JP2013219902A - State estimation method for electric power system - Google Patents

State estimation method for electric power system Download PDF

Info

Publication number
JP2013219902A
JP2013219902A JP2012087716A JP2012087716A JP2013219902A JP 2013219902 A JP2013219902 A JP 2013219902A JP 2012087716 A JP2012087716 A JP 2012087716A JP 2012087716 A JP2012087716 A JP 2012087716A JP 2013219902 A JP2013219902 A JP 2013219902A
Authority
JP
Japan
Prior art keywords
power system
state estimation
value
state
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012087716A
Other languages
Japanese (ja)
Other versions
JP5915342B2 (en
Inventor
Akihiro Oi
章弘 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012087716A priority Critical patent/JP5915342B2/en
Publication of JP2013219902A publication Critical patent/JP2013219902A/en
Application granted granted Critical
Publication of JP5915342B2 publication Critical patent/JP5915342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a weighted state estimation method for an electric power system in which a weight is set to a proper value.SOLUTION: There is provided a state estimation method for an electric power system that uses a weighted least square method, and determines a weight minimizing the difference between an estimated value determined by state estimation for a certain state amount of the electric power system and a measured value (or a calculated value of load-flow calculation) of the electric power system.

Description

本発明は、重み付き最小二乗法を用いる電力系統の状態推定方法であって、適切な重みを最適化手法にて決定する状態推定方法に関する。   The present invention relates to a power system state estimation method using a weighted least square method, and relates to a state estimation method in which an appropriate weight is determined by an optimization method.

一般に、電力系統のノード(母線)やブランチ(インピーダンス要素)における電力、電流、電圧等の観測値から、各ノードの電圧の振幅(V)や位相(θ)等の電力系統の状態値を計算し、監視するシステムが運用されている。電力系統の観測値には、計測器の計測誤差や、伝送中の遅延または送信トラブル等による誤差が含まれる。従来から、その誤差を除去し電力系統の状態値を推定する手法として、状態推定と呼ばれる手法が適用されている(特許文献1)。   In general, power system state values such as voltage amplitude (V) and phase (θ) of each node are calculated from observations of power, current, voltage, etc. at nodes (busbars) and branches (impedance elements) of the power system. And a monitoring system is in operation. The observation values of the power system include measurement errors of measuring instruments, errors due to delays during transmission or transmission troubles, and the like. Conventionally, a technique called state estimation has been applied as a technique for removing the error and estimating the state value of the power system (Patent Document 1).

状態推定は、観測値z(例えば電力、電流、電圧等)を用いて、重み付き最小二乗法により電力系統の状態値x(例えば電圧の振幅、位相等)を計算する手法である。
観測値ベクトルzを以下で定義する。
The state estimation is a method of calculating a state value x (for example, voltage amplitude, phase, etc.) of the power system by a weighted least square method using an observed value z (for example, power, current, voltage, etc.).
The observation vector z is defined below.

Figure 2013219902
Figure 2013219902

ただし、mは観測値の数、xは電力系統の状態値ベクトル、nは状態値の数、hは観測値から観測誤差を取り除いた関数ベクトル、eは観測誤差ベクトルを示す。
観測値ベクトルzの要素z〜zは、電力(有効電力、無効電力)及び電流、電圧(電圧の振幅(V)、位相(θ))等の測定値である。
Here, m is the number of observation values, x is the state value vector of the power system, n is the number of state values, h is a function vector obtained by removing the observation error from the observation value, and e is the observation error vector.
Elements z 1 to z m of the observed value vector z are measured values of power (active power, reactive power), current, voltage (voltage amplitude (V), phase (θ)), and the like.

状態値ベクトルxの要素x〜xnは、電力系統で推定したい状態量、例えば電圧(電圧の振幅(V)、位相(θ))等の物理量である。
関数ベクトルh〜hは、観測値zと状態値xの関係を表す、回路方程式から導かれる非線形関数である。
Elements x 1 to x n of the state value vector x are physical quantities such as voltage (voltage amplitude (V), phase (θ)) that are to be estimated by the power system.
Function vector h 1 to h m represents the relationship between the observed value z and a state value x, which is a nonlinear function derived from the circuit equation.

観測誤差ベクトルの要素e〜eは、各観測値に含まれる誤差を表す。
重み付き最小二乗法を用いた電力系統の状態推定方法とは、以下の2式に示す目的関数J(x)を最小化することによって、推定値xの解を求めるものである。
Element e 1 to e m of the observation error vector represents the error included in each observation.
The state estimation method of the power system using the weighted least square method is to obtain a solution of the estimated value x by minimizing an objective function J (x) shown in the following two equations.

Figure 2013219902
Figure 2013219902

ただし、Rは、例えば3式に示すような重み行列とする。   However, R is a weighting matrix as shown in Equation 3, for example.

Figure 2013219902
Figure 2013219902

重み行列Rの要素w〜wは、各測定値(観測値)の精度の違いを考慮するために設定され、一般的には観測値ziに対する分散σi 2を用いる。なお、非対象要素は0でなくても構わない。その場合、重み行列Rは各測定値の共分散行列となる。 Elements w 1 to w m of the weight matrix R are set in order to take into account the difference in accuracy of each measured value (observed value), and generally the variance σ i 2 with respect to the observed value z i is used. The non-target element may not be 0. In that case, the weight matrix R is a covariance matrix of each measurement value.

2式の目的関数を最小化した解xは、以下の式を満たす。   A solution x obtained by minimizing the objective function of the two equations satisfies the following equation.

Figure 2013219902
Figure 2013219902

ただし、Hは、δh(x)/δxである。
δh(x)/δxをテイラー展開し、一次までの項を考慮すると、xについて以下の式が成り立つ。
Here, H is δh (x) / δx.
When Taylor expansion is performed on δh (x) / δx and the terms up to the first order are taken into consideration, the following equation holds for x.

Figure 2013219902
Figure 2013219902

ただし、kは0を初期値とする反復回数である。
0に適当な初期値を与え(例えば、電圧ならば振幅を1、位相角を0とする等)、xが収束するまで反復計算を行うことで、電力系統の状態値を推定することができる。
Here, k is the number of iterations with 0 as an initial value.
An appropriate initial value is given to x 0 (for example, if the voltage is 1, the amplitude is 1 and the phase angle is 0), and iterative calculation is performed until x converges, thereby estimating the state value of the power system. it can.

しかしながら、状態推定を行うために、3式の重み行列Rの各要素を設定する必要がある。従来は、分散σi 2の値を用いつつも、測定値の誤差と数値計算の収束性を考慮しながら試行錯誤的に求める必要があり、手間がかる等の問題があった。 However, in order to perform state estimation, it is necessary to set each element of the three weight matrices R. Conventionally, it has been necessary to obtain the value of variance σ i 2 by trial and error in consideration of the error of the measurement value and the convergence of the numerical calculation, and there has been a problem such as being troublesome.

その問題を解決するために、特許文献2では、系統の接続状態(ブランチのインピーダンスの大小)を反映したヤコビアンの要素を用いて、重みを自動で計算する方法を提案している。
また、特許文献3では、重み行列Rの要素wを最適化変数として扱い、状態推定の最小二乗法と重みwに関する最適化問題を交互に解くことで、重みの値を変化させ、重みの値の大小により不良データ(不良計測値)を検出する方法が開示されている。この方法によると重みを設定する必要はなく、状態推定を行うことができる。
In order to solve the problem, Patent Document 2 proposes a method of automatically calculating weights using a Jacobian element reflecting the connection state of the system (branch impedance magnitude).
In Patent Document 3, an element w of the weight matrix R is treated as an optimization variable, and the weight value is changed by alternately solving the optimization problem related to the least square method of state estimation and the weight w. Discloses a method of detecting defect data (defect measurement value) based on the size of. According to this method, it is not necessary to set a weight and state estimation can be performed.

特開平6−327155号公報JP-A-6-327155 特開昭63−73831号公報JP-A-63-73831 特開昭61−231837号公報JP 61-231837 A

しかしながら、特許文献2に記載の発明は、系統の接続状態(電源や負荷等の構成)に拠った重みの設定方法であり、実際に測定した観測値データ等を考慮していないため、実運用上精度に課題がある。   However, the invention described in Patent Document 2 is a weight setting method based on the connection state of the system (configuration of power supply, load, etc.), and does not consider actually measured observation data etc. There is a problem with high accuracy.

特許文献3に記載の発明は、重みの値を変化させることによって不良データを検出することを目的としており、その重みの値そのものが状態推定をする上で適切な値となっているかどうかを評価する機構を持っていない。また、特許文献3に記載の発明は、新しく設定した目的関数にパラメータαが追加されているため、重みの調整は要らないがパラメータαをなんらかの方法で適切に調整しなければならない。   The invention described in Patent Document 3 aims to detect defective data by changing the weight value, and evaluates whether the weight value itself is an appropriate value for state estimation. I do not have a mechanism to do. In the invention described in Patent Document 3, since the parameter α is added to the newly set objective function, adjustment of the weight is not necessary, but the parameter α must be appropriately adjusted by some method.

本発明は、上記の課題を解決するものであり、電力系統の重み付き状態推定方法における重みを適切な値に設定するものである。   This invention solves said subject and sets the weight in the weighted state estimation method of an electric power system to an appropriate value.

前述した課題を解決する請求項1に係る本発明は、重み付き最小二乗法を用いる電力系統の状態推定方法であって、電力系統のある状態量に対する状態推定で求めた推定値と計測して得た計測値との差を計算し、その差を最小とするような重みを求めることを特徴とする電力系統の状態推定方法である。   The present invention according to claim 1, which solves the above-mentioned problem, is a power system state estimation method using a weighted least squares method, and measures an estimated value obtained by state estimation for a certain state quantity of the power system. A power system state estimation method characterized by calculating a difference from an obtained measurement value and obtaining a weight that minimizes the difference.

前述した課題を解決する請求項4に係る本発明は、重み付き最小二乗法を用いる電力系統の状態推定方法であって、電力系統のある状態量に対する状態推定で求めた推定値と潮流計算で求めた計算値との差を最小とするような重みを求めることを特徴とする電力系統の状態推定方法である。   The present invention according to claim 4 that solves the above-described problem is a power system state estimation method that uses a weighted least square method, and includes an estimated value obtained by state estimation for a certain state quantity of the power system and a power flow calculation. A power system state estimation method characterized in that a weight that minimizes a difference from a calculated value is obtained.

本発明の状態推定方法によれば、試行錯誤をすることなく、重みを適切な値に設定し、状態推定を行うことができる。   According to the state estimation method of the present invention, it is possible to perform state estimation by setting weights to appropriate values without trial and error.

状態推定方法を実現するシステム構成図である。It is a system block diagram which implement | achieves a state estimation method. 状態推定の計算手順を示すフローチャート(実施例1)である。It is a flowchart (Example 1) which shows the calculation procedure of a state estimation. 状態推定の計算手順を示すフローチャート(実施例2)である。It is a flowchart (Example 2) which shows the calculation procedure of a state estimation. 状態推定の計算手順を示すフローチャート(実施例3)である。10 is a flowchart (third embodiment) illustrating a calculation procedure of state estimation. 本発明の状態推定過程の状態量推移イメージ図である。It is a state quantity transition image figure of the state estimation process of this invention.

以下、図1に基づいて、本発明の一実施形態における状態推定方法を実現するためのシステム構成とその概要を説明する。なお、図1は状態推定方法を実現するためのシステムの構成を表す。   Hereinafter, based on FIG. 1, the system configuration and the outline | summary for implement | achieving the state estimation method in one Embodiment of this invention are demonstrated. FIG. 1 shows a system configuration for realizing the state estimation method.

図1において、100は電力系統、200は状態推定方法を実現するためのシステム、10は観測値収集部、20は状態推定部、30は潮流計算部、40は目的関数作成部、50は最適化実行部、60は出力部である。   In FIG. 1, 100 is a power system, 200 is a system for realizing a state estimation method, 10 is an observation value collection unit, 20 is a state estimation unit, 30 is a power flow calculation unit, 40 is an objective function creation unit, and 50 is optimal. The conversion execution unit 60 is an output unit.

本発明の状態推定方法が特徴とするところは、状態推定部20で計算した推定値と、観測値収集部10で計測した計測値(または潮流計算部30で計算した計算値)との差を求め、その差を最小とするように重みRを決定する点にある。   The state estimation method of the present invention is characterized by the difference between the estimated value calculated by the state estimating unit 20 and the measured value measured by the observation value collecting unit 10 (or the calculated value calculated by the tidal current calculating unit 30). The weight R is determined so as to minimize the difference.

図2を用いて実施例1の処理の流れを説明する。
ステップS11にて、観測値収集部10は、電力系統100の状態値(電力、電流、電圧(振幅、位相))を、時刻t0〜t1まで、m点の計測点で計測し、計測した値を電力系統観測値z(z1 〜z :時刻tにおけるm個の観測値)とする。
The processing flow of the first embodiment will be described with reference to FIG.
In step S11, the observed value collection unit 10 measures the state values (power, current, voltage (amplitude, phase)) of the power system 100 at m measurement points from time t0 to time t1. Is the power system observation value z t (z 1 t to z m t : m observation values at time t).

ステップS12にて、観測値収集部10は、電力系統100の状態値(後述する電力系統測定値xに対応した物理量)を、時刻t0〜t1まで、n点の計測点で計測し、電力系統測定値y(y1 〜y :時刻tにおけるn個の計測値)とする。 In step S12, the observation value acquisition unit 10, the state value of the power system 100 (physical quantity corresponding to the later-described power system measurements x t), to the time t0 to t1, measured at measurement point n points, power System measurement value y t (y 1 t to y n t : n measurement values at time t).

ステップS13にて、目的関数作成部40は、電力系統推定値xと電力系統測定値yから、重みRに対する最小化すべき目的関数F(R)を6式のように作成する。 In step S13, the objective function creating section 40 creates a power system estimates x t and power system measurements y t, the objective function F to be minimized with respect to the weight R and (R) as equation (6).

Figure 2013219902
Figure 2013219902

なお‖ ‖は、ベクトルのノルムを表す。ここでのノルムとは、6式の展開のようにベクトルをスカラーに変換することを指す。また、xt0〜xt1(時刻tにおける推定値ベクトルx)は、後述するステップS14にて各時刻ごとの状態推定で得た推定値とする。 Note that ‖ ベ ク ト ル represents the norm of the vector. The norm here refers to converting a vector into a scalar as in the expansion of equation (6). Further, x t0 to x t1 (estimated value vector x at time t) are assumed to be estimated values obtained by state estimation at each time in step S14 described later.

ステップS14にて、最適化実行部50は、目的関数F(R)を最適化変数である重み行列Rについてなんらかの最適化手法を用いて解く。最適化手法としては、目的関数F(R)が非線形関数となるため、例えば非線形計画法や、遺伝的アルゴリズムのようなメタヒューリスティクスと呼ばれる最適化手法が考えられる。ステップS14では、最適化手法の収束条件を満たすまで、状態推定と目的関数の計算を繰り返し行う。   In step S14, the optimization execution unit 50 solves the objective function F (R) for the weighting matrix R that is an optimization variable by using some kind of optimization method. As an optimization method, since the objective function F (R) is a nonlinear function, for example, an optimization method called a metaheuristic such as nonlinear programming or a genetic algorithm can be considered. In step S14, state estimation and objective function calculation are repeated until the convergence condition of the optimization method is satisfied.

その繰り返し計算では、重みRを変化させた場合の推定値xは、各時刻における電力系統観測値zと重みRを入力として、時刻t0〜t1までの電力系統推定値x(x1 〜x :時刻tにおけるn個の推定値)として計算する。その状態推定で得た推定値xを目的関数F(R)に代入することにより、重みRを変化させた場合の評価値を得る。 In the repetitive calculation, the estimated value x when the weight R is changed is obtained by using the power system observation value z t and the weight R at each time as input, and the power system estimated value x t (x 1 t from time t0 to t1). ˜x n t : n estimated values at time t). By substituting the estimated value x obtained by the state estimation into the objective function F (R), an evaluation value when the weight R is changed is obtained.

なお、重みRは各時刻ごとに異なる値を設定できるようにしてもよい。その場合は、すべての時刻で異なった重みRを持ち、すべての重みRを最適化変数とすることで各重みRを求めることができる。また、前回以前の状態推定にて、ある時刻での重みRが得られていればその重みRは得られている値に固定し、値が求まっていない重みR(最新の時刻での重みR)のみを最適化変数としてもよい。   The weight R may be set to a different value for each time. In that case, each weight R can be obtained by having different weights R at all times and using all the weights R as optimization variables. Further, if the weight R at a certain time is obtained in the state estimation before the previous time, the weight R is fixed to the obtained value, and the weight R for which the value has not been obtained (the weight R at the latest time). ) May be the optimization variables.

最後に、ステップS15にて、ステップS14で求めた最適解Rとその重みRで状態推定を行ったときの推定値とを出力部60が出力をし、終了する。
上記では、時刻t0〜t1までの間の推定値および計測値について最適化を説明したが、ある時刻t0から現在時刻までの間の最適化を行うことで、現在時刻までで得られたデータを元によりリアルタイムに近い運用に沿った状態推定を行うことができる。
Finally, in step S15, the output unit 60 outputs the optimum solution R obtained in step S14 and the estimated value when the state estimation is performed with the weight R, and the process ends.
In the above, the optimization has been described for the estimated value and the measured value from time t0 to t1, but the data obtained up to the current time can be obtained by performing the optimization from time t0 to the current time. It is possible to estimate the state along the operation that is closer to real time.

上記で説明した目的関数F(R)を最小とするような最適解Rを求めるとは、図5に示すような各状態量の計測値と推定値の差の総和(グラフの線間の面積)を少なくするようなイメージである。   The optimum solution R that minimizes the objective function F (R) described above is obtained by summing the difference between the measured value and estimated value of each state quantity as shown in FIG. ).

本発明の実施例1は、上記のように各状態量の計測値と推定値の差をとることで、状態推定を行う上で重みRが適切な値であるかを評価し、その差を最小とするように重みRを決定することで、状態推定を行う上で最も適切な重みRを設定することができる。   The first embodiment of the present invention evaluates whether the weight R is an appropriate value in estimating the state by taking the difference between the measured value and the estimated value of each state quantity as described above. By determining the weight R so as to be minimized, it is possible to set the most appropriate weight R in estimating the state.

実施例1では目的関数F(R)を作成する上で測定値yを用いていたが、実施例2では、潮流計算で求めた計算値を用いる点が異なる。
以下に図3を用いて、実施例2の処理の流れを説明する。
In the first embodiment, the measured value y is used to create the objective function F (R). However, the second embodiment is different in that the calculated value obtained by the power flow calculation is used.
The processing flow of the second embodiment will be described below with reference to FIG.

ステップS21にて、観測値収集部10は、電力系統100の状態値(電力、電流、電圧(振幅、位相))を、時刻t0〜t1まで、m点の計測点で計測し、計測した値を電力系統観測値z(z1 〜z :時刻tにおけるm個の観測値)とする。 In step S21, the observation value collection unit 10 measures the state values (power, current, voltage (amplitude, phase)) of the power system 100 at m measurement points from time t0 to time t1. Is the power system observation value z t (z 1 t to z m t : m observation values at time t).

ステップS22にて、潮流計算部30は、電力系統観測値z入力とし、電力系統推定値xに対応した物理量を潮流計算から求め、その計算値を電力系統計算値w(w1 〜w :時刻tにおけるn個の計算値)とする。 In step S22, the power flow calculation unit 30 uses the power system observation value z t as input, obtains a physical quantity corresponding to the power system estimated value x t from the power flow calculation, and calculates the calculated value to the power system calculation value w t (w 1 t ˜w n t : n calculated values at time t).

ステップS23にて、目的関数作成部40は、電力系統推定値xと電力系統計算値wから、重みRに対する最小化すべき目的関数F(R)を7式のように作成する。 In step S23, the objective function creating section 40 creates a power system estimates x t and power system calculated value w t, the objective function F (R) should be minimized for weight R as Equation 7.

Figure 2013219902
Figure 2013219902

なお、xt0〜xt1(時刻tにおける推定値ベクトルx)は、後述するステップS24にて各時刻ごとの状態推定で得た推定値とする。
ステップS24にて、最適化実行部50は、目的関数F(R)を最適化変数である重み行列Rについてなんらかの最適化手法を用いて解く。詳細は実施例1と同様である。
Note that x t0 to x t1 (estimated value vector x at time t) are estimated values obtained by state estimation at each time in step S24 described later.
In step S24, the optimization execution unit 50 solves the objective function F (R) for the weighting matrix R that is an optimization variable by using some optimization technique. Details are the same as in the first embodiment.

最後に、ステップS25にて、ステップS24で求めた最適解Rとその重みRで状態推定を行ったときの推定値とを出力部60が出力をし、状態推定を終了する。
上記で説明した目的関数F(R)を最小とするような最適解Rを求めることとは、各状態量の潮流計算による計算値と推定値の差を少なくするようなイメージである。
Finally, in step S25, the output unit 60 outputs the optimum solution R obtained in step S24 and the estimated value when the state estimation is performed with the weight R, and the state estimation is terminated.
Obtaining the optimal solution R that minimizes the objective function F (R) described above is an image that reduces the difference between the calculated value and the estimated value obtained by the power flow calculation of each state quantity.

本発明の実施例2は、上記のように各状態量の計算値と推定値の差をとることで、状態推定を行う上で重みRが適切な値であるかを評価し、その差を最小とするように重みRを決定することで、状態推定を行う上で最も適切な重みRを設定することができる。   The second embodiment of the present invention evaluates whether the weight R is an appropriate value in estimating the state by taking the difference between the calculated value of each state quantity and the estimated value as described above, and calculates the difference. By determining the weight R so as to be minimized, it is possible to set the most appropriate weight R in estimating the state.

実施例2では、実施例1で必要なデータである、推定値に対応した測定値を用いないため、推定値の物理量に対応した測定値が得られなかった場合にも本発明を実行することができる。   In the second embodiment, since the measurement value corresponding to the estimated value, which is the data necessary in the first embodiment, is not used, the present invention is executed even when the measurement value corresponding to the physical quantity of the estimated value is not obtained. Can do.

実施例3では、バッドデータの影響をより少なくし、状態推定の精度を向上させることを目的として、状態推定で得た情報からバッドデータを推定し、観測値からバッドデータを除き、次回以降の状態推定を行うようにした。なお、バッドデータとは、誤差ではなく、計測不良で得た計測値のことであり、明らかに正しくない値を持つ計測値(観測値)のことを指す。   In the third embodiment, for the purpose of reducing the influence of bad data and improving the accuracy of state estimation, the bad data is estimated from the information obtained by the state estimation, and the bad data is excluded from the observed values. State estimation was performed. The bad data is not an error but a measured value obtained by measurement failure, and a measured value (observed value) having a clearly incorrect value.

以下に図4を用いて、実施例3の処理の流れを説明する。
ステップS31にて、観測値収集部10は、電力系統100の状態値(電力、電流、電圧(振幅、位相))を、時刻t0〜t1まで、m点の計測点で計測し、計測した値を電力系統観測値z(z1 〜z :時刻tにおけるm個の観測値)とする。
The process flow of the third embodiment will be described below with reference to FIG.
In step S31, the observed value collection unit 10 measures the state values (power, current, voltage (amplitude, phase)) of the power system 100 at m measurement points from time t0 to time t1, and the measured values. Is the power system observation value z t (z 1 t to z m t : m observation values at time t).

ステップS32にて、観測値収集部10は、電力系統100の状態値(後述する電力系統測定値xに対応した物理量)を、時刻t0〜t1まで、n点の計測点で計測し、電力系統測定値y(y1 〜y :時刻tにおけるn個の計測値)とする。 In step S32, the observation value acquisition unit 10, the state value of the power system 100 (physical quantity corresponding to the later-described power system measurements x t), to the time t0 to t1, measured at measurement point n points, power System measurement value y t (y 1 t to y n t : n measurement values at time t).

ステップS33にて、目的関数作成部40は、電力系統推定値xと電力系統測定値yから、重みRに対する最小化すべき目的関数F(R)を8式のように作成する。 In step S33, the objective function creating section 40 creates a power system estimates x t and power system measurements y t, the objective function F to be minimized with respect to the weight R and (R) as Formula 8.

Figure 2013219902
Figure 2013219902

なお、xt0〜xt1(時刻tにおける推定値ベクトルx)は、後述するステップS34にて各時刻ごとの状態推定で得た推定値とする。
ステップS34にて、最適化実行部50は、目的関数F(R)を最適化変数である重み行列Rについてなんらかの最適化手法を用いて解く。詳細は実施例1とほぼ同様であるが、実施例3では、ある時刻における状態推定を行う際に、前回の状態推定の情報から推定したバットデータを、電力系統観測値zから除いて、状態推定を行う。観測値からバッドデータを除くにあたって、バッドデータに係る重みや関数ベクトルh、ヤコビアンHのサイズが小さくなるので、おのおの更新を行う。
Note that x t0 to x t1 (estimated value vector x at time t) are estimated values obtained by state estimation at each time in step S34 described later.
In step S34, the optimization execution unit 50 solves the objective function F (R) for the weighting matrix R that is an optimization variable by using some optimization technique. The details are substantially the same as in the first embodiment, but in the third embodiment, when performing state estimation at a certain time, the bat data estimated from the previous state estimation information is removed from the power system observation value z t , Perform state estimation. When the bad data is removed from the observed values, the weights related to the bad data, the function vector h, and the size of the Jacobian H are reduced, so that each update is performed.

最後に、ステップS35にて、ステップS34で求めた最適解Rとその重みRで状態推定を行ったときの推定値を出力部60が出力をし、状態推定を終了する。
本発明の実施例3は、上記のように各状態量の計測値と推定値の差をとることで、状態推定を行う上で重みRが適切な値であるかを評価し、その差を最小とするように重みRを決定することで、状態推定を行う上で最も適切な重みRを設定することができる。また本発明の実施例3は、状態推定で用いる観測値にバッドデータを除いた値を用いることにより、より精度の高い状態推定を行うことができる。
Finally, in step S35, the output unit 60 outputs the estimated value when the state estimation is performed with the optimum solution R and the weight R obtained in step S34, and the state estimation ends.
The third embodiment of the present invention evaluates whether the weight R is an appropriate value in estimating the state by taking the difference between the measured value and the estimated value of each state quantity as described above. By determining the weight R so as to be minimized, it is possible to set the most appropriate weight R in estimating the state. In the third embodiment of the present invention, more accurate state estimation can be performed by using a value excluding bad data as an observation value used in state estimation.

本発明の実施例1〜3は、重み付き最小二乗法を用いた電力系統の状態推定に本発明を適用した例であるが、本発明は重み付き最小二乗法に限らず、計測値ごとに重みを用いて状態推定を行う手法について適用可能である。例えば、重み行列Rが共分散行列であった場合は拡大行列法や線形計画法を用いて状態推定を解くことが考えられるが、その場合の重みの決定においても本発明は適用できる。   Embodiments 1 to 3 of the present invention are examples in which the present invention is applied to power system state estimation using the weighted least squares method, but the present invention is not limited to the weighted least squares method, but for each measurement value. It can be applied to a method for estimating a state using weights. For example, when the weight matrix R is a covariance matrix, it is conceivable to solve the state estimation using an extended matrix method or linear programming, but the present invention can also be applied to the determination of the weight in that case.

10 観測値収集部
20 状態推定部
30 潮流計算部
40 目的関数作成部
50 最適化実行部
60 出力部
100 電力系統
200 状態推定方法を実現するためのシステム
DESCRIPTION OF SYMBOLS 10 Observation value collection part 20 State estimation part 30 Power flow calculation part 40 Objective function creation part 50 Optimization execution part 60 Output part 100 Power system 200 The system for implement | achieving a state estimation method

Claims (6)

重み付き計算手法を用いる電力系統の状態推定方法であって、
電力系統の状態量を状態推定で求めた推定値と該状態量を計測して得た計測値との差を計算し、その差を最小とするような重みを求めることを特徴とする電力系統の状態推定方法。
A power system state estimation method using a weighted calculation method,
A power system characterized by calculating a difference between an estimated value obtained by state estimation of a state quantity of the power system and a measured value obtained by measuring the state quantity, and obtaining a weight that minimizes the difference. State estimation method.
重み付き計算手法を用いる電力系統の状態推定方法であって、
所定の時間内の時刻において、電力系統の状態量を状態推定で求めた推定値と該状態量を計測して得た計測値との差を複数の時刻について計算し、その差の総和を最小とするような重みを求めることを特徴とする電力系統の状態推定方法。
A power system state estimation method using a weighted calculation method,
Calculate the difference between the estimated value obtained by state estimation of the state quantity of the power system and the measured value obtained by measuring the state quantity for a plurality of times at the time within a predetermined time, and minimize the sum of the differences. A power system state estimation method characterized by obtaining a weight such as
重み付き計算手法を用いる電力系統の状態推定方法であって、
電力系統の状態量を状態推定で求めた推定値と該状態量を潮流計算で求めた計算値との差を最小とするような重みを求めることを特徴とする電力系統の状態推定方法。
A power system state estimation method using a weighted calculation method,
A method for estimating a state of a power system, characterized in that a weight that minimizes a difference between an estimated value obtained by state estimation of the state quantity of the power system and a calculated value obtained by calculating the state quantity by power flow calculation is obtained.
重み付き計算手法を用いる電力系統の状態推定方法であって、
所定の時間内の時刻において、電力系統の状態量を状態推定で求めた推定値と該状態量を潮流計算で求めた計算値との差を複数の時刻について計算し、その差の総和を最小とするような重みを求めることを特徴とする電力系統の状態推定方法。
A power system state estimation method using a weighted calculation method,
Calculate the difference between the estimated value obtained from the state estimation of the power system by state estimation and the calculated value obtained from the tidal current calculation for multiple times at the time within a predetermined time, and minimize the sum of the differences. A power system state estimation method characterized by obtaining a weight such as
前記重み付き計算手法は、重み付き最小二乗法であることを特徴とする、請求項1〜4のいずれか一項に記載の電力系統の状態推定方法。   5. The power system state estimation method according to claim 1, wherein the weighted calculation method is a weighted least square method. 6. 請求項1〜5のいずれか一項に記載の電力系統の状態推定方法であって、
前記推定値を求める際に、状態推定で特定したバッドデータを除いた観測値を用いることを特徴とする電力系統の状態推定方法。
It is the state estimation method of the electric power system as described in any one of Claims 1-5,
A state estimation method for a power system characterized by using observed values excluding bad data specified by state estimation when obtaining the estimated value.
JP2012087716A 2012-04-06 2012-04-06 Power system state estimation method Active JP5915342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087716A JP5915342B2 (en) 2012-04-06 2012-04-06 Power system state estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087716A JP5915342B2 (en) 2012-04-06 2012-04-06 Power system state estimation method

Publications (2)

Publication Number Publication Date
JP2013219902A true JP2013219902A (en) 2013-10-24
JP5915342B2 JP5915342B2 (en) 2016-05-11

Family

ID=49591395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087716A Active JP5915342B2 (en) 2012-04-06 2012-04-06 Power system state estimation method

Country Status (1)

Country Link
JP (1) JP5915342B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092212A (en) * 2014-07-24 2014-10-08 河海大学 Electric system multi-domain distributed state estimation method based on PMU measurement
CN104102836A (en) * 2014-07-14 2014-10-15 国家电网公司 Method for quickly estimating robust state of power system
CN104809339A (en) * 2015-04-22 2015-07-29 华南理工大学 Method for identifying active bad data of SCADA (supervisory control and data acquisition) system power grid based on active balance
CN105391062A (en) * 2015-12-07 2016-03-09 国网浙江省电力公司宁波供电公司 Direct-current power flow model based active power bad data identification method
JP2017034739A (en) * 2015-07-28 2017-02-09 株式会社ダイヘン System impedance estimation device, inverter and system impedance estimation method
WO2019003367A1 (en) * 2017-06-29 2019-01-03 株式会社日立製作所 Power system state estimation device and method, and power system stabilization system
CN110441669A (en) * 2019-06-27 2019-11-12 合肥工业大学 The gradual failure diagnosis of uncertain sophisticated circuitry system and life-span prediction method
CN112803402A (en) * 2021-02-23 2021-05-14 重庆大学 Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273130A (en) * 1985-05-24 1986-12-03 三菱電機株式会社 State estimate system of power system
JPS6373831A (en) * 1986-09-16 1988-04-04 株式会社日立製作所 Method of estimating conditions of power system
JPH06327155A (en) * 1993-05-10 1994-11-25 Toshiba Corp Remote supervisory unit for power system
JP2008154418A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Device and method for estimating state of distribution system, and program thereof
JP2008236876A (en) * 2007-03-19 2008-10-02 Toshiba Corp Power quality evaluation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273130A (en) * 1985-05-24 1986-12-03 三菱電機株式会社 State estimate system of power system
JPS6373831A (en) * 1986-09-16 1988-04-04 株式会社日立製作所 Method of estimating conditions of power system
JPH06327155A (en) * 1993-05-10 1994-11-25 Toshiba Corp Remote supervisory unit for power system
JP2008154418A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Device and method for estimating state of distribution system, and program thereof
JP2008236876A (en) * 2007-03-19 2008-10-02 Toshiba Corp Power quality evaluation system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102836A (en) * 2014-07-14 2014-10-15 国家电网公司 Method for quickly estimating robust state of power system
CN104092212A (en) * 2014-07-24 2014-10-08 河海大学 Electric system multi-domain distributed state estimation method based on PMU measurement
CN104809339A (en) * 2015-04-22 2015-07-29 华南理工大学 Method for identifying active bad data of SCADA (supervisory control and data acquisition) system power grid based on active balance
CN104809339B (en) * 2015-04-22 2018-01-05 华南理工大学 SCADA system electric network active bad data recognition methods based on active balance
JP2017034739A (en) * 2015-07-28 2017-02-09 株式会社ダイヘン System impedance estimation device, inverter and system impedance estimation method
CN105391062A (en) * 2015-12-07 2016-03-09 国网浙江省电力公司宁波供电公司 Direct-current power flow model based active power bad data identification method
WO2019003367A1 (en) * 2017-06-29 2019-01-03 株式会社日立製作所 Power system state estimation device and method, and power system stabilization system
JPWO2019003367A1 (en) * 2017-06-29 2020-03-19 株式会社日立製作所 Power system state estimation apparatus and method, power system stabilization system
JP7012720B2 (en) 2017-06-29 2022-01-28 株式会社日立製作所 Power system state estimation device and method, power system stabilization system
CN110441669A (en) * 2019-06-27 2019-11-12 合肥工业大学 The gradual failure diagnosis of uncertain sophisticated circuitry system and life-span prediction method
CN110441669B (en) * 2019-06-27 2021-09-17 合肥工业大学 Gradual fault diagnosis and service life prediction method for uncertain hybrid circuit system
CN112803402A (en) * 2021-02-23 2021-05-14 重庆大学 Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing
CN112803402B (en) * 2021-02-23 2023-03-31 重庆大学 Radiation network forward-push back substitution robust state estimation method containing bad data preprocessing

Also Published As

Publication number Publication date
JP5915342B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5915342B2 (en) Power system state estimation method
JP4705563B2 (en) Distribution system state estimation device, state estimation method and program thereof
JP4972623B2 (en) Distribution system state estimation apparatus, method and program
CN111313405B (en) Medium-voltage distribution network topology identification method based on multiple measurement sections
JP4148208B2 (en) Distribution system state estimation device, method and program
JP6314543B2 (en) Method and apparatus for estimating state of charge of storage battery
JP6756603B2 (en) Power system state estimation device and state estimation method
JP2021136745A (en) State estimation device, state estimation program, state estimation method
CN110502842B (en) Thermal model modeling method of power semiconductor module and application method and device thereof
JP5464908B2 (en) Power system impedance estimation apparatus and power system impedance estimation method
Onwuachumba et al. New reduced model approach for power system state estimation using artificial neural networks and principal component analysis
JP6858271B2 (en) Power system stability analyzers, stabilizers and methods
JP6067289B2 (en) Reduced model creation device, creation method and creation program for power system
Pegoraro et al. On the uncertainty evaluation in distribution system state estimation
CN105528735B (en) Bearing calibration based on the exceptional data point for measuring wind speed and spatial coherence
KR100943617B1 (en) Estimating apparatus of harmonic state and estimation method for harmonic state
Cruz et al. Overview of voltage sag profile estimation
JP5943277B2 (en) Fuel cell system impedance calculation method, and fuel cell vehicle equipped with an impedance calculator for executing the impedance calculation method
JP2015077034A (en) State estimation device for power system
JP5949232B2 (en) Power system monitoring system, abnormality estimation method for the estimated value, and program thereof
CN109327026B (en) Low-voltage distribution network interval state estimation method
RU2611259C1 (en) Automated device for determining limit modes of electrical systems
CN110909493A (en) Voltage sag evaluation method based on sag domain analysis
Danner et al. State estimation in the power distribution system
CN110445357B (en) Harmonic current suppression method for grid-connected inverter and readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250