 such as a keyboard or a mouse, a communication unit 23, a CPU 24, a memory 25, and various database DBs are bus lines 26. It is connected to the. The database of the power flow monitor 10 includes a demand forecast database DB1, a new energy output forecast database DB2, a large-scale power output database DB3, a system state measurement value database DB4, and a state estimation calculation correction result database DB5.
 このうち表示部21は、例えば、ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置または音声出力装置等を用いる構成でもよい。入力部22は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等の少なくともいずれか一つを備えて構成できる。通信部23は、通信ネットワーク300に接続するための回路及び通信プロトコルを備える。CPU24は、計算プログラムを実行して表示すべき画像データの指示や、各種データベース内のデータの検索等を行う。CPU24は、一つまたは複数の半導体チップとして構成してもよいし、または、計算サーバのようなコンピュータ装置として構成してもよい。メモリ25は、例えば、RAM(Random Access Memory)として構成され、コンピュータプログラムを記憶したり、各処理に必要な計算結果データ及び画像データ等を記憶したりする。メモリ25に格納された画面データは、表示部21に送られて表示される。 Among them, the display unit 21 may use, for example, a printer device or an audio output device in place of or in addition to the display device. The input unit 22 can include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device. The communication unit 23 includes a circuit and a communication protocol for connecting to the communication network 300. The CPU 24 executes a calculation program to instruct image data to be displayed, search data in various databases, and the like. The CPU 24 may be configured as one or more semiconductor chips, or may be configured as a computer device such as a calculation server. The memory 25 is configured as, for example, a RAM (Random Access Memory), and stores a computer program, and stores calculation result data, image data, and the like necessary for each process. The screen data stored in the memory 25 is sent to the display unit 21 and displayed.
 図3は、電力系統の状態推定装置10の処理例の全体を示すフローチャートを表している。最初の処理ステップS1では、複数の計測点における計測データが格納された系統状態測定値D4に基づいて、電力系統の状態を推定する。 FIG. 3 shows a flowchart showing the entire processing example of the power system state estimation device 10. In the first processing step S1, the state of the power system is estimated based on the system state measurement value D4 in which measurement data at a plurality of measurement points are stored.
 図4は、図3の最初の処理ステップS1で実施される状態推定計算の一例を示す処理フローチャートを表している。処理ステップS5では、(1)式で表される観測値Z、電力系統状態値F(X)、電力系統誤差eの関係から、(2)式の関係式が最小になるように状態値Xを決定する。ただし、Zは有効電力P、無効電力Q、電圧V等の観測値、Xは電力系統状態(電圧V、電圧位相δ等)、F(X)は状態量の値(回路の接続状態およびインピーダンスから決まる回路方程式で定まる)である。 FIG. 4 shows a processing flowchart showing an example of the state estimation calculation performed in the first processing step S1 of FIG. At processing step S5, from the relationship between the observed value Z represented by the equation (1), the power system state value F (X), and the power system error e, the state value X is set such that the relational expression of the equation (2) Decide. Where Z is the observed value of active power P, reactive power Q, voltage V, etc., X is the power system state (voltage V, voltage phase δ, etc.), and F (X) is the state value (circuit connection state and impedance) It is determined by the circuit equation determined from
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図4の処理ステップS6では、残差εを計算し、残差が大きい計測値を除去するか、代わりの擬似計測値に置き換える(代わりに過去の計測値データを用いる)ような、誤りデータの除去を行う。処理ステップS7では、計算された残差εを規定値と比較する。残差εが規定値以下であれば状態推定計算の処理フローを終了し、規定値以上であれば処理ステップS5へ戻る。なお、このような電力系統の状態推定計算は確立された計算手法であり、一般的なアルゴリズムを用いることで計算可能である。残差εが規定値以下であると判断された状態値Xは、状態推定計算結果(状態量推定値)D7として出力、記憶される。 In the processing step S6 of FIG. 4, the residual ε is calculated, and the measurement value having a large residual is removed or is replaced with an alternative pseudo measurement value (instead of using the past measurement value data), error data Do the removal. In processing step S7, the calculated residual ε is compared with a specified value. If the residual ε is equal to or less than the specified value, the process flow of the state estimation calculation is ended, and if it is equal to or more than the specified value, the process returns to the processing step S5. Note that such power system state estimation calculation is an established calculation method, and can be calculated using a general algorithm. The state value X determined that the residual ε is equal to or less than the specified value is output and stored as a state estimation calculation result (state amount estimated value) D7.
 図3に戻り、次の処理ステップS2では、系統状態測定値D4と状態推定計算結果D7の乖離度を示す状態推定計算結果乖離度を算出する。前記乖離度は、例えば、各系統状態測定装置地点におけるD4とD7の電圧位相差の合計値とする。処理ステップS3では、前記乖離度が一定の閾値より大きければステップS4に進み、前記閾値より小さければ電力系統の状態推定装置10の処理フローを終了する。処理ステップS4では、前記系統状態測定値D4と前記状態推定計算結果D7を後述の補正量分布モデルD6に入力することで、状態推定計算補正結果を算出する。 Returning to FIG. 3, in the next processing step S2, a state estimation calculation result divergence degree indicating the degree of divergence between the system state measurement value D4 and the state estimation calculation result D7 is calculated. The degree of deviation is, for example, the total value of the voltage phase difference between D4 and D7 at each system condition measuring device point. In processing step S3, if the said deviation degree is larger than a fixed threshold value, it will progress to step S4, and if smaller than the said threshold value, the processing flow of the state estimation apparatus 10 of an electric power system will be complete | finished. In processing step S4, a state estimation calculation correction result is calculated by inputting the system state measurement value D4 and the state estimation calculation result D7 to a correction amount distribution model D6 described later.
 図5は、状態推定装置における補正分布作成部12のソフト構成図の例であり、潮流計算部15、補正分布モデル部16、を備える。 FIG. 5 is an example of a software configuration diagram of the correction distribution creation unit 12 in the state estimation device, and includes a tidal current calculation unit 15 and a correction distribution model unit 16.
 潮流計算部15においては、状態推定計算結果D7と需要予測値D1と新エネルギーの出力予測値D2と大規模電源の出力値D3を入力として潮流計算を行い、潮流計算結果D9を出力する。 The tidal current calculation unit 15 performs tidal current calculation with the state estimation calculation result D7, the demand forecast value D1, the output predicted value D2 of new energy and the output value D3 of the large-scale power source as input, and outputs the tidal current calculation result D9.
 補正分布モデル作成部16においては、潮流計算結果D9を入力として補正分布モデル作成をし、補正量分布モデルD6を出力する。 The correction distribution model generation unit 16 receives the tidal current calculation result D9 as an input, generates a correction distribution model, and outputs a correction amount distribution model D6.
 図6は、処理ステップS4で用いる補正量分布モデルの作成方法の処理を示すフローチャートを表している。処理ステップS8では、需要予測値D1と新エネルギーの出力予測値D2と大規模電源の出力値D3と系統状態測定値D4と状態推定計算結果D7を用いて、次回状態推定計算までの系統状況変化量を予測する。系統状況変化量とは、状態推定計算インターバル中の需要、新エネルギー出力、大規模電源出力の変化量である。以下では、図7の電力系統例を用いて、処理ステップS4で用いる補正量分布モデルの作成方法の処理を示す。ノード700に接続の新エネルギー出力の次回状態推定計算までの最大変化予測値(新エネルギーの出力予測値D2)をα、系統状態測定値D4より新エネルギーの現在出力がPRES(t)をすると、Pres(t)を基準とした系統状況変化量はPres(t)-α<Pres(t+1)<Pres(t)+αの範囲内となる。 FIG. 6 shows a flowchart showing processing of a method of creating a correction amount distribution model used in processing step S4. At processing step S8, the system situation change up to the next state estimation calculation using demand forecast value D1, output prediction value D2 of new energy, output value D3 of large scale power source, system state measurement value D4 and state estimation calculation result D7 Predict the quantity. The system status change amount is the change amount of the demand, the new energy output, and the large-scale power source output during the state estimation calculation interval. Below, the process of the preparation method of the correction amount distribution model used by process step S4 is shown using the electric power system example of FIG. Let α be the maximum change forecast value (new energy output forecast value D2) up to the next state estimation calculation of new energy output connected to node 700, and let the current output of new energy be P RES (t) from the system status measurement value D4. The amount of change in the system status based on Pres (t) is in the range of Pres (t) −α <Pres (t + 1) <Pres (t) + α.
 処理ステップS9では、系統状況変化量予測範囲(Pres(t)-α<Pres(t+1)<Pres(t)+α)の一定刻み幅毎に入力値Pres(t+1)を与え、潮流計算を行う。潮流計算に必要な値である有効電力P、無効電力Q、電圧Vは、新エネルギー出力に関しては幅を持った予測値を入力とする一方、潮流計算に用いる他の入力値は前回の状態推定計算結果D7とする。 In processing step S9, an input value Pres (t + 1) is given for each fixed step width of the system condition change amount prediction range (Pres (t) -α <Pres (t + 1) <Pres (t) + α), Perform tidal current calculation. Active power P, reactive power Q, and voltage V, which are values necessary for power flow calculation, take an estimated value with a width for new energy output as input, while other input values used for power flow calculation are previous state estimation The calculation result is D7.
 処理ステップS10では、前記潮流計算の結果の内、系統状態測定装置地点ごとの状態推定計算結果D7と新エネルギー出力予測値を与えた際の潮流計算値の差分と、潮流計算に必要な値である有効電力P、無効電力Q、電圧Vを入力とし、補正量分布モデルを出力とする。例えば、図8の補正分布モデルを作成する。ここでは簡単のため3軸で表している。図8では、前記状態推定計算結果として送電線路1の有効電力をPse1、送電線路2の有効電力をPse2とし、前記潮流計算結果として系統状態測定装置設置地点の送電線路1と2の有効電力をPpf1、Ppf2とし、状態推定値を補正する送電線路3の有効電力をPpf3とする。 At processing step S10, among the results of the tidal current calculation, the difference between the tidal current calculation value at the time of giving the new energy output predicted value and the state estimation calculation result D7 for each system state measuring device point, and the value necessary for tidal current calculation A certain effective power P, reactive power Q, and voltage V are input, and a correction amount distribution model is output. For example, the correction distribution model of FIG. 8 is created. Here, three axes are shown for simplicity. In FIG. 8, the active power of the transmission line 1 is Pse1 and the active power of the transmission line 2 is Pse2 as the state estimation calculation result, and the active powers of the transmission lines 1 and 2 at the system condition measuring device installation point are calculated as the power flow calculation result. It is assumed that Ppf1 and Ppf2 and the effective power of the transmission line 3 whose state estimated value is to be corrected is Ppf3.
 図8の補正量分布モデル作成時にPpf分布(Ppf1、Ppf2)に対応する補正量分布(Ppf3)を計算しておき、補正量分布モデル使用時に系統状態測定値(Pobserve1、Pobserve2)を当てはめると然るべき補正量(Pse_cor3)を得られる。すなわち、補正量分布モデル使用時において、前記処理ステップS4では、前記状態推定計算結果Pse1、Pse2と前記系統状態測定値Pobserve1、Pobserve2を補正量分布モデルに入力することで、状態推定計算補正結果として送電線路3の有効電力Pse_cor3を算出できる。 It is appropriate to calculate the correction amount distribution (Ppf3) corresponding to Ppf distribution (Ppf1, Ppf2) when creating the correction amount distribution model of FIG. 8 and apply the system state measurement values (Pobserve1, Pobserve 2) when using the correction amount distribution model. The correction amount (Pse_cor3) can be obtained. That is, when using the correction amount distribution model, in the processing step S4, the state estimation calculation results Pse1 and Pse2 and the system state measurement values Pobserve1 and Pobserve2 are input to the correction amount distribution model to obtain a state estimation calculation correction result. The active power Pse_cor3 of the transmission line 3 can be calculated.
 また、処理ステップS4では、現在データを過去データと比較して、需要値D1と新エネルギーの出力値D2と大規模電源の出力値D3が最も近い過去時系列データにおける、系統状態測定値D4と状態推定計算結果D7の関係を示す補正分布モデルを作成及び選択し、系統状態測定値D4と状態推定計算結果D7を補正分布モデルへの入力とすることで、状態推定修正結果D5を算出してもよい。前記の方法との相違点は、前回状態推定計算結果及び系統変化予測値を用いるのではなく、過去データを用いて補正分布モデルを作成する点である。過去データが充分揃ってない場合は、モンテカルロシミュレーションによって、大量のデータを作り出してもよい。 In processing step S4, current data is compared with past data, and system state measurement value D4 in past time series data in which demand value D1, output value D2 of new energy, and output value D3 of large-scale power source are closest. A correction distribution model indicating the relationship between the state estimation calculation result D7 is created and selected, and the system state measurement value D4 and the state estimation calculation result D7 are input to the correction distribution model to calculate the state estimation correction result D5. It is also good. The difference with the above method is that the correction distribution model is created using past data, not using the previous state estimation calculation result and the systematic change prediction value. If the past data is not complete enough, a large amount of data may be generated by Monte Carlo simulation.
 実施例1によれば、状態推定インターバル中に潮流が変動した場合において、系統状況変化度(需要予測値D1、新エネルギーの出力予測値D2、大規模電源の出力値D3)と状態推定計算結果D4から補正量分布モデルD6を作成しておき、系統状態測定値D4と状態推定計算結果D7が乖離した場合、系統状態測定値D4と状態推定計算結果D7を補正量分布モデルD6に入力し、状態推定計算結果D5を算出することで、現在状況に近い潮流状態を把握できる。 According to the first embodiment, when the power flow fluctuates during the state estimation interval, the system state change degree (the demand forecast value D1, the output prediction value D2 of new energy, the output value D3 of the large scale power source) and the state estimation calculation result If the correction amount distribution model D6 is created from D4 and the system state measurement value D4 and the state estimation calculation result D7 diverge, the system state measurement value D4 and the state estimation calculation result D7 are input to the correction amount distribution model D6, By calculating the state estimation calculation result D5, it is possible to grasp the tidal current state close to the current situation.
 本発明の実施例2について、以下に説明する。なお、実施例1で説明した内容と重複する説明については省略する。 The second embodiment of the present invention will be described below. The description overlapping with the contents described in the first embodiment is omitted.
 図9は、実施例2に係る電力系統の状態推定装置のソフト構成例を示す図である。図9に示す実施例2の電力系統の状態推定装置は、実施例1の構成に欠損補間部17、補正後精度検証部18を追加したものである。 FIG. 9 is a diagram illustrating an example of a software configuration of the power system state estimation device according to the second embodiment. The state estimation device for a power system according to the second embodiment shown in FIG. 9 is obtained by adding the loss interpolation unit 17 and the post-correction accuracy verification unit 18 to the configuration of the first embodiment.
 欠損補間部17において、系統状態測定値D4を入力として欠損が生じた場合に、欠損補間値D10を出力する。 The loss interpolation unit 17 outputs a loss interpolation value D10 when a loss occurs with the system state measurement value D4 as an input.
 補正後精度検証部18において、測定値のある状態量である系統状態測定値D4を基準として精度検証を行う。補正前の状態推定計算結果D7と補正後の状態推定計算結果D5の内、系統状態測定値D4により系統状況に近い方の値を状態推定計算補正結果データベースDB5に出力する。系統状況とは、例えば、系統状態測定装置設置地点の送電線路の有効電力Pの合計値とする。 The post-correction accuracy verification unit 18 performs accuracy verification on the basis of the system state measurement value D4, which is a state quantity having a measurement value. Of the state estimation calculation result D7 before correction and the state estimation calculation result D5 after correction, the value closer to the system state is output to the state estimation calculation correction result database DB5 by the system state measurement value D4. The system status is, for example, the total value of the active power P of the transmission line at the system status measurement device installation point.
 図10は、実施例2に係る電力系統の状態推定装置の処理例の全体を示すフローチャートであり、図3のフローチャートに欠損補間の処理ステップS11、補正後精度検証の処理ステップS12を追加した例である。実施例1との差分である処理ステップS11では、系統状態測定値D4に欠損が生じた場合に、欠損補間値D10を算出する。なお、このような欠損補間は確立された計算手法であり、一般的なアルゴリズムを用いることで計算可能である。実施例1との差分である処理ステップS5では、補正前の状態推定計算結果D7と補正後の状態推定計算結果D5を系統状態測定値D4と比較し、系統状態測定値D4を真値とした場合に、補正前の状態推定計算結果D7と補正後の状態推定計算結果D5の近い方の値を最終的な状態推定結果とする。 FIG. 10 is a flowchart showing the entire processing example of the power system state estimation apparatus according to the second embodiment. An example in which processing step S11 of loss interpolation and processing step S12 of accuracy verification after correction are added to the flowchart of FIG. It is. In processing step S11 which is a difference from the first embodiment, a loss interpolation value D10 is calculated when a loss occurs in the system state measurement value D4. Note that such loss interpolation is an established calculation method and can be calculated using a general algorithm. In processing step S5 which is a difference with Example 1, state estimation calculation result D7 before amendment and state estimation calculation result D5 after amendment are compared with system state measurement value D4, and system state measurement value D4 is made into a true value. In this case, the closer value of the state estimation calculation result D7 before correction and the state estimation calculation result D5 after correction is taken as a final state estimation result.
 実施例2によれば、欠損補間によって、状態推定計算結果の精度が向上できる。また、補正後精度検証によって、補正後の状態推定計算結果の妥当性を検証すると共に、精度の高い状態推定計算結果を選択できる。以上により、補正後の状態推定計算結果の精度が悪ければ、他の状態量の推定値選択に用いることで正確な潮流状態を把握できる。 According to the second embodiment, the accuracy of the state estimation calculation result can be improved by the lossy interpolation. In addition, it is possible to verify the validity of the state estimation calculation result after correction by accuracy verification after correction and to select the state estimation calculation result with high accuracy. As described above, if the accuracy of the state estimation calculation result after correction is poor, it is possible to grasp an accurate tidal flow state by using it for selecting estimated values of other state quantities.
 本発明の実施例3について、以下に説明する。なお、実施例1で説明した内容と重複する説明については省略する。 The third embodiment of the present invention will be described below. The description overlapping with the contents described in the first embodiment is omitted.
 状態推定は、電力系統における監視システムや安定化システムの入力値として、広く用いられている。ここでは、上記の一例として、同期安定性(過渡安定性)の系統安定化システムへの状態推定の適用手法について説明する。 State estimation is widely used as an input value of a monitoring system or stabilization system in a power system. Here, as an example of the above, an application method of state estimation to a system stability system of synchronous stability (transient stability) will be described.
 図11は、実施例3に係る電力系統の状態推定装置のソフト構成例を示す図である。図11に示す実施例3の電力系統の状態推定装置は、実施例1の構成に電制機結果データベースDB6、安定性計算部17、電制機決定部18を追加したものである。 FIG. 11 is a diagram of an exemplary software configuration of the power system state estimation device according to the third embodiment. The power system state estimation device of the third embodiment shown in FIG. 11 is obtained by adding a controller result database DB6, a stability calculation unit 17, and a controller determination unit 18 to the configuration of the first embodiment.
 電制機結果データベースDB6において、後述の電制機決定結果D12を格納しておく。 A controller result D12 described later is stored in the controller result database DB6.
 安定性計算部17において、補正後の状態推定計算結果D5を入力として、落雷等の故障によって生ずる発電機の同期外れ現象を解析する安定性計算を実施し、発電機毎の内部位相角の時系列データ等の安定性計算結果D11を出力する。 Stability calculation unit 17 performs stability calculation to analyze out-of-synchronization of the generator caused by a fault such as lightning with the state estimation calculation result D5 after correction as an input, and the internal phase angle for each generator is calculated. The stability calculation result D11 such as series data is output.
 電制決定部18において、安定性計算結果D11を入力として、故障の波及を防止するために同期外れが発生した発電機を系統から切り離す発電機(電制機)を決定し、電制機決定結果D12を出力する。 The power control determination unit 18 receives the stability calculation result D11, determines a generator (power control) to disconnect the generator where the synchronization has occurred from the grid to prevent the spread of the failure, and determines the power control. Output the result D12.
 図12は、実施例3に係る電力系統の状態推定装置の処理例の全体を示すフローチャートであり、図3のフローチャートに安定性演算の処理ステップS13、電制機決定の処理ステップS14を追加した例である。実施例1との差分である処理ステップS13では、各想定故障ケースに対する安定性計算を実施し、故障点毎の各発電機の内部位相角の時系列データ等を算出する。実施例1との差分である本処理理ステップS14では、各故障ケースに対して同期外れが発生した発電機を電制発電機として決定する。 FIG. 12 is a flowchart showing the entire processing example of the power system state estimation device according to the third embodiment, where processing step S13 of stability calculation and processing step S14 of electric controller determination are added to the flowchart of FIG. It is an example. In processing step S13 which is a difference with the first embodiment, stability calculation for each contingency case is performed, and time-series data etc. of the internal phase angle of each generator for each failure point are calculated. In step S14, which is a difference from the first embodiment, the generator in which the out-of-synchronization has occurred for each failure case is determined as the electronically controlled generator.
 実施例3によれば、状態推定インターバル中に潮流が変動した場合において、状態推定計算結果補正により、補正電制台数を事前に補正することで、過剰及び過小電制を防ぐことができる。 According to the third embodiment, when the power flow fluctuates during the state estimation interval, it is possible to prevent the excess and the excess power control by correcting the corrected number of controlled devices in advance by the state estimation calculation result correction.
10 電力系統の状態推定装置
11 補正量分布作成部
12 状態推定計算部
13 状態推定計算結果乖離判定部
14 状態推定計算結果補正部
15 潮流計算部 
16 補正分布モデル作成部
17 欠損補間部
18 補正後精度検証部
19 安定性計算部
20 電制機決定部
100 電力系統の安定性監視装置
21 表示部
22 入力部
23 通信部
24 CPU
25 メモリ
26 バス線
110 ノード
120 変圧器
130 同期発電機
140 送電線路
150 負荷
160 風力発電機
300 通信ネットワーク
DB1 需要予測データベース
DB2 新エネ出力予測データベース
DB3 大規模電源出力データベース
DB4 系統状態測定値データベース
DB5 状態推定計算補正結果データベース
DB6 電制機結果データベース
10 State estimation device for power system
11 Correction amount distribution creation unit
12 State Estimation Calculator
13 State estimation calculation result Deviation judgment unit
14 State estimation calculation result correction unit
15 tidal current calculation part
16 Correction distribution model creation unit
17 Missing interpolation unit
18 Accuracy verification unit after correction
19 Stability Calculator
20 Power control decision department
100 Power system stability monitoring equipment
21 Display
22 Input section
23 Communication unit
24 CPU
25 memory
26 bus lines
110 nodes
120 transformers
130 synchronous generator
140 transmission line
150 load
160 wind generator
300 communication network
DB1 Demand Forecast Database
DB2 New Energy Output Forecasting Database
DB3 large scale power output database
DB4 system condition measurement value database
DB5 state estimation calculation correction result database
DB6 Electric result database

Claims (15)

  1.  複数の系統計測データに基づいて状態推定計算を行う系統状態計算部と、
     前記状態推定計算の結果に基づいて現在の系統状態との乖離度を判定する乖離判定部と、
     所定の予測値又は計画値、及び前記状態推定計算の結果に基づいて状態推定の補正量分布モデルを作成する補正量分布作成部と、
     前記乖離度が所定の閾値以上の場合に、前記状態推定計算の結果を前記補正量分布モデルに基づいて補正する補正部と、を備えること
     を特徴とする電力系統の状態推定装置。
    A system state calculation unit that performs state estimation calculation based on a plurality of system measurement data;
    A divergence determining unit that determines the degree of divergence from the current system state based on the result of the state estimation calculation;
    A correction amount distribution creation unit that creates a correction amount distribution model of state estimation based on a predetermined predicted value or plan value and the result of the state estimation calculation;
    A correction unit that corrects the result of the state estimation calculation based on the correction amount distribution model when the deviation degree is equal to or more than a predetermined threshold value.
  2.  請求項1に記載の電力系統の状態推定装置において、
     前記所定の予測値又は計画値には、需要予測値、新エネルギーの出力予測値、又は大規模電源の出力値が含まれること
     を特徴とする電力系統の状態推定装置。
    In the power system state estimation device according to claim 1,
    A power system state estimation device, wherein the predetermined forecast value or the planned value includes a demand forecast value, an output forecast value of new energy, or an output value of a large-scale power source.
  3.  請求項1に記載の電力系統の状態推定装置は、
     地域単位又は接続地点単位の需要予測値を格納する需要予測データベースを更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    An apparatus for estimating a state of an electric power system, further comprising a demand forecasting database storing demand forecast values in units of regions or connection points.
  4.  請求項1に記載の電力系統の状態推定装置は、
     大規模電源の出力値を格納する大規模電源出力データベースを更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    An apparatus for estimating a state of a power system, further comprising: a large-scale power output database that stores output values of a large-scale power source.
  5.  請求項1に記載の電力系統の状態推定装置は、
     SCADA又はPMUを含む系統計測データを格納する系統状態測定値データベースを更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    An apparatus for estimating a state of an electric power system, further comprising a system state measurement value database storing system measurement data including SCADA or PMU.
  6.  請求項1に記載の電力系統の状態推定装置は、
     前記補正部で求めた補正後の状態推定計算結果を格納する状態推定計算補正結果データベースを更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    A state estimation device for an electric power system, further comprising a state estimation calculation correction result database storing the state estimation calculation result after correction determined by the correction unit.
  7.  請求項1に記載の電力系統の状態推定装置において、
     前記所定の閾値とは、系統計測データと状態推定計算結果との差分の大きさに基づいて定めたものであること
     を特徴とする電力系統の状態推定装置。
    In the power system state estimation device according to claim 1,
    A power system state estimation device characterized in that the predetermined threshold is determined based on a difference between system measurement data and a state estimation calculation result.
  8.  請求項1に記載の電力系統の状態推定装置において、
     前記補正量分布作成部は、前記予測値又は計画値が前記状態推定計算から次の状態推定計算までの間に変化する変化量を予測すること
     を特徴とする電力系統の状態推定装置。
    In the power system state estimation device according to claim 1,
    The power system state estimation device, wherein the correction amount distribution creation unit predicts a change amount in which the predicted value or the plan value changes between the state estimation calculation and the next state estimation calculation.
  9.  請求項8に記載の電力系統の状態推定装置において、
     前記補正量分布作成部は、前記予測した変化量に基づいて潮流計算を行い、前記補正量分布モデルを作成すること
     を特徴とする電力系統の状態推定装置。
    In the power system state estimation device according to claim 8,
    The correction amount distribution creation unit performs power flow calculation based on the predicted change amount, and creates the correction amount distribution model.
  10.  請求項1に記載の電力系統の状態推定装置は、
     前記系統計測データに欠損が生じた場合に、前記欠損の補間を行う欠損補間部を更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    A power system state estimation device, further comprising a loss interpolation unit that interpolates the loss when a loss occurs in the system measurement data.
  11.  請求項1に記載の電力系統の状態推定装置は、
     前記系統計測データに欠損が生じた場合に、前記欠損の補間を行う欠損補間部を更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    A power system state estimation device, further comprising a loss interpolation unit that interpolates the loss when a loss occurs in the system measurement data.
  12.  請求項1に記載の電力系統の状態推定装置は、
     前記系統計測データに基づいて前記状態推定計算の精度の検証を行う精度検証部を更に備えること
     を特徴とする電力系統の状態推定装置。
    The power system state estimation device according to claim 1,
    A power system state estimation device, further comprising: an accuracy verification unit that verifies the accuracy of the state estimation calculation based on the system measurement data.
  13.  請求項12に記載の電力系統の状態推定装置において、
     前記精度検証部は、補正前の状態推定計算の結果と補正後の状態推定計算の結果を比較し、前記系統計測データに近い結果を出力すること
     を特徴とする電力系統の状態推定装置。
    In the power system state estimation device according to claim 12,
    The accuracy verification unit compares a result of a state estimation calculation before correction with a result of a state estimation calculation after correction, and outputs a result close to the system measurement data.
  14.  請求項1に記載の電力系統の状態推定装置の出力値に基づいて系統の安定化計算を行う電力系統の安定化システムにおいて、
     前記状態推定装置の出力値に基づいて、発電機毎の安定性計算を行う安定性計算部と、
     前記安定性計算の結果に基づいて所定の発電機を系統から切り離す電制機を決定する電制機決定部と、を備えること
     を特徴とする電力系統の安定化システム。
    In a power system stabilization system, the system stabilization calculation is performed based on the output value of the power system state estimation device according to claim 1.
    A stability calculation unit that performs stability calculation for each generator based on the output value of the state estimation device;
    And a controller determination unit configured to determine a controller that disconnects a predetermined generator from a grid based on the result of the stability calculation.
  15.  複数の系統計測データに基づいて状態推定計算を行い、
     前記状態推定計算の結果に基づいて現在の系統状態との乖離度を判定し、
     所定の予測値又は計画値、及び前記状態推定計算の結果に基づいて状態推定の補正量分布モデルを作成し、
     前記乖離度が所定の閾値以上の場合に、前記状態推定計算の結果を前記補正量分布モデルに基づいて補正すること
     を特徴とする電力系統の状態推定方法。
    Perform state estimation calculation based on multiple system measurement data,
    Determining the degree of deviation from the current system state based on the result of the state estimation calculation;
    Create a correction amount distribution model of state estimation based on a predetermined predicted value or plan value and the result of the state estimation calculation,
    And correcting the result of the state estimation calculation based on the correction amount distribution model when the deviation degree is equal to or more than a predetermined threshold value.
PCT/JP2017/023861 2017-06-29 2017-06-29 Power system state estimation device and method, and power system stabilization system WO2019003367A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526052A JP7012720B2 (en) 2017-06-29 2017-06-29 Power system state estimation device and method, power system stabilization system
PCT/JP2017/023861 WO2019003367A1 (en) 2017-06-29 2017-06-29 Power system state estimation device and method, and power system stabilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023861 WO2019003367A1 (en) 2017-06-29 2017-06-29 Power system state estimation device and method, and power system stabilization system

Publications (1)

Publication Number Publication Date
WO2019003367A1 true WO2019003367A1 (en) 2019-01-03

Family

ID=64741268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023861 WO2019003367A1 (en) 2017-06-29 2017-06-29 Power system state estimation device and method, and power system stabilization system

Country Status (2)

Country Link
JP (1) JP7012720B2 (en)
WO (1) WO2019003367A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154418A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Device and method for estimating state of distribution system, and program thereof
JP2013219902A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd State estimation method for electric power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154418A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Device and method for estimating state of distribution system, and program thereof
JP2013219902A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd State estimation method for electric power system

Also Published As

Publication number Publication date
JPWO2019003367A1 (en) 2020-03-19
JP7012720B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP6715740B2 (en) Power system power flow monitoring device, power system stabilizing device, and power system power flow monitoring method
US10372569B2 (en) Methods and system for detecting false data injection attacks
Dong et al. Probabilistic load flow analysis for power system containing wind farms
JP6602895B2 (en) Power system model analysis apparatus and method
JP6427090B2 (en) Power generation amount prediction device, power generation amount prediction method, system stabilization device, and system stabilization method
JP4972623B2 (en) Distribution system state estimation apparatus, method and program
WO2019220706A1 (en) Power grid supply and demand adjustment monitoring device and power grid supply and demand adjustment monitoring method
CN109559019B (en) Power system dynamic security assessment method based on risk index
WO2018138973A1 (en) System operation decision-making assistance device and method
US11256278B2 (en) Power system stabilization device and power system stabilization method
WO2019087292A1 (en) Power-system stability analysis device, stabilization apparatus, and method
JP2017200275A (en) Electric power system analyzing system and method
Li et al. A Region-Based Approach for the Operational Reliability Evaluation of Power Systems with Renewable Energy Integration
Li et al. Evaluation of probabilistic model solving methods for modern power electronic distribution networks with wind power integration
CN109861293B (en) Method for evaluating influence of photovoltaic uncertainty on small signal stability of power system
JP2016025715A (en) Power system stabilization system and power system stabilization method
WO2019207935A1 (en) Power system control system and power system control method
Rigoni et al. Estimation of voltage sensitivities in low voltage feeders with photovoltaics
Liemann et al. Probabilistic stability assessment for active distribution grids
WO2019003367A1 (en) Power system state estimation device and method, and power system stabilization system
EP3651296A1 (en) System operation support device and method in power system, and wide-area monitoring protection control system
Fu et al. Phasor measurement application for power system voltage stability monitoring
Karimi et al. Distribution state estimation for smart distribution system
Brinkmann et al. An observability index for distribution networks using information entropy
Arrieta et al. Contingency analysis and risk assessment of small signal instability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915921

Country of ref document: EP

Kind code of ref document: A1