WO2019000443A1 - 一种帧间预测的方法及装置 - Google Patents

一种帧间预测的方法及装置 Download PDF

Info

Publication number
WO2019000443A1
WO2019000443A1 PCT/CN2017/091298 CN2017091298W WO2019000443A1 WO 2019000443 A1 WO2019000443 A1 WO 2019000443A1 CN 2017091298 W CN2017091298 W CN 2017091298W WO 2019000443 A1 WO2019000443 A1 WO 2019000443A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
image block
motion information
information
processed
Prior art date
Application number
PCT/CN2017/091298
Other languages
English (en)
French (fr)
Inventor
安基程
韩钰
郑建铧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197038741A priority Critical patent/KR20200012957A/ko
Priority to CN201780089962.0A priority patent/CN110546956B/zh
Priority to PCT/CN2017/091298 priority patent/WO2019000443A1/zh
Publication of WO2019000443A1 publication Critical patent/WO2019000443A1/zh
Priority to US16/728,264 priority patent/US11197018B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/58Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one

Definitions

  • the present application relates to the field of video image technologies, and in particular, to a method and apparatus for inter prediction.
  • Digital video capabilities can be incorporated into a wide range of devices, including digital television, digital live broadcast systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, e-books Readers, digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio phones, video conferencing devices, video streaming devices, and the like.
  • Digital video devices implement video compression techniques, such as MPEG-2, MPEG-4, ITU-TH.263, ITU-TH.264/MPEG-4, Part 10, advanced video coding (AVC), ITU- The TH.265 high efficiency video coding (HEVC) standard defines standards and those described in the extensions of the standard to transmit and receive digital video information more efficiently.
  • Video devices may transmit, receive, encode, decode, and/or store digital video information more efficiently by implementing these video codec techniques.
  • Video compression techniques perform spatial (intra-image) prediction and/or temporal (inter-image) prediction to reduce or remove redundancy inherent in video sequences.
  • a video block may be partitioned into video blocks, which may also be referred to as tree blocks, coding units (CUs), and/or decoding nodes.
  • a video block in an intra-coded (I) slice of an image is encoded using spatial prediction with respect to reference samples in neighboring blocks in the same image.
  • Video blocks in an inter-coded (P or B) slice of an image may use spatial prediction with respect to reference samples in neighboring blocks in the same image or temporal prediction with respect to reference samples in other reference images.
  • An image may be referred to as a frame, and a reference image may be referred to as a reference frame.
  • the embodiment of the present application provides a method and an apparatus for inter prediction, which selects a suitable candidate motion vector as a motion vector predictor of an image block to be processed, improves the validity of motion vector prediction, and improves coding and decoding efficiency.
  • a first aspect of the present application provides a method for predicting motion information of an image block, the motion information being used for inter prediction, comprising: acquiring motion of at least one determined motion vector image block in an image of an image block to be processed Information, the at least one determined motion vector image block includes a determined motion vector image block that is not contiguous with the image block to be processed; acquiring first identification information, the first identification information being used from the at least one Determining target motion information in the motion information of the motion vector image block; and predicting motion information of the image block to be processed according to the target motion information.
  • the beneficial effect of this embodiment is that the motion vector of the spatial non-contiguous image block is used as the candidate prediction mode of the block to be processed, and more spatial a priori coding information is utilized, which improves the coding performance.
  • the image of the to-be-processed image block is composed of at least two lines of coding tree units (CTUs), and the size of the to-be-processed image block is not greater than that of the coding tree unit.
  • the size includes: a number of lines in which the coding tree unit in which the image block to be processed is located is different from a number of lines in which the coding tree unit in which the determined motion vector image block is located is less than N Row, where N is an integer greater than one.
  • N is 2.
  • the beneficial effect of this embodiment is that the position of the basic pixel unit is limited to a certain range, and the excessive storage or access operation of the motion vector can be avoided, and the processing efficiency of the data is improved while maintaining a certain encoding performance.
  • the image of the to-be-processed image block includes M groups of the determined motion vector image blocks, and each group of the determined motion vector image blocks has a group number.
  • Obtaining the motion information of the at least one determined motion vector image block in the image of the image block to be processed including: the determined motion to be acquired Obtaining the motion information of the determined motion vector image block to be acquired in sequence from the smallest to the largest of the group numbers of the vector image block; wherein the determined motion vector image block having the group number i is A determined motion vector image block in which the pixel set base unit of the following coordinate position in the virtual coordinate system is located: (-i ⁇ w, -i ⁇ h), (1+m ⁇ w, -i ⁇ h), (-m ⁇ w, -i ⁇ h), (-i ⁇ w, -m ⁇ h), (-i ⁇ w, m ⁇ h+1), where m takes all integers ranging from 0 to i-1, M, i, w, h are positive integers
  • the position in the image is the origin, the line where the bottom boundary of the image block to be processed is located is the horizontal coordinate axis, the right direction is the horizontal positive direction, and the line where the right boundary of the image block to be processed is located is the vertical coordinate axis. , down to the vertical positive direction.
  • the sequentially acquiring the determined motion vector to be acquired includes: sequentially acquiring the at least two determined motion vector images to be acquired according to the short to long distance of the at least two determined motion vector image blocks to be acquired to the origin The motion information of the block, wherein the distance is an absolute value of a horizontal coordinate and an absolute value of a vertical coordinate of a basic position pixel set basic unit in the determined motion vector image block to be acquired in the virtual coordinate system. with.
  • the acquiring the motion information of the at least one determined motion vector image block in the image of the image block to be processed includes: sequentially acquiring the coordinates in the virtual coordinate system
  • the beneficial effect of this embodiment is that when the representation manner of each candidate prediction motion vector adopts the variable length coding mode, the candidate motion vector of the previous order will be coded with a shorter codeword, and the candidate motion vector with the lower order will be used later. Long codeword encoding. According to the correlation between the motion information of the motion vector image block and the motion information of the image block to be processed, appropriately determining the acquisition order of the candidate motion vector is advantageous for selecting a better codeword encoding strategy and improving the encoding performance.
  • the method before the acquiring the motion information of the determined motion vector image block to be acquired, the method further includes: determining the determined motion vector image block to be acquired.
  • the motion information is different from the motion information of all the acquired motion vector image blocks that have been acquired.
  • the acquiring the motion information of the at least one determined motion vector image block in the image of the image block to be processed includes: acquiring the preset number of the determined motion vectors Motion information of the image block.
  • the predicting the motion information of the image block to be processed according to the target motion information includes: using the target motion information as the motion of the image block to be processed information.
  • the motion information includes a motion vector
  • the predicting motion information of the image block to be processed according to the target motion information includes: acquiring second identifier information, where The second identifier information is used to indicate a motion vector prediction residual value of the image block to be processed; and a sum of a motion vector in the target motion information and the motion vector prediction residual value is used as the image to be processed The motion vector of the block.
  • the method is used to decode the to-be-processed image block, and the acquiring the first identifier information includes: parsing the first identifier information from a code stream.
  • the method further includes: determining, according to the first identifier information, the at least one determined motion vector image The target motion information is determined in the motion information of the block.
  • the method is used to encode the to-be-processed image block, and the acquiring the first identification information includes: motion information from the at least one determined motion vector image block Determining the target motion information, wherein the target motion information encoding the image block to be processed has a minimum rate distortion penalty.
  • the method further includes: compiling the first identifier information Into the stream.
  • the above various feasible embodiments apply the motion vector prediction method in the present application to the decoding method and the encoding method of the image block motion vector acquisition to be processed, and the combined prediction mode (Merge) and the advanced motion vector prediction mode (advanced motion vector prediction mode). , AMVP), improved the coding performance and efficiency of the original method.
  • the determining the target motion information from the motion information of the at least one determined motion vector image block comprises: using the at least one determined motion vector image block One of the motion information is used as the target motion information; or, a combination of at least two of the motion information of the at least one determined motion vector image block is used as the target motion information.
  • the beneficial effect of this embodiment is that by combining the original motion information, new candidate prediction motion information is generated, the candidate motion information is enriched, and the prediction efficiency is improved.
  • a second aspect of the present application provides a prediction apparatus for motion information of an image block, where the motion information is used for inter prediction, and includes: an motion information acquiring unit, configured to acquire at least one of an image of a to-be-processed image block Determining motion information of a motion vector image block, the at least one determined motion vector image block comprising a determined motion vector image block not adjacent to the image block to be processed; an identification information acquisition unit, configured to acquire first identification information, The first identification information is used to determine target motion information from motion information of the at least one determined motion vector image block; and a prediction unit, configured to predict motion information of the image block to be processed according to the target motion information .
  • the image of the to-be-processed image block is composed of at least two rows of coding tree units, and the size of the to-be-processed image block is not larger than the size of the coding tree unit, including : the number of lines in which the coding tree unit of the to-be-processed image block is located in the image and the number of lines in which the coding tree unit in which the determined motion vector image block is located is less than N lines, wherein , N is an integer greater than one.
  • N is 2.
  • the image of the to-be-processed image block includes M groups of the determined motion vector image blocks, and each group of the determined motion vector image blocks has a group number.
  • the width of the image block to be processed is w and the height is h
  • the motion information acquiring unit is specifically configured to: sequentially follow the order of the group number of the determined motion vector image block to be acquired, from small to large Obtaining the determined motion vector image block to be acquired
  • the motion information image; wherein the determined motion vector image block having the group number i includes a determined motion vector image block in which the pixel unit of the following coordinate position in the virtual coordinate system is located: (-i ⁇ w,- i ⁇ h), (1 + m ⁇ w, -i ⁇ h), (-m ⁇ w, -i ⁇ h), (-i ⁇ w, -m ⁇ h), (-i ⁇ w, m ⁇ h+1), where m takes all integers ranging from 0
  • the motion information acquiring unit is specifically configured to: And acquiring, from the short to long distances of the at least two determined motion vector image blocks to be acquired to the origin, the motion information of the at least two determined motion vector image blocks to be acquired, wherein the distance is And a sum of an absolute value of a horizontal coordinate and an absolute value of a vertical coordinate of a preset position pixel set basic unit in the determined coordinate vector image block to be acquired.
  • the motion information acquiring unit is specifically configured to: sequentially acquire the determined motion vector image block where the pixel set basic unit located in the coordinate position in the virtual coordinate system is located
  • Motion information (-w, 0), (0, -h), (1, -h), (-w, 1), (-w, -h), (-2 ⁇ w, 0), (0 , -2 ⁇ h), (1, -2 ⁇ h), (-2 ⁇ w, 1), (-w, -2 ⁇ h), (-2 ⁇ w, -h), (-2 ⁇ w, h+1), (w+1, -2 ⁇ h), (-2 ⁇ w, -2 ⁇ h), (-3 ⁇ w, 0), (0, -3 ⁇ h), (1, -3 ⁇ h), (-3 ⁇ w, 1), (-w, -3 ⁇ h), (-3 ⁇ w, -h), (w +1, -3 ⁇ h), (w +1, -3 ⁇ h
  • the motion information acquiring unit is further configured to: determine the to-be-obtained before each acquiring the motion information of the determined motion vector image block to be acquired The motion information of the determined motion vector image block is different from the motion information of all the acquired motion vector image blocks that have been acquired.
  • the motion information acquiring unit is configured to: acquire a predetermined number of motion information of the determined motion vector image block.
  • the predicting unit is specifically configured to: use the target motion information as motion information of the image block to be processed.
  • the identifier information acquiring unit is further configured to acquire second identifier information, where the second identifier information is used to indicate a motion vector prediction residual value of the to-be-processed image block.
  • the prediction unit is specifically configured to use a sum of a motion vector in the target motion information and the motion vector prediction residual value as a motion vector of the image block to be processed.
  • the apparatus is configured to decode the to-be-processed image block, and the identifier information acquiring unit is specifically configured to: parse the first identifier information from a code stream.
  • the identifier information acquiring unit is further configured to: according to the first identifier information, from the The target motion information is determined from the motion information of the at least one determined motion vector image block.
  • the apparatus is configured to encode the to-be-processed image block, where the identifier information acquiring unit is specifically configured to: obtain motion information from the at least one determined motion vector image block. Determining the target motion information, wherein the target motion information encoding the image block to be processed has a minimum rate distortion penalty.
  • the identifier information acquiring unit is further configured to: The first identification information is encoded into a code stream.
  • the identifier information acquiring unit is configured to: use one of the motion information of the at least one determined motion vector image block as the target motion information; or A combination of at least two pieces of motion information in the motion information of the at least one determined motion vector image block is used as the target motion information.
  • a third aspect of the present application provides a prediction apparatus for motion information of an image block, the motion information being used for inter prediction, comprising: a processor and a memory coupled to the processor; the processor is configured to: acquire Motion information of at least one determined motion vector image block in the image of the image block to be processed, the at least one determined motion vector image block including the determined motion vector image block not adjacent to the image block to be processed; An identification information, the first identification information being used to determine target motion information from motion information of the at least one determined motion vector image block; and predicting motion information of the image block to be processed according to the target motion information.
  • the image of the to-be-processed image block is composed of at least two rows of coding tree units, and the size of the to-be-processed image block is not larger than the size of the coding tree unit, including : the number of lines in which the coding tree unit of the to-be-processed image block is located in the image and the number of lines in which the coding tree unit in which the determined motion vector image block is located is less than N lines, wherein , N is an integer greater than one.
  • N is 2.
  • the image in which the image block to be processed is located includes M groups of the determined motion vector image blocks, and each group of the determined motion vector image blocks has a group number.
  • the processing image block has a width w and a height h, and the processor is specifically configured to: sequentially acquire, according to the order of the group number of the determined motion vector image block to be acquired, from small to large Determining the acquired motion information of the determined motion vector image block; wherein the determined motion vector image block having the group number i includes the determined motion vector where the pixel set base unit of the following coordinate position in the virtual coordinate system is located Image block: (-i ⁇ w, -i ⁇ h), (1+m ⁇ w, -i ⁇ h), (-m ⁇ w, -i ⁇ h), (-i ⁇ w,-m ⁇ h ), (-i ⁇ w, m ⁇ h+1), where m takes all integers ranging from 0 to i-1, M, i, w, h are positive integers, i is not greater
  • the processor is specifically configured to: according to the at least two Obtaining, from the shortest to the long distance of the determined motion vector image block to be obtained, the motion information of the at least two determined motion vector image blocks to be acquired, wherein the distance is the The sum of the absolute value of the horizontal coordinate and the absolute value of the vertical coordinate of the basic unit of the preset position pixel set base unit in the determined coordinate vector image block to be acquired.
  • the processor is specifically configured to: sequentially acquire motion information of the determined motion vector image block where the pixel set basic unit located in the coordinate position in the virtual coordinate system is located :(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2 ⁇ w,0),(0,- 2 ⁇ h), (1, -2 ⁇ h), (-2 ⁇ w, 1), (-w, -2 ⁇ h), (-2 ⁇ w, -h), (-2 ⁇ w, h +1), (w+1, -2 ⁇ h), (-2 ⁇ w, -2 ⁇ h), (-3 ⁇ w, 0), (0, -3 ⁇ h), (1, -3) ⁇ h), (-3 ⁇ w, 1), (-w, -3 ⁇ h), (-3 ⁇ w, -h), (w+1, -3 ⁇ h), (-3 ⁇ w, h+1), (-2 ⁇ w, -3 ⁇ h), (-3 ⁇ w, -2 ⁇ h), (-3 ⁇ w, -2 ⁇ h
  • the processor before the acquiring the motion information of the determined motion vector image block to be acquired, the processor is further configured to: determine that the to-be-obtained It is determined that the motion information of the motion vector image block is different from the motion information of all the acquired motion vector image blocks that have been acquired.
  • the processor is specifically configured to: acquire a predetermined number of motion information of the determined motion vector image block.
  • the processor is specifically configured to: use the target motion information as motion information of the image block to be processed.
  • the processor is further configured to: acquire second identifier information, where the second identifier information is used to indicate a motion vector prediction residual of the to-be-processed image block. a value; a sum of the motion vector in the target motion information and the motion vector prediction residual value as a motion vector of the image block to be processed.
  • the apparatus is configured to decode the to-be-processed image block, and the processor is specifically configured to: parse the first identifier information from a code stream.
  • the processor is further configured to: according to the first identifier information, from the at least one The target motion information is determined from the motion information of the motion vector image block.
  • the apparatus is configured to code the image block to be processed, and the processor is specifically configured to: determine, from motion information of the at least one determined motion vector image block The target motion information, wherein the target motion information encoding the image block to be processed has a minimum rate distortion penalty.
  • the processor is further configured to: The first identification information is programmed into the code stream.
  • the processor is specifically configured to: use one of the motion information of the at least one determined motion vector image block as the target motion information; or A combination of at least two pieces of motion information in the motion information of the at least one determined motion vector image block is used as the target motion information.
  • a fourth aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the method of the first aspect described above.
  • a fifth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • FIG. 1 is a schematic block diagram of a video encoding and decoding system in an embodiment of the present application
  • FIG. 2 is a schematic block diagram of a video encoder in an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a video decoder in an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an inter prediction module in an embodiment of the present application.
  • FIG. 5 is an exemplary flowchart of a merge prediction mode in an embodiment of the present application.
  • FIG. 6 is an exemplary flowchart of an advanced motion vector prediction mode in an embodiment of the present application.
  • FIG. 7 is an exemplary flowchart of motion compensation performed by a video decoder in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an encoding unit and an adjacent position image block associated therewith according to an embodiment of the present application.
  • FIG. 9 is an exemplary flowchart of constructing a candidate prediction motion vector list in the embodiment of the present application.
  • FIG. 10 is an exemplary schematic diagram of adding a combined candidate motion vector to a merge mode candidate prediction motion vector list in an embodiment of the present application
  • FIG. 11 is an exemplary schematic diagram of adding a scaled candidate motion vector to a merge mode candidate motion vector list in the embodiment of the present application;
  • FIG. 12 is an exemplary schematic diagram of adding a zero motion vector to a merge mode candidate motion vector list in the embodiment of the present application
  • FIG. 13 is another exemplary schematic diagram of a coding unit and an adjacent location image block associated therewith in the embodiment of the present application;
  • FIG. 14 is an exemplary flowchart of a motion vector prediction method according to an embodiment of the present application.
  • 15 is still another exemplary schematic diagram of a coding unit and an adjacent location image block associated therewith in the embodiment of the present application;
  • 16 is a schematic block diagram of a motion vector prediction apparatus according to an embodiment of the present application.
  • FIG. 17 is another schematic block diagram of a motion vector prediction apparatus in an embodiment of the present application.
  • FIG. 1 is a schematic block diagram of a video encoding and decoding system 10 in an embodiment of the present application.
  • system 10 includes source device 12 that produces encoded video data that will be decoded by destination device 14 at a later time.
  • Source device 12 and destination device 14 may comprise any of a wide range of devices, including desktop computers, notebook computers, tablet computers, set top boxes, telephone handsets such as so-called “smart” phones, so-called “smart” "Touchpads, televisions, cameras, display devices, digital media players, video game consoles, video streaming devices or the like.
  • source device 12 and destination device 14 may be equipped for wireless communication.
  • Link 16 may include any type of media or device capable of moving encoded video data from source device 12 to destination device 14.
  • link 16 may include communication media that enables source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the encoded video data can be modulated and transmitted to destination device 14 in accordance with a communication standard (e.g., a wireless communication protocol).
  • Communication media can include any wireless or wired communication medium, such as a radio frequency spectrum or one or more physical transmission lines.
  • the communication medium can form part of a packet-based network (eg, a global network of local area networks, wide area networks, or the Internet).
  • Communication media can include routers, switches, base stations, or any other equipment that can be used to facilitate communication from source device 12 to destination device 14.
  • the encoded data may be output from output interface 22 to storage device 24.
  • encoded data can be accessed from storage device 24 by an input interface.
  • Storage device 24 may comprise any of a variety of distributed or locally accessed data storage media, such as a hard drive, Blu-ray Disc, DVD, CD-ROM, flash memory, volatile or non-volatile memory Or any other suitable digital storage medium for storing encoded video data.
  • storage device 24 may correspond to a file server or another intermediate storage device that may maintain encoded video produced by source device 12. Destination device 14 may access the stored video data from storage device 24 via streaming or download.
  • the file server can be any capable of storing encoded video data and transmitting the encoded video data to destination device 14 What type of server.
  • a file server includes a web server, a file transfer protocol server, a network attached storage device, or a local disk unit.
  • Destination device 14 can access the encoded video data via any standard data connection that includes an Internet connection.
  • This data connection may include a wireless channel (eg, a Wi-Fi connection), a wired connection (eg, a cable modem, etc.), or a combination of both, suitable for accessing encoded video data stored on a file server.
  • the transmission of encoded video data from storage device 24 may be streaming, downloading, or a combination of both.
  • system 10 can be configured to support one-way or two-way video transmission to support applications such as video streaming, video playback, video broadcasting, and/or video telephony.
  • source device 12 includes video source 18, video encoder 20, and output interface 22.
  • output interface 22 can include a modulator/demodulator (modem) and/or a transmitter.
  • video source 18 may include sources such as video capture devices (eg, cameras), video archives containing previously captured video, video feed interfaces to receive video from video content providers And/or a computer graphics system for generating computer graphics data as source video, or a combination of these sources.
  • the video source 18 is a video camera
  • the source device 12 and the destination device 14 may form a so-called camera phone or video phone.
  • the techniques described in this application are illustratively applicable to video decoding and are applicable to wireless and/or wired applications.
  • Captured, pre-captured, or computer generated video may be encoded by video encoder 20.
  • the encoded video data can be transmitted directly to the destination device 14 via the output interface 22 of the source device 12.
  • the encoded video data may also (or alternatively) be stored on storage device 24 for later access by destination device 14 or other device for decoding and/or playback.
  • the destination device 14 includes an input interface 28, a video decoder 30, and a display device 32.
  • input interface 28 can include a receiver and/or a modem.
  • Input interface 28 of destination device 14 receives encoded video data via link 16.
  • the encoded video data communicated or provided on storage device 24 via link 16 may include various syntax elements generated by video encoder 20 for use by video decoders of video decoder 30 to decode the video data. These syntax elements can be included with encoded video data that is transmitted over a communication medium, stored on a storage medium, or stored on a file server.
  • Display device 32 may be integrated with destination device 14 or external to destination device 14.
  • destination device 14 can include an integrated display device and is also configured to interface with an external display device.
  • the destination device 14 can be a display device.
  • display device 32 displays decoded video data to a user and may include any of a variety of display devices, such as a liquid crystal display, a plasma display, an organic light emitting diode display, or another type of display device.
  • Video encoder 20 and video decoder 30 may operate in accordance with, for example, the next generation video codec compression standard (H.266) currently under development and may conform to the H.266 Test Model (JEM).
  • video encoder 20 and video decoder 30 may be according to, for example, the ITU-TH.265 standard, also referred to as a high efficiency video decoding standard, or other proprietary or industry standard of the ITU-TH.264 standard or an extension of these standards.
  • the ITU-TH.264 standard is alternatively referred to as MPEG-4 Part 10, also known as advanced video coding (AVC).
  • AVC advanced video coding
  • the techniques of this application are not limited to any particular decoding standard.
  • Other possible implementations of the video compression standard include MPEG-2 and ITU-TH.263.
  • video encoder 20 and video decoder 30 may each be integrated with an audio encoder and decoder and may include a suitable multiplexer-demultiplexer (MUX-DEMUX) unit or other hardware and software to handle the encoding of both audio and video in a common data stream or in a separate data stream. If applicable, then in one In some possible implementations, the MUX-DEMUX unit may conform to the ITU H.223 multiplexer protocol or other protocols such as the User Datagram Protocol (UDP).
  • UDP User Datagram Protocol
  • Video encoder 20 and video decoder 30 may each be implemented as any of a variety of suitable encoder circuits, such as one or more microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), Field Programmable Gate Array (FPGA), discrete logic, software, hardware, firmware, or any combination thereof.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Field Programmable Gate Array
  • the apparatus may store the instructions of the software in a suitable non-transitory computer readable medium and execute the instructions in hardware using one or more processors to perform the techniques of the present application.
  • Each of video encoder 20 and video decoder 30 may be included in one or more encoders or decoders, any of which may be integrated into a combined encoder/decoder (CODEC) in a respective device. part.
  • CDEC combined encoder/decoder
  • the present application may illustratively involve video encoder 20 "signaling" particular information to another device, such as video decoder 30.
  • video encoder 20 may signal information by associating particular syntax elements with various encoded portions of the video data. That is, video encoder 20 may "signal" the data by storing the particular syntax elements to the header information of the various encoded portions of the video data.
  • these syntax elements may be encoded and stored (eg, stored to storage system 34 or file server 36) prior to being received and decoded by video decoder 30.
  • the term “signaling” may illustratively refer to the communication of grammar or other data used to decode compressed video data, whether this communication occurs in real time or near real time or occurs over a time span, such as may be encoded Occurs when a syntax element is stored to the media, and the syntax element can then be retrieved by the decoding device at any time after storage to the media.
  • H.265 JCT-VC developed the H.265 (HEVC) standard.
  • HEVC standardization is based on an evolution model of a video decoding device called the HEVC Test Model (HM).
  • HM HEVC Test Model
  • the latest standard documentation for H.265 is available at http://www.itu.int/rec/T-REC-H.265.
  • the latest version of the standard document is H.265 (12/16), which is the full text of the standard document.
  • the manner of reference is incorporated herein.
  • the HM assumes that the video decoding device has several additional capabilities with respect to existing algorithms of ITU-TH.264/AVC. For example, H.264 provides nine intra-prediction coding modes, while HM provides up to 35 intra-prediction coding modes.
  • JVET is committed to the development of the H.266 standard.
  • the H.266 standardization process is based on an evolution model of a video decoding device called the H.266 test model.
  • the algorithm description of H.266 is available from http://phenix.int-evry.fr/jvet, and the latest algorithm description is included in JVET-F1001-v2, which is incorporated herein by reference in its entirety.
  • the reference software for the JEM test model is available from https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/, which is also incorporated herein by reference in its entirety.
  • HM can divide a video frame or image into a sequence of treeblocks or largest coding units (LCUs) containing both luminance and chrominance samples, which is also referred to as CTU.
  • Treeblocks have similar purposes to macroblocks of the H.264 standard.
  • a stripe contains several consecutive treeblocks in decoding order.
  • a video frame or image can be segmented into one or more stripes.
  • Each tree block can be split into coding units according to a quadtree. For example, a tree block that is the root node of a quadtree can be split into four child nodes, and each child node can be a parent node again and split into four other child nodes.
  • the final non-splitable child nodes that are leaf nodes of the quadtree include decoding nodes, such as decoded video blocks.
  • the syntax data associated with the decoded code stream may define the maximum number of times the tree block can be split, and may also define the minimum size of the decoded node.
  • the coding unit includes a decoding node and a prediction unit (PU) and a transform unit (TU) associated with the decoding node.
  • the size of the CU corresponds to the size of the decoding node and the shape must be square.
  • the size of the CU may range from 8 x 8 pixels up to a maximum of 64 x 64 pixels or larger.
  • Each CU may contain one or more PUs and one or more TUs.
  • syntax data associated with a CU may describe partitioning a CU into one or more PUs The situation.
  • the split mode may be different between situations where the CU is skipped or encoded by direct mode coding, intra prediction mode coding, or inter prediction mode.
  • the PU can be divided into a shape that is non-square.
  • syntax data associated with a CU may also describe a situation in which a CU is partitioned into one or more TUs according to a quadtree.
  • the shape of the TU can be square or non-square.
  • the HEVC standard allows for transforms based on TUs, which can be different for different CUs.
  • the TU is typically sized based on the size of the PU within a given CU defined for the partitioned LCU, although this may not always be the case.
  • the size of the TU is usually the same as or smaller than the PU.
  • the residual samples corresponding to the CU may be subdivided into smaller units using a quadtree structure called a "residual quaternary tree" (RQT).
  • RQT residual quaternary tree
  • the leaf node of the RQT can be referred to as a TU.
  • the pixel difference values associated with the TU may be transformed to produce transform coefficients, which may be quantized.
  • a PU contains data related to the prediction process.
  • the PU when the PU is intra-mode encoded, the PU may include data describing the intra prediction mode of the PU.
  • the PU when the PU is inter-mode encoded, the PU may include data defining a motion vector of the PU.
  • the data defining the motion vector of the PU may describe the horizontal component of the motion vector, the vertical component of the motion vector, the resolution of the motion vector (eg, quarter-pixel precision or eighth-pixel precision), motion vector A reference image pointed to, and/or a reference image list of motion vectors (eg, list 0, list 1, or list C).
  • TUs use transform and quantization processes.
  • a given CU with one or more PUs may also contain one or more TUs.
  • video encoder 20 may calculate residual values corresponding to the PU.
  • the residual values include pixel difference values, which can be transformed into transform coefficients, quantized, and scanned using TU to produce serialized transform coefficients for entropy decoding.
  • the present application generally refers to the term "video block” to refer to a decoding node of a CU.
  • the term "video block” may also be used herein to refer to a tree block containing a decoding node as well as a PU and a TU, eg, an LCU or CU.
  • a video sequence usually contains a series of video frames or images.
  • a group of picture illustratively includes a series of one or more video images.
  • the GOP may include syntax data in the header information of the GOP, in the header information of one or more of the images, or elsewhere, the syntax data describing the number of images included in the GOP.
  • Each strip of the image may contain stripe syntax data describing the encoding mode of the corresponding image.
  • Video encoder 20 typically operates on video blocks within individual video stripes to encode video data.
  • a video block may correspond to a decoding node within a CU.
  • Video blocks may have fixed or varying sizes and may vary in size depending on the specified decoding criteria.
  • HM supports prediction of various PU sizes. Assuming that the size of a specific CU is 2N ⁇ 2N, HM supports intra prediction of PU size of 2N ⁇ 2N or N ⁇ N, and inter-frame prediction of 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N or N ⁇ N symmetric PU size prediction. The HM also supports asymmetric partitioning of inter-prediction of PU sizes of 2N x nU, 2N x nD, nL x 2N, and nR x 2N. In the asymmetric segmentation, one direction of the CU is not divided, and the other direction is divided into 25% and 75%.
  • 2N x nU refers to a horizontally partitioned 2N x 2 NCU, where 2N x 0.5 NPU is at the top and 2N x 1.5 NPU is at the bottom.
  • N x N and N by N are used interchangeably to refer to the pixel size of a video block in accordance with the vertical dimension and the horizontal dimension, for example, 16 x 16 pixels or 16 by 16 pixels.
  • an N x N block has N pixels in the vertical direction and N pixels in the horizontal direction, where N represents a non-negative integer value.
  • the pixels in the block can be arranged in rows and columns. Further, the block does not necessarily need to have the same number of pixels in the horizontal direction as in the vertical direction.
  • a block may include N x M pixels, where M is not necessarily equal to N.
  • video encoder 20 may calculate residual data for the TU of the CU.
  • a PU may include pixel data in a spatial domain (also referred to as a pixel domain), and a TU may be included in transforming (eg, away from A coefficient cosine transform (DCT), an integer transform, a wavelet transform, or a conceptually similar transform is applied to coefficients in the transform domain after residual video data.
  • the residual data may correspond to a pixel difference between a pixel of the uncoded image and a predicted value corresponding to the PU.
  • Video encoder 20 may form a TU that includes residual data for the CU, and then transform the TU to generate transform coefficients for the CU.
  • video encoder 20 may perform quantization of the transform coefficients.
  • Quantization illustratively refers to the process of quantizing the coefficients to possibly reduce the amount of data used to represent the coefficients to provide further compression.
  • the quantization process can reduce the bit depth associated with some or all of the coefficients. For example, the n-bit value can be rounded down to an m-bit value during quantization, where n is greater than m.
  • the JEM model further improves the coding structure of video images.
  • a block coding structure called "Quad Tree Combined Binary Tree" (QTBT) is introduced.
  • QTBT Quality Tree Combined Binary Tree
  • the QTBT structure rejects the concepts of CU, PU, TU, etc. in HEVC, and supports more flexible CU partitioning shapes.
  • One CU can be square or rectangular.
  • a CTU first performs quadtree partitioning, and the leaf nodes of the quadtree further perform binary tree partitioning.
  • there are two division modes in the binary tree division symmetric horizontal division and symmetric vertical division.
  • the leaf nodes of the binary tree are called CUs, and the CUs of the JEM cannot be further divided during the prediction and transformation process, that is, the CUs, PUs, and TUs of the JEM have the same block size.
  • the maximum size of the CTU is 256 ⁇ 256 luma pixels.
  • video encoder 20 may utilize a predefined scan order to scan the quantized transform coefficients to produce an entropy encoded serialized vector.
  • video encoder 20 may perform an adaptive scan. After scanning the quantized transform coefficients to form a one-dimensional vector, video encoder 20 may be based on context adaptive variable length decoding (CAVLC), context adaptive binary arithmetic decoding (CABAC), grammar-based context adaptive binary. Arithmetic decoding (SBAC), probability interval partitioning entropy (PIPE) decoding, or other entropy decoding methods to entropy decode a one-dimensional vector.
  • Video encoder 20 may also entropy encode syntax elements associated with the encoded video data for use by video decoder 30 to decode the video data.
  • video encoder 20 may assign contexts within the context model to the symbols to be transmitted.
  • the context can be related to whether the adjacent value of the symbol is non-zero.
  • video encoder 20 may select a variable length code of the symbol to be transmitted. Codewords in variable length decoding (VLC) may be constructed such that relatively shorter codes correspond to more likely symbols, while longer codes correspond to less likely symbols. In this way, the use of VLC can achieve the goal of saving code rate with respect to using equal length codewords for each symbol to be transmitted.
  • the probability in CABAC can be determined based on the context assigned to the symbol.
  • a video encoder may perform inter prediction to reduce temporal redundancy between images.
  • a CU may have one or more prediction units PU as specified by different video compression codec standards.
  • multiple PUs may belong to the CU, or the PUs and CUs may be the same size.
  • the partition mode of the CU is not divided, or is divided into one PU, and the PU is used for expression.
  • the video encoder can signal the video decoder for motion information for the PU.
  • the motion information of the PU may include: a reference image index, a motion vector, and a prediction direction identifier.
  • the motion vector may indicate a displacement between an image block (also referred to as a video block, a block of pixels, a set of pixels, etc.) of the PU and a reference block of the PU.
  • the reference block of the PU may be part of a reference image of an image block similar to a PU.
  • the reference block may be located in a reference image indicated by the reference image index and the prediction direction indicator.
  • the video encoder may generate a candidate motion vector (Motion Vector, MV) for each of the PUs according to the merge prediction mode or the advanced motion vector prediction mode process. List.
  • Each candidate predicted motion vector in the candidate predicted motion vector list for the PU may be indicated Sports information.
  • the motion information indicated by some candidate predicted motion vectors in the candidate predicted motion vector list may be based on motion information of other PUs. If the candidate prediction motion vector indicates motion information specifying one of a spatial candidate prediction motion vector position or a temporal candidate prediction motion vector position, the present application may refer to the candidate prediction motion vector as a “original” candidate prediction motion vector.
  • a merge mode also referred to herein as a merge prediction mode
  • the video encoder may generate additional candidate predicted motion vectors by combining partial motion vectors from different original candidate prediction motion vectors, modifying original candidate prediction motion vectors, or simply inserting zero motion vectors as candidate prediction motion vectors.
  • These additional candidate prediction motion vectors are not considered to be original candidate prediction motion vectors and may be referred to as artificially generated candidate prediction motion vectors in this application.
  • the techniques of the present application generally relate to techniques for generating a list of candidate predictive motion vectors at a video encoder and techniques for generating a list of identical candidate motion vectors at a video decoder.
  • the video encoder and video decoder may generate the same candidate prediction motion vector list by implementing the same techniques used to construct the candidate prediction motion vector list. For example, both a video encoder and a video decoder may construct a list with the same number of candidate predicted motion vectors (eg, five candidate predicted motion vectors).
  • the video encoder and decoder may first consider spatial candidate prediction motion vectors (eg, neighboring blocks in the same image), then consider temporal candidate prediction motion vectors (eg, candidate prediction motion vectors in different images), and may ultimately consider The artificially generated candidate predicted motion vector until the desired number of candidate predicted motion vectors are added to the list.
  • a pruning operation may be utilized for certain types of candidate prediction motion vectors to remove repetitions from candidate prediction motion vector lists during candidate prediction motion vector list construction, while for other types of candidate prediction motion vectors, may not Use clipping to reduce decoder complexity.
  • a pruning operation may be performed to exclude candidate prediction motion vectors having repeated motion information from a list of candidate prediction motion vectors.
  • the artificially generated candidate predicted motion vector may be added without performing a trimming operation on the artificially generated candidate predicted motion vector.
  • the video encoder may select a candidate prediction motion vector from the candidate prediction motion vector list and output a candidate prediction motion vector index in the code stream.
  • the selected candidate predicted motion vector may be a candidate predicted motion vector having a motion vector that produces a predictor that most closely matches the target PU being decoded.
  • the candidate predicted motion vector index may indicate the location of the candidate predicted motion vector selected in the candidate predicted motion vector list.
  • the video encoder may also generate a predictive image block for the PU based on the reference block indicated by the motion information of the PU. The motion information of the PU may be determined based on the motion information indicated by the selected candidate predicted motion vector.
  • the motion information of the PU may be the same as the motion information indicated by the selected candidate prediction motion vector.
  • the motion information of the PU may be determined based on the motion vector difference of the PU and the motion information indicated by the selected candidate predicted motion vector.
  • the video encoder may generate one or more residual image blocks for the CU based on the predictive image block of the PU of the CU and the original image block for the CU. The video encoder may then encode one or more residual image blocks and output one or more residual image blocks in the code stream.
  • the code stream may include data identifying a selected candidate predicted motion vector in the candidate motion vector vector list of the PU.
  • the video decoder may determine motion information for the PU based on motion information indicated by the selected candidate predicted motion vector in the candidate motion vector list of the PU.
  • the video decoder may identify one or more reference blocks for the PU based on the motion information of the PU. After identifying one or more reference blocks of the PU, the video decoder may generate a predictive image block for the PU based on one or more reference blocks of the PU.
  • the video decoder may reconstruct an image block for the CU based on the predictive image block for the PU of the CU and one or more residual image blocks for the CU.
  • the present application may describe a location or image block as having various spatial relationships with a CU or PU. This description may be interpreted to mean that the location or image block and the image block associated with the CU or PU have various spatial relationships.
  • the present application may refer to a PU that is currently being decoded by a video decoder as a current PU, also referred to as a current image block to be processed.
  • the present application may refer to a CU currently being decoded by a video decoder as a current CU.
  • the present application may refer to the image currently being decoded by the video decoder as the current image. It should be understood that the present application is applicable to the case where the PU and the CU have the same size, or the PU is the CU, and the PU is used uniformly.
  • video encoder 20 may use inter prediction to generate predictive image blocks and motion information for the PU of the CU.
  • the motion information for a given PU may be the same or similar to the motion information of one or more nearby PUs (ie, PUs whose image blocks are spatially or temporally near the image block of a given PU). Because nearby PUs often have similar motion information, video encoder 20 may encode motion information for a given PU with reference to motion information for nearby PUs. Encoding motion information for a given PU with reference to motion information of nearby PUs may reduce the number of coded bits in the codestream that are required to indicate motion information for a given PU.
  • Video encoder 20 may encode motion information for a given PU with reference to motion information of nearby PUs in various manners. For example, video encoder 20 may indicate that the motion information for a given PU is the same as the motion information for a nearby PU. The present application may use a merge mode to refer to motion information indicating that a given PU is the same as motion information of a nearby PU or may be derived from motion information of nearby PUs. In another possible implementation, video encoder 20 may calculate a Motion Vector Difference (MVD) for a given PU. The MVD indicates the difference between the motion vector of a given PU and the motion vector of a nearby PU.
  • MVD Motion Vector Difference
  • Video encoder 20 may include the MVD instead of the motion vector of a given PU in the motion information for a given PU.
  • the representation of the MVD in the code stream is less than the coded bits required to represent the motion vector of a given PU.
  • the present application may use advanced motion vector prediction mode to refer to signaling the motion information of a given PU by using the MVD and identifying the index value of the candidate motion vector.
  • video encoder 20 may generate a candidate predicted motion vector list for a given PU.
  • the candidate predicted motion vector list may include one or more candidate predicted motion vectors.
  • Each of the candidate predicted motion vectors in the candidate predicted motion vector list for a given PU may specify motion information.
  • the motion information indicated by each candidate prediction motion vector may include a motion vector, a reference image index, and a prediction direction indicator.
  • the candidate predicted motion vectors in the candidate predicted motion vector list may include "raw" candidate predicted motion vectors, each of which indicates motion information that is different from one of the specified candidate predicted motion vector locations within the PU of the given PU.
  • video encoder 20 may select one of the candidate prediction motion vectors from the candidate prediction motion vector list for the PU. For example, the video encoder may compare each candidate predicted motion vector to the PU being decoded and may select a candidate predicted motion vector having the desired rate-distortion penalty. Video encoder 20 may output a candidate predicted motion vector index for the PU. The candidate predicted motion vector index may identify the location of the selected candidate predicted motion vector in the candidate predicted motion vector list.
  • video encoder 20 may generate a predictive image block for the PU based on the reference block indicated by the motion information of the PU.
  • the motion information of the PU may be determined based on motion information indicated by the selected candidate predicted motion vector in the candidate predicted motion vector list for the PU. For example, in the merge mode, the motion information of the PU may be the same as the motion information indicated by the selected candidate prediction motion vector. In the AMVP mode, motion information of the PU may be determined based on a motion vector difference for the PU and motion information indicated by the selected candidate predicted motion vector.
  • Video encoder 20 may process the predictive image blocks for the PU as previously described.
  • video decoder 30 may generate a candidate predicted motion vector list for each of the PUs of the CU.
  • the candidate predicted motion vector list generated by the video decoder 30 for the PU may be the same as the candidate predicted motion vector list generated by the video encoder 20 for the PU.
  • the syntax element parsed from the code stream may indicate the location of the candidate prediction motion vector selected in the candidate prediction motion vector list for the PU.
  • video decoder 30 may generate a predictive image block for the PU based on one or more reference blocks indicated by the motion information of the PU.
  • Video decoder 30 may determine motion information for the PU based on motion information indicated by the selected candidate predicted motion vector in the candidate predicted motion vector list for the PU. Video decoder 30 may reconstruct an image block for the CU based on the predictive image block for the PU and the residual image block for the CU.
  • the construction of the candidate prediction motion vector list and the resolution of the selected candidate prediction motion vector in the candidate motion vector list from the code stream are independent of each other, and may be arbitrary. Conducted sequentially or in parallel.
  • the position of the selected candidate prediction motion vector in the candidate prediction motion vector list is parsed from the code stream, and the candidate prediction motion vector list is constructed according to the parsed position, where
  • the candidate prediction motion vector at the position can be determined.
  • the code stream is parsed to obtain the candidate candidate motion vector as the candidate motion vector with index 3 in the candidate motion vector list
  • only the candidate motion vector with index 0 to index 3 needs to be constructed.
  • the list can determine the candidate prediction motion vector with the index of 3, which can achieve the technical effect of reducing the complexity and improving the decoding efficiency.
  • FIG. 2 is a schematic block diagram of a video encoder 20 in the embodiment of the present application.
  • Video encoder 20 may perform intra-frame decoding and inter-frame decoding of video blocks within a video stripe.
  • Intra decoding relies on spatial prediction to reduce or remove spatial redundancy of video within a given video frame or image.
  • Inter-frame decoding relies on temporal prediction to reduce or remove temporal redundancy of video within adjacent frames or images of a video sequence.
  • the intra mode (I mode) may refer to any of a number of space based compression modes.
  • An inter mode such as unidirectional prediction (P mode) or bidirectional prediction (B mode) may refer to any of several time-based compression modes.
  • video encoder 20 includes a partitioning unit 35, a prediction unit 41, a reference image memory 64, a summer 50, a transform processing unit 52, a quantization unit 54, and an entropy encoding unit 56.
  • the prediction unit 41 includes a motion estimation unit 42, a motion compensation unit 44, and an intra prediction module 46.
  • video encoder 20 also includes inverse quantization unit 58, inverse transform unit 60, and summer 62.
  • a deblocking filter (not shown in Figure 2) may also be included to filter the block boundaries to remove blockiness artifacts from the reconstructed video. The deblocking filter will typically filter the output of summer 62 as needed. In addition to the deblocking filter, an additional loop filter (in-loop or post-loop) can also be used.
  • video encoder 20 receives video data, and segmentation unit 35 segments the data into video blocks.
  • This partitioning may also include partitioning into strips, image blocks, or other larger units, and, for example, video block partitioning based on the quadtree structure of the LCU and CU.
  • Video encoder 20 exemplarily illustrates the components of a video block encoded within a video strip to be encoded. In general, a stripe may be partitioned into multiple video blocks (and possibly into a collection of video blocks called image blocks).
  • Prediction unit 41 may select one of a plurality of possible decoding modes of the current video block based on the encoding quality and the cost calculation result (eg, rate-distortion cost, RDcost), such as one or more of a plurality of intra-coding modes One of the inter-frame decoding modes. Prediction unit 41 may provide the resulting intra-coded or inter-coded block to summer 50 to generate residual block data and provide the resulting intra-coded or inter-coded block to summer 62 to reconstruct the The coded block is thus used as a reference image.
  • rate-distortion cost, RDcost rate-distortion cost
  • Motion estimation unit 42 and motion compensation unit 44 within prediction unit 41 perform inter-predictive decoding of the current video block relative to one or more predictive blocks in one or more reference pictures to provide temporal compression.
  • Motion estimation unit 42 may be configured to determine an inter prediction mode for the video stripe based on a predetermined pattern of the video sequence. The predetermined mode specifies the video strips in the sequence as P strips, B strips, or GPB strips.
  • Motion estimation unit 42 and motion compensation unit 44 may be highly integrated, but are separately illustrated for conceptual purposes.
  • the motion performed by motion estimation unit 42 is estimated to be a process of generating a motion vector of the estimated video block.
  • the motion vector may indicate the displacement of the PU of the video block within the current video frame or image relative to the predictive block within the reference image.
  • a predictive block is a block of PUs that are found to closely match a video block to be decoded based on pixel differences, which may be determined by absolute difference sum (SAD), squared difference sum (SSD), or other difference metric.
  • video encoder 20 may calculate a value of a sub-integer pixel location of a reference image stored in reference image memory 64. For example, video encoder 20 may interpolate values of a quarter pixel position, an eighth pixel position, or other fractional pixel position of a reference image. Accordingly, motion estimation unit 42 may perform a motion search with respect to the full pixel position and the fractional pixel position and output a motion vector having fractional pixel precision.
  • Motion estimation unit 42 calculates the motion vector of the PU of the video block in the inter-coded slice by comparing the location of the PU with the location of the predictive block of the reference picture.
  • the reference images may be selected from a first reference image list (List 0) or a second reference image list (List 1), each of the lists identifying one or more reference images stored in the reference image memory 64.
  • Motion estimation unit 42 transmits the computed motion vector to entropy encoding unit 56 and motion compensation unit 44.
  • Motion compensation performed by motion compensation unit 44 may involve extracting or generating predictive blocks based on motion vectors determined by motion estimation, possibly performing interpolation to sub-pixel precision. After receiving the motion vector of the PU of the current video block, motion compensation unit 44 may locate the predictive block pointed to by the motion vector in one of the reference image lists. Video encoder 20 forms a residual video block by subtracting the pixel values of the predictive block from the pixel values of the current video block being decoded, thereby forming pixel difference values. The pixel difference values form residual data for the block and may include both luminance and chrominance difference components. Summer 50 represents one or more components that perform this subtraction. Motion compensation unit 44 may also generate syntax elements associated with video blocks and video slices for video decoder 30 to use to decode video blocks of video slices.
  • the PU-containing image may be associated with two reference image lists called "List 0" and "List 1".
  • an image containing B strips may be associated with a list combination that is a combination of List 0 and List 1.
  • motion estimation unit 42 may perform uni-directional prediction or bi-directional prediction for the PU, wherein, in some possible implementations, bi-directional prediction is based on List 0 and List 1 reference image lists, respectively.
  • the prediction performed by the image in other possible embodiments, the bidirectional prediction is prediction based on the reconstructed future frame and the reconstructed past frame in the display order of the current frame, respectively.
  • the motion estimation unit 42 may search for a reference block for the PU in the reference image of list 0 or list 1.
  • Motion estimation unit 42 may then generate a reference index indicating a reference picture containing the reference block in list 0 or list 1 and a motion vector indicating a spatial displacement between the PU and the reference block.
  • the motion estimation unit 42 may output a reference index, a prediction direction identifier, and a motion vector as motion information of the PU.
  • the prediction direction indicator may indicate that the reference index indicates the reference image in list 0 or list 1.
  • Motion compensation unit 44 may generate a predictive image block of the PU based on the reference block indicated by the motion information of the PU.
  • the motion estimation unit 42 may search for a reference block for the PU in the reference image in the list 0 and may also search for another one for the PU in the reference image in the list 1 Reference block. Motion estimation unit 42 may then generate reference indices that indicate reference pictures in the list 0 and list 1 that contain reference blocks. And a motion vector indicating a spatial displacement between the reference block and the PU. The motion estimation unit 42 may output a reference index of the PU and a motion vector as motion information of the PU. Motion compensation unit 44 may generate a predictive image block of the PU based on the reference block indicated by the motion information of the PU.
  • motion estimation unit 42 does not output a complete set of motion information for the PU to entropy encoding module 56. Rather, motion estimation unit 42 may signal the motion information of the PU with reference to motion information of another PU. For example, motion estimation unit 42 may determine that the motion information of the PU is sufficiently similar to the motion information of the neighboring PU. In this embodiment, motion estimation unit 42 may indicate an indication value in a syntax structure associated with the PU that indicates to video decoder 30 that the PU has the same motion information as the neighboring PU or has a slave phase The motion information derived by the neighboring PU.
  • motion estimation unit 42 may identify candidate predicted motion vectors and motion vector differences (MVDs) associated with neighboring PUs in a syntax structure associated with the PU.
  • the MVD indicates the difference between the motion vector of the PU and the indicated candidate predicted motion vector associated with the neighboring PU.
  • Video decoder 30 may use the indicated candidate predicted motion vector and MVD to determine the motion vector of the PU.
  • prediction module 41 may generate a list of candidate predicted motion vectors for each PU of the CU.
  • One or more of the candidate predicted motion vector lists may include one or more original candidate predicted motion vectors and one or more additional candidate predicted motion vectors derived from the original candidate predicted motion vectors.
  • Intra prediction unit 46 within prediction unit 41 may perform intra-predictive decoding of the current video block relative to one or more neighboring blocks in the same image or slice as the current block to be decoded to provide spatial compression .
  • intra-prediction unit 46 may intra-predict the current block.
  • intra prediction unit 46 may determine an intra prediction mode to encode the current block.
  • intra-prediction unit 46 may encode the current block using various intra-prediction modes, for example, during separate encoding traversal, and intra-prediction unit 46 (or in some possible implementations, The mode selection unit 40) may select the appropriate intra prediction mode to use from the tested mode.
  • the video encoder 20 forms a residual video block by subtracting the predictive block from the current video block.
  • the residual video data in the residual block may be included in one or more TUs and applied to transform processing unit 52.
  • Transform processing unit 52 transforms the residual video data into residual transform coefficients using, for example, a discrete cosine transform (DCT) or a conceptually similar transformed transform (eg, a discrete sinusoidal transform DST).
  • Transform processing unit 52 may convert the residual video data from the pixel domain to a transform domain (eg, a frequency domain).
  • Transform processing unit 52 may send the resulting transform coefficients to quantization unit 54.
  • Quantization unit 54 quantizes the transform coefficients to further reduce the code rate. The quantization process can reduce the bit depth associated with some or all of the coefficients. The degree of quantization can be modified by adjusting the quantization parameters. In some possible implementations, quantization unit 54 may then perform a scan of the matrix containing the quantized transform coefficients. Alternatively, entropy encoding unit 56 may perform a scan.
  • entropy encoding unit 56 may entropy encode the quantized transform coefficients. For example, entropy encoding unit 56 may perform context adaptive variable length decoding (CAVLC), context adaptive binary arithmetic decoding (CABAC), syntax based context adaptive binary arithmetic decoding (SBAC), probability interval partition entropy (PIPE) decoding or another entropy coding method or technique. Entropy encoding unit 56 may also entropy encode the motion vectors and other syntax elements of the current video strip being decoded. After entropy encoding by entropy encoding unit 56, the encoded code stream may be transmitted to video decoder 30 or archive for later transmission or retrieved by video decoder 30.
  • CAVLC context adaptive variable length decoding
  • CABAC context adaptive binary arithmetic decoding
  • SBAC syntax based context adaptive binary arithmetic decoding
  • PIPE probability interval partition entropy
  • Entropy encoding unit 56 may also entropy
  • Entropy encoding unit 56 may encode information indicative of a selected intra prediction mode in accordance with the techniques of the present application.
  • Video encoder 20 may include a plurality of intra prediction mode index tables and a plurality of modified intra prediction mode index tables (also referred to as codeword mappings)
  • the transported codestream configuration data of the table contains definitions of coding contexts for the various blocks and an indication of the MPM, the intra prediction mode index table, and the modified intra prediction mode index table for each of the contexts.
  • Inverse quantization unit 58 and inverse transform unit 60 apply inverse quantization and inverse transform, respectively, to reconstruct the residual block in the pixel domain for later use as a reference block for the reference image.
  • Motion compensation unit 44 may calculate the reference block by adding the residual block to a predictive block of one of the reference pictures within one of the reference picture lists. Motion compensation unit 44 may also apply one or more interpolation filters to the reconstructed residual block to calculate sub-integer pixel values for motion estimation.
  • Summer 62 adds the reconstructed residual block to the motion compensated prediction block generated by motion compensation unit 44 to produce a reference block for storage in reference image memory 64.
  • the reference block may be used by motion estimation unit 42 and motion compensation unit 44 as reference blocks to inter-predict subsequent video frames or blocks in the image.
  • FIG. 3 is a schematic block diagram of a video decoder 30 in the embodiment of the present application.
  • video decoder 30 includes an entropy encoding unit 80, a prediction unit 81, an inverse quantization unit 86, an inverse transform unit 88, a summer 90, and a reference image memory 92.
  • the prediction unit 81 includes a motion compensation unit 82 and an intra prediction unit 84.
  • video decoder 30 may perform an exemplary reciprocal decoding process with respect to the encoding flow described by video encoder 20 from FIG.
  • video decoder 30 receives from video encoder 20 an encoded video bitstream representing the video blocks of the encoded video slice and associated syntax elements.
  • Entropy encoding unit 80 of video decoder 30 entropy decodes the code stream to produce quantized coefficients, motion vectors, and other syntax elements.
  • the entropy encoding unit 80 forwards the motion vectors and other syntax elements to the prediction unit 81.
  • Video decoder 30 may receive syntax elements at the video stripe level and/or video block level.
  • intra-prediction unit 84 of prediction unit 81 may be based on the signaled intra prediction mode and data from the previously decoded block of the current frame or image. The predicted data of the video block of the current video stripe is generated.
  • motion compensation unit 82 of prediction unit 81 When the video image is decoded into an inter-frame decoded (eg, B, P, or GPB) stripe, motion compensation unit 82 of prediction unit 81 generates a current video based on the motion vectors and other syntax elements received from entropy encoding unit 80.
  • Video decoder 30 may construct a reference image list (List 0 and List 1) using default construction techniques based on reference images stored in reference image memory 92.
  • Motion compensation unit 82 determines the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and uses the prediction information to generate a predictive block of the current video block that is being decoded. For example, motion compensation unit 82 uses some of the received syntax elements to determine a prediction mode (eg, intra prediction or inter prediction) of the video block used to decode the video slice, an inter prediction strip type (eg, B strip, P strip, or GPB strip), construction information for one or more of the reference picture lists of the strip, motion vectors for each inter-coded video block of the strip, and each frame of the strip The inter prediction state of the decoded video block and other information used to decode the video block in the current video slice.
  • a prediction mode eg, intra prediction or inter prediction
  • an inter prediction strip type eg, B strip, P strip, or GPB strip
  • Motion compensation unit 82 may also perform interpolation based on the interpolation filter. Motion compensation unit 82 may use the interpolation filters as used by video encoder 20 during encoding of the video block to calculate interpolated values for sub-integer pixels of the reference block. In this application, motion compensation unit 82 may determine the interpolation filters used by video encoder 20 from the received syntax elements and use an interpolation filter to generate the predictive blocks.
  • motion compensation unit 82 may generate a candidate predicted motion vector list for the PU. Data identifying the location of the selected candidate predicted motion vector in the candidate motion vector list of the PU may be included in the code stream. After generating the candidate prediction motion vector list for the PU, motion compensation unit 82 may generate a predictive image block for the PU based on one or more reference blocks indicated by the motion information of the PU. The reference block of the PU may be different from the PU In the image. Motion compensation unit 82 may determine motion information for the PU based on the selected motion information from the candidate motion vector list of the PU.
  • Inverse quantization unit 86 inverse quantizes (eg, dequantizes) the quantized transform coefficients provided in the codestream and decoded by entropy encoding unit 80.
  • the inverse quantization process may include determining the degree of quantization using the quantization parameters calculated by video encoder 20 for each of the video slices, and likewise determining the degree of inverse quantization that should be applied.
  • Inverse transform unit 88 applies an inverse transform (eg, an inverse DCT, an inverse integer transform, or a conceptually similar inverse transform process) to the transform coefficients to produce a residual block in the pixel domain.
  • video decoder 30 sums the residual block from inverse transform unit 88 with the corresponding predictive block generated by motion compensation unit 82. To form a decoded video block.
  • Summer 90 represents one or more components that perform this summation operation.
  • a deblocking filter can also be applied to filter the decoded blocks to remove blockiness artifacts as needed.
  • Other loop filters can also be used to smooth pixel transitions or otherwise improve video quality.
  • the decoded video block in a given frame or image is then stored in a reference image memory 92, which stores a reference image for subsequent motion compensation.
  • the reference image memory 92 also stores decoded video for later presentation on a display device such as display device 32 of FIG.
  • the techniques of the present application illustratively relate to inter-frame decoding. It should be understood that the techniques of the present application can be performed by any of the video decoders described in this application, including, for example, video encoder 20 and video decoding as shown and described with respect to Figures 1 through 3 30. That is, in one possible implementation, the prediction unit 41 described with respect to FIG. 2 may perform the specific techniques described below when performing inter prediction during encoding of blocks of video data. In another possible implementation, the prediction unit 81 described with respect to FIG. 3 may perform the specific techniques described below when performing inter prediction during decoding of blocks of video data. Thus, references to a generic "video encoder" or "video decoder” may include video encoder 20, video decoder 30, or another video encoding or encoding unit.
  • FIG. 4 is a schematic block diagram of an inter prediction module in an embodiment of the present application.
  • the inter prediction module 121 may include a motion estimation unit 42 and a motion compensation unit 44. In different video compression codec standards, the relationship between PU and CU is different.
  • the inter prediction module 121 may divide the current CU into PUs according to multiple partition modes. For example, the inter prediction module 121 may divide the current CU into PUs according to 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N, and N ⁇ N partition modes. In other embodiments, the current CU is the current PU, which is not limited.
  • the inter prediction module 121 may perform an Integer Motion Estimation (IME) on each of the PUs and then perform a Fraction Motion Estimation (FME).
  • IME Integer Motion Estimation
  • FME Fraction Motion Estimation
  • the inter prediction module 121 may search for a reference block for the PU in one or more reference pictures. After finding the reference block for the PU, the inter prediction module 121 may generate a motion vector that indicates the spatial displacement between the PU and the reference block for the PU with integer precision.
  • the inter prediction module 121 may improve the motion vector generated by performing the IME on the PU.
  • a motion vector generated by performing FME on a PU may have sub-integer precision (eg, 1/2 pixel precision, 1/4 pixel precision, etc.).
  • the inter prediction module 121 can use the motion vector for the PU to generate a predictive image block for the PU.
  • the inter prediction module 121 may generate a candidate prediction motion vector list for the PU.
  • the candidate predicted motion vector list may include one or more original candidate predicted motion vectors and one or more additional candidate predicted motion vectors derived from the original candidate predicted motion vectors.
  • the inter prediction module 121 may select the candidate prediction motion vector from the candidate prediction motion vector list and generate a motion vector difference for the PU. (MVD).
  • the MVD for the PU may indicate the difference between the motion vector indicated by the selected candidate prediction motion vector and the motion vector generated for the PU using the IME and FME.
  • inter prediction module 121 may output a candidate predicted motion vector index that identifies the location of the selected candidate predicted motion vector in the candidate predicted motion vector list.
  • the inter prediction module 121 can also output the MVD of the PU.
  • a possible implementation of the Advanced Motion Vector Prediction (AMVP) mode in the embodiment of the present application is described in detail below.
  • AMVP Advanced Motion Vector Prediction
  • the inter prediction module 121 may also perform a Merge operation on each of the PUs.
  • the inter prediction module 121 may generate a candidate predicted motion vector list for the PU.
  • the candidate prediction motion vector list for the PU may include one or more original candidate prediction motion vectors and one or more additional candidate prediction motion vectors derived from the original candidate prediction motion vectors.
  • the original candidate prediction motion vector in the candidate prediction motion vector list may include one or more spatial candidate prediction motion vectors and temporal candidate prediction motion vectors.
  • the spatial candidate prediction motion vector may indicate motion information of other PUs in the current image.
  • the temporal candidate prediction motion vector may be based on motion information of a corresponding PU that is different from the current image.
  • the temporal candidate prediction motion vector may also be referred to as temporal motion vector prediction (TMVP).
  • the inter prediction module 121 may select one of the candidate predicted motion vectors from the candidate predicted motion vector list. Inter prediction module 121 may then generate a predictive image block for the PU based on the reference block indicated by the motion information of the PU. In the merge mode, the motion information of the PU may be the same as the motion information indicated by the selected candidate prediction motion vector.
  • Figure 5, described below, illustrates an exemplary flow chart of Merge.
  • the inter prediction module 121 may select a predictive image block generated by the FME operation or generate a merge operation Predictive image block. In some possible implementations, the inter prediction module 121 may select a predictive image for the PU based on a predictive image block generated by the FME operation and a rate-distortion cost analysis of the predictive image block generated by the combining operation. Piece.
  • the inter prediction module 121 can select the partition mode for the current CU. In some implementations, inter prediction module 121 can select for a current CU based on a rate-distortion cost analysis of a selected predictive image block of the PU generated by segmenting the current CU according to each of the partition modes. Split mode.
  • the inter prediction module 121 may output the predictive image blocks associated with the PUs belonging to the selected partition mode to the residual generation module 102.
  • the inter prediction module 121 may output syntax elements indicating motion information of the PUs belonging to the selected partition mode to the entropy encoding module 116.
  • the inter prediction module 121 includes IME modules 180A through 180N (collectively referred to as “IME module 180"), FME modules 182A through 182N (collectively referred to as “FME module 182”), and merge modules 184A through 184N (collectively The “Merge Module 184"), the PU Mode Decision Modules 186A through 186N (collectively referred to as “PU Mode Decision Module 186”) and the CU Mode Decision Module 188 (which may also include a mode decision process that performs a CTU to CU).
  • IME module 180 IME modules 180A through 180N
  • FME module 182 FME modules 182A through 182N
  • merge modules 184A through 184N collectively The "Merge Module 184"
  • the PU Mode Decision Modules 186A through 186N collectively referred to as "PU Mode Decision Module 186”
  • the CU Mode Decision Module 188 which may also include a mode decision process that performs a CTU to CU).
  • IME module 180, FME module 182, and merge module 184 can perform IME operations, FME operations, and merge operations on PUs of the current CU.
  • the inter prediction module 121 is illustrated in the diagram of FIG. 4 as a separate IME module 180, FME module 182, and merge module 184 for each PU for each partition mode of the CU. In other possible implementations, inter prediction module 121 does not include separate IME module 180, FME module 182, and merge module 184 for each PU of each partition mode of the CU.
  • the IME module 180A, the FME module 182A, and the merging module 184A may perform an IME operation, an FME operation, and a merge operation on a PU generated by dividing a CU according to a 2N ⁇ 2N partition mode.
  • PU mode decision module 186A may select one of the predictive image blocks generated by IME module 180A, FME module 182A, and merge module 184A.
  • the IME module 180B, the FME module 182B, and the merging module 184B may perform an IME operation, an FME operation, and a merge operation on a left PU generated by dividing a CU according to an N ⁇ 2N partition mode.
  • PU mode decision module 186B may select one of the predictive image blocks generated by IME module 180B, FME module 182B, and merge module 184B.
  • the IME module 180C, the FME module 182C, and the merging module 184C may perform an IME operation, an FME operation, and a merge operation on a right PU generated by dividing a CU according to an N ⁇ 2N partition mode.
  • the PU mode decision module 186C may select one of the predictive image blocks generated by the IME module 180C, the FME module 182C, and the merge module 184C.
  • the IME module 180N, the FME module 182N, and the merging module 184 may perform an IME operation, an FME operation, and a merge operation on the lower right PU generated by dividing the CU according to the N ⁇ N partition mode.
  • the PU mode decision module 186N may select one of the predictive image blocks generated by the IME module 180N, the FME module 182N, and the merge module 184N.
  • the PU mode decision module 186 can select a predictive image block based on a rate-distortion cost analysis of the plurality of possible predictive image blocks and select a predictive image block that provides an optimal rate-distortion penalty for a given decoding situation. Illustratively, for bandwidth limited applications, PU mode decision module 186 may prefer to select predictive image blocks that increase compression ratio, while for other applications, PU mode decision module 186 may prefer to select predictive images that increase reconstructed video quality. Piece. After the PU mode decision module 186 selects the predictive image block for the PU of the current CU, the CU mode decision module 188 selects the segmentation mode for the current CU and outputs the predictive image block and motion information for the PUs belonging to the selected segmentation mode. .
  • FIG. 5 is an exemplary flowchart of a merge mode in the embodiment of the present application.
  • a video encoder e.g., video encoder 20
  • the video encoder may perform a merge operation 200.
  • the video encoder may perform a merge operation other than the merge operation 200.
  • the video encoder may perform a merge operation in which the video encoder performs more than 200 steps, or steps different from the merge operation 200, than the merge operation.
  • the video encoder may perform the steps of the merge operation 200 in a different order or in parallel.
  • the encoder may also perform a merge operation 200 on the PU encoded in a skip mode.
  • the video encoder may generate a candidate predicted motion vector list for the current PU (202).
  • the video encoder can generate a list of candidate predicted motion vectors for the current PU in various ways.
  • the video encoder may generate a candidate predicted motion vector list for the current PU according to one of the example techniques described below with respect to Figures 8-12.
  • the candidate predicted motion vector list for the current PU may include a temporal candidate predicted motion vector.
  • the temporal candidate prediction motion vector may indicate motion information of a time-domain co-located PU.
  • the co-located PU may be spatially co-located with the current PU at the same location in the image frame, but in the reference image rather than the current image.
  • the present application may refer to a reference image including a PU corresponding to a time domain as a related reference image.
  • the present application may refer to a reference image index of an associated reference image as a related reference image index.
  • the current image may be associated with one or more reference image lists (eg, list 0, list 1, etc.).
  • the reference image index may indicate the reference image by indicating a position in a reference image list of the reference image.
  • the current image can be associated with a combined reference image list.
  • the associated reference image index is a reference image index of the PU that encompasses the reference index source location associated with the current PU.
  • the reference index source location associated with the current PU is adjacent to or adjacent to the current PU.
  • an image block associated with a PU includes a specific bit The PU can "cover" the particular location.
  • the video encoder can use a zero reference image index.
  • the reference index source location associated with the current PU is within the current CU.
  • the PU if the PU is above or to the left of the current CU, the PU that covers the reference index source location associated with the current PU may be considered available.
  • the video encoder may need to access motion information of another PU of the current CU in order to determine a reference image containing the co-located PU. Accordingly, these video encoders may use motion information (ie, reference picture index) of PUs belonging to the current CU to generate temporal candidate prediction motion vectors for the current PU. In other words, these video encoders can generate temporal candidate prediction motion vectors using motion information of PUs belonging to the current CU. Accordingly, the video encoder may not be able to generate a candidate predicted motion vector list for the current PU and the PU that covers the reference index source location associated with the current PU in parallel.
  • motion information ie, reference picture index
  • a video encoder can explicitly set an associated reference image index without reference to a reference image index of any other PU. This may enable the video encoder to generate candidate prediction motion vector lists for other PUs of the current PU and the current CU in parallel. Because the video encoder explicitly sets the relevant reference picture index, the associated reference picture index is not based on motion information of any other PU of the current CU. In some possible implementations in which the video encoder explicitly sets the relevant reference image index, the video encoder may always set the relevant reference image index to a fixed predefined preset reference image index (eg, 0).
  • a fixed predefined preset reference image index eg, 0
  • the video encoder may generate the temporal candidate prediction motion vector based on the motion information of the co-located PU in the reference frame indicated by the preset reference image index, and may include the temporal candidate prediction motion vector in the candidate prediction of the current CU Motion vector list.
  • the video encoder can be explicitly used in a syntax structure (eg, an image header, a stripe header, an APS, or another syntax structure) Signals the relevant reference image index.
  • the video encoder may signal the decoder for an associated reference picture index for each LCU (ie, CTU), CU, PU, TU, or other type of sub-block. For example, the video encoder may signal that the associated reference picture index for each PU of the CU is equal to "1.”
  • the associated reference image index can be set implicitly rather than explicitly.
  • the video encoder may generate the candidate predicted motion vector list for the PU of the current CU using the motion information of the PU in the reference image indicated by the reference image index of the PU covering the location outside the current CU. Each time candidate predicts a motion vector, even if these locations are not strictly adjacent to the current PU.
  • the video encoder may generate a predictive image block (204) associated with the candidate predicted motion vector in the candidate predicted motion vector list.
  • the video encoder may generate the predicted motion vector with the candidate by determining motion information of the current PU based on the motion information of the indicated candidate motion vector and then generating a predictive image block based on the one or more reference blocks indicated by the motion information of the current PU. Associated predictive image blocks.
  • the video encoder may then select one of the candidate predicted motion vectors from the candidate predicted motion vector list (206).
  • the video encoder can select candidate prediction motion vectors in a variety of ways. For example, the video encoder may select one of the candidate predicted motion vectors based on a rate-distortion cost analysis of each of the predictive image blocks associated with the candidate predicted motion vectors.
  • the video encoder may output a candidate predicted motion vector index (208).
  • the candidate predicted motion vector index may indicate the location of the candidate predicted motion vector selected in the candidate predicted motion vector list.
  • the candidate predicted motion vector index may be denoted as "merge_idx.”
  • FIG. 6 is an exemplary flowchart of an Advanced Motion Vector Prediction (AMVP) mode in an embodiment of the present application.
  • a video encoder e.g., video encoder 20
  • the video encoder may generate one or more motion vectors (211) for the current PU.
  • the video encoder may perform integer motion estimation and fractional motion estimation to generate motion vectors for the current PU.
  • the current image can be associated with two reference image lists (List 0 and List 1).
  • the video encoder may generate a list 0 motion vector or a list 1 motion vector for the current PU.
  • the list 0 motion vector may indicate a spatial displacement between an image block of the current PU and a reference block in the reference image in list 0.
  • the List 1 motion vector may indicate a spatial displacement between an image block of the current PU and a reference block in the reference image in List 1.
  • the video encoder may generate a list 0 motion vector and a list 1 motion vector for the current PU.
  • the video encoder may generate a predictive image block for the current PU (212).
  • the video encoder may generate a predictive image block for the current PU based on one or more reference blocks indicated by one or more motion vectors for the current PU.
  • the video encoder may generate a list of candidate predicted motion vectors for the current PU (213).
  • the video decoder can generate a list of candidate predicted motion vectors for the current PU in various ways.
  • the video encoder may generate a candidate predicted motion vector list for the current PU in accordance with one or more of the possible implementations described below with respect to Figures 8-12.
  • the candidate prediction motion vector list may be limited to two candidate prediction motion vectors.
  • the candidate prediction motion vector list may include more candidate prediction motion vectors (eg, five candidate prediction motion vectors).
  • the video encoder may generate one or more motion vector differences (MVDs) for each of the candidate predicted motion vector lists (214).
  • the video encoder may generate a motion vector difference for the candidate predicted motion vector by determining a difference between the motion vector indicated by the candidate predicted motion vector and the corresponding motion vector of the current PU.
  • the video encoder may generate a single MVD for each candidate predicted motion vector. If the current PU is bi-predicted, the video encoder may generate two MVDs for each candidate predicted motion vector.
  • the first MVD may indicate a difference between a motion vector of the candidate predicted motion vector and a list 0 motion vector of the current PU.
  • the second MVD may indicate a difference between a motion vector of the candidate prediction motion vector and a list 1 motion vector of the current PU.
  • the video encoder may select one or more of the candidate predicted motion vectors from the candidate predicted motion vector list (215).
  • the video encoder can select one or more candidate predicted motion vectors in various ways. For example, the video encoder may select a candidate predicted motion vector of the associated motion vector that matches the motion vector to be encoded with minimal error, which may reduce the number of bits needed to represent the motion vector difference for the candidate predicted motion vector.
  • the video encoder may output one or more reference image indices for the current PU, one or more candidate predicted motion vector indices, and for one or more selected candidates One or more motion vector differences of the motion vectors are predicted (216).
  • the video encoder may output a reference picture index ("ref_idx_10") for list 0 or for The reference image index of List 1 ("ref_idx_11").
  • the video encoder may also output a candidate predicted motion vector index (“mvp_10_flag") indicating the location of the selected candidate predicted motion vector for the list 0 motion vector of the current PU in the candidate predicted motion vector list.
  • the video encoder may output a candidate predicted motion vector index indicating a position of the selected candidate predicted motion vector for the list 1 motion vector of the current PU in the candidate predicted motion vector list.
  • mvp_11_flag The video encoder may also output an MVD for the list 0 motion vector or list 1 motion vector of the current PU.
  • the video encoder may output a reference picture index ("ref_idx_10") for list 0 and for the list Reference image index of 1 ("ref_idx_11").
  • the video encoder may also output a candidate predicted motion vector index (“mvp_10_flag") indicating the location of the selected candidate predicted motion vector for the list 0 motion vector of the current PU in the candidate predicted motion vector list.
  • the video encoder may output a candidate predicted motion vector index (“mvp_11_flag”) indicating the location of the selected candidate predicted motion vector for the list 1 motion vector of the current PU in the candidate predicted motion vector list.
  • the video encoder may also output an MVD for the list 0 motion vector of the current PU and an MVD for the list 1 motion vector of the current PU.
  • FIG. 7 is an exemplary flow diagram of motion compensation performed by a video decoder (e.g., video decoder 30) in an embodiment of the present application.
  • a video decoder e.g., video decoder 30
  • the video decoder may receive an indication of the selected candidate predicted motion vector for the current PU (222). For example, the video decoder may receive a candidate predicted motion vector index indicating a location of the selected candidate predicted motion vector within the candidate PU motion vector list for the current PU.
  • the video decoder may receive the first candidate predicted motion vector index and the second candidate predicted motion vector index.
  • the first candidate predicted motion vector index indicates the location of the selected candidate predicted motion vector for the list 0 motion vector of the current PU in the candidate predicted motion vector list.
  • the second candidate prediction motion vector index indicates the position of the selected candidate prediction motion vector for the list 1 motion vector of the current PU in the candidate prediction motion vector list.
  • a single syntax element can be used to identify two candidate predicted motion vector indices.
  • the video decoder may generate a list of candidate predicted motion vectors for the current PU (224).
  • the video decoder can generate this candidate predicted motion vector list for the current PU in various ways.
  • the video decoder may generate a candidate predicted motion vector list for the current PU using the techniques described below with reference to Figures 8-12.
  • the video decoder may explicitly or implicitly set a reference image index identifying the reference image including the co-located PU, as previously described Figure 5 depicts.
  • the video decoder may determine the current PU based on the motion information indicated by one or more selected candidate predicted motion vectors in the candidate PU vector list for the current PU.
  • Motion information (225). For example, if the motion information of the current PU is encoded using the merge mode, the motion information of the current PU may be the same as the motion information indicated by the selected candidate motion vector. If the motion information of the current PU is encoded using the AMVP mode, the video decoder may use one or more motion vectors indicated by the or the selected candidate prediction motion vector and one or more MVDs indicated in the code stream To reconstruct one or more motion vectors of the current PU.
  • the reference image index and the prediction direction indicator of the current PU may be the same as the reference image index and the prediction direction indicator of the one or more selected candidate prediction motion vectors.
  • the video decoder may generate a predictive image block for the current PU based on one or more reference blocks indicated by the motion information of the current PU (226).
  • FIG. 8 is an exemplary schematic diagram of a coding unit (CU) and associated location image blocks associated therewith, illustrating a schematic diagram of CU 250 and exemplary candidate prediction motion vector locations 252A through 252E associated with CU 250, in an embodiment of the present application; .
  • the present application may collectively refer to candidate predicted motion vector locations 252A through 252E as candidate predicted motion vector locations 252.
  • the candidate predicted motion vector position 252 represents a spatial candidate predicted motion vector in the same image as the CU 250.
  • Candidate pre The measured motion vector position 252A is positioned to the left of CU250.
  • the candidate predicted motion vector location 252B is located above the CU 250.
  • the candidate predicted motion vector position 252C is located at the upper right of the CU 250.
  • the candidate predicted motion vector position 252D is located at the lower left of the CU 250.
  • the candidate predicted motion vector position 252E is located at the upper left of the CU 250.
  • 8 is an illustrative implementation to provide a way in which the inter prediction module 121 and the motion compensation module 162 can generate a list of candidate predicted motion vectors. Embodiments will be explained below with reference to inter prediction module 121, but it should be understood that motion compensation module 162 can implement the same techniques and thus generate the same candidate prediction motion vector list.
  • FIG. 9 is an exemplary flowchart of constructing a candidate prediction motion vector list in the embodiment of the present application.
  • the technique of FIG. 9 will be described with reference to a list including five candidate predicted motion vectors, but the techniques described herein may also be used with lists of other sizes.
  • the five candidate predicted motion vectors may each have an index (eg, 0 to 4).
  • the technique of FIG. 9 will be described with reference to a general video decoder.
  • a typical video decoder may illustratively be a video encoder (e.g., video encoder 20) or a video decoder (e.g., video decoder 30).
  • the video decoder first considers four spatial candidate predicted motion vectors (902).
  • the four spatial candidate prediction motion vectors may include candidate prediction motion vector positions 252A, 252B, 252C, and 252D.
  • the four spatial candidate prediction motion vectors correspond to motion information of four PUs in the same image as the current CU (eg, CU 250).
  • the video decoder may consider four spatial candidate prediction motion vectors in the list in a particular order. For example, the candidate predicted motion vector location 252A can be considered first. If the candidate predicted motion vector location 252A is available, the candidate predicted motion vector location 252A may be assigned to index 0.
  • the video decoder may not include the candidate predicted motion vector location 252A in the candidate predicted motion vector list.
  • Candidate predicted motion vector locations may not be available for a variety of reasons. For example, if the candidate predicted motion vector location is not within the current image, the candidate predicted motion vector location may not be available. In another possible implementation, if the candidate predicted motion vector location is intra predicted, the candidate predicted motion vector location may not be available. In another possible implementation, if the candidate predicted motion vector location is in a different strip than the current CU, the candidate predicted motion vector location may not be available.
  • the video decoder may next consider the candidate predicted motion vector location 252B. If the candidate predicted motion vector location 252B is available and different than the candidate predicted motion vector location 252A, the video decoder may add the candidate predicted motion vector location 252B to the candidate predicted motion vector list.
  • the terms "identical” and “different” refer to motion information associated with candidate predicted motion vector locations. Therefore, two candidate predicted motion vector positions are considered identical if they have the same motion information, and are considered different if they have different motion information. If the candidate predicted motion vector location 252A is not available, the video decoder may assign the candidate predicted motion vector location 252B to index 0.
  • the video decoder may assign the candidate predicted motion vector location 252 to index 1. If the candidate predicted motion vector location 252B is not available or the same as the candidate predicted motion vector location 252A, the video decoder skips the candidate predicted motion vector location 252B and does not include it in the candidate predicted motion vector list.
  • the candidate predicted motion vector location 252C is similarly considered by the video decoder for inclusion in the list. If the candidate predicted motion vector location 252C is available and not the same as the candidate predicted motion vector locations 252B and 252A, the video decoder assigns the candidate predicted motion vector location 252C to the next available index. If the candidate predicted motion vector location 252C is not available or is not different than at least one of the candidate predicted motion vector locations 252A and 252B, the video decoder does not include the candidate predicted motion vector location 252C in the candidate predicted motion vector list. Next, the video decoder considers the candidate predicted motion vector location 252D.
  • the video decoder assigns the candidate predicted motion vector location 252D Go to the next available index. If the candidate predicted motion vector location 252D is not available or is not different than at least one of the candidate predicted motion vector locations 252A, 252B, and 252C, the video decoder does not include the candidate predicted motion vector location 252D in the candidate predicted motion vector list.
  • the above embodiments generally describe exemplarily considering candidate prediction motion vectors 252A through 252D for inclusion in a candidate prediction motion vector list, but in some implementations, all candidate prediction motion vectors 252A through 252D may first be added to candidates. The motion vector list is predicted, and the repetition is removed from the candidate prediction motion vector list later.
  • the candidate prediction motion vector list may include four spatial candidate prediction motion vectors or the list may include less than four spatial candidate prediction motion vectors. If the list includes four spatial candidate prediction motion vectors (904, YES), the video decoder considers the temporal candidate prediction motion vectors (906).
  • the temporal candidate prediction motion vector may correspond to motion information of a co-located PU that is different from the image of the current image. If the temporal candidate prediction motion vector is available and different from the first four spatial candidate prediction motion vectors, the video decoder assigns the temporal candidate prediction motion vector to index 4.
  • the video decoder does not include the temporal candidate prediction motion vector in the candidate prediction motion vector list.
  • the candidate prediction motion vector list may include five candidate prediction motion vectors (the first four spatial candidate prediction motion vectors considered at block 902 and considered at block 904)
  • the temporal candidate predictive motion vector or may include four candidate predicted motion vectors (the first four spatial candidate predicted motion vectors considered at block 902). If the candidate predicted motion vector list includes five candidate predicted motion vectors (908, YES), the video decoder completes the build list.
  • the video decoder may consider the fifth spatial candidate predicted motion vector (910).
  • the fifth spatial candidate prediction motion vector may, for example, correspond to the candidate predicted motion vector location 252E. If the candidate predicted motion vector at location 252E is available and different than the candidate predicted motion vector at locations 252A, 252B, 252C, and 252D, the video decoder may add the fifth spatial candidate predicted motion vector to the candidate predicted motion vector list, The five-space candidate prediction motion vector is assigned to index 4.
  • the video decoder may not include the candidate predicted motion vector at location 252 Candidate predictive motion vector list.
  • the list may include five candidate prediction motion vectors (the first four spatial candidate prediction motion vectors considered at block 902 and the fifth spatial candidate prediction motion considered at block 910) Vector) or may include four candidate predicted motion vectors (the first four spatial candidate predicted motion vectors considered at block 902).
  • the video decoder finishes generating the candidate predicted motion vector list. If the candidate predicted motion vector list includes four candidate predicted motion vectors (912, No), the video decoder adds the artificially generated candidate predicted motion vectors (914) until the list includes five candidate predicted motion vectors (916, YES).
  • the video decoder may consider the fifth spatial candidate prediction motion vector (918).
  • the fifth spatial candidate prediction motion vector may, for example, correspond to the candidate predicted motion vector location 252E. If the candidate prediction motion vector at location 252E is available and different than the candidate prediction motion vector already included in the candidate prediction motion vector list, the video decoder may add the fifth spatial candidate prediction motion vector to the candidate prediction motion vector list, The five spatial candidate prediction motion vectors are assigned to the next available index.
  • the candidate prediction motion vector at location 252E may not be included in the candidate prediction motion vector list.
  • the video decoder may then consider the temporal candidate prediction motion vector (920). If the temporal candidate prediction motion vector is available and different from the candidate prediction motion vector that has been included in the candidate prediction motion vector list, the video decoder may add the temporal candidate prediction motion vector to the candidate prediction motion vector list, the temporal candidate The predicted motion vector is assigned to the next available index. If the temporal candidate prediction motion vector is not available or is not different from one of the candidate prediction motion vectors that have been included in the candidate prediction motion vector list, the video decoder may not include the temporal candidate prediction motion vector in the candidate prediction motion vector List.
  • the video decoder completes generation A list of candidate predicted motion vectors. If the candidate predicted motion vector list includes less than five candidate predicted motion vectors (922, No), the video decoder adds the artificially generated candidate predicted motion vectors (914) until the list includes five candidate predicted motion vectors (916, yes) until.
  • an additional merge candidate prediction motion vector may be artificially generated after the spatial candidate prediction motion vector and the temporal candidate prediction motion vector to fix the size of the merge candidate prediction motion vector list to a specified number of merge candidate prediction motion vectors (eg, Five of the possible embodiments of Figure 9 above.
  • the additional merge candidate prediction motion vector may include an exemplary combined bi-predictive merge candidate motion vector (candidate motion vector 1), a scale bi-predictive merge candidate motion vector (candidate motion vector 2), and a zero vector Merge/AMVP candidate prediction motion vector (candidate prediction motion vector 3).
  • FIG. 10 is an exemplary schematic diagram of adding a combined candidate motion vector to a merge mode candidate prediction motion vector list in an embodiment of the present application.
  • the combined bi-predictive merging candidate prediction motion vector may be generated by combining the original merging candidate prediction motion vector.
  • two candidate predicted motion vectors (which have mvL0 and refIdxL0 or mvL1 and refIdxL1) in the original candidate prediction motion vector may be used to generate a bidirectional predictive merge candidate prediction motion vector.
  • two candidate prediction motion vectors are included in the original merge candidate prediction motion vector list.
  • the prediction type of one candidate prediction motion vector is list 0 unidirectional prediction
  • the prediction type of another candidate prediction motion vector is list 1 unidirectional prediction.
  • mvL0_A and ref0 are picked up from list 0
  • mvL1_B and ref0 are picked up from list 1
  • a bidirectional predictive merge candidate predictive motion vector (which has mvL0_A and ref0 in list 0 and mvL1_B and ref0) in Listing 1 and check if it is different from the candidate predicted motion vector that has been included in the candidate predicted motion vector list. If they are different, the video decoder may include the bi-predictive merge candidate motion vector for inclusion in the candidate motion vector list.
  • FIG. 11 is an exemplary schematic diagram of adding a scaled candidate motion vector to a merge mode candidate prediction motion vector list in an embodiment of the present application.
  • the scaled bi-predictive merge candidate prediction motion vector may be generated by scaling the original merge candidate prediction motion vector.
  • a candidate predicted motion vector (which may have mvLX and refIdxLX) from the original candidate predicted motion vector may be used to generate a bi-predictive merge candidate predictive motion vector.
  • two candidate predicted motion vectors are included in the original merge candidate predictive motion vector list.
  • the prediction type of one candidate prediction motion vector is list 0 unidirectional prediction, and the prediction type of another candidate prediction motion vector is list 1 unidirectional prediction.
  • mvL0_A and ref0 may be picked up from list 0, and ref0 may be copied to reference index ref0' in list 1.
  • mvL0'_A can be calculated by scaling mvL0_A having ref0 and ref0'. The scaling can depend on the POC distance.
  • a bidirectional predictive merge candidate prediction motion vector (which has mvL0_A and ref0 in list 0 and mvL0'_A and ref0' in list 1) can be generated and checked for repetition. If it is not a duplicate, it can be added to the merge candidate prediction motion vector list.
  • FIG. 12 is an exemplary schematic diagram of adding a zero motion vector to a merge mode candidate motion vector list in the embodiment of the present application.
  • Zero Vector Merging Candidate Prediction Motion Vectors can be generated by combining a zero vector with a reference index that can be referenced. If the zero vector candidate prediction motion vector is not repeated, it may be added to the merge candidate prediction motion vector list. For each generated merge candidate predicted motion vector, the motion information may be compared to the motion information of the previous candidate predicted motion vector in the list.
  • the pruning operation may include comparing one or more new candidate prediction motion vectors with candidate prediction motion vectors that have been in the candidate prediction motion vector list and candidates that are not added as candidates in the candidate prediction motion vector list A new candidate prediction motion vector that predicts the repetition of the motion vector.
  • the pruning operation can include adding one or more new candidate prediction motion vectors to the candidate prediction motion vector list and later removing the duplicate candidate prediction motion vectors from the list.
  • a method for predicting motion information of an image block to be processed includes: acquiring motion of at least one determined motion vector image block in an image of a to-be-processed image block.
  • Information, the at least one determined motion vector image block includes a determined motion vector image block that is not contiguous with the image block to be processed; acquiring first identification information, the first identification information being used from the at least one Determining target motion information in the motion information of the motion vector image block; and predicting motion information of the image block to be processed according to the target motion information.
  • the spatial candidate prediction mode is exemplified by five positions from 252A to 252E shown in FIG. 8, that is, positions adjacent to the image block to be processed. .
  • the spatial candidate prediction mode may further include a preset distance within a predetermined distance from the image block to be processed. , but not adjacent to the image block to be processed.
  • the class location can be as shown at 252F through 252J in FIG. It should be understood that FIG.
  • FIG. 13 is an exemplary schematic diagram of a coding unit and an adjacent location image block associated therewith in the embodiment of the present application.
  • the positions of the image blocks that are not in the same image block as the image block to be processed that have been reconstructed while the image block to be processed is in the same image frame as the image block to be processed are within the range of such positions.
  • This type of location may be referred to as a spatial non-contiguous image block. It may be assumed that the first spatial non-contiguous image block, the second spatial non-contiguous image block, and the third spatial non-contiguous image block are available. The physical meaning of "available” may be referred to. As mentioned above, I will not repeat them. Meanwhile, it may be understood that when the spatial candidate prediction mode is taken from the prediction mode of the position shown in FIG. 8, the candidate predicted motion mode list is checked and constructed in the following order, and it should be understood that the check includes the "available” mentioned above. The inspection and trimming process will not be repeated.
  • the candidate prediction mode list includes: a motion vector of a 252A position image block, a motion vector of a 252B position image block, a motion vector of a 252C position image block, a motion vector of a 252D position image block, and a prediction by a selective time domain motion vector ( Motion vector obtained by ATMVP) technology, motion vector of 252E positional image block, motion vector obtained by spatiotemporal motion vector prediction (STMVP) technique.
  • ATMVP technology and STMVP technology are recorded in detail in Sections 2.3.1.1 and 2.3.1.2 of JVET-F1001-v2. The full text of JVET-F1001-v2 is introduced here, and will not be described again.
  • the candidate prediction mode list includes the above seven prediction motion vectors.
  • the candidate prediction mode list may include less than seven prediction motion vectors, such as Take the first five to form the candidate prediction mode list, and also the former
  • the motion vectors constructed by the various feasible embodiments in FIG. 10-12 are added to the candidate prediction mode list to include more prediction motion vectors.
  • the foregoing first spatial non-contiguous image block, the second spatial non-contiguous image block, and the third spatial non-contiguous image block may be added to the candidate prediction mode list as a to-be-processed image block. Predictive motion vector.
  • the motion vector and the motion vector obtained by the STMVP technique are respectively MVL, MVU, MVUR, MVDL, MVA, MVUL, MVS, and the first spatial non-contiguous image block, the second spatial non-contiguous image block, and the third spatial non-contiguous image block are set.
  • the motion vectors are MV0, MV1, and MV2, respectively, and the candidate motion vector list can be checked and constructed in the following order:
  • Example 1 MVL, MVU, MVUR, MVDL, MV0, MV1, MV2, MVA, MVUL, MVS;
  • Example 2 MVL, MVU, MVUR, MVDL, MVA, MV0, MV1, MV2, MVUL, MVS;
  • Example 3 MVL, MVU, MVUR, MVDL, MVA, MVUL, MV0, MV1, MV2, MVS;
  • Example 4 MVL, MVU, MVUR, MVDL, MVA, MVUL, MVS, MV0, MV1, MV2;
  • Example 5 MVL, MVU, MVUR, MVDL, MVA, MV0, MVUL, MV1, MVS, MV2;
  • Example 6 MVL, MVU, MVUR, MVDL, MVA, MV0, MVUL, MV1, MV2, MVS;
  • Example 7 MVL, MVU, MVUR, MVDL, MVA, MVUL, MV0, MV1, MV2, MVS;
  • the above candidate prediction motion vector list may be used in the Merge mode or the AMVP mode described above, or in other prediction modes for acquiring the predicted motion vector of the image block to be processed, and may be used for the encoding end, and may also be corresponding to The coding end is used consistently for the decoding end, and is not limited.
  • the number of candidate prediction motion vectors in the candidate prediction motion vector list is also preset, and is consistent at the codec end, and the specific number is not limited.
  • Examples 1 to 7 exemplarily show the composition of several feasible candidate motion vector lists, and based on the motion vectors of the spatial non-contiguous image blocks, there may be other ways of composing the candidate motion vector lists. And the arrangement of candidate prediction motion vectors in the list is not limited.
  • motion vectors eg, MV0, MV1, MV2
  • MV0, MV1, MV2 motion vectors
  • the motion vector of the spatial non-contiguous image block is simultaneously used as the candidate prediction mode of the to-be-processed block, and more spatial a priori coding information is utilized to improve The coding performance.
  • FIG. 14 is an exemplary flowchart of a motion vector prediction method in an embodiment of the present application.
  • a method for predicting motion information of an image block for inter prediction includes the following steps:
  • S1401 Acquire motion information of at least one determined motion vector image block in an image of a to-be-processed image block, where the at least one determined motion vector image block includes a determined motion vector image block that is not adjacent to the to-be-processed image block.
  • FIG. 15 is still another exemplary schematic diagram of a coding unit and an adjacent location image block associated therewith according to an embodiment of the present application, where multiple airspaces are before encoding or decoding an image block to be processed.
  • the adjacent image blocks have been reconstructed, that is, the motion vectors of the image blocks adjacent to the plurality of airspace have been determined.
  • the image block may be excluded in a subsequent operation, or according to a preset rule.
  • a motion vector is assigned to the image block, which is still used in subsequent operations.
  • the plurality of spatially adjacent image blocks include determined motion vector image blocks that are not adjacent to the image block to be processed, such as the image block in which the pixel set labeled 6-27 in FIG.
  • the image block in which the set of pixels labeled 1-27 in Figure 15 is located does not represent the PU or CU described above.
  • the exemplary embodiment of Fig. 15 will be described in detail below.
  • the large rectangular block labeled C is the image block to be processed.
  • the small rectangle labeled 1-27 as the basic pixel unit
  • the length of the large rectangle is w basic pixel units
  • the height is h basic pixel units
  • w and h are positive integers
  • the size of the block is the same as the size of the image block to be processed.
  • the basic pixel unit can be a pixel point, or a 4x4 pixel set, or a 4x2 pixel set, or a set of other sizes of pixels. .
  • the position of the pixel unit of the lower right corner of the image block to be processed is the origin in the image, and the line where the bottom boundary of the image block to be processed is located is the horizontal coordinate axis, and the right direction is the horizontal positive direction to the image block to be processed.
  • the line where the right boundary is located is the vertical coordinate axis, and the downward direction is the vertical positive direction.
  • FIG. 15 illustrates an exemplary feasible implementation manner of a coding unit and an adjacent location image block associated therewith in the embodiment of the present application, and the number of image blocks adjacent to the airspace may be more than 27 or less. In 27, no limit.
  • Acquiring motion information of at least one determined motion vector image block in the image of the image block to be processed is in the embodiment corresponding to FIG. 15 , that is, acquiring basic pixels of at least one of the basic pixel units labeled 1-27 The motion information of the unit.
  • the motion vector of the spatial non-contiguous image block is simultaneously used as the candidate prediction mode of the to-be-processed block, and more spatial a priori coding information is utilized to improve The coding performance.
  • the manner of acquiring the motion information of the at least one determined motion vector image block in the image of the image block to be processed includes:
  • the image in which the image block to be processed is located is composed of at least two lines of coding tree units (CTUs), and the size of the image block to be processed is not larger than the size of the coding tree unit, and includes: The number of lines in which the coding tree unit of the image block to be processed is located in the image and the number of lines in which the coding tree unit of the determined motion vector image block is located in the image is less than N lines, wherein N is an integer greater than one.
  • an image is encoded with a CTU as a partitioning unit, and a CTU is also referred to as a maximum coding unit (LCU), and the CTU is further divided into CUs for encoding.
  • LCU maximum coding unit
  • the image block C to be processed is located in the upper left corner of a CTU, and is labeled as 27, 23, 19, 16, 17, 21 in FIG.
  • the number of lines of the CTU where the determined motion vector image block in which the basic pixel unit of 25 is located and the number of lines of the CTU where the image block to be processed are located are two.
  • N bits are 2
  • the motion vectors of the basic pixel units labeled 27, 23, 19, 16, 17, 21, 25 cannot be used as the predicted motion vectors of the image block to be processed.
  • the motion vectors of the basic pixel units labeled 24, 20, 25, 15 cannot be used as the predicted motion vector of the image block to be processed.
  • the motion vectors of the basic pixel units labeled 18, 22, 26 cannot be used as the predicted motion vectors of the image block to be processed.
  • Limiting the position of the basic pixel unit within a certain range can avoid excessive storage or access operation of the motion vector, and improve the processing efficiency of the data while maintaining a certain coding performance.
  • the acquiring the sequence of the motion information of the at least one determined motion vector image block in the image of the image block to be processed includes:
  • the image in which the image block to be processed is located includes M groups of the determined motion vector image blocks, and each group of the determined motion vector image blocks has a group number, wherein the group number is i
  • Determining a motion vector image block including a determined motion vector image block in which the pixel set base unit of the following coordinate position in the virtual coordinate system is located: (-i ⁇ w, -i ⁇ h), (1+m ⁇ w, ⁇ i ⁇ h), (-m ⁇ w, -i ⁇ h), (-i ⁇ w, -m ⁇ h), (-i ⁇ w, m ⁇ h + 1), where m is taken from 0 to i-1 All integers in the range, M, i are positive integers, and i is not greater than M.
  • the determined motion vector image block in which the basic pixel unit labeled 3, 2, 5, 1, 4 is located is centered on the image block C to be processed, and has a group number of 1;
  • the determined motion vector image block of the basic pixel unit of 13, 8, 7, 10, 14, 11, 6, 9, 12 is the second group having the group number 2; the labels are 25, 21, 17, 16,
  • the determined motion vector image block in which the basic pixel units of 19, 23, 27, 24, 20, 15, 18, 22, 26 are located is the third group having the group number 3.
  • acquiring the motion information of the at least one determined motion vector image block in the image of the image block to be processed including: changing the group number of the determined motion vector image block to be acquired from small to large In sequence, the motion information of the determined motion vector image block to be acquired is sequentially acquired. That is, the motion information of the determined motion vector image block in which each basic pixel unit is located is sequentially acquired in the order of the first group, the second group, and the third group.
  • the sequentially acquiring the motion of the determined motion vector image block to be acquired includes: sequentially acquiring motion information of the at least two determined motion vector image blocks to be acquired according to a short to long distance of the at least two determined motion vector image blocks to be acquired to the origin The distance is the sum of the absolute value of the horizontal coordinate and the absolute value of the vertical coordinate of the basic unit of the preset position pixel set basic unit in the determined motion vector image block to be acquired.
  • the distances of the basic pixel units to the preset basic pixel units in the image block to be processed are compared, and the motion information of the determined motion vector image block in which the basic pixel unit is located is obtained first.
  • the preset basic pixel unit in the image block to be processed is located at the lower right corner of the image block, that is, the origin position of the virtual coordinate system, and the acquisition of the motion information in the second group includes:
  • the distance D13 of the basic pixel unit labeled 13 is w+1+2xh, and similarly, D8 is 1+2xh, D7 is 2xh, D10 is w+2xh, D14 is 2xw+2xh, and D11 is 2xw+h.
  • D9 is 2xw
  • D6 is 2xw+1
  • D12 is 2xw+h+1. It may be assumed that w and h are equal, D13 is 3xh+1, D8 is 2xh+1, D7 is 2xh, D10 is 3xh, D14 is 4xh, D11 is 3xh, D9 is 2xh, D6 is 2xh+1, D12 is 3xh +1.
  • the order of obtaining the motion information in the group in the second group may be the motion of the determined motion vector image block where the basic pixel unit labeled 6, 7, 9, 8, 10, 11, 12, 13, 14 is located. information.
  • the order of obtaining the motion information of the determined motion vector image block in which the basic pixel unit having the same distance is located may be exchanged, that is, the labels may be 7, 6, 9, 8, 11, 10, The motion information of the determined motion vector image block in which the basic pixel unit of 12, 13, and 14 is located.
  • the motion information of the motion image block to be processed is obtained, and the motion information of the image block to be processed is predicted, thereby improving the coding efficiency.
  • a spatial candidate prediction motion vector is acquired in the order of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 according to the above two feasible embodiments.
  • the order of obtaining the basic pixel units of 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 sequentially acquires the basic pixel unit
  • the motion information of the motion vector image block is determined.
  • each candidate prediction motion vector adopts the variable length coding mode
  • the candidate motion vector of the previous order will be coded with a shorter codeword, and the candidate motion vector with the lower order will be used later. Long codeword encoding. Therefore, properly determining the acquisition order of candidate prediction motion vectors is advantageous for selecting a better codeword coding strategy and improving coding performance.
  • the number of obtained spatial candidate prediction motion vectors is preset and the codec ends are consistent, or are transmitted by a code stream, that is, as specified in the foregoing various feasible implementation manners.
  • the first N motion vectors in the order are obtained as the obtained spatial candidate prediction motion vector, where N is a preset value or is decoded from the code stream for the decoding end.
  • the method before each acquiring the motion information of the determined motion vector image block to be acquired, the method further includes: determining motion information of the determined motion vector image block to be acquired The motion information of all acquired motion vector image blocks is different. In another possible implementation manner, before the obtaining the motion information of the determined motion vector image block to be acquired, the method further includes: determining motion information of the determined motion vector image block to be acquired. Available. These two possible implementations correspond to the process of pruning described above, and the process of determining whether a motion vector image block has been determined, and will not be described again.
  • S1402 Acquire first identification information, where the first identification information is used to determine target motion information from motion information of the at least one determined motion vector image block.
  • the first identification information represents motion of the at least one determined motion vector image block acquired from Determining the target motion information in the information; the motion information of the at least one determined motion vector image block acquired in step S1401 and other motion information (such as the time domain motion information, the artificial motion information, the zero motion information, etc. described above)
  • the first identification information indicates that the target motion information is determined from all of the candidate predicted motion information including the acquired motion information of the at least one determined motion vector image block.
  • the target motion information is the predicted motion information that is finally used to process the image block to be processed.
  • determining the target motion information from motion information of the at least one determined motion vector image block comprises: one of motion information of the at least one determined motion vector image block As the target motion information; or, at least one of motion information of the at least one determined motion vector image block A combination of two pieces of motion information is used as the target motion information. For example, at least two pieces of motion information of the motion information of the at least one determined motion vector image block are synthesized into the target motion information according to the method of artificially synthesizing motion vectors in the foregoing.
  • the step is used by the encoding end to encode the to-be-processed image block, and the acquiring the first identification information includes: motion information from the at least one determined motion vector image block. Determining the target motion information, wherein the target motion information encoding the image block to be processed has a minimum rate distortion cost, and specifically acquiring various optimal candidate motion vectors according to a rate-distortion cost criterion
  • the method further includes: encoding the first identifier information into a code stream.
  • the step is used by the decoding end to decode the to-be-processed image block, and the acquiring the first identification information includes: parsing the first identification information from the code stream. Simultaneously, after parsing the first identifier information in the code stream, the method further includes: determining, according to the first identifier information, target motion information from motion information of the at least one determined motion vector image block.
  • the step of the decoding end is the reverse step of the encoding end, and the encoding end is consistent, and will not be described again.
  • predicting motion information of the image block to be processed according to the target motion information includes: using the target motion information as motion information of the image block to be processed.
  • This embodiment corresponds to the Merge prediction mode described above, and directly uses the target motion information as the motion information of the image block to be processed, and does not need to encode or decode (corresponding to the encoding end or the decoding end) the motion vector prediction residual value, that is, the MVD. ,No longer.
  • the motion information includes a motion vector
  • the predicting the motion information of the image block to be processed according to the target motion information including: acquiring second identifier information, the second identifier
  • the information is used to indicate a motion vector prediction residual value of the image block to be processed; and a sum of the motion vector in the target motion information and the motion vector prediction residual value is used as a motion vector of the image block to be processed .
  • This embodiment corresponds to the AMVP prediction mode described above.
  • the target motion information is used as the predicted motion information of the image block to be processed, the MVD needs to be encoded or decoded (corresponding to the encoding end or the decoding end), and the motion information will be predicted.
  • the predicted motion vector and the MVD are added as the motion vector of the image block to be processed, and will not be described again.
  • the motion information may further include indication information of the reference frame, and the processing manner thereof is also as described above, and details are not described herein again.
  • step S1401 needs to be completed before step S1402, that is, at least one determined motion in the image of the image block to be processed acquired.
  • the motion information of the vector image block is used as a set (or a subset) of candidate prediction motion information, from which one candidate is selected as the target motion information.
  • step S1401 and step S1402 have no fixed sequence on the timing.
  • the motion information of the at least one determined motion vector image block in the image of the image block to be processed may be acquired in S1401, that is, after the candidate predicted motion information set is constructed, the data is parsed from the code stream according to S1402.
  • the index value is obtained from the constructed candidate prediction motion information set.
  • the index value may be parsed from the code stream according to S1402, and the number of candidate prediction motion information in the candidate prediction motion information set to be constructed is obtained according to the index value, when the candidate prediction motion is obtained.
  • the number of pieces of information is sufficient to determine the target motion information by the index value, that is, the target motion information in the candidate predicted motion information set and the target motion information in the set. After the previous candidate prediction motion information has been constructed, the other candidate prediction motion information in the collection is stopped.
  • S1401 and S1402 can also be performed in parallel.
  • FIG. 16 is a schematic block diagram of a motion vector prediction apparatus 1600 in the embodiment of the present application.
  • a prediction device for motion information of an image block, used for inter prediction comprising:
  • a motion information acquiring unit 1601 configured to acquire motion information of at least one determined motion vector image block in an image of a to-be-processed image block, where the at least one determined motion vector image block includes a non-contiguous image block to be processed A motion vector image block has been determined;
  • the identification information acquiring unit 1602 is configured to acquire first identification information, where the first identification information is used to determine target motion information from motion information of the at least one determined motion vector image block;
  • the prediction unit 1603 is configured to predict motion information of the image block to be processed according to the target motion information.
  • the image in which the image block to be processed is located is composed of at least two lines of coding tree units (CTUs), and the size of the image block to be processed is not larger than the size of the coding tree unit, and includes: The number of lines in which the coding tree unit of the image block to be processed is located in the image and the number of lines in which the coding tree unit of the determined motion vector image block is located in the image is less than N lines, wherein N is an integer greater than one.
  • CTUs coding tree units
  • N is 2.
  • the image of the image block to be processed includes M groups of the determined motion vector image blocks, and each group of the determined motion vector image blocks has a group number, and the image to be processed The width of the block is w and the height is h.
  • the motion information acquiring unit 1601 is specifically configured to: sequentially acquire, according to the order of the group number of the determined motion vector image block to be acquired, from small to large.
  • Motion information of the determined motion vector image block to be acquired wherein the determined motion vector image block having the group number i includes a determined motion vector image in which the pixel set base unit of the following coordinate position in the virtual coordinate system is located Block: (-i ⁇ w, -i ⁇ h), (1 + m ⁇ w, -i ⁇ h), (-m ⁇ w, -i ⁇ h), (-i ⁇ w, -m ⁇ h) , (-i ⁇ w, m ⁇ h+1), where m takes all integers ranging from 0 to i-1, M, i, w, h are positive integers, i is not greater than M, the virtual coordinates Taking the position of the bottom right pixel set base unit of the image block to be processed in the image as the origin, and the line where the bottom boundary of the image block to be processed is located is water Right border where the linear axes, a horizontal forward direction to the right, to the image block to be processed is a vertical axi
  • the motion information acquiring unit 1601 is specifically configured to: according to the at least two Obtaining, from the shortest to the long distance of the determined motion vector image block to be obtained, the motion information of the at least two determined motion vector image blocks to be acquired, wherein the distance is the And a sum of an absolute value of a horizontal coordinate and an absolute value of a vertical coordinate of a preset position pixel set basic unit in the obtained motion vector image block in the virtual coordinate system.
  • the motion information acquiring unit 1601 is specifically configured to: sequentially acquire motion information of the determined motion vector image block where the pixel set basic unit located in the coordinate position in the virtual coordinate system is located: (-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2 ⁇ w,0),(0,-2 ⁇ h), (1, -2 ⁇ h), (-2 ⁇ w, 1), (-w, -2 ⁇ h), (-2 ⁇ w, -h), (-2 ⁇ w, h + 1), (w+1, -2 ⁇ h), (-2 ⁇ w, -2 ⁇ h), (-3 ⁇ w, 0), (0, -3 ⁇ h), (1, -3 ⁇ h), (-3 ⁇ w, 1), (-w, -3 ⁇ h), (-3 ⁇ w, -h), (w +1, -3 ⁇ h), (-3 ⁇ w, h), (-3 ⁇ w
  • the motion information acquiring unit 1601 is further configured to: determine the determined to be acquired, before each acquiring the motion information of the determined motion vector image block to be acquired.
  • the motion information of the motion vector image block is different from the motion information of all the acquired motion vector image blocks that have been acquired.
  • the motion information acquiring unit 1601 is specifically configured to: acquire a predetermined number of motion information of the determined motion vector image block.
  • the prediction unit 1603 is specifically configured to: use the target motion information as motion information of the image block to be processed.
  • the identifier information acquiring unit 1602 is further configured to acquire second identifier information, where the second identifier information is used to indicate a motion vector prediction residual value of the image block to be processed;
  • the prediction unit 1603 is specifically configured to use a sum of the motion vector in the target motion information and the motion vector prediction residual value as the motion vector of the image block to be processed.
  • the apparatus 1600 is configured to decode the to-be-processed image block, and the identifier information acquiring unit 1602 is specifically configured to: parse the first identifier information from a code stream.
  • the identifier information acquiring unit 1602 is further configured to: according to the first identifier information, from the at least one Determining the target motion information in the motion information of the motion vector image block.
  • the device 1600 is configured to encode the to-be-processed image block
  • the identification information acquiring unit 1602 is specifically configured to: determine, from the motion information of the at least one determined motion vector image block.
  • the target motion information wherein the target motion information encoding the image block to be processed has a minimum rate distortion penalty.
  • the identifier information acquiring unit 1602 is further configured to: An identification information is programmed into the code stream.
  • the identifier information acquiring unit 1602 is specifically configured to: use one of the motion information of the at least one determined motion vector image block as the target motion information; or A combination of at least two pieces of motion information in the motion information of the determined motion vector image block is used as the target motion information.
  • the motion vector of the spatial non-contiguous image block is simultaneously used as the candidate prediction mode of the to-be-processed block, and more spatial a priori coding information is utilized to improve The coding performance.
  • the motion vector image block is determined to be an image block whose motion vector has been determined when predicting an image block to be processed, and may be an image block that has been reconstructed or an image block that has not been reconstructed. , no restrictions.
  • FIG. 17 is another schematic block diagram of a motion vector prediction apparatus 1700 in the embodiment of the present application.
  • a prediction device for motion information of an image block, for inter prediction comprising: a processor 1701 and a memory 1702 coupled to the processor;
  • the processor 1701 is configured to: acquire motion information of at least one determined motion vector image block in an image of a to-be-processed image block, where the at least one determined motion vector image block includes a non-contiguous image block to be processed Determining a motion vector image block; acquiring first identification information, the first identification information being used to determine target motion information from motion information of the at least one determined motion vector image block; predicting a location according to the target motion information The motion information of the processed image block is described.
  • the image in which the image block to be processed is located is composed of at least two lines of coding tree units (CTUs), and the size of the image block to be processed is not larger than the size of the coding tree unit, and includes: The number of lines in which the coding tree unit of the image block to be processed is located in the image and the number of lines in which the coding tree unit of the determined motion vector image block is located in the image is less than N lines, wherein N is an integer greater than one.
  • CTUs coding tree units
  • N is 2.
  • the image of the image block to be processed includes M groups of the determined motion vector image blocks, and each group of the determined motion vector image blocks has a group number, and the image to be processed The width of the block is w and the height is h.
  • the processor 1701 is specifically configured to: sequentially acquire the to-be-obtained according to the order of the group number of the determined motion vector image block to be acquired.
  • the processor 1701 is specifically configured to: according to the at least two to be acquired Obtaining the motion information of the at least two determined motion vector image blocks to be acquired from the shortest to long distance of the determined motion vector image block to the origin, wherein the distance is the to-be-obtained The sum of the absolute value of the horizontal coordinate and the absolute value of the vertical coordinate of a preset position pixel set base unit in the virtual coordinate image block in the motion vector image block has been determined.
  • the processor 1701 is specifically configured to: sequentially acquire motion information of the determined motion vector image block where the pixel set basic unit located in the coordinate position in the virtual coordinate system is located: (- w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2 ⁇ w,0),(0,-2 ⁇ h ), (1, -2 ⁇ h), (-2 ⁇ w, 1), (-w, -2 ⁇ h), (-2 ⁇ w, -h), (-2 ⁇ w, h + 1) , (w+1, -2 ⁇ h), (-2 ⁇ w, -2 ⁇ h), (-3 ⁇ w, 0), (0, -3 ⁇ h), (1, -3 ⁇ h) , (-3 ⁇ w, 1), (-w, -3 ⁇ h), (-3 ⁇ w, -h), (w+1, -3 ⁇ h), (-3 ⁇ w, h+1) ), (-2 ⁇ w, -3 ⁇ h), (-2 ⁇ w
  • the processor 1701 before the acquiring the motion information of the determined motion vector image block to be acquired, the processor 1701 is further configured to: determine the determined motion vector to be acquired.
  • the motion information of the image block is different from the motion information of all the acquired motion vector image blocks that have been acquired.
  • the processor 1701 is specifically configured to: acquire a preset number of motion information of the determined motion vector image block.
  • the processor 1701 is specifically configured to: use the target motion information as motion information of the image block to be processed.
  • the processor 1701 is further configured to: acquire second identifier information, where the second identifier information is used to indicate a motion vector prediction residual value of the to-be-processed image block; A sum of a motion vector in the target motion information and the motion vector prediction residual value as a motion vector of the image block to be processed.
  • the apparatus 1700 is configured to decode the to-be-processed image block, and the processor 1701 is specifically configured to: parse the first identifier information from a code stream.
  • the processor 1701 is further configured to: use the at least one determined motion according to the first identifier information
  • the target motion information is determined in the motion information of the vector image block.
  • the apparatus 1700 is configured to encode the to-be-processed image block, and the processor 1701 is specifically configured to: determine the motion information from the at least one determined motion vector image block.
  • Target motion information wherein the target motion information encoding the image block to be processed has a minimum rate distortion penalty.
  • the processor 1701 is further configured to: use the first identifier Information is programmed into the code stream.
  • the processor 1701 is specifically configured to: use one of the motion information of the at least one determined motion vector image block as the target motion information; or, the at least one has been A combination of at least two pieces of motion information in the motion information of the motion vector image block is determined as the target motion information.
  • the motion vector of the spatial non-contiguous image block is simultaneously used as the candidate prediction mode of the to-be-processed block, and more spatial a priori coding information is utilized to improve The coding performance.
  • the functions described can be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted as one or more instructions or code via a computer readable medium and executed by a hardware-based processing unit.
  • the computer readable medium can comprise a computer readable storage medium or communication medium, the computer readable storage medium corresponding to a tangible medium such as a data storage medium, the communication medium comprising facilitating transmission of the computer program, for example, from one location to another in accordance with a communication protocol Any media.
  • computer readable media may illustratively correspond to (1) a non-transitory tangible computer readable storage medium, or (2) a communication medium such as a signal or carrier.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementing the techniques described in this application.
  • the computer program product can comprise a computer readable medium.
  • the computer readable storage medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage device, magnetic disk storage device or other magnetic storage device, flash memory or may be used to store instructions. Or any other medium in the form of a data structure and accessible by a computer. Similarly, any company It may be suitably referred to as a computer readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave to transmit commands from a website, server, or other remote source, then coaxial Cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the media.
  • computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other transitory media, but instead are directed to non-transitory tangible storage media.
  • magnetic disks and optical disks include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), flexible disks, and Blu-ray discs, in which disks typically reproduce data magnetically, while discs pass through thunder. The projection optically reproduces the data. Combinations of the above should also be included in the scope of computer readable media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • processors may refer to any of the foregoing structures or any other structure suitable for implementing the techniques described herein.
  • functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques can be fully implemented in one or more circuits or logic elements.
  • the techniques of the present application can be implemented in a wide variety of devices or devices, including wireless handsets, integrated circuits (ICs), or a collection of ICs (eg, a chipset).
  • ICs integrated circuits
  • a collection of ICs eg, a chipset.
  • Various components, modules or units are described herein to emphasize functional aspects of the apparatus configured to perform the disclosed techniques, but do not necessarily need to be implemented by different hardware units. Rather, as described above, various units may be combined in a codec hardware unit or combined with suitable software and/or firmware by interoperable hardware units (including one or more processors as described above). The collection comes to offer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

一种图像块的运动信息的预测方法,所述运动信息用于帧间预测,包括:获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;根据所述目标运动信息,预测所述待处理图像块的运动信息。

Description

一种帧间预测的方法及装置 技术领域
本申请涉及视频图像技术领域,尤其涉及一种帧间预测的方法及装置。
背景技术
数字视频能力可并入到大范围的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(personal digital assistant,PDA)、膝上型或桌上型计算机、平板计算机、电子书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话、视频会议装置、视频流装置等等。数字视频装置实施视频压缩技术,例如由MPEG-2、MPEG-4、ITU-TH.263、ITU-TH.264/MPEG-4第10部分高级视频编解码(advanced video coding,AVC)、ITU-TH.265高效率视频编解码(high efficiency video coding,HEVC)标准定义的标准和所述标准的扩展部分中所描述的那些视频压缩技术,从而更高效地发射及接收数字视频信息。视频装置可通过实施这些视频编解码技术来更高效地发射、接收、编码、解码和/或存储数字视频信息。
视频压缩技术执行空间(图像内)预测和/或时间(图像间)预测,以减少或移除视频序列中固有的冗余。对于基于块的视频解码,可将视频块分割成视频块,视频块还可被称作树块、编码单元(coding unit,CU)和/或解码节点。使用关于同一图像中的相邻块中的参考样本的空间预测来编码图像的帧内解码(I)条带中的视频块。图像的帧间解码(P或B)条带中的视频块可使用关于同一图像中的相邻块中的参考样本的空间预测或关于其它参考图像中的参考样本的时间预测。图像可被称作帧,且参考图像可被称作参考帧。
发明内容
本申请实施例提供一种帧间预测的方法及装置,选择合适的候选运动矢量作为待处理图像块的运动矢量预测值,提高了运动矢量预测的有效性,提高了编解码效率。
本申请的第一方面提供了一种图像块的运动信息的预测方法,所述运动信息用于帧间预测,包括:获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;根据所述目标运动信息,预测所述待处理图像块的运动信息。
该实施方式的有益效果在于采用空域非邻接图像块的运动矢量作为待处理块的候选预测模式,利用了更多的空域先验编码信息,提高了编码性能。
在第一方面的一种可行的实施方式中,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
在第一方面的一种可行的实施方式中,N为2。
该实施方式的有益效果在于:对基本像素单元的位置进行一定范围内的限定,可以避免运动矢量的过度存储或者存取操作,在保持一定的编码性能的同时,提高了数据的处理效率。
在第一方面的一种可行的实施方式中,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述获取所述待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
在第一方面的一种可行的实施方式中,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述依次获取所述待获取的已确定运动矢量图像块的运动信息,包括:按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
在第一方面的一种可行的实施方式中,所述获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
该实施方式的有益效果在于各候选预测运动矢量的表示方式采用变长编码方式时,顺序靠前的候选预测运动矢量会使用较短的码字编码,顺序靠后的候选预测运动矢量会使用较长的码字编码。按照已确定运动矢量图像块的运动信息与待处理图像块的运动信息的相关性,恰当地决定候选预测运动矢量的获取顺序有利于选择更好的码字编码策略,提高编码性能。
在第一方面的一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,还包括:确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
在第一方面的一种可行的实施方式中,所述获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:获取预设个数的所述已确定运动矢量图像块的运动信息。
在第一方面的一种可行的实施方式中,所述根据所述目标运动信息,预测所述待处理图像块的运动信息,包括:将所述目标运动信息作为所述待处理图像块的运动信息。
在第一方面的一种可行的实施方式中,所述运动信息包括运动矢量,所述根据所述目标运动信息,预测所述待处理图像块的运动信息,包括:获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
在第一方面的一种可行的实施方式中,所述方法用于解码所述待处理图像块,所述获取第一标识信息,包括:从码流中解析所述第一标识信息。
在第一方面的一种可行的实施方式中,在所述从码流中解析所述第一标识信息之后,还包括:根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
在第一方面的一种可行的实施方式中,所述方法用于编码所述待处理图像块,所述获取第一标识信息,包括:从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
在第一方面的一种可行的实施方式中,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,还包括:将所述第一标识信息编入码流。
上述多种可行的实施方式将本申请中运动矢量预测方法,分别应用到待处理图像块运动矢量获取的解码方法和编码方法,合并预测模式(Merge)和高级运动矢量预测模式(advanced motion vector prediction,AMVP),提高了原有方法的编码性能和效率。
在第一方面的一种可行的实施方式中,所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,包括:将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
该实施方式的有益效果在于通过组合原有的运动信息,生成新的候选预测运动信息,丰富了候选预测运动信息,提高了预测的效率。
本申请的第二方面提供了一种图像块的运动信息的预测装置,所述运动信息用于帧间预测,包括:运动信息获取单元,用于获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;标识信息获取单元,用于获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;预测单元,用于根据所述目标运动信息,预测所述待处理图像块的运动信息。
在第二方面的一种可行的实施方式中,所述待处理图像块所在的图像由至少两行编码树单元构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
在第二方面的一种可行的实施方式中,N为2。
在第二方面的一种可行的实施方式中,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述运动信息获取单元具体用于:按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块 的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
在第二方面的一种可行的实施方式中,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述运动信息获取单元具体用于:按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
在第二方面的一种可行的实施方式中,所述运动信息获取单元具体用于:依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
在第二方面的一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,所述运动信息获取单元还用于:确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
在第二方面的一种可行的实施方式中,所述运动信息获取单元具体用于:获取预设个数的所述已确定运动矢量图像块的运动信息。
在第二方面的一种可行的实施方式中,所述预测单元具体用于:将所述目标运动信息作为所述待处理图像块的运动信息。
在第二方面的一种可行的实施方式中,所述标识信息获取单元还用于获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;所述预测单元具体用于将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
在第二方面的一种可行的实施方式中,所述装置用于解码所述待处理图像块,所述标识信息获取单元具体用于:从码流中解析所述第一标识信息。
在第二方面的一种可行的实施方式中,在所述从码流中解析所述第一标识信息之后,所述标识信息获取单元还用于:根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
在第二方面的一种可行的实施方式中,所述装置用于编码所述待处理图像块,所述标识信息获取单元具体用于:从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
在第二方面的一种可行的实施方式中,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,所述标识信息获取单元还用于:将所述第一标识信息编入码流。
在第二方面的一种可行的实施方式中,所述标识信息获取单元具体用于:将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
本申请的第三方面提供了一种图像块的运动信息的预测装置,所述运动信息用于帧间预测,包括:处理器和耦合于所述处理器的存储器;所述处理器用于:获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;根据所述目标运动信息,预测所述待处理图像块的运动信息。
在第三方面的一种可行的实施方式中,所述待处理图像块所在的图像由至少两行编码树单元构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
在第三方面的一种可行的实施方式中,N为2。
在第三方面的一种可行的实施方式中,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述处理器具体用于:按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
在第三方面的一种可行的实施方式中,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述处理器具体用于:按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
在第三方面的一种可行的实施方式中,所述处理器具体用于:依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
在第三方面的一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,所述处理器还用于:确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
在第三方面的一种可行的实施方式中,所述处理器具体用于:获取预设个数的所述已确定运动矢量图像块的运动信息。
在第三方面的一种可行的实施方式中,所述处理器具体用于:将所述目标运动信息作为所述待处理图像块的运动信息。
在第三方面的一种可行的实施方式中,包括:所述处理器还用于:获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
在第三方面的一种可行的实施方式中,所述装置用于解码所述待处理图像块,所述处理器具体用于:从码流中解析所述第一标识信息。
在第三方面的一种可行的实施方式中,在所述从码流中解析所述第一标识信息之后,所述处理器还用于:根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
在第三方面的一种可行的实施方式中,所述装置用于编码所述待处理图像块,所述处理器具体用于:从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
在第三方面的一种可行的实施方式中,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,所述处理器还用于:将所述第一标识信息编入码流。
在第三方面的一种可行的实施方式中,所述处理器具体用于:将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
本申请的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本申请的第五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
应理解,本申请的第二至五方面与本申请的第一方面的技术方案一致,各方面及对应的可实施的设计方式所取得的有益效果相似,不再赘述。
附图说明
图1为本申请实施例中视频编码及解码系统的一种示意性框图;
图2为本申请实施例中视频编码器的一种示意性框图;
图3为本申请实施例中视频解码器的一种示意性框图;
图4为本申请实施例中帧间预测模块的一种示意性框图;
图5为本申请实施例中合并预测模式的一种示例性流程图;
图6为本申请实施例中高级运动矢量预测模式的一种示例性流程图;
图7为本申请实施例中由视频解码器执行的运动补偿的一种示例性流程图;
图8为本申请实施例中编码单元及与其关联的相邻位置图像块的一种示例性示意图;
图9为本申请实施例中构建候选预测运动矢量列表的一种示例性流程图;
图10为本申请实施例中将经过组合的候选运动矢量添加到合并模式候选预测运动矢量列表的一种示例性示意图;
图11为本申请实施例中将经过缩放的候选运动矢量添加到合并模式候选预测运动矢量列表的一种示例性示意图;
图12为本申请实施例中将零运动矢量添加到合并模式候选预测运动矢量列表的一种示例性示意图;
图13为本申请实施例中编码单元及与其关联的相邻位置图像块的另一种示例性示意图;
图14为本申请实施例中运动矢量预测方法的一种示例性流程图;
图15为本申请实施例中编码单元及与其关联的相邻位置图像块的又一种示例性示意图;
图16为本申请实施例中的运动矢量预测装置的一种示意性框图;
图17为本申请实施例中的运动矢量预测装置的另一种示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1为本申请实施例中视频编码及解码系统10的一种示意性框图。如图1中所展示,系统10包含源装置12,源装置12产生将在稍后时间由目的地装置14解码的经编码视频数据。源装置12及目的地装置14可包括广泛范围的装置中的任一者,包含桌上型计算机、笔记型计算机、平板计算机、机顶盒、例如所谓的“智能”电话的电话手机、所谓的“智能”触控板、电视、摄影机、显示装置、数字媒体播放器、视频游戏控制台、视频流式传输装置或类似者。在一些应用中,源装置12及目的地装置14可经装备以用于无线通信。
目的地装置14可经由链路16接收待解码的经编码视频数据。链路16可包括能够将经编码视频数据从源装置12移动到目的地装置14的任何类型的媒体或装置。在一个可行的实施方式中,链路16可包括使源装置12能够实时将经编码视频数据直接传输到目的地装置14的通信媒体。可根据通信标准(例如,无线通信协议)调制经编码视频数据且将其传输到目的地装置14。通信媒体可包括任何无线或有线通信媒体,例如射频频谱或一个或多个物理传输线。通信媒体可形成基于包的网络(例如,局域网、广域网或因特网的全球网络)的部分。通信媒体可包含路由器、交换器、基站或可有用于促进从源装置12到目的地装置14的通信的任何其它装备。
替代地,可将经编码数据从输出接口22输出到存储装置24。类似地,可由输入接口从存储装置24存取经编码数据。存储装置24可包含多种分散式或本地存取的数据存储媒体中的任一者,例如,硬盘驱动器、蓝光光盘、DVD、CD-ROM、快闪存储器、易失性或非易失性存储器或用于存储经编码视频数据的任何其它合适的数字存储媒体。在另一可行的实施方式中,存储装置24可对应于文件服务器或可保持由源装置12产生的经编码视频的另一中间存储装置。目的地装置14可经由流式传输或下载从存储装置24存取所存储视频数据。文件服务器可为能够存储经编码视频数据且将此经编码视频数据传输到目的地装置14的任 何类型的服务器。可行的实施方式文件服务器包含网站服务器、文件传送协议服务器、网络附接存储装置或本地磁盘机。目的地装置14可经由包含因特网连接的任何标准数据连接存取经编码视频数据。此数据连接可包含适合于存取存储于文件服务器上的经编码视频数据的无线信道(例如,Wi-Fi连接)、有线连接(例如,缆线调制解调器等)或两者的组合。经编码视频数据从存储装置24的传输可为流式传输、下载传输或两者的组合。
本申请的技术不必限于无线应用或设定。技术可应用于视频解码以支持多种多媒体应用中的任一者,例如,空中电视广播、有线电视传输、卫星电视传输、流式传输视频传输(例如,经由因特网)、编码数字视频以用于存储于数据存储媒体上、解码存储于数据存储媒体上的数字视频或其它应用。在一些可行的实施方式中,系统10可经配置以支持单向或双向视频传输以支持例如视频流式传输、视频播放、视频广播和/或视频电话的应用。
在图1的可行的实施方式中,源装置12包含视频源18、视频编码器20及输出接口22。在一些应用中,输出接口22可包含调制器/解调制器(调制解调器)和/或传输器。在源装置12中,视频源18可包含例如以下各者的源:视频捕获装置(例如,摄像机)、含有先前捕获的视频的视频存档、用以从视频内容提供者接收视频的视频馈入接口,和/或用于产生计算机图形数据作为源视频的计算机图形系统,或这些源的组合。作为一种可行的实施方式,如果视频源18为摄像机,那么源装置12及目的装置14可形成所谓的摄影机电话或视频电话。本申请中所描述的技术可示例性地适用于视频解码,且可适用于无线和/或有线应用。
可由视频编码器20来编码所捕获、预捕获或计算机产生的视频。经编码视频数据可经由源装置12的输出接口22直接传输到目的地装置14。经编码视频数据也可(或替代地)存储到存储装置24上以供稍后由目的地装置14或其它装置存取以用于解码和/或播放。
目的地装置14包含输入接口28、视频解码器30及显示装置32。在一些应用中,输入接口28可包含接收器和/或调制解调器。目的地装置14的输入接口28经由链路16接收经编码视频数据。经由链路16传达或提供于存储装置24上的经编码视频数据可包含由视频编码器20产生以供视频解码器30的视频解码器使用以解码视频数据的多种语法元素。这些语法元素可与在通信媒体上传输、存储于存储媒体上或存储于文件服务器上的经编码视频数据包含在一起。
显示装置32可与目的地装置14集成或在目的地装置14外部。在一些可行的实施方式中,目的地装置14可包含集成显示装置且也经配置以与外部显示装置接口连接。在其它可行的实施方式中,目的地装置14可为显示装置。一般来说,显示装置32向用户显示经解码视频数据,且可包括多种显示装置中的任一者,例如液晶显示器、等离子显示器、有机发光二极管显示器或另一类型的显示装置。
视频编码器20及视频解码器30可根据例如目前在开发中的下一代视频编解码压缩标准(H.266)操作且可遵照H.266测试模型(JEM)。替代地,视频编码器20及视频解码器30可根据例如ITU-TH.265标准,也称为高效率视频解码标准,或者,ITU-TH.264标准的其它专属或工业标准或这些标准的扩展而操作,ITU-TH.264标准替代地被称为MPEG-4第10部分,也称高级视频编码(advanced video coding,AVC)。然而,本申请的技术不限于任何特定解码标准。视频压缩标准的其它可行的实施方式包含MPEG-2和ITU-TH.263。
尽管未在图1中展示,但在一些方面中,视频编码器20及视频解码器30可各自与音频编码器及解码器集成,且可包含适当多路复用器-多路分用器(MUX-DEMUX)单元或其它硬件及软件以处置共同数据流或单独数据流中的音频及视频两者的编码。如果适用,那么在一 些可行的实施方式中,MUX-DEMUX单元可遵照ITUH.223多路复用器协议或例如用户数据报协议(UDP)的其它协议。
视频编码器20及视频解码器30各自可实施为多种合适编码器电路中的任一者,例如,一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、离散逻辑、软件、硬件、固件或其任何组合。在技术部分地以软件实施时,装置可将软件的指令存储于合适的非暂时性计算机可读媒体中且使用一个或多个处理器以硬件执行指令,以执行本申请的技术。视频编码器20及视频解码器30中的每一者可包含于一个或多个编码器或解码器中,其中的任一者可在相应装置中集成为组合式编码器/解码器(CODEC)的部分。
本申请示例性地可涉及视频编码器20将特定信息“用信号发送”到例如视频解码器30的另一装置。然而,应理解,视频编码器20可通过将特定语法元素与视频数据的各种经编码部分相关联来用信号发送信息。即,视频编码器20可通过将特定语法元素存储到视频数据的各种经编码部分的头信息来“用信号发送”数据。在一些应用中,这些语法元素可在通过视频解码器30接收及解码之前经编码及存储(例如,存储到存储系统34或文件服务器36)。因此,术语“用信号发送”示例性地可指语法或用于解码经压缩视频数据的其它数据的传达,而不管此传达是实时或近实时地发生或在时间跨度内发生,例如可在编码时将语法元素存储到媒体时发生,语法元素接着可在存储到此媒体之后的任何时间通过解码装置检索。
JCT-VC开发了H.265(HEVC)标准。HEVC标准化基于称作HEVC测试模型(HM)的视频解码装置的演进模型。H.265的最新标准文档可从http://www.itu.int/rec/T-REC-H.265获得,最新版本的标准文档为H.265(12/16),该标准文档以全文引用的方式并入本文中。HM假设视频解码装置相对于ITU-TH.264/AVC的现有算法具有若干额外能力。例如,H.264提供9种帧内预测编码模式,而HM可提供多达35种帧内预测编码模式。
JVET致力于开发H.266标准。H.266标准化的过程基于称作H.266测试模型的视频解码装置的演进模型。H.266的算法描述可从http://phenix.int-evry.fr/jvet获得,其中最新的算法描述包含于JVET-F1001-v2中,该算法描述文档以全文引用的方式并入本文中。同时,可从https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/获得JEM测试模型的参考软件,同样以全文引用的方式并入本文中。
一般来说,HM的工作模型描述可将视频帧或图像划分成包含亮度及色度样本两者的树块或最大编码单元(largest codingunit,LCU)的序列,LCU也被称为CTU。树块具有与H.264标准的宏块类似的目的。条带包含按解码次序的数个连续树块。可将视频帧或图像分割成一个或多个条带。可根据四叉树将每一树块分裂成编码单元。例如,可将作为四叉树的根节点的树块分裂成四个子节点,且每一子节点可又为母节点且被分裂成另外四个子节点。作为四叉树的叶节点的最终不可分裂的子节点包括解码节点,例如,经解码视频块。与经解码码流相关联的语法数据可定义树块可分裂的最大次数,且也可定义解码节点的最小大小。
编码单元包含解码节点及预测单元(prediction unit,PU)以及与解码节点相关联的变换单元(transform unit,TU)。CU的大小对应于解码节点的大小且形状必须为正方形。CU的大小的范围可为8×8像素直到最大64×64像素或更大的树块的大小。每一CU可含有一个或多个PU及一个或多个TU。例如,与CU相关联的语法数据可描述将CU分割成一个或多个PU 的情形。分割模式在CU是被跳过或经直接模式编码、帧内预测模式编码或帧间预测模式编码的情形之间可为不同的。PU可经分割成形状为非正方形。例如,与CU相关联的语法数据也可描述根据四叉树将CU分割成一个或多个TU的情形。TU的形状可为正方形或非正方形。
HEVC标准允许根据TU进行变换,TU对于不同CU来说可为不同的。TU通常基于针对经分割LCU定义的给定CU内的PU的大小而设定大小,但情况可能并非总是如此。TU的大小通常与PU相同或小于PU。在一些可行的实施方式中,可使用称作“残余四叉树”(residual qualtree,RQT)的四叉树结构将对应于CU的残余样本再分成较小单元。RQT的叶节点可被称作TU。可变换与TU相关联的像素差值以产生变换系数,变换系数可被量化。
一般来说,PU包含与预测过程有关的数据。例如,在PU经帧内模式编码时,PU可包含描述PU的帧内预测模式的数据。作为另一可行的实施方式,在PU经帧间模式编码时,PU可包含界定PU的运动矢量的数据。例如,界定PU的运动矢量的数据可描述运动矢量的水平分量、运动矢量的垂直分量、运动矢量的分辨率(例如,四分之一像素精确度或八分之一像素精确度)、运动矢量所指向的参考图像,和/或运动矢量的参考图像列表(例如,列表0、列表1或列表C)。
一般来说,TU使用变换及量化过程。具有一个或多个PU的给定CU也可包含一个或多个TU。在预测之后,视频编码器20可计算对应于PU的残余值。残余值包括像素差值,像素差值可变换成变换系数、经量化且使用TU扫描以产生串行化变换系数以用于熵解码。本申请通常使用术语“视频块”来指CU的解码节点。在一些特定应用中,本申请也可使用术语“视频块”来指包含解码节点以及PU及TU的树块,例如,LCU或CU。
视频序列通常包含一系列视频帧或图像。图像群组(group of picture,GOP)示例性地包括一系列、一个或多个视频图像。GOP可在GOP的头信息中、图像中的一者或多者的头信息中或在别处包含语法数据,语法数据描述包含于GOP中的图像的数目。图像的每一条带可包含描述相应图像的编码模式的条带语法数据。视频编码器20通常对个别视频条带内的视频块进行操作以便编码视频数据。视频块可对应于CU内的解码节点。视频块可具有固定或变化的大小,且可根据指定解码标准而在大小上不同。
作为一种可行的实施方式,HM支持各种PU大小的预测。假定特定CU的大小为2N×2N,HM支持2N×2N或N×N的PU大小的帧内预测,及2N×2N、2N×N、N×2N或N×N的对称PU大小的帧间预测。HM也支持2N×nU、2N×nD、nL×2N及nR×2N的PU大小的帧间预测的不对称分割。在不对称分割中,CU的一方向未分割,而另一方向分割成25%及75%。对应于25%区段的CU的部分由“n”后跟着“上(Up)”、“下(Down)”、“左(Left)”或“右(Right)”的指示来指示。因此,例如,“2N×nU”指水平分割的2N×2NCU,其中2N×0.5NPU在上部且2N×1.5NPU在底部。
在本申请中,“N×N”与“N乘N”可互换使用以指依照垂直维度及水平维度的视频块的像素尺寸,例如,16×16像素或16乘16像素。一般来说,16×16块将在垂直方向上具有16个像素(y=16),且在水平方向上具有16个像素(x=16)。同样地,N×N块一股在垂直方向上具有N个像素,且在水平方向上具有N个像素,其中N表示非负整数值。可将块中的像素排列成行及列。此外,块未必需要在水平方向上与在垂直方向上具有相同数目个像素。例如,块可包括N×M个像素,其中M未必等于N。
在使用CU的PU的帧内预测性或帧间预测性解码之后,视频编码器20可计算CU的TU的残余数据。PU可包括空间域(也称作像素域)中的像素数据,且TU可包括在将变换(例如,离 散余弦变换(discrete cosine transform,DCT)、整数变换、小波变换或概念上类似的变换)应用于残余视频数据之后变换域中的系数。残余数据可对应于未经编码图像的像素与对应于PU的预测值之间的像素差。视频编码器20可形成包含CU的残余数据的TU,且接着变换TU以产生CU的变换系数。
在任何变换以产生变换系数之后,视频编码器20可执行变换系数的量化。量化示例性地指对系数进行量化以可能减少用以表示系数的数据的量从而提供进一步压缩的过程。量化过程可减少与系数中的一些或全部相关联的位深度。例如,可在量化期间将n位值降值舍位到m位值,其中n大于m。
JEM模型对视频图像的编码结构进行了进一步的改进,具体的,被称为“四叉树结合二叉树”(QTBT)的块编码结构被引入进来。QTBT结构摒弃了HEVC中的CU,PU,TU等概念,支持更灵活的CU划分形状,一个CU可以正方形,也可以是长方形。一个CTU首先进行四叉树划分,该四叉树的叶节点进一步进行二叉树划分。同时,在二叉树划分中存在两种划分模式,对称水平分割和对称竖直分割。二叉树的叶节点被称为CU,JEM的CU在预测和变换的过程中都不可以被进一步划分,也就是说JEM的CU,PU,TU具有相同的块大小。在现阶段的JEM中,CTU的最大尺寸为256×256亮度像素。
在一些可行的实施方式中,视频编码器20可利用预定义扫描次序来扫描经量化变换系数以产生可经熵编码的串行化向量。在其它可行的实施方式中,视频编码器20可执行自适应性扫描。在扫描经量化变换系数以形成一维向量之后,视频编码器20可根据上下文自适应性可变长度解码(CAVLC)、上下文自适应性二进制算术解码(CABAC)、基于语法的上下文自适应性二进制算术解码(SBAC)、概率区间分割熵(PIPE)解码或其他熵解码方法来熵解码一维向量。视频编码器20也可熵编码与经编码视频数据相关联的语法元素以供视频解码器30用于解码视频数据。
为了执行CABAC,视频编码器20可将上下文模型内的上下文指派给待传输的符号。上下文可与符号的相邻值是否为非零有关。为了执行CAVLC,视频编码器20可选择待传输的符号的可变长度码。可变长度解码(VLC)中的码字可经构建以使得相对较短码对应于可能性较大的符号,而较长码对应于可能性较小的符号。以这个方式,VLC的使用可相对于针对待传输的每一符号使用相等长度码字达成节省码率的目的。基于指派给符号的上下文可以确定CABAC中的概率。
在本申请实施例中,视频编码器可执行帧间预测以减少图像之间的时间冗余。如前文所描述,根据不同视频压缩编解码标准的规定,CU可具有一个或多个预测单元PU。换句话说,多个PU可属于CU,或者PU和CU的尺寸相同。在本文中当CU和PU尺寸相同时,CU的分割模式为不分割,或者即为分割为一个PU,且统一使用PU进行表述。当视频编码器执行帧间预测时,视频编码器可用信号通知视频解码器用于PU的运动信息。示例性的,PU的运动信息可以包括:参考图像索引、运动矢量和预测方向标识。运动矢量可指示PU的图像块(也称视频块、像素块、像素集合等)与PU的参考块之间的位移。PU的参考块可为类似于PU的图像块的参考图像的一部分。参考块可定位于由参考图像索引和预测方向标识指示的参考图像中。
为了减少表示PU的运动信息所需要的编码比特的数目,视频编码器可根据合并预测模式或高级运动矢量预测模式过程产生用于PU中的每一者的候选预测运动矢量(Motion Vector,MV)列表。用于PU的候选预测运动矢量列表中的每一候选预测运动矢量可指示 运动信息。由候选预测运动矢量列表中的一些候选预测运动矢量指示的运动信息可基于其它PU的运动信息。如果候选预测运动矢量指示指定空间候选预测运动矢量位置或时间候选预测运动矢量位置中的一者的运动信息,则本申请可将所述候选预测运动矢量称作“原始”候选预测运动矢量。举例来说,对于合并模式,在本文中也称为合并预测模式,可存在五个原始空间候选预测运动矢量位置和一个原始时间候选预测运动矢量位置。在一些实例中,视频编码器可通过组合来自不同原始候选预测运动矢量的部分运动矢量、修改原始候选预测运动矢量或仅插入零运动矢量作为候选预测运动矢量来产生额外候选预测运动矢量。这些额外候选预测运动矢量不被视为原始候选预测运动矢量且在本申请中可称作人工产生的候选预测运动矢量。
本申请的技术一般涉及用于在视频编码器处产生候选预测运动矢量列表的技术和用于在视频解码器处产生相同候选预测运动矢量列表的技术。视频编码器和视频解码器可通过实施用于构建候选预测运动矢量列表的相同技术来产生相同候选预测运动矢量列表。举例来说,视频编码器和视频解码器两者可构建具有相同数目的候选预测运动矢量(例如,五个候选预测运动矢量)的列表。视频编码器和解码器可首先考虑空间候选预测运动矢量(例如,同一图像中的相邻块),接着考虑时间候选预测运动矢量(例如,不同图像中的候选预测运动矢量),且最后可考虑人工产生的候选预测运动矢量直到将所要数目的候选预测运动矢量添加到列表为止。根据本申请的技术,可在候选预测运动矢量列表构建期间针对某些类型的候选预测运动矢量利用修剪操作以便从候选预测运动矢量列表移除重复,而对于其它类型的候选预测运动矢量,可能不使用修剪以便减小解码器复杂性。举例来说,对于空间候选预测运动矢量集合和对于时间候选预测运动矢量,可执行修剪操作以从候选预测运动矢量的列表排除具有重复运动信息的候选预测运动矢量。然而,当将人工产生的候选预测运动矢量添加到候选预测运动矢量的列表时,可在不对人工产生的候选预测运动矢量执行修剪操作的情况下添加人工产生的候选预测运动矢量。
在产生用于CU的PU的候选预测运动矢量列表之后,视频编码器可从候选预测运动矢量列表选择候选预测运动矢量且在码流中输出候选预测运动矢量索引。选定候选预测运动矢量可为具有产生最紧密地匹配正被解码的目标PU的预测子的运动矢量的候选预测运动矢量。候选预测运动矢量索引可指示在候选预测运动矢量列表中选定候选预测运动矢量的位置。视频编码器还可基于由PU的运动信息指示的参考块产生用于PU的预测性图像块。可基于由选定候选预测运动矢量指示的运动信息确定PU的运动信息。举例来说,在合并模式中,PU的运动信息可与由选定候选预测运动矢量指示的运动信息相同。在AMVP模式中,PU的运动信息可基于PU的运动矢量差和由选定候选预测运动矢量指示的运动信息确定。视频编码器可基于CU的PU的预测性图像块和用于CU的原始图像块产生用于CU的一或多个残余图像块。视频编码器可接着编码一或多个残余图像块且在码流中输出一或多个残余图像块。
码流可包括识别PU的候选预测运动矢量列表中的选定候选预测运动矢量的数据。视频解码器可基于由PU的候选预测运动矢量列表中的选定候选预测运动矢量指示的运动信息确定PU的运动信息。视频解码器可基于PU的运动信息识别用于PU的一或多个参考块。在识别PU的一或多个参考块之后,视频解码器可基于PU的一或多个参考块产生用于PU的预测性图像块。视频解码器可基于用于CU的PU的预测性图像块和用于CU的一或多个残余图像块来重构用于CU的图像块。
为了易于解释,本申请可将位置或图像块描述为与CU或PU具有各种空间关系。此描述可解释为是指位置或图像块和与CU或PU相关联的图像块具有各种空间关系。此外,本申请可将视频解码器当前在解码的PU称作当前PU,也称为当前待处理图像块。本申请可将视频解码器当前在解码的CU称作当前CU。本申请可将视频解码器当前在解码的图像称作当前图像。应理解,本申请同时适用于PU和CU具有相同尺寸,或者PU即为CU的情况,统一使用PU来表示。
如前文简短地描述,视频编码器20可使用帧间预测以产生用于CU的PU的预测性图像块和运动信息。在许多例子中,给定PU的运动信息可能与一或多个附近PU(即,其图像块在空间上或时间上在给定PU的图像块附近的PU)的运动信息相同或类似。因为附近PU经常具有类似运动信息,所以视频编码器20可参考附近PU的运动信息来编码给定PU的运动信息。参考附近PU的运动信息来编码给定PU的运动信息可减少码流中指示给定PU的运动信息所需要的编码比特的数目。
视频编码器20可以各种方式参考附近PU的运动信息来编码给定PU的运动信息。举例来说,视频编码器20可指示给定PU的运动信息与附近PU的运动信息相同。本申请可使用合并模式来指代指示给定PU的运动信息与附近PU的运动信息相同或可从附近PU的运动信息导出。在另一可行的实施方式中,视频编码器20可计算用于给定PU的运动矢量差(Motion Vector Difference,MVD)。MVD指示给定PU的运动矢量与附近PU的运动矢量之间的差。视频编码器20可将MVD而非给定PU的运动矢量包括于给定PU的运动信息中。在码流中表示MVD比表示给定PU的运动矢量所需要的编码比特少。本申请可使用高级运动矢量预测模式指代通过使用MVD和识别候选者运动矢量的索引值来用信号通知解码端给定PU的运动信息。
为了使用合并模式或AMVP模式来用信号通知解码端给定PU的运动信息,视频编码器20可产生用于给定PU的候选预测运动矢量列表。候选预测运动矢量列表可包括一或多个候选预测运动矢量。用于给定PU的候选预测运动矢量列表中的候选预测运动矢量中的每一者可指定运动信息。由每一候选预测运动矢量指示的运动信息可包括运动矢量、参考图像索引和预测方向标识。候选预测运动矢量列表中的候选预测运动矢量可包括“原始”候选预测运动矢量,其中每一者指示不同于给定PU的PU内的指定候选预测运动矢量位置中的一者的运动信息。
在产生用于PU的候选预测运动矢量列表之后,视频编码器20可从用于PU的候选预测运动矢量列表选择候选预测运动矢量中的一者。举例来说,视频编码器可比较每一候选预测运动矢量与正被解码的PU且可选择具有所要码率-失真代价的候选预测运动矢量。视频编码器20可输出用于PU的候选预测运动矢量索引。候选预测运动矢量索引可识别选定候选预测运动矢量在候选预测运动矢量列表中的位置。
此外,视频编码器20可基于由PU的运动信息指示的参考块产生用于PU的预测性图像块。可基于由用于PU的候选预测运动矢量列表中的选定候选预测运动矢量指示的运动信息确定PU的运动信息。举例来说,在合并模式中,PU的运动信息可与由选定候选预测运动矢量指示的运动信息相同。在AMVP模式中,可基于用于PU的运动矢量差和由选定候选预测运动矢量指示的运动信息确定PU的运动信息。视频编码器20可如前文所描述处理用于PU的预测性图像块。
当视频解码器30接收到码流时,视频解码器30可产生用于CU的PU中的每一者的候选预测运动矢量列表。由视频解码器30针对PU产生的候选预测运动矢量列表可与由视频编码器20针对PU产生的候选预测运动矢量列表相同。从码流中解析得到的语法元素可指示在PU的候选预测运动矢量列表中选定候选预测运动矢量的位置。在产生用于PU的候选预测运动矢量列表之后,视频解码器30可基于由PU的运动信息指示的一或多个参考块产生用于PU的预测性图像块。视频解码器30可基于由用于PU的候选预测运动矢量列表中的选定候选预测运动矢量指示的运动信息确定PU的运动信息。视频解码器30可基于用于PU的预测性图像块和用于CU的残余图像块重构用于CU的图像块。
应理解,在一种可行的实施方式中,在解码端,候选预测运动矢量列表的构建与从码流中解析选定候选预测运动矢量在候选预测运动矢量列表中的位置是相互独立,可以任意先后或者并行进行的。
在另一种可行的实施方式中,在解码端,首先从码流中解析选定候选预测运动矢量在候选预测运动矢量列表中的位置,根据解析出来的位置构建候选预测运动矢量列表,在该实施方式中,不需要构建全部的候选预测运动矢量列表,只需要构建到该解析出来的位置处的候选预测运动矢量列表,即能够确定该位置出的候选预测运动矢量即可。举例来说,当解析码流得出选定的候选预测运动矢量为候选预测运动矢量列表中索引为3的候选预测运动矢量时,仅需要构建从索引为0到索引为3的候选预测运动矢量列表,即可确定索引为3的候选预测运动矢量,可以达到减小复杂度,提高解码效率的技术效果。
图2为本申请实施例中视频编码器20的一种示意性框图。视频编码器20可执行视频条带内的视频块的帧内解码和帧间解码。帧内解码依赖于空间预测来减少或去除给定视频帧或图像内的视频的空间冗余。帧间解码依赖于时间预测来减少或去除视频序列的邻近帧或图像内的视频的时间冗余。帧内模式(I模式)可指若干基于空间的压缩模式中的任一者。例如单向预测(P模式)或双向预测(B模式)等帧间模式可指若干基于时间的压缩模式中的任一者。
在图2的可行的实施方式中,视频编码器20包含分割单元35、预测单元41、参考图像存储器64、求和器50、变换处理单元52、量化单元54和熵编码单元56。预测单元41包含运动估计单元42、运动补偿单元44和帧内预测模块46。对于视频块重构建,视频编码器20也包含反量化单元58、反变换单元60和求和器62。也可包含解块滤波器(图2中未展示)以对块边界进行滤波从而从经重构建视频中去除块效应伪影。在需要时,解块滤波器将通常对求和器62的输出进行滤波。除了解块滤波器之外,也可使用额外环路滤波器(环路内或环路后)。
如图2中所展示,视频编码器20接收视频数据,且分割单元35将数据分割成视频块。此分割也可包含分割成条带、图像块或其它较大单元,以及(例如)根据LCU及CU的四叉树结构进行视频块分割。视频编码器20示例性地说明编码在待编码的视频条带内的视频块的组件。一般来说,条带可划分成多个视频块(且可能划分成称作图像块的视频块的集合)。
预测单元41可基于编码质量与代价计算结果(例如,码率-失真代价,RDcost)选择当前视频块的多个可能解码模式中的一者,例如多个帧内解码模式中的一者或多个帧间解码模式中的一者。预测单元41可将所得经帧内解码或经帧间解码块提供到求和器50以产生残余块数据且将所得经帧内解码或经帧间解码块提供到求和器62以重构建经编码块从而用作参考图像。
预测单元41内的运动估计单元42及运动补偿单元44执行相对于一个或多个参考图像中的一个或多个预测性块的当前视频块的帧间预测性解码以提供时间压缩。运动估计单元42可经配置以根据视频序列的预定模式确定视频条带的帧间预测模式。预定模式可将序列中的视频条带指定为P条带、B条带或GPB条带。运动估计单元42及运动补偿单元44可高度集成,但为概念目的而分别说明。通过运动估计单元42所执行的运动估计为产生估计视频块的运动矢量的过程。例如,运动矢量可指示当前视频帧或图像内的视频块的PU相对于参考图像内的预测性块的位移。
预测性块为依据像素差而被发现为紧密匹配待解码的视频块的PU的块,像素差可通过绝对差和(SAD)、平方差和(SSD)或其它差度量确定。在一些可行的实施方式中,视频编码器20可计算存储于参考图像存储器64中的参考图像的子整数(sub-integer)像素位置的值。例如,视频编码器20可内插参考图像的四分之一像素位置、八分之一像素位置或其它分数像素位置的值。因此,运动估计单元42可执行相对于全像素位置及分数像素位置的运动搜索且输出具有分数像素精确度的运动矢量。
运动估计单元42通过比较PU的位置与参考图像的预测性块的位置而计算经帧间解码条带中的视频块的PU的运动矢量。可从第一参考图像列表(列表0)或第二参考图像列表(列表1)选择参考图像,列表中的每一者识别存储于参考图像存储器64中的一个或多个参考图像。运动估计单元42将经计算运动矢量发送到熵编码单元56及运动补偿单元44。
由运动补偿单元44执行的运动补偿可涉及基于由运动估计所确定的运动矢量提取或产生预测性块,可能执行到子像素精确度的内插。在接收当前视频块的PU的运动矢量后,运动补偿单元44即可在参考图像列表中的一者中定位运动矢量所指向的预测性块。视频编码器20通过从正经解码的当前视频块的像素值减去预测性块的像素值来形成残余视频块,从而形成像素差值。像素差值形成块的残余数据,且可包含亮度及色度差分量两者。求和器50表示执行此减法运算的一个或多个组件。运动补偿单元44也可产生与视频块及视频条带相关联的语法元素以供视频解码器30用于解码视频条带的视频块。
如果PU位于B条带中,则含有PU的图像可与称作“列表0”和“列表1”的两个参考图像列表相关联。在一些可行的实施方式中,含有B条带的图像可与为列表0和列表1的组合的列表组合相关联。
此外,如果PU位于B条带中,则运动估计单元42可针对PU执行单向预测或双向预测,其中,在一些可行的实施方式中,双向预测为分别基于列表0和列表1的参考图像列表的图像进行的预测,在另一些可行的实施方式中,双向预测为分别基于当前帧在显示顺序上的已重建的未来帧和已重建的过去帧进行的预测。当运动估计单元42针对PU执行单向预测时,运动估计单元42可在列表0或列表1的参考图像中搜索用于PU的参考块。运动估计单元42可接着产生指示列表0或列表1中的含有参考块的参考图像的参考索引和指示PU与参考块之间的空间位移的运动矢量。运动估计单元42可输出参考索引、预测方向标识和运动矢量作为PU的运动信息。预测方向标识可指示参考索引指示列表0或列表1中的参考图像。运动补偿单元44可基于由PU的运动信息指示的参考块产生PU的预测性图像块。
当运动估计单元42针对PU执行双向预测时,运动估计单元42可在列表0中的参考图像中搜索用于PU的参考块且还可在列表1中的参考图像中搜索用于PU的另一参考块。运动估计单元42可接着产生指示列表0和列表1中的含有参考块的参考图像的参考索引 和指示参考块与PU之间的空间位移的运动矢量。运动估计单元42可输出PU的参考索引和运动矢量作为PU的运动信息。运动补偿单元44可基于由PU的运动信息指示的参考块产生PU的预测性图像块。
在一些可行的实施方式中,运动估计单元42不向熵编码模块56输出用于PU的运动信息的完整集合。而是,运动估计单元42可参考另一PU的运动信息来用信号通知PU的运动信息。举例来说,运动估计单元42可确定PU的运动信息充分类似于相邻PU的运动信息。在此实施方式中,运动估计单元42可在与PU相关联的语法结构中指示一个指示值,所述指示值向视频解码器30指示PU具有与相邻PU相同的运动信息或具有可从相邻PU导出的运动信息。在另一实施方式中,运动估计单元42可在与PU相关联的语法结构中识别与相邻PU相关联的候选预测运动矢量和运动矢量差(MVD)。MVD指示PU的运动矢量和与相邻PU相关联的所指示候选预测运动矢量之间的差。视频解码器30可使用所指示候选预测运动矢量和MVD来确定PU的运动矢量。
如前文所描述,预测模块41可产生用于CU的每一PU的候选预测运动矢量列表。候选预测运动矢量列表中的一或多者可包括一或多个原始候选预测运动矢量和从原始候选预测运动矢量导出的一或多个额外候选预测运动矢量。
预测单元41内的帧内预测单元46可执行相对于在与待解码的当前块相同的图像或条带中的一个或多个相邻块的当前视频块的帧内预测性解码以提供空间压缩。因此,作为通过运动估计单元42及运动补偿单元44执行的帧间预测(如前文所描述)的替代,帧内预测单元46可帧内预测当前块。明确地说,帧内预测单元46可确定用以编码当前块的帧内预测模式。在一些可行的实施方式中,帧内预测单元46可(例如)在单独编码遍历期间使用各种帧内预测模式来编码当前块,且帧内预测单元46(或在一些可行的实施方式中,模式选择单元40)可从经测试模式选择使用的适当帧内预测模式。
在预测单元41经由帧间预测或帧内预测产生当前视频块的预测性块之后,视频编码器20通过从当前视频块减去预测性块而形成残余视频块。残余块中的残余视频数据可包含于一个或多个TU中且应用于变换处理单元52。变换处理单元52使用例如离散余弦变换(DCT)或概念上类似的变换的变换(例如,离散正弦变换DST)将残余视频数据变换成残余变换系数。变换处理单元52可将残余视频数据从像素域转换到变换域(例如,频域)。
变换处理单元52可将所得变换系数发送到量化单元54。量化单元54对变换系数进行量化以进一步减小码率。量化过程可减少与系数中的一些或全部相关联的比特深度。可通过调整量化参数来修改量化的程度。在一些可行的实施方式中,量化单元54可接着执行包含经量化变换系数的矩阵的扫描。替代地,熵编码单元56可执行扫描。
在量化之后,熵编码单元56可熵编码经量化变换系数。例如,熵编码单元56可执行上下文自适应性可变长度解码(CAVLC)、上下文自适应性二进制算术解码(CABAC)、基于语法的上下文自适应性二进制算术解码(SBAC)、概率区间分割熵(PIPE)解码或另一熵编码方法或技术。熵编码单元56也可熵编码正经解码的当前视频条带的运动矢量及其它语法元素。在通过熵编码单元56进行熵编码之后,可将经编码码流传输到视频解码器30或存档以供稍后传输或由视频解码器30检索。
熵编码单元56可编码根据本申请的技术指示选定帧内预测模式的信息。视频编码器20可在可包含多个帧内预测模式索引表和多个经修改帧内预测模式索引表(也称作码字映射 表)的所传输码流配置数据中包含各种块的编码上下文的定义及用于上下文中的每一者的MPM、帧内预测模式索引表和经修改帧内预测模式索引表的指示。
反量化单元58及反变换单元60分别应用反量化及反变换,以在像素域中重构建残余块以供稍后用作参考图像的参考块。运动补偿单元44可通过将残余块与参考图像列表中的一者内的参考图像中的一者的预测性块相加来计算参考块。运动补偿单元44也可将一个或多个内插滤波器应用于经重构建残余块以计算子整数像素值以用于运动估计。求和器62将经重构建残余块与通过运动补偿单元44所产生的经运动补偿的预测块相加以产生参考块以供存储于参考图像存储器64中。参考块可由运动估计单元42及运动补偿单元44用作参考块以帧间预测后续视频帧或图像中的块。
图3为本申请实施例中视频解码器30的一种示意性框图。在图3的可行的实施方式中,视频解码器30包含熵编码单元80、预测单元81、反量化单元86、反变换单元88、求和器90和参考图像存储器92。预测单元81包含运动补偿单元82和帧内预测单元84。在一些可行的实施方式中,视频解码器30可执行与关于来自图4的视频编码器20描述的编码流程的示例性地互逆的解码流程。
在解码过程期间,视频解码器30从视频编码器20接收表示经编码视频条带的视频块及相关联的语法元素的经编码视频码流。视频解码器30的熵编码单元80熵解码码流以产生经量化系数、运动矢量及其它语法元素。熵编码单元80将运动矢量及其它语法元素转递到预测单元81。视频解码器30可在视频条带层级和/或视频块层级处接收语法元素。
在视频条带经解码为经帧内解码(I)条带时,预测单元81的帧内预测单元84可基于用信号发送的帧内预测模式及来自当前帧或图像的先前经解码块的数据而产生当前视频条带的视频块的预测数据。
在视频图像经解码为经帧间解码(例如,B、P或GPB)条带时,预测单元81的运动补偿单元82基于从熵编码单元80所接收的运动矢量及其它语法元素而产生当前视频图像的视频块的预测性块。预测性块可从参考图像列表中的一者内的参考图像中的一者产生。视频解码器30可基于存储于参考图像存储器92中的参考图像使用默认构建技术来构建参考图像列表(列表0及列表1)。
运动补偿单元82通过解析运动矢量及其它语法元素来确定当前视频条带的视频块的预测信息,且使用预测信息来产生正经解码的当前视频块的预测性块。例如,运动补偿单元82使用所接收的语法元素中的一些来确定用以解码视频条带的视频块的预测模式(例如,帧内预测或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、条带的参考图像列表中的一者或多者的构建信息、条带的每一经帧间编码视频块的运动矢量、条带的每一经帧间解码视频块的帧间预测状态及用以解码当前视频条带中的视频块的其它信息。
运动补偿单元82也可基于内插滤波器执行内插。运动补偿单元82可使用如由视频编码器20在视频块的编码期间所使用的内插滤波器来计算参考块的子整数像素的内插值。在此应用中,运动补偿单元82可从所接收的语法元素确定由视频编码器20使用的内插滤波器且使用内插滤波器来产生预测性块。
如果PU是使用帧间预测而编码,则运动补偿单元82可产生用于PU的候选预测运动矢量列表。码流中可包括识别选定候选预测运动矢量在PU的候选预测运动矢量列表中的位置的数据。在产生用于PU的候选预测运动矢量列表之后,运动补偿单元82可基于由PU的运动信息指示的一或多个参考块产生用于PU的预测性图像块。PU的参考块可在与所述PU不同的时 间图像中。运动补偿单元82可基于由PU的候选预测运动矢量列表中的选定的运动信息确定PU的运动信息。
反量化单元86对码流中所提供且通过熵编码单元80所解码的经量化变换系数进行反量化(例如,解量化)。反量化过程可包含使用通过视频编码器20针对视频条带中的每一视频块所计算的量化参数确定量化的程度,且同样地确定应应用的反量化的程度。反变换单元88将反变换(例如,反DCT、反整数变换或概念上类似的反变换过程)应用于变换系数以便在像素域中产生残余块。
在运动补偿单元82基于运动矢量及其它语法元素产生当前视频块的预测性块之后,视频解码器30通过将来自反变换单元88的残余块与通过运动补偿单元82产生的对应预测性块求和来形成经解码视频块。求和器90表示执行此求和运算的一个或多个组件。在需要时,也可应用解块滤波器来对经解码块进行滤波以便去除块效应伪影。其它环路滤波器(在解码环路中或在解码环路之后)也可用以使像素转变平滑,或以其它方式改进视频质量。给定帧或图像中的经解码视频块接着存储于参考图像存储器92中,参考图像存储器92存储供后续运动补偿所使用的参考图像。参考图像存储器92也存储供稍后呈现于例如图1的显示装置32的显示装置上的经解码视频。
如前文所注明,本申请的技术示例性地涉及帧间解码。应理解,本申请的技术可通过本申请中所描述的视频解码器中的任一者进行,视频解码器包含(例如)如关于图1到3所展示及描述的视频编码器20及视频解码器30。即,在一种可行的实施方式中,关于图2所描述的预测单元41可在视频数据的块的编码期间在执行帧间预测时执行下文中所描述的特定技术。在另一可行的实施方式中,关于图3所描述的预测单元81可在视频数据的块的解码期间在执行帧间预测时执行下文中所描述的特定技术。因此,对一般性“视频编码器”或“视频解码器”的引用可包含视频编码器20、视频解码器30或另一视频编码或编码单元。
图4为本申请实施例中帧间预测模块的一种示意性框图。帧间预测模块121,示例性的,可以包括运动估计单元42和运动补偿单元44。在不同的视频压缩编解码标准中,PU和CU的关系各有不同。帧间预测模块121可根据多个分割模式将当前CU分割为PU。举例来说,帧间预测模块121可根据2N×2N、2N×N、N×2N和N×N分割模式将当前CU分割为PU。在其他实施例中,当前CU即为当前PU,不作限定。
帧间预测模块121可对PU中的每一者执行整数运动估计(Integer Motion Estimation,IME)且接着执行分数运动估计(Fraction Motion Estimation,FME)。当帧间预测模块121对PU执行IME时,帧间预测模块121可在一个或多个参考图像中搜索用于PU的参考块。在找到用于PU的参考块之后,帧间预测模块121可产生以整数精度指示PU与用于PU的参考块之间的空间位移的运动矢量。当帧间预测模块121对PU执行FME时,帧间预测模块121可改进通过对PU执行IME而产生的运动矢量。通过对PU执行FME而产生的运动矢量可具有子整数精度(例如,1/2像素精度、1/4像素精度等)。在产生用于PU的运动矢量之后,帧间预测模块121可使用用于PU的运动矢量以产生用于PU的预测性图像块。
在帧间预测模块121使用AMVP模式用信号通知解码端PU的运动信息的一些可行的实施方式中,帧间预测模块121可产生用于PU的候选预测运动矢量列表。候选预测运动矢量列表可包括一个或多个原始候选预测运动矢量和从原始候选预测运动矢量导出的一个或多个额外候选预测运动矢量。在产生用于PU的候选预测运动矢量列表之后,帧间预测模块121可从候选预测运动矢量列表选择候选预测运动矢量且产生用于PU的运动矢量差 (MVD)。用于PU的MVD可指示由选定候选预测运动矢量指示的运动矢量与使用IME和FME针对PU产生的运动矢量之间的差。在这些可行的实施方式中,帧间预测模块121可输出识别选定候选预测运动矢量在候选预测运动矢量列表中的位置的候选预测运动矢量索引。帧间预测模块121还可输出PU的MVD。下文详细描述图6中,本申请实施例中高级运动矢量预测(AMVP)模式的一种可行的实施方式。
除了通过对PU执行IME和FME来产生用于PU的运动信息外,帧间预测模块121还可对PU中的每一者执行合并(Merge)操作。当帧间预测模块121对PU执行合并操作时,帧间预测模块121可产生用于PU的候选预测运动矢量列表。用于PU的候选预测运动矢量列表可包括一个或多个原始候选预测运动矢量和从原始候选预测运动矢量导出的一个或多个额外候选预测运动矢量。候选预测运动矢量列表中的原始候选预测运动矢量可包括一个或多个空间候选预测运动矢量和时间候选预测运动矢量。空间候选预测运动矢量可指示当前图像中的其它PU的运动信息。时间候选预测运动矢量可基于不同于当前图像的对应的PU的运动信息。时间候选预测运动矢量还可称作时间运动矢量预测(TMVP)。
在产生候选预测运动矢量列表之后,帧间预测模块121可从候选预测运动矢量列表选择候选预测运动矢量中的一个。帧间预测模块121可接着基于由PU的运动信息指示的参考块产生用于PU的预测性图像块。在合并模式中,PU的运动信息可与由选定候选预测运动矢量指示的运动信息相同。下文描述的图5说明Merge示例性的流程图。
在基于IME和FME产生用于PU的预测性图像块和基于合并操作产生用于PU的预测性图像块之后,帧间预测模块121可选择通过FME操作产生的预测性图像块或者通过合并操作产生的预测性图像块。在一些可行的实施方式中,帧间预测模块121可基于通过FME操作产生的预测性图像块和通过合并操作产生的预测性图像块的码率-失真代价分析来选择用于PU的预测性图像块。
在帧间预测模块121已选择通过根据分割模式中的每一者分割当前CU而产生的PU的预测性图像块之后(在一些实施方式中,编码树单元CTU划分为CU后,不会再进一步划分为更小的PU,此时PU等同于CU),帧间预测模块121可选择用于当前CU的分割模式。在一些实施方式中,帧间预测模块121可基于通过根据分割模式中的每一者分割当前CU而产生的PU的选定预测性图像块的码率-失真代价分析来选择用于当前CU的分割模式。帧间预测模块121可将与属于选定分割模式的PU相关联的预测性图像块输出到残差产生模块102。帧间预测模块121可将指示属于选定分割模式的PU的运动信息的语法元素输出到熵编码模块116。
在图4的示意图中,帧间预测模块121包括IME模块180A到180N(统称为“IME模块180”)、FME模块182A到182N(统称为“FME模块182”)、合并模块184A到184N(统称为“合并模块184”)、PU模式决策模块186A到186N(统称为“PU模式决策模块186”)和CU模式决策模块188(也可以包括执行从CTU到CU的模式决策过程)。
IME模块180、FME模块182和合并模块184可对当前CU的PU执行IME操作、FME操作和合并操作。图4的示意图中将帧间预测模块121说明为包括用于CU的每一分割模式的每一PU的单独IME模块180、FME模块182和合并模块184。在其它可行的实施方式中,帧间预测模块121不包括用于CU的每一分割模式的每一PU的单独IME模块180、FME模块182和合并模块184。
如图4的示意图中所说明,IME模块180A、FME模块182A和合并模块184A可对通过根据2N×2N分割模式分割CU而产生的PU执行IME操作、FME操作和合并操作。PU模式决策模块186A可选择由IME模块180A、FME模块182A和合并模块184A产生的预测性图像块中的一者。
IME模块180B、FME模块182B和合并模块184B可对通过根据N×2N分割模式分割CU而产生的左PU执行IME操作、FME操作和合并操作。PU模式决策模块186B可选择由IME模块180B、FME模块182B和合并模块184B产生的预测性图像块中的一者。
IME模块180C、FME模块182C和合并模块184C可对通过根据N×2N分割模式分割CU而产生的右PU执行IME操作、FME操作和合并操作。PU模式决策模块186C可选择由IME模块180C、FME模块182C和合并模块184C产生的预测性图像块中的一者。
IME模块180N、FME模块182N和合并模块184可对通过根据N×N分割模式分割CU而产生的右下PU执行IME操作、FME操作和合并操作。PU模式决策模块186N可选择由IME模块180N、FME模块182N和合并模块184N产生的预测性图像块中的一者。
PU模式决策模块186可基于多个可能预测性图像块的码率-失真代价分析选择预测性图像块,且选择针对给定解码情形提供最佳码率-失真代价的预测性图像块。示例性的,对于带宽受限的应用,PU模式决策模块186可偏向选择增加压缩比的预测性图像块,而对于其它应用,PU模式决策模块186可偏向选择增加经重建视频质量的预测性图像块。在PU模式决策模块186选择用于当前CU的PU的预测性图像块之后,CU模式决策模块188选择用于当前CU的分割模式且输出属于选定分割模式的PU的预测性图像块和运动信息。
图5为本申请实施例中合并模式的一种示例性流程图。视频编码器(例如视频编码器20)可执行合并操作200。在其它可行的实施方式中,视频编码器可执行不同于合并操作200的合并操作。举例来说,在其它可行的实施方式中,视频编码器可执行合并操作,其中视频编码器执行比合并操作200多、少的步骤或与合并操作200不同的步骤。在其它可行的实施方式中,视频编码器可以不同次序或并行地执行合并操作200的步骤。编码器还可对以跳跃(skip)模式编码的PU执行合并操作200。
在视频编码器开始合并操作200之后,视频编码器可产生用于当前PU的候选预测运动矢量列表(202)。视频编码器可以各种方式产生用于当前PU的候选预测运动矢量列表。举例来说,视频编码器可根据下文关于图8到图12描述的实例技术中的一者产生用于当前PU的候选预测运动矢量列表。
如前文所述,用于当前PU的候选预测运动矢量列表可包括时间候选预测运动矢量。时间候选预测运动矢量可指示时域对应(co-located)的PU的运动信息。co-located的PU可在空间上与当前PU处于图像帧中的同一个位置,但在参考图像而非当前图像中。本申请可将包括时域对应的PU的参考图像称作相关参考图像。本申请可将相关参考图像的参考图像索引称作相关参考图像索引。如前文所描述,当前图像可与一个或多个参考图像列表(例如,列表0、列表1等)相关联。参考图像索引可通过指示在参考图像某一个参考图像列表中的位置来指示参考图像。在一些可行的实施方式中,当前图像可与组合参考图像列表相关联。
在一些视频编码器中,相关参考图像索引为涵盖与当前PU相关联的参考索引源位置的PU的参考图像索引。在这些视频编码器中,与当前PU相关联的参考索引源位置邻接于当前PU左方或邻接于当前PU上方。在本申请中,如果与PU相关联的图像块包括特定位 置,则PU可“涵盖”所述特定位置。在这些视频编码器中,如果参考索引源位置不可用,则视频编码器可使用零的参考图像索引。
然而,可存在以下例子:与当前PU相关联的参考索引源位置在当前CU内。在这些例子中,如果PU在当前CU上方或左方,则涵盖与当前PU相关联的参考索引源位置的PU可被视为可用。然而,视频编码器可需要存取当前CU的另一PU的运动信息以便确定含有co-located PU的参考图像。因此,这些视频编码器可使用属于当前CU的PU的运动信息(即,参考图像索引)以产生用于当前PU的时间候选预测运动矢量。换句话说,这些视频编码器可使用属于当前CU的PU的运动信息产生时间候选预测运动矢量。因此,视频编码器可能不能并行地产生用于当前PU和涵盖与当前PU相关联的参考索引源位置的PU的候选预测运动矢量列表。
根据本申请的技术,视频编码器可在不参考任何其它PU的参考图像索引的情况下显式地设定相关参考图像索引。此可使得视频编码器能够并行地产生用于当前PU和当前CU的其它PU的候选预测运动矢量列表。因为视频编码器显式地设定相关参考图像索引,所以相关参考图像索引不基于当前CU的任何其它PU的运动信息。在视频编码器显式地设定相关参考图像索引的一些可行的实施方式中,视频编码器可始终将相关参考图像索引设定为固定的预定义预设参考图像索引(例如0)。以此方式,视频编码器可基于由预设参考图像索引指示的参考帧中的co-located PU的运动信息产生时间候选预测运动矢量,且可将时间候选预测运动矢量包括于当前CU的候选预测运动矢量列表中。
在视频编码器显式地设定相关参考图像索引的可行的实施方式中,视频编码器可显式地在语法结构(例如图像标头、条带标头、APS或另一语法结构)中用信号通知相关参考图像索引。在此可行的实施方式中,视频编码器可用信号通知解码端用于每一LCU(即CTU)、CU、PU、TU或其它类型的子块的相关参考图像索引。举例来说,视频编码器可用信号通知:用于CU的每一PU的相关参考图像索引等于“1”。
在一些可行的实施方式中,相关参考图像索引可经隐式地而非显式地设定。在这些可行的实施方式中,视频编码器可使用由涵盖当前CU外部的位置的PU的参考图像索引指示的参考图像中的PU的运动信息产生用于当前CU的PU的候选预测运动矢量列表中的每一时间候选预测运动矢量,即使这些位置并不严格地邻近当前PU。
在产生用于当前PU的候选预测运动矢量列表之后,视频编码器可产生与候选预测运动矢量列表中的候选预测运动矢量相关联的预测性图像块(204)。视频编码器可通过基于所指示候选预测运动矢量的运动信息确定当前PU的运动信息和接着基于由当前PU的运动信息指示的一个或多个参考块产生预测性图像块来产生与候选预测运动矢量相关联的预测性图像块。视频编码器可接着从候选预测运动矢量列表选择候选预测运动矢量中的一者(206)。视频编码器可以各种方式选择候选预测运动矢量。举例来说,视频编码器可基于对与候选预测运动矢量相关联的预测性图像块的每一者的码率-失真代价分析来选择候选预测运动矢量中的一者。
在选择候选预测运动矢量之后,视频编码器可输出候选预测运动矢量索引(208)。候选预测运动矢量索引可指示在候选预测运动矢量列表中选定候选预测运动矢量的位置。在一些可行的实施方式中,候选预测运动矢量索引可表示为“merge_idx”。
图6为本申请实施例中高级运动矢量预测(AMVP)模式的一种示例性流程图。视频编码器(例如视频编码器20)可执行AMVP操作210。
在视频编码器开始AMVP操作210之后,视频编码器可产生用于当前PU的一个或多个运动矢量(211)。视频编码器可执行整数运动估计和分数运动估计以产生用于当前PU的运动矢量。如前文所描述,当前图像可与两个参考图像列表(列表0和列表1)相关联。如果当前PU经单向预测,则视频编码器可产生用于当前PU的列表0运动矢量或列表1运动矢量。列表0运动矢量可指示当前PU的图像块与列表0中的参考图像中的参考块之间的空间位移。列表1运动矢量可指示当前PU的图像块与列表1中的参考图像中的参考块之间的空间位移。如果当前PU经双向预测,则视频编码器可产生用于当前PU的列表0运动矢量和列表1运动矢量。
在产生用于当前PU的一个或多个运动矢量之后,视频编码器可产生用于当前PU的预测性图像块(212)。视频编码器可基于由用于当前PU的一个或多个运动矢量指示的一个或多个参考块产生用于当前PU的预测性图像块。
另外,视频编码器可产生用于当前PU的候选预测运动矢量列表(213)。视频解码器可以各种方式产生用于当前PU的候选预测运动矢量列表。举例来说,视频编码器可根据下文关于图8到图12描述的可行的实施方式中的一个或多个产生用于当前PU的候选预测运动矢量列表。在一些可行的实施方式中,当视频编码器在AMVP操作210中产生候选预测运动矢量列表时,候选预测运动矢量列表可限于两个候选预测运动矢量。相比而言,当视频编码器在合并操作中产生候选预测运动矢量列表时,候选预测运动矢量列表可包括更多候选预测运动矢量(例如,五个候选预测运动矢量)。
在产生用于当前PU的候选预测运动矢量列表之后,视频编码器可产生用于候选预测运动矢量列表中的每一候选预测运动矢量的一个或多个运动矢量差(MVD)(214)。视频编码器可通过确定由候选预测运动矢量指示的运动矢量与当前PU的对应运动矢量之间的差来产生用于候选预测运动矢量的运动矢量差。
如果当前PU经单向预测,则视频编码器可产生用于每一候选预测运动矢量的单一MVD。如果当前PU经双向预测,则视频编码器可产生用于每一候选预测运动矢量的两个MVD。第一MVD可指示候选预测运动矢量的运动矢量与当前PU的列表0运动矢量之间的差。第二MVD可指示候选预测运动矢量的运动矢量与当前PU的列表1运动矢量之间的差。
视频编码器可从候选预测运动矢量列表选择候选预测运动矢量中的一个或多个(215)。视频编码器可以各种方式选择一个或多个候选预测运动矢量。举例来说,视频编码器可选择具有最小误差地匹配待编码的运动矢量的相关联运动矢量的候选预测运动矢量,此可减少表示用于候选预测运动矢量的运动矢量差所需的位数目。
在选择一个或多个候选预测运动矢量之后,视频编码器可输出用于当前PU的一个或多个参考图像索引、一个或多个候选预测运动矢量索引,和用于一个或多个选定候选预测运动矢量的一个或多个运动矢量差(216)。
在当前图像与两个参考图像列表(列表0和列表1)相关联且当前PU经单向预测的例子中,视频编码器可输出用于列表0的参考图像索引(“ref_idx_10”)或用于列表1的参考图像索引(“ref_idx_11”)。视频编码器还可输出指示用于当前PU的列表0运动矢量的选定候选预测运动矢量在候选预测运动矢量列表中的位置的候选预测运动矢量索引(“mvp_10_flag”)。或者,视频编码器可输出指示用于当前PU的列表1运动矢量的选定候选预测运动矢量在候选预测运动矢量列表中的位置的候选预测运动矢量索引 (“mvp_11_flag”)。视频编码器还可输出用于当前PU的列表0运动矢量或列表1运动矢量的MVD。
在当前图像与两个参考图像列表(列表0和列表1)相关联且当前PU经双向预测的例子中,视频编码器可输出用于列表0的参考图像索引(“ref_idx_10”)和用于列表1的参考图像索引(“ref_idx_11”)。视频编码器还可输出指示用于当前PU的列表0运动矢量的选定候选预测运动矢量在候选预测运动矢量列表中的位置的候选预测运动矢量索引(“mvp_10_flag”)。另外,视频编码器可输出指示用于当前PU的列表1运动矢量的选定候选预测运动矢量在候选预测运动矢量列表中的位置的候选预测运动矢量索引(“mvp_11_flag”)。视频编码器还可输出用于当前PU的列表0运动矢量的MVD和用于当前PU的列表1运动矢量的MVD。
图7为本申请实施例中由视频解码器(例如视频解码器30)执行的运动补偿的一种示例性流程图。
当视频解码器执行运动补偿操作220时,视频解码器可接收用于当前PU的选定候选预测运动矢量的指示(222)。举例来说,视频解码器可接收指示选定候选预测运动矢量在当前PU的候选预测运动矢量列表内的位置的候选预测运动矢量索引。
如果当前PU的运动信息是使用AMVP模式进行编码且当前PU经双向预测,则视频解码器可接收第一候选预测运动矢量索引和第二候选预测运动矢量索引。第一候选预测运动矢量索引指示用于当前PU的列表0运动矢量的选定候选预测运动矢量在候选预测运动矢量列表中的位置。第二候选预测运动矢量索引指示用于当前PU的列表1运动矢量的选定候选预测运动矢量在候选预测运动矢量列表中的位置。在一些可行的实施方式中,单一语法元素可用以识别两个候选预测运动矢量索引。
另外,视频解码器可产生用于当前PU的候选预测运动矢量列表(224)。视频解码器可以各种方式产生用于当前PU的此候选预测运动矢量列表。举例来说,视频解码器可使用下文参看图8到图12描述的技术来产生用于当前PU的候选预测运动矢量列表。当视频解码器产生用于候选预测运动矢量列表的时间候选预测运动矢量时,视频解码器可显式地或隐式地设定识别包括co-located PU的参考图像的参考图像索引,如前文关于图5所描述。
在产生用于当前PU的候选预测运动矢量列表之后,视频解码器可基于由用于当前PU的候选预测运动矢量列表中的一个或多个选定候选预测运动矢量指示的运动信息确定当前PU的运动信息(225)。举例来说,如果当前PU的运动信息是使用合并模式而编码,则当前PU的运动信息可与由选定候选预测运动矢量指示的运动信息相同。如果当前PU的运动信息是使用AMVP模式而编码,则视频解码器可使用由所述或所述选定候选预测运动矢量指示的一个或多个运动矢量和码流中指示的一个或多个MVD来重建当前PU的一个或多个运动矢量。当前PU的参考图像索引和预测方向标识可与所述一个或多个选定候选预测运动矢量的参考图像索引和预测方向标识相同。在确定当前PU的运动信息之后,视频解码器可基于由当前PU的运动信息指示的一个或多个参考块产生用于当前PU的预测性图像块(226)。
图8为本申请实施例中编码单元(CU)及与其关联的相邻位置图像块的一种示例性示意图,说明CU250和与CU250相关联的示意性的候选预测运动矢量位置252A到252E的示意图。本申请可将候选预测运动矢量位置252A到252E统称为候选预测运动矢量位置252。候选预测运动矢量位置252表示与CU250在同一图像中的空间候选预测运动矢量。候选预 测运动矢量位置252A定位于CU250左方。候选预测运动矢量位置252B定位于CU250上方。候选预测运动矢量位置252C定位于CU250右上方。候选预测运动矢量位置252D定位于CU250左下方。候选预测运动矢量位置252E定位于CU250左上方。图8为用以提供帧间预测模块121和运动补偿模块162可产生候选预测运动矢量列表的方式的示意性实施方式。下文将参考帧间预测模块121解释实施方式,但应理解运动补偿模块162可实施相同技术,且因此产生相同候选预测运动矢量列表。
图9为本申请实施例中构建候选预测运动矢量列表的一种示例性流程图。将参考包括五个候选预测运动矢量的列表描述图9的技术,但本文中所描述的技术还可与具有其它大小的列表一起使用。五个候选预测运动矢量可各自具有索引(例如,0到4)。将参考一般视频解码器描述图9的技术。一般视频解码器示例性的可以为视频编码器(例如视频编码器20)或视频解码器(例如视频解码器30)。
为了根据图9的实施方式重建候选预测运动矢量列表,视频解码器首先考虑四个空间候选预测运动矢量(902)。四个空间候选预测运动矢量可以包括候选预测运动矢量位置252A、252B、252C和252D。四个空间候选预测运动矢量对应于与当前CU(例如,CU250)在同一图像中的四个PU的运动信息。视频解码器可以特定次序考虑列表中的四个空间候选预测运动矢量。举例来说,候选预测运动矢量位置252A可被第一个考虑。如果候选预测运动矢量位置252A可用,则候选预测运动矢量位置252A可指派到索引0。如果候选预测运动矢量位置252A不可用,则视频解码器可不将候选预测运动矢量位置252A包括于候选预测运动矢量列表中。候选预测运动矢量位置可出于各种理由而不可用。举例来说,如果候选预测运动矢量位置不在当前图像内,则候选预测运动矢量位置可能不可用。在另一可行的实施方式中,如果候选预测运动矢量位置经帧内预测,则候选预测运动矢量位置可能不可用。在另一可行的实施方式中,如果候选预测运动矢量位置在与当前CU不同的条带中,则候选预测运动矢量位置可能不可用。
在考虑候选预测运动矢量位置252A之后,视频解码器可接下来考虑候选预测运动矢量位置252B。如果候选预测运动矢量位置252B可用且不同于候选预测运动矢量位置252A,则视频解码器可将候选预测运动矢量位置252B添加到候选预测运动矢量列表。在此特定上下文中,术语“相同”和“不同”指代与候选预测运动矢量位置相关联的运动信息。因此,如果两个候选预测运动矢量位置具有相同运动信息则被视为相同,且如果其具有不同运动信息则被视为不同。如果候选预测运动矢量位置252A不可用,则视频解码器可将候选预测运动矢量位置252B指派到索引0。如果候选预测运动矢量位置252A可用,则视频解码器可将候选预测运动矢量位置252指派到索引1。如果候选预测运动矢量位置252B不可用或与候选预测运动矢量位置252A相同,则视频解码器跳过候选预测运动矢量位置252B且不将其包括于候选预测运动矢量列表中。
候选预测运动矢量位置252C由视频解码器类似地考虑以供包括于列表中。如果候选预测运动矢量位置252C可用且不与候选预测运动矢量位置252B和252A相同,则视频解码器将候选预测运动矢量位置252C指派到下一可用索引。如果候选预测运动矢量位置252C不可用或并非不同于候选预测运动矢量位置252A和252B中的至少一者,则视频解码器不将候选预测运动矢量位置252C包括于候选预测运动矢量列表中。接下来,视频解码器考虑候选预测运动矢量位置252D。如果候选预测运动矢量位置252D可用且不与候选预测运动矢量位置252A、252B和252C相同,则视频解码器将候选预测运动矢量位置252D指派 到下一可用索引。如果候选预测运动矢量位置252D不可用或并非不同于候选预测运动矢量位置252A、252B和252C中的至少一者,则视频解码器不将候选预测运动矢量位置252D包括于候选预测运动矢量列表中。以上实施方式大体上描述示例性地考虑候选预测运动矢量252A到252D以供包括于候选预测运动矢量列表中,但在一些实施方施中,可首先将所有候选预测运动矢量252A到252D添加到候选预测运动矢量列表,稍后从候选预测运动矢量列表移除重复。
在视频解码器考虑前四个空间候选预测运动矢量之后,候选预测运动矢量列表可能包括四个空间候选预测运动矢量或者该列表可能包括少于四个空间候选预测运动矢量。如果列表包括四个空间候选预测运动矢量(904,是),则视频解码器考虑时间候选预测运动矢量(906)。时间候选预测运动矢量可对应于不同于当前图像的图像的co-located PU的运动信息。如果时间候选预测运动矢量可用且不同于前四个空间候选预测运动矢量,则视频解码器将时间候选预测运动矢量指派到索引4。如果时间候选预测运动矢量不可用或与前四个空间候选预测运动矢量中的一者相同,则视频解码器不将所述时间候选预测运动矢量包括于候选预测运动矢量列表中。因此,在视频解码器考虑时间候选预测运动矢量(906)之后,候选预测运动矢量列表可能包括五个候选预测运动矢量(框902处考虑的前四个空间候选预测运动矢量和框904处考虑的时间候选预测运动矢量)或可能包括四个候选预测运动矢量(框902处考虑的前四个空间候选预测运动矢量)。如果候选预测运动矢量列表包括五个候选预测运动矢量(908,是),则视频解码器完成构建列表。
如果候选预测运动矢量列表包括四个候选预测运动矢量(908,否),则视频解码器可考虑第五空间候选预测运动矢量(910)。第五空间候选预测运动矢量可(例如)对应于候选预测运动矢量位置252E。如果位置252E处的候选预测运动矢量可用且不同于位置252A、252B、252C和252D处的候选预测运动矢量,则视频解码器可将第五空间候选预测运动矢量添加到候选预测运动矢量列表,第五空间候选预测运动矢量经指派到索引4。如果位置252E处的候选预测运动矢量不可用或并非不同于候选预测运动矢量位置252A、252B、252C和252D处的候选预测运动矢量,则视频解码器可不将位置252处的候选预测运动矢量包括于候选预测运动矢量列表中。因此在考虑第五空间候选预测运动矢量(910)之后,列表可能包括五个候选预测运动矢量(框902处考虑的前四个空间候选预测运动矢量和框910处考虑的第五空间候选预测运动矢量)或可能包括四个候选预测运动矢量(框902处考虑的前四个空间候选预测运动矢量)。
如果候选预测运动矢量列表包括五个候选预测运动矢量(912,是),则视频解码器完成产生候选预测运动矢量列表。如果候选预测运动矢量列表包括四个候选预测运动矢量(912,否),则视频解码器添加人工产生的候选预测运动矢量(914)直到列表包括五个候选预测运动矢量(916,是)为止。
如果在视频解码器考虑前四个空间候选预测运动矢量之后,列表包括少于四个空间候选预测运动矢量(904,否),则视频解码器可考虑第五空间候选预测运动矢量(918)。第五空间候选预测运动矢量可(例如)对应于候选预测运动矢量位置252E。如果位置252E处的候选预测运动矢量可用且不同于已包括于候选预测运动矢量列表中的候选预测运动矢量,则视频解码器可将第五空间候选预测运动矢量添加到候选预测运动矢量列表,第五空间候选预测运动矢量经指派到下一可用索引。如果位置252E处的候选预测运动矢量不可用或并非不同于已包括于候选预测运动矢量列表中的候选预测运动矢量中的一者,则视频解码 器可不将位置252E处的候选预测运动矢量包括于候选预测运动矢量列表中。视频解码器可接着考虑时间候选预测运动矢量(920)。如果时间候选预测运动矢量可用且不同于已包括于候选预测运动矢量列表中的候选预测运动矢量,则视频解码器可将所述时间候选预测运动矢量添加到候选预测运动矢量列表,所述时间候选预测运动矢量经指派到下一可用索引。如果时间候选预测运动矢量不可用或并非不同于已包括于候选预测运动矢量列表中的候选预测运动矢量中的一者,则视频解码器可不将所述时间候选预测运动矢量包括于候选预测运动矢量列表中。
如果在考虑第五空间候选预测运动矢量(框918)和时间候选预测运动矢量(框920)之后,候选预测运动矢量列表包括五个候选预测运动矢量(922,是),则视频解码器完成产生候选预测运动矢量列表。如果候选预测运动矢量列表包括少于五个候选预测运动矢量(922,否),则视频解码器添加人工产生的候选预测运动矢量(914)直到列表包括五个候选预测运动矢量(916,是)为止。
根据本申请的技术,可在空间候选预测运动矢量和时间候选预测运动矢量之后人工产生额外合并候选预测运动矢量以使合并候选预测运动矢量列表的大小固定为合并候选预测运动矢量的指定数目(例如前文图9的可行的实施方式中的五个)。额外合并候选预测运动矢量可包括示例性的经组合双向预测性合并候选预测运动矢量(候选预测运动矢量1)、经缩放双向预测性合并候选预测运动矢量(候选预测运动矢量2),和零向量Merge/AMVP候选预测运动矢量(候选预测运动矢量3)。
图10为本申请实施例中将经过组合的候选运动矢量添加到合并模式候选预测运动矢量列表的一种示例性示意图。经组合双向预测性合并候选预测运动矢量可通过组合原始合并候选预测运动矢量而产生。具体来说,原始候选预测运动矢量中的两个候选预测运动矢量(其具有mvL0和refIdxL0或mvL1和refIdxL1)可用以产生双向预测性合并候选预测运动矢量。在图10中,两个候选预测运动矢量包括于原始合并候选预测运动矢量列表中。一候选预测运动矢量的预测类型为列表0单向预测,且另一候选预测运动矢量的预测类型为列表1单向预测。在此可行的实施方式中,mvL0_A和ref0是从列表0拾取,且mvL1_B和ref0是从列表1拾取,且接着可产生双向预测性合并候选预测运动矢量(其具有列表0中的mvL0_A和ref0以及列表1中的mvL1_B和ref0)并检查其是否不同于已包括于候选预测运动矢量列表中的候选预测运动矢量。如果其不同,则视频解码器可将双向预测性合并候选预测运动矢量包括于候选预测运动矢量列表中。
图11为本申请实施例中将经过缩放的候选运动矢量添加到合并模式候选预测运动矢量列表的一种示例性示意图。经缩放双向预测性合并候选预测运动矢量可通过缩放原始合并候选预测运动矢量而产生。具体来说,来自原始候选预测运动矢量的一候选预测运动矢量(其可具有mvLX和refIdxLX)可用以产生双向预测性合并候选预测运动矢量。在图11的可行的实施方式中,两个候选预测运动矢量包括于原始合并候选预测运动矢量列表中。一候选预测运动矢量的预测类型为列表0单向预测,且另一候选预测运动矢量的预测类型为列表1单向预测。在此可行的实施方式中,mvL0_A和ref0可从列表0拾取,且ref0可复制到列表1中的参考索引ref0′。接着,可通过缩放具有ref0和ref0′的mvL0_A而计算mvL0′_A。缩放可取决于POC距离。接着,可产生双向预测性合并候选预测运动矢量(其具有列表0中的mvL0_A和ref0以及列表1中的mvL0′_A和ref0′)并检查其是否为重复的。如果其并非重复的,则可将其添加到合并候选预测运动矢量列表。
图12为本申请实施例中将零运动矢量添加到合并模式候选预测运动矢量列表的一种示例性示意图。零向量合并候选预测运动矢量可通过组合零向量与可经参考的参考索引而产生。如果零向量候选预测运动矢量并非重复的,则可将其添加到合并候选预测运动矢量列表。对于每一产生的合并候选预测运动矢量,运动信息可与列表中的前一候选预测运动矢量的运动信息比较。
在一种可行的实施方式中,如果新产生的候选预测运动矢量不同于已包括于候选预测运动矢量列表中的候选预测运动矢量,则将所产生的候选预测运动矢量添加到合并候选预测运动矢量列表。确定候选预测运动矢量是否不同于已包括于候选预测运动矢量列表中的候选预测运动矢量的过程有时称作修剪(pruning)。通过修剪,每一新产生的候选预测运动矢量可与列表中的现有候选预测运动矢量比较。在一些可行的实施方式中,修剪操作可包括比较一个或多个新候选预测运动矢量与已在候选预测运动矢量列表中的候选预测运动矢量和不添加为已在候选预测运动矢量列表中的候选预测运动矢量的重复的新候选预测运动矢量。在另一些可行的实施方式中,修剪操作可包括将一个或多个新候选预测运动矢量添加到候选预测运动矢量列表且稍后从所述列表移除重复候选预测运动矢量。
在本申请的一种可行的实施方式中,在帧间预测中,对待处理图像块的运动信息的预测方法,包括:获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;根据所述目标运动信息,预测所述待处理图像块的运动信息。
在上述图5-7、图9-12等各种可行的实施方式中,空间候选预测模式示例性的来自图8所示的252A至252E的五个位置,即与待处理图像块邻接的位置。在上述图5-7、图9-12等各种可行的实施方式的基础上,在一些可行的实施方式中,空间候选预测模式示例性的还可以包括与待处理图像块相距预设距离以内,但不与待处理图像块邻接的位置。示例性的,该类位置可以如图13中的252F至252J所示。应理解,图13为本申请实施例中编码单元及与其关联的相邻位置图像块的一种示例性示意图。与所待处理图像块处于同一图像帧且处理所述待处理图像块时已完成重建的不与所述待处理图像块相邻的图像块所述的位置均在此类位置的范围内。
不妨将该类位置称为空域非邻接图像块,不妨设其中第一空域非邻接图像块、第二空域非邻接图像块和第三空域非邻接图像块可用,其中“可用”的物理意义可以参考前文所述,不再赘述。同时,不妨设,所述空间候选预测模式取自图8所示的位置的预测模式时,按照如下顺序检查并构建候选预测运动模式列表,应理解,其中,检查包括前文提到的“可用”的检查以及修剪的过程,不再赘述。所述候选预测模式列表,包括:252A位置图像块的运动矢量、252B位置图像块的运动矢量、252C位置图像块的运动矢量、252D位置图像块的运动矢量、由选择性时域运动矢量预测(ATMVP)技术获得的运动矢量、252E位置图像块的运动矢量、由时空运动矢量预测(STMVP)技术获得的运动矢量。其中,ATMVP技术和STMVP技术在JVET-F1001-v2的第2.3.1.1节和第2.3.1.2节中有详细记录,本文将JVET-F1001-v2全文引入于此,不再赘述。应理解,示例性的,所述候选预测模式列表包括以上7个预测运动矢量,根据不同的具体实施方式,所述候选预测模式列表所包含的预测运动矢量的个数可能少于7个,比如取前5个构成所述候选预测模式列表,还可以将前文 所述的图10-12中各可行的实施方式所构建的运动矢量加入到所述候选预测模式列表中,使其包含更多的预测运动矢量。在一种可行的实施方式中,可以将上述第一空域非邻接图像块、第二空域非邻接图像块和第三空域非邻接图像块加入到所述候选预测模式列表中,作为待处理图像块的预测运动矢量。进一步的,不妨设252A位置图像块的运动矢量、252B位置图像块的运动矢量、252C位置图像块的运动矢量、252D位置图像块的运动矢量、由ATMVP技术获得的运动矢量、252E位置图像块的运动矢量、由STMVP技术获得的运动矢量分别为MVL、MVU、MVUR、MVDL、MVA、MVUL、MVS,设第一空域非邻接图像块、第二空域非邻接图像块和第三空域非邻接图像块的运动矢量分别为MV0、MV1、MV2,则可以按照如下顺序检查并构建候选预测运动矢量列表:
示例1:MVL、MVU、MVUR、MVDL、MV0、MV1、MV2、MVA、MVUL、MVS;
示例2:MVL、MVU、MVUR、MVDL、MVA、MV0、MV1、MV2、MVUL、MVS;
示例3:MVL、MVU、MVUR、MVDL、MVA、MVUL、MV0、MV1、MV2、MVS;
示例4:MVL、MVU、MVUR、MVDL、MVA、MVUL、MVS、MV0、MV1、MV2;
示例5:MVL、MVU、MVUR、MVDL、MVA、MV0、MVUL、MV1、MVS、MV2;
示例6:MVL、MVU、MVUR、MVDL、MVA、MV0、MVUL、MV1、MV2、MVS;
示例7:MVL、MVU、MVUR、MVDL、MVA、MVUL、MV0、MV1、MV2、MVS;
应理解,上述候选预测运动矢量列表可以用于上文所述的Merge模式或者AMVP模式,或者其它获取待处理图像块的预测运动矢量的预测模式中,可以用于编码端,也可以和对应的编码端保持一致地用于解码端,不作限定,同时,候选预测运动矢量列表中候选预测运动矢量的数量也是预设的,并且在编解码端保持一致,具体的数量不做限定。
应理解,示例1至示例7示例性地给出了几种可行的候选预测运动矢量列表的组成方式,基于空域非邻接图像块的运动矢量,还可以有其他的候选预测运动矢量列表的组成方式以及列表中候选预测运动矢量的排列方式,不作限定。
应理解,不同的空域非邻接图像块的运动矢量(比如,MV0、MV1、MV2)间同样可以具有不同的排列方式,将在后面的实施方式中进行详细描述。
相对于仅采用图8所述的空间候选预测模式的可行的实施方式,同时采用空域非邻接图像块的运动矢量作为待处理块的候选预测模式,利用了更多的空域先验编码信息,提高了编码性能。
图14为本申请实施例中运动矢量预测方法的一种示例性流程图。一种图像块的运动信息的预测方法,用于帧间预测,包括以下步骤:
S1401、获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块。
具体的,如图15所示,图15为本申请实施例中编码单元及与其关联的相邻位置图像块的又一种示例性示意图,在编码或解码待处理图像块之前,该多个空域邻近的图像块已完成重建,即该多个空域邻近的图像块的运动矢量已经确定。当任一该多个空域邻近的图像块不可用时,即为帧内编码块或者超出图像、条带、片边界等情况时,可以在后续操作中排除该图像块,或者,按照预设的规则为该图像块赋予运动矢量,在后续操作中依然使用该图像块。显然,该多个空域邻近的图像块中包括不与该待处理图像块邻接的已确定运动矢量图像块,比如,图15中标记为6-27的像素集合所在的图像块。
在一种可行的实施方式中,图15中标记为1-27的像素集合所在的图像块并不代表前文所述的PU或者CU。下面对图15示例性的进行详细说明。其中,标记为C的大矩形块为待处理图像块。不妨将标记为1-27的小矩形设为基本像素单元,大矩形的长为w个基本像素单元,高为h个基本像素单元,w和h均为正整数,每个小矩形所在的图像块的尺寸和待处理图像块的尺寸相同,基本像素单元可以为一个像素点,也可以为一个4x4的像素集合,也可以为一个4x2的像素集合,也可以为其他大小的像素集合,不作限定。
以待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向,在待处理图像块所在的图像平面上建立虚拟坐标系,则从标记1到标记27,各个小矩形的坐标位置分别为(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
应理解,图15展示了本申请实施例中编码单元及与其关联的相邻位置图像块的一种示例性的可行的实施方式,空域邻近的图像块的数量可以多于27个,也可以少于27个,不作限定。
获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息在图15所对应的实施方式中,即为获取标记为1-27的基本像素单元中的至少一个位置的基本像素单元的运动信息。
相对于仅采用图8所述的空间候选预测模式的可行的实施方式,同时采用空域非邻接图像块的运动矢量作为待处理块的候选预测模式,利用了更多的空域先验编码信息,提高了编码性能。
具体的,获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息的方式,包括:
在一种可行的实施方式中,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。在一些视频压缩标准中,图像是以CTU作为划分单元进行编码的,CTU也称为最大编码单元(LCU),CTU会被进一步划分为CU而进行编码。
具体的,不妨设CTU的长为2倍w,高为2倍h,待处理图像块C位于一个CTU的左上角,则在图15中标记为27、23、19、16、17、21、25的基本像素单元所在的已确定运动矢量图像块所在的CTU的行数和待处理图像块所在CTU的行数为2。当N位2时,标记为27、23、19、16、17、21、25的基本像素单元的运动矢量不能作为待处理图像块的预测运动矢量。
在一些可行的实施方式中,同理,标记为24、20、25、15的基本像素单元的运动矢量也不能作为待处理图像块的预测运动矢量。
在一些可行的实施方式中,同理,标记为18、22、26的基本像素单元的运动矢量也不能作为待处理图像块的预测运动矢量。
对基本像素单元的位置进行一定范围内的限定,可以避免运动矢量的过度存储或者存取操作,在保持一定的编码性能的同时,提高了数据的处理效率。
在一种可行的实施方式中,获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息的顺序,包括:
不妨设,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i为正整数,i不大于M。
具体的,参考图15,以待处理图像块C为中心,标记为3、2、5、1、4的基本像素单元所在的已确定运动矢量图像块为第一组,具有组号1;标记为13、8、7、10、14、11、6、9、12的基本像素单元所在的已确定运动矢量图像块为第二组,具有组号2;标记为25、21、17、16、19、23、27、24、20、15、18、22、26的基本像素单元所在的已确定运动矢量图像块为第三组,具有组号3。
所述获取所述待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息。即,按照第一组,第二组,第三组的顺序依次获取各基本像素单元所在的已确定运动矢量图像块的运动信息。
在一种可行的实施方式中,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述依次获取所述待获取的已确定运动矢量图像块的运动信息,包括:按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
具体的,在同一组内,比较各基本像素单元到待处理图像块中预设基本像素单元的距离,距离越近的基本像素单元所在的已确定运动矢量图像块的运动信息越先获取。不妨设,待处理图像块中的预设基本像素单元位于该图像块的右下角,即虚拟坐标系的原点位置,对于第二组中的运动信息的获取,包括:
1)计算各基本像素单元到原点位置的距离,距离的计算方式为各基本像素单元到原点位置的水平坐标绝对值和竖直坐标绝对值之和。应理解,当预设基本像素单元不为原点时,距离的计算方式为各基本像素单元和预设基本像素单元的水平坐标差值的绝对值和竖直坐标差值的绝对值之和。
其中,标记为13的基本像素单元的距离D13为w+1+2xh,同理,D8为1+2xh,D7为2xh,D10为w+2xh,D14为2xw+2xh,D11为2xw+h,D9为2xw,D6为2xw+1,D12为2xw+h+1。不妨设,w和h相等,则D13为3xh+1,D8为2xh+1,D7为2xh,D10为3xh,D14为4xh,D11为3xh,D9为2xh,D6为2xh+1,D12为3xh+1。
2)按照距离的从近及远依次获取所述待获取的已确定运动矢量图像块的运动信息。其中,当距离相同时按照预测的规则(比如按照从左到右,从上到下的顺序,只需要编解码端一致即可,不作限定),依次获取所述待获取的已确定运动矢量图像块的运动信息。
示例性的,第二组中组内运动信息的获取顺序可以为标记为6、7、9、8、10、11、12、13、14的基本像素单元所在的已确定运动矢量图像块的运动信息。
应理解,根据预设的规则,可以交换距离相同的基本像素单元所在的已确定运动矢量图像块的运动信息的获取顺序,即也可以为标记为7、6、9、8、11、10、12、13、14的基本像素单元所在的已确定运动矢量图像块的运动信息。还可以存在其他的预设规则和对应的获取顺序,不作限定。
按照已确定运动矢量图像块的运动信息与待处理图像块的运动信息的相关性,获取已确定运动矢量图像块的运动信息对待处理图像块的运动信息进行预测,提高了编码的效率。
结合上述两种可行的实施方式,参考图15,示例性的,一种空间候选预测运动矢量的获取顺序为按照标记为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27的基本像素单元的获取顺序依次获取该基本像素单元所在的已确定运动矢量图像块的运动信息。
应理解,示例性的,各候选预测运动矢量的表示方式采用变长编码方式时,顺序靠前的候选预测运动矢量会使用较短的码字编码,顺序靠后的候选预测运动矢量会使用较长的码字编码。因此,恰当地决定候选预测运动矢量的获取顺序有利于选择更好的码字编码策略,提高编码性能。
在一种可行的实施方式中,获取的空间候选预测运动矢量的数量是预设的且编解码端保持一致的,或者是通过码流传输的,即取上述各种可行的实施方式中规定的获取顺序中的前N个运动矢量作为获取的空间候选预测运动矢量,其中N为预设值或者对于解码端来说从码流中解码得到。
在一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,还包括:确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。在另一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,还包括:确定所述待获取的已确定运动矢量图像块的运动信息可用。这两种可行的实施方式对应前文所述的pruning的过程,以及判断已确定运动矢量图像块是否可用的过程,不再赘述。
S1402、获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
当步骤S1401中获取的至少一个已确定运动矢量图像块的运动信息单独作为待处理图像块的候选预测运动信息时,第一标识信息表示从获取的所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;当步骤S1401中获取的至少一个已确定运动矢量图像块的运动信息和其他运动信息(比如前文所述的时域运动信息、人工合成的运动信息,零运动信息等)一起作为待处理图像块的候选预测运动信息时,第一标识信息表示从包括获取的所述至少一个已确定运动矢量图像块的运动信息在内的全部候选预测运动信息中确定目标运动信息。其中,目标运动信息即为最终用于处理所述待处理图像块的预测运动信息。
在一种可行的实施方式中,从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,包括:将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少 两个运动信息的组合作为所述目标运动信息。比如,按照前文中人工合成运动矢量的方法,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息合成为所述目标运动信息。
在一种可行的实施方式中,该步骤用于编码端,用于编码所述待处理图像块,所述获取第一标识信息,包括:从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小,具体的依据码率-失真代价准则,获取最优的候选预测运动矢量的各种可行的实施方式可以参见前文所述,不再赘述。同时,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,还包括:将所述第一标识信息编入码流。
在一种可行的实施方式中,该步骤用于解码端,用于解码所述待处理图像块,所述获取第一标识信息,包括:从码流中解析所述第一标识信息。同时,在所述从码流中解析所述第一标识信息之后,还包括:根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。解码端的步骤是编码端的逆步骤,和编码端保持一致即可,不再赘述。
S1403、根据所述目标运动信息,预测所述待处理图像块的运动信息。
在一种可行的实施方式中,根据所述目标运动信息,预测所述待处理图像块的运动信息,包括:将所述目标运动信息作为所述待处理图像块的运动信息。该实施方式对应于前文所述的Merge预测模式,将目标运动信息直接作为待处理图像块的运动信息,不需要编码或解码(对应于编码端或解码端)运动矢量预测残差值,即MVD,不再赘述。
在一种可行的实施方式中,所述运动信息包括运动矢量,所述根据所述目标运动信息,预测所述待处理图像块的运动信息,包括:获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。该实施方式对应于前文所述的AMVP预测模式,在将目标运动信息作为待处理图像块的预测运动信息的同时,需要编码或解码(对应于编码端或解码端)MVD,将预测运动信息中的预测运动矢量和MVD相加,作为待处理图像块的运动矢量,不再赘述。
应理解,如前文所述,运动信息中还可以包括参考帧的指示信息,其处理方式也按照前文所述,不再赘述。
应理解,在编码端,当使用码率-失真代价准则确定待处理图像块的运动信息时,步骤S1401需要在步骤S1402之前完成,即将获取的待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息作为候选预测运动信息的一个集合(或者一个子集合),从中选择一个候选者作为目标运动信息。
在解码端,步骤S1401和步骤S1402没有时序上的固定先后顺序。在一种可行的实施方式中,可以在S1401获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,即将候选预测运动信息集合构建完成之后,按照S1402从码流中解析的索引值,从构建的候选预测运动信息集合中获取目标运动信息。在一种可行的实施方式中,可以先按照S1402从码流中解析出索引值,再根据索引值获取所要构建的候选预测运动信息集合中候选预测运动信息的个数,当获取的候选预测运动信息的个数足以通过索引值确定目标运动信息时,即在候选预测运动信息集合中目标运动信息以及在集合中排在目标运动信息 之前的候选预测运动信息均已构建完成后,停止构建集合中其他的候选预测运动信息。在一种可行的实施方式中,S1401和S1402还可以并行进行。
图16为本申请实施例中的运动矢量预测装置1600的一种示意性框图。一种图像块的运动信息的预测装置,用于帧间预测,包括:
运动信息获取单元1601,用于获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;
标识信息获取单元1602,用于获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;
预测单元1603,用于根据所述目标运动信息,预测所述待处理图像块的运动信息。
在一种可行的实施方式中,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
在一种可行的实施方式中,N为2。
在一种可行的实施方式中,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述运动信息获取单元1601具体用于:按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
在一种可行的实施方式中,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述运动信息获取单元1601具体用于:按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
在一种可行的实施方式中,所述运动信息获取单元1601具体用于:依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
在一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,所述运动信息获取单元1601还用于:确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
在一种可行的实施方式中,所述运动信息获取单元1601具体用于:获取预设个数的所述已确定运动矢量图像块的运动信息。
在一种可行的实施方式中,所述预测单元1603具体用于:将所述目标运动信息作为所述待处理图像块的运动信息。
在一种可行的实施方式中,所述标识信息获取单元1602还用于获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;所述预测单元1603具体用于将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
在一种可行的实施方式中,所述装置1600用于解码所述待处理图像块,所述标识信息获取单元1602具体用于:从码流中解析所述第一标识信息。
在一种可行的实施方式中,在所述从码流中解析所述第一标识信息之后,所述标识信息获取单元1602还用于:根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
在一种可行的实施方式中,所述装置1600用于编码所述待处理图像块,所述标识信息获取单元1602具体用于:从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
在一种可行的实施方式中,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,所述标识信息获取单元1602还用于:将所述第一标识信息编入码流。
在一种可行的实施方式中,所述标识信息获取单元1602具体用于:将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
相对于仅采用图8所述的空间候选预测模式的可行的实施方式,同时采用空域非邻接图像块的运动矢量作为待处理块的候选预测模式,利用了更多的空域先验编码信息,提高了编码性能。
应理解,在本发明实施例中,已确定运动矢量图像块为在预测待处理图像块时,运动矢量已经确定的图像块,可以是已经完成了重建的图像块或者还未完成重建的图像块,不作限定。
图17为本申请实施例中的运动矢量预测装置1700的另一种示意性框图。一种图像块的运动信息的预测装置,用于帧间预测,包括:处理器1701和耦合于所述处理器的存储器1702;
所述处理器1701用于:获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;根据所述目标运动信息,预测所述待处理图像块的运动信息。
在一种可行的实施方式中,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
在一种可行的实施方式中,N为2。
在一种可行的实施方式中,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述处理器1701具体用于:按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
在一种可行的实施方式中,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述处理器1701具体用于:按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
在一种可行的实施方式中,所述处理器1701具体用于:依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
在一种可行的实施方式中,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,所述处理器1701还用于:确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
在一种可行的实施方式中,所述处理器1701具体用于:获取预设个数的所述已确定运动矢量图像块的运动信息。
在一种可行的实施方式中,所述处理器1701具体用于:将所述目标运动信息作为所述待处理图像块的运动信息。
在一种可行的实施方式中,所述处理器1701还用于:获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
在一种可行的实施方式中,所述装置1700用于解码所述待处理图像块,所述处理器1701具体用于:从码流中解析所述第一标识信息。
在一种可行的实施方式中,在所述从码流中解析所述第一标识信息之后,所述处理器1701还用于:根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
在一种可行的实施方式中,所述装置1700用于编码所述待处理图像块,所述处理器1701具体用于:从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
在一种可行的实施方式中,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,所述处理器1701还用于:将所述第一标识信息编入码流。
在一种可行的实施方式中,所述处理器1701具体用于:将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
相对于仅采用图8所述的空间候选预测模式的可行的实施方式,同时采用空域非邻接图像块的运动矢量作为待处理块的候选预测模式,利用了更多的空域先验编码信息,提高了编码性能。
虽然已关于视频编码器20及视频解码器30描述本申请的特定方面,但应理解,本申请的技术可通过许多其它视频编码和/或编码单元、处理器、处理单元、例如编码器/解码器(CODEC)的基于硬件的编码单元及类似者来应用。此外,应理解,仅作为可行的实施方式而提供关于图5所展示及描述的步骤。即,图5的可行的实施方式中所展示的步骤无需必定按图5中所展示的次序执行,且可执行更少、额外或替代步骤。
此外,应理解,取决于可行的实施方式,本文中所描述的方法中的任一者的特定动作或事件可按不同序列执行,可经添加、合并或一起省去(例如,并非所有所描述的动作或事件为实践方法所必要的)。此外,在特定可行的实施方式中,动作或事件可(例如)经由多线程处理、中断处理或多个处理器来同时而非顺序地执行。另外,虽然出于清楚的目的将本申请的特定方面描述为通过单一模块或单元执行,但应理解,本申请的技术可通过与视频解码器相关联的单元或模块的组合执行。
在一个或多个可行的实施方式中,所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么功能可作为一个或多个指令或代码而存储于计算机可读媒体上或经由计算机可读媒体来传输,且通过基于硬件的处理单元来执行。计算机可读媒体可包含计算机可读存储媒体或通信媒体,计算机可读存储媒体对应于例如数据存储媒体的有形媒体,通信媒体包含促进计算机程序(例如)根据通信协议从一处传送到另一处的任何媒体。
以这个方式,计算机可读媒体示例性地可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)例如信号或载波的通信媒体。数据存储媒体可为可由一个或多个计算机或一个或多个处理器存取以检索用于实施本申请中所描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为可行的实施方式而非限制,此计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用于存储呈指令或数据结构的形式的所要代码且可由计算机存取的任何其它媒体。同样,任何连 接可适当地称作计算机可读媒体。例如,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL),或例如红外线、无线电及微波的无线技术而从网站、服务器或其它远端源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL,或例如红外线、无线电及微波的无线技术包含于媒体的定义中。
然而,应理解,计算机可读存储媒体及数据存储媒体不包含连接、载波、信号或其它暂时性媒体,而替代地针对非暂时性有形存储媒体。如本文中所使用,磁盘及光盘包含紧密光盘(CD)、雷射光盘、光盘、数字多功能光盘(DVD)、软性磁盘及蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘通过雷射以光学方式再现数据。以上各物的组合也应包含于计算机可读媒体的范围内。
可通过例如一个或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它等效集成或离散逻辑电路的一个或多个处理器来执行指令。因此,如本文中所使用,术语“处理器”可指前述结构或适于实施本文中所描述的技术的任何其它结构中的任一者。另外,在一些方面中,可将本文所描述的功能性提供于经配置以用于编码及解码的专用硬件和/或软件模块内,或并入于组合式编码解码器中。同样,技术可完全实施于一个或多个电路或逻辑元件中。
本申请的技术可实施于广泛多种装置或设备中,包含无线手机、集成电路(IC)或IC的集合(例如,芯片组)。本申请中描述各种组件、模块或单元以强调经配置以执行所揭示的技术的装置的功能方面,但未必需要通过不同硬件单元实现。更确切来说,如前文所描述,各种单元可组合于编码解码器硬件单元中或由互操作的硬件单元(包含如前文所描述的一个或多个处理器)结合合适软件和/或固件的集合来提供。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (45)

  1. 一种图像块的运动信息的预测方法,其特征在于,所述运动信息用于帧间预测,包括:
    获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;
    获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;
    根据所述目标运动信息,预测所述待处理图像块的运动信息。
  2. 根据权利要求1所述的方法,其特征在于,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:
    所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,N为2。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述获取所述待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:
    按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
  5. 根据权利要求4所述的方法,其特征在于,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述依次获取所述待获取的已确定运动矢量图像块的运动信息,包括:
    按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
  6. 根据权利要求4或5所述的方法,其特征在于,所述获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:
    依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h), (-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
  7. 根据权利要求4至6任一项所述的方法,其特征在于,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,还包括:
    确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,包括:
    获取预设个数的所述已确定运动矢量图像块的运动信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述根据所述目标运动信息,预测所述待处理图像块的运动信息,包括:
    将所述目标运动信息作为所述待处理图像块的运动信息。
  10. 根据权利要求1至8任一项所述的方法,其特征在于,所述运动信息包括运动矢量,所述根据所述目标运动信息,预测所述待处理图像块的运动信息,包括:
    获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;
    将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法用于解码所述待处理图像块,所述获取第一标识信息,包括:
    从码流中解析所述第一标识信息。
  12. 根据权利要求11所述的方法,其特征在于,在所述从码流中解析所述第一标识信息之后,还包括:
    根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
  13. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法用于编码所述待处理图像块,所述获取第一标识信息,包括:
    从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
  14. 根据权利要求13所述的方法,其特征在于,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,还包括:
    将所述第一标识信息编入码流。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,包括:
    将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
  16. 一种图像块的运动信息的预测装置,其特征在于,所述运动信息用于帧间预测,包括:
    运动信息获取单元,用于获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;
    标识信息获取单元,用于获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;
    预测单元,用于根据所述目标运动信息,预测所述待处理图像块的运动信息。
  17. 根据权利要求16所述的装置,其特征在于,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:
    所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
  18. 根据权利要求17所述的装置,其特征在于,包括:N为2。
  19. 根据权利要求16至18任一项所述的装置,其特征在于,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述运动信息获取单元具体用于:
    按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
  20. 根据权利要求19所述的装置,其特征在于,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述运动信息获取单元具体用于:
    按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
  21. 根据权利要求19或20所述的装置,其特征在于,所述运动信息获取单元具体用于:
    依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
  22. 根据权利要求19至21任一项所述的装置,其特征在于,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,所述运动信息获取单元还用于:
    确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
  23. 根据权利要求16至22任一项所述的装置,其特征在于,所述运动信息获取单元具体用于:
    获取预设个数的所述已确定运动矢量图像块的运动信息。
  24. 根据权利要求16至23任一项所述的装置,其特征在于,所述预测单元具体用于:
    将所述目标运动信息作为所述待处理图像块的运动信息。
  25. 根据权利要求16至23任一项所述的装置,其特征在于,包括:
    所述标识信息获取单元还用于获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;
    所述预测单元具体用于将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
  26. 根据权利要求16至25任一项所述的装置,其特征在于,所述装置用于解码所述待处理图像块,所述标识信息获取单元具体用于:
    从码流中解析所述第一标识信息。
  27. 根据权利要求26所述的装置,其特征在于,在所述从码流中解析所述第一标识信息之后,所述标识信息获取单元还用于:
    根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
  28. 根据权利要求16至25任一项所述的装置,其特征在于,所述装置用于编码所述待处理图像块,所述标识信息获取单元具体用于:
    从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
  29. 根据权利要求28所述的装置,其特征在于,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,所述标识信息获取单元还用于:
    将所述第一标识信息编入码流。
  30. 根据权利要求27至29任一项所述的装置,其特征在于,所述标识信息获取单元具体用于:
    将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
  31. 一种图像块的运动信息的预测装置,其特征在于,所述运动信息用于帧间预测,包括:
    处理器和耦合于所述处理器的存储器;
    所述处理器用于:
    获取待处理图像块所在图像中的至少一个已确定运动矢量图像块的运动信息,所述至少一个已确定运动矢量图像块包括与所述待处理图像块不邻接的已确定运动矢量图像块;
    获取第一标识信息,所述第一标识信息用于从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息;
    根据所述目标运动信息,预测所述待处理图像块的运动信息。
  32. 根据权利要求31所述的装置,其特征在于,所述待处理图像块所在的图像由至少两行编码树单元(CTU)构成,所述待处理图像块的尺寸不大于所述编码树单元的尺寸,包括:
    所述待处理图像块所在的编码树单元在所述图像中所在的行数与所述已确定运动矢量图像块所在的编码树单元在所述图像中所在的行数相差小于N行,其中,N为大于1的整数。
  33. 根据权利要求32所述的装置,其特征在于,包括:N为2。
  34. 根据权利要求31至33任一项所述的装置,其特征在于,所述待处理图像块所在的图像包含M组所述已确定运动矢量图像块,每组所述已确定运动矢量图像块具有一个组号,所述待处理图像块的宽为w,高为h,所述处理器具体用于:
    按照待获取的所述已确定运动矢量图像块具有的所述组号的从小到大的顺序,依次获取所述待获取的已确定运动矢量图像块的运动信息;其中,具有所述组号为i的已确定运动矢量图像块,包括虚拟坐标系中以下坐标位置的像素集合基本单元所在的已确定运动矢量图像块:(-i×w,-i×h),(1+m×w,-i×h),(-m×w,-i×h),(-i×w,-m×h),(-i×w,m×h+1),其中,m取从0到i-1范围内的所有整数,M、i、w、h为正整数,i不大于M,所述虚拟坐标系以所述待处理图像块的右下角像素集合基本单元在所述图像中的位置为原点,以所述待处理图像块的底边界所在的直线为水平坐标轴,向右为水平正方向,以所述待处理图像块的右边界所在的直线为竖直坐标轴,向下为竖直正方向。
  35. 根据权利要求34所述的装置,其特征在于,当至少两个所述待获取的已确定运动矢量图像块具有的所述组号相同时,所述处理器具体用于:
    按照所述至少两个待获取的已确定运动矢量图像块到所述原点的从短到长的距离,依次获取所述至少两个待获取的已确定运动矢量图像块的运动信息,其中,所述距离为所述待获取的已确定运动矢量图像块中一个预设位置像素集合基本单元在所述虚拟坐标系中的水平坐标绝对值和竖直坐标绝对值之和。
  36. 根据权利要求34或35所述的装置,其特征在于,所述处理器具体用于:
    依次获取在所述虚拟坐标系中位于如下坐标位置的像素集合基本单元所在的已确定运动矢量图像块的运动信息:(-w,0),(0,-h),(1,-h),(-w,1),(-w,-h),(-2×w,0),(0,-2×h),(1,-2×h),(-2×w,1),(-w,-2×h),(-2×w,-h),(-2×w,h+1),(w+1,-2×h),(-2×w,-2×h),(-3×w,0),(0,-3×h),(1,-3×h),(-3×w,1),(-w,-3×h),(-3×w,-h),(w+1,-3×h),(-3×w,h+1),(-2×w,-3×h),(-3×w,-2×h),(2×w+1,-3×h),(-3×w,2×h+1),(-3×w,-3×h)。
  37. 根据权利要求34至36任一项所述的装置,其特征在于,在每次所述获取所述待获取的已确定运动矢量图像块的运动信息之前,所述处理器还用于:
    确定所述待获取的已确定运动矢量图像块的运动信息与所有已获取的已确定运动矢量图像块的运动信息不相同。
  38. 根据权利要求31至37任一项所述的装置,其特征在于,所述处理器具体用于:
    获取预设个数的所述已确定运动矢量图像块的运动信息。
  39. 根据权利要求31至38任一项所述的装置,其特征在于,所述处理器具体用于:
    将所述目标运动信息作为所述待处理图像块的运动信息。
  40. 根据权利要求31至38任一项所述的装置,其特征在于,包括:
    所述处理器还用于:
    获取第二标识信息,所述第二标识信息用于指示所述待处理图像块的运动矢量预测残差值;
    将所述目标运动信息中的运动矢量和所述运动矢量预测残差值之和,作为所述待处理图像块的运动矢量。
  41. 根据权利要求31至40任一项所述的装置,其特征在于,所述装置用于解码所述待处理图像块,所述处理器具体用于:
    从码流中解析所述第一标识信息。
  42. 根据权利要求41所述的装置,其特征在于,在所述从码流中解析所述第一标识信息之后,所述处理器还用于:
    根据所述第一标识信息,从所述至少一个已确定运动矢量图像块的运动信息中确定目标运动信息。
  43. 根据权利要求31至40任一项所述的装置,其特征在于,所述装置用于编码所述待处理图像块,所述处理器具体用于:
    从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息,其中,所述目标运动信息编码所述待处理图像块的码率失真代价最小。
  44. 根据权利要求43所述的装置,其特征在于,在所述从所述至少一个已确定运动矢量图像块的运动信息中确定所述目标运动信息之后,所述处理器还用于:
    将所述第一标识信息编入码流。
  45. 根据权利要求42至44任一项所述的装置,其特征在于,所述处理器具体用于:
    将所述至少一个已确定运动矢量图像块的运动信息中的一个作为所述目标运动信息;或者,将所述至少一个已确定运动矢量图像块的运动信息中的至少两个运动信息的组合作为所述目标运动信息。
PCT/CN2017/091298 2017-06-30 2017-06-30 一种帧间预测的方法及装置 WO2019000443A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197038741A KR20200012957A (ko) 2017-06-30 2017-06-30 인터-프레임 예측 방법 및 디바이스
CN201780089962.0A CN110546956B (zh) 2017-06-30 2017-06-30 一种帧间预测的方法及装置
PCT/CN2017/091298 WO2019000443A1 (zh) 2017-06-30 2017-06-30 一种帧间预测的方法及装置
US16/728,264 US11197018B2 (en) 2017-06-30 2019-12-27 Inter-frame prediction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091298 WO2019000443A1 (zh) 2017-06-30 2017-06-30 一种帧间预测的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,264 Continuation US11197018B2 (en) 2017-06-30 2019-12-27 Inter-frame prediction method and apparatus

Publications (1)

Publication Number Publication Date
WO2019000443A1 true WO2019000443A1 (zh) 2019-01-03

Family

ID=64741956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091298 WO2019000443A1 (zh) 2017-06-30 2017-06-30 一种帧间预测的方法及装置

Country Status (4)

Country Link
US (1) US11197018B2 (zh)
KR (1) KR20200012957A (zh)
CN (1) CN110546956B (zh)
WO (1) WO2019000443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163322A (zh) * 2020-01-08 2020-05-15 绍兴文理学院 对基于历史运动矢量的索引进行映射的编码及解码方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141507B (zh) * 2020-01-17 2022-07-15 腾讯科技(深圳)有限公司 视频编解码中的运动信息列表构建方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090491A (zh) * 2006-06-16 2007-12-19 香港科技大学 用于视频压缩的增强的基于块的运动估计算法
CN101911707A (zh) * 2008-01-23 2010-12-08 索尼公司 编码设备、编码方法、解码设备和解码方法
CN103733625A (zh) * 2011-06-14 2014-04-16 三星电子株式会社 用于对运动信息进行编码的方法和设备以及用于对运动信息进行解码的方法和设备
CN104243982A (zh) * 2013-06-15 2014-12-24 浙江大学 一种视频编解码处理方法及装置
CN104602023A (zh) * 2010-08-17 2015-05-06 M&K控股株式会社 帧间预测编码方法
US20160142728A1 (en) * 2013-07-26 2016-05-19 Peking University Shenzhen Graduate School P frame-based multi-hypothesis motion compensation method

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8909498D0 (en) * 1989-04-26 1989-06-14 British Telecomm Motion estimator
CN1143551C (zh) * 1996-05-28 2004-03-24 松下电器产业株式会社 图像预测解码装置
US6519287B1 (en) * 1998-07-13 2003-02-11 Motorola, Inc. Method and apparatus for encoding and decoding video signals by using storage and retrieval of motion vectors
JP4223169B2 (ja) * 1999-03-17 2009-02-12 パナソニック株式会社 動きベクトル検出方法,動きベクトル検出装置,及びデータ記録媒体
KR100680452B1 (ko) * 2000-02-22 2007-02-08 주식회사 팬택앤큐리텔 움직임 벡터 메모리의 갱신방법 및 장치
US7003035B2 (en) * 2002-01-25 2006-02-21 Microsoft Corporation Video coding methods and apparatuses
US7567617B2 (en) * 2003-09-07 2009-07-28 Microsoft Corporation Predicting motion vectors for fields of forward-predicted interlaced video frames
US8503530B2 (en) * 2004-05-27 2013-08-06 Zhourong Miao Temporal classified filtering for video compression
KR101356734B1 (ko) * 2007-01-03 2014-02-05 삼성전자주식회사 움직임 벡터 트랙킹을 이용한 영상의 부호화, 복호화 방법및 장치
WO2008140656A2 (en) * 2007-04-03 2008-11-20 Gary Demos Flowfield motion compensation for video compression
US8693541B2 (en) * 2007-05-24 2014-04-08 Samsung Electronics Co., Ltd System and method of providing motion estimation
JP4886850B2 (ja) * 2007-06-28 2012-02-29 パナソニック株式会社 画像処理装置、画像処理方法、プログラム
US8265144B2 (en) * 2007-06-30 2012-09-11 Microsoft Corporation Innovations in video decoder implementations
JP5286805B2 (ja) * 2008-01-31 2013-09-11 沖電気工業株式会社 動きベクトル検出装置及び方法、動画像符号化装置及び方法、並びに、動画像復号化装置及び方法
US8098733B2 (en) * 2008-03-10 2012-01-17 Neomagic Corp. Multi-directional motion estimation using parallel processors and pre-computed search-strategy offset tables
JP5012647B2 (ja) * 2008-04-30 2012-08-29 ソニー株式会社 画像処理装置およびその方法、並びにプログラム
US20100103323A1 (en) * 2008-10-24 2010-04-29 Ati Technologies Ulc Method, apparatus and software for determining motion vectors
KR101966605B1 (ko) * 2010-09-30 2019-04-05 선 페이턴트 트러스트 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치, 프로그램 및 집적 회로
KR101269116B1 (ko) * 2010-12-14 2013-05-29 엠앤케이홀딩스 주식회사 인터 예측 부호화된 동영상 복호화 방법
US9380314B2 (en) * 2010-12-20 2016-06-28 Texas Instruments Incorporated Pixel retrieval for frame reconstruction
US8902359B1 (en) * 2011-03-08 2014-12-02 Marvell International Ltd. Processor implemented systems and methods for handling of occlusion for frame rate upconversion
JP5979405B2 (ja) * 2011-03-11 2016-08-24 ソニー株式会社 画像処理装置および方法
HUE061192T2 (hu) * 2011-07-15 2023-05-28 Ge Video Compression Llc Minta mátrix kódolás kis késleltetéshez
DK3468197T3 (da) 2011-09-09 2022-05-16 Lg Electronics Inc Fremgangsmåde til interforudsigelse og indretning dertil
JP5849681B2 (ja) * 2011-12-16 2016-02-03 富士通株式会社 符号化装置、復号装置、符号化方法、復号方法、符号化プログラム、及び復号プログラム
CN108322744B (zh) * 2012-01-31 2022-08-30 Vid拓展公司 用于可缩放的高效视频译码(hevc)的参考图片集(rps)信令
JP5514338B2 (ja) * 2012-04-11 2014-06-04 シャープ株式会社 映像処理装置、映像処理方法、テレビジョン受像機、プログラム、及び記録媒体
WO2014058796A1 (en) * 2012-10-08 2014-04-17 Google Inc Method and apparatus for video coding using reference motion vectors
CN103841426B (zh) * 2012-10-08 2017-04-26 华为技术有限公司 用于运动矢量预测的运动矢量列表建立的方法、装置
KR20140124920A (ko) 2013-04-15 2014-10-28 인텔렉추얼디스커버리 주식회사 움직임 벡터 예측을 이용한 비디오 부호화/복호화 방법 및 장치
CN104427345B (zh) * 2013-09-11 2019-01-08 华为技术有限公司 运动矢量的获取方法、获取装置、视频编解码器及其方法
EP3057325A4 (en) * 2013-10-08 2017-05-10 Sharp Kabushiki Kaisha Image decoding device, image coding device, and coded data
JP6149707B2 (ja) * 2013-11-25 2017-06-21 富士通株式会社 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、及び動画像撮影装置
US10142647B2 (en) * 2014-11-13 2018-11-27 Google Llc Alternating block constrained decision mode coding
US11477477B2 (en) * 2015-01-26 2022-10-18 Qualcomm Incorporated Sub-prediction unit based advanced temporal motion vector prediction
KR20180020965A (ko) * 2015-04-27 2018-02-28 엘지전자 주식회사 비디오 신호의 처리 방법 및 이를 위한 장치
US20180160113A1 (en) * 2015-06-05 2018-06-07 Intellectual Discovery Co., Ltd. Method and device for encoding and decoding intra-frame prediction
CN108141609A (zh) * 2015-10-21 2018-06-08 夏普株式会社 预测图像生成装置、图像解码装置以及图像编码装置
US10491906B2 (en) * 2015-11-05 2019-11-26 Mediatek Inc. Method and apparatus for block prediction using variable block-size in image compression
US10368073B2 (en) * 2015-12-07 2019-07-30 Qualcomm Incorporated Multi-region search range for block prediction mode for display stream compression (DSC)
US10462457B2 (en) * 2016-01-29 2019-10-29 Google Llc Dynamic reference motion vector coding mode
US10306258B2 (en) * 2016-01-29 2019-05-28 Google Llc Last frame motion vector partitioning
US10506196B2 (en) * 2017-04-01 2019-12-10 Intel Corporation 360 neighbor-based quality selector, range adjuster, viewport manager, and motion estimator for graphics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090491A (zh) * 2006-06-16 2007-12-19 香港科技大学 用于视频压缩的增强的基于块的运动估计算法
CN101911707A (zh) * 2008-01-23 2010-12-08 索尼公司 编码设备、编码方法、解码设备和解码方法
CN104602023A (zh) * 2010-08-17 2015-05-06 M&K控股株式会社 帧间预测编码方法
CN103733625A (zh) * 2011-06-14 2014-04-16 三星电子株式会社 用于对运动信息进行编码的方法和设备以及用于对运动信息进行解码的方法和设备
CN104243982A (zh) * 2013-06-15 2014-12-24 浙江大学 一种视频编解码处理方法及装置
US20160142728A1 (en) * 2013-07-26 2016-05-19 Peking University Shenzhen Graduate School P frame-based multi-hypothesis motion compensation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163322A (zh) * 2020-01-08 2020-05-15 绍兴文理学院 对基于历史运动矢量的索引进行映射的编码及解码方法

Also Published As

Publication number Publication date
US20200137412A1 (en) 2020-04-30
KR20200012957A (ko) 2020-02-05
US11197018B2 (en) 2021-12-07
CN110546956B (zh) 2021-12-28
CN110546956A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
CN109792532B (zh) 用于视频译码的适应性运动向量精准度
CN111164977B (zh) 视频译码中的仿射预测
KR102184063B1 (ko) 비디오 코딩을 위한 적응 모션 벡터 해상도 시그널링
WO2019120305A1 (zh) 图像块的运动信息的预测方法、装置及编解码器
KR20190054082A (ko) 비디오 코딩에 대한 모션 벡터 코딩
KR20210024165A (ko) 인터 예측 방법 및 장치
JP7386301B2 (ja) 動きベクトル取得方法、装置、コンピュータ・デバイス及び記憶媒体
JP7407741B2 (ja) ビデオ符号化方法および装置
CN109495738B (zh) 一种运动信息的编解码方法和装置
US11394996B2 (en) Video coding method and apparatus
US11197018B2 (en) Inter-frame prediction method and apparatus
CN114125467A (zh) 一种预测运动信息的解码方法及装置
WO2020024275A1 (zh) 一种帧间预测的方法及装置
CN118714303A (zh) 解码视频数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038741

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915728

Country of ref document: EP

Kind code of ref document: A1