WO2019000854A1 - Système de robot de récupération à compensation d'ondes - Google Patents

Système de robot de récupération à compensation d'ondes Download PDF

Info

Publication number
WO2019000854A1
WO2019000854A1 PCT/CN2017/116476 CN2017116476W WO2019000854A1 WO 2019000854 A1 WO2019000854 A1 WO 2019000854A1 CN 2017116476 W CN2017116476 W CN 2017116476W WO 2019000854 A1 WO2019000854 A1 WO 2019000854A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
data
salvage
camera
workpiece
Prior art date
Application number
PCT/CN2017/116476
Other languages
English (en)
Chinese (zh)
Inventor
卢道华
陈文君
王佳
韩彬
Original Assignee
江苏科技大学
江苏科技大学海洋装备研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学, 江苏科技大学海洋装备研究院 filed Critical 江苏科技大学
Publication of WO2019000854A1 publication Critical patent/WO2019000854A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude

Definitions

  • the invention relates to the field of salvage of marine vessels, in particular to a wave compensation salvage robot system.
  • the marine fishing devices are manually operated crane cable fishing devices.
  • the existing fishing device installs the crane on the deck of the ship and carries out the salvage operation at sea by manually lifting the cable.
  • the ship will continue to do the swinging motion due to the influence of wind and waves.
  • the personnel will continue to compensate for the lifting and lowering of the cable, and the accuracy and efficiency of the target will be low.
  • the target of the sea will continue to change relative to the position. Due to the artificial observation of the operation cable, there will be a certain delay, which will seriously affect the accuracy of the workpiece position and quickly and effectively salvage the workpiece.
  • a wave compensating robot as described in Chinese Patent No. 201610617770.X having an arm, a wrist mechanism, an end effector driver and an end effector, the front end of the arm is connected to the rear end of the wrist mechanism, and the front end of the wrist mechanism is rigidly connected to the end actuator driver.
  • End The actuator driver is connected to the end actuator, and the wrist mechanism in the initial position is parallel to the ship deck, and the front end of the wrist mechanism is directed to the front of the bow.
  • the rear end of the wrist mechanism includes the first and second drives, and the front end includes a front end.
  • the differential mechanism and the two support arms are in the middle of the support frame, the support frame is fixed to the front end of the arm, the middle position of the support frame is fixedly coupled to the drive frame, and the first and second drives are oppositely arranged on the left and right sides of the drive frame.
  • the drive frame is connected in common, the central axes of the first and second drivers are horizontally arranged;
  • the front side of the support frame is fixed to two support arms arranged one left and one right, and the two support arms are differential mechanisms;
  • the differential mechanism is composed of four bevel gears, one yaw axis and two pitching active shafts, and the yaw axis is vertically arranged vertically.
  • the center lines of the first and second pitching active shafts are collinear, perpendicular to the center line of the yaw axis and one left One right is symmetrically arranged on both sides of the yaw axis, one end of the first and second pitching active shafts are rotatably connected to the differential mechanism supporting block, and the other end is supported on the same side of the supporting arm a coaxial gap of the middle portion of the yaw axis passes through a central hole of the differential support block, and a third bevel gear is coaxially connected through the bearing on the upper portion of the yaw axis, and the first bevel gear is coaxially fixedly connected to the lower portion of the yaw axis; a second bevel gear and a first pulley fixed to each other by a coaxial fixing sleeve on a pitching main shaft, and a fourth bevel gear and a third pulley fixed to each other by a coaxial fixing sleeve on the second pitching
  • the above patent uses a pulley-type transmission structure, resulting in a complicated transmission mechanism and a working space.
  • the gap is small, the maintenance is troublesome and the service life is low, and the transmission performance of the wheeled type is poor;
  • the present invention designs a wave compensation salvage robot system.
  • the technical problem to be solved by the present invention is to provide a wave compensation salvage robot system, which has the functions of wave compensation and automatic identification, and can perform real-time compensation for the roll, pitch and roll of the ship caused by wind waves to ensure that the end effector does not follow
  • the sea wind and waves affect the serious shaking and can automatically capture the exact position of the moving objects on the sea to complete the efficient, accurate and reliable completion of the salvage mission.
  • the technical solution of the present invention is: a wave compensation salvage robot system installed on a ship; the innovations are: including a robot arm mechanism, an inertial navigation sensor, a motion controller, Computer and visual detectors;
  • the mechanical arm mechanism comprises a base, a longitudinal rail, a transverse rail and a mechanical arm; the longitudinal rail and the transverse rail are perpendicular to each other and disposed on a same horizontal plane, and the base can be along a mutually perpendicular transverse rail by a motion controller Reciprocating movement with the longitudinal rail; the mechanical arm is fixedly coupled to the base by a bolt set, the mechanical arm follows the base to move along the transverse rail or the longitudinal rail; the mechanical arm is driven by the servo motor;
  • the inertial navigation sensor is located on the side of the robot arm and is fixedly connected to the base to measure data transformation caused by wind and waves in real time and send the tested data to the computer;
  • the computer performs data exchange with an inertial navigation sensor, a motion controller, and a visual detector, respectively; the computer processes and processes data output by the inertial sensor and models, predicts, and outputs data; the computer transmits to the motion controller Instruction The computer processes the transmission data of the visual detector;
  • One end of the motion controller exchanges data with a computer, and the other end of the motion controller is connected with a servo motor of the robot arm and controls the mechanical arm to perform a compensation motion;
  • the vision processor includes a first camera and a second camera; the first camera and the second camera are respectively mounted on the robot arm mechanism.
  • the working method of the system is:
  • the vision processor collects an image of the workpiece to be salvaged, and compares the obtained image of the workpiece to be salvaged according to the template image of the calibration, and searches for a feature graphic matching the template, and the feature graphic is extracted by the computer to reflect the actuator and
  • the pose deviation information of the workpiece is transformed according to the mapping relationship between the coordinate system of the first camera and the second camera and the coordinate system of the robot arm, and the coordinates of the workpiece in the coordinate system of the robot arm are obtained, and the motion of the robot arm is obtained by the characteristic error of the image.
  • the position increment is transmitted to the servo motor of the robot arm to determine the rotation speed and steering of the servo motor, and the path of the robot arm path is calculated according to the coordinates of the workpiece with the fishing;
  • S3 The data transmitted by the inertial navigation sensor is subjected to filtering preprocessing and data normalization processing in a computer, and a model is established.
  • the computer predicts the wave condition according to the established model and the data detected by the inertial sensor; the computer according to the predicted wave condition Determining the target point of the wave The position coordinates under the action of the wave are compared with the actual target point coordinates to calculate the compensation data;
  • the computer transmits the compensation data to the motion controller, and the motion controller gives a control signal according to the displacement and speed change rate of the ship, and transmits the control signal to the robot arm servo driver, and the servo driver according to the control signal
  • the size determines the speed and steering of the servo motor, and the servo motor drives the robot arm to complete the wave compensation function
  • the inertial navigation sensor continuously feeds back the detected parameters such as the actual displacement and speed of the ship to the computer, and the computer processes and feeds back to the motion controller.
  • the motion controller calculates the next cycle according to the magnitude of the change rate of the displacement and the speed. Control the size of the signal and pass it to the robotic servo drive for the next cycle of control;
  • the servo motor drives the robot arm according to the wave compensation data and the visual processing data, and the salvage task of the workpiece to be salvaged.
  • the inertial navigation sensor can detect roll, pitch, sway, sway, sway, heave, and sway, sway, and heave velocity data in real time and send it to a computer for processing.
  • the model is established in the S3 by calculating the autocorrelation function acf and the partial correlation function pacf by the computer after the zero-average and smoothing processing of the data transmitted by the inertial sensor, and determining the AR model according to the function curve, according to the determined AR model.
  • the computer recognizes the model parameters for continuous prediction of the ship.
  • the robot in the device of the invention has a larger working space through the lateral rail and the longitudinal rail, is convenient to move, and is convenient to be stored in the cabin and the corrosion-resistant casing. This increases its service life and makes it easier to maintain.
  • the mechanism of the invention is a series-connected mechanism, and it is easier to obtain a positive position solution and a higher precision than a conventional parallel wave compensation platform.
  • the device and the control method of the invention can effectively replace the traditional wave compensation device with single function, so that the structure of the whole compensation system is simpler, the operation is more convenient, and the work efficiency is higher. During the course of the ship's travel, it is also possible to work on the deck to salvage the items.
  • FIG. 1 is a schematic view showing the overall structure of a wave compensation robot system of the present invention.
  • FIG. 2 is a structural diagram of a visual processor of the present invention.
  • FIG. 3 is a flow chart of the control system of the present invention.
  • Figure 4 is a diagram showing the control structure of the present invention.
  • the robot arm mechanism includes a base 11, a longitudinal rail, a lateral rail and a mechanical arm 12; the longitudinal rail and the transverse rail are perpendicular to each other and disposed on the same horizontal plane, and the base 11 is horizontally perpendicular to each other by a motion controller
  • the rail and the longitudinal rail reciprocate; the robot arm 12 is fixedly coupled to the base 11 by a bolt set, and the robot arm 12 follows the base 11 to move along the transverse rail or the longitudinal rail; the robot arm 12 is driven by a servo motor.
  • the inertial sensor 2 is located on the side of the robot arm 12 and is fixedly attached to the base 11, and measures data conversion due to wind and waves in real time and transmits the tested data to the computer.
  • the computer exchanges data with the inertial navigation sensor 2, the motion controller 3, and the visual detector 4, respectively; the computer processes and processes the data output by the inertial sensor 2 and models, predicts, and outputs data;
  • the processor 3 sends an instruction; the computer processes the transmission data of the visual detector 4.
  • One end of the motion controller 3 exchanges data with a computer, and the other end of the motion controller 3 is connected to the servo motor of the robot arm 12 and controls the robot arm 12 to perform a compensation motion.
  • the vision processor 4 includes a first camera 41 and a second camera 42; the first camera 41 and the second camera 42 are mounted on the robot arm mechanism 1, respectively.
  • the working method of the compensation salvage robot system is:
  • Step 1 The vision processor 4 collects the workpiece image, and performs calibration on the workpiece through computer calculation to determine the mapping relationship between the workpiece feature model and the position coordinates of the workpiece in the vision processor 4 and the robot arm 12.
  • the calibration plate is first provided, and the calibration plate has the same characteristic pattern as the workpiece to be salvaged, that is, the size of the calibration plate is the same as the workpiece to be salvaged, and the image capturing search range of the salvage workpiece is determined.
  • the position of the calibration plate in the arm mechanism 1 is determined by the installation positioning.
  • the starter arm 12 drives the first camera 41 and the second camera 42 to collect the calibration plate information, and creates a feature template according to the acquired image.
  • the template contains parameters such as the position and shape of the feature graphic.
  • the coordinate parameters of the robot arm 12 and the corresponding feature patterns in the coordinate system of the first camera 41 and the second camera 42 determine the coordinate system of the binocular camera and the coordinate system of the robot arm.
  • Step 2 Determine the position of the workpiece characteristic pattern by the wave compensation system and the calculation to determine that the robot arm and the workpiece are in a relatively static state.
  • the inertial sensor 2 is mounted on the base 11 of the robot.
  • the so-called inertial sensor 2 can provide three-dimensional motion parameters such as acceleration and angular velocity of the carrier, and obtain important information such as the position and posture of the carrier based on the above parameters.
  • the attitude reference system uses the acceleration sensor, the gyroscope and the electronic compass to measure the motion parameters and azimuth of the carrier. By processing and calculating the measured values, real-time tracking and monitoring of the position and motion state of the carrier is realized.
  • the inertial measurement unit utilizes an acceleration sensor and a gyroscope to measure the acceleration and angular velocity of the carrier to obtain the motion and state of the carrier under the inertial reference frame.
  • the inertial navigation sensor 2 detects the roll, pitch and roll motion parameters of the ship, and transmits the data to the motion controller 3.
  • the motion controller 3 processes the digital signal according to the displacement and speed change rate of the ship.
  • the analog signal is obtained by the D/A converter, and the analog signal is transmitted to the mechanical arm servo driver in the form of a pulse.
  • the servo driver determines the rotation speed and steering of the servo motor according to the magnitude of the pulse signal, and the servo motor drives the mechanical arm to complete the wave compensation function;
  • the detection system continuously feeds back the measured parameters such as the actual displacement and speed of the ship to the motion controller, and the motion controller calculates the size of the next cycle control signal according to the magnitude of the change rate of the displacement and the velocity, and Passed to the robotic servo drive for the next cycle of control.
  • the first camera 41 and the second camera 42 collect an image of the workpiece, and find a feature image matching the feature template in the obtained workpiece image, and obtain a workpiece image by acquiring images of the camera, and the image is a two-dimensional image.
  • the calibration template image obtained before the comparison is performed, and the collected workpiece feature image is searched for, and the feature image is calculated.
  • the computer extracts the pose deviation information reflecting the actuator and the workpiece. The information is called the image feature error.
  • the robot motion position increment is obtained by the characteristic error of the image, and is transmitted to the robot controller, and the robot controller transmits the signal to the robot controller.
  • the servo arm servo drive determines the rotation speed and steering of the servo motor according to the size of the control signal, and the servo motor drives the robot arm 12 to complete the motion increment to achieve the relative static state of the robot arm 12 and the workpiece.
  • the positions of the feature images of the workpieces in the coordinate systems of the first camera 41 and the second camera 42 are respectively calculated; according to the previously obtained coordinate systems of the first camera 41 and the second camera 42 and the coordinate system of the robot arm
  • the mapping relationship performs coordinate transformation, and the position of the feature image of the workpiece is converted from the coordinates in the coordinate system of the first camera 41 and the second camera 42 to the coordinates in the coordinate system of the robot arm 12.
  • Step 3 In a state where the robot arm 12 and the workpiece are relatively stationary, the image captured by the camera is processed by a computer to obtain a feature pattern of the workpiece matched with the feature template. Specifically, an image of the workpiece is acquired by the first camera 41 and the second camera 42 to obtain two images of the workpiece, which is a two-dimensional image, that is, a planar image. Then, through the feature template previously obtained by the computer, the feature image is searched on the acquired workpiece image, and the feature graphic of the workpiece matching the feature model in the image is obtained.
  • Step 4 The camera captures the image and determines the position of the workpiece by using the calibration parameter by the computer. Specifically, the computer calculates the position of the two feature patterns of the workpiece in the coordinate system of the first camera 41 and the second camera 42 respectively according to the previously obtained The mapping relationship between the coordinate system of the first camera 41 and the second camera 42 and the robot arm coordinate system is converted, and the positions of the two feature patterns of the workpiece are converted from the coordinates in the coordinate system of the first camera 41 and the second camera 42 to Coordinates within the robot arm coordinate system to determine the workpiece The coordinate position in the robot arm coordinate system.
  • Step 5 The workpiece and the robot arm are in a relatively static position.
  • the robot arm path planning algorithm the most reasonable path planning is calculated. Specifically, the robot arm generates the most reasonable planning path according to the positional (X, Y, Z) coordinate parameter of the workpiece to be grasped according to a preset algorithm of the robot arm, and the setting algorithm may be various suitable types in the field. Algorithm.
  • Step 6 Complete the salvage task accurately and efficiently according to the planning path.
  • the robot arm 12 calculates the motion compensation data of each servo motor of the robot arm 12 according to the generated planning path, and thereby automatically and accurately transmits the actuator to the workpiece position to perform the grabbing.
  • the controller records the information data of the compensation and capture process and saves it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

La présente invention porte sur un système de robot de récupération à compensation d'ondes, installé sur un navire et comprenant: un mécanisme de bras mécanique (1), un capteur de navigation à inertie (2), un dispositif de commande de mouvement (3), un ordinateur et un détecteur visuel (4). Par comparaison avec un robot ordinaire, le robot de récupération à compensation d'ondes dispose d'un espace de travail plus grand, est pratique à déplacer, et peut être facilement rangé dans une cabine et une coque anti-corrosion au moyen d'un rail de guidage transversal et d'un rail de guidage longitudinal. De cette manière, la durée de vie du système de robot est prolongée, et le système de robot peut être entretenu plus facilement. Le système de robot de récupération à compensation d'ondes adopte un mécanisme en mode tandem, ce qui permet d'obtenir plus facilement la cinématique de la position avant et d'obtenir une plus grande précision par rapport à une plateforme classique parallèle de compensation d'ondes. Le système de robot de récupération à compensation d'ondes peut remplacer efficacement un dispositif classique de compensation d'ondes qui est unique en fonction, l'ensemble du système de compensation est plus simple dans sa structure, plus pratique dans son fonctionnement et plus efficace dans le travail; et le fonctionnement peut être effectué sur un pont pour la récupération de pièces à travailler dans le processus de navigation de navire.
PCT/CN2017/116476 2017-03-28 2017-12-15 Système de robot de récupération à compensation d'ondes WO2019000854A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710193735 2017-03-28
CN201710494430.7 2017-06-26
CN201710494430.7A CN107186752B (zh) 2017-03-28 2017-06-26 一种波浪补偿打捞机器人系统

Publications (1)

Publication Number Publication Date
WO2019000854A1 true WO2019000854A1 (fr) 2019-01-03

Family

ID=59880098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116476 WO2019000854A1 (fr) 2017-03-28 2017-12-15 Système de robot de récupération à compensation d'ondes

Country Status (2)

Country Link
CN (1) CN107186752B (fr)
WO (1) WO2019000854A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110434876A (zh) * 2019-08-09 2019-11-12 南京工程学院 一种六自由度rov模拟驾驶系统及其模拟方法
CN110674980A (zh) * 2019-09-12 2020-01-10 中交疏浚技术装备国家工程研究中心有限公司 工程船实时波浪预测方法
CN111857042A (zh) * 2020-08-19 2020-10-30 大连海事大学 一种基于pmac的五轴高精度定位控制系统及工作方法
CN112925712A (zh) * 2021-02-26 2021-06-08 东风电子科技股份有限公司 基于三轴运动系统并采用OpenCV图像检索技术的智能座舱人机交互系统测试装置
CN113955032A (zh) * 2021-11-15 2022-01-21 上海新纪元机器人有限公司 一种主动减少晃动的力控方法及系统、自平衡装置
CN114089767A (zh) * 2021-11-23 2022-02-25 成都瑞特数字科技有限责任公司 一种移动式复合机器人应用中瓶状物的定位与抓取方法
CN114135224A (zh) * 2021-11-30 2022-03-04 江苏徐工工程机械研究院有限公司 岩土工程机械及其工作臂挠度补偿方法
CN114310881A (zh) * 2021-12-23 2022-04-12 中国科学院自动化研究所 一种机械臂快换装置的标定方法、系统及电子设备
CN114368452A (zh) * 2021-12-17 2022-04-19 清华大学 船用波浪主动补偿装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186752B (zh) * 2017-03-28 2023-05-16 江苏科技大学 一种波浪补偿打捞机器人系统
CN107942731B (zh) * 2017-12-11 2021-03-30 上海电机学院 一种基于预测的人行栈桥主动波浪补偿装置及方法
CN109318238B (zh) * 2018-08-15 2022-06-17 南阳师范学院 一种火灾阀门关闭消防机器人
CN109623815B (zh) * 2018-12-19 2021-07-30 江苏科技大学 一种用于无人打捞船的波浪补偿双机器人系统及方法
CN109498914B (zh) * 2019-01-21 2024-05-24 河南埃尔森智能科技有限公司 一种基于3d视觉引导的自动静脉注射系统及其注射方法
CN111203880B (zh) * 2020-01-16 2022-12-06 上海交通大学 基于数据驱动的图像视觉伺服控制系统及方法
CN111618861A (zh) * 2020-06-12 2020-09-04 重庆科技学院 一种基于四轴结构的双随动智能手臂控制方法
CN112429181B (zh) * 2020-11-26 2021-09-21 山东大学 一种适用于水下航行器-机械手系统的姿态补偿耦合器及其工作方法
CN115855116B (zh) * 2023-02-08 2023-05-30 中国船舶集团有限公司第七〇七研究所 误差标定工艺生成方法及系统
CN117921639B (zh) * 2024-03-21 2024-05-28 中国极地研究中心(中国极地研究所) 一种用于无人艇的智能机械臂系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422693B1 (ko) * 2012-07-20 2014-07-28 삼성중공업 주식회사 해저 시설물, 수중 작업 시스템 및 수중 작업 방법
CN105698767A (zh) * 2015-12-30 2016-06-22 哈尔滨工业大学深圳研究生院 一种基于视觉的水下测量方法
CN106780607A (zh) * 2016-11-24 2017-05-31 中国人民解放军国防科学技术大学 一种两运动船舶相对六自由度运动的检测装置
CN106826772A (zh) * 2017-03-28 2017-06-13 江苏科技大学海洋装备研究院 一种具有主动波浪补偿功能的机器人系统
CN107186752A (zh) * 2017-03-28 2017-09-22 江苏科技大学 一种波浪补偿打捞机器人系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014000027U1 (de) * 2013-01-09 2014-01-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Chirurgieroboter
CN104476549B (zh) * 2014-11-20 2016-04-27 北京卫星环境工程研究所 基于视觉测量的机械臂运动路径补偿方法
CN104563469B (zh) * 2014-12-11 2017-06-16 中国科学院自动化研究所 一种用于墙面抹灰机器人的垂直度测量与补偿系统及方法
CN104627857B (zh) * 2015-02-16 2017-08-04 哈尔滨工程大学 主动式波浪补偿实验装置
CN105751211B (zh) * 2016-04-23 2019-02-01 上海大学 一种柔性杆驱动的曲率连续变化机器人及其控制方法
CN106240764A (zh) * 2016-08-01 2016-12-21 江苏科技大学 波浪补偿专用机器人及波浪补偿方法
CN106185647A (zh) * 2016-08-31 2016-12-07 润邦卡哥特科工业有限公司 一种船舶起重机波浪补偿辅助装置和补偿方法
CN207224015U (zh) * 2017-03-28 2018-04-13 江苏科技大学 一种波浪补偿打捞机器人系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422693B1 (ko) * 2012-07-20 2014-07-28 삼성중공업 주식회사 해저 시설물, 수중 작업 시스템 및 수중 작업 방법
CN105698767A (zh) * 2015-12-30 2016-06-22 哈尔滨工业大学深圳研究生院 一种基于视觉的水下测量方法
CN106780607A (zh) * 2016-11-24 2017-05-31 中国人民解放军国防科学技术大学 一种两运动船舶相对六自由度运动的检测装置
CN106826772A (zh) * 2017-03-28 2017-06-13 江苏科技大学海洋装备研究院 一种具有主动波浪补偿功能的机器人系统
CN107186752A (zh) * 2017-03-28 2017-09-22 江苏科技大学 一种波浪补偿打捞机器人系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110434876A (zh) * 2019-08-09 2019-11-12 南京工程学院 一种六自由度rov模拟驾驶系统及其模拟方法
CN110434876B (zh) * 2019-08-09 2024-03-22 南京工程学院 一种六自由度rov模拟驾驶系统及其模拟方法
CN110674980A (zh) * 2019-09-12 2020-01-10 中交疏浚技术装备国家工程研究中心有限公司 工程船实时波浪预测方法
CN110674980B (zh) * 2019-09-12 2023-01-03 中交疏浚技术装备国家工程研究中心有限公司 工程船实时波浪预测方法
CN111857042A (zh) * 2020-08-19 2020-10-30 大连海事大学 一种基于pmac的五轴高精度定位控制系统及工作方法
CN111857042B (zh) * 2020-08-19 2024-04-26 大连海事大学 一种基于pmac的五轴高精度定位控制系统及工作方法
CN112925712A (zh) * 2021-02-26 2021-06-08 东风电子科技股份有限公司 基于三轴运动系统并采用OpenCV图像检索技术的智能座舱人机交互系统测试装置
CN112925712B (zh) * 2021-02-26 2024-04-02 东风电子科技股份有限公司 基于三轴运动系统并采用OpenCV图像检索技术的智能座舱人机交互系统测试装置
CN113955032A (zh) * 2021-11-15 2022-01-21 上海新纪元机器人有限公司 一种主动减少晃动的力控方法及系统、自平衡装置
CN113955032B (zh) * 2021-11-15 2024-02-02 上海新纪元机器人有限公司 一种主动减少晃动的力控方法及系统、自平衡装置
CN114089767A (zh) * 2021-11-23 2022-02-25 成都瑞特数字科技有限责任公司 一种移动式复合机器人应用中瓶状物的定位与抓取方法
CN114089767B (zh) * 2021-11-23 2024-03-26 成都瑞特数字科技有限责任公司 一种移动式复合机器人应用中瓶状物的定位与抓取方法
CN114135224B (zh) * 2021-11-30 2024-02-02 江苏徐工工程机械研究院有限公司 岩土工程机械及其工作臂挠度补偿方法
CN114135224A (zh) * 2021-11-30 2022-03-04 江苏徐工工程机械研究院有限公司 岩土工程机械及其工作臂挠度补偿方法
CN114368452B (zh) * 2021-12-17 2023-03-14 清华大学 船用波浪主动补偿装置
CN114368452A (zh) * 2021-12-17 2022-04-19 清华大学 船用波浪主动补偿装置
CN114310881A (zh) * 2021-12-23 2022-04-12 中国科学院自动化研究所 一种机械臂快换装置的标定方法、系统及电子设备

Also Published As

Publication number Publication date
CN107186752B (zh) 2023-05-16
CN107186752A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
WO2019000854A1 (fr) Système de robot de récupération à compensation d'ondes
CN109032178B (zh) 全驱动auv回收控制系统及自主回收方法
CN106679661B (zh) 搜救机器人手臂辅助同时定位及构建环境地图系统及方法
CN109623815B (zh) 一种用于无人打捞船的波浪补偿双机器人系统及方法
CN109131801A (zh) 全海深无人潜水器的自主回收装置及控制方法
CN110794855A (zh) 一种水下机器人综合控制系统及其方法
CN107160400B (zh) 一种具有主动波浪补偿功能的机器人系统
CN113602462B (zh) 水下机器人及其水中高可视度情况下姿态与运动控制方法
CN104865565B (zh) 一种水下舰壳声呐自动升降回转摇摆检测装置
JP2023133088A (ja) 複雑な大型部材用の可動式のフレキシブル測定システム及び測定方法
CN108860527A (zh) 一种水下机器人-水下机械臂系统
CN113093742B (zh) 一种自动规避多障碍物的无人船路径跟踪系统
CN113190002A (zh) 一种高铁箱梁巡检机器人实现自动巡检的方法
CN115019412A (zh) 一种基于多传感器的水下auv海缆巡检系统及方法
CN116704017B (zh) 一种基于视觉混合的机械臂位姿检测方法
CN113336110A (zh) 一种海上起重机时间最优轨迹控制方法及系统
CN207224015U (zh) 一种波浪补偿打捞机器人系统
CN107907593A (zh) 一种超声检测中机械手防碰撞方法
CN111413886A (zh) 一种基于系统辨识的实船操纵性指数辨识方法及装置
WO2023071703A1 (fr) Système de surveillance en temps réel d'attitude de mouvement multi-navire
CN116852352A (zh) 一种基于ArUco码的电力二次设备机械臂定位方法
CN207344597U (zh) 一种具有主动波浪补偿功能的机器人系统
CN115471570A (zh) 基于视觉和imu融合的海洋装备水下损伤三维重建方法
CN111915718B (zh) 适用于船岸lng装卸臂的自动对接系统
CN114942421A (zh) 一种全向扫描的多线激光雷达自主定位装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915425

Country of ref document: EP

Kind code of ref document: A1