WO2019001118A1 - 一种冷却系统 - Google Patents

一种冷却系统 Download PDF

Info

Publication number
WO2019001118A1
WO2019001118A1 PCT/CN2018/084264 CN2018084264W WO2019001118A1 WO 2019001118 A1 WO2019001118 A1 WO 2019001118A1 CN 2018084264 W CN2018084264 W CN 2018084264W WO 2019001118 A1 WO2019001118 A1 WO 2019001118A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural
natural cooling
cooling circuit
medium
pipe
Prior art date
Application number
PCT/CN2018/084264
Other languages
English (en)
French (fr)
Inventor
丁俊峰
池善久
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019001118A1 publication Critical patent/WO2019001118A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the application relates to the field of cooling technology, and in particular to a cooling system.
  • Liquid cooling technology provides a new solution for heat dissipation of high heat flux density electronic devices with its efficient heat dissipation efficiency, and has been applied in data centers, servers, personal computers (PCs) and other fields.
  • the natural cooling circuit is connected in parallel with the chiller.
  • the chiller does not work, and the natural cooling circuit directly bypasses the chiller.
  • the cooling tower is usually located outdoors.
  • the outdoor ambient temperature is low (for example, below 15 °C)
  • the chiller stands by, and the cooling tower acts as a natural cold source to cool the load.
  • the outdoor ambient temperature is high, the chiller turns on the cooling, and the cooling tower acts as a cold source for the chiller, cooling the condenser, and no longer directly cooling the load.
  • the chilled water return temperature of the chiller is usually not higher than 20 °C, otherwise the chiller will have an abnormal risk due to the high temperature of the chilled water returning water.
  • the chilled water circuit of the chiller and the device-level cooling water circuit of the load are directly connected through the three-way valve.
  • the water temperature of the device-level cooling water circuit must be lower than 20 °C.
  • the device-level cooling water temperature higher than 20 °C is not supported, and the natural cooling source of 20 ° C to 35 ° C (when the device cooling water temperature is 35 ° C) cannot be fully utilized for system cooling, so the overall energy efficiency of the system is low.
  • the embodiment of the present application provides a cooling system for preventing warm water from entering the chiller and making full use of the natural cold source to improve the overall energy efficiency of the system.
  • a first aspect of an embodiment of the present application provides a cooling system including: a cooling tower, a chiller, a natural cooling circuit, and a first heat exchanger; wherein an output end of the cooling tower and the cold water
  • the cold medium input end of the unit is connected to one end of the natural cooling circuit input pipe of the natural cooling circuit, the input end of the cooling tower and the heat medium output end of the chiller and the natural cooling circuit of the natural cooling circuit
  • One end of the output conduit is connected, the natural cooling loop is isolated from a freezing medium circuit comprising a cold medium output end of the chiller and a heat medium input end of the chiller, the chiller a cold medium output providing a cold source for the first heat exchanger, the cold source for cooling a natural cold source in the natural cooling loop input conduit, the other end of the natural cooling loop input conduit and the inlet of the load Connected, the other end of the natural cooling circuit output pipe is connected to the outlet of the load, the load is required to be cooled
  • the natural cooling circuit output pipe and the natural cooling circuit input pipe are connected by a bypass pipe, A three-way valve is disposed at the intersection of the bypass pipe and the natural cooling circuit input pipe, and the bypass pipe is provided with a first pump.
  • the embodiment of the present application further provides an embodiment in which the natural cooling circuit input pipe and the natural cooling circuit output pipe are bypassed, so that the embodiment of the present application is more abundant.
  • the first between the cold medium output end of the chiller and the first heat exchanger is provided with a first a regulating valve for regulating a flow rate of the freezing medium output of the chiller to the freezing medium of the first heat exchanger.
  • a regulating valve is disposed in the pipeline between the cold medium output end and the first heat exchanger, which increases the operability of the embodiment of the present application.
  • the chiller comprises a condenser and an evaporator.
  • the embodiment of the present application describes the components of the chiller, which increases the operability of the embodiment of the present application.
  • the natural cooling circuit input pipe is provided with a second regulating valve, and the second regulating valve is used to adjust the natural The flow of the natural cold source in the cooling circuit input line.
  • the embodiment of the present application describes that a second regulating valve is disposed in the input pipe of the natural cooling circuit, which increases the operability of the embodiment of the present application.
  • the natural cooling circuit input pipeline is provided with a first temperature sensor, and the first temperature sensor is configured to detect flow through The temperature of the natural cooling source on the natural cooling circuit input pipe.
  • the first temperature sensor is disposed on the input pipe of the natural cooling circuit, which increases the achievability and integrity of the embodiment of the present application.
  • the natural cooling circuit output pipeline is provided with a second temperature sensor, and the second temperature sensor is configured to detect a flow through The temperature of the natural cold source on the natural cooling circuit output conduit.
  • the embodiment of the present application describes that a second temperature sensor is disposed on the output pipe of the natural cooling circuit, so that the embodiment of the present application is more practical.
  • the cooling tower comprises: an open cooling tower, a closed cooling tower or a dry cooler.
  • the embodiment of the present application refines the type of the cooling tower, which increases the achievability of the embodiment of the present application.
  • a second pump is disposed on the freezing medium circuit, and the second pump is used to make the freezing medium circuit
  • the medium flows from the cold medium output of the chiller to the heat medium input of the chiller.
  • the embodiment of the present application describes that a second pump is disposed on the freezing medium circuit, which makes the embodiment of the present application more logical.
  • the freezing medium circuit includes a heat medium input pipe and a cold medium output pipe, and the heat medium input pipe and the cold water
  • the heat medium input end of the unit is connected to the first heat exchanger
  • the cold medium output pipe is connected to the cold medium output end of the chiller and the first heat exchanger
  • the refrigerant medium circuit is The medium flows from the cold medium output conduit to the heat medium input conduit.
  • the natural cooling circuit input pipe is provided with a third pump, and the third pump is used to The natural cold source in the medium is transferred to the natural cooling circuit input pipe.
  • the embodiment of the present application describes that a third pump is disposed on the input pipe of the natural cooling circuit, which increases the integrity of the embodiment of the present application.
  • the natural cooling circuit is further connected to the load through a second heat exchanger, and the second heat exchange
  • the device is provided with two independent fluid passages for heat exchange, and the inlet and outlet of one fluid passage are respectively connected to the natural cooling circuit input pipe and the natural cooling circuit output pipe, and the inlet and outlet of the other fluid channel are respectively The outlet of the load is connected to the inlet of the load.
  • the embodiment of the present application illustrates that the natural cooling circuit is also connected to the load through the second heat exchanger, so that the embodiment of the present application is more specifically clear.
  • the natural cooling circuit is further connected to the load through a third heat exchanger, the third heat exchange A device for absorbing heat of the load, the natural cooling circuit entering the third heat exchanger and the load, respectively.
  • the embodiment of the present application illustrates that the natural cooling circuit is also connected to the load through the third heat exchanger, which increases the operability of the embodiment of the present application.
  • the natural cold source comprises a liquid cold source and/or a gaseous cold source.
  • the embodiments of the present application illustrate the types of natural cold sources, making the embodiments of the present application more operable.
  • the cooling system includes: a cooling tower, a chiller, a natural cooling circuit, and a first heat exchanger; wherein an output end of the cooling tower and a cold medium input end of the chiller and One end of the natural cooling circuit input pipe of the natural cooling circuit is connected, and the input end of the cooling tower is connected to the heat medium output end of the chiller and one end of the natural cooling circuit output pipe of the natural cooling circuit,
  • the natural cooling circuit is isolated from a freezing medium circuit including a cold medium output end of the chiller and a heat medium input end of the chiller, and a cold medium output end of the chiller is
  • the first heat exchanger provides a cold source for cooling a natural cold source in the natural cooling circuit input conduit, the other end of the natural cooling loop input conduit being connected to an inlet of the load, the natural cooling The other end of the loop output conduit is connected to an outlet of the load, the load being a device that needs to be cooled by the cooling system, Natural cooling said circuit supply line for natural cooling source
  • FIG. 1 is a schematic structural view of a prior art cooling system
  • FIG. 2 is a schematic diagram of an embodiment of a cooling system in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another embodiment of a cooling system in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a cooling system in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a cooling system in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a cooling system in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of a cooling system in an embodiment of the present application.
  • the embodiment of the present application provides a cooling system for preventing warm water from entering the chiller and making full use of the natural cold source to improve the overall energy efficiency of the system.
  • FIG. 2 is a schematic structural diagram of a cooling system according to an embodiment of the present application.
  • the cooling system 200 includes a cooling tower 201, a chiller 202, a natural cooling circuit 203, and a first heat exchanger 204.
  • the output end of the cooling tower 201 and the cold medium input end of the chiller 202 and the natural One end of the cooling circuit input pipe 2031 is connected, the input end of the cooling tower 201 is connected to the heat medium output end of the chiller 202 and one end of the natural cooling circuit output pipe 2032, and the natural cooling circuit 203 and the freezing medium circuit 205 are isolated and frozen.
  • the medium circuit 205 includes a cold medium output end of the chiller 202 and a heat medium input end of the chiller 202.
  • the cold medium output end of the chiller 202 provides a cold source for the first heat exchanger 204, and the cold source is used to cool the natural cooling circuit input.
  • the natural cold source in the pipe 2031, the other end of the natural cooling circuit input pipe 2031 is connected to the inlet of the load, and the other end of the natural cooling circuit output pipe 2032 is connected to the outlet of the load, and the load is a device that needs to be cooled by the cooling system.
  • the natural cooling circuit input pipe 2031 is used to input the natural cooling source in the cooling tower 201, and the natural cooling circuit output pipe 2032 is used. Load output is natural cooling after heating source.
  • the type of the cooling tower 201 may be an open cooling tower or other types of cooling towers, such as a closed cooling tower or a dry cooler, and the specific type is not limited herein.
  • the chiller unit 202 includes a condenser 2021 and an evaporator 2022.
  • the chiller circuit 205 includes a heat medium input pipe 2051 and a cold medium output pipe 2052, wherein the heat medium input pipe 2051 and the heat medium input end of the chiller and the first A heat exchanger 204 is connected, a cold medium output pipe 2052 is connected to the cold medium output end of the chiller 202 and the first heat exchanger 204, and the medium in the freezing medium circuit 205 is input from the cold medium output pipe flow 2052 to the heat medium.
  • Pipe 2051 is
  • a first regulating valve 206 is disposed on the cold medium output pipe 2052 between the cold medium output end of the chiller 202 and the first heat exchanger 204, and the first regulating valve 206 is configured to adjust the cold medium of the chiller 202.
  • the output end is input to the flow rate of the freezing medium of the first heat exchanger 204, and the first regulating valve 206 can be adjusted from 0 to 100%, wherein the first regulating valve 206 is based on the temperature of the natural cold source in the natural cooling circuit input pipe 2031.
  • the heat dissipation requirement of the load determines the adjustment amount of the load, wherein the natural cooling circuit input pipe 2031 is provided with a first temperature sensor 207 for detecting the natural cold source flowing through the natural cooling circuit input pipe 2031. At the temperature, the first temperature sensor 207 can be located at the intersection of the natural cooling circuit input conduit 2031 and the load.
  • the freezing medium circuit 205 is provided with a pump 208 for flowing the medium on the freezing medium circuit 205 from the cold medium output end of the chiller 202 to the heat medium input end of the chiller 202, wherein the pump 208 can It is disposed on the heat medium input pipe 2051 of the freezing medium circuit 205, and may also be disposed on the cold medium output pipe 2052 of the freezing medium circuit 205, which is not limited herein.
  • the natural cooling circuit input pipe 2031 is provided with a pump 209 for transferring the natural cold source in the cooling tower 201 into the natural cooling circuit input pipe 2031.
  • the natural cooling circuit input pipe 2031 is provided with a second regulating valve 210 for regulating the flow rate of the natural cold source in the natural cooling circuit input pipe 2031.
  • the natural cooling circuit output pipe 2032 is further provided with a second temperature sensor 211 for detecting the temperature of the natural cold source flowing through the natural cooling circuit output pipe 2032, wherein the second temperature sensor 211 can be located at the intersection of the natural cooling circuit output conduit 2032 and the load return port.
  • the medium in the cooling system 200 may be a liquid, and may also be other media, such as a gas, which is not limited herein.
  • the medium in the cooling system 200 is exemplified as a liquid.
  • the coolant in the natural cooling circuit 203 flows through the input pipe 2031 and enters the cooling tower 201 for cooling.
  • the cooled coolant is cooled by
  • the pump 209 is pumped to the first heat exchanger 204 via the natural cooling circuit input pipe 2031.
  • the load is introduced into the load via the load supply port, and the coolant heated by the load is returned to the cooling tower 201 by the load return port.
  • the cooling capacity of the first heat exchanger 204 can be adjusted from 0 to 100% in conjunction with the first regulating valve 206.
  • the chiller 200 When it is detected by the first temperature sensor 207 that the coolant temperature at the load supply port is higher than the heat dissipation requirement of the load, the chiller 200 starts supplying the chilled water to the first heat exchanger 204 through the freezing medium circuit 205, the first regulating valve 206 automatically operates according to the temperature of the coolant discharged from the load supply port to adjust the cooling capacity output of the first heat exchanger 204 until it is detected that the temperature of the coolant at the load supply port meets the heat dissipation requirement of the load.
  • the chiller 202 begins to supply chilled water to the cold medium output pipe 2052 on the freezing medium circuit 205, and the first regulating valve 206 is opened to allow a certain flow of chilled water to enter the first heat exchanger 204 to cool the natural cooling circuit in the natural cooling circuit 203.
  • the coolant inside the pipe 2031 is input so that the temperature of the coolant at the load supply port is restored to 30 ° C or below.
  • the solution ensures that the heat load of the load is preferentially discharged to the environment, and the insufficient portion continues to be cooled by the chiller 202, reducing the cooling burden of the chiller 202, while the first heat exchanger 204, the natural cooling circuit 203 and the freezing are added.
  • the medium circuit 205 is isolated, and the freezing medium circuit 205 is not directly involved in the cooling load, and the warm water higher than 20 ° C is prevented from entering the evaporator 2022 of the chiller 202.
  • the utilization rate of the natural cold source is also improved, and the system is improved. Comprehensive energy efficiency.
  • the natural cooling circuit 203 is also connected to the load through the second heat exchanger 208, and the second heat exchanger 208 is provided with two independent fluid passages for heat exchange, one fluid passage.
  • the inlet and outlet are respectively connected to the natural cooling circuit input pipe 2031 and the natural cooling circuit output pipe 2032, and the inlet and outlet of the other fluid passage are respectively connected to the outlet of the load and the inlet of the load.
  • the cooling system 200 can control the first regulating valve 206 through a cooling distribution unit (CDU) 213 such that the first regulating valve 206 adjusts the natural cooling source in the natural cooling circuit input pipe 2031.
  • the first regulating valve 206 can also be controlled by other means, which is not limited herein, wherein the CDU 213 can be located inside the second heat exchanger 208.
  • the natural cooling circuit 203 is further connected to the load through the third heat exchanger 214, and the third heat exchanger 214 is configured to absorb the heat of the load, and the natural cooling circuit 203 enters the first Three heat exchangers 214 and load.
  • the natural cooling circuit 203 is isolated from the freezing medium circuit 205, and the freezing medium circuit 205 is not directly involved in the cooling load, thereby effectively preventing warm water higher than 20 ° C from entering the evaporator 2022 of the chiller 202, if the load is cooled.
  • the water temperature is n °C (n>20)
  • the natural cold source of 20 °C ⁇ n °C can be directly used to cool the load, so the overall energy efficiency of the system can be improved.
  • FIG. 7 is another schematic structural diagram of a cooling system according to an embodiment of the present application.
  • the cooling system 700 includes a cooling tower 701, a chiller unit 702, a natural cooling circuit 703, and a first heat exchanger 704; wherein, in contrast to the embodiment corresponding to FIG. 2, the present embodiment is in the natural cooling circuit 703.
  • a bypass pipe 711 is added, wherein the bypass pipe is located between the natural cooling circuit output pipe 7032 and the natural cooling circuit input pipe 7031, and the three-way valve 712 is disposed at the intersection of the bypass pipe 711 and the natural cooling circuit input pipe 7031.
  • a pump 713 is disposed on the through pipe 711, wherein the three-way valve 712 is used to intercept the incoming flow in the natural cooling circuit input pipe 7031, and the pump 712 disposed on the bypass pipe 711 is used to drive the natural in the natural cooling circuit output pipe 7032.
  • the cold source enters the natural cooling circuit input conduit 7031.
  • the output end of the cooling tower 701 is connected to the cold medium input end of the chiller 702 and one end of the natural cooling circuit input pipe 7031.
  • the input end of the cooling tower 701 and the heat medium output end of the chiller 702 and the natural cooling circuit output pipe are connected.
  • the first heat exchanger 704 provides a cold source for cooling the natural cooling source in the natural cooling circuit input pipe 7031, and the other end of the natural cooling circuit input pipe 7031 is connected to the inlet of the load, and the natural cooling circuit output pipe 7032 The other end is connected to the outlet of the load, the load is a device that needs to be cooled by the cooling system, the input pipe 7031 of the natural cooling circuit 703 is used to input the natural cold source in the cooling tower 701, and the natural cooling circuit output pipe 7032 is used to output the load.
  • the type of the cooling tower 701 may be an open cooling tower or another type of cooling tower, such as a closed cooling tower or a dry cooler, and the specific type is not limited herein.
  • the chiller unit 702 includes a condenser 7021 and an evaporator 7022.
  • the chiller circuit 705 includes a heat medium input pipe 7051 and a cold medium output pipe 7052, wherein the heat medium input pipe 7051 and the heat medium input end of the chiller and the first A heat exchanger 704 is connected, a cold medium output pipe 7052 is connected to the cold medium output end of the chiller 702 and the first heat exchanger 704, and the medium in the freezing medium circuit 705 is input from the cold medium output pipe flow 7052 to the heat medium.
  • Pipe 7051 is
  • a first regulating valve 706 is disposed on the cold medium output pipe 7052 between the cold medium output end of the chiller 702 and the first heat exchanger 704, and the first regulating valve 706 is configured to adjust the cold medium of the chiller 702.
  • the output end is input to the flow rate of the freezing medium of the first heat exchanger 704, and the first regulating valve 706 can be adjusted from 0 to 100%, wherein the first regulating valve 706 is based on the temperature of the natural cold source in the natural cooling circuit input pipe 7031.
  • the heat dissipation requirement of the load determines the adjustment amount of the load, wherein the natural cooling circuit input pipe 7031 is provided with a first temperature sensor 707 for detecting the natural cold source flowing through the natural cooling circuit input pipe 7031.
  • the temperature, the first temperature sensor 707 can be located at the intersection of the natural cooling circuit input conduit 7031 and the load, ie at the load supply port.
  • the freezing medium circuit 705 is provided with a pump 708 for flowing the medium on the freezing medium circuit 705 from the cold medium output end of the chiller 702 to the heat medium input end of the chiller 702, wherein the pump 708 can It is disposed on the heat medium input pipe 7051 of the freezing medium circuit 705, and may also be disposed on the cold medium output pipe 7052 of the freezing medium circuit 705, which is not limited herein.
  • the natural cooling circuit input pipe 7031 is provided with a pump 709 for transmitting the natural cold source in the cooling tower 701 into the natural cooling circuit input pipe 7031.
  • the input pipe of the cooling circuit is provided with a second regulating valve 710 for regulating the flow rate of the natural cold source in the natural cooling circuit input pipe 7031.
  • the natural cooling circuit output pipe 7032 is further provided with a second temperature sensor 711 for detecting the temperature of the natural cold source flowing through the natural cooling circuit output pipe 7032, wherein the second temperature sensor 711 can be located at the intersection of the natural cooling circuit output conduit 7032 and the load return port.
  • the medium in the cooling system 700 may be a liquid, and may also be other media, such as a gas, which is not limited herein.
  • the medium in the cooling system 700 is exemplified as a liquid.
  • the coolant flowing into the natural cooling circuit output pipe 7032 is low.
  • ambient temperature or ambient wet bulb temperature
  • the environment heats the coolant within the natural cooling circuit output conduit 7032, thereby burdening the chiller 702.
  • the three-way valve 712 cuts off the natural cooling circuit.
  • the coolant absorbs the heat of the load, and then enters the bypass pipe 711 through the pump 107 through the load return port and then enters the natural cooling circuit input pipe 7031 to complete a cycle.
  • the coolant in the natural cooling circuit output pipe 7032 can be reused, and the load is returned to the liquid through the chiller 702.
  • the coolant flows into the natural cooling circuit output pipe 7032.
  • the coolant in the natural cooling circuit output pipe 7032 is lower than the ambient temperature, and the cooling liquid in the natural cooling circuit output pipe 7032 is fully utilized, thereby reducing the burden on the chiller 702.
  • FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are also applicable to the embodiment, and details are not described herein.
  • the natural cooling circuit 703 and the freezing medium circuit 705 are isolated, and the freezing medium circuit 705 does not directly participate in the cooling load, thereby effectively preventing the warm water higher than 20 ° C from entering the evaporator 7022 of the chiller 702, if the load is cooled.
  • the natural cold source of 20 °C ⁇ n °C can be directly used for cooling the load, so the overall energy efficiency of the system can be improved; and when the load return port flows into the natural cooling circuit output pipe 7032
  • the natural cold source temperature is lower than the ambient temperature, the natural cold source in the natural cooling circuit output pipe 7032 can be directly returned to the natural cooling circuit input pipe 7031 through the bypass pipe 711, which can reduce the burden of the chiller 702.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种冷却系统(200),用于避免温水进入冷水机组(202),并充分利用自然冷源,提高系统的综合能效。冷却系统(200)包括:冷却塔(201)、冷水机组(202)、自然冷却回路(203)和第一热交换器(204);其中,冷却塔(201)的输出端与冷水机组(202)的冷介质输入端及自然冷却回路(203)的自然冷却回路输入管道(2031)的一端相连接,冷却塔(201)的输入端与冷水机组(202)的热介质输出端及自然冷却回路(203)的自然冷却回路输出管道(2032)的一端相连接,自然冷却回路(203)和冷冻介质回路(205)相隔离,冷水机组(202)的冷介质输出端为第一热交换器(204)提供冷源,冷源用于冷却自然冷却回路输入管道(2031)中的自然冷源,自然冷却回路输入管道(2031)的另一端与负载的入口相连接,自然冷却回路输出管道(2032)的另一端与负载的出口相连接。

Description

一种冷却系统
本申请要求于2017年6月28日提交中国专利局、申请号为201710510861.8、发明名称为“一种冷却系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及及冷却技术领域,尤其涉及一种冷却系统。
背景技术
随着电子元器件集成度提高,芯片的功耗密度也越来越大,传统的风冷散热方式已经不能满足日益增长的散热需求。液体冷却技术以其高效的散热效率为高热流密度电子器件散热提供了新的解决方案,并已经在数据中心,服务器,个人计算机(personal computer,PC)等多个领域展开应用。
如图1所示,现有技术中,自然冷却回路与冷水机组并联,环境低温时,冷水机组不工作,自然冷却回路直接旁通冷水机组。冷却塔一般位于室外,当室外环境温度较低(比如低于15℃)时,冷水机组待机,冷却塔充当自然冷源,冷却负载。当室外环境温度较高时,冷水机组开启制冷,冷却塔充当冷水机组的冷源,对其冷凝器进行冷却,不再直接对负载进行冷却。
冷水机组的冷冻水回水温度通常不能高于20℃,否则冷水机组会因冷冻水回水温度过高导致异常的风险。本方案中冷冻水机组的冷冻水回路与负载的器件级冷却水回路直接通过三通阀连接,为了避免高于20℃的冷冻水进入冷水机组,器件级冷却水回路的水温必须低于20℃,不支持高于20℃以上的器件级冷却水温,无法充分利用20℃~35℃(当器件冷却水温为35℃时)的自然冷源用于系统冷却,因此系统的综合能效低。
发明内容
本申请实施例提供了一种冷却系统,用于避免温水进入冷水机组,并充分利用自然冷源,提高系统的综合能效。
本申请实施例的第一方面提供了一种冷却系统,所述冷却系统包括:冷却塔、冷水机组、自然冷却回路和第一热交换器;其中,所述冷却塔的输出端与所述冷水机组的冷介质输入端及所述自然冷却回路的自然冷却回路输入管道的一端相连接,所述冷却塔的输入端与所述冷水机组的热介质输出端及所述自然冷却回路的自然冷却回路输出管道的一端相连接,所述自然冷却回路和冷冻介质回路相隔离,所述冷冻介质回路包括所述冷水机组的冷介质输出端和所述冷水机组的热介质输入端,所述冷水机组的冷介质输出端为所述第一热交换器提供冷源,所述冷源用于冷却所述自然冷却回路输入管道中的自然冷源,所述自然冷却回路输入管道的另一端与负载的入口相连接,所述自然冷却回路输出管道的另一端与所述负载的出口相连接,所述负载为需要被所述冷却系统冷却的器件,所述自然冷却回路输入管道用于输入所述冷却塔中的自然冷源,所述自然冷却回路输出管道用于输出被所述负载加热后的自然冷源。本申请实施例可以避免温水进入冷水机组,并充分利用自然冷源, 提高系统的综合能效。
在一种可能的设计中,在本申请实施例第一方面的第一种实现方式中,所述自然冷却回路输出管道及所述自然冷却回路输入管道之间通过旁通管道相连接,所述旁通管道与所述自然冷却回路输入管道的交接处设置有三通阀,所述旁通管道上设置有第一泵。本申请实施例还提供了一种自然冷却回路输入管道及自然冷却回路输出管道相旁通的实施例,使得本申请实施例更加的丰富。
在一种可能的设计中,在本申请实施例第一方面的第二种实现方式中,所述冷水机组的冷介质输出端与所述第一热交换器之间的管道中设置有第一调节阀,所述第一调节阀用于调节所述冷水机组的冷介质输出端输入所述第一热交换器的冷冻介质的流量。本申请实施例说明了冷介质输出端与所述第一热交换器之间的管道中设置有一个调节阀,增加了本申请实施例的可操作性。
在一种可能的设计中,在本申请实施例第一方面的第三种实现方式中,所述冷水机组包括冷凝器和蒸发器。本申请实施例说明了冷水机组的组成部件,增加了本申请实施例的可操作性。
在一种可能的设计中,在本申请实施例第一方面的第四种实现方式中,所述自然冷却回路输入管道设置有第二调节阀,所述第二调节阀用于调节所述自然冷却回路输入管道中自然冷源的流量。本申请实施例说明了自然冷却回路的输入管道中设置有第二调节阀,增加了本申请实施例的可操作性。
在一种可能的设计中,在本申请实施例第一方面的第五种实现方式中,所述自然冷却回路输入管道上设置有第一温度传感器,所述第一温度传感器用于检测流经所述自然冷却回路输入管道上的自然冷源的温度。本申请实施例中说明了自然冷却回路输入管道上设置有第一温度传感器,增加了本申请实施例的可实现性和完整性。
在一种可能的设计中,在本申请实施例第一方面的第六种实现方式中,所述自然冷却回路输出管道上设置有第二温度传感器,所述第二温度传感器用于检测流经所述自然冷却回路输出管道上的自然冷源的温度。本申请实施例说明了自然冷却回路输出管道上设置有第二温度传感器,使本申请实施例更具有实操性。
在一种可能的设计中,在本申请实施例第一方面的第七种实现方式中,所述冷却塔包括:开放式冷却塔,封闭式冷却塔或干冷器。本申请实施例对冷却塔的种类进行了细化,增加了本申请实施例的可实现性。
在一种可能的设计中,在本申请实施例第一方面的第八种实现方式中,所述冷冻介质回路上设置有第二泵,所述第二泵用于使所述冷冻介质回路上的介质由冷水机组的冷介质输出端流向所述冷水机组的热介质输入端。本申请实施例说明了冷冻介质回路上设置有第二泵,使本申请实施例更加具有逻辑性。
在一种可能的设计中,在本申请实施例第一方面的第九种实现方式中,所述冷冻介质回路包括热介质输入管道和冷介质输出管道,所述热介质输入管道与所述冷水机组的热介质输入端及所述第一热交换器相连接,所述冷介质输出管道与所述冷水机组的冷介质输出端及所述第一热交换器相连接,所述冷冻介质回路中的介质由所述冷介质输出管道流向所 述热介质输入管道。本申请实施例具体说明了冷冻介质回路的结构,增加了本申请实施例的实现方式。
在一种可能的设计中,在本申请实施例第一方面的第十种实现方式中,所述自然冷却回路输入管道上设置有第三泵,所述第三泵用于将所述冷却塔中的自然冷源传送到所述自然冷却回路输入管道中。本申请实施例说明了自然冷却回路输入管道上设置有第三泵,增加了本申请实施例的完整性。
在一种可能的设计中,在本申请实施例第一方面的第十一种实现方式中,所述自然冷却回路还通过第二热交换器与所述负载相连接,所述第二热交换器设有可进行热交换的两个独立的流体通道,一个流体通道的进出口分别与所述自然冷却回路输入管道及所述自然冷却回路输出管路相连,另一个流体通道的进出口分别与所述负载的出口及所述负载的入口相连。本申请实施例说明了自然冷却回路还通过第二热交换器与所述负载相连接,使得本申请实施例更加具体清晰。
在一种可能的设计中,在本申请实施例第一方面的第十二种实现方式中,所述自然冷却回路还通过第三热交换器与所述负载相连接,所述第三热交换器用于吸收所述负载的热量,所述自然冷却回路分别进入所述第三热交换器和所述负载。本申请实施例说明了自然冷却回路还通过第三热交换器与所述负载相连接,增加了本申请实施例的可操作性。
在一种可能的设计中,在本申请实施例第一方面的第十三种实现方式中,所述自然冷源包括液态冷源和/或气态冷源。本申请实施例说明了自然冷源的种类,使本申请实施例更加具有可操作性。
本申请实施例提供的技术方案中,冷却系统包括:冷却塔、冷水机组、自然冷却回路和第一热交换器;其中,所述冷却塔的输出端与所述冷水机组的冷介质输入端及所述自然冷却回路的自然冷却回路输入管道的一端相连接,所述冷却塔的输入端与所述冷水机组的热介质输出端及所述自然冷却回路的自然冷却回路输出管道的一端相连接,所述自然冷却回路和冷冻介质回路相隔离,所述冷冻介质回路包括所述冷水机组的冷介质输出端和所述冷水机组的热介质输入端,所述冷水机组的冷介质输出端为所述第一热交换器提供冷源,所述冷源用于冷却所述自然冷却回路输入管道中的自然冷源,所述自然冷却回路输入管道的另一端与负载的入口相连接,所述自然冷却回路输出管道的另一端与所述负载的出口相连接,所述负载为需要被所述冷却系统冷却的器件,所述自然冷却回路输入管道用于输入所述冷却塔中的自然冷源,所述自然冷却回路输出管道用于输出被所述负载加热后的自然冷源。由于冷冻介质回路不直接与负载相连,避免了温水进入冷水机组,并且可以充分利用自然冷源,提高系统的综合能效。
附图说明
图1为现有技术中冷却系统的一个结构示意图;
图2为本申请实施例中冷却系统的一个实施例示意图;
图3为本申请实施例中冷却系统的另一个实施例示意图;
图4为本申请实施例中冷却系统的另一个实施例示意图;
图5为本申请实施例中冷却系统的另一个实施例示意图;
图6为本申请实施例中冷却系统的另一个实施例示意图;
图7为本申请实施例中冷却系统的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种冷却系统,用于避免温水进入冷水机组,并充分利用自然冷源,提高系统的综合能效。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参考图2,图2为本申请实施例提供的一种冷却系统的结构示意图。如图2所示,冷却系统200包括:冷却塔201、冷水机组202、自然冷却回路203和第一热交换器204;其中,冷却塔201的输出端与冷水机组202的冷介质输入端及自然冷却回路输入管道2031的一端相连接,冷却塔201的输入端与冷水机组202的热介质输出端及自然冷却回路输出管道2032的一端相连接,自然冷却回路203和冷冻介质回路205相隔离,冷冻介质回路205包括冷水机组202的冷介质输出端和冷水机组202的热介质输入端,冷水机组202的冷介质输出端为第一热交换器204提供冷源,冷源用于冷却自然冷却回路输入管道2031中的自然冷源,自然冷却回路输入管道2031的另一端与负载的入口相连接,自然冷却回路输出管道2032的另一端与负载的出口相连接,负载为需要被冷却系统冷却的器件,自然冷却回路输入管道2031用于输入冷却塔201中的自然冷源,自然冷却回路输出管道2032用于输出被负载加热后的自然冷源。其中,冷却塔201的类型可为开放式冷却塔还可以为其他类型的冷却塔,例如封闭式冷却塔或干冷器,具体类型此处不做限定。
其中,冷水机组202包括冷凝器2021和蒸发器2022,上述的冷冻介质回路205包括热介质输入管道2051和冷介质输出管道2052,其中,热介质输入管道2051与冷水机组的热介质输入端及第一热交换器204相连接,冷介质输出管道2052与冷水机组202的冷介质输出端及第一热交换器204相连接,冷冻介质回路205中的介质由冷介质输出管道流2052向热介质输入管道2051。
可选的,冷水机组202的冷介质输出端与第一热交换器204之间的冷介质输出管道2052上设置有第一调节阀206,第一调节阀206用于调节冷水机组202的冷介质输出端输入第一热交换器204的冷冻介质的流量,第一调节阀206可实现0~100%可调,其中,第一调节阀206根据自然冷却回路输入管道2031中的自然冷源的温度和负载的散热需求决定自身的调节量,其中,自然冷却回路输入管道2031中设置有第一温度传感器207,第一温度传感器207用于检测流经自然冷却回路输入管道2031上的自然冷源的温度,第一温度传感器 207可位于自然冷却回路输入管道2031与负载的交接处。
可选的,冷冻介质回路205上设置有泵208,泵208用于使冷冻介质回路上205的介质由冷水机组202的冷介质输出端流向冷水机组202的热介质输入端,其中,泵208可以设置在冷冻介质回路205上的热介质输入管道2051上,还可以设置在冷冻介质回路205的冷介质输出管道2052上,具体此处不做限定。
可选的,自然冷却回路输入管道2031上设置有泵209,泵209用于将冷却塔201中的自然冷源传送到自然冷却回路输入管道2031中。
可选的,自然冷却回路输入管道2031设置有第二调节阀210,第二调节阀210用于调节自然冷却回路输入管道2031中自然冷源的流量。
可选的,自然冷却回路输出管道2032上还设置有第二温度传感器211,第二温度传感器211用于检测流经自然冷却回路输出管道2032上的自然冷源的温度,其中,第二温度传感器211可位于自然冷却回路输出管道2032与负载回液口的交接处。
需要说明的是,冷却系统200中的介质可以为液体,还可以为其他介质,例如气体,具体此处不做限定。
为了便于理解,以冷却系统200内的介质为液体举例子进行说明,自然冷却回路203内的冷却液在被负载加热后,流经输入管道2031进入冷却塔201冷却,被冷却后的冷却液由泵209经自然冷却回路输入管道2031泵送到第一热交换器204,继续冷却后,经由负载供液口进入负载,被负载加热后的冷却液又由负载回液口返回到冷却塔201,完成一个循环。其中第一热交换器204的冷却能力配合第一调节阀206可实现0~100%可调。当通过第一温度传感器207检测到负载供液口处的冷却液温度高于负载的散热需求时,冷水机组200开始通过冷冻介质回路205给第一热交换器204供应冷冻水,第一调节阀206则根据负载供液口出的冷却液温度自动动作,以调整第一热交换器204冷却能力输出,直到检测到负载供液口处的冷却液温度满足负载的散热需求。特别地,若负载供水温度要求低于30℃,当室外环境温度较高,冷却塔201散热不足,通过自然冷却回路输入管道2031流到负载供液口处的水温将大于30℃,则冷水机组202开始向冷冻介质回路205上的冷介质输出管道2052供应冷冻水,第一调节阀206打开,使一定流量的冷冻水进入到第一热交换器204,冷却自然冷却回路203中的自然冷却回路输入管道2031内部的冷却液,使得负载供液口处的冷却液温度恢复到30℃或以下。该方案保证了负载的热负荷优先排散向环境,不足部分再继续由冷水机组202冷却,降低了冷水机组202的制冷负担,同时由于增加了第一热交换器204,自然冷却回路203和冷冻介质回路205相隔离,冷冻介质回路205不直接参与冷却负载,避免了高于20℃的温水进入冷水机组202的蒸发器2022中,同时,也提高了自然冷源的利用率,提高了系统的综合能效。
可选的,如图3所示,自然冷却回路203还通过第二热交换器208与负载相连接,第二热交换器208设有可进行热交换的两个独立的流体通道,一个流体通道的进出口分别与自然冷却回路输入管道2031及自然冷却回路输出管路2032相连,另一个流体通道的进出口分别与负载的出口及负载的入口相连。
可选的,如图4所示,冷却系统200可以通过冷却分配模块(cooling distribution  unit,CDU)213控制第一调节阀206,使得第一调节阀206调节自然冷却回路输入管道2031中自然冷源的流量,还可以通过其他装置控制第一调节阀206,具体此处不做限制,其中,CDU213可位于第二热交换器208内部。
可选的,如图5和图6所示,自然冷却回路203还通过第三热交换器214与负载相连接,第三热交换器214用于吸收负载的热量,自然冷却回路203分别进入第三热交换器214和负载。
本实施例中,自然冷却回路203和冷冻介质回路205相隔离,冷冻介质回路205不直接参与冷却负载,有效避免了高于20℃的温水进入冷水机组202的蒸发器2022中,若负载的冷却水温为n℃时(n>20),可以直接利用20℃~n℃的自然冷源用于冷却负载,因此可以提高系统的综合能效。
请参考图7,图7为本申请实施例提供的一种冷却系统的另一个结构示意图。如图7所示,冷却系统700包括:冷却塔701、冷水机组702、自然冷却回路703和第一热交换器704;其中,对比图2对应的实施例,本实施例在自然冷却回路703中增加了旁通管道711,其中旁通管道位于自然冷却回路输出管道7032及自然冷却回路输入管道7031之间,且旁通管道711与自然冷却回路输入管道7031的交接处设置有三通阀712,旁通管道711上设置有泵713,其中,三通阀712用于截断自然冷却回路输入管道7031中的来流,旁通管道711上设置的泵712用于驱动自然冷却回路输出管道7032中的自然冷源进入自然冷却回路输入管道7031中。其中,冷却塔701的输出端与冷水机组702的冷介质输入端及自然冷却回路输入管道7031的一端相连接,冷却塔701的输入端与冷水机组702的热介质输出端及自然冷却回路输出管道7032的一端相连接,自然冷却回路703和冷冻介质回路705相隔离,冷冻介质回路705包括冷水机组702的冷介质输出端和冷水机组702的热介质输入端,冷水机组702的冷介质输出端为第一热交换器704提供冷源,冷源用于冷却自然冷却回路输入管道7031中的自然冷源,自然冷却回路输入管道7031的另一端与负载的入口相连接,自然冷却回路输出管道7032的另一端与负载的出口相连接,负载为需要被冷却系统冷却的器件,自然冷却回路703的输入管道7031用于输入冷却塔701中的自然冷源,自然冷却回路输出管道7032用于输出被负载加热后的自然冷源。其中,冷却塔701的类型可为开放式冷却塔还可以为其他类型的冷却塔,例如封闭式冷却塔或干冷器,具体类型此处不做限定。
其中,冷水机组702包括冷凝器7021和蒸发器7022,上述的冷冻介质回路705包括热介质输入管道7051和冷介质输出管道7052,其中,热介质输入管道7051与冷水机组的热介质输入端及第一热交换器704相连接,冷介质输出管道7052与冷水机组702的冷介质输出端及第一热交换器704相连接,冷冻介质回路705中的介质由冷介质输出管道流7052向热介质输入管道7051。
可选的,冷水机组702的冷介质输出端与第一热交换器704之间的冷介质输出管道7052上设置有第一调节阀706,第一调节阀706用于调节冷水机组702的冷介质输出端输入第一热交换器704的冷冻介质的流量,第一调节阀706可实现0~100%可调,其中,第一调节阀706根据自然冷却回路输入管道7031中的自然冷源的温度和负载的散热需求决定自身的调节量,其中,自然冷却回路输入管道7031中设置有第一温度传感器707,第一温度传 感器707用于检测流经自然冷却回路输入管道7031上的自然冷源的温度,第一温度传感器707可位于自然冷却回路输入管道7031与负载的交接处,即负载供液口处。
可选的,冷冻介质回路705上设置有泵708,泵708用于使冷冻介质回路上705的介质由冷水机组702的冷介质输出端流向冷水机组702的热介质输入端,其中,泵708可以设置在冷冻介质回路705上的热介质输入管道7051上,还可以设置在冷冻介质回路705的冷介质输出管道7052上,具体此处不做限定。
可选的,自然冷却回路输入管道7031上设置有泵709,泵709用于将冷却塔701中的自然冷源传送到自然冷却回路输入管道7031中。
可选的,冷却回路的输入管道设置有第二调节阀710,第二调节阀710用于调节自然冷却回路输入管道7031中自然冷源的流量。
可选的,自然冷却回路输出管道7032上还设置有第二温度传感器711,第二温度传感器711用于检测流经自然冷却回路输出管道7032上的自然冷源的温度,其中,第二温度传感器711可位于自然冷却回路输出管道7032与负载回液口的交接处。
需要说明的是,冷却系统700中的介质可以为液体,还可以为其他介质,例如气体,具体此处不做限定。
为了便于理解,以冷却系统700内的介质为液体举例子进行说明,当负载供液口所需的供液温度设置过低,导致负载回液口流进入自然冷却回路输出管道7032的冷却液低于环境温度(或环境湿球温度),即低于冷却塔701中冷却液的温度时,环境会对自然冷却回路输出管道7032内的冷却液加热,从而加重冷水机组702的负担。本实施例中,当通过第二温度传感器711检测到负载回液口流入自然冷却回路输出管道7032的冷却液温低于环境温度(或环境湿球温度)时,三通阀712截断自然冷却回路703的输入管道7031中的来流,旁通管路711上的泵713驱动冷却液进入自然冷却回路703的输入管道7031,冷却液流经第一热交换器704时被冷却,然后通过负载供液口进入负载,冷却液吸收负载的热量后,经过负载回液口通过泵107进入旁通管道711再进入自然冷却回路输入管道7031,完成一个循环。本实施例中,当负载回液口流入自然冷却回路输出管道7032的冷却液温低于环境温度时,可以再次利用自然冷却回路输出管道7032中的冷却液,通过冷水机组702再次冷却负载回液口流入自然冷却回路输出管道7032中的冷却液,自然冷却回路输出管道7032中的冷却液比环境温度低,充分利用自然冷却回路输出管道7032中的冷却液,降低了冷水机组702的负担。
需要说明的是,当通过第二温度传感器711检测到负载回液口流入自然冷却回路输出管道7032的冷却液温没有低于环境温度(或环境湿球温度)时,冷却液的流经过程与实施例2中所举的例子类似,具体此处不做赘述。
需要说明的是,图3、图4、图5、图6中的结构同样适用于本实施例,具体此处不做赘述。
本实施例中,自然冷却回路703和冷冻介质回路705相隔离,冷冻介质回路705不直接参与冷却负载,有效避免了高于20℃的温水进入冷水机组702的蒸发器7022中,若负载的冷却水温为n℃时(n>20),可以直接利用20℃~n℃的自然冷源用于冷却负载,因此 可以提高系统的综合能效;且当负载回液口流入自然冷却回路输出管道7032的自然冷源温低于环境温度时,可以通过旁通管道711直接将自然冷却回路输出管道7032中的自然冷源回流至自然冷却回路输入管道7031中,可以降低了冷水机组702的负担。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种冷却系统,其特征在于,所述冷却系统包括:冷却塔、冷水机组、自然冷却回路和第一热交换器;
    其中,所述冷却塔的输出端与所述冷水机组的冷介质输入端及所述自然冷却回路的自然冷却回路输入管道的一端相连接,所述冷却塔的输入端与所述冷水机组的热介质输出端及所述自然冷却回路的自然冷却回路输出管道的一端相连接,所述自然冷却回路和冷冻介质回路相隔离,所述冷冻介质回路包括所述冷水机组的冷介质输出端和所述冷水机组的热介质输入端,所述冷水机组的冷介质输出端为所述第一热交换器提供冷源,所述冷源用于冷却所述自然冷却回路输入管道中的自然冷源,所述自然冷却回路输入管道的另一端与负载的入口相连接,所述自然冷却回路输出管道的另一端与所述负载的出口相连接,所述负载为需要被所述冷却系统冷却的器件,所述自然冷却回路输入管道用于输入所述冷却塔中的自然冷源,所述自然冷却回路输出管道用于输出被所述负载加热后的自然冷源。
  2. 根据权利要求1所述的冷却系统,其特征在于,所述自然冷却回路输出管道及所述自然冷却回路输入管道之间通过旁通管道相连接,所述旁通管道与所述自然冷却回路输入管道的交接处设置有三通阀,所述旁通管道上设置有第一泵。
  3. 根据权利要求1所述的冷却系统,其特征在于,所述冷水机组的冷介质输出端与所述第一热交换器之间的管道中设置有第一调节阀,所述第一调节阀用于调节所述冷水机组的冷介质输出端输入所述第一热交换器的冷冻介质的流量。
  4. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述冷水机组包括冷凝器和蒸发器。
  5. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷却回路输入管道设置有第二调节阀,所述第二调节阀用于调节所述自然冷却回路输入管道中自然冷源的流量。
  6. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷却回路输入管道上设置有第一温度传感器,所述第一温度传感器用于检测流经所述自然冷却回路输入管道上的自然冷源的温度。
  7. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷却回路输出管道上设置有第二温度传感器,所述第二温度传感器用于检测流经所述自然冷却回路输出管道上的自然冷源的温度。
  8. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述冷却塔包括:开放式冷却塔,封闭式冷却塔或干冷器。
  9. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述冷冻介质回路上设置有第二泵,所述第二泵用于使所述冷冻介质回路上的介质由冷水机组的冷介质输出端流向所述冷水机组的热介质输入端。
  10. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述冷冻介质回路包括热介质输入管道和冷介质输出管道,所述热介质输入管道与所述冷水机组的热介质输入端及所述第一热交换器相连接,所述冷介质输出管道与所述冷水机组的冷介质输出端及 所述第一热交换器相连接,所述冷冻介质回路中的介质由所述冷介质输出管道流向所述热介质输入管道。
  11. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷却回路输入管道上设置有第三泵,所述第三泵用于将所述冷却塔中的自然冷源传送到所述自然冷却回路输入管道中。
  12. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷却回路还通过第二热交换器与所述负载相连接,所述第二热交换器设有可进行热交换的两个独立的流体通道,一个流体通道的进出口分别与所述自然冷却回路输入管道及所述自然冷却回路输出管路相连,另一个流体通道的进出口分别与所述负载的出口及所述负载的入口相连。
  13. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷却回路还通过第三热交换器与所述负载相连接,所述第三热交换器用于吸收所述负载的热量,所述自然冷却回路分别进入所述第三热交换器和所述负载。
  14. 根据权利要求1至3中任一项所述的冷却系统,其特征在于,所述自然冷源包括液态冷源和/或气态冷源。
PCT/CN2018/084264 2017-06-28 2018-04-24 一种冷却系统 WO2019001118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710510861.8A CN109140878B (zh) 2017-06-28 2017-06-28 一种冷却系统
CN201710510861.8 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019001118A1 true WO2019001118A1 (zh) 2019-01-03

Family

ID=64741024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084264 WO2019001118A1 (zh) 2017-06-28 2018-04-24 一种冷却系统

Country Status (2)

Country Link
CN (1) CN109140878B (zh)
WO (1) WO2019001118A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089440A (zh) * 2019-12-16 2020-05-01 珠海格力电器股份有限公司 水冷空调系统及控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513900A (zh) * 2019-08-23 2019-11-29 捷通智慧科技股份有限公司 一种基于闭式冷却塔与冷水机组联合使用的冷却装置
CN110595013A (zh) * 2019-10-23 2019-12-20 李立华 数据中心的空调制冷方法、空调制冷系统及数据中心

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059629A1 (en) * 1981-03-03 1982-09-08 Thermocycle (U.K.) Limited Filters
CN101290148A (zh) * 2007-04-20 2008-10-22 上海大智科技发展有限公司 一种用于变风量空调的水节能系统
WO2011003692A1 (en) * 2009-07-09 2011-01-13 Hewlett-Packard Development Company, L.P. Cooling apparatus
CN201973815U (zh) * 2011-03-01 2011-09-14 陕西省电力设计院 数据机房空调制冷系统
CN203116210U (zh) * 2013-03-18 2013-08-07 西安工程大学 数据机房用蒸发冷却与机械制冷复合空调系统
US20160109196A1 (en) * 2014-10-15 2016-04-21 Clearesult Consulting, Inc. Method and system for multi-purpose cooling
CN205939398U (zh) * 2016-07-08 2017-02-08 长沙麦融高科股份有限公司 一种机房节能降温系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201344697Y (zh) * 2009-01-13 2009-11-11 北京星美电子设备有限公司 全变频嵌入式节能集成冷冻站
CN101902897B (zh) * 2010-07-19 2012-09-05 深圳市中兴新通讯设备有限公司 通讯机房冷却系统
CN102222993B (zh) * 2011-05-12 2013-07-24 北京工业大学 一种自然冷却用的液泵驱动热管冷却装置
CN202229335U (zh) * 2011-09-17 2012-05-23 杭州酷普环保科技有限公司 适用于大功率设备机房和高温厂房的冷却系统
CN103032980B (zh) * 2011-09-29 2016-01-06 艾默生网络能源有限公司 一种冷水机组
CN102589313B (zh) * 2012-03-05 2013-09-11 北京纳源丰科技发展有限公司 一种多功能冷却塔应用方法及系统
CN202522096U (zh) * 2012-03-05 2012-11-07 北京纳源丰科技发展有限公司 一种多功能冷却塔应用系统
CN104748610B (zh) * 2014-12-31 2017-07-14 神华集团有限责任公司 一种冷却塔冷却系统
CN204457890U (zh) * 2015-02-10 2015-07-08 西安工程大学 蒸发冷却-吸收式热泵联合辅助凝汽系统的降温装置
CN107024063A (zh) * 2017-04-18 2017-08-08 海南佩尔优科技有限公司 一种联合供冷系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059629A1 (en) * 1981-03-03 1982-09-08 Thermocycle (U.K.) Limited Filters
CN101290148A (zh) * 2007-04-20 2008-10-22 上海大智科技发展有限公司 一种用于变风量空调的水节能系统
WO2011003692A1 (en) * 2009-07-09 2011-01-13 Hewlett-Packard Development Company, L.P. Cooling apparatus
CN201973815U (zh) * 2011-03-01 2011-09-14 陕西省电力设计院 数据机房空调制冷系统
CN203116210U (zh) * 2013-03-18 2013-08-07 西安工程大学 数据机房用蒸发冷却与机械制冷复合空调系统
US20160109196A1 (en) * 2014-10-15 2016-04-21 Clearesult Consulting, Inc. Method and system for multi-purpose cooling
CN205939398U (zh) * 2016-07-08 2017-02-08 长沙麦融高科股份有限公司 一种机房节能降温系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089440A (zh) * 2019-12-16 2020-05-01 珠海格力电器股份有限公司 水冷空调系统及控制方法

Also Published As

Publication number Publication date
CN109140878B (zh) 2020-11-10
CN109140878A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
TWI669475B (zh) Chilled water cooling system
US20180042140A1 (en) Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
WO2018145366A1 (zh) 一种机柜服务器用液冷热管散热系统及其控制方法
US11291136B2 (en) Liquid-cooled cold plate device
WO2019001118A1 (zh) 一种冷却系统
WO2013097369A1 (zh) 水冷散热系统
WO2019015407A1 (zh) 一种能够同时实现对cpu芯片和服务器进行散热的系统
CN205119377U (zh) 数据中心液冷散热系统的余热回收系统
TW201515563A (zh) 散熱系統
WO2017124689A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却系统
WO2014107968A1 (zh) 一种空调系统
WO2018166071A1 (zh) 一种服务器级冷却热管散热系统及其控制方法
CN214413341U (zh) 一种数据中心的散热系统
WO2022198944A1 (zh) 温度调节装置、空调系统、控制方法和可读存储介质
CN106440599A (zh) 一种可实现宽温区自然冷却的液冷温控系统
CN206149693U (zh) 一种散热机构及具有热源的设备
CN210892235U (zh) 一种内置重力热管自然冷多联制冷系统
TW201247089A (en) Cooling system for date center
CN205142760U (zh) 具有双吸收装置的数据中心散热系统
CN204007265U (zh) 风冷与水冷两用散热器
CN106852087B (zh) 单级并联式液气双通道自然冷却数据中心散热系统
CN208458124U (zh) 一种全空气数据中心空调系统
CN106852086B (zh) 双级串联式液气双通道自然冷却数据中心散热系统
WO2019001413A1 (zh) 液体温控装置和方法
CN106912185B (zh) 内循环并联式双级液气双通道自然冷却数据中心散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825336

Country of ref document: EP

Kind code of ref document: A1