WO2019000875A1 - 基于pam4调制的400g dml光收发模块 - Google Patents

基于pam4调制的400g dml光收发模块 Download PDF

Info

Publication number
WO2019000875A1
WO2019000875A1 PCT/CN2017/118166 CN2017118166W WO2019000875A1 WO 2019000875 A1 WO2019000875 A1 WO 2019000875A1 CN 2017118166 W CN2017118166 W CN 2017118166W WO 2019000875 A1 WO2019000875 A1 WO 2019000875A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signals
signal
pam4
dsp processor
Prior art date
Application number
PCT/CN2017/118166
Other languages
English (en)
French (fr)
Inventor
徐红春
吴杨
张玉安
刘成刚
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2019000875A1 publication Critical patent/WO2019000875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to the field of optical communications, and in particular to a 400G DML optical transceiver module based on PAM4 modulation conforming to the IEEE802.3bs high speed Ethernet standard.
  • PAM4 fourth-order pulse amplitude modulation
  • the PAM4 pattern signal has twice the transmission rate of the NRZ code, can carry more information, and has higher transmission efficiency.
  • This application uses PAM4 modulation technology in a 400 Gb/s optical module.
  • the 400Gb/s optical module based on PAM4 modulation can reduce the number of required lasers at the transmitting end by adopting a higher order modulation technique than NRZ. At the receiving end, the number of required receivers can be reduced accordingly.
  • PAM4 modulation reduces the number of optical components in an optical module, which can bring about the advantages of reduced optical module assembly cost, reduced power consumption, and reduced package size.
  • a 400G DML optical transceiver module based on PAM4 modulation including a light receiving unit, a light emitting unit, and an electrical interface unit and an optical interface unit, wherein: the light emitting unit and the electrical interface unit are more A high-speed electric signal connection, which converts the input high-speed electric signal into a high-speed optical signal, and transmits a high-speed optical signal through the optical interface unit; the optical receiving unit receives the high-speed optical signal through the optical interface unit, and converts the input high-speed optical signal into a high-speed optical signal.
  • the electrical signal output is connected with the multi-channel high-speed electric signal of the electrical interface unit;
  • the light emitting unit comprises a DSP processor chip, a driver chip, a laser chip, a wavelength division multiplexer, and the light receiving unit comprises a demultiplexer and an optical receiver, DSP processor chip.
  • the first 400G DML optical transceiver module based on PAM4 modulation when transmitting the unit signal: input the 16-channel 25G NRZ electrical signal from the electrical interface unit, pre-process the electrical signal through the DSP processor, and PAM4 modulation, output 4
  • the electric signal of the 50G PAM4 is loaded onto the driver chip, and the high-speed electric signal is converted into four high-speed optical signals of 100 Gbps through a 4-way laser. After being combined by the wavelength division multiplexer, a high-speed optical signal output of 400G is synthesized. .
  • the received high-speed optical signal of 400G is input through the optical interface unit, converted into four 100Gbps high-speed optical signals by the demultiplexer, and receives the input optical signal through the optical receiver, and receives the received optical signal.
  • the DSP processing chip After the optical signal is converted into an electrical signal, the DSP processing chip performs clock recovery, amplification, equalization, and PAM4 demodulation to convert into 16 25G NRZ electrical signals.
  • the second type of 400G DML optical transceiver module based on PAM4 modulation when transmitting the unit signal: input 16 channels of 25G NRZ electrical signals from the electrical interface unit, and preprocess the electrical signals through the DSP processor, and PAM4 modulation, output 8
  • the electric signal of the 25G PAM4 is loaded onto the driver chip, and the high-speed electric signal is converted into 8 channels of 50Gbps high-speed optical signals by the 8-way laser. After the wave-multiplexer is combined, the high-speed optical signal output of the 400G is synthesized. .
  • the received high-speed optical signal of 400G is input through the optical interface unit, converted into 8 50Gbps high-speed optical signals by the demultiplexer, receives the input optical signal through the optical receiver, and receives the received optical signal.
  • the DSP processing chip After the optical signal is converted into an electrical signal, the DSP processing chip performs clock recovery, amplification, equalization, and PAM4 demodulation to convert into 16 25G NRZ electrical signals.
  • the third type of 400G DML optical transceiver module based on PAM4 modulation when transmitting the unit signal: input the received 8 channels of 50G NRZ electrical signals from the electrical interface unit, and preprocess the electrical signals through the DSP processor, and after PAM4 modulation, output 4
  • the electric signal of the 50G PAM4 is loaded onto the driver chip, and the high-speed electric signal is converted into four high-speed optical signals of 100 Gbps through a 4-way laser. After being combined by the wavelength division multiplexer, a high-speed optical signal output of 400G is synthesized. .
  • the received high-speed optical signal of 400G is input through the optical interface unit, converted into four 100Gbps high-speed optical signals by the demultiplexer, and receives the input optical signal through the optical receiver, and receives the received optical signal.
  • the DSP processing chip After the optical signal is converted into an electrical signal, the DSP processing chip performs clock recovery, amplification, equalization, and PAM4 demodulation to convert the electrical signal into eight 50G NRZ signals.
  • the PAG4 modulation-based 400G DML optical transceiver module of the invention adopts PAM4 modulation technology for 400 Gbps optical signal transmission, realizes 400 Gbps optical signal transceiving function, reduces the number of optical transceiver components in the optical module, thereby reducing device assembly cost, Reduce power consumption and reduce device footprint.
  • FIG. 1 is a schematic diagram of a functional structure of a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a functional structure of a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the functional structure of a third embodiment of the present invention.
  • FIG. 4 is a structural relationship between a DML driver and a DML TOSA in the first, second, and third embodiments of the present invention, and the driver may be built in the TOSA or externally placed in the TOSA;
  • FIG. 5 is a combination of TOSA and ROSA in the first, second, and third embodiments of the present invention, and the value of n may be 1, 2, or 4.
  • a first example of the present invention is a 400G DML optical transceiver module based on PAM4 modulation, as shown in FIG. 1, including a light emitting unit, a light receiving unit, and an electrical signal interface 101.
  • the light emitting unit includes a DSP processor 102. (TOSA) driver 103, direct modulation laser (DML TOSA) 104, wavelength division multiplexer (MUX) 105, optical receiving unit including demultiplexer (DEMUX) 106, 4-channel optical receiver (PIN/TIA ROSA) 107.
  • the DSP processor 108 and the electrical signal interface 101 provide a communication interface between the module and an external system.
  • the DSP processor 102 implements electrical signal processing and PAM4 modulation; the DSP processor 108 implements electrical signal processing and PAM4 demodulation.
  • the DSP processor 102 After receiving 16 25G NRZ electrical signals through the electrical signal interface 101, the DSP processor 102 performs pre-processing and PAM4 modulation on 16 25G NRZ electrical signals, and outputs 4 50G PAM4 electrical signals, and loads them onto the driver 103.
  • the four 105G PAM4 electrical signals are voltage and current amplified by the driver 103 to respectively drive the rear 4-channel direct modulation laser (DML TOSA) 104 through the four 50G direct modulation lasers (DML TOSA) 104.
  • the 4 channel 50G PAM4 electrical signal converts 4 channels of baud rate 50Gb/s optical signal (4-level optical signal), and combines 4 channels of 100Gbps optical signals into 1 channel 400Gbps through wavelength division multiplexer (MUX) 105.
  • the light signal is output.
  • the received 1 channel 400Gb/s high-speed optical signal is converted into 4 channels of 50Gb/s optical signals (4-level optical signals) through the demultiplexer (DEMUX) 106, and passes through 4 channels of 25G optical receivers.
  • DEMUX demultiplexer
  • 25G optical receivers PIN/TIA ROSA
  • PIN/TIA ROSA converts the received four optical signals into four electrical signals, and performs clock recovery, amplification, equalization, and PAM4 demodulation on the four electrical signals by the DSP processor 108, and converts them into 16 channels.
  • 25G NRZ electrical signal is output.
  • a second example of the present invention is as shown in FIG. 2, including a light emitting unit, a light receiving unit, and an electrical signal interface 201.
  • the electrical signal interface 201 provides a communication interface between the module and an external system.
  • the light emitting unit includes: DSP processor 202, (TOSA) driver 203, 8-channel direct modulation laser (DML TOSA) 204, wavelength division multiplexer (MUX) 205 for electrical signal processing and PAM4 modulation;
  • optical receiving unit includes: demultiplexer (DEMUX) 206, 8-way optical receiver (PIN/TIA ROSA) 207, DSP processor 208 for electrical signal processing and PAM4 demodulation.
  • DEMUX demultiplexer
  • PIN/TIA ROSA 8-way optical receiver
  • the 16-channel 25G NRZ electrical signals are pre-processed and PAM4 modulated by the DSP processor 202, and 8 25G PAM4 electrical signals are output and loaded onto the driver 203.
  • the eight-way 25G PAM4 electrical signals are voltage- and current-amplified by the driver 203 to respectively drive the rear-stage 8-channel direct modulation lasers (DML TOSA) 204 through the eight 25G direct modulation lasers (DML TOSA) 204.
  • the 8 channel 25G PAM4 electrical signal converts 8 channels of baud rate to 25Gb/s optical signal (4-level optical signal), and combines 8 channels of 50Gbps optical signals into 1 channel of 400Gbps through wavelength division multiplexer (MUX) 205.
  • the light signal is output.
  • the received 400-channel high-speed optical signal is converted into 8 25G optical signals (4-level optical signals) through the demultiplexer (DEMUX) 206, and passes through 8 25G optical receivers (PIN/TIA).
  • the ROSA) 207 converts the received optical signal into eight electrical signals, and performs clock recovery, amplification, equalization, and PAM4 demodulation on the eight electrical signals by the DSP processor 208, and converts them into 16 25G NRZ electrical signals. Output.
  • the third embodiment of the present invention includes a light emitting unit, a light receiving unit, and an electrical signal interface 301.
  • the electrical signal interface 301 provides a communication interface between the module and an external system.
  • the light emitting unit includes: DSP processor 302 for electrical signal processing and PAM4 modulation, (TOSA) driver 303, 4-channel direct modulation laser (DML TOSA) 104, wavelength division multiplexer (MUX) 305; optical receiving unit including: demultiplexer (DEMUX) 306, 4-way optical receiver (PIN/TIA ROSA) 307, DSP processor 308 for electrical signal processing and PAM4 demodulation.
  • DSP processor 302 for electrical signal processing and PAM4 modulation, (TOSA) driver 303, 4-channel direct modulation laser (DML TOSA) 104, wavelength division multiplexer (MUX) 305
  • optical receiving unit including: demultiplexer (DEMUX) 306, 4-way optical receiver (PIN/TIA ROSA) 307, DSP processor 308 for electrical signal processing
  • the DSP processor 302 After receiving eight 50G NRZ electrical signals through the electrical signal interface 301, the DSP processor 302 performs pre-processing and PAM4 modulation on the eight 50G NRZ electrical signals, and outputs four 50G PAM4 electrical signals, which are loaded onto the driver 303.
  • the voltage and current amplification of the four 50G PAM4 electrical signals are performed by the driver 303 to respectively drive the four-channel direct modulation laser (DML TOSA) 304 of the subsequent stage, and then pass through the four 50G direct modulation lasers (DML TOSA) 304.
  • DML TOSA four-channel direct modulation laser
  • the received 400-channel high-speed optical signal is converted into 4 channels of 50G optical signals (4-level optical signals) through a demultiplexer (DEMUX) 306, and passes through 4 channels of 50G optical receivers (PIN/TIA).
  • the ROSA) 307 converts the received optical signal into four electrical signals, and then performs clock recovery, amplification, equalization, and PAM4 demodulation on the four electrical signals by the DSP processor 308, and converts them into eight 50G NRZ electrical signals. After the output.
  • the PAM4 modulation-based 400G DML optical transceiver module of the present invention at the transmitting end, the driver 103 (ie, the TOSA driver chip) is not limited to the built-in or externally placed direct modulation laser 104 (DML TOSA).
  • the driver 103 TOSA driver chip
  • the component internal laser and the driver 103 TOSA driver chip
  • the driver 103 When the driver 103 (TOSA driver chip) is externally placed on the direct modulation laser 104 (DML TOSA), the component internal laser and the driver 103 (TOSA driver chip) are electrically connected through a coplanar waveguide or a microstrip transmission line.
  • the PAG4 modulation-based 400G DML optical transceiver module of the present invention at the transmitting end, the direct modulation laser 104 (DML TOSA) may be in the form of single channel or multi-channel; the driver 103 (TOSA driver chip) may be The integrated or non-integrated form is driven one by one; at the same time, at the receiving end, the optical receiver 107 (PIN/TIA ROSA) also corresponds to a single channel or a multi-channel form.
  • DML TOSA direct modulation laser 104
  • the driver 103 TOSA driver chip
  • the optical receiver 107 PIN/TIA ROSA
  • PIN/TIA ROSA also corresponds to a single channel or a multi-channel form.
  • FIGS. 4-5 above are represented by the reference numerals in Embodiment 1, those skilled in the art should be able to understand that the above-described integrated/external mode and single channel/multichannel arrangement are equally applicable to the present invention. In other embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种基于PAM4调制的400G DML光收发模块,其包括光发射单元和光接收单元,所述光发射单元包括第一DSP处理器、驱动器、激光器,所述光接收单元包括光接收机、第二DSP处理器,第一DSP处理器用于对第一NRZ电信号进行PAM4调制,所述驱动器用于将由第一DSP处理器进行了PAM4调制的电信号转换为驱动信号,以驱动所述激光器,所述激光器用于将所述驱动信号转换为光信号,以进行发射,所述光接收机用于接收光信号,并将光信号转换为PAM4电信号,并将其输出到所述第二DSP处理器;所述第二DSP处理器用于对从所述光接收机接收的PAM4电信号解调为第二NRZ电信号输出。

Description

基于PAM4调制的400G DML光收发模块 技术领域
本发明涉及光通信领域,尤其涉及符合IEEE802.3bs高速以太网标准的基于PAM4调制的400G DML光收发模块。
背景技术
近年来随着互联网的发展,互联网用户数,应用种类、网络带宽等都呈现出爆发式的增长,对社会和人们的生活产生了巨大的影响。点到点技术、在线视频、社交网络、移动互联的发展正不断吞噬网络带宽。同时云计算、大数据等技术的飞速发展,以超级数据中心为核心的云网络,对带宽需求更为迫切。
为了提升高速互联的网络容量并降低每比特传输成本,可以通过引入PAM4(四阶脉冲幅度调制)技术来提高传输速率,以满足不断增加的网络带宽需求。在相同的波特率下,PAM4码型信号的传输速率是NRZ码的两倍,能携带更多的信息,并且具有更高的传输效率。
发明内容
本申请将PAM4调制技术用于400Gb/s光模块中。基于PAM4调制的400Gb/s光模块,由于采用比NRZ更高阶的调制技术,在发射端可以减少所需激光器的数量,在接收端,相应可以减少所需接收机的数量。PAM4调制使光模块中光器件数减少,可以带来光模块组装成本降低、功耗减少以及封装尺寸减小的优点。
根据本发明的实施例,提出了一种基于PAM4调制的400G DML光收发模块,包括光接收单元、光发射单元、以及电接口单元、光接口单元,其中:光 发射单元与电接口单元的多路高速电信号连接,其将输入的高速电信号转换为高速光信号,通过光接口单元发射高速光信号;光接收单元通过光接口单元接收高速光信号,其将输入的高速光信号转换为高速电信号输出,与电接口单元的多路高速电信号连接;光发射单元包括DSP处理器芯片、驱动器芯片、激光器芯片、波分复用器,光接收单元包括解复用器、光接收机、DSP处理器芯片。
本发明实施例是这样实现的:
第一种基于PAM4调制的400G DML光收发模块,发射单元信号时:将接收的16路25G NRZ电信号从电接口单元输入,经过DSP处理器对电信号进行预处理、PAM4调制后,输出4路50G PAM4的电信号,加载到驱动器芯片上,通过4路的激光器将高速电信号转换4路100Gbps的高速光信号,通过波分复用器合波后,合成1路400G的高速光信号输出。接收单元信号时:将接收的1路400G的高速光信号通过光接口单元输入,经过解复用器转换成4路100Gbps的高速光信号,通过光接收机接收输入光信号,并将所接收的光信号转换成为电信号后,经过DSP处理芯片对电信号进行时钟恢复、放大、均衡、PAM4解调后转换成16路25G NRZ的电信号。
第二种基于PAM4调制的400G DML光收发模块,发射单元信号时:将接收的16路25G NRZ电信号从电接口单元输入,经过DSP处理器对电信号进行预处理、PAM4调制后,输出8路25G PAM4的电信号,加载到驱动器芯片上,通过8路的激光器将高速电信号转换8路50Gbps的高速光信号,通过波分复用器合波后,合成1路400G的高速光信号输出。接收单元信号时:将接收的1路400G的高速光信号通过光接口单元输入,经过解复用器转换成8路50Gbps的高速光信号,通过光接收机接收输入光信号,并将所接收的光信号转换成为电信号后,经过DSP处理芯片对电信号进行时钟恢复、放大、均衡、PAM4解调后转换成16路25G NRZ的电信号。
第三种基于PAM4调制的400G DML光收发模块,发射单元信号时:将接 收的8路50G NRZ电信号从电接口单元输入,经过DSP处理器对电信号进行预处理、PAM4调制后,输出4路50G PAM4的电信号,加载到驱动器芯片上,通过4路的激光器将高速电信号转换4路100Gbps的高速光信号,通过波分复用器合波后,合成1路400G的高速光信号输出。接收单元信号时:将接收的1路400G的高速光信号通过光接口单元输入,经过解复用器转换成4路100Gbps的高速光信号,通过光接收机接收输入光信号,并将所接收的光信号转换成为电信号后,经过DSP处理芯片对电信号进行时钟恢复、放大、均衡、PAM4解调后转换成8路50G NRZ的电信号。
本发明的基于PAM4调制的400G DML光收发模块,采用PAM4调制技术,用于400Gbps的光信号传输,实现400Gbps光信号收发功能,减少光模块中光收发器件数的数量,从而降低器件组装成本、减少功耗以及减小器件占用空间。
附图说明
图1为本发明第一实施例的功能结构示意图;
图2为本发明第二实施例的功能结构示意图;
图3为本发明第三实施例的功能结构示意图;
图4为本发明第一、二、三实施例中DML驱动器与DML TOSA结构关系,驱动器可以内置于TOSA内,也可以外置于TOSA;
图5为本发明第一、二、三实施例中TOSA、ROSA组合方式,n取值可为1、2、4。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作进一步具体说明,由此,本发明的优点和特点将会随着描述而更为清楚。为表述方便,下面统一用 25G代表25G&28G b/s的双速率信号,用50G代表50G&56G b/s的双速率信号。
实施例1:
本发明的第一种实例为一种基于PAM4调制的400G DML光收发模块,如图1所示,包括光发射单元、光接收单元和电信号接口101;其中,光发射单元包括DSP处理器102、(TOSA)驱动器103、直接调制激光器(DML TOSA)104、波分复用器(MUX)105,光接收单元包括解复用器(DEMUX)106、4路光接收机(PIN/TIA ROSA)107、DSP处理器108,电信号接口101,提供模块与外部系统的通信接口。DSP处理器102实现电信号处理和PAM4调制;DSP处理器108实现电信号处理和PAM4解调。通过电信号接口101接收16路25G的NRZ电信号后,经过DSP处理器102对16路25G的NRZ电信号进行预处理和PAM4调制,输出4路50G的PAM4电信号,加载到驱动器103上,由驱动器103对这4路50G的PAM4电信号进行电压和电流放大,以分别驱动后级的4路直接调制激光器(DML TOSA)104,通过这4路50G的直接调制激光器(DML TOSA)104将4路50G的PAM4的电信号转换4路波特率为50Gb/s的光信号(4电平光信号),通过波分复用器(MUX)105将4路100Gbps光信号合波成1路400Gbps光信号后输出。
接收光信号时,将接收的1路的400Gb/s高速光信号通过解复用器(DEMUX)106转换成4路的50Gb/s光信号(4电平光信号),通过4路25G光接收机(PIN/TIA ROSA)107将所接收的4路光信号转换成为4路电信号,经过DSP处理器108对这4路电信号进行时钟恢复、放大、均衡、PAM4解调后,转换成16路25G的NRZ电信号后输出。
实施例2:
本发明提供的第二种实例如图2所示,包括光发射单元、光接收单元和电 信号接口为201;其中,电信号接口201,提供模块与外部系统的通信接口;光发射单元包括:用于电信号处理和PAM4调制的DSP处理器202、(TOSA)驱动器203、8路直接调制激光器(DML TOSA)204、波分复用器(MUX)205;光接收单元包括:解复用器(DEMUX)206、8路光接收机(PIN/TIA ROSA)207、用于电信号处理和PAM4解调的DSP处理器208。
通过电信号接口201接收16路25G的NRZ电信号后,经过DSP处理器202对16路25G的NRZ电信号进行预处理和PAM4调制,输出8路25G的PAM4电信号,加载到驱动器203上,由驱动器203对这8路25G的PAM4电信号进行电压和电流放大,以分别驱动后级的8路直接调制激光器(DML TOSA)204,通过这8路25G的直接调制激光器(DML TOSA)204将8路25G的PAM4的电信号转换8路波特率为25Gb/s的光信号(4电平光信号),通过波分复用器(MUX)205将8路50Gbps光信号合波成1路400Gbps光信号后输出。
接收光信号时,将接收的1路的400Gbps高速光信号通过解复用器(DEMUX)206转换成8路的25G光信号(4电平光信号),通过8路25G光接收机(PIN/TIA ROSA)207将所接收的光信号转换成为8路电信号,经过DSP处理器208对这8路电信号进行时钟恢复、放大、均衡、PAM4解调后,转换成16路25G的NRZ电信号后输出。
实施例3:
本发明提供的第三种实例如图3所示,包括光发射单元、光接收单元和电信号接口为301;其中,电信号接口301,提供模块与外部系统的通信接口;光发射单元包括:用于电信号处理和PAM4调制的DSP处理器302、(TOSA)驱动器303、4路直接调制激光器(DML TOSA)104,波分复用器(MUX)305;光接收单元包括:解复用器(DEMUX)306、4路光接收机(PIN/TIA ROSA)307、用 于电信号处理和PAM4解调的DSP处理器308。
通过电信号接口301接收8路50G的NRZ电信号后,经过DSP处理器302对8路50G的NRZ电信号进行预处理和PAM4调制,输出4路50G的PAM4电信号,加载到驱动器303上,由驱动器303对这4路50G的PAM4电信号进行电压和电流放大,以分别驱动后级的4路直接调制激光器(DML TOSA)304之后,通过这4路50G的直接调制激光器(DML TOSA)304将4路50G的PAM4的电信号转换4路波特率为50Gb/s的光信号(4电平光信号),通过波分复用器MUX305将4路100Gbps光信号合波成1路400Gbps光信号后输出。
接收光信号时,将接收的1路的400Gbps高速光信号通过解复用器(DEMUX)306转换成4路的50G光信号(4电平光信号),通过4路50G光接收机(PIN/TIA ROSA)307将所接收的光信号转换成为4路电信号后,经过DSP处理器308对这4路电信号进行时钟恢复、放大、均衡、PAM4解调后,转换成8路50G的NRZ电信号后输出。
如图4所示,本发明的基于PAM4调制的400G DML光收发模块,在发射端,驱动器103(即TOSA驱动芯片)不限于内置或外置于直接调制激光器104(DML TOSA)。当驱动器103(TOSA驱动芯片)内置于直接调制激光器104(DML TOSA)中时,组件内部激光器与驱动器103(TOSA驱动芯片)可使用金丝或其他材料通过键合或倒装焊工艺形成电连接;驱动器103(TOSA驱动芯片)外置于直接调制激光器104(DML TOSA)时,组件内部激光器与驱动器103(TOSA驱动芯片)通过共面波导或微带传输线电连接。
如图5所示,本发明的基于PAM4调制的400G DML光收发模块,在发射端,直接调制激光器104(DML TOSA)可以为单通道或多通道的形式;驱动器103(TOSA驱动芯片)可以是集成或非集成的形式一一与之对应进行驱动; 与此同时,在接收端,光接收机107(PIN/TIA ROSA)也对应为单通道或多通道形式。
虽然上述图4-5中的描述以实施例1中的附图标记进行表示,但是本领域技术人员应当能够理解,上述集成/外置方式和单通道/多通道设置同样可以应用于本发明的其他实施例中。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种基于PAM4调制的400G DML光收发模块,包括光发射单元和光接收单元;其特征在于:
    所述光发射单元包括第一DSP处理器(102、202、302)、驱动器(103、203、303)、激光器(104、204、304)、波分复用器(105、205、305);
    所述光接收单元包括波分解复用器(106、206、306)、光接收机(107、207、307)、第二DSP处理器(108、208、308);
    所述第一DSP处理器(102、202、302)用于将输入的第一NRZ电信号调制为多路PAM4电信号;
    多个所述驱动器(103、203、303)用于将所述多路PAM4电信号转换为多路驱动信号,以驱动多个所述激光器(104、204、304);
    多个所述激光器(104、204、304)用于将所对应的多路驱动信号转换为多路光信号,多路光信号经所述波分复用器(105、205、305)合波为400Gbps光信号,以进行发射;
    所述波分解复用器(106、206、306)将接收到的400Gbps光信号解复用为多路4电平光信号;
    多个所述光接收机(107、207、307)用于将多路4电平光信号转换为相应的PAM4电信号,并将其输出到所述第二DSP处理器(108、208、308);
    所述第二DSP处理器(108、208、308)用于将接收的PAM4电信号解调为第二NRZ电信号输出。
  2. 根据权利要求1所述的光收发模块,其特征在于:
    所述NRZ电信号是16路25G的NRZ电信号;
    所述第一DSP处理器(102)用于将所述16路25G的NRZ电信号调制为4路50G的PAM4电信号;
    4个所述驱动器(103)将所述4路50G的PAM4电信号转换为4路驱动信号,以驱动4个所述激光器(104);
    4个所述激光器(104)将所述驱动信号转换为4路50G的4电平光信号,并将其输出到所述波分复用器(105),以合成1路400Gbps的光信号进行发射。
  3. 根据权利要求2所述的光收发模块,其特征在于:
    所述波分解复用器(106)将接收的1路400Gbps光信号解复用为4路50G的4电平光信号;
    4个所述光接收机(107)将4路50G的4电平光信号转换为4路50G的PAM4电信号;
    所述第二DSP处理器(108)将所述4路50G的PAM4电信号解调为16路25G的NRZ电信号输出。
  4. 根据权利要求1所述的光收发模块,其特征在于:
    所述NRZ电信号是16路25G的NRZ电信号;
    所述第一DSP处理器(202)用于将所述16路25G的NRZ电信号调制为8路25G的PAM4电信号;
    8个所述驱动器(203)将所述8路25G的PAM4电信号转换为8路驱动信号,以驱动8个所述激光器(204);
    8个所述激光器(204)将所述驱动信号转换为8路25G的4电平光信号,并将其输出到所述波分复用器(205),以合成1路400Gbps的光信号进行发射。
  5. 根据权利要求4所述的光收发模块,其特征在于:
    所述波分解复用器(206)将接收的1路400Gbps光信号解复用为8路25G的4电平光信号;
    8个所述光接收机(207)将8路25G的4电平光信号转换为8路25G的PAM4电信号;
    所述第二DSP处理器(208)将所述8路25G的PAM4电信号解调为16路25G的NRZ电信号输出。
  6. 根据权利要求1所述的光收发模块,其特征在于:
    所述NRZ电信号是8路50G的NRZ电信号;
    所述第一DSP处理器(302)用于将所述8路50G的NRZ电信号调制为4路50G的PAM4电信号;
    4个所述驱动器(303)将所述4路50G的PAM4电信号转换为8路驱动信号,以驱动4个所述激光器(304);
    4个所述激光器(304)将所述驱动信号转换为4路50G的4电平光信号,并将其输出到所述波分复用器(305),以合成1路400Gbps的光信号进行发射。
  7. 根据权利要求6所述的光收发模块,其特征在于:
    所述波分解复用器(306)将接收的1路400Gbps光信号解复用为4路50G的4电平光信号;
    4个所述光接收机(307)将4路50G的4电平光信号转换为4路50G的PAM4电信号;
    所述第二DSP处理器(308)将所述4路50G的PAM4电信号解调为8路50G的NRZ电信号输出。
  8. 根据权利要求1-7中任一项所述的光收发模块,其特征在于,所述波分复用器(105、205、305)和解复用器(106、206、306)包括但不限于TFF、AWG或MZI。
  9. 根据权利要求1-8中任一项所述的光收发模块,其特征在于,支持25/28G和50/56G双速率信号传输。
  10. 根据权利要求1-9中任一项所述的光收发模块,其特征在于,所述驱动器(103、203、303)、激光器(104、204、304)可以集成方式设置或者非集成方式设置;所述驱动器(103、203、303)、激光器(104、204、304)以及所述光接收机(107、207、307)可以为1组、2组或4组或8组。
PCT/CN2017/118166 2017-06-29 2017-12-25 基于pam4调制的400g dml光收发模块 WO2019000875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710517081.6A CN107294611A (zh) 2017-06-29 2017-06-29 基于pam4调制的400gdml光收发模块
CN201710517081.6 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019000875A1 true WO2019000875A1 (zh) 2019-01-03

Family

ID=60098232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118166 WO2019000875A1 (zh) 2017-06-29 2017-12-25 基于pam4调制的400g dml光收发模块

Country Status (2)

Country Link
CN (1) CN107294611A (zh)
WO (1) WO2019000875A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294611A (zh) * 2017-06-29 2017-10-24 武汉光迅科技股份有限公司 基于pam4调制的400gdml光收发模块
CN108306685B (zh) * 2018-01-11 2020-08-07 青岛海信宽带多媒体技术有限公司 光模块及twdm无源光网络
CN116405122A (zh) 2019-04-30 2023-07-07 瞻博网络公司 用于光通信的方法和装置
CN114647030B (zh) * 2022-05-19 2022-09-09 深圳市迅特通信技术股份有限公司 一种用于pon olt系统的硅基光电子的收发集成芯片
CN116015470A (zh) * 2022-12-30 2023-04-25 深圳市光为光通信科技有限公司 一种400g光通信模块及信号优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506241A (zh) * 2014-12-26 2015-04-08 武汉邮电科学研究院 双臂驱动四级脉冲幅度调制器及方法
US20160087747A1 (en) * 2014-09-19 2016-03-24 Neophotonics Corporation Dense wavelength division multiplexing and single-wavelength transmission systems
CN105553561A (zh) * 2015-12-24 2016-05-04 武汉光迅科技股份有限公司 一种2×100g光收发模块
CN106100747A (zh) * 2016-05-31 2016-11-09 武汉光迅科技股份有限公司 基于pam4调制的光收发模块
CN107294611A (zh) * 2017-06-29 2017-10-24 武汉光迅科技股份有限公司 基于pam4调制的400gdml光收发模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9304950B2 (en) * 2012-09-12 2016-04-05 Broadcom Corporation Overclocked line rate for communication with PHY interfaces
CN106375017A (zh) * 2016-08-29 2017-02-01 武汉光迅科技股份有限公司 一种基于pam4调制的光收发模块
CN106772816A (zh) * 2017-03-01 2017-05-31 武汉光迅科技股份有限公司 一种高速率平面光波导的结构和实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160087747A1 (en) * 2014-09-19 2016-03-24 Neophotonics Corporation Dense wavelength division multiplexing and single-wavelength transmission systems
CN104506241A (zh) * 2014-12-26 2015-04-08 武汉邮电科学研究院 双臂驱动四级脉冲幅度调制器及方法
CN105553561A (zh) * 2015-12-24 2016-05-04 武汉光迅科技股份有限公司 一种2×100g光收发模块
CN106100747A (zh) * 2016-05-31 2016-11-09 武汉光迅科技股份有限公司 基于pam4调制的光收发模块
CN107294611A (zh) * 2017-06-29 2017-10-24 武汉光迅科技股份有限公司 基于pam4调制的400gdml光收发模块

Also Published As

Publication number Publication date
CN107294611A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2019000875A1 (zh) 基于pam4调制的400g dml光收发模块
CN104980225B (zh) 一种基于幅度调制的带内透传监控信号的光模块
WO2018040385A1 (zh) 一种基于pam4调制的光收发模块
US9287986B2 (en) Large capacity optical transceiver module
CN107769856A (zh) 一种光信号发送系统、接收系统和方法以及通信系统
CN105553561A (zh) 一种2×100g光收发模块
CN107919915B (zh) 多路nrz光信号转单路多电平光信号的光纤通信系统及方法
CN107342821B (zh) 一种光模块、网络设备、光学系统及通信系统
CN104967487B (zh) 一种基于频率调制的带内透传监控信号的光模块
TW201141094A (en) High speed communication
CN104348553A (zh) Cfp光收发模块
CN110176960A (zh) 一种新型单纤双向多通道输入光模块
CN207766272U (zh) 一种基于模分复用的Front-haul光纤传输系统
CN108512623B (zh) 量子信道与经典信道的合纤qkd系统及其传输方法
CN203563070U (zh) Cfp光收发模块
CN215646796U (zh) 一种低成本光电集成通信芯片
CN103973372A (zh) 一种100g cfp光模块
CN106253990A (zh) 一种高速低功耗光收发芯片
CN102833004A (zh) 一种传输距离大于40千米的100g cfp光模块
CN105187128A (zh) 一种带前向纠错功能基于直接调制激光器的100g光收发模块
CN115333634B (zh) 一种适用于商用照明led的高带宽、多自由度无线光通信系统
CN208015733U (zh) 一种基于模式组复用的光纤前传系统
CN209283248U (zh) 100Gbps光模块
CN108631881A (zh) 一种相干光装置
CN204231363U (zh) 一种40g长距离可插拔光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916359

Country of ref document: EP

Kind code of ref document: A1