WO2019001176A1 - 浮水式点焦菲涅尔聚光集能装置 - Google Patents

浮水式点焦菲涅尔聚光集能装置 Download PDF

Info

Publication number
WO2019001176A1
WO2019001176A1 PCT/CN2018/087934 CN2018087934W WO2019001176A1 WO 2019001176 A1 WO2019001176 A1 WO 2019001176A1 CN 2018087934 W CN2018087934 W CN 2018087934W WO 2019001176 A1 WO2019001176 A1 WO 2019001176A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
power
energy collecting
heliostats
steering
Prior art date
Application number
PCT/CN2018/087934
Other languages
English (en)
French (fr)
Inventor
梁卫民
Original Assignee
亚太兆业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亚太兆业有限公司 filed Critical 亚太兆业有限公司
Publication of WO2019001176A1 publication Critical patent/WO2019001176A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a floating water point-focusing Fresnel concentrating energy collecting device, belonging to solar concentrating and solar tracking control, solar thermal utilization and photothermal power generation.
  • the ground is required to be relatively flat, and the concentrating energy collecting device can be constructed, the construction cost is large, the tracking system is complicated such as a tower type, or the disk type is small.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a floating water point-focusing Fresnel concentrating energy collecting device.
  • the energy collecting device floats on the water surface, the water surface is flat, and the heliostat can be based on the angle of the sun. Adjusting the tilt angle and orientation, the tracking system is relatively simple, and the floating water consumption is low.
  • the present invention is a floating-type point-focusing Fresnel concentrating energy collecting device, which comprises:
  • each set of the heliostats is arranged on the corresponding mounting frame structure and rotates with the mounting frame structure, and each set of heliostats is arranged to form a concentrated Fresnel mirror, each set of heliostats
  • the reflection focus can be located on the energy harvesting structure
  • a heliostat tracking control device two or more first power structures, a second power structure; the second power structure being disposed at the floating water steering gantry to control the orientation of the floating water steering gantry; each of the first power The output end of the structure is connected to the mounting frame structure, and each of the first power structures drives the corresponding mounting frame structure to rotate to focus the focus of each set of heliostats on the energy collecting structure; the heliostat tracking device respectively and the first The power structure and the second power structure are connected to control the operation of the first power structure and the second power structure.
  • a floating structure is provided on the floating water steering platform; the floating structure is composed of a foaming material.
  • the energy collecting structure is a photothermal conversion heat sink.
  • the bottom of the energy collecting structure is fixedly installed on the ground or the bottom of the water, and the floating water turning platform rotates around the energy collecting structure.
  • the angle of rotation of the mounting frame structure is half of the change of the upper and lower angles of the sun light and the direction of the rotating angle is the same; the angle of rotation of the floating water steering gantry coincides with the horizontal angle of the sun turning westward.
  • a side ring is disposed on an edge of the floating water steering platform;
  • the first power structure includes a horizontal "U" shaped frame, an upper motor, an upper roller, a lower roller, and a lower motor; wherein The horizontal "U” shaped frame is disposed on a side of the floating steering gantry, the upper motor is disposed on an upper arm of the transverse "U” shaped frame, and the upper roller is coupled to the upper motor shaft;
  • the lower motor is disposed on a lower arm of the transverse "U” shaped frame, the lower roller is coupled to the lower motor shaft, and the upper roller and the lower roller respectively abut against the side ring, the upper roller and the lower roller
  • the rotation of the roller drives the floating steering gantry to rotate, and the heliostat tracking control device is respectively connected with the upper motor and the lower motor.
  • more than one hollow position is provided in the floating water steering platform, the cover is disposed in a hollow position and rotatable, and the third power structure is connected to each cover, The three-power structure drives the cover to rotate to open or close the hollow position.
  • a concave frame is disposed at a bottom of the floating structure, and a through hole is disposed at a top of the concave frame, and the through hole is externally connected.
  • each of the waterproof evaporation layers is disposed at the bottom of the corresponding heat dissipation hollow position.
  • each set of heliostats is composed of two or more heliostats
  • the second power structure includes a rotating motor assembly and a rotating shaft, and an intermediate position of the mirror surfaces of two or more heliostats
  • the axis of the rotating shaft corresponds, and the corresponding mounting frame structure is mounted on the rotating shaft.
  • the advantage of the invention compared with the prior art is that the point-focusing Fresnel concentrating energy collecting device floats on the water surface to provide a large space for large-scale, the water surface is flat, and the heliostat can adjust the tilt according to the angle of the sun irradiation.
  • the angle and orientation, the heliostat has low wind resistance, the tracking system is relatively simple, the floating water consumption is low, the heliostats are arranged in order, and the heat collecting structure can effectively absorb solar energy, and the energy collecting efficiency is high.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a right side view of the present invention
  • Figure 3 is a plan view of the present invention.
  • FIG. 4 is a schematic structural view of a first power structure in the present invention.
  • Figure 5 is a schematic view showing the structure of the heat-dissipating hollow position and the water-proof evaporation layer in Figure 1;
  • Fig. 6 is a structural schematic view showing the addition of a concave frame and a through hole in Fig. 1.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • FIG. 1 to FIG. 6 it is a floating water point-focusing Fresnel concentrating energy collecting device, comprising:
  • the heliostat tracking control device 9 is a prior art, and the heliostat tracking control device 9 can couple the first power structure 6 and the second power structure 8 through a mechanical reducer, or the first through a programmable computer.
  • the power structure 6 and the second power structure 8 are controlled and coupled, and the first power structure 6 and the second power structure 8 are driven by a computer or a host computer or a PLC.
  • the heliostat tracking control device can be modified by the theodolite automatic tracking stellar telescope, and the modification method is: automatically tracking the star-seeking telescope by disassembling the theodolite, using the horizontal steering power structure and the up-and-down steering power structure in the theodolite
  • the motor driver input signal outputs the input signal of the two power structures to a computer or a host computer or a PLC device, and is driven by the existing technology.
  • the horizontal steering power structure in the theodolite controls the second power structure 8 and the theodolite.
  • the lower corner steering power structure controls the first power structure 6; or the output power of the stepper motor driver using the horizontal steering power structure of the theodolite and the upper and lower corner steering power structure, the output power of the horizontal steering power structure of the theodolite and the second power structure 8 Parallel to control the movement of the second power structure 8, respectively, the output power of the upper and lower corners of the theodolite is connected in parallel with the first power structure 6 to control the movement of the first power structure 6, and the theodolite automatically tracks the horizontal steering power structure of the stellar telescope and Upper and lower corner steering power structure and Dynamic structure 8 and the first stepping motor dynamic structure 6 in synchronism pitch angle.
  • each set of heliostats 1 is first fine-tuned, and each set of heliostats 1 is fine-tuned by a vertical point laser to reflect the vertical point lasers onto the energy-concentrating structure 5, and each set of heliostats 1 cooperates with each other.
  • the second power structure 8 controls the orientation of the floating steering gantry 3 such that the axis of rotation on each of the mounting structures 2 is transverse to the sun's rays, and the sun is westward
  • the horizontal angle of the steering is synchronously steered with the steering angle of the floating steering gantry 3; each of the first power structures 6 is connected to the mounting structure 2, and the mounting frame structure 2 is rotated up and down by half the angle of the sun up and down and rotated.
  • the angle direction is the same; or the astigmatism automatic tracking stellar telescope controls the second power structure 8 to rotate the floating water steering gantry 3 so that the rotating shaft on each mounting structure 2 is transversely perpendicular to the sun ray, and at the same time, passes the theodolite
  • the automatic tracking stellar telescope controls the first dynamic structure 6 to focus the focus of each set of heliostats 1 on the energy collecting structure 5; the user can also automatically track through the theodolite
  • the electronic eyepiece on the star telescope monitors the tracking of the sun. If the sun is deviated from the position on the display, the person can adjust the direction of the stellar telescope automatically by the manual controller to correct the direction of the floating steering gantry 3 and the mounting structure 2. .
  • a floating structure 14 is disposed on the floating water steering gantry 3; the floating structure 14 is composed of a foamed material; and the foaming heat insulating material may be, for example, expanded polystyrene or foamed glass. Composition.
  • the energy-concentrating structure 5 is a photothermal conversion heat absorber; a light-heat conversion heat absorber is provided with a pipe to allow a heat-conducting medium such as a heat-conducting oil to circulate, and the color is close to a dark black color, so that the heat of the sun can be quickly transmitted. To the heat transfer medium.
  • the bottom of the energy collecting structure 5 is fixedly mounted on the ground or the bottom of the water, and the floating water steering gantry 3 rotates around the energy collecting structure 5.
  • the angle of rotation of the mounting structure 2 is half of the change of the upper and lower angles of the sun light and the direction of the rotating angle is the same; the angle of rotation of the floating steering gantry 3 coincides with the horizontal angle of the sun turning westward.
  • a side ring 10 is provided on the side of the floating water steering gantry 3;
  • the first power structure 8 includes a horizontal "U” shaped frame 81, an upper motor 82, an upper roller 83, and a lower roller.
  • the upper roller 83 is axially coupled to the upper motor 82; the lower motor 85 is disposed on a lower arm of the transverse "U" shaped frame 81, and the lower roller 84 is axially coupled to the lower motor 85, the upper roller The wheel 83 and the lower roller 84 respectively abut against the side ring 10, and the upper roller 83 and the lower roller 84 rotate to drive the floating steering gantry 3 to rotate.
  • the heliostat tracking control device 9 and the upper motor 82 and the lower The motor 85 is connected.
  • the floating steering gantry 3 is easily deflected or deformed by the force of the wind on the water; the floating steering gantry 3 is positioned and connected with the first power structure 8 to effectively prevent the floating steering gantry 3 from drifting or deforming.
  • the floating water steering gantry 3 is provided with one or more heat dissipation hollow positions 31, and the cover plate 11 is disposed at the heat dissipation hollow position 31 and is rotatable, and the third power structure 12 and each The cover plate 11 is connected, and the third power structure 12 drives the cover plate 11 to rotate to open or close the heat dissipation hollow position 31.
  • the third power structure 12 can be a DC power 12V electric push-pull rod with a travel switch, and each cover plate 11 The cover plate is movably connected to each other, and each of the cover plates 11 has a rotating shaft and a floating water steering gantry 3 connected or connected by a hinge.
  • the cover plate 11 may be an insulating material, and the heat-dissipating control hollow position is opened or closed by the cover plate 11
  • the temperature of the water in the heat-dissipating position 31 can be controlled, and in the summer, the temperature of the water in the heat-dissipating position 31 can be lowered by opening the cover 11 at a low temperature in the summer.
  • a through hole 142 is provided at the top of the concave frame 141, and the through hole 142 is in communication with the outside.
  • each of the water-repellent evaporation layers 13 is disposed at the bottom of the corresponding heat-dissipating hollow position 31; when the concentrating energy collecting device is disposed at a place where water is scarce, evaporation of water can be reduced.
  • each set of heliostats 1 is composed of two or more heliostats
  • the second power structure 6 includes a rotating motor assembly 61 and a rotating shaft 62, and two or more heliostats 1
  • the intermediate position of the mirror corresponds to the axis of the rotating shaft 62, and the corresponding mounting structure 2 is mounted on the rotating shaft 62.
  • the steering accuracy of heliostat 1 can be improved.

Abstract

一种浮水式点焦菲涅尔聚光集能装置,包括定日镜(1)、安装架结构(2)、浮水转向台架(3)及集能结构(5)、定日镜跟踪控制装置(9)、第一动力结构(6)及第二动力结构(8);安装架结构(2)设在浮水转向台架(3)上并可转动,集能结构(5)位于浮水转向台架(3)上,定日镜(1)设在对应的安装架结构(2)上,定日镜(1)排列形成聚光菲涅尔反射镜,定日镜(1)的反射焦点均可位于集能结构(5)上;第二动力结构(8)设在浮水转向台架(3)处;第一动力结构(6)的输出端与对应安装架结构(2)连接,第一动力结构(6)带动对应的安装架结构(2)转动;定日镜跟踪控制装置(9)与第一动力结构(6)及第二动力结构(8)连接。其优点为:集能装置浮在水面上,水面平整度好,定日镜(1)可以根据太阳照射的角度调整倾斜角度及朝向,跟踪系统比较简单,浮水式旋转耗能低。

Description

浮水式点焦菲涅尔聚光集能装置 技术领域
本发明涉及一种浮水式点焦菲涅尔聚光集能装置,属于太阳能聚光及太阳跟踪控制和太阳能光热利用和光热发电。
背景技术
目前,在地面上建造点焦聚光集能装置时,要求地面比较平整,才能建造聚光集能装置,建造费用大,跟踪系统复杂例如塔式,或者碟式规模较小。
发明内容
本发明的目的是克服现有技术的不足而提供一种浮水式点焦菲涅尔聚光集能装置,集能装置浮在水面上,水面平整度好,定日镜可以根据太阳照射的角度调整倾斜角度及朝向,跟踪系统比较简单,浮水式旋转耗能低。
为了达到上述目的,本发明的是一种浮水式点焦菲涅尔聚光集能装置,其特征在于包括:
两组以上的定日镜、两个以上的安装架结构、浮水转向台架及集能结构;所述两个以上安装架结构平行设在浮水转向台架上并可转动,所述集能结构位于浮水转向台架上,每组所述定日镜设在对应的安装架结构上且随安装架结构转动,每组定日镜排列形成聚光菲涅尔反射镜,每组定日镜的反射焦点均可位于集能结构上;以及
定日镜跟踪控制装置、两个以上的第一动力结构、第二动力结构;所述第二动力结构设在浮水转向台架处从而控制浮水转向台架的朝向;每个所述第一动力结构的输出端与安装架结构连接,每个第一动力结构带动对应的安装架结构转动从而使每组定日镜的焦点聚焦在集能结构上;所述定日镜跟踪装置分别与第一动力结构及第二动力结构连接,从而控制第一动力结构及第二动力结构工作。
在本技术方案中,在所述浮水转向台架上设有浮件结构;所述浮件结构由发泡材料构成。
在本技术方案中,所述集能结构是光热转换吸热器。
在本技术方案中,所述集能结构的底部固定安装在地上或水底,浮水转向台架围绕这集能结构转动。
在本技术方案中,所述安装架结构转动的角度是太阳光线上下角度改变的一半且转动角度方向相同;所述浮水转向台架转动的角度与太阳向西转向的水平角度一致。
在本技术方案中,在所述浮水转向台架的边上设有边环;所述第一动力结构包括横“U”形框架、上电机、上辊轮、下辊轮及下电机;其中所述横“U”形框架设在浮水转向台架边上,所述上电机设在横“U”形框架上的其中上支臂上,所述上辊轮与上电机轴连接;所述下电机设在横“U”形框架上的下支臂上,所述下辊轮与下电机轴连接,所述上辊轮与下辊轮分别抵靠在边环上,上辊轮与下辊轮转动带动浮水转向台架转动,所述定日镜跟踪控制装置分别与上电机及下电机连接。
在本技术方案中,在所述浮水转向台架的中设有一个以上的镂空位置,所述盖板罩设在镂空位置并可转动,所述第三动力结构与每个盖板连接,第三动力结构带动盖板转动从而打开或关闭镂空位置。
在本技术方案中,在所述浮件结构的底部设有凹框,在所述凹框的顶部设有通孔,所述通孔外界连通。。
在本技术方案中,每个所述防水蒸发层设在对应的散热镂空位置的底部。
在本技术方案中,所述每组定日镜由两块以上的定日镜组成,所述第二动力结构包括转动电机总成及转轴,两块以上的定日镜的镜面的中间位置与转轴的轴线对应,对应的安装架结构安装在转轴上。
本发明与现有技术相比的优点为:点焦菲涅尔聚光集能装置浮在水面上为大型化提供广阔的空间,水面平整度好,定日镜可以根据太阳照射的角度调整倾斜角度及朝向,定日镜低矮抗风能力高,跟踪系统比较简单,浮水式旋转耗能低,定日镜排列有序,集热结构能有效的吸收太阳能,集能效率较高。
附图说明
图1是本发明的结构示意图;
图2是本发明的右视图;
图3是本发明的俯视图;
图4是本发明中第一动力结构的结构示意图;
图5是图1中加入散热镂空位置及防水蒸发层的结构示意图;
图6是图1中加入凹框及通孔的结构示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对与这些实施方式的说明用与帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
在本发明描述中,术语“顶”、“底”、“中”及“上”等指示的方位或位置关系为基与附图所示的方位或位置关系,仅是为了便与描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,术语“第一”及“第二”仅用与描述目的,而不能理解为指示或暗示相对重要性。
如图1至图6所示,其是一种浮水式点焦菲涅尔聚光集能装置,包括:
两组以上的定日镜1、两个以上的安装架结构2、浮水转向台架3及集能结构5;两个以上的所述安装架结构2平行设在浮水转向台架3上并可转动,所述集能结构5位于浮水转向台架3上,每组所述定日镜1设在对应的安装架结构2上且随安装架结构2转动,每组定日镜1排列形成聚光菲涅尔反射镜,每组定日镜1的反射焦点均可位于集能结构5上;以及定日镜跟踪控制装置9、两个以上的第一动力结构6、第二动力结构8;所述第二动力结构8设在浮水转向台架3处从而控制浮水转向台架3的朝向;每个所述第一动力结构6的输出端与安装架结构2连接,每个第一动力结构6带动对应的安装架结构2转动从而使每组定日镜1的焦点聚焦在集能结构5上;所述定日镜跟踪装置9分别与第一动力结构8及第二动力结构6连接,从而控制第一动力结构8及第二动力结构6工作。
所述定日镜跟踪控制装置9是现有的技术,定日镜跟踪控制装置9可以通过机械减速器使第一动力结构6、第二动力结构8耦合,又或者通过可编程计算机对第一动力结构6、第二动力结构8进行控制及耦合,通过电脑或上位机或PLC等设备,实现驱动第一动力结构6及第二动力结构8。或所述定日镜跟踪控制装置可以通过经纬仪自动跟踪寻星望远镜改装而成,改装方法是:通过拆解经纬仪自动跟踪寻星望远,利用经纬仪中的水平转向动力结构和上下角转向动力结构的电机驱动器输入信号,将两动力结构的输入信号输出给电脑或上位机或PLC等设备,通过现有的科技实现驱动,经纬仪中的水平转向动力结构控制第二动力结构8及经纬仪中的上下角转向动力结构控制第一动力结构6;又或者利用经纬仪的水平转向动力结构和上下角转向动力结构的步进电机驱动器的输出电源,经纬仪的水平转向动力结构的输出电源与第二动力结构8并联从而分别控制第二动力结构8运动,经纬仪的上下角转向动力结构的输出电源与第一动力结构6并联从而分别控制第一动力结构6运动,经纬仪自动跟踪寻星望远镜的水平转向动力结构和上下角转向动力结构和第二动力结构8和第一动力结构6使用相同步距角的步进电机。
安装时,首先对每组定日镜1进行微调,利用垂直点激光对每组定日镜1进行微调,使垂直点激光反射到集能结构5上,每组定日镜1相互配合形成了垂直太阳光线的点焦菲涅尔聚光 镜场;工作时,所述第二动力结构8控制浮水转向台架3的朝向,使每个安装架结构2上的转轴横向垂直于太阳光线,太阳向西转向的水平角度与浮水转向台架3转向角度是一样同步转向的;每个所述第一动力结构6与安装架结构2连接,安装架结构2上下转动角度是太阳上下改变角度的一半且转动角度方向相同;或通过经纬仪自动跟踪寻星望远镜控制第二动力结构8工作使浮水转向台架3转动,使使每个安装架结构2上的转轴横向垂直于太阳光线,与此同时,通过经纬仪自动跟踪寻星望远镜控制第一动力结构6工作,使每组定日镜1的焦点聚焦在集能结构5上;用户还可通过经纬仪自动跟踪寻星望远镜上的电子目镜监测太阳的跟踪情况,如果太阳在显示器上偏离位置严重人可以通过手控器调教修正自动跟踪寻星望远镜的方向,使浮水转向台架3和安装架结构2同时修正方向。
在本实施例中,在所述浮水转向台架3上设有浮件结构14;所述浮件结构14由发泡材料构成;发泡保温材料可由例如发泡聚苯乙烯或发泡玻璃等构成。
在本实施例中,所述集能结构5是光热转换吸热器;光热转换吸热器内设有管道使导热油等导热介质流通,颜色接近深黑色,从而使太阳热量可快速传递至导热介质中。
在本实施例中,所述集能结构5的底部固定安装在地上或水底,浮水转向台架3围绕这集能结构5转动。
在本实施例中,所述安装架结构2转动的角度是太阳光线上下角度改变的一半且转动角度方向相同;所述浮水转向台架3转动的角度与太阳向西转向的水平角度一致。
在本实施例中,在所述浮水转向台架3的边上设有边环10;所述第一动力结构8包括横“U”形框架81、上电机82、上辊轮83、下辊轮84及下电机85;其中所述横“U”形框架81设在浮水转向台架3边上,所述上电机82设在横“U”形框架81上的其中上支臂上,所述上辊轮83与上电机82轴连接;所述下电机85设在横“U”形框架81上的下支臂上,所述下辊轮84与下电机85轴连接,所述上辊轮83与下辊轮84分别抵靠在边环10上,上辊轮83与下辊轮84转动带动浮水转向台架3转动,所述定日镜跟踪控制装置9分别与上电机82及下电机85连接。工作时,浮水转向台架3在水上面受到风的作用力会容易漂移或变形;浮水转向台架3与第一动力结构8定位连接,可有效的防止浮水转向台架3漂移或变形。
在本实施例中,所述浮水转向台架3的中设有一个以上的散热镂空位置31,所述盖板11罩设在散热镂空位置31并可转动,所述第三动力结构12与每个盖板11连接,第三动力结构12带动盖板11转动从而打开或关闭散热镂空位置31;所述第三动力结构12可以是直流电12V带行程开关的电动推拉杆,每个盖板11之间与连杆活动连接,每个盖板11中有 转轴和浮水转向台架3连接或用合页连接,所述盖板11可以是保温材料,通过盖板11打开或关闭散热控镂空位置31可控制散热镂空位置31中水的温度,在夏天利用晚上低温打开盖板11可降低散热镂空位置31中的水温度。
在本实施例中,在所述凹框141的顶部设有通孔142,所述通孔142与外界连通。工作时,当浮水转向台架3受到龙卷风的时候凹框141入了水增加了浮水转向台架3重量,减少龙卷风对浮水转向台架3的影响。
在本实施例中,每个所述防水蒸发层13设在对应的散热镂空位置31的底部;当聚光集能装置设在缺水的地方时,可以减少水的蒸发。
在本实施例中,所述每组定日镜1由两块以上的定日镜组成,所述第二动力结构6包括转动电机总成61及转轴62,两块以上的定日镜1的镜面的中间位置与转轴62的轴线对应,对应的安装架结构2安装在转轴62上。工作时,可以提高定日镜1转向精度。
以上结合附图对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对于本领域的普通技术人员而言,在不脱离本发明的原理和宗旨的情况下对这些实施方式进行多种变化、修改、替换及变形仍落入在本发明的保护范围内。

Claims (10)

  1. 一种浮水式点焦菲涅尔聚光集能装置,其特征在于包括:
    两组以上的定日镜(1)、两组以上的安装架结构(2)、浮水转向台架(3)及集能结构(5);所述两组以上安装架结构(2)平行设在浮水转向台架(3)上并可转动,所述集能结构(5)位于浮水转向台架(3)上,每组所述定日镜(1)设在对应的安装架结构(2)上且随安装架结构(2)转动,每组定日镜(1)排列形成聚光菲涅尔反射镜,每组定日镜(1)的反射焦点均可位于集能结构(5)上;以及
    定日镜跟踪控制装置(9)、两个以上的第一动力结构(6)、第二动力结构(8);所述第二动力结构(8)设在浮水转向台架(3)处从而控制浮水转向台架(3)的朝向;每个所述第一动力结构(6)的输出端与对应安装架结构(2)连接,每个第一动力结构(6)带动对应的安装架结构(2)转动从而使每组定日镜(1)的焦点聚焦在集能结构(5)上;所述定日镜跟踪装置(9)分别与第一动力结构(8)及第二动力结构(6)连接,从而控制第一动力结构(8)及第二动力结构(6)工作。
  2. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于在所述浮水转向台架(3)上设有浮件结构(14),所述浮件结构(14)由发泡材料构成。
  3. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于所述集能结构(5)是光热转换吸热器。
  4. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于所述集能结构(5)的底部固定安装在地上或水底,浮水转向台架(3)围绕集能结构(5)转动。
  5. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于所述安装架结构(2)转动的角度是太阳光线上下角度改变的一半且转动角度方向相同,所述浮水转向台架(3)转动的角度与太阳向西转向的水平角度一致。
  6. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于在所述浮水转向台架(3)的边上设有边环(10);所述第一动力结构(8)包括横“U”形框架(81)、上电机(82)、上辊轮(83)、下辊轮(84)及下电机(85);其中所述横“U”形框架(81)设在浮水转向台架(3)边上,所述上电机(82)设在横“U”形框架(81)的上支臂上,所述上辊轮(83)与上电机(82)轴连接,所述下电机(85)设在横“U”形框架(81)上的下支臂上,所述下辊轮(84)与下电机(85)轴连接,所述上辊轮(83)与下辊轮(84)分别抵靠在边环(10)上,上辊轮(83)与下辊轮(84)转动带动浮水转向台架(3)转动,所述定日镜跟踪控制装置(9)分别与上电机(82)及下电机(85)连接。
  7. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于还包括一个以上的 盖板(11)及第三动力结构(12);在所述浮水转向台架(3)中设有一个以上的散热镂空位置(31),所述盖板(11)罩设在散热镂空位置(31)上并可转动,所述第三动力结构(12)与每个盖板(11)连接,第三动力结构(12)带动盖板(11)转动从而打开或关闭散热镂空位置(31)。
  8. 根据权利要求2所述的浮水式点焦菲涅尔聚光集能装置,其特征在于在所述浮件结构(14)的底部设有凹框(141),在所述凹框(141)的顶部设有通孔(142),所述通孔(142)与外界连通。
  9. 根据权利要求7所述的浮水式点焦菲涅尔聚光集能装置,其特征在于还包括一个以上防水蒸发层(13),每个所述防水蒸发层(13)设在对应的散热镂空位置(31)的底部。
  10. 根据权利要求1所述的浮水式点焦菲涅尔聚光集能装置,其特征在于所述每组定日镜(1)由两块以上的定日镜组成,所述第二动力结构(6)包括转动电机总成(61)及转轴(62),两块以上的定日镜(1)的镜面的中间位置与转轴(62)的轴线对应,对应的安装架结构(2)安装在转轴(62)上。
PCT/CN2018/087934 2017-06-29 2018-05-23 浮水式点焦菲涅尔聚光集能装置 WO2019001176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710516695.2 2017-06-29
CN201710516695.2A CN107178913B (zh) 2017-06-29 2017-06-29 浮水式点焦菲涅尔聚光集能装置

Publications (1)

Publication Number Publication Date
WO2019001176A1 true WO2019001176A1 (zh) 2019-01-03

Family

ID=59844619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087934 WO2019001176A1 (zh) 2017-06-29 2018-05-23 浮水式点焦菲涅尔聚光集能装置

Country Status (3)

Country Link
CN (1) CN107178913B (zh)
TW (1) TW201906307A (zh)
WO (1) WO2019001176A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107178913B (zh) * 2017-06-29 2018-12-18 亚太兆业有限公司 浮水式点焦菲涅尔聚光集能装置
CN108469841A (zh) * 2018-03-17 2018-08-31 郭其秀 一种水上定日镜追光系统及其追光方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148301A (en) * 1977-09-26 1979-04-10 Cluff C Brent Water-borne rotating solar collecting and storage systems
CN101000177A (zh) * 2006-12-29 2007-07-18 李向阳 浮力平台定日跟踪商业化太阳能发电装置
CN101261045A (zh) * 2008-04-15 2008-09-10 孙暖 大型太阳能巡日集能系统
CN204100617U (zh) * 2014-07-11 2015-01-14 中海阳能源集团股份有限公司 太阳能集热器联动系统
CN206195702U (zh) * 2016-09-30 2017-05-24 协鑫电力设计研究有限公司 漂浮式光伏发电系统
CN107178913A (zh) * 2017-06-29 2017-09-19 亚太兆业有限公司 浮水式点焦菲涅尔聚光集能装置
CN207095060U (zh) * 2017-06-29 2018-03-13 亚太兆业有限公司 浮水式点焦菲涅尔聚光集能装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128541A2 (ko) * 2011-03-21 2012-09-27 Woo Do Young 수상 구조물 제어장치 및 제어방법
CN202737785U (zh) * 2012-07-30 2013-02-13 北京兆阳能源技术有限公司 一种高效波长分光式太阳能综合利用系统
CN205142097U (zh) * 2015-08-26 2016-04-06 浙江精工能源科技集团有限公司 具有太阳能跟踪系统的水面漂浮光伏电站系统
CN106100548A (zh) * 2016-08-26 2016-11-09 梁卫民 漂浮水上太阳能向日发电设备
CN106843283A (zh) * 2016-11-02 2017-06-13 梁卫民 浮水式聚光集能装置
CN206349964U (zh) * 2016-12-27 2017-07-21 苏州欣航微电子有限公司 一种太阳能电池板供电式暗礁警示装置
CN106705457A (zh) * 2017-03-09 2017-05-24 祝长宇 一种菲涅尔太阳能聚光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148301A (en) * 1977-09-26 1979-04-10 Cluff C Brent Water-borne rotating solar collecting and storage systems
CN101000177A (zh) * 2006-12-29 2007-07-18 李向阳 浮力平台定日跟踪商业化太阳能发电装置
CN101261045A (zh) * 2008-04-15 2008-09-10 孙暖 大型太阳能巡日集能系统
CN204100617U (zh) * 2014-07-11 2015-01-14 中海阳能源集团股份有限公司 太阳能集热器联动系统
CN206195702U (zh) * 2016-09-30 2017-05-24 协鑫电力设计研究有限公司 漂浮式光伏发电系统
CN107178913A (zh) * 2017-06-29 2017-09-19 亚太兆业有限公司 浮水式点焦菲涅尔聚光集能装置
CN207095060U (zh) * 2017-06-29 2018-03-13 亚太兆业有限公司 浮水式点焦菲涅尔聚光集能装置

Also Published As

Publication number Publication date
CN107178913A (zh) 2017-09-19
CN107178913B (zh) 2018-12-18
TW201906307A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
US8490396B2 (en) Configuration and tracking of 2-D “modular heliostat”
US3996917A (en) Solar heating apparatus
US7923624B2 (en) Solar concentrator system
CN201081445Y (zh) 一种槽式聚焦集热器用追踪装置
CN102089890A (zh) 聚光光伏太阳能电池板
CN101852499A (zh) 可调聚焦比的碟式定焦装置
KR100922238B1 (ko) 태양광 발전장치
WO2010034038A2 (en) Systems and methods of collecting solar energy including configuration and/or tracking features
CN106873642B (zh) 一种太阳光线追踪反射装置
WO2019001176A1 (zh) 浮水式点焦菲涅尔聚光集能装置
CN202160132U (zh) 自动跟踪焦点式太阳能聚光光伏发电系统
KR102289893B1 (ko) 태양열 및 태양광 복합 발전장치
US11114975B2 (en) Solar tracking system
CN202334374U (zh) 线聚焦聚光光伏发电装置
EP2674690B1 (en) Direct solar-radiation collection and concentration element
CN104331092A (zh) 一种基于电润湿效应的液体太阳能追踪聚光器
WO2015196905A1 (zh) 太阳能聚光碟系统及其双轴跟踪装置
CN207095060U (zh) 浮水式点焦菲涅尔聚光集能装置
CN103154635A (zh) 太阳能电池板组件
CN209800175U (zh) 太阳能光热发电系统
CN106766240B (zh) 一种太阳炉装置
KR20170032635A (ko) LFR(Linear Fresnel Reflector)를 이용한 집광 방법 및 장치
CN105116923A (zh) 一种基于双稳态电润湿技术的自追踪太阳光反射聚光装置
CN216744962U (zh) 一种点式菲涅尔集热器
CN203324560U (zh) 可变焦菲涅尔透镜聚焦器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825344

Country of ref document: EP

Kind code of ref document: A1