WO2019000666A1 - 瞬态二极管、信号传输电路及电子设备 - Google Patents

瞬态二极管、信号传输电路及电子设备 Download PDF

Info

Publication number
WO2019000666A1
WO2019000666A1 PCT/CN2017/103171 CN2017103171W WO2019000666A1 WO 2019000666 A1 WO2019000666 A1 WO 2019000666A1 CN 2017103171 W CN2017103171 W CN 2017103171W WO 2019000666 A1 WO2019000666 A1 WO 2019000666A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
transient diode
equivalent
transmission line
transient
Prior art date
Application number
PCT/CN2017/103171
Other languages
English (en)
French (fr)
Inventor
张亚利
逯永广
Original Assignee
联想(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联想(北京)有限公司 filed Critical 联想(北京)有限公司
Publication of WO2019000666A1 publication Critical patent/WO2019000666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements

Definitions

  • the present disclosure relates to a transient diode, a signal transmission circuit, and an electronic device.
  • transient interference of voltage and current is the main cause of damage to electronic circuits and electronic equipment.
  • the related technology mainly adds transient diodes (TVS) in electronic circuits, which can effectively suppress transient interference of voltage and current, thereby protecting electrons. Circuits and electronic equipment.
  • TVS transient diodes
  • the inventors have found that adding a transient diode to an electronic circuit affects the transmission quality of the signal on the transmission line, and it is difficult to meet the transmission requirements of the signal.
  • An aspect of the present disclosure provides a transient diode including: a transient diode body; and a compensation component coupled to the transient diode body for compensating for capacitance generated when the transient diode body is coupled to a signal transmission line Impedance to reduce the effect of the above transient diode on the signal transmission quality of the signal transmission line.
  • the transient diode body includes a first end and a second end; the first end is connected to one end of the compensating element; and the second end is used for grounding.
  • the equivalent circuit of the transient diode body includes at least one equivalent capacitor, and the equivalent branch of each equivalent capacitor includes a first end and a second end; the first end is connected to the compensation component; And the second end is used for grounding.
  • the at least one equivalent capacitance includes at least one first equivalent capacitance and at least one second equivalent capacitance; and the first end of each of the at least one first equivalent capacitance is connected to one end of the compensation component a first end of each of the at least one second equivalent capacitors coupled to the other end of the compensating element; a second end of each of the at least one first equivalent capacitors for grounding; and at least one of the The second end of each of the second equivalent capacitors is for grounding.
  • the at least one equivalent capacitor includes a plurality of equivalent capacitors; a first end of each of the plurality of equivalent capacitors is coupled to a same end of the compensating element; and each of the plurality of equivalent capacitors The second end of each is used for grounding.
  • the compensating element comprises an inductance.
  • a ratio between an inductance value of the inductor and a capacitance value of an equivalent capacitor corresponding to the transient diode body is equal to a preset value.
  • a signal transmission circuit comprising: a signal transmission line for transmission a signal; and the transient diode of any of the above, connected to the signal transmission line.
  • another signal transmission circuit comprising: a signal transmission line for transmitting a signal; a transient diode connected to the signal transmission line and grounded at one end; and a compensation component, connected And in the signal transmission line, and connected to the non-ground terminal of the transient diode, for compensating for a capacitive impedance generated by the transient diode on the signal transmission line, to reduce the signal of the transient diode to the signal transmission line The impact of transmission quality.
  • an electronic device comprising: the above signal transmission circuit.
  • FIG. 1A schematically shows a schematic diagram of a transient diode in accordance with an embodiment of the present disclosure
  • FIG. 1B schematically illustrates a schematic diagram of a transient diode in accordance with another embodiment of the present disclosure
  • FIG. 2A schematically shows a schematic diagram of a signal transmission circuit in accordance with an embodiment of the present disclosure
  • 2B schematically shows a schematic diagram of a signal transmission circuit in accordance with another embodiment of the present disclosure
  • FIG. 3A schematically shows a schematic diagram of a signal transmission line in accordance with an embodiment of the present disclosure
  • FIG. 3B schematically shows a schematic diagram of a signal transmission line according to another embodiment of the present disclosure
  • FIG. 4 schematically shows a schematic diagram of a signal transmission circuit according to another embodiment of the present disclosure
  • FIG. 5A schematically illustrates a circuit test result simulation diagram of a general transient diode according to an embodiment of the present disclosure
  • FIG. 5B schematically illustrates a circuit test result simulation diagram after circuit compensation according to an embodiment of the present disclosure.
  • Transient interference of voltage and current is the main cause of electronic equipment and electronic circuits, often resulting in incalculable losses.
  • Transient interference of voltage and current usually comes from the start-stop operation of electronic equipment, the instability of the AC grid, lightning strikes, static interference and so on.
  • the use of transient diodes can suppress transient interference caused by static electricity and other causes to the electronic circuit.
  • the shape of the transient diode is basically the same as that of a normal diode, and the circuit symbols are the same.
  • the transient diodes When the transient diodes are instantaneously high-energy When impacted, it can reduce its impedance at a very high speed while absorbing a large current, so that the rear circuit components are protected from damage.
  • the signal transmission circuit if a transient diode is added, the transmission quality of the signal in the signal transmission circuit is affected, especially for a signal transmitted at a high speed.
  • a transient diode in accordance with an embodiment of the present disclosure, includes a transient diode body and a compensation component.
  • the compensation component is coupled to the transient diode body for compensating for a capacitive impedance generated when the transient diode body is coupled to the signal transmission line to reduce the influence of the transient diode on the signal transmission quality of the signal transmission line.
  • FIG. 1A schematically shows a schematic diagram of a transient diode in accordance with an embodiment of the present disclosure.
  • transient diode 100 includes a transient diode body 110 and a compensation component 120.
  • the compensating element 120 is coupled to the transient diode body 110 for compensating for the capacitive impedance generated when the transient diode body 110 is coupled to the signal transmission line to reduce the effect of the transient diode on the signal transmission quality of the signal transmission line.
  • FIG. 1B schematically shows a schematic diagram of a transient diode in accordance with another embodiment of the present disclosure.
  • the transient diode 100 includes a transient diode body 110 and a compensation component 120.
  • the compensating element 120 is coupled to the transient diode body 110 for compensating for the capacitive impedance generated when the transient diode body 110 is coupled to the signal transmission line to reduce the effect of the transient diode on the signal transmission quality of the signal transmission line.
  • the transient diode body is connected with the compensation component, and the transient diode body and the compensation component are connected in various ways, which can not only reduce the transient diode (actually the transient diode body) The impact on signal transmission, especially on the transmission of high-speed signals, and can suppress transient interference caused by static electricity and other causes to electronic circuits.
  • the transient diode body includes a first end and a second end.
  • the first end is connected to one end of the compensating element.
  • the second end is used for grounding.
  • the transient diode body may include both ends, one end for connecting the compensating element and the other end for grounding.
  • the transient diode body may include both ends, one end for connecting the compensating element and the other end for grounding.
  • the transient diode body by grounding the transient diode body, transient interference caused by static electricity and other causes to the electronic circuit can be achieved.
  • the transient diode body By connecting the transient diode body to the compensation component, it is possible to cancel the ordinary transient diode in the electron. The effect of a sudden change in capacitive impedance on the circuit.
  • an equivalent circuit of a transient diode body includes at least one equivalent capacitance, and an equivalent branch in which each equivalent capacitance is included includes a first end and a second end. The first end is connected to the compensating element. And the second end is used for grounding.
  • the transient diode body 110 can be replaced by an equivalent circuit, and the equivalent circuit can include at least one The equivalent capacitance, the at least one equivalent capacitance includes at least one first equivalent capacitance C1 and at least one second equivalent capacitance C2.
  • the equivalent branch in which each equivalent capacitor is located includes a first end and a second end; the first end is coupled to the compensating element; and the second end is used for grounding.
  • the transient diode body can be replaced by an equivalent circuit, which may include an equivalent capacitor or a plurality of equivalent capacitors.
  • the number of equivalent capacitors can be determined based on the magnitude of the sudden change in the capacitive impedance of the transient diode on the electronic circuit.
  • a plurality of equivalent capacitors can be used.
  • an equivalent capacitor can be used.
  • the specific number of equivalent capacitors can be determined according to the actual situation.
  • the at least one equivalent capacitance includes at least one first equivalent capacitance and at least one second equivalent capacitance.
  • a first end of each of the at least one first equivalent capacitance is coupled to one end of the compensating element.
  • a first end of each of the at least one second equivalent capacitance is coupled to the other end of the compensating element.
  • a second end of each of the at least one first equivalent capacitance is for grounding.
  • a second end of each of the at least one second equivalent capacitance is for grounding.
  • the transient diode body 110 can be replaced by an equivalent circuit, which may include a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • an equivalent circuit which may include a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the first end of the first equivalent capacitor C1 is connected to the resistor R1, and then connected to one end of the compensating element 120, and the second end of the first equivalent capacitor C1 is used for grounding.
  • the first end of the first equivalent capacitor C2 is connected to the resistor R2, it is connected to the other end of the compensating element 120, and the second end of the second equivalent capacitor C2 is used for grounding.
  • the equivalent capacitance includes the first equivalent capacitance C1 and the second equivalent capacitance C2
  • the first equivalent capacitance C1 and the second equivalent capacitance C2 are respectively connected to both ends of the compensation element 120.
  • the transient diode body 110 includes a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the transient diode 100 includes the transient diode body 110 and the compensation component 120.
  • the first equivalent capacitor C1 and the second equivalent capacitor C2 are respectively connected to the two ends of the compensating element 120, so that other factors such as suppressing static electricity can be caused to the electronic circuit.
  • Transient interference by connecting the transient diode body to the compensation component, can offset the effects of a sudden change in the capacitive impedance of an ordinary transient diode on an electronic circuit.
  • the at least one equivalent capacitance includes a plurality of equivalent capacitances.
  • a first end of each of the plurality of equivalent capacitances is coupled to the same end of the compensating element.
  • a second end of each of the plurality of equivalent capacitors is for grounding.
  • transient diode 100 includes a transient diode body 110 and a compensation component 120.
  • the transient diode body 110 can be replaced by an equivalent circuit, and the equivalent circuit can include at least one equivalent capacitor, at least one equivalent capacitor At least one first equivalent capacitor C1 and at least one second equivalent capacitor C2 are included. It should be noted that in the actual electronic circuit, there is a certain resistance loss on the equivalent circuit, such as the resistor R1 and the resistor R2 as shown in FIG. 1B.
  • the transient diode body 110 can be replaced by an equivalent circuit, and the equivalent circuit can include a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the equivalent circuit can include a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the first end of the first equivalent capacitor C1 is connected to the resistor R1, and then connected to one end of the compensating element 120, and the second end of the first equivalent capacitor C1 is used for grounding.
  • the first end of the first equivalent capacitor C2 is connected to the resistor R2, it is connected to the same end of the compensating element 120, and the second end of the second equivalent capacitor C2 is used for grounding.
  • the equivalent capacitance includes the first equivalent capacitance C1 and the second equivalent capacitance C2
  • the first equivalent capacitance C1 and the second equivalent capacitance C2 are simultaneously connected to the same end of the compensation element 120.
  • the transient diode body 110 includes a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the transient diode 100 includes the transient diode body 110 and the compensation component 120.
  • first equivalent capacitor C1 and the second equivalent capacitor C2 shown in FIG. 1B are simultaneously connected to the left end of the compensation component 120, and the first equivalent capacitor C1 and the second equivalent capacitor C2 can also be connected at the same time. At the right end of the compensating element 120.
  • the transient diode body may be replaced with an equivalent circuit, which may include one or more equivalent capacitances.
  • an equivalent circuit is included in the equivalent circuit, the equivalent capacitance can be connected to either end of the compensating element.
  • a plurality of equivalent capacitors are included in the equivalent circuit, a plurality of equivalent capacitors may be connected to any one of the two ends of the compensating element, or a plurality of equivalent capacitors may be connected to the two of the compensating elements. end.
  • the first equivalent capacitor C1 and the second equivalent capacitor C2 are respectively connected to the same end of the compensating element 120, and other reasons such as suppressing static electricity can be achieved.
  • the resulting transient interference can be achieved by connecting the transient diode body to the compensation component to counteract the effects of sudden changes in the capacitive impedance of the ordinary transient diode on the electronic circuit.
  • connection manner of the equivalent capacitor and the compensation component can be determined according to actual conditions.
  • the equivalent capacitor connection manner should be achieved to offset the ordinary transient diode in the electron. The effect of a sudden change in capacitive impedance on the circuit.
  • the connection manner of the equivalent capacitor is diversified, and when the compensation component is connected to the equivalent capacitor, the connection can be made according to actual needs.
  • the compensation component includes an inductance.
  • the compensation component 120 can be an inductor. It is of course also possible to form the compensation element by means of winding. As long as the compensation component can offset the influence of the sudden change of the capacitive impedance of the ordinary transient diode on the electronic circuit, the manner or component type of the compensation component is not limited.
  • the inductance value of the inductance is between the capacitance value of the equivalent capacitance corresponding to the transient diode body
  • the ratio is equal to the preset value.
  • the compensating element is an inductor
  • the effect of the transient diode on the signal transmission quality of the signal transmission line is reduced.
  • the ratio between the inductance of the inductor and the capacitance of the equivalent capacitor corresponding to the transient diode body is equal to a preset value.
  • a signal transmission circuit includes a signal transmission line and a transient diode.
  • the signal transmission line is used to transmit signals.
  • the transient diode is connected in the signal transmission line.
  • the transient diode includes a transient diode body and a compensation component, and the compensation component is connected to the transient diode body for compensating for a capacitive impedance generated when the transient diode body is connected to the signal transmission line to reduce the transient diode pair signal. The effect of signal transmission quality on the transmission line.
  • FIG. 2A schematically shows a schematic diagram of a signal transmission circuit in accordance with an embodiment of the present disclosure.
  • the signal transmission circuit includes a signal transmission line 201 and a transient diode 100.
  • the signal transmission line 201 is for transmitting signals.
  • the transient diode 100 is connected in the signal transmission line 201.
  • the transient diode 100 includes a transient diode body 110 and a compensation component 120.
  • the compensating element 120 is connected to the transient diode body 110 for compensating for the capacitive impedance generated when the transient diode body 110 is connected to the signal transmission line 201 to reduce the influence of the transient diode 100 on the signal transmission quality of the signal transmission line 201. .
  • the signal transmission circuit includes a signal transmission line 201 and a transient diode 100 including a transient diode body 110 and a compensation component 120 coupled to the transient diode body 110 due to the compensation component 120
  • the capacitive impedance generated when the transient diode body 110 is connected to the signal transmission line 201 can be compensated, and therefore, the influence of the transient diode 100 on the signal transmission quality of the signal transmission line 201 can be reduced.
  • the transient diode body 110 is used to suppress transient interference caused by static electricity and other causes on the electronic circuit.
  • the shape of the transient diode may be the same as or different from that of a common diode.
  • the electronic component 202 and the electronic component 203 may also be disposed in the signal transmission circuit.
  • the types of the specific electronic component 202 and the electronic component 203 are not limited.
  • a sudden change in capacitive impedance caused by the transient diode body 110 is introduced at a position of the signal transmission line 201, the magnitude of the impedance abrupt value and the position of the transient diode on the signal transmission circuit. Transmission has an impact.
  • the compensation component 120 can be used to counteract the effects of a sudden change in the capacitive impedance of a conventional transient diode. In the above manner, not only the influence of the transient diode (actually the transient diode body) on the signal transmission, but also the transmission of the high-speed signal can be reduced, and the transient interference caused by static electricity and other causes to the electronic circuit can be suppressed. .
  • FIG. 2B schematically shows a schematic diagram of a signal transmission circuit in accordance with another embodiment of the present disclosure.
  • the signal transmission circuit includes a signal transmission line 201 for transmitting signals, and a transient diode 100 connected to the signal transmission line 201. It should be noted that the transient diode body 110 in the transient diode 100 is connected at the same end of the compensation component 120.
  • FIG. 3A schematically shows a schematic diagram of a signal transmission line in accordance with an embodiment of the present disclosure.
  • the signal transmission line can be equivalent to the resistor R, the inductor L, the resistor G, and the capacitor C.
  • FIG. 3B schematically shows a schematic diagram of a signal transmission line in accordance with another embodiment of the present disclosure.
  • the signal transmission line can use the inductance L, and the capacitance C is equivalent.
  • the signal transmission line 201 as shown in FIG. 2A or FIG. 2B can be replaced with the signal transmission line as shown in FIG. 3B, that is, the inductance L and the capacitance C equivalent signal transmission line can be used.
  • a signal transmission circuit including a signal transmission line, a transient diode, and a compensation element.
  • the signal transmission line is used to transmit signals.
  • the transient diode is connected to the signal transmission line and is grounded at one end.
  • the compensation component is connected in the signal transmission line and is connected to the non-ground terminal of the transient diode for compensating the capacitive impedance generated by the transient diode on the signal transmission line to reduce the signal transmission quality of the transient diode to the signal transmission line. influences.
  • FIG. 4 schematically shows a schematic diagram of a signal transmission circuit in accordance with another embodiment of the present disclosure.
  • a signal transmission line 201 is used for transmitting signals.
  • the transient diode 110 is connected in the signal transmission line 201 and is grounded at one end.
  • a compensation component 120 coupled to the signal transmission line 201 and coupled to the non-ground terminal of the transient diode 110 for compensating for a capacitive impedance generated by the transient diode 110 on the signal transmission line 201 to reduce the transient diode 110 The influence on the signal transmission quality of the signal transmission line 201.
  • the transient diode 110 can be replaced with an equivalent circuit, which can include at least one equivalent capacitance, and the at least one equivalent capacitance includes at least one first equivalent capacitance C1 and at least one second equivalent capacitance C2. It should be noted that in the actual electronic circuit, there is a certain resistance loss on the equivalent circuit, such as the resistor R1 and the resistor R2 shown in FIG.
  • the transient diode 110 can be replaced by an equivalent circuit, and the equivalent circuit can include a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the equivalent circuit can include a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • the first end of the first equivalent capacitor C1 is connected to the resistor R1, and then connected to one end of the compensating element 120, and the second end of the first equivalent capacitor C1 is used for grounding.
  • the first end of the first equivalent capacitor C2 is connected to the resistor R2, and then connected to the same end of the compensating element 120, and the second equivalent capacitor The second end of C2 is used for grounding.
  • the equivalent capacitance includes the first equivalent capacitance C1 and the second equivalent capacitance C2
  • the first equivalent capacitance C1 and the second equivalent capacitance C2 are simultaneously connected to the same end of the compensation element 120.
  • the transient diode 110 includes a first equivalent capacitor C1, a second equivalent capacitor C2, a resistor R1, and a resistor R2.
  • first equivalent capacitor C1 and the second equivalent capacitor C2 shown in FIG. 4 are simultaneously connected to the left end of the compensation component 120, and the first equivalent capacitor C1 and the second equivalent capacitor C2 can also be connected at the same time. At the right end of the compensating element 120.
  • the transient diode may be replaced with an equivalent circuit, and one or more equivalent capacitors may be included in the equivalent circuit.
  • the equivalent capacitance can be connected to either end of the compensating element.
  • a plurality of equivalent capacitors are included in the equivalent circuit, a plurality of equivalent capacitors may be connected to any one of the two ends of the compensating element, or a plurality of equivalent capacitors may be connected to the two of the compensating elements. end.
  • connection mode of the equivalent capacitor and the compensation component can be determined according to the actual situation.
  • connection mode of the equivalent capacitor should achieve the offset of the capacitive impedance of the ordinary transient diode on the electronic circuit. The impact.
  • the connection manner of the equivalent capacitor is diversified, and when the compensation component is connected to the equivalent capacitor, the connection can be made according to actual needs.
  • FIG. 5A schematically illustrates a circuit test result simulation diagram of a general transient diode, that is, an eye pattern test when a signal transmission circuit that does not design a compensation circuit transmits a signal, according to an embodiment of the present disclosure.
  • the abscissa represents time and the ordinate represents voltage value. From the time domain simulation results, it can be seen that the highest point of the design of the compensation circuit is c1 point, the voltage is 274mV, the time span between point a and point b is 94ps, and the initial value is 0 before time domain simulation.
  • FIG. 5B schematically illustrates a circuit test result simulation diagram after circuit compensation according to an embodiment of the present disclosure, that is, an eye diagram test when a signal transmission circuit of the compensation circuit is designed to transmit a signal.
  • the abscissa represents time and the ordinate represents voltage value. From the time domain simulation results, it can be seen that the highest point of the design compensation circuit is c2 point, the voltage is 330mV, and the time span between point a and point b is 94ps.
  • the signal transmission circuit using the compensation component can cancel the influence of the sudden change of the capacitive impedance of the ordinary transient diode, and can reduce the transient diode (actually the transient diode body) pair.
  • the impact of signal transmission especially on the transmission of high-speed signals.
  • another electronic device including a signal transmission circuit.
  • the signal transmission circuit includes a signal transmission line and a transient diode.
  • the signal transmission line is used to transmit signals.
  • the transient diode is connected in the signal transmission line.
  • the transient diode comprises a transient diode body and a compensation component, and a compensation element
  • the device is connected to the transient diode body for compensating for the capacitive impedance generated when the transient diode body is connected to the signal transmission line to reduce the influence of the transient diode on the signal transmission quality of the signal transmission line.
  • the transient diode body includes a first end and a second end.
  • an equivalent circuit of the transient diode body includes at least one equivalent capacitance, and an equivalent branch of each equivalent capacitor includes a first end and a second end; the first end is coupled to the compensation component; And the second end is used for grounding.
  • the at least one equivalent capacitance includes at least one first equivalent capacitance and at least one second equivalent capacitance. A first end of each of the at least one first equivalent capacitance is coupled to one end of the compensating element. A first end of each of the at least one second equivalent capacitance is coupled to the other end of the compensating element.
  • a second end of each of the at least one first equivalent capacitance is for grounding. And a second end of each of the at least one second equivalent capacitor is for grounding.
  • the at least one equivalent capacitance includes a plurality of equivalent capacitances. A first end of each of the plurality of equivalent capacitances is coupled to the same end of the compensating element. And a second end of each of the plurality of equivalent capacitors for grounding.
  • the compensation component includes an inductance.
  • a ratio between an inductance value of the inductance and a capacitance value of the equivalent capacitance corresponding to the transient diode body is equal to a preset value.
  • an electronic device including a signal transmission circuit includes a signal transmission line, a transient diode, and a compensation component.
  • the signal transmission line is used to transmit signals.
  • a transient diode is connected to the above signal transmission line and grounded at one end.
  • a compensation component is coupled to the signal transmission line and coupled to the non-ground terminal of the transient diode for compensating for a capacitive impedance generated by the transient diode on the signal transmission line to reduce the signal transmission of the transient diode The effect of the signal transmission quality of the line.
  • the electronic device may be a smart phone, a tablet computer, a server, or the like.
  • the signal transmission circuit in the electronic device will be described in detail in other embodiments of the present disclosure, and details are not described herein.
  • an electronic device including the above signal transmission circuit it is possible to reduce or eliminate the influence of a sudden change in the capacitance of the transient diode on the signal transmitted by the signal transmission line, so that the signal is more efficient when transmitted on the signal transmission line. And the transmission quality is high, which in turn improves the performance of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Filters And Equalizers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种瞬态二极管(100),包括:瞬态二极管本体(110);以及补偿元件(120),与瞬态二极管本体(110)相连,用于补偿当瞬态二极管本体(110)连接在信号传输线路上产生的容性阻抗,以减少瞬态二极管(100)对信号传输线路的信号传输质量的影响。

Description

瞬态二极管、信号传输电路及电子设备 技术领域
本公开涉及一种瞬态二极管、信号传输电路及电子设备。
背景技术
在电子电路中,电压和电流的瞬态干扰是造成电子电路及电子设备损坏的主要原因。为了解决电压和电流的瞬态干扰对电子电路及电子设备的影响,相关技术主要是在电子电路中增加瞬态二极管(TVS),可以使得电压和电流的瞬态干扰得到有效抑制,进而保护电子电路及电子设备。
但是,在实施本公开的过程中,发明人发现在电子电路上增加瞬态二极管时会影响信号在传输线路上的传输质量,难以满足信号的传输要求。
发明内容
本公开的一个方面提供了一种瞬态二极管,包括:瞬态二极管本体;以及补偿元件,与上述瞬态二极管本体相连,用于补偿当上述瞬态二极管本体连接在信号传输线路上产生的容性阻抗,以减少上述瞬态二极管对信号传输线路的信号传输质量的影响。
可选地,上述瞬态二极管本体包括第一端和第二端;上述第一端与上述补偿元件的一端相连;以及上述第二端用于接地。
可选地,上述瞬态二极管本体的等效电路包括至少一个等效电容,每个等效电容所在的等效支路包括第一端和第二端;上述第一端与上述补偿元件相连;以及上述第二端用于接地。
可选地,上述至少一个等效电容包括至少一个第一等效电容和至少一个第二等效电容;上述至少一个第一等效电容中的每个的第一端与上述补偿元件的一端相连;上述至少一个第二等效电容中的每个的第一端与上述补偿元件的另一端相连;上述至少一个第一等效电容中的每个的第二端用于接地;以及上述至少一个第二等效电容中的每个的第二端用于接地。
可选地,上述至少一个等效电容包括多个等效电容;上述多个等效电容中的每个的第一端与上述补偿元件的同一端相连;以及上述多个等效电容中的每个的第二端用于接地。
可选地,上述补偿元件包括电感。
可选地,上述电感的电感值与上述瞬态二极管本体对应的等效电容的电容值之间的比值等于预设值。
根据本公开的另一方面,还提供了一种信号传输电路,包括:信号传输线路,用于传输 信号;以及上述任一项的瞬态二极管,连接在上述信号传输线路中。
根据本公开的另一方面,还提供了另一种信号传输电路,包括:信号传输线路,用于传输信号;瞬态二极管,连接在上述信号传输线路中,且一端接地;以及补偿元件,连接在上述信号传输线路中,且与上述瞬态二极管的非接地端连接,用于补偿上述瞬态二极管在上述信号传输线路上产生的容性阻抗,以减少上述瞬态二极管对上述信号传输线路的信号传输质量的影响。
根据本公开的另一方面,还提供了一种电子设备,包括:上述信号传输电路。
附图说明
为了更完整地理解本公开及其优势,现在将参考结合附图的以下描述,其中:
图1A示意性示出了根据本公开的实施例的瞬态二极管的示意图;
图1B示意性示出了根据本公开的另一实施例的瞬态二极管的示意图;
图2A示意性示出了根据本公开的实施例的信号传输电路的示意图;
图2B示意性示出了根据本公开的另一实施例的信号传输电路的示意图;
图3A示意性示出了根据本公开的实施例的信号传输线路的示意图;
图3B示意性示出了根据本公开的另一实施例的信号传输线路的示意图;
图4示意性示出了根据本公开的另一实施例的信号传输电路的示意图;
图5A示意性示出了根据本公开的实施例的普通瞬态二极管的电路测试结果仿真图;以及
图5B示意性示出了根据本公开的实施例的经电路补偿后的电路测试结果仿真图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
电压和电流的瞬态干扰是造成电子设备和电子电路的主要原因,常常带来无法估量的损失。电压和电流的瞬态干扰通常来自于电子设备的启停操作,交流电网的不稳定,雷击,静电干扰等。采用瞬态二极管可以抑制静电等其它原因对电子电路造成的瞬态干扰,瞬态二极管的外形与普通的二极管的外形基本相同,电路符号也相同,当瞬态二极管的两端经瞬间的高能量冲击时,能以极高的速度使其阻抗降低,同时吸收一个大电流,使得后面的电路元件免受损坏。然而,在信号传输电路中,如果添加瞬态二极管会影响信号在信号传输电路中的传输质量,尤其是针对高速传输的信号。
根据本公开的实施例,提供了一种瞬态二极管,包括瞬态二极管本体和补偿元件。补偿元件与上述瞬态二极管本体相连,用于补偿当上述瞬态二极管本体连接在信号传输线路上产生的容性阻抗,以减少上述瞬态二极管对信号传输线路的信号传输质量的影响。
图1A示意性示出了根据本公开的实施例的瞬态二极管的示意图。
如图1A所示,瞬态二极管100包括瞬态二极管本体110和补偿元件120。补偿元件120与瞬态二极管本体110相连,用于补偿当瞬态二极管本体110连接在信号传输线路上产生的容性阻抗,以减少瞬态二极管对信号传输线路的信号传输质量的影响。
图1B示意性示出了根据本公开的另一实施例的瞬态二极管的示意图。
如图1B所示,瞬态二极管100包括:瞬态二极管本体110和补偿元件120。补偿元件120与瞬态二极管本体110相连,用于补偿当瞬态二极管本体110连接在信号传输线路上产生的容性阻抗,以减少瞬态二极管对信号传输线路的信号传输质量的影响。
通过本公开的实施例,将瞬态二极管本体与补偿元件连接在一起,并且瞬态二极管本体与补偿元件的连接方式多种多样,不仅可以减小瞬态二极管(实际上是瞬态二极管本体)对信号传输的影响,尤其是对高速信号的传输影响,而且可以抑制静电等其它原因对电子电路造成的瞬态干扰。
根据本公开的实施例,瞬态二极管本体包括第一端和第二端。第一端与补偿元件的一端相连。以及第二端用于接地。
根据本公开的实施例,瞬态二极管本体可以包括两端,其中一端用于连接补偿元件,另一端用于接地。在这种情况下,通过将瞬态二极管本体接地,可以达到抑制静电等其它原因对电子电路造成的瞬态干扰,通过将瞬态二极管本体连接补偿元件,可以达到抵消普通的瞬态二极管在电子电路上的容性阻抗突变所带来的影响。
根据本公开的实施例,瞬态二极管本体的等效电路包括至少一个等效电容,每个等效电容所在的等效支路包括第一端和第二端。第一端与补偿元件相连。以及第二端用于接地。
如图1A所示,瞬态二极管本体110可以用等效电路替换,等效电路中可以包括至少一 个等效电容,至少一个等效电容包括至少一个第一等效电容C1和至少一个第二等效电容C2。需要说明的是,在实际电子电路中,等效电路上存在一定的电阻损耗,如图1A所示的电阻R1和电阻R2。每个等效电容所在的等效支路包括第一端和第二端;第一端与补偿元件相连;以及第二端用于接地。
通过本公开的实施例,瞬态二极管本体可以用等效电路替换,等效电路中可以包括一个等效电容,也可以包括多个等效电容。等效电容的个数可以根据瞬态二极管在电子电路上的容性阻抗突变的大小确定。
例如,当瞬态二极管在电子电路上的容性阻抗突变非常大时,可以采用多个等效电容,当瞬态二极管在电子电路上的容性阻抗突变相对较小时,可以采用一个等效电容。等效电容的具体个数可根据实际情况确定。
根据本公开的实施例,至少一个等效电容包括至少一个第一等效电容和至少一个第二等效电容。至少一个第一等效电容中的每个的第一端与补偿元件的一端相连。至少一个第二等效电容中的每个的第一端与补偿元件的另一端相连。至少一个第一等效电容中的每个的第二端用于接地。至少一个第二等效电容中的每个的第二端用于接地。
如图1A所示,瞬态二极管本体110可以用等效电路替换,等效电路中可以包括第一等效电容C1、第二等效电容C2、电阻R1和电阻R2。当等效电路中存在电阻时,第一等效电容C1的第一端与电阻R1相连后,再与补偿元件120的一端相连,第一等效电容C1的第二端用于接地。第一等效电容C2的第一端与电阻R2相连后,再与补偿元件120的另一端相连,第二等效电容C2的第二端用于接地。
根据本公开的实施例,当等效电容包括第一等效电容C1和第二等效电容C2时,将第一等效电容C1和第二等效电容C2分别连接在补偿元件120的两端。此时,瞬态二极管本体110包括第一等效电容C1、第二等效电容C2、电阻R1和电阻R2,瞬态二极管100包括该瞬态二极管本体110和该补偿元件120。
根据本公开的实施例,通过将瞬态二极管本体接地,将第一等效电容C1和第二等效电容C2分别连接在补偿元件120的两端,可以达到抑制静电等其它原因对电子电路造成的瞬态干扰,通过将瞬态二极管本体连接补偿元件,可以达到抵消普通的瞬态二极管在电子电路上的容性阻抗突变所带来的影响。
根据本公开的实施例,至少一个等效电容包括多个等效电容。多个等效电容中的每个的第一端与补偿元件的同一端相连。多个等效电容中的每个的第二端用于接地。
如图1B所示,瞬态二极管100包括瞬态二极管本体110以及补偿元件120。瞬态二极管本体110可以用等效电路替换,等效电路中可以包括至少一个等效电容,至少一个等效电容 包括至少一个第一等效电容C1和至少一个第二等效电容C2。需要说明的是,在实际电子电路中,等效电路上存在一定的电阻损耗,如图1B所示的电阻R1和电阻R2。
因此,瞬态二极管本体110可以用等效电路替换,等效电路中可以包括第一等效电容C1、第二等效电容C2、电阻R1和电阻R2。当等效电路中存在电阻时,第一等效电容C1的第一端与电阻R1相连后,再与补偿元件120的一端相连,第一等效电容C1的第二端用于接地。第一等效电容C2的第一端与电阻R2相连后,再与补偿元件120的同一端相连,第二等效电容C2的第二端用于接地。
根据本公开的实施例,当等效电容包括第一等效电容C1和第二等效电容C2时,将第一等效电容C1和第二等效电容C2同时连接在补偿元件120的同一端。此时,瞬态二极管本体110包括第一等效电容C1、第二等效电容C2、电阻R1和电阻R2,瞬态二极管100包括该瞬态二极管本体110和该补偿元件120。
需要说明的是,如图1B所示的第一等效电容C1和第二等效电容C2同时连接在补偿元件120的左端,第一等效电容C1和第二等效电容C2还可以同时连接在补偿元件120的右端。
根据本公开的实施例,瞬态二极管本体可以用等效电路替换,等效电路中可以包括一个或多个等效电容。当包括等效电路中包括一个等效电容时,可以将该等效电容连接在补偿元件的两端中的其中任意一端。当包括等效电路中包括多个等效电容时,可以将多个等效电容都连接在补偿元件的两端中的其中任意一端,也可以将多个等效电容分布连接在补偿元件的两端。
根据本公开的实施例,通过将瞬态二极管本体110接地,将第一等效电容C1和第二等效电容C2分别连接在补偿元件120的同一端,可以达到抑制静电等其它原因对电子电路造成的瞬态干扰,通过将瞬态二极管本体连接补偿元件,可以达到抵消普通的瞬态二极管在电子电路上的容性阻抗突变所带来的影响。
根据本公开的实施例,需要说明的是,等效电容与补偿元件的具体连接方式可以根据实际情况确定,当然,需要考虑的是等效电容的连接方式应该达到抵消普通的瞬态二极管在电子电路上的容性阻抗突变所带来的影响。根据本公开的实施例,使得等效电容的连接方式多样化,将补偿元件与等效电容连接时,可以结合实际需求进行连接。
根据本公开的实施例,补偿元件包括电感。
如图1B所示,补偿元件120可以是电感。当然也可以采用绕线的方式组成补偿元件。补偿元件只要能够抵消普通的瞬态二极管在电子电路上的容性阻抗突变所带来的影响即可,具体组成补偿元件的方式或元件种类不做限定。
根据本公开的实施例,电感的电感值与瞬态二极管本体对应的等效电容的电容值之间的 比值等于预设值。
根据本公开的实施例,当补偿元件为电感的情况下,为了实现补偿当瞬态二极管本体连接在信号传输线路上产生的容性阻抗,以减少瞬态二极管对信号传输线路的信号传输质量的影响。电感的电感值与瞬态二极管本体对应的等效电容的电容值之间的比值等于预设值。
根据本公开的实施例,例如,电感的电感值与瞬态二极管本体对应的等效电容的电容值之间的比值等于2500,那么,L=2500*C。
根据本公开的实施例,提供了一种信号传输电路。该信号传输电路包括信号传输线路和瞬态二极管。信号传输线路用于传输信号。瞬态二极管连接在信号传输线路中。其中,该瞬态二极管包括瞬态二极管本体以及补偿元件,补偿元件与瞬态二极管本体相连,用于补偿当瞬态二极管本体连接在信号传输线路上产生的容性阻抗,以减少瞬态二极管对信号传输线路的信号传输质量的影响。
图2A示意性示出了根据本公开的实施例的信号传输电路的示意图。
如图2A所示,该信号传输电路包括信号传输线路201以及瞬态二极管100。信号传输线路201用于传输信号。以及瞬态二极管100连接在信号传输线路201中。该瞬态二极管100包括瞬态二极管本体110以及补偿元件120。补偿元件120与瞬态二极管本体110相连,用于补偿当瞬态二极管本体110连接在信号传输线路201上产生的容性阻抗,以减少瞬态二极管100对信号传输线路201的信号传输质量的影响。
根据本公开的实施例,信号传输电路中包括信号传输线路201和瞬态二极管100,该瞬态二极管100包括瞬态二极管本体110和与瞬态二极管本体110相连的补偿元件120,由于补偿元件120可以补偿当瞬态二极管本体110连接在信号传输线路201上产生的容性阻抗,因此,可以减少瞬态二极管100对信号传输线路201的信号传输质量的影响。
需要说明的是,瞬态二极管本体110用于抑制静电等其它原因对电子电路造成的瞬态干扰,瞬态二极管的外形与普通的二极管的外形可以相同,也可以不同。
根据本公开的实施例,如图2A所示,信号传输电路中还可以设置有电子元件202和电子元件203,具体电子元件202和电子元件203的种类不作限定。
根据本公开的实施例,在信号传输线路201的某个位置引入了瞬态二极管本体110带来的容性阻抗突变,这个阻抗突变值的大小和瞬态二极管在信号传输电路上的位置对信号传输都有影响。从阻抗连续性的角度来说,采用补偿元件120能够抵消普通的瞬态二极管容性阻抗突变所带来的影响。通过上述方式,不仅可以减小瞬态二极管(实际上是瞬态二极管本体)对信号传输的影响,尤其是对高速信号的传输影响,而且可以抑制静电等其它原因对电子电路造成的瞬态干扰。
图2B示意性示出了根据本公开的另一实施例的信号传输电路的示意图。
如图2B所示,该信号传输电路包括:信号传输线路201,用于传输信号;以及瞬态二极管100,连接在信号传输线路201中。需要说明的是,瞬态二极管100中的瞬态二极管本体110相连在补偿元件120的同一端。
下面结合图3A和图3B,对图2A示出的一种信号传输电路中的信号传输线路作进一步说明。
图3A示意性示出了根据本公开的实施例的信号传输线路的示意图。
如图3A所示,信号传输线路可以用电阻R,电感L,电阻G,电容C等效。
[根据细则91更正 12.02.2018] 
若采用传输线是低损耗传输线,即满足低损耗的近似条件:R<<ωL,G<<ωC,根据特性阻抗公式:Z0=√((R+jωL)/(G+jωC)),
[根据细则91更正 12.02.2018] 
因此特性阻抗Z0≈√(L/C)。
图3B示意性示出了根据本公开的另一实施例的信号传输线路的示意图。
如图3B所示,信号传输线路可以用电感L,电容C等效。
因此,如图2A或图2B所示的信号传输线路201可用如图3B所示的信号传输线路替换,即可以用电感L,电容C等效信号传输线路。
根据本公开的实施例,提供了一种信号传输电路,包括信号传输线路、瞬态二极管以及补偿元件。信号传输线路用于传输信号。瞬态二极管连接在信号传输线路中,且一端接地。补偿元件连接在信号传输线路中,且与瞬态二极管的非接地端连接,用于补偿瞬态二极管在信号传输线路上产生的容性阻抗,以减少瞬态二极管对信号传输线路的信号传输质量的影响。
图4示意性示出了根据本公开的另一实施例的信号传输电路的示意图。
如图4所示,信号传输线路201,用于传输信号。瞬态二极管110,连接在信号传输线路201中,且一端接地。以及补偿元件120,连接在信号传输线路201中,且与瞬态二极管110的非接地端连接,用于补偿瞬态二极管110在信号传输线路201上产生的容性阻抗,以减少瞬态二极管110对信号传输线路201的信号传输质量的影响。
瞬态二极管110可以用等效电路替换,等效电路中可以包括至少一个等效电容,至少一个等效电容包括至少一个第一等效电容C1和至少一个第二等效电容C2。需要说明的是,在实际电子电路中,等效电路上存在一定的电阻损耗,如图4所示的电阻R1和电阻R2。
因此,瞬态二极管110可以用等效电路替换,等效电路中可以包括第一等效电容C1、第二等效电容C2、电阻R1和电阻R2。当等效电路中存在电阻时,第一等效电容C1的第一端与电阻R1相连后,再与补偿元件120的一端相连,第一等效电容C1的第二端用于接地。第一等效电容C2的第一端与电阻R2相连后,再与补偿元件120的同一端相连,第二等效电容 C2的第二端用于接地。
根据本公开的实施例,当等效电容包括第一等效电容C1和第二等效电容C2时,将第一等效电容C1和第二等效电容C2同时连接在补偿元件120的同一端。此时,瞬态二极管110包括第一等效电容C1、第二等效电容C2、电阻R1和电阻R2。
需要说明的是,如图4所示的第一等效电容C1和第二等效电容C2同时连接在补偿元件120的左端,第一等效电容C1和第二等效电容C2还可以同时连接在补偿元件120的右端。
根据本公开的实施例,瞬态二极管可以用等效电路替换,等效电路中可以包括一个或多个等效电容。当包括等效电路中包括一个等效电容时,可以将该等效电容连接在补偿元件的两端中的其中任意一端。当包括等效电路中包括多个等效电容时,可以将多个等效电容都连接在补偿元件的两端中的其中任意一端,也可以将多个等效电容分布连接在补偿元件的两端。
需要说明的是,等效电容与补偿元件的具体连接方式可以根据实际情况确定,当然,需要考虑的是等效电容的连接方式应该达到抵消普通的瞬态二极管在电子电路上的容性阻抗突变所带来的影响。根据本公开的实施例,使得等效电容的连接方式多样化,将补偿元件与等效电容连接时,可以结合实际需求进行连接。
图5A示意性示出了根据本公开的实施例的普通瞬态二极管的电路测试结果仿真图,即没有设计补偿电路的信号传输电路传输信号时的眼图测试。
如图5A所示,横坐标表示时间,纵坐标表示电压值。从时域仿真结果可以看出不设计补偿电路的结果最高点为c1点,电压为274mV,a点与b点之间的时间跨度为94ps,在进行时域仿真前初始值为0。
图5B示意性示出了根据本公开的实施例的经电路补偿后的电路测试结果仿真图,即设计了补偿电路的信号传输电路传输信号时的眼图测试。
如图5B所示,横坐标表示时间,纵坐标表示电压值。从时域仿真结果可以看出设计补偿电路的结果最高点为c2点,电压为330mV,a点与b点之间的时间跨度为94ps。
由此可见,从时域仿真结果很明显可以看出,在相同时间情况下,设计补偿电路的结果(330mV,94ps)比不设计补偿电路的结果(274mV,94ps)要好很多(56mV)。
因此,根据本公开的实施例,采用补偿元件的信号传输电路,能够抵消普通的瞬态二极管容性阻抗突变所带来的影响,可以减小瞬态二极管(实际上是瞬态二极管本体)对信号传输的影响,尤其是对高速信号的传输影响。
根据本公开的实施例,提供了另一种电子设备,该电子设备包括信号传输电路。其中,该信号传输电路包括信号传输线路以及瞬态二极管。信号传输线路用于传输信号。瞬态二极管连接在信号传输线路中。其中,该瞬态二极管包括瞬态二极管本体以及补偿元件,补偿元 件与瞬态二极管本体相连,用于补偿当瞬态二极管本体连接在信号传输线路上产生的容性阻抗,以减少瞬态二极管对信号传输线路的信号传输质量的影响。根据本公开的实施例,瞬态二极管本体包括第一端和第二端。第一端与补偿元件的一端相连。以及第二端用于接地。根据本公开的实施例,瞬态二极管本体的等效电路包括至少一个等效电容,每个等效电容所在的等效支路包括第一端和第二端;第一端与补偿元件相连;以及第二端用于接地。根据本公开的实施例,至少一个等效电容包括至少一个第一等效电容和至少一个第二等效电容。至少一个第一等效电容中的每个的第一端与补偿元件的一端相连。至少一个第二等效电容中的每个的第一端与补偿元件的另一端相连。至少一个第一等效电容中的每个的第二端用于接地。以及至少一个第二等效电容中的每个的第二端用于接地。根据本公开的实施例,至少一个等效电容包括多个等效电容。多个等效电容中的每个的第一端与补偿元件的同一端相连。以及多个等效电容中的每个的第二端用于接地。根据本公开的实施例,补偿元件包括电感。根据本公开的实施例,电感的电感值与瞬态二极管本体对应的等效电容的电容值之间的比值等于预设值。
根据本公开的实施例,提供了一种电子设备,该电子设备包括信号传输电路。其中,该信号传输电路包括信号传输线路、瞬态二极管以及补偿元件。信号传输线路用于传输信号。瞬态二极管,连接在上述信号传输线路中,且一端接地。补偿元件连接在上述信号传输线路中,且与上述瞬态二极管的非接地端连接,用于补偿上述瞬态二极管在上述信号传输线路上产生的容性阻抗,以减少上述瞬态二极管对上述信号传输线路的信号传输质量的影响。
根据本公开的实施例,上述电子设备可以是智能手机,平板电脑,服务器等其他终端设备,电子设备中的信号传输电路将在本公开的其他实施例中详细描述,在此不再赘述。
根据本公开的实施例,通过包含上述信号传输电路的电子设备,可以达到减小或消除瞬态二极管容性阻抗突变对信号传输线路传输信号的影响,使得信号在信号传输线路上传输时更加高效,并且传输质量高,进而提高了电子设备的性能。
尽管已经参照本公开的特定示例性实施例示出并描述了本公开,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本公开的精神和范围的情况下,可以对本公开进行形式和细节上的多种改变。因此,本公开的范围不应该限于上述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。
以上所述本公开的具体实施方式,并不构成对本公开保护范围的限定。任何根据本公开的技术构思所作出的各种其他相应的改变与变形,均应包含在本公开权利要求的保护范围内。

Claims (10)

  1. 一种瞬态二极管,包括:
    瞬态二极管本体;以及
    补偿元件,与所述瞬态二极管本体相连,用于补偿当所述瞬态二极管本体连接在信号传输线路上产生的容性阻抗,以减少所述瞬态二极管对信号传输线路的信号传输质量的影响。
  2. 根据权利要求1所述的瞬态二极管,其中:
    所述瞬态二极管本体包括第一端和第二端;
    所述第一端与所述补偿元件的一端相连;以及
    所述第二端用于接地。
  3. 根据权利要求1所述的瞬态二极管,其中:
    所述瞬态二极管本体的等效电路包括至少一个等效电容,每个等效电容所在的等效支路包括第一端和第二端;
    所述第一端与所述补偿元件相连;以及
    所述第二端用于接地。
  4. 根据权利要求3所述的瞬态二极管,其中:
    所述至少一个等效电容包括至少一个第一等效电容和至少一个第二等效电容;
    所述至少一个第一等效电容中的每个的第一端与所述补偿元件的一端相连;
    所述至少一个第二等效电容中的每个的第一端与所述补偿元件的另一端相连;
    所述至少一个第一等效电容中的每个的第二端用于接地;以及
    所述至少一个第二等效电容中的每个的第二端用于接地。
  5. 根据权利要求3所述的瞬态二极管,其中:
    所述至少一个等效电容包括多个等效电容;
    所述多个等效电容中的每个的第一端与所述补偿元件的同一端相连;以及
    所述多个等效电容中的每个的第二端用于接地。
  6. 根据权利要求1至5中任一项所述的瞬态二极管,其中,所述补偿元件包括电感。
  7. 根据权利要求6所述的瞬态二极管,其中,所述电感的电感值与所述瞬态二极管本体对应的等效电容的电容值之间的比值等于预设值。
  8. 一种信号传输电路,包括:
    信号传输线路,用于传输信号;以及
    权利要求1至7中任一项所述的瞬态二极管,连接在所述信号传输线路中。
  9. 一种信号传输电路,包括:
    信号传输线路,用于传输信号;
    瞬态二极管,连接在所述信号传输线路中,且一端接地;以及
    补偿元件,连接在所述信号传输线路中,且与所述瞬态二极管的非接地端连接,用于补偿所述瞬态二极管在所述信号传输线路上产生的容性阻抗,以减少所述瞬态二极管对所述信号传输线路的信号传输质量的影响。
  10. 一种电子设备,包括:
    权利要求8或9中所述的信号传输电路。
PCT/CN2017/103171 2017-06-27 2017-09-25 瞬态二极管、信号传输电路及电子设备 WO2019000666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710511826.8A CN107346967B (zh) 2017-06-27 2017-06-27 瞬态二极管、信号传输电路及电子设备
CN201710511826.8 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019000666A1 true WO2019000666A1 (zh) 2019-01-03

Family

ID=60257484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103171 WO2019000666A1 (zh) 2017-06-27 2017-09-25 瞬态二极管、信号传输电路及电子设备

Country Status (2)

Country Link
CN (1) CN107346967B (zh)
WO (1) WO2019000666A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740400B (zh) * 2020-06-22 2023-02-14 广东九联科技股份有限公司 一种降低esd器件对高速信号影响的电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237356A1 (en) * 2009-03-20 2010-09-23 Cree , Inc. Bidirectional silicon carbide transient voltage suppression devices
CN202034777U (zh) * 2011-05-12 2011-11-09 昂纳信息技术(深圳)有限公司 用于电容性负载的esd防护电路
CN102255301A (zh) * 2011-01-14 2011-11-23 苏州英诺迅科技有限公司 一种改进片外esd保护电路射频性能的连接结构
CN204517387U (zh) * 2014-08-19 2015-07-29 上海杉德金卡信息系统科技有限公司 一种可应用于pos的emi和esd滤波器阵列
CN104849578A (zh) * 2015-02-27 2015-08-19 南京师范大学 一种评估lna源端的tvs负载效应特性的测试分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237356A1 (en) * 2009-03-20 2010-09-23 Cree , Inc. Bidirectional silicon carbide transient voltage suppression devices
CN102255301A (zh) * 2011-01-14 2011-11-23 苏州英诺迅科技有限公司 一种改进片外esd保护电路射频性能的连接结构
CN202034777U (zh) * 2011-05-12 2011-11-09 昂纳信息技术(深圳)有限公司 用于电容性负载的esd防护电路
CN204517387U (zh) * 2014-08-19 2015-07-29 上海杉德金卡信息系统科技有限公司 一种可应用于pos的emi和esd滤波器阵列
CN104849578A (zh) * 2015-02-27 2015-08-19 南京师范大学 一种评估lna源端的tvs负载效应特性的测试分析方法

Also Published As

Publication number Publication date
CN107346967B (zh) 2021-01-15
CN107346967A (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
CN105577595B (zh) 基于差分传输线的共模抑制器
US9257955B2 (en) Common mode noise reduction circuit
US7557676B2 (en) Signal transmission circuit, electronic device, cable, and connector
TWI528742B (zh) 網路傳輸之電磁干擾抑制裝置與方法
JP4829179B2 (ja) サージ保護回路およびコネクタ並びにそれを用いる電子機器
CN109391257B (zh) 接口电路
TW201328208A (zh) 具靜電保護機制之整合被動元件
US9035714B2 (en) Parasitic capacitance compensating transmission line
WO2019000666A1 (zh) 瞬态二极管、信号传输电路及电子设备
EP3236654B1 (en) Internet interface protection circuit and television
KR20200068067A (ko) 칩 보호 회로
US11509134B2 (en) Communication interface protection circuit having transient voltage suppression
CN108337016A (zh) 一种产生附加串扰的远端串扰消除方法
US9780085B1 (en) Electrostatic discharge protection apparatus
CN108650560A (zh) 一种兼顾电磁兼容与信号完整性的网口以及优化方法
WO2021068375A1 (zh) 一种双层网口电磁兼容电路及服务器
WO2019111645A1 (ja) 電子制御装置
US20170163571A1 (en) Method and apparatus for supressing electromagnetic interference
US12088090B1 (en) Electrostatic discharge protection apparatus and method for data transceiver
US20170270071A1 (en) Network device
US20130049853A1 (en) Suppression of overvoltage caused by an indirect lightning strike
Lee et al. Common mode conversion noise suppression using L-Pad with asymmetric coupled lines on bended differential lines
TWM434374U (en) high voltage distributor having lightning protection function
TWI565160B (zh) 網絡電連接器
CN104010429B (zh) 预防静电放电干扰的主机板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17916306

Country of ref document: EP

Kind code of ref document: A1