WO2019001303A1 - 一种锂离子电池模组和大容量锂离子电池 - Google Patents

一种锂离子电池模组和大容量锂离子电池 Download PDF

Info

Publication number
WO2019001303A1
WO2019001303A1 PCT/CN2018/091768 CN2018091768W WO2019001303A1 WO 2019001303 A1 WO2019001303 A1 WO 2019001303A1 CN 2018091768 W CN2018091768 W CN 2018091768W WO 2019001303 A1 WO2019001303 A1 WO 2019001303A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bracket
conductive
lithium ion
ion battery
Prior art date
Application number
PCT/CN2018/091768
Other languages
English (en)
French (fr)
Inventor
许玉林
龚晓冬
王爱淑
娄豫皖
顾江娜
张旭
许祎凡
Original Assignee
苏州安靠电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州安靠电源有限公司 filed Critical 苏州安靠电源有限公司
Publication of WO2019001303A1 publication Critical patent/WO2019001303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technologies, and in particular, to a lithium ion battery module and a lithium ion large capacity battery composed of a plurality of such battery modules.
  • Lithium-ion rechargeable batteries are the batteries with the highest energy consumption and the longest service life.
  • the technology is mature and the production volume is huge. It has entered various fields of people's lives.
  • the existing cylindrical lithium ion battery module generally comprises a battery fixture with a full insulating material and a plurality of battery insertion holes, a plurality of battery serial pieces embedded in each battery insertion hole, and embedded in each battery insertion hole. And a plurality of battery cells which are connected in series with each battery in series and are respectively connected in the respective battery insertion holes and connected to the corresponding battery series sheets (direct contact connection or soldering).
  • the battery cells are connected in parallel with each other by means of the aforementioned parallel interconnection, and the series connection piece is connected in series with the battery cell inserted into the other side of the battery fixture, so that a plurality of battery modules are assembled together to form a large-capacity lithium ion. battery.
  • the method of battery assembly in most enterprises still uses the thin metal connecting piece and the positive and negative electrodes of the battery to be connected in series and in parallel.
  • the connecting piece is thin, narrow and long, has poor electrical conductivity, high connection resistance, and high energy consumption.
  • the energy consumption is turned into heat, which promotes the rise of the battery temperature. An increase in temperature will shorten the life of the battery. Not to mention the potential hazards associated with negative soldering.
  • Zhang Hengyun et al. proposed in Chinese patent application CN201610144883.2 to add a heat conducting sleeve and a heat pipe to the battery, and discharge the heat with a tempering gas or liquid.
  • the maximum temperature difference of the battery in different positions is reduced to only 1.5 ° C when charging at a high current.
  • Gu Huanlong et al. proposed in Chinese patent application CN2009102097104 to inject thermal adhesive into the battery pack, which also has a good effect.
  • the connecting piece is used to solder the positive and negative electrodes to make a combined connection, and the connection resistance is high.
  • the welding heat is transmitted to the inside of the battery, and the core member such as the diaphragm plate is close to the welded portion, and they are all afraid of heat. If they are burnt, it is possible to develop an internal short circuit during use.
  • the internal short circuit has the risk of being turned into thermal runaway, and thermal runaway is an important cause of fire and explosion.
  • the components welded by the connecting piece are loose, and it is difficult to move during operation, and the large part is more difficult to process, and is not suitable for mechanized work.
  • the negative electrode is removed by a spring piece (separated piece with claws), but it is troublesome to expand outward with the dovetail and the dovetail groove, and the heat dissipation is not so good.
  • the heat-dissipating heat pipe and the heat-conducting rubber have good heat dissipation effect, but these additional parts have no other use except temperature adjustment, which increases cost and complexity.
  • the porous parallel frame has good electrical conductivity and good heat dissipation, but dozens of holes are simultaneously punched and stretched, which is difficult to process.
  • the elastic claws are short, so the elastic force is difficult to control, and the inserted battery is also easily skewed.
  • the purpose of the present application is: for the above technical problem, the present application proposes a lithium ion battery module that is compact, stable, easy to assemble, and has good heat dissipation, and also proposes a lithium ion battery module assembled from the same. Large capacity lithium ion battery.
  • a lithium ion battery module comprising:
  • the battery fixture includes an insulating bracket on the lower layer and a conductive bracket on the upper layer, the insulating bracket is closely arranged and fixedly connected to the conductive bracket, and the insulating bracket is formed with a plurality of insulating bracket holes, the conductive The bracket is formed with a plurality of conductive bracket holes, and the insulating bracket holes and the conductive bracket holes jointly form the battery insertion hole, and the battery serial piece is elastically contacted with the hole wall of the conductive bracket hole.
  • the application further includes the following preferred solutions:
  • the upper end of the axis of the insulating bracket hole is formed with a ring-shaped annular flange protruding radially inward.
  • the conductive support is made of a metal material, and more preferably made of aluminum.
  • the conductive support comprises a plurality of metal tubes arranged in a matrix and parallel to each other, and the metal tubes are fixed by welding or sintered together.
  • the conductive bracket includes a side panel that is fixed around a periphery of the metal tube.
  • the conductive bracket is an aluminum plate with a plurality of through holes.
  • the outer contours of the conductive bracket and the insulating bracket are rectangular, and the outer edges of the two are arranged flush, and the thickness of the conductive bracket in the axial direction of the battery insertion hole is not less than 5 mm.
  • the conductive bracket and the insulating bracket are fixedly connected by a fixing pin, and the conductive bracket and the insulating bracket are provided with a plurality of pin holes, and the fixing pins are fixedly embedded in the pin holes of the conductive bracket and the insulating bracket. Thereby, a fixed connection between the conductive bracket and the insulating bracket is achieved.
  • a PTC element is connected between the battery tandem sheet and the battery cell.
  • a large-capacity lithium ion battery comprising at least two lithium ion battery modules of the above structure.
  • This application changes the structure of the battery fixture in the conventional battery module, and sets it into a two-layer structure of an insulating bracket and a conductive bracket which are vertically distributed, and the battery serial piece is inserted into the battery insertion hole and naturally contacts and contacts with the conductive bracket.
  • the area is large, so that the parallel connection of each battery in the module is realized by the conductive bracket, and the conductive bracket is different from the traditional interconnection, and has a large thickness, and has a large contact area with the battery and the battery series, and can be quickly absorbed and Pass the heat of the battery.
  • the metal conductive bracket can also quickly transfer the heat of the external heating device to the battery.
  • the battery module multiple batteries in the same layer are connected in parallel, which has a high capacity.
  • the two battery modules are plugged up and down to realize the series connection of the upper and lower batteries, which can be infinitely increased, the voltage is increased, and the assembly and use are very convenient.
  • the battery module of the present application is compact and stable, has good strength and is easy to move.
  • a large-capacity battery (large module) in which a plurality of such battery modules are combined in series and in parallel is also excellent in rigidity. Because of the high-strength metal conductive bracket on the outside of the battery, it is resistant to shock and vibration.
  • the conductive bracket and each battery cell connection not only have good electrical conductivity, but also have good heat conduction.
  • the heat of the intermediate battery can be quickly transferred to the extreme end through the conductive bracket, and the conductive bracket can be connected with other heat dissipating mechanisms to improve the heat dissipation capability.
  • the conductive bracket and the insulating bracket constituting the battery fixture are processed according to the current mature processing technology and can be directly mass-produced and the processing cost is low.
  • FIG. 1 is a general assembly diagram of a battery module in the first embodiment of the present application.
  • FIG. 2 is an exploded view of a battery module in the first embodiment of the present application
  • FIG. 3 is a partial enlarged view of an insulating bracket in the first embodiment of the present application.
  • FIG. 4 is a schematic structural view of a large-capacity lithium ion battery according to Embodiment 1 of the present application;
  • FIG. 5 is a general assembly diagram of a battery module in Embodiment 2 of the present application.
  • FIG. 6 is an exploded view of a battery module in Embodiment 2 of the present application.
  • FIG. 7 is a schematic structural view of a battery serial piece and a PTC element in the second embodiment of the present application.
  • 1-battery series 2-battery, 3-insulated bracket, 301-insulated bracket hole, 301a-annular flange, 4-conductive bracket, 401-conductive bracket hole, 5-fixed pin, 6-PTC element.
  • Embodiment 1 Lithium-ion battery module and large-capacity lithium ion battery
  • the battery module is a cylindrical lithium ion battery module, which is the same as the conventional battery module and also includes a battery fixture ( The battery is also called a battery connection bracket.
  • the battery fixture has a plurality of battery insertion holes arranged in a matrix, and each battery insertion hole is embedded with a battery serial piece 1 and each battery insertion hole is A cylindrical lithium ion battery cell 2 is inserted. Specifically, in this embodiment, the negative end of the battery cell 2 is inserted into the battery insertion hole of the battery holder, and is connected to the battery serial piece 1 in the battery insertion hole.
  • a key improvement of the embodiment is that the battery fixture adopts a completely new structural form, which is composed of an insulating bracket 3 located at the lower layer and a conductive bracket 4 located at the upper layer, and the insulating bracket 3 and the conductive bracket 4 are arranged and fixed next to each other. connection.
  • the insulating bracket 3 is formed with a plurality of insulating bracket holes 301 distributed in a matrix
  • the conductive bracket 4 is formed with a plurality of conductive bracket holes 401 distributed in a matrix.
  • the insulating bracket hole 301 and the conductive bracket hole 401 together form the above-mentioned battery insertion hole, and the battery series piece 1 is elastically contacted with the hole wall of the conductive holder hole 401, so that the current passing through the battery series piece 1 can flow to the conductive holder 4.
  • the battery tandem sheet 1 is in contact with the wall of the conductive bracket hole 401 of the conductive bracket 4, and the battery tandem chip 1 is connected to the corresponding battery cell 2, so that the respective battery cells connected in the same conductive bracket 4 are electrically conductive.
  • the brackets 4 are connected in parallel, thereby eliminating the traditional parallel networking structure.
  • the conductive bracket 4 is made of a metal material and has a certain thickness, it has good heat conduction and heat dissipation capability, and can quickly absorb and transfer heat of each battery cell 2, thereby greatly improving heat dissipation of the battery module. performance.
  • the outer contours of the conductive bracket 4 and the insulating bracket 3 are both approximately rectangular, and the outer edges of the two are arranged flush, so that a plurality of battery modules of such a structure are combined in series and parallel to form a large-capacity battery.
  • the adjacent two battery modules are supported by the conductive brackets 4 to ensure the structural stability of the large-capacity battery.
  • the conductive bracket 4 can be connected to an external heat dissipating mechanism (such as the inner wall of the battery box) to transfer the absorbed heat outward.
  • the battery cell 2 it is preferable to connect the battery cell 2 to the hole wall of the conductive bracket hole 401, and it is preferable to ensure that the thickness dimension of the conductive bracket 4 in the axial direction of the battery insertion hole is not Less than 5mm.
  • the insulating bracket 3 is made of a plastic material and is integrally molded.
  • the conductive bracket 4 is made of a metal material having good heat conductivity, and the example is specifically made of aluminum.
  • the conductive support 4 includes a plurality of metal tubes (aluminum tubes) arranged in a matrix and parallel to each other. The metal tubes are fixedly fixed (or sintered) together, and a ring is fixed on the periphery of the metal tubes.
  • the side panel, the side panel of the ring forms a rectangular outer contour of the conductive bracket 4.
  • the battery tandem chip 1 and the battery cell 2 are not directly connected together, but a PTC element 6 is disposed between the two, and current must pass through the PTC component 6 to be used by the battery cell 2 Flow to the battery tandem chip 1 to protect the battery from overcurrent.
  • the PTC element 6 connected thereto disconnects the battery cell 2 in time to avoid a safety accident.
  • the PTC element 6 is soldered between the battery tandem sheet 1 and the battery cell 2.
  • a ring-shaped radially inwardly convex ring is formed at the hole wall of the insulating bracket 301 on the insulating bracket 3.
  • the flange 301a is for limiting the battery cell and the battery series piece, and prevents the battery series piece 1 from being axially pressed by the battery cell 2 to be separated from the battery insertion hole.
  • the battery tandem sheet 1 and the battery cells 2 are respectively located on both axial sides of the annular flange 301a, and the battery tandem sheet 1 and the battery cells 2 are welded by the PTC element 6 therebetween. Fixed connection.
  • a plurality of battery modules as shown in FIG. 1 may be configured, and the lower end (negative end) of each battery cell 2 on one of the battery modules is inserted into the upper portion of the battery fixture on the other battery module, and On the other battery module, the batteries in the battery fixture are connected in series, thus achieving the series connection of the two battery modules.
  • a plurality of battery modules shown in FIG. 1 are combined in series and in parallel to form a large-capacity lithium ion battery.
  • FIG. 4 shows a structure of a large-capacity lithium ion battery (or a large-capacity lithium-ion battery pack), which includes three battery modules as shown in FIG. 1, and the three battery modules are plugged up and down. Connected in series with each other and a parallel body at both ends to form a large-capacity battery.
  • Embodiment 2 Lithium ion battery module
  • FIG. 5 to FIG. 7 show another preferred embodiment of the battery module of the present application, and the structure thereof is basically the same as that of the battery module of the first embodiment.
  • the main differences are as follows:
  • the conductive bracket 4 is different from the structure of the conductive bracket in the first embodiment.
  • the conductive bracket 4 is provided with a plurality of through holes (the through holes constitute the conductive bracket holes).
  • the aluminum plate is not formed by a plurality of metal pipes arranged together by welding or sintering, and the conductive support 4 can be cast by aluminum.
  • the conductive bracket 4 of the structure of the embodiment has stronger integrity and higher structural strength. The disadvantage is that the material is more and the weight is large.
  • the conductive bracket 4 and the insulating bracket 3 are fixedly connected by the fixing pin 5.
  • the conductive bracket 4 and the insulating bracket 3 are provided with a plurality of pin holes (not shown) having a small aperture, and the fixing pins 5 are fixedly embedded in the pin holes of the conductive bracket 4 and the insulating bracket 3, thereby achieving electrical conduction.
  • the bracket 4 is fixedly connected to the insulating bracket 3.
  • the fixing pin 5 is usually made of a plastic material or a rubber material having a certain deformability.
  • the structural form of the battery tandem sheet 1 in this embodiment is different from that of the battery tandem sheet in the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种锂离子电池模组,包括:其上设置有呈矩阵分布的若干电池插装孔的电池夹具,分别嵌设于各个电池插装孔中的若干电池串联片,分别插设在各个所述电池插装孔中、且与电池串联片相连的若干电池单体;电池夹具由位于下层的一绝缘支架和位于上层的一导电支架构成,绝缘支架与导电支架紧挨布置且固定连接,绝缘支架上制有呈矩阵分布的若干绝缘支架孔,导电支架上制有呈矩阵分布的若干导电支架孔,绝缘支架孔和导电支架孔共同形成所述电池插装孔,电池串联片与导电支架孔的孔壁弹性接触连接。本申请这种电池模组结构紧凑而稳固、装配方便且散热良好,并且省去了传统的并联网结构。

Description

一种锂离子电池模组和大容量锂离子电池 技术领域
本申请涉及电池技术领域,尤其涉及一种锂离子电池模组以及由多个这种电池模组构成的锂离子大容量电池。
背景技术
锂离子可充电池是当前比能量最高,使用寿命最长的蓄电池,其技术已经成熟,生产量巨大,已走入人民生活的各个领域。现有的圆柱形锂离子电池模组一般包括全绝缘材质的且其上开设众多电池插装孔的电池夹具、分别嵌入各个电池插装孔中的众多电池串联片、同时嵌入各个电池插装孔中且与各个电池串联片接触连接的一张并联网、分别插设在各个电池插装孔中且与对应电池串联片相连(直接接触连接或焊接)的众多电池单体。实际应用时,这些电池单体依靠前述并联网相互并联,依靠前述串联片与插入电池夹具另一侧的电池单体实现串联,如此将多个电池模组组装在一起而形成大容量的锂离子电池。
但是锂离子电池模组的一些致命弱点并未从根本上彻底解决,如安全性,仍有起火爆炸的危险。从事该行业的工程技术人员正在采取多种措施消除这种危险。例如中国专利申请CN101369649A中提出了一种电池连接机构,用一种弹性连接片夹持圆柱电池的负极壳实现电连接,从而免除了对负极的焊接加工,消除了焊接热可能对电池核心构件造成的伤害。不仅提高了安全性,而且提高了电池组的加工性能和刚性,更适合于机械化操作。2012年河南科隆集团也提出了相似的专利,说明了此方法的有效性。但是此方法的弹簧片触点少,电阻仍嫌大。而且,向外扩展不方便,散热也不理想。
目前大多数企业做电池组装的方法依然是用薄金属连接片和电池的正负极焊接,达到串联和并联。连接片很薄,窄而长,导电能力差,连接电阻高,能耗大。而且能耗转为发热,促进电池温度上升。温度升高会缩短电池的使用寿命。更不要说负极焊接带来的潜在危险。
为了提高电池的散热能力也创造出很多很好的方法。例如张恒运等在中国专利申请CN201610144883.2中提出给电池加导热套筒和导热管,并用调温气体或液体将热量排出。使不同位置的电池在大电流充电时最高温度温差缩小到只有1.5℃.古焕隆等在中国专利申请CN2009102097104中提出在电池组内灌注导热胶,也有很好的效果。
王怀云在中国专利申请CN201220400944.4中提出,用薄金属板拉伸出多个电池插孔的并联框架,插孔周边带弹性爪固定电池负极,实现多电池并联。不仅连接方便且导热性良好。
用连接片焊接正负极做组合连接,连接电阻高。尤其是对负极焊接,焊接热传到电池内部,靠近焊接处有隔膜极板等核心构件,它们都怕热。若将它们烫伤,有可能在使用中发展成为内短路。而内短路有转化为热失控的危险,热失控是引起失火爆炸的重要原因。而且用连接片焊接的组件松散,操作中移动困难,大件更难于加工,不适合于机械化作业。
用弹簧片(带有弹爪的串联片)的方法去掉了负极焊接,但是用燕尾和燕尾槽向外扩展很麻烦,而且散热不太好。加导热套导热管和导热胶的散热效果很好,但这些附加件除了调温没有其他用处,提高了成本和复杂性。多孔并联框架既导电好又散热好,但是几十个孔同时冲压、拉伸,加工困难。而且由于结构限制,弹性爪很短,因此弹力很难控制,插入的电池也容易歪斜。
发明内容
本申请目的是:针对上述技术问题,本申请提出一种结构紧凑而稳固、装配方便且散热良好的锂离子电池模组,同时还提出了一种由这种锂离子电池模组组装而成的大容量锂离子电池。
本申请的技术方案是:
一种锂离子电池模组,包括:
其上设置有若干电池插装孔的电池夹具,
分别嵌设于各个所述电池插装孔中的若干电池串联片,以及
分别插设在所述各个所述电池插装孔中、且与所述电池串联片相连的若干电池单体;
所述电池夹具包括位于下层的一绝缘支架和位于上层的一导电支架,所述绝缘支架与所述导电支架紧挨布置且固定连接,所述绝缘支架上制有若干绝缘支架孔,所述导电支架上制有若干导电支架孔,所述绝缘支架孔和导电支架孔共同形成所述电池插装孔,所述电池串联片与所述导电支架孔的孔壁弹性接触连接。
本申请在上述技术方案的基础上,还包括以下优选方案:
所述绝缘支架孔的轴线上端成型有一圈径向向内凸出的环形凸缘。
所述导电支架为金属材质,进一步优选为铝制。
所述导电支架包括若干个呈矩阵分布且相互平行的金属管,这些金属管焊接固定或烧结固定在一起。
所述导电支架包括固定围设在所述金属管外围的侧围板。
所述导电支架为其上开设有若干通孔的铝板。
所述导电支架和绝缘支架的外轮廓呈矩形,且二者的外缘边平齐布置,所述导电支架在所述电池插装孔轴线方向的厚度尺寸不小于5mm。
所述导电支架与绝缘支架是通过固定销固定连接在一起的,所述导电支架和绝缘支架上开设有若干销孔,所述固定销固定塞嵌于所述导电支架和绝缘支架的销孔中,从而实现导电支架与绝缘支架的固定连接。
所述电池串联片与所述电池单体之间连接有PTC元件。
一种大容量锂离子电池,包括至少两个上述结构的锂离子电池模组。
本申请的优点是:
1、本申请一改传统电池模组中电池夹具的结构,将其设置成上下分布的绝缘支架和导电支架两层结构,电池串联片装入电池插装孔中后与导电支架自然 接触而且接触面积大,从而借助导电支架实现模组中各个电池的并联连接,而且导电支架不同于传统的并联网,其具有较大的厚度,与电池及电池串联片的接触面积较大,可迅速吸收并传递电池的热量。同时,在电池温度较低时,金属材质的导电支架也能够将外界加热设备的热量迅速传输至电池。
2、取消了对电池负极端的焊接(负极端直接与电池串联片弹性卡紧接触连接),消除了焊接可能带来的伤害,提高了电池的安全性,并可以延长寿命。
3、电池模组中同层多个电池并联,有很高的容量。而两个电池模组上下插接,实现上下层电池的串联,可以无限增高,电压随之提高,组装使用十分方便。
4、本申请的电池模组结构紧凑而稳固,强度好,便于移动。用多个这种电池模组串并联组合而成的大容量电池(大模组)也有很好的刚性。由于在电池的外部有强度较高的金属材质的导电支架防护固定,抗冲击震动能力强。
5、导电支架和每个电池单体连接不仅有好的导电性,且导热好。通过导电支架可以将中间电池的热量迅速的传递到最末端,并且导电支架可以和其他散热机构连接,提高了散热能力。
6、构成电池夹具的导电支架和绝缘支架,加工都是基于目前成熟的加工技术可以直接量产并且加工成本低。
7、适合于机械化作业,生产效率高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一中电池模组的总装图;
图2为本申请实施例一中电池模组的分解图;
图3为本申请实施例一中绝缘支架的局部放大图;
图4为本申请实施例一中大容量锂离子电池的结构结构示意图;
图5为本申请实施例二中电池模组的总装图;
图6为本申请实施例二中电池模组的分解图;
图7为本申请实施例二中电池串联片和PTC元件的结构示意图;
其中:1-电池串联片,2-电池单体,3-绝缘支架,301-绝缘支架孔,301a-环形凸缘,4-导电支架,401-导电支架孔,5-固定销,6-PTC元件。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
本文中所说的上、下、左、右等指示方位的字词仅是针对所示结构在对应附图中位置而言。本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
实施例一:锂离子电池模组和大容量锂离子电池
图1和图2示出了本申请这种电池模组的一个优选实施例,该电池模组为圆柱形的锂离子电池模组,其与传统电池模组相同的是,也包括电池夹具(行业内也称电池连接支架),电池夹具上制有呈矩阵分布的众多电池插装孔,每个电池插装孔中均嵌设有一个电池串联片1,而且每个电池插装孔中均插设一颗圆柱形的锂离子电池单体2。具体的,本实施例中,电池单体2的负极端插设在电池夹具的电池插装孔中,并且与电池插装孔中的电池串联片1相连接。
本实施例的关键改进在于上述电池夹具采用了一种全新的结构形式,其由 位于下层的一绝缘支架3和位于上层的一导电支架4构成,绝缘支架3与导电支架4紧挨布置且固定连接。绝缘支架3上制有呈矩阵分布的众多绝缘支架孔301,导电支架4上制有呈矩阵分布的众多导电支架孔401。绝缘支架孔301和导电支架孔401共同形成上述的电池插装孔,电池串联片1与导电支架孔401的孔壁弹性接触连接,如此使得经过电池串联片1的电流能够流向导电支架4。
电池串联片1与导电支架4上导电支架孔401的孔壁接触连接,而电池串联片1又与对应的电池单体2相连,如此使得连接在同一导电支架4中的各个电池单体借助导电支架4并联连接,从而省去了传统的并联网结构。而且,由于导电支架4为金属材质且具有一定的厚度,其具有很好的导热和散热能力,能够快速吸收并向外传递各电池单体2的热量,从而大大提高了该电池模组的散热性能。
上述导电支架4和绝缘支架3的外轮廓均近似呈矩形,且二者的外缘边平齐布置,使得多个这种结构的电池模组串并联组合在一起而构成大容量电池时,相邻两电池模组依靠导电支架4相互支撑,保证大容量电池的结构稳定性。实际应用时可将导电支架4与外界散热机构(比如电池箱的箱体内壁)相连,以将其吸收的热量向外传递出去。
为了进一步提升该电池模组的散热性能,最好将电池单体2与导电支架孔401的孔壁接触连接,而且最好保证导电支架4的在所述电池插装孔轴线方向的厚度尺寸不小于5mm。
上述绝缘支架3为塑料材质,其整体注塑而成。导电支架4为导热性能好的金属材质,本例具体为铝制。本实施例中,所述导电支架4包括多个呈矩阵分布且相互平行的金属管(铝管),这些金属管焊接固定(或烧结固定)在一起,而且在这些金属管的外围固定有一圈侧围板,该圈侧围板形成导电支架4的矩形外轮廓。
而且,本实施例中,电池串联片1与电池单体2并不是直接连接在一起的, 而是在二者之间设置有PTC元件6,电流必须经过该PTC元件6才能由电池单体2流向电池串联片1,以对电池进行过流保护。当某个电池单体2出现故障而产生大电流时,与之相连的PTC元件6及时断开该电池单体2,避免发生安全事故。
本实施例中,上述PTC元件6焊接在电池串联片1和电池单体2之间。
为了防止电池串联片1受到电池单体2的轴向抵压力而脱离电池插装孔,本实施例中,绝缘支架3上绝缘支架301的孔壁处形成有一圈径向向内凸起的环形凸缘301a,该环形凸缘301a用于对电池单体和电池串联片进行限位,防止电池串联片1受到电池单体2的轴向抵压力而脱离电池插装孔。
装配完成后,在图1中,电池串联片1和电池单体2分别位于环形凸缘301a的轴向两侧,电池串联片1和电池单体2通过焊接在二者之间的PTC元件6固定连接。
实际应用时,可配置多个图1所示的电池模组,将其中一个电池模组上各电池单体2的下端(负极端)插入另一个电池模组上电池夹具的上部、并与该另一个电池模组上电池夹具中的电池串联片连接,如此实现两电池模组的串联连接。多个图1所示的电池模组串并联组合在一起而构成大容量锂离子电池。
比如,图4示出了一种大容量锂离子电池(或称大容量锂离子电池组)的结构,其包括三个图1所示的电池模组,这三个电池模组上下插接而相互串联,并在两端设置并联体,从而形成大容量电池。
实施例二:锂离子电池模组
图5至图7示出了本申请这种电池模组的另外一个优选实施例,其结构与实施例一中电池模组的结构基本一致,主要不同在于以下几点:
第一,本实施例中导电支架4与实施例一中导电支架的结构形式不同,本例中的导电支架4是一块其上开设有若干通孔(这些通孔构成所说的导电支架孔)的铝板,而并非用多个金属管排布在一起在焊接或烧结固定形成,该导电 支架4可通过铝材铸造而成。相比于实施例一,本实施例这种结构的导电支架4整体性更强,结构强度更高。缺点在于用材较多,重量大。
第二,本实施例中,导电支架4与绝缘支架3是通过固定销5固定连接在一起的。具体地,导电支架4和绝缘支架3上开设有多个孔径较小的销孔(图中未标注),固定销5固定塞嵌于导电支架4和绝缘支架3的销孔中,从而实现导电支架4与绝缘支架3的固定连接。该固定销5通常采用具有一定变形能力的塑料材质或橡胶材质。
第三,对比图2和图7,本实施例中电池串联片1的结构形式与实施例一中电池串联片有所不同。
上述实施例只为说明本申请的技术构思及特点,其目的在于让人们能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请主要技术方案的精神实质所做的等效变换或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种锂离子电池模组,包括:
    其上设置有若干电池插装孔的电池夹具,
    分别嵌设于各个所述电池插装孔中的若干电池串联片(1),以及
    分别插设在所述各个所述电池插装孔中、且与所述电池串联片相连的若干电池单体(2);
    其特征在于,所述电池夹具包括位于下层的一绝缘支架(3)和位于上层的一导电支架(4),所述绝缘支架(3)与所述导电支架(4)紧挨布置且固定连接,所述绝缘支架(3)上制有若干绝缘支架孔(301),所述导电支架(4)上制有若干导电支架孔(401),所述绝缘支架孔(301)和导电支架孔(401)共同形成所述电池插装孔,所述电池串联片(1)与所述导电支架孔(401)的孔壁弹性接触连接。
  2. 如权利要求1所述的锂离子电池模组,其特征在于,所述绝缘支架孔(301)的轴线上端成型有一圈径向向内凸出的环形凸缘(301a)。
  3. 如权利要求1所述的锂离子电池模组,其特征在于,所述导电支架(4)为金属材质。
  4. 如权利要求3所述的锂离子电池模组,其特征在于,所述导电支架(4)为铝制。
  5. 如权利要求1所述的锂离子电池模组,其特征在于,所述导电支架(4)包括若干个呈矩阵分布且相互平行的金属管,这些金属管焊接固定或烧结固定在一起。
  6. 如权利要求1所述的锂离子电池模组,其特征在于,所述导电支架(4)为其上开设有若干通孔的铝板。
  7. 如权利要求1所述的锂离子电池模组,其特征在于,所述导电支架(4)和绝缘支架(3)的外轮廓呈矩形,且二者的外缘边平齐布置,所述导电支架(4)在所述电池插装孔轴线方向的厚度尺寸不小于5mm。
  8. 如权利要求1所述的锂离子电池模组,其特征在于,所述导电支架(4)与绝缘支架(3)是通过固定销(5)固定连接在一起的,所述导电支架(4)和绝缘支架(3)上开设有若干销孔,所述固定销(5)固定塞嵌于所述导电支架(4)和绝缘支架(3)的销孔中,从而实现导电支架(4)与绝缘支架(3)的固定连接。
  9. 如权利要求1所述的锂离子电池模组,其特征在于,所述电池串联片(1)与所述电池单体(2)之间连接有PTC元件(6)。
  10. 一种大容量锂离子电池,其特征在于,包括至少两个如权利要求1至9中任一所述的锂离子电池模组。
PCT/CN2018/091768 2017-06-30 2018-06-19 一种锂离子电池模组和大容量锂离子电池 WO2019001303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710521186.9A CN107425163A (zh) 2017-06-30 2017-06-30 一种锂离子电池模组和大容量锂离子电池
CN201710521186.9 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019001303A1 true WO2019001303A1 (zh) 2019-01-03

Family

ID=60426387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091768 WO2019001303A1 (zh) 2017-06-30 2018-06-19 一种锂离子电池模组和大容量锂离子电池

Country Status (2)

Country Link
CN (1) CN107425163A (zh)
WO (1) WO2019001303A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162349A (zh) * 2020-02-03 2020-05-15 力神动力电池系统有限公司 一种可调节温度的钛酸锂电池模组
CN111740063A (zh) * 2020-07-10 2020-10-02 大连理工大学 一种用于两相浸没式液冷的带有气泡挡板的圆柱形电池模组支架
CN113067086A (zh) * 2021-03-16 2021-07-02 安徽舟之航电池有限公司 一种电动汽车用大圆柱电池集成模组及其制作方法
CN113540650A (zh) * 2021-08-12 2021-10-22 宁波信泰机械有限公司 一种圆柱电池的模组支架、电池包以及安装方法
CN113540618A (zh) * 2021-07-16 2021-10-22 重庆电子工程职业学院 一种工况稳定的电动汽车配电系统
CN113644338A (zh) * 2021-07-28 2021-11-12 上海比耐信息科技有限公司 一种圆柱电池包及其制造方法
CN114335849A (zh) * 2021-11-24 2022-04-12 江西深超能源科技有限公司 一种防组合共振的锂电池
EP3921889A4 (en) * 2019-02-05 2023-06-28 Briggs & Stratton, LLC Cell module assemblies and methods of manufacturing cell module assemblies

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425163A (zh) * 2017-06-30 2017-12-01 苏州安靠电源有限公司 一种锂离子电池模组和大容量锂离子电池
CN108630855A (zh) * 2018-04-13 2018-10-09 苏州安靠电源有限公司 并联网和配置该并联网的电池模组
CN109888434B (zh) * 2019-03-08 2021-02-02 重庆工业职业技术学院 纯电动汽车动力电池散热装置
DE102019203607A1 (de) * 2019-03-18 2020-09-24 Volkswagen Ag Batteriemodul und Kraftfahrzeug
CN112531249A (zh) * 2020-11-17 2021-03-19 国网甘肃省电力公司电力科学研究院 一种新能源电池组
CN114709539A (zh) * 2022-03-08 2022-07-05 雷厉 一种电池的支架和设置方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090120620A1 (en) * 2007-11-12 2009-05-14 Honda Motor Co., Ltd. Vehicle battery cooling device
CN102447081A (zh) * 2010-10-13 2012-05-09 微宏动力系统(湖州)有限公司 电池组支撑架
CN102610777A (zh) * 2012-03-27 2012-07-25 河南科隆集团有限公司 一种有助于动力电池组实现高倍率放电的连接装置
CN103594671A (zh) * 2012-08-14 2014-02-19 王怀云 圆柱形单体电池并联连接方法
CN204680707U (zh) * 2015-06-11 2015-09-30 苏州安靠电源有限公司 一种带并联装置的电池组
CN105470416A (zh) * 2015-12-23 2016-04-06 山东精工电子科技有限公司 免点焊圆柱锂电池安全扩容装置
CN107425163A (zh) * 2017-06-30 2017-12-01 苏州安靠电源有限公司 一种锂离子电池模组和大容量锂离子电池
CN206992187U (zh) * 2017-06-30 2018-02-09 苏州安靠电源有限公司 锂离子电池模组和大容量锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090120620A1 (en) * 2007-11-12 2009-05-14 Honda Motor Co., Ltd. Vehicle battery cooling device
CN102447081A (zh) * 2010-10-13 2012-05-09 微宏动力系统(湖州)有限公司 电池组支撑架
CN102610777A (zh) * 2012-03-27 2012-07-25 河南科隆集团有限公司 一种有助于动力电池组实现高倍率放电的连接装置
CN103594671A (zh) * 2012-08-14 2014-02-19 王怀云 圆柱形单体电池并联连接方法
CN204680707U (zh) * 2015-06-11 2015-09-30 苏州安靠电源有限公司 一种带并联装置的电池组
CN105470416A (zh) * 2015-12-23 2016-04-06 山东精工电子科技有限公司 免点焊圆柱锂电池安全扩容装置
CN107425163A (zh) * 2017-06-30 2017-12-01 苏州安靠电源有限公司 一种锂离子电池模组和大容量锂离子电池
CN206992187U (zh) * 2017-06-30 2018-02-09 苏州安靠电源有限公司 锂离子电池模组和大容量锂离子电池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3921889A4 (en) * 2019-02-05 2023-06-28 Briggs & Stratton, LLC Cell module assemblies and methods of manufacturing cell module assemblies
CN111162349A (zh) * 2020-02-03 2020-05-15 力神动力电池系统有限公司 一种可调节温度的钛酸锂电池模组
CN111740063A (zh) * 2020-07-10 2020-10-02 大连理工大学 一种用于两相浸没式液冷的带有气泡挡板的圆柱形电池模组支架
CN111740063B (zh) * 2020-07-10 2024-05-10 大连理工大学 一种用于两相浸没式液冷的带有气泡挡板的圆柱形电池模组支架
CN113067086A (zh) * 2021-03-16 2021-07-02 安徽舟之航电池有限公司 一种电动汽车用大圆柱电池集成模组及其制作方法
CN113540618A (zh) * 2021-07-16 2021-10-22 重庆电子工程职业学院 一种工况稳定的电动汽车配电系统
CN113540618B (zh) * 2021-07-16 2022-07-22 重庆电子工程职业学院 一种工况稳定的电动汽车配电系统
CN113644338A (zh) * 2021-07-28 2021-11-12 上海比耐信息科技有限公司 一种圆柱电池包及其制造方法
CN113540650A (zh) * 2021-08-12 2021-10-22 宁波信泰机械有限公司 一种圆柱电池的模组支架、电池包以及安装方法
CN114335849A (zh) * 2021-11-24 2022-04-12 江西深超能源科技有限公司 一种防组合共振的锂电池
CN114335849B (zh) * 2021-11-24 2023-10-27 江西深超能源科技有限公司 一种防组合共振的锂电池

Also Published As

Publication number Publication date
CN107425163A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2019001303A1 (zh) 一种锂离子电池模组和大容量锂离子电池
WO2019001304A1 (zh) 用于电池模组的电池夹具
WO2019001301A1 (zh) 电池模组和大容量电池
JP6083824B2 (ja) 接続信頼性が向上したバッテリーセル・ホルダー、及びそれを含むバッテリーモジュール
WO2019001300A1 (zh) 电池连接支架
WO2012089134A1 (en) Battery
CN110690402A (zh) 一种等效均温电池模组
CN104051704A (zh) 可再充电电池
CN104253289A (zh) 动力电池模块散热单元及动力电池散热模组
CN210866342U (zh) 一种等效均温电池模组
CN210668611U (zh) 配有液冷结构的环形电池模组
WO2019001302A1 (zh) 一种电池串联片
US20220336151A1 (en) Electrochemical Energy Storage Device
CN203536539U (zh) 动力电池模块散热单元及动力电池散热模组
CN107611300A (zh) 电池模块
CN217280963U (zh) 一种电池组件
WO2011035476A1 (zh) 一种圆柱形电池
CN209948006U (zh) 软包电池模组和具有该软包电池模组的电动车辆
CN207320185U (zh) 一种电池连接支架
CN207651632U (zh) 镍氢电池包
WO2017219699A1 (zh) 大容量电池组安全保护装置
CN108598306B (zh) 一种免焊接方形锂电池模组
CN105206894A (zh) 一种采用串并联组合结构的新型蓄电池模组
US20200091474A1 (en) Battery Module and Battery Pack
CN206992190U (zh) 一种用于电池模组的电池夹具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822983

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18822983

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18822983

Country of ref document: EP

Kind code of ref document: A1