WO2019000835A1 - 电磁线圈液冷系统 - Google Patents

电磁线圈液冷系统 Download PDF

Info

Publication number
WO2019000835A1
WO2019000835A1 PCT/CN2017/113908 CN2017113908W WO2019000835A1 WO 2019000835 A1 WO2019000835 A1 WO 2019000835A1 CN 2017113908 W CN2017113908 W CN 2017113908W WO 2019000835 A1 WO2019000835 A1 WO 2019000835A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
insulating
electromagnetic coil
wire
spiral
Prior art date
Application number
PCT/CN2017/113908
Other languages
English (en)
French (fr)
Inventor
王伟
王毅
史忠山
吕松浩
Original Assignee
广东合一新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合一新材料研究院有限公司 filed Critical 广东合一新材料研究院有限公司
Publication of WO2019000835A1 publication Critical patent/WO2019000835A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/105Cooling by special liquid or by liquid of particular composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers

Definitions

  • the invention relates to the field of electromagnetic coil cooling, and in particular to an electromagnetic coil liquid cooling system.
  • the electromagnetic coil generally includes a wire.
  • the wire is energized to generate a magnetic field, and when a magnetic field is generated, heat is generated, especially when the electromagnetic coil is applied to a laser-driven proton medical range.
  • a single energization load can generate a strong magnetic field of 10T or more.
  • a strong magnetic field requires a strong current and a dense winding, so that the wire of the electromagnetic coil generates a strong magnetic field. A large amount of Joule heat will also be generated. If this heat is not discharged in time, the coil temperature will rise and the resistance of the coil will increase.
  • the outside of the electromagnetic coil is mainly liquid-cooled by a liquid cooling device, but in some electromagnetic coils, the wires are often wrapped in the insulating layer, and the cooling effect of the wires of the electromagnetic coil is often caused by the isolation of the insulating layer. Poor, far from meeting industrial needs.
  • an object of the present invention is to provide an electromagnetic coil liquid cooling system which adopts a combination design of an electromagnetic coil, a guiding device, and an insulating coolant receiving device, and provides a passage through the electromagnetic coil.
  • the inner wall of the channel is at least partially formed by the wall surface of the wire, so that the wire can directly contact the insulating coolant flowing through the channel, thereby improving the cooling effect of the wire.
  • a solenoid liquid cooling system comprising an electromagnetic coil, a guiding device, and an insulating coolant receiving device;
  • the electromagnetic coil includes a wire, and the electromagnetic coil is provided with a passage through which the insulating coolant flows, the channel
  • the inner wall is at least partially formed by the wall surface of the wire;
  • the electromagnetic coil is provided with a plurality of liquid inlets and outlets which are alternately arranged along the extending direction of the channel; the liquid inlet and the liquid outlet are connected to the channel;
  • the guiding device is configured to guide the insulating coolant into the respective liquid inlets, and the insulating coolant receiving device is configured to receive the insulating coolant flowing out from the respective liquid outlets.
  • the guiding device comprises a first liquid collecting tank and a guiding tube; the first liquid collecting tank communicates with the liquid inlet through the guiding tube; the insulating coolant receiving device comprises a second liquid collecting tank, the second set The liquid tank communicates with the liquid outlet through the communication pipe.
  • the guiding device includes a plurality of the guiding tubes respectively corresponding to the respective liquid inlets, one end of the guiding tube is in communication with the first liquid collecting tank, and the other end is connected to the corresponding liquid inlet;
  • the communication tube is disposed in a plurality, and the plurality of communication tubes are respectively in one-to-one correspondence with the respective liquid outlets, and one end of the communication tube is in communication with the second liquid collection tank, and the other end is connected to the corresponding liquid outlet;
  • a collection tank is connected to the inlet pipe, and the second header is connected to the outlet pipe.
  • first liquid collection tank and the second liquid collection tank are both located above the electromagnetic coil, and the guiding tube is in communication with the lower end of the first liquid collection tank, and the communication tube is connected with the lower end of the second liquid collection tank.
  • the liquid pipe is connected to the upper end of the first liquid collecting tank, and the liquid discharging pipe is connected to the upper end of the second liquid collecting tank; the first liquid collecting tank and the second liquid collecting tank are made of an insulating material.
  • the wire is wound into a wound member having a plurality of spiral layers which are sequentially arranged from the inside to the outside, and any adjacent liquid inlet and outlet are respectively disposed adjacent to each other in a one-to-one correspondence On the two spiral layers.
  • the wire is a helical spiral segment at each of the spiral layers; in any adjacent two spiral segments, the beginning of the outer spiral segment is joined to the end of the inner spiral segment.
  • liquid inlet is disposed on the starting turn of the corresponding spiral segment, and the liquid outlet is disposed on the last turn of the corresponding spiral segment; the liquid inlet and the liquid outlet are located at the top of the electromagnetic coil.
  • each of the spiral layers is provided with an insulating layer
  • the insulating layer includes an interlayer insulating portion and an inter-turn insulating portion disposed outside the spiral layer, and an inter-turn insulating portion is disposed between any adjacent two turns of the spiral portion;
  • the insulating layer further includes a head end insulating portion and a terminal insulating portion; the head end insulating portion is disposed at a side of the starting portion of the spiral segment away from the inter-turn insulating portion, and the end insulating portion is disposed at the end of the spiral portion away from the crucible One side of the insulating portion.
  • the wire jacket is provided with an insulating sleeve, and the insulating sleeve is formed as an insulating layer corresponding to a portion of the spiral layer; the passage is formed between the wire and the insulating sleeve.
  • the channel is disposed on the wire, and the channel extends along the extending direction of the wire; the channel extends from one end of the wire to the other end; the channel is disposed at a central portion of the wire.
  • the invention adopts a combination design of an electromagnetic coil, a guiding device and an insulating coolant receiving device, and provides a channel on the electromagnetic coil, and the inner wall of the channel is at least partially formed by the wall surface of the wire, so that the wire can be insulated from the flow through the channel.
  • Direct contact with the liquid can improve the cooling effect of the wire; and, by properly arranging the inlet port and the outlet port, the channel of the electromagnetic coil can be divided into several sections, thereby shortening the flow distance of the insulating coolant and reducing the flow resistance. It can improve the flow heat exchange capacity to further improve the cooling effect of the wire.
  • FIG. 1 is a schematic view of the cooperation of a wire with a guiding device and an insulating coolant receiving device
  • Figure 2 is a cross-sectional view of the electromagnetic coil
  • FIG. 3 is a schematic structural view of another electromagnetic coil
  • Figure 4 is an enlarged view of A of Figure 3;
  • an electromagnetic coil liquid cooling system includes an electromagnetic coil 10, a guiding device 20, and an insulating coolant receiving device 30.
  • the electromagnetic coil 10 generally includes a wire 11 and the wire 11 is copper. Or a conductive material such as aluminum, and when the electromagnetic coil 10 is operated, a magnetic field is mainly generated by energizing the wire 11, and thus heat is mainly concentrated on the wire 11.
  • the improvement of the present invention lies in that the electromagnetic coil 10 is provided with a passage 12 through which the insulating coolant flows; the inner wall of the passage 12 is at least partially formed by the wall surface of the wire 11; and the electromagnetic coil 10 is provided along the extending direction of the passage 12.
  • the guiding device 20 is for guiding the insulating coolant to each liquid inlet port In the 13th, the insulating coolant receiving device 30 is for receiving the insulating coolant flowing out from each of the liquid outlets 14.
  • the insulating coolant can be guided into each of the liquid inlets 13 by the guiding device 20, and the insulating coolant enters the channel 12 through the liquid inlet 13 and directly contacts the wire 11 during the flow through the channel 12. Then, it flows out through the liquid outlet 14 and is received by the insulating coolant receiving device 30.
  • the present invention adopts a combination design of the electromagnetic coil 10, the guiding device 20, and the insulating coolant receiving device 30, and passes through the electromagnetic coil 10.
  • the channel 12 is provided, and the inner wall of the channel 12 is at least partially formed by the wall surface of the wire 11, so that the wire 11 can directly exchange heat with the insulating coolant flowing through the channel 12 to improve the cooling effect of the wire 11;
  • the liquid inlet 13 and the liquid outlet 14 divide the passage 12 of the electromagnetic coil 10 into several sections, thereby shortening the flow distance of the insulating coolant, reducing the flow resistance, and improving the flow heat transfer energy.
  • the guiding device 20 includes a first header 21 and a guiding tube 23, the first header 21 being provided with a cavity for receiving the insulating coolant; the first header 21 passing through the guiding tube 23 In communication with the liquid inlet 13; the insulating coolant receiving device 30 includes a second header 31, the second header 31 is provided with a receiving chamber for containing the insulating coolant, and the second header 31 passes through the communicating tube 42 is in communication with the liquid outlet 14.
  • the insulating coolant in the first header tank 21 can be guided into the inlet port 13 via the guide tube 23, and the insulating coolant flowing out from the outlet port 14 can flow through the communication tube 42 to the second header tank. 31.
  • the insulating liquid that flows out of the liquid outlet 14 is received by the second header tank 31.
  • the guiding device 20 includes a plurality of guiding tubes 23 respectively corresponding to the respective liquid inlets 13.
  • One end of the guiding tubes 23 communicates with the first liquid collecting tank 21, and the other end and the corresponding liquid inlet 13
  • the communication tube 42 is provided in a plurality of ways, and the plurality of communication tubes 42 are respectively in one-to-one correspondence with the respective liquid outlets 14, and one end of the communication tube 42 is connected to the second liquid collection tank 31, and the other end is corresponding to The liquid outlet 14 is connected to facilitate processing.
  • first header tank 21 is connected to the inlet pipe 22, and the second header tank 31 is connected to the outlet pipe 32.
  • the insulating coolant can enter the first header tank 21 via the inlet pipe 22.
  • the outlet coolant 32 can facilitate the discharge of the insulating coolant in the second header tank 31.
  • the first header tank 21 and the second header tank 31 are both located above the electromagnetic coil 10, and the guide tube 23 communicates with the lower end of the first header tank 21, and the communication tube 42 and the second header tank 31 are The lower end communicates, the inlet pipe 22 communicates with the upper end of the first header tank 21, and the outlet pipe 32 communicates with the upper end of the second header tank 31.
  • the first header tank 21 and the second header tank 31 are made of an insulating material to provide insulation.
  • the guiding device 20 and the insulating coolant receiving device 30 are not limited to the above-described configuration, and may be configured to receive and receive an insulating coolant.
  • the guiding device 20 and the insulating coolant receiving device 30 are configured as described above. The optimal solution of the invention can be conveniently produced and cost-saving.
  • the wire 11 is wound into a wound having a plurality of spiral layers 15 which are sequentially arranged from the inside to the outside, and any adjacent liquid inlet 13 and liquid outlet 14 are respectively corresponding one by one. It is disposed on the adjacent two spiral layers 15 to effectively shorten the flow path of the insulating coolant and further improve the flow heat exchange capability.
  • the wire 11 is a helical spiral segment at each of the spiral layers 15; in any adjacent two spiral segments, the beginning of the outer spiral segment is joined to the end of the inner spiral segment.
  • the liquid inlet 13 is disposed on the starting raft of the corresponding spiral section, and the liquid outlet 14 is disposed at the end ⁇ of the corresponding spiral section, and the starting raft is the first winding of the spiral section, and the last ⁇ As a last winding of the spiral section, by setting the liquid inlet 13 on the starting raft of the corresponding spiral section, the liquid outlet 14 is disposed at the end ⁇ of the corresponding spiral layer 15, thereby facilitating the inlet from the inlet 13
  • the inflowing insulating coolant can flow through the adjacent spiral segments to cool the adjacent spiral segments.
  • the liquid inlet 13 and the liquid outlet 14 are located at the top of the electromagnetic coil 10.
  • Each of the spiral layers 15 is provided with an insulating layer 16 including an interlayer insulating portion 18 disposed outside the spiral layer 15, and the insulating layer 16 further includes an inter-turn insulating portion 19 between any adjacent two turns of the spiral segment
  • the inter-turn insulating portion 19 is provided to provide good insulation.
  • the insulating layer 16 further includes a head end insulating portion and a terminal insulating portion; the head end insulating portion is disposed at a side of the starting portion of the spiral segment away from the inter-turn insulating portion 19, and the end insulating portion is disposed at the spiral portion The end of the crucible is away from the side of the inter-turn insulating portion 19.
  • the insulating layer 16 may be an insulating circular arc shell or an insulating lacquer layer.
  • an insulating sleeve 50 may be provided on the outer surface of the wire 11 , and the insulating sleeve 50 is formed as an insulating layer 16 of the spiral layer 15 corresponding to the portion of each spiral layer 15 (as shown in FIGS. 3 and 4 ).
  • the channel 12 is disposed on the wire 11 and extends in the extending direction of the wire 11.
  • the channel 12 extends from one end of the wire 11 to the other end, so that the cooling path can be increased, wherein both ends of the channel 12 can be set as a blind end or an open end according to actual needs, and in the embodiment, the channel 12 Both ends are set to blind ends.
  • This passage 12 is provided at the center of the wire 11.
  • the passage 12 may be formed between the wire 11 and the insulating sleeve 50, and the inner wall of the passage 12 may be at least partially formed by the wall surface of the wire 11 (as shown in Figs.
  • the insulating coolant may be various existing insulating coolants such as liquid nitrogen, liquid hydrogen, liquid helium, liquid carbon dioxide or Freon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

一种电磁线圈液冷系统,包括电磁线圈(10)、引导装置(20)、绝缘冷却液接收装置(30);所述电磁线圈(10)包括导线(11),所述电磁线圈(10)设有供绝缘冷却液流经的通道(12);所述电磁线圈(10)设有沿着通道(12)的延伸方向依次交替排列的若干个进液口(13)和出液口(14);所述进液口(13)、出液口(14)均与通道(12)连通;所述引导装置(20)用于将绝缘冷却液引导至各进液口(13)内,所述绝缘冷却液接收装置(30)用于接收从各出液口(14)流出的绝缘冷却液。该电磁线圈液冷系统可使得导线(11)可与流经通道(12)的绝缘冷却液直接接触,可提高导线(11)的冷却效果;而且,通过合理排布进液口(13)和出液口(14),可提高流动换热能力,以进一步提高导线(11)的冷却效果。

Description

电磁线圈液冷系统 技术领域
本发明涉及电磁线圈冷却领域,具体涉及一种电磁线圈液冷系统。
背景技术
电磁线圈一般包括有导线,在电磁线圈工作过程中,导线通电会产生磁场,而在产生磁场的同时,也会产生热量,尤其是电磁线圈应用于激光驱动的质子医疗范围中的强磁场重频磁体时,单次通电加载,可产生10T以上强磁场,但是由于电磁线圈电阻的存在,而产生强磁场就需要其强大的电流和密集的绕线,因此电磁线圈的导线在产生强磁场的同时也会产生大量焦耳热,这些热量如果不及时排出,将会使线圈温度升高,增加线圈的电阻,在下一次加载时,会产生更多的热量,降低磁场强度,所以这些热量必须及时排出。但目前,主要通过液冷装置对电磁线圈外部进行液冷,但在部分电磁线圈中,导线常被包裹于绝缘层内,而由于绝缘层的隔离作用,从而常常造成电磁线圈的导线的冷却效果较差,远不能满足工业需求。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种电磁线圈液冷系统,其通过采用电磁线圈、引导装置、绝缘冷却液接收装置的结合设计,并通过在电磁线圈上设有通道,且通道的内壁至少部分由导线壁面形成,使得导线可与流经通道的绝缘冷却液直接接触,可提高导线的冷却效果。
本发明的目的采用如下技术方案实现:
电磁线圈液冷系统,包括电磁线圈、引导装置、绝缘冷却液接收装置;所述电磁线圈包括导线,所述电磁线圈设有供绝缘冷却液流经的通道,所述通道 的内壁至少部分由导线壁面形成;所述电磁线圈设有沿着通道的延伸方向依次交替排列的若干个进液口和出液口;所述进液口、出液口均与通道连通;所述引导装置用于将绝缘冷却液引导至各进液口内,所述绝缘冷却液接收装置用于接收从各出液口流出的绝缘冷却液。
进一步地,所述引导装置包括第一集液箱、引导管;所述第一集液箱通过引导管与进液口连通;绝缘冷却液接收装置包括第二集液箱,所述第二集液箱通过连通管与出液口连通。
进一步地,所述引导装置包括与各进液口分别一一对应的若干个所述引导管,所述引导管的其中一端与第一集液箱连通,另一端与对应进液口连通;所述连通管设置为若干个,且该若干个连通管与各出液口分别一一对应,且连通管的其中一端与第二集液箱连通,另一端与对应出液口连通;所述第一集液箱连通有进液管,所述第二集液箱连通有出液管。
进一步地,所述第一集液箱、第二集液箱均位于电磁线圈的上方,引导管与第一集液箱的下端连通,所述连通管与第二集液箱的下端连通,进液管与第一集液箱的上端连通,出液管与第二集液箱的上端连通;所述第一集液箱和第二集液箱均为绝缘材料制成。
进一步地,导线绕制成具有多层螺旋层的绕制件,该多层螺旋层由里向外依次排列,任意相邻的进液口和出液口分别一一对应地设置在相邻的两螺旋层上。
进一步地,所述导线在各螺旋层的部位均为呈螺旋状的螺旋段;在任意相邻的两螺旋段中,外边的螺旋段的始端与里边的螺旋段的末端衔接。
进一步地,进液口设置在对应螺旋段的起始匝上,出液口设置在对应螺旋段的末尾匝上;所述进液口、出液口均位于电磁线圈的顶部。
进一步地,各螺旋层均设有绝缘层,绝缘层包括设置在螺旋层外侧的层间绝缘部、匝间绝缘部,螺旋段中任意相邻的两匝之间均设置有匝间绝缘部;所述绝缘层还包括首端绝缘部、末端绝缘部;所述首端绝缘部设置在螺旋段的起始匝远离匝间绝缘部的一侧,末端绝缘部设置在螺旋段的末尾匝远离匝间绝缘部的一侧。
进一步地,所述导线外套设有绝缘套,所述绝缘套对应于螺旋层的部位形成为绝缘层;所述通道形成在导线与绝缘套之间。
进一步地,所述通道设置在导线上,且该通道沿着所述导线的延伸方向延伸;该通道从导线的一端延伸至另一端;所述通道设置在导线的中心部位上。
相比现有技术,本发明的有益效果在于:
本发明通过采用电磁线圈、引导装置、绝缘冷却液接收装置的结合设计,并通过在电磁线圈上设有通道,且通道的内壁至少部分由导线壁面形成,使得导线可与流经通道的绝缘冷却液直接接触,可提高导线的冷却效果;而且,通过合理排布进液口和出液口,可以将电磁线圈的通道划分为若干段,从而缩短绝缘冷却液的流动距离,减小流动阻力,可提高流动换热能力,以进一步提高导线的冷却效果。
附图说明
图1为导线与引导装置、绝缘冷却液接收装置的配合示意图;
图2为电磁线圈的剖视图;
图3为另一电磁线圈的结构示意图;
图4为图3的A处放大图;
图中:10、电磁线圈;11、导线;12、通道;13、进液口;14、出液口;15、螺旋层;16、绝缘层;18、层间绝缘部;19、匝间绝缘部;20、引导装置; 21、第一集液箱;22、进液管;23、引导管;30、绝缘冷却液接收装置;31、第二集液箱;32、出液管;42、连通管;50、绝缘套。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
如图1、2所示的一种电磁线圈液冷系统,包括电磁线圈10、引导装置20、绝缘冷却液接收装置30;根据公知常识,电磁线圈10一般包括有导线11,且导线11为铜、或铝等导电材料制成,并在电磁线圈10工作时,主要通过导线11通电而产生磁场,因而,热量主要集中在导线11上。而本发明的改进点在于在电磁线圈10设有供绝缘冷却液流经的通道12;所述通道12的内壁至少部分由导线11壁面形成;电磁线圈10上设有沿着通道12的延伸方向依次交替排列的若干个进液口13和出液口14;所述进液口13、出液口14均与通道12连通;所述引导装置20用于将绝缘冷却液引导至各进液口13内,绝缘冷却液接收装置30用于接收从各出液口14流出的绝缘冷却液。
在使用时,可通过引导装置20将绝缘冷却液引导至各进液口13内,绝缘冷却液经进液口13进入通道12内,并在流经通道12过程中与导线11直接接触换热,然后经出液口14流出,并被绝缘冷却液接收装置30接收,因而,本发明通过采用电磁线圈10、引导装置20、绝缘冷却液接收装置30的结合设计,并通过在电磁线圈10上设有通道12,且通道12的内壁至少部分由导线11壁面形成,使得导线11可与流经通道12的绝缘冷却液直接接触进行换热,可提高导线11的冷却效果;同时,通过合理排布进液口13和出液口14,将电磁线圈10的通道12划分为若干段,从而缩短绝缘冷却液的流动距离,减小流动阻力,可提高流动换热能 力,并可对通道12对应的各段进行更充分的冷却,从而减少因绝缘冷却液在通道12前部吸热而造成温度升高导致无法对通道12其余部分进行良好冷却现象,可进一步提高导线11的冷却效果;而且,还可在电磁线圈10工作的状态下进行冷却,而无需电磁线圈10停机冷却,可提高其工作效率。
进一步地,引导装置20包括第一集液箱21、引导管23,所述第一集液箱21设有用于供绝缘冷却液容纳的空腔;所述第一集液箱21通过引导管23与进液口13连通;绝缘冷却液接收装置30包括第二集液箱31,第二集液箱31设有用于供绝缘冷却液容纳的容纳腔,所述第二集液箱31通过连通管42与出液口14连通。在使用时,第一集液箱21内的绝缘冷却液可经引导管23引导至进液口13内,而从出液口14流出的绝缘冷却液可经连通管42流向第二集液箱31,以利用第二集液箱31接收出液口14流出的绝缘冷却液。
其中,所述引导装置20包括与各进液口13分别一一对应的若干个引导管23,所述引导管23的其中一端与第一集液箱21连通,另一端与对应进液口13连通,所述连通管42设置为若干个,且该若干个连通管42与各出液口14分别一一对应,且连通管42的其中一端与第二集液箱31连通,另一端与对应出液口14连通,以方便于加工制作。
进一步地,第一集液箱21连通有进液管22,第二集液箱31连通有出液管32,在使用时,绝缘冷却液可经进液管22进入第一集液箱21内,以方便于往第一集液箱21内补充绝缘冷却液,而通过出液管32可方便于第二集液箱31内的绝缘冷却液排出。所述第一集液箱21、第二集液箱31均位于电磁线圈10的上方,引导管23与第一集液箱21的下端连通,所述连通管42与第二集液箱31的下端连通,进液管22与第一集液箱21的上端连通,出液管32与第二集液箱31的上端连通。具体的,第一集液箱21、第二集液箱31均为绝缘材料制成,以起到绝缘作用。
当然,引导装置20、绝缘冷却液接收装置30并不限于上述结构,只要可起到引导、接收绝缘冷却液作用即可,但将引导装置20、绝缘冷却液接收装置30采用上述结构,为本发明的最优方案,可方便于制作,节省成本。
进一步地,导线11绕制成具有多层螺旋层15的绕制件,该多层螺旋层15由里向外依次排列,任意相邻的进液口13和出液口14分别一一对应地设置在相邻的两螺旋层15上,可有效缩短绝缘冷却液的流动路程,进一步提高流动换热能力。
具体的,导线11在各螺旋层15的部位均为呈螺旋状的螺旋段;在任意相邻的两螺旋段中,外边的螺旋段的始端与里边的螺旋段的末端衔接。
具体的,进液口13设置在对应螺旋段的起始匝上,出液口14设置在对应螺旋段的末尾匝上,而起始匝作为螺旋段首个绕制的一匝,而末尾匝作为螺旋段末个绕制的一匝,通过将进液口13设置在对应螺旋段的起始匝上,出液口14设置在对应螺旋层15的末尾匝上,从而方便于从进液口13流入的绝缘冷却液,可顺延流经相邻螺旋段,对相邻的螺旋段进行冷却。具体的,所述进液口13、出液口14均位于电磁线圈10的顶部。
各螺旋层15均设置有绝缘层16,绝缘层16包括设置在螺旋层15外侧的层间绝缘部18,绝缘层16还包括匝间绝缘部19,螺旋段中任意相邻的两匝之间均设置有所述匝间绝缘部19,以起到良好绝缘作用。具体的,所述绝缘层16还包括首端绝缘部、末端绝缘部;所述首端绝缘部设置在螺旋段的起始匝远离匝间绝缘部19的一侧,末端绝缘部设置在螺旋段的末尾匝远离匝间绝缘部19的一侧。
其中,绝缘层16可为绝缘圆弧壳、绝缘漆层。当然,除此之外,还可在导线11外套设有绝缘套50,绝缘套50对应于各螺旋层15的部位形成为该螺旋层15的绝缘层16(如图3、4所示)。
具体的,通道12设置在导线11上,并沿导线11的延伸方向延伸。该通道12从导线11的一端延伸至另一端,从而可增长冷却路径,其中该通道12的两端可依据实际需求而设置为盲端、或者开口端,而在本实施例中,该通道12的两端均设置为盲端。该通道12设置在导线11的中心部位上。
而除此之外,还可将所述通道12形成在导线11与绝缘套50之间,同样可使所述通道12的内壁至少部分由导线11壁面形成(如图3、4所示)。
其中,绝缘冷却液可采用液氮、液氢、液氦、液态二氧化碳或者氟利昂等各种现有的绝缘冷却液。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 电磁线圈液冷系统,其特征在于:包括电磁线圈、引导装置、绝缘冷却液接收装置;所述电磁线圈包括导线,所述电磁线圈设有供绝缘冷却液流经的通道,所述通道的内壁至少部分由导线壁面形成;所述电磁线圈设有沿着通道的延伸方向依次交替排列的若干个进液口和出液口;所述进液口、出液口均与通道连通;所述引导装置用于将绝缘冷却液引导至各进液口内,所述绝缘冷却液接收装置用于接收从各出液口流出的绝缘冷却液。
  2. 如权利要求1所述的电磁线圈液冷系统,其特征在于:所述引导装置包括第一集液箱、引导管;所述第一集液箱通过引导管与进液口连通;绝缘冷却液接收装置包括第二集液箱,所述第二集液箱通过连通管与出液口连通。
  3. 如权利要求2所述的电磁线圈液冷系统,其特征在于:所述引导装置包括与各进液口分别一一对应的若干个所述引导管,所述引导管的其中一端与第一集液箱连通,另一端与对应进液口连通;所述连通管设置为若干个,且该若干个连通管与各出液口分别一一对应,且连通管的其中一端与第二集液箱连通,另一端与对应出液口连通;所述第一集液箱连通有进液管,所述第二集液箱连通有出液管。
  4. 如权利要求3所述的电磁线圈液冷系统,其特征在于:所述第一集液箱、第二集液箱均位于电磁线圈的上方,引导管与第一集液箱的下端连通,所述连通管与第二集液箱的下端连通,进液管与第一集液箱的上端连通,出液管与第二集液箱的上端连通;所述第一集液箱和第二集液箱均为绝缘材料制成。
  5. 如权利要求1所述的电磁线圈液冷系统,其特征在于:导线绕制成具有多层螺旋层的绕制件,该多层螺旋层由里向外依次排列,任意相邻的进液口和出液口分别一一对应地设置在相邻的两螺旋层上。
  6. 如权利要求5所述的电磁线圈液冷系统,其特征在于:所述导线在各螺旋层的部位均为呈螺旋状的螺旋段;在任意相邻的两螺旋段中,外边的螺旋段的始端与里边的螺旋段的末端衔接。
  7. 如权利要求6所述的电磁线圈液冷系统,其特征在于:进液口设置在对应螺旋段的起始匝上,出液口设置在对应螺旋段的末尾匝上;所述进液口、出液口均位于电磁线圈的顶部。
  8. 如权利要求6所述的电磁线圈液冷系统,其特征在于:各螺旋层均设有绝缘层,绝缘层包括设置在螺旋层外侧的层间绝缘部、匝间绝缘部,螺旋段中任意相邻的两匝之间均设置有匝间绝缘部;所述绝缘层还包括首端绝缘部、末端绝缘部;所述首端绝缘部设置在螺旋段的起始匝远离匝间绝缘部的一侧,末端绝缘部设置在螺旋段的末尾匝远离匝间绝缘部的一侧。
  9. 如权利要求8所述的电磁线圈液冷系统,其特征在于:所述导线外套设有绝缘套,所述绝缘套对应于螺旋层的部位形成为绝缘层;所述通道形成在导线与绝缘套之间。
  10. 如权利要求1所述的电磁线圈液冷系统,其特征在于:所述通道设置在导线上,且该通道沿着所述导线的延伸方向延伸;该通道从导线的一端延伸至另一端;所述通道设置在导线的中心部位上。
PCT/CN2017/113908 2017-06-30 2017-11-30 电磁线圈液冷系统 WO2019000835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710526062.X 2017-06-30
CN201710526062.XA CN107871595A (zh) 2017-06-30 2017-06-30 电磁线圈液冷系统

Publications (1)

Publication Number Publication Date
WO2019000835A1 true WO2019000835A1 (zh) 2019-01-03

Family

ID=61761715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113908 WO2019000835A1 (zh) 2017-06-30 2017-11-30 电磁线圈液冷系统

Country Status (2)

Country Link
CN (1) CN107871595A (zh)
WO (1) WO2019000835A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559866A (zh) * 2018-12-28 2019-04-02 中国工程物理研究院流体物理研究所 用于提高脉冲磁体重复频率的绕组、脉冲磁体及冷却方法
CN109616293A (zh) * 2018-12-29 2019-04-12 湖南福德电气有限公司 一种散热型电抗器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201796681U (zh) * 2010-03-02 2011-04-13 Abb公司 电子装置的线圈结构
CN202205559U (zh) * 2011-08-29 2012-04-25 苏州博远特种变压器有限公司 干式变压器
US20150097644A1 (en) * 2013-10-04 2015-04-09 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
CN106455436A (zh) * 2016-10-21 2017-02-22 广东合新材料研究院有限公司 一种敞开式液氮自循环快速冷却系统
CN206961649U (zh) * 2017-06-30 2018-02-02 广东合一新材料研究院有限公司 电磁线圈液冷系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1470902A (en) * 1975-02-28 1977-04-21 Tioxide Group Ltd Electrical series reactor
IT1290551B1 (it) * 1997-02-26 1998-12-10 Sirten Trasformatore elettrico per trazione con avvolgimento primario ottenuto con conduttori tubolari percorsi da fluido di raffreddamento
CN100573753C (zh) * 2004-06-15 2009-12-23 中国科学院电工研究所 一种蒸发冷却变压器
CN1317807C (zh) * 2004-12-13 2007-05-23 苏州试验仪器总厂 水冷式励磁线圈绕制新方法
WO2006113972A1 (en) * 2005-04-27 2006-11-02 Geoffrey Michael Baglin An electromagnetic coil and system for making same
DE102012022452B4 (de) * 2012-11-09 2018-04-05 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Elektrische Maschine und Kraftfahrzeug-Antriebsstrang

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201796681U (zh) * 2010-03-02 2011-04-13 Abb公司 电子装置的线圈结构
CN202205559U (zh) * 2011-08-29 2012-04-25 苏州博远特种变压器有限公司 干式变压器
US20150097644A1 (en) * 2013-10-04 2015-04-09 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
CN106455436A (zh) * 2016-10-21 2017-02-22 广东合新材料研究院有限公司 一种敞开式液氮自循环快速冷却系统
CN206961649U (zh) * 2017-06-30 2018-02-02 广东合一新材料研究院有限公司 电磁线圈液冷系统

Also Published As

Publication number Publication date
CN107871595A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
CN207704979U (zh) 一种串频电源整流电抗器绕组在线冷却装置
WO2019000835A1 (zh) 电磁线圈液冷系统
JP2009218417A (ja) リアクトル冷却装置
CN104501393A (zh) 一种电磁加热即热式热水器的发热单元
CN201152804Y (zh) 水冷式励磁线圈
CN105428045B (zh) 高频水冷变压器
CN206961649U (zh) 电磁线圈液冷系统
WO2019000836A1 (zh) 一种电磁线圈液冷系统
KR20120004367U (ko) 코일 냉각 방법, 코일 냉각 시스템, 및 액체 냉각 코일
CN207460016U (zh) 一种感应加热校平机水冷系统
WO2019000802A1 (zh) 电磁线圈冷却系统
WO2019085043A1 (zh) 电磁线圈散热系统
JP4615425B2 (ja) 整合変圧器
CN215496235U (zh) 一种励磁线圈的结构
CN206961650U (zh) 一种电磁线圈液冷系统
CN102938294A (zh) 高频电源变压器
CN211405635U (zh) 一种水冷电机定子
CN105118618A (zh) 一种环氧树脂浇注水内冷移相变压器
CN211507333U (zh) 一种适用于大型碳纤维生产线供电的水冷干式变压器
CN211090028U (zh) 螺栓加热棒
CN213716676U (zh) 一种电抗器的水冷装置
CN211150290U (zh) 一种开关电源结构
CN204991372U (zh) 一种环氧树脂浇注水内冷移相变压器
CN201233799Y (zh) 一种整流变压器
CN220232840U (zh) 一种磁场线圈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915381

Country of ref document: EP

Kind code of ref document: A1