WO2019000419A1 - 传输报文的方法、装置和系统 - Google Patents

传输报文的方法、装置和系统 Download PDF

Info

Publication number
WO2019000419A1
WO2019000419A1 PCT/CN2017/091232 CN2017091232W WO2019000419A1 WO 2019000419 A1 WO2019000419 A1 WO 2019000419A1 CN 2017091232 W CN2017091232 W CN 2017091232W WO 2019000419 A1 WO2019000419 A1 WO 2019000419A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
link quality
quality detection
packet
transmission mode
Prior art date
Application number
PCT/CN2017/091232
Other languages
English (en)
French (fr)
Inventor
陈达
张东霞
宋良瑜
黄�俊
张赛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/091232 priority Critical patent/WO2019000419A1/zh
Priority to EP17916034.6A priority patent/EP3637695B1/en
Publication of WO2019000419A1 publication Critical patent/WO2019000419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • Embodiments of the present application relate to the field of communications, and more particularly, to a method, apparatus, and system for transmitting a message.
  • the Hybrid Access technology is a fixed access network (for example, a Digital Subscriber Line (DSL) network) and a mobile access network (for example, a Long Time Evolution (LTE) network) of an end user.
  • DSL Digital Subscriber Line
  • LTE Long Time Evolution
  • An emerging technology for binding (Bonding) to expand user bandwidth For example, the DSL tunnel between the Home Gateway (HG) and the Hybrid Access Aggregation Point (HAAP) is bound to the LTE tunnel as a bandwidth connection through the tunnel binding mechanism, so that the user is up, Downstream traffic is transmitted through two tunnels, DSL and LTE, sharing the bandwidth of the DSL tunnel and the LTE tunnel.
  • HG Home Gateway
  • HAAP Hybrid Access Aggregation Point
  • the HG device determines which transmission mode is used to notify the HAAP device, and the HAAP device switches the transmission mode. . Specifically, the HG device detects a Round-Trip Time (RTT) of the LTE tunnel, and determines a transmission mode according to the RTT of the LTE tunnel. When the RTT is less than the pre-configured threshold, the binding tunnel transmission mode is determined. The RTT is greater than the pre-configured threshold and is determined to be in a single tunnel transmission mode.
  • RTT Round-Trip Time
  • the switching process of the transmission mode is: the transmission mode is determined by the HG device, and then the HG device notifies which mode the HAAP device switches to, and finally the HAAP device performs the handover process, and therefore, the transmission mode is switched.
  • the delay is large.
  • the embodiment of the present invention provides a method, an apparatus, and a system for transmitting a message, which can shorten a handover delay of a transmission mode.
  • the first aspect provides a method for transmitting a packet, where the first network device determines, according to link quality information of at least one tunnel in the first tunnel and the second tunnel, a target transmission mode of the transport service packet.
  • the target transmission mode is a binding tunnel transmission mode or a single tunnel transmission mode, where the binding tunnel transmission mode is to use the first tunnel and the second tunnel to transmit a service packet, where the single tunnel transmission mode is a usage tunnel.
  • the first tunnel transmission service packet where the first tunnel is a fixed network tunnel, and the second tunnel is a mobile network tunnel; the first network device switches the transmission mode used by the current transmission packet to the a target transmission mode; the first network device transmits a service message with the second network device by using the target transmission mode.
  • the first network device may determine, according to link quality information of at least one tunnel between the first network device and the second network device, The target transmission mode of the message transmission between the network devices, after the first network device determines the target transmission mode, the other network device does not need to notify the other network device to switch the transmission mode, but can directly switch the transmission mode, so In the prior art, the switching delay is shortened.
  • the method further includes: determining, by the first network device, link quality information of at least one of the first tunnel and the second tunnel.
  • the link quality information of the at least one tunnel is the link quality information collected by the first network device in real time. Therefore, the HAAP device determines the target according to the link quality information of the at least one tunnel collected in real time.
  • the transmission mode enables timely switching of the transmission mode when the link quality changes.
  • the determining, by the first network device, link quality information of the at least one of the first tunnel and the second tunnel that: the first network device periodically passes Transmitting, by the at least one tunnel, a link quality detection message to the second network device, and receiving, by the second network device, a link quality detection response message that is periodically replied by the at least one tunnel; And determining, by the network device, link quality information of the at least one tunnel according to the link quality detection response packet.
  • the first network device obtains the link quality of the at least one tunnel in real time by using the real-time interaction link quality detection packet and the link quality detection response packet between the first network device and the second network device. And the first network device further determines, according to the link quality information acquired in real time, whether the transmission mode is required to be switched, so that the transmission mode can be switched in time when the transmission mode switching needs to be performed, which is beneficial to avoid the transmission mode. The problem of losing user packets cannot be switched in time.
  • the at least one tunnel includes the first tunnel
  • the link quality detection packet includes a first link quality detection sent by the first network device by using the first tunnel.
  • the packet, the first link quality detection message includes at least one of the following:
  • the number of the packets sent by the first network device by using the first tunnel the number of bytes included in the sent packet, and the time information of sending the first link quality detection packet
  • the link quality detection response message includes a first link quality detection response message that is sent by the second network device by using the first tunnel, where the first link quality detection response message includes at least the following One:
  • the number of the packets received by the second network device by using the first tunnel the number of bytes included in the received packet, and the time information of receiving the first link quality detection packet.
  • the first network device periodically sends the first link quality detection packet through the first tunnel, and receives the first link quality detection response packet by using the first tunnel, and detects the packet according to the first link quality. And detecting, by the first link quality detection response packet, the content of the packet for the link quality detection, to detect the link quality of the first tunnel in real time, and further obtaining the first network device according to the real-time.
  • the link quality information is used to determine whether the transmission mode needs to be switched, so that the transmission mode can be switched in time when the transmission mode is required to be switched, which is beneficial to avoid the problem that the user packet is lost due to the failure of the transmission mode to be switched in time.
  • the first link quality detection message is a first GRE control message
  • the first GRE control message includes a first attribute value pair AVP corresponding to the first tunnel
  • the first AVP is configured to carry the number of packets sent by the first network device by using the first tunnel, the number of bytes included in the sent packet, and the time information of sending the first link quality detection packet. At least one item;
  • the first link quality detection response message is a second GRE control message
  • the second GRE control message includes a second AVP corresponding to the first tunnel
  • the second AVP is used to carry the second network.
  • the device receives at least one of the number of the packets received by the first tunnel, the number of bytes included in the received packet, and the time information of the first link quality detection packet.
  • the first GRE control message and the second GRE control message are real-time GRE control messages, and the first GRE control message and the second GRE control message may be newly added GRE control messages, that is, Adding a GRE control message to implement real-time interaction of the message between the first network device and the second network device, for example, the first network device and the second network device pass the control message and the
  • the corresponding attribute field in the second GRE control message carries the packet content used for link quality detection, so as to implement real-time detection of the link quality of the first tunnel.
  • the first network device and the second network device may also reuse an existing GRE control message to implement real-time monitoring of link quality of the first tunnel, as long as the existing GRE control message is modified.
  • the first network device and the second network device can implement the implementation of the message content for the link quality detection by adopting the existing message format, which is simple and convenient, and is easy to implement.
  • the at least one tunnel includes the second tunnel
  • the link quality detection packet includes a second link quality detection that is sent by the first network device by using the second tunnel.
  • the packet, the second link quality detection packet includes at least one of the following:
  • the number of the packets sent by the first network device by using the second tunnel the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet
  • the link quality detection response message includes a second link quality detection response message that is sent by the second network device by using the second tunnel, where the second link quality detection response message includes at least the following One:
  • the number of the packets received by the second network device by using the second tunnel the number of bytes included in the received packet, and the time information of receiving the second link quality detection packet.
  • the first network device sends a second link quality detection message through the second tunnel, and receives a second link quality detection response message through the second tunnel, according to the second link quality detection message and the
  • the content of the packet for the link quality detection carried in the second link quality detection response packet can detect the link quality of the second tunnel in real time, and further the first network device obtains the link according to the real-time acquisition.
  • the quality information is used to determine whether the transmission mode needs to be switched. Therefore, when the transmission mode switching needs to be performed, the transmission mode can be switched in time, which is beneficial to avoid the problem that the user packet is lost due to the failure of the transmission mode to be switched in time.
  • the second link quality detection message is a third GRE control message, where the third GRE control message includes a third AVP corresponding to the second tunnel, and the third AVP At least one of carrying the number of packets sent by the first network device by using the second tunnel, the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet ;
  • the second link quality detection response message is a fourth GRE control message
  • the fourth GRE control message includes a fourth AVP corresponding to the second tunnel
  • the fourth AVP is used to carry the second network.
  • the device receives at least one of the number of the packets received by the second tunnel, the number of bytes included in the received message, and the time information of the second link quality detection packet.
  • the third GRE control message and the fourth GRE control message are real-time GRE control messages.
  • the third GRE control message and the fourth GRE control message may be newly added GRE control messages, that is,
  • the real-time interaction between the first network device and the second network device may be implemented by adding a GRE control message, where the first network device and the second network device pass the third GRE control message and the The corresponding attribute field in the fourth GRE control message carries the message content used for link quality detection, so as to implement real-time detection of the link quality of the second tunnel.
  • the first network device and the second network device may also reuse an existing GRE control message to implement real-time monitoring of link quality of the second tunnel, as long as the existing GRE control message is modified.
  • the first network device and the second network device can implement the implementation of the message content for the link quality detection by adopting the existing message format, which is simple and convenient, and is easy to implement.
  • the first network device determines, according to the link quality information of the at least one of the first tunnel and the second tunnel, a target transmission mode of the transport service packet, including:
  • the target transmission mode is determined.
  • the transmission parameters such as the throughput, the packet loss rate, and the downlink one-way delay are more reflective of the downlink link status with respect to the RTT. Therefore, the first network device is configured according to the first tunnel and the second tunnel.
  • the at least one of the throughput, the packet loss rate, and the downlink one-way delay determines the target transmission mode, instead of simply determining the target transmission mode according to the RTT, which is beneficial to making the link quality more accurate. Judging, thereby improving the accuracy of the determined transmission mode.
  • the determining, according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the first tunnel and the second tunnel, determining the target transmission mode including:
  • the target transmission mode is the single tunnel transmission mode.
  • the throughput indicator can accurately reflect the link quality of the two tunnels. If the sum of the throughputs of the first tunnel and the second tunnel is greater than the bandwidth threshold of the first tunnel, the link quality of the two tunnels can be determined. The link quality is better than that of a single tunnel. Therefore, transmitting packets through two tunnels is beneficial to improve the user experience. If the sum of the throughputs of the first tunnel and the second tunnel is smaller than the bandwidth threshold of the first tunnel, it may be determined that the link quality of the two tunnels is not as good as the link quality of the single tunnel, and therefore, the report is transmitted through a single tunnel. This helps to avoid the impact of another tunnel on link quality.
  • the determining, according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the first tunnel and the second tunnel, determining the target transmission mode including:
  • the sum of throughputs of the first tunnel and the second tunnel is less than or equal to a bandwidth threshold of the first tunnel, and a difference between downlink unidirectional delays of the first tunnel and the second tunnel is greater than In the case of the first delay threshold, determining that the target transmission mode is the single tunnel transmission mode; or
  • the sum of throughputs of the first tunnel and the second tunnel is less than or equal to a bandwidth threshold of the first tunnel, and a difference between downlink unidirectional delays of the first tunnel and the second tunnel is less than Or equal to the first delay threshold, determining that the target transmission mode is the bound tunnel transmission mode.
  • the first network device may further combine the first tunnel and the case that the sum of the throughputs of the first tunnel and the second tunnel is less than or equal to a bandwidth threshold of the first tunnel.
  • a downlink one-way delay difference of the second tunnel determining which transmission mode is used, if the difference between the downlink one-way delays of the first tunnel and the second tunnel is less than or equal to the first delay threshold.
  • the packet passing the first tunnel and the second tunnel can be successfully saved at the receiving end of the packet. Therefore, the first network device can use the binding transmission mode to transmit the service packet.
  • the downlink unidirectional delay difference between the tunnel and the second tunnel is greater than the first delay threshold.
  • the packet passing the first tunnel and the second tunnel may not be saved at the receiving end of the packet. In this case, the first network device may use a single tunnel transmission mode to transmit service packets.
  • the first network device determines, according to the link quality information of the at least one of the first tunnel and the second tunnel, a target transmission mode of the transport service packet, including:
  • the transmission mode corresponding to the target state is determined as the target transmission mode of the transmission service message.
  • the first network device can obtain the The link quality information of one tunnel is determined, the target state of the state machine is determined, and the service packet is transmitted by using the transmission mode corresponding to the target state, so that the switching mode can be switched in time, that is, the handover delay is shortened.
  • the determining, according to link quality information of the at least one tunnel, determining a target state of the state machine including:
  • Determining a target state of the state machine according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the first tunnel and the second tunnel.
  • the first network device can comprehensively consider the factors such as the throughput of the first tunnel and the second tunnel, the packet loss rate, or the downlink one-way delay, determine the target state of the state machine, and transmit the service by using the transmission mode corresponding to the target state.
  • the message helps to reduce the probability of misjudgment and improve the accuracy of the determined switching mode.
  • the determining, according to link quality information of the at least one tunnel, determining a state of the state machine including:
  • the first network device determines a throughput of the first tunnel and the second tunnel, and a downlink one-way time of the first tunnel and the second tunnel Delay
  • Determining a target state of the state machine according to a throughput of the first tunnel and the second tunnel, and a downlink one-way delay of the first tunnel and the second tunnel.
  • the first network device may determine the link quality information by using the throughput and the downlink one-way delay information, because the first network device can comprehensively consider when determining the transmission mode.
  • the throughput and the downlink one-way delay difference therefore, can make a more accurate judgment on the link quality, which is beneficial to improve the accuracy of the determined transmission mode.
  • the determining the status according to the throughput of the first tunnel and the second tunnel, and the downlink one-way delay of the first tunnel and the second tunnel The target status of the machine, including:
  • a target state of the state machine is a second state if a sum of throughputs of the first tunnel and the second tunnel is greater than a bandwidth threshold of the first tunnel;
  • a target state of the state machine is a third state
  • the target state of the state machine is the first state if the sum of the throughputs of the first tunnel and the second tunnel is not greater than the bandwidth threshold of the first tunnel, and the difference between the downlink one-way delays of the first tunnel and the second tunnel is smaller than Or equal to the first delay threshold, or if the sum of the throughputs of the first tunnel and the second tunnel is lower than the first throughput threshold, determining that the target state of the state machine is the first state .
  • the first state corresponds to a binding transmission mode
  • the second state corresponds to a binding transmission mode
  • the third state corresponds to a single tunnel transmission mode.
  • the first network device switches the state machine to the second state when the overall throughput of the first tunnel and the second tunnel is greater than the bandwidth threshold of the first tunnel, so that the binding tunnel transmission mode is used for reporting.
  • the first network device may further determine the downlink of the first tunnel and the second tunnel, where the overall throughput of the first tunnel and the second tunnel is less than or equal to the bandwidth threshold of the first tunnel.
  • the one-way delay difference is determined according to the downlink one-way delay difference, and if the downlink one-way delay difference is greater than the first delay threshold, the state machine is switched to the third state, thereby performing the single tunnel transmission mode.
  • the first network device maintains the state machine in the first state, and further determines the link state of the two tunnels, thereby determining that Which target state is switched to, and then the corresponding transmission mode can be used for the message transmission.
  • the first network device may use the throughput of the first tunnel and the second tunnel as a primary judgment condition, and the overall throughput of the first tunnel and the second tunnel is greater than the first tunnel.
  • the bandwidth threshold is the best of the link quality of the second tunnel
  • the binding tunnel transmission mode is used to provide users with large bandwidth access services, thereby improving the user experience.
  • the downlink unidirectional delay difference of the first tunnel and the second tunnel is further combined to determine the link quality.
  • the downlink one-way delay difference is greater than the first delay threshold
  • the link quality of the second tunnel is poor
  • the single tunnel transmission mode is adopted, which is beneficial to avoid the link quality in the second tunnel.
  • the packet can use the binding tunnel transmission mode to improve the user experience when the two tunnels are successfully saved.
  • the determining, according to link quality information of the at least one tunnel, determining a target state of the state machine including:
  • the first network device determines throughput of the first tunnel and the second tunnel, and a downlink of the first tunnel and the second tunnel Time delay
  • Determining a target state of the state machine according to a throughput of the first tunnel and the second tunnel, and a downlink one-way delay of the first tunnel and the second tunnel.
  • the target state of the machine includes: if the sum of the throughputs of the first tunnel and the second tunnel is not greater than a bandwidth threshold of the first tunnel, and a downlink order of the first tunnel and the second tunnel Determining that the difference between the delay is greater than the second delay threshold, determining that the target state of the state machine is the first state; or if the sum of the throughputs of the first tunnel and the second tunnel is greater than the first tunnel a bandwidth threshold, determining that the target state of the state machine is the second state; or if the downlink one-way delay difference between the first tunnel and the second tunnel is less than or equal to the second delay threshold, Determining that the target state of the state machine is the second state.
  • the first network device may maintain the second state in a case where the link quality of the second tunnel is superior, thereby using the binding transmission corresponding to the second state.
  • the mode performs the transmission of the service packet. If the link quality of the second tunnel is poor, the mode is switched to the first state, and the link quality is further determined to determine which target state to switch to, thereby using the corresponding transmission.
  • the mode transmits the message.
  • the method further includes: if the state machine is currently in the third state, switching the state machine from the third state to the first state when a preset timer count ends status.
  • the first network device is a hybrid access aggregation node HAAP, for example, the HAAP may be a middle/high end router, a switch device.
  • the second network device is a home gateway HG.
  • the HG may be a medium/low-end router, a switching device, or a customer-premises equipment (CPE).
  • CPE customer-premises equipment
  • the first network device can collect the link quality information of the first tunnel and the second tunnel in real time, and then according to the link quality information of the first tunnel and the second tunnel collected in real time. Determining whether a transfer mode switching is required, so that a timely switching of the transmission mode can be implemented, and the first network device can determine which target transmission mode to use in combination with the throughput, the packet loss rate, or the downlink one-way delay.
  • the determined target transmission mode is more accurate, that is, the method for transmitting a message in the embodiment of the present application can be implemented. Timely and accurate switching of the mode.
  • the second aspect provides a method for transmitting a packet, where the second network device receives a link quality detection packet that is sent by the first network device periodically through at least one of the first tunnel and the second tunnel.
  • the first tunnel is a fixed network tunnel
  • the second tunnel is a mobile network tunnel
  • the second network device periodically returns a link quality detection response message to the first network device by using the at least one tunnel, where the link quality detection response message is used by the first network device to determine A target transmission mode for performing service message transmission between the second network devices.
  • the second network device periodically receives the link quality detection message through the at least one tunnel, and sends the link quality detection response message through the at least one tunnel, and is carried in the link quality detection response message.
  • the content of the packet detected by the link quality so that the first network device can perform the packet content for the link quality detection carried in the link quality detection packet and the link quality detection response packet. And acquiring link quality information of the at least one tunnel in real time.
  • the at least one tunnel includes the first tunnel
  • the link quality detection packet includes a first link quality detection sent by the first network device by using the first tunnel.
  • the packet, the first link quality detection message includes at least one of the following:
  • the number of the packets sent by the first network device by using the first tunnel the number of bytes included in the sent packet, and the time information of sending the first link quality detection packet
  • the link quality detection response message includes a first link quality detection response message that is sent by the second network device by using the first tunnel, where the first link quality detection response message includes at least the following One:
  • the number of the packets received by the second network device by using the first tunnel the number of bytes included in the received packet, and the time information of receiving the first link quality detection packet.
  • the second network device periodically receives the first link quality detection packet by using the first tunnel, and sends the first link quality detection response packet by using the first tunnel, by using the first link quality detection response.
  • the packet carries the content of the packet for the link quality detection, so that the first network device can carry the packet according to the first link quality detection packet and the first link quality detection response packet.
  • the content of the packet used for link quality detection acquires the link quality information of the first tunnel in real time.
  • the first link quality detection message is a first GRE control message
  • the first GRE control message includes a first attribute value pair AVP corresponding to the first tunnel
  • the first AVP is configured to carry the number of packets sent by the first network device by using the first tunnel, the number of bytes included in the sent packet, and the time information of sending the first link quality detection packet. At least one item;
  • the first link quality detection response message is a second GRE control message
  • the second GRE control message includes a second AVP corresponding to the first tunnel
  • the second AVP is used to carry the second network.
  • the device receives at least one of the number of the packets received by the first tunnel, the number of bytes included in the received packet, and the time information of the first link quality detection packet.
  • the first GRE control message and the second GRE control message may be an existing GRE control message, or may be a newly added GRE control message, the first network device and the second The network device can obtain the link quality information of the first tunnel by interacting with the first GRE control message and the second GRE control message in real time.
  • the at least one tunnel includes the second tunnel
  • the link quality detection packet includes a second link quality detection that is sent by the first network device by using the second tunnel.
  • the packet, the second link quality detection packet includes at least one of the following:
  • the number of the packets sent by the first network device by using the second tunnel the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet
  • the link quality detection response message includes a second link quality detection response message that is sent by the second network device by using the second tunnel, where the second link quality detection response message includes at least the following One:
  • the number of the packets received by the second network device by using the second tunnel the number of bytes included in the received packet, and the time information of receiving the second link quality detection packet.
  • the second network device periodically receives the second link quality detection message through the second tunnel, and sends the second link quality detection response message through the second tunnel, by detecting the response in the second link quality
  • the packet carries the content of the packet for the link quality detection, so that the first network device can carry the packet according to the second link quality detection packet and the second link quality detection response packet.
  • the content of the packet used for link quality detection acquires the link quality information of the second tunnel in real time.
  • the second link quality detection message is a third GRE control message, where the third GRE control message includes a third AVP corresponding to the second tunnel, and the third AVP At least one of carrying the number of packets sent by the first network device by using the second tunnel, the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet ;
  • the second link quality detection response message is a fourth GRE control message
  • the fourth GRE control message includes a fourth AVP corresponding to the second tunnel
  • the fourth AVP is used to carry the second network.
  • the device receives at least one of the number of the packets received by the second tunnel, the number of bytes included in the received message, and the time information of the second link quality detection packet.
  • the first network device and the second network device can carry the content of the packet for the link quality detection by using the existing GRE control message, thereby implementing the detection of the link quality of the second tunnel.
  • the existing message format is simple and convenient, and easy to implement.
  • apparatus for transmitting a message the apparatus for performing the method of any of the possible implementations of the first aspect or the first aspect.
  • the apparatus may comprise means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a fourth aspect provides an apparatus for transmitting a message, the apparatus for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • the apparatus may comprise means for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • an apparatus for transmitting a message comprising a memory and a processor for storing instructions for executing instructions stored in the memory and for instructions stored in the memory Executing the method of causing the processor to perform the first aspect or any of the possible implementations of the first aspect.
  • an apparatus for transmitting a message comprising a memory and a processor for storing instructions for executing instructions stored in the memory and for instructions stored in the memory Executing the method of causing the processor to perform the second aspect or any of the possible implementations of the second aspect.
  • the seventh aspect provides an apparatus for transmitting a message, including: a main control board and an interface board.
  • Main control board is used to complete System management, device maintenance, protocol processing and other functions.
  • the interface board is used to provide various service interfaces (for example, POS interface, GE interface, ATM interface, etc.) and implement data packet forwarding.
  • the main control board and the interface board are connected to the system backplane through the system bus to implement interworking.
  • the central processing unit on the interface board is used to control the interface board and communicate with the central processing unit on the main control board.
  • the main control board is configured to perform the method in the first aspect or any possible implementation manner of the first aspect by using the interface board.
  • the eighth aspect provides a system for transmitting a message, comprising: a device for transmitting a message in any of the possible implementations of the third aspect or the third aspect, or any one of the fifth aspect or the fifth aspect Apparatus for transmitting a message in a possible implementation, or apparatus for transmitting a message in any of the possible implementations of the seventh or seventh aspect; and any possible implementation of the fourth or fourth aspect
  • a ninth aspect a computer readable medium storing program code for execution by a network device, the program code comprising any of the possible implementations for performing the first aspect or the first aspect The instructions in the method.
  • a tenth aspect a computer readable medium storing program code for execution by a network device, the program code comprising any of the possible implementations for performing the second aspect or the second aspect The instructions in the method.
  • FIG. 1 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of a method of transmitting a message according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a method of determining link quality information according to an embodiment of the present application.
  • FIG. 4 is a state transition diagram of a state machine in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an apparatus for transmitting a message according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting a message according to another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a message according to still another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting a message according to still another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting a message according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a system for transmitting a message according to an embodiment of the present application.
  • the first tunnel and the second tunnel are established between the first network device and the second network device, where the first tunnel may be a fixed network tunnel, for example,
  • the second tunnel is a mobile network tunnel, for example, an LTE tunnel, where the DSL tunnel may also be called a DSL connection, and the LTE tunnel may also be called an LTE connection.
  • the DSL tunnel and the LTE tunnel may be used.
  • existing tunnel technology for example, Generic Routing Encapsulation (GRE) tunneling technology, or other existing tunneling technologies, or the DSL tunnel and LTE tunnel may also adopt future technologies or standards.
  • GRE Generic Routing Encapsulation
  • the implementation of the tunnel technology is not limited in this embodiment.
  • the first tunnel and the second tunnel only represent two types of tunnels, and the number, type, and the like of the tunnels are not particularly limited.
  • the first tunnel may include one or more DSL tunnels.
  • the second tunnel may also include one or more LTE tunnels.
  • the first tunnel may be a fixed network tunnel, the second tunnel may be a newly defined other type of tunnel in a future technology or standard, or the first tunnel is a future technology or standard, newly defined
  • the other type of tunnel, the second tunnel is a mobile network tunnel, or both the first tunnel and the second tunnel are newly defined tunnel types in the future technology or standard, and the embodiment of the present application only uses the foregoing
  • a tunnel is a fixed network tunnel, and the second tunnel is a mobile network tunnel.
  • the first tunnel is a DSL tunnel
  • the second tunnel is an LTE tunnel. Any limitation should be made to the embodiments of the present application.
  • the first network device and the second network device represent two tunnel port devices that establish a first tunnel and a second tunnel between the two, for example, the first network device is a HAAP device.
  • the second network device is an HG device, that is, the first network device may be a network device on the network side, and the second network device is a network device on the user side.
  • the first tunnel is an LTE tunnel
  • the second tunnel is a DSL tunnel
  • the first network device is a HAAP device
  • the second network device is an HG device. herein.
  • a DSL tunnel and an LTE tunnel are established between the HAAP device and the HG device.
  • the HAAP device and the HG device can transmit service packets only through the DSL tunnel or the LTE tunnel, that is, the single tunnel transmission mode and only transmit through the DSL tunnel.
  • the single tunnel transmission mode may also be referred to as a DSL-only transmission mode.
  • the embodiment of the present application mainly introduces a DSL-only transmission mode in a single tunnel transmission mode, but does not exclude a single tunnel transmission mode. Possible for transmission over LTE tunnels.
  • the HAAP device and the HG device may transmit the service packet through the binding tunnel of the DSL tunnel and the LTE tunnel, that is, transmit the service packet by using the tunnel transmission mode.
  • the HG device determines the transmission mode by transmitting the keep-alive packet through the LTE tunnel and the DSL tunnel, and detecting the Round Trip Time (RTT) of the DSL tunnel and the LTE tunnel, when the DSL tunnel and the LTE are used. If the difference between the RTT of the tunnel is greater than the handover threshold, the single tunnel transmission mode is determined. Otherwise, the binding tunnel transmission mode is determined. Since the RTT parameter cannot accurately reflect the downlink link quality, the RRT small does not necessarily indicate that the link quality is excellent. For example, the RTT is small, and the packet loss rate (PLR) is large. The large RTT does not necessarily mean that the link quality is poor. For example, the RTT is large, but the PLR is small. Therefore, the accuracy of which transmission mode is determined according to the RTT is determined. Lower, that is, the probability of misjudgment is higher.
  • RTT Round Trip Time
  • the embodiment of the present application provides a method, a device, and a system for transmitting a message, which are beneficial to reducing the handover delay of the transmission mode, further reducing the probability of erroneous determination, and improving the reliability of the determined transmission mode.
  • FIG. 2 is a schematic interaction diagram of a method for transmitting a message according to an embodiment of the present application, showing a detailed communication step or operation of the method, but the steps or operations are only examples, and the embodiment of the present application may also Other operations or variations of the various operations of FIG. 2 are performed. Moreover, the various steps in FIG. 2 may be performed in a different order than that presented in FIG. 2, and it is possible that not all operations in FIG. 2 are to be performed.
  • S204 may not be performed.
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting a message according to an embodiment of the present application, which may be used in the system shown in FIG. 1 .
  • the method 200 can include the following:
  • the HG device and the HAAP device transmit a service packet in a source transmission mode, where the source transmission mode is a transmission mode used by the HAAP device and the HG device to transmit a service packet, and the source transmission mode may be Single tunnel transmission mode, or binding tunnel transmission mode.
  • the HAAP device determines link quality information of at least one tunnel between the HAAP device and the HG device.
  • the link quality information of the at least one tunnel may be used by the HAAP device to determine a target transmission mode for performing service message transmission, that is, which transmission mode is used for transmission of service packets, if the determined target transmission mode and the If the source transmission mode is the same, the transmission mode may not be switched, that is, S204 may not be performed. Otherwise, the transmission mode needs to be switched, that is, S204 needs to be performed.
  • the at least one tunnel may include only a DSL tunnel, or only an LTE tunnel, or may also include a DSL tunnel and an LTE tunnel, that is, the HAAP device may only determine link quality information of the DSL tunnel, or It is possible to determine only the link quality information of the LTE tunnel, or to determine the link quality information of the DSL tunnel and the LTE tunnel.
  • the S202 may specifically include: the HAAP device only determines link quality information of the DSL tunnel, or only determines link quality information of the LTE tunnel, or determines link quality information of the DSL tunnel and the LTE tunnel.
  • the S202 may further include:
  • the HAAP device may determine link quality information to be detected according to a transmission mode used by the currently transmitted message.
  • the HAAP device may determine to detect only the link quality information of the DSL tunnel if the source transmission mode is the DSL-only transmission mode, or determine the detection if the source transmission mode is the binding tunnel transmission mode.
  • the HAAP device may determine which link quality information needs to be detected according to the source transmission mode, or may detect the links of the two tunnels regardless of whether the source transmission mode is a single tunnel transmission mode or a binding tunnel transmission mode.
  • the quality information, or only the link quality information of the DSL tunnel or the link quality information of the LTE tunnel, that is, the link quality information to be detected may be related to the source transmission mode, and may not be specifically limited.
  • the link quality information determined by the HAAP device in S202 does not indicate that all the determined link quality information is used, and in S203, When determining the transmission mode based on the link quality information, which link quality information is used may be selected according to actual conditions. That is, the link quality information used in S203 may include part or all of the link quality information determined in S202, that is, the HAAP device may perform the transmission mode judgment using all the link quality information determined in S202, or The transmission mode determination may be performed by using only part of the link quality information, which is not specifically limited in this embodiment of the present application.
  • the link quality information of the DSL tunnel may include at least one of a throughput of the DSL tunnel, a PLR, and a downlink one-way delay; or
  • the link quality downlink of the LTE tunnel may include at least one of a throughput, a packet loss rate, and a downlink one-way delay of the LTE tunnel.
  • the link quality information corresponding to the DSL tunnel and the LTE tunnel may be the same or different, for example, the link quality information of the DSL tunnel may include The throughput of the LTE tunnel and the downlink unidirectional delay, the link quality information of the LTE tunnel may include the throughput of the LTE tunnel and the downlink one-way delay, or the link quality information of the LTE tunnel may include only the The downlink one-way delay of the LTE tunnel, etc., is not specifically limited in this embodiment of the present application.
  • the link quality information corresponding to each of the tunnels is only an example and is not limited.
  • the link quality parameters of the DSL tunnel and the LTE tunnel specifically include which link quality parameters are not limited.
  • the present invention The application embodiment does not specifically limit which target quality parameters of the DSL tunnel and the LTE tunnel are determined by the HAAP device.
  • S202 may specifically include:
  • the HAAP device periodically sends a link quality detection message to the second network device by using the at least one tunnel;
  • the HAAP device may determine the link quality information of the at least one tunnel by using the link quality check packet and the link quality detection response packet with the HG device, and the link quality check message and The content of the packet carried in the link quality detection response packet may be determined according to the link quality information that needs to be determined.
  • the at least one tunnel includes a DSL tunnel
  • the link quality detection packet may include a first link quality detection packet sent by the HAAP device through a DSL tunnel.
  • the foregoing A link quality check message may include at least one of the following:
  • the link quality detection response message includes a first link quality detection response message that is sent back by the HG device by using the DSL tunnel, where the first link quality detection response message includes at least the following One:
  • the number of the packets received by the HG device through the DSL tunnel, the number of bytes included in the received message, and the time information of receiving the first link quality detection message is the number of the packets received by the HG device through the DSL tunnel.
  • the content of the packet carried by the first link quality detection packet and the first link quality detection response packet may be determined according to requirements, which link quality information of the DSL tunnel is determined, for example, if needed Determining the throughput of the DSL tunnel, the first link quality detection response message may include the HG device receiving the DSL tunnel through the DSL tunnel, because the throughput is related to the number of bytes and the time of the packet received by the receiving end.
  • the first link quality detection message may include the HAAP device passing the DSL tunnel
  • the number of the received packets and the time information of the first link quality detection packet, where the first link quality detection response packet may include the number of packets received by the HG device and the received packet. Time information.
  • the link quality detection report The second link quality detection packet sent by the HAAP device by using the LTE tunnel, the second link quality detection packet includes at least one of the following:
  • the link quality detection response message may include a second link quality detection response message that is sent back by the HG device by using the LTE tunnel, where the second link quality detection response message includes the following At least one item:
  • the number of the packets received by the HG device through the LTE tunnel, the number of bytes included in the received packet, and the time information of receiving the second link quality detection packet is the number of the packets received by the HG device through the LTE tunnel, the number of bytes included in the received packet, and the time information of receiving the second link quality detection packet.
  • the content of the packet carried by the second link quality detection packet and the second link quality detection response packet may be determined according to requirements of which link quality information of the LTE tunnel is determined, and details are not described herein again.
  • the link quality detection packet may include the first link quality detection packet and the second link quality detection packet in the foregoing embodiment.
  • the link quality detection response message may include the first link quality detection response message and the second link quality detection response message in the foregoing embodiment.
  • the link quality detection message and the link quality detection response message may be used for communication between the HAAP device and the HG device specified in the existing protocol.
  • An existing message or packet may add an attribute field to an existing message or a message, and include the content of the packet to be carried in the newly added attribute field; or, in the HAAP device, A new message or packet is added between the HG devices, and the content of the packet for the link quality detection is carried by the newly added message or the packet, so that the link quality between the HAAP device and the HG device is detected.
  • the first link quality detection packet may be a first Generic Routing Encapsulation (GRE) control message, where the first GRE control message includes a corresponding DSL tunnel.
  • GRE Generic Routing Encapsulation
  • AVP Attribute Value Pair
  • the first link quality detection response message may be a second GRE control message
  • the second GRE control message includes a second AVP corresponding to the DSL tunnel
  • the second AVP is configured to carry the At least one of the number of the packets received by the HG device, the number of bytes included in the received message, and the time information of receiving the first link quality detection message.
  • the second link quality detection message may be a third GRE control message
  • the third GRE control message includes a third AVP corresponding to the second tunnel
  • the third AVP is configured to carry the At least one of the number of packets sent by the HAAP device, the number of bytes included in the sent packet, and the time information for sending the second link quality check packet;
  • the second link quality detection response message may be a fourth GRE control message, the fourth GRE control message includes a fourth AVP corresponding to the second tunnel, and the fourth AVP is used to carry the HG device. At least one of the number of the packets received by the second tunnel, the number of bytes included in the received message, and the time information of the second link quality check message received.
  • the link quality detection message sent by the HAAP device to the HG device and the link quality detection response message sent by the HG device to the HAAP device may use an existing GRE control message, for example, GRE.
  • GRE Tunnel Setup Request message, GRE tunnel establishment acceptance (GRE Tunnel) The Setup Accept message, the GRE Tunnel Setup Deny message or the GRE Tunnel Notify message, etc., specifically, an attribute field may be added to the existing GRE control message for carrying the link.
  • the existing GRE control message is used to modify the existing GRE control message to be a real-time interactive message type.
  • the GER control message can be sent in real time, so that the link quality information of the tunnel to be detected is obtained in real time.
  • the link quality detection packet and the link quality detection response packet may also be newly added GRE control messages that can be interacted in real time, that is, a new between the HAAP device and the HG device.
  • the GRE control message is added, and the content of the packet for the link quality detection is carried by the newly added GRE control message, thereby implementing the link quality detection function between the HAAP device and the HG device.
  • the first GRE control message sent by the HAAP device through the DSL tunnel, and the third GRE control message sent by using the LTE tunnel may be the same GRE control message, or may be different GRE control.
  • the first GRE control message and the third GRE control message may both be GRE tunnel establishment request messages, or one may be a GRE tunnel establishment request message, and one is a GRE tunnel notification message.
  • the second GRE control message sent by the HG device through the DSL tunnel and the fourth GRE control message sent by the LTE tunnel, for example, the second GRE control message and the fourth GRE control message.
  • An accept message may be established for the GRE tunnel, or one may be an accept message for the GRE tunnel, and one for the GRE tunnel reject message.
  • the first GRE control message sent by the HAAP device through the DSL tunnel, and the third GRE control message sent by the LTE tunnel may include a corresponding Attribute Value Pair (AVP), or an attribute field, for example,
  • the first GRE control message sent by the DSL tunnel may include a first AVP, which is used to carry the content of the packet for performing link quality detection of the DSL tunnel, and the third GRE control message sent by the LTE tunnel may include the third AVP.
  • the first AVP and the third AVP may be different attribute fields, that is, may be carried by the different attribute fields for the DSL tunnel and The content of the message of the link quality detection of the LTE tunnel, or if the first GRE control message and the third control message are different GRE control messages, the first AVP and the third AVP may be the same or different attribute fields. .
  • the second GRE control message sent by the HG device through the DSL tunnel, and the fourth GRE control message sent by the LTE tunnel are also the same, and details are not described herein again.
  • a new GRE control message is introduced by using the GER control message in the same format as the link quality detection message and the link quality detection response message, that is, the newly added GRE control message is used as the
  • the link quality detection packet and the link quality detection response packet can be implemented in a similar manner by using the GER control message in different formats to implement the link quality detection packet and the link quality detection response packet. .
  • the format of the packet header of the newly added GRE control message is as follows:
  • the first two lines of the packet header are GRE headers, which are 8 bytes in total.
  • the first byte of the third line, that is, the Msg Type (message type) is a packet header of the HAAP protocol, and is used to indicate the message of the GRE control message.
  • the value is 8 bytes.
  • the value of the MsgType is 7 to 15 is the reserved value. Therefore, you can select a value from 7 to 15 to indicate that the packet is a link quality check packet or
  • the link quality detection response packet for example, when the Msg Type is set to 10, the packet is a link quality detection packet or a link quality detection response packet, so that the network device can be based on the Msg in the packet header.
  • Type determines the message type of the message.
  • the Attributes encapsulated in the HAAP packet is the AVP of the Type Length Value (TLV) format.
  • TLV Type Length Value
  • Attribute Types For example, you can set different Attribute Types to indicate different tunnels. For example, you can set the Attribute Type to 60 to indicate that the packet is a link quality check packet or link quality check for the DSL tunnel.
  • the response packet has an Attribute Type of 61 indicating that the packet is a link quality detection packet or a link quality detection response packet to the LTE tunnel.
  • Attribute Length and "Attribute Value" corresponding to different Attribute Types are as shown in Table 1:
  • the attribute value field of the attribute type of 60 carries the content of the packet for detecting the link quality of the DSL tunnel
  • the attribute value field of the attribute type of 61 carries the report for detecting the link quality of the LTE tunnel.
  • the attribute value field of the attribute type 60 or 61 includes multiple sub-AVPs, and each sub-AVP is also in a TLV format, and different sub-AVPs may respectively carry different message contents for link quality detection, for example,
  • the attribute type field is 60.
  • the attribute value field carries the number of packets sent by the HAAP device through the DSL tunnel. For example, TX1 or TX2 in Figure 3.
  • the attribute value field carries the HAAP device.
  • the number of bytes of the packet sent by the DSL tunnel for example, TX_BYTE 1 or TX_BYTE 2 in FIG. 3, when the sub-attribute type is 3, the attribute value field carries the timestamp of the packet sent by the HAAP device through the DSL tunnel, for example, T 0 or T 1 in Fig. 3.
  • the number and the attributes of the sub-AVPs included in different Attribute Types may be the same or different.
  • the embodiment of the present application does not specifically limit the attributes of the multiple sub-AVPs included in different Attribute Types shown in Table 1.
  • the information such as the type and the attribute value is only an example.
  • the embodiment of the present application may also adjust the attribute value field of the AVP according to the link quality information that needs to be detected.
  • the HAAP device and the HG device may send the link quality detection packet and the link through the DSL tunnel in the manner shown in S301 to S304 in FIG. 3 .
  • the quality detection response message or if only the link quality information of the LTE tunnel needs to be determined, the HAAP device and the HG device may send the link quality detection packet through the LTE tunnel according to the manner shown in S301 to S304 in FIG.
  • the link quality detection response message; or, if the link quality information of the DSL tunnel and the LTE tunnel needs to be determined, the HAAP device and the HG device may pass the DSL tunnel and the LTE tunnel according to the manner shown in S301 to S304 in FIG. Sends a link quality check packet and a link quality check response packet.
  • the method for determining the link quality information of the DSL tunnel is used as an example to describe the implementation process of the S301 to S304. It should be understood that determining the link quality information of the LTE tunnel is similar to determining the link quality information of the DSL tunnel, and details are not described herein again.
  • the HAAP device sends a first packet to the HG device by using a DSL tunnel, where the first packet includes the number of bytes of the transmitted packet (TX_BYTE1), the number of sent packets (TX1), and the sending station.
  • the time information (T 0 ) of the first message is described.
  • the first packet may correspond to the first link quality detection packet
  • the link quality detection packet sent by the HAAP device and the LTE tunnel may correspond to different attribute fields.
  • the corresponding attribute field is filled in the corresponding attribute field.
  • the DSL tunnel corresponds to the attribute field of the AVP60
  • the LTE tunnel corresponds to the attribute field of the AVP61.
  • the QoS tunnel sends the link quality check packet through the DSL tunnel
  • the HAAP device can fill the attribute field of the AVP60 and send the link quality detection through the LTE tunnel.
  • the message field is filled with the attribute field of the AVP61, and the content of the filled message is determined according to the link quality information that needs to be determined.
  • the HG device replies with a first response message to the HAAP device by using a DSL tunnel, where the first response message includes the number of bytes of the received message (RX_BYTE1), and the number of received packets (RX1) And receiving time information (T 4 ) of the first message.
  • the first response message is used to indicate that the HG device receives the first packet, and the first response packet may correspond to the first link quality detection response packet described in the foregoing.
  • the link quality detection response message replied by the HG device through the DSL tunnel and the LTE tunnel may also correspond to different attribute fields.
  • the HG device replies with the link quality detection response message through the DSL tunnel or the LTE tunnel the corresponding attribute field Fill in the corresponding message content, which will not be described here.
  • the HAAP device sends a second packet to the HG device by using a DSL tunnel, where the second packet includes the number of bytes of the transmitted packet (TX_BYTE2), the number of sent packets (TX2), and the sending station.
  • the time information (T 2 ) of the second message is described.
  • the second packet here is similar to the first packet in the preceding text, and the content of the packet carried in the second packet and the first packet may be the same or different, or the first packet.
  • TX_BYTE1 and TX1 carried in the message and TX_BYTE2 and TX2 carried in the second packet may be the same or different.
  • the HG device replies with a second response packet to the HAAP device by using a DSL tunnel, where the second response packet includes the number of bytes of the received packet (RX_BYTE2), and the number of received packets (RX2) And receiving time information (T 6 ) of the second message.
  • the second response packet is similar to the foregoing first response packet, and is not described here again.
  • the content of the packet carried in the second response packet is used to indicate the receiving of the second packet. happening.
  • the HAAP device may determine the link quality information of the DSL tunnel according to the receiving condition of the packet in the at least two periods. In the following, the HAAP device determines the DSL according to the receiving condition of the packet in the two periods. The throughput and packet loss rate of the tunnel are introduced.
  • the number of bytes of the packet received by the HG device in the next cycle minus the number of bytes of the packet received by the HG device in the previous cycle is multiplied by 8, divided by the time difference between the packets received by the HG device in two cycles. .
  • the number of packets sent by the HAAP device in the next cycle minus the difference between the number of packets sent in the previous cycle, minus the number of packets received by the HG device in the next cycle minus the packets received by the HG device in the previous cycle.
  • the difference between the number and the number of packets sent by the HAAP device in the following cycle minus the difference between the number of packets sent by the HAAP device in the previous cycle.
  • the HAAP device may also calculate link quality information of the LTE tunnel according to the above formula (1) and formula (2).
  • the HAAP device can simultaneously send the first packet through the DSL tunnel and the LTE tunnel, and further determine the downlink one-way delay of the DSL tunnel and the LTE tunnel according to formula (3). Poor T:
  • T 4_ LTE to the LTE tunnel HG apparatus receiving the first packets T 4_ DSL receiving the first packets of the tunnel HG DSL equipment, and sent through the tunnel LTE tunnel DSL
  • the first packet may be the same or different, and is not limited in this embodiment of the present application.
  • the method for calculating the link quality information of the DSL tunnel listed above is only an example and is not limited.
  • the embodiment of the present application does not exclude the use of other methods for calculating the link quality information of the DSL tunnel or the LTE tunnel, as long as the HAAP device is based on the DSL.
  • the link quality information of the tunnel and the at least one tunnel in the LTE tunnel and the determination of the target transmission mode are all within the protection scope of the present application.
  • the HAAP device determines a target transmission mode according to the determined link quality information of the at least one tunnel.
  • the HAAP device may determine the target transmission mode according to the link quality information of the DSL tunnel, or may determine the target transmission mode only according to the link quality information of the LTE tunnel, or may also be based on the LTE tunnel. And the link quality information of the DSL tunnel to determine the target transmission mode.
  • the S203 may specifically include:
  • determining the target transmission mode according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the DSL tunnel and the LTE tunnel.
  • the HAAP device may determine the target transmission mode according to the throughput of the DSL tunnel and the LTE tunnel, or may be based on the throughput of the DSL tunnel and the LTE tunnel, and the downlink one-way delay of the DSL tunnel and the LTE tunnel. Determining the target transmission mode, or determining the target transmission mode according to the throughput of the DSL tunnel and the LTE tunnel, and the packet loss rate of the DSL tunnel.
  • the target transmission mode may be determined according to other link quality parameters of the DSL tunnel and the LTE tunnel, and may be used as long as the transmission parameters of the link quality of the DSL tunnel and the LTE tunnel can be used.
  • the target transmission mode is determined.
  • the throughput, the packet loss rate, and the downlink according to the DSL tunnel and the LTE tunnel Determining the target transmission mode by using at least one of the one-way delays, which may specifically include:
  • the HAAP device determines the target transmission mode according to a sum of throughputs of the DSL tunnel and the LTE tunnel.
  • the HAAP device may determine that the target transmission mode is the bound tunnel transmission mode when a sum of throughputs (ie, overall throughput) of the DSL tunnel and the LTE tunnel is greater than a throughput threshold, in which case The quality of the LTE tunnel can be considered to be excellent, and the user can be served by binding the tunnel to improve the user experience.
  • the HAAP device may determine that the target transmission mode is a DSL-only transmission mode when an overall throughput of the DSL tunnel and the LTE tunnel is less than the throughput threshold.
  • the throughput threshold here may be determined according to a speed limit value of the DSL tunnel or a bandwidth threshold.
  • the throughput threshold is a bandwidth threshold of the DSL tunnel, or the throughput threshold may be a value slightly larger than a bandwidth threshold of the DSL tunnel, etc., and the bandwidth threshold of the DSL tunnel is recorded as BW, then the throughput threshold may be The embodiment of the present application does not specifically limit this, which is BW, or 1.05BW, or 1.1BW.
  • the HAAP device can determine a target transmission mode for transmitting a service packet according to a throughput of the DSL tunnel and the LTE tunnel, and the throughput can accurately reflect the link quality. Therefore, the probability of erroneous determination is reduced relative to simply determining the target transmission mode according to the RTT, and the accuracy of the determined switching mode is improved.
  • the HAAP device may determine to adopt a binding tunnel transmission mode if the throughput of the DSL tunnel and the LTE tunnel is greater than the throughput of the DSL tunnel, otherwise adopt a DSL-only transmission mode.
  • the throughput of the DSL tunnel and the LTE tunnel is greater than the throughput of the DSL tunnel. It can be considered that the addition of the LTE tunnel is beneficial to the shared bandwidth of the DSL tunnel and the LTE tunnel. Therefore, by providing a service to the user by binding the tunnel, the user experience can be improved. Otherwise, the link quality of the LTE tunnel is considered to be poor, and the shared bandwidth of the DSL tunnel and the LTE tunnel is not increased, but the bandwidth of the DSL tunnel is affected.
  • the HAAP device can adopt the DSL-only transmission mode, that is, The LTE tunnel is closed, and only service packets are transmitted through the DSL tunnel, so that the performance of the DSL tunnel is not affected.
  • the HAAP device can adopt the DSL-only transmission mode in the case that the quality of the LTE tunnel is poor, that is, the service packet is transmitted only through the DSL tunnel, thereby ensuring that the performance of the DSL tunnel is not affected.
  • the binding tunnel transmission mode is adopted, that is, the service packet is transmitted through the binding tunnel of the DSL tunnel and the LTE tunnel, thereby improving the user experience.
  • the HAAP device can use the LTE LTE resource or the idle LTE resource to transmit the service packet, thereby facilitating the impact of the service packet transmitted by the LTE tunnel on the service of the mobile network.
  • determining the target transmission mode according to the at least one of a throughput, a packet loss rate, and a downlink one-way delay of the DSL tunnel and the LTE tunnel may specifically include:
  • the sum of the throughputs of the DSL tunnel and the LTE tunnel is less than or equal to the bandwidth threshold of the DSL tunnel, and the difference between the downlink unidirectional delay of the DSL tunnel and the LTE tunnel is greater than the first delay threshold. Determining that the target transmission mode is the single tunnel transmission mode; or
  • the sum of throughputs of the DSL tunnel and the LTE tunnel is less than or equal to a bandwidth threshold of the DSL tunnel, and a difference between downlink unidirectional delays of the DSL tunnel and the LTE tunnel is less than or equal to the first
  • a time delay threshold the target transmission mode is determined to be the bound tunnel transmission mode.
  • the first delay threshold may be determined according to the order-preserving capability of the receiving end of the packet, optionally, the first The one-time delay threshold may be the order-preserving capability of the receiving end, or the first delay threshold may be a value that is slightly larger than the value of the order-preserving capability of the receiving end, etc., which is not specifically limited in this embodiment of the present application.
  • the first delay threshold may be the order-preserving capability of the HG device, that is, the delay difference of the HG device in the DSL tunnel and the LTE tunnel, if HG The order-preserving capability of the device in the DSL tunnel is 100 ms, and the order-preserving capability in the LTE tunnel is 20 ms.
  • the first delay threshold may be 80 ms or greater than 80 ms.
  • the first delay threshold may be the scheduling capability of the HAAP device, that is, the delay time difference between the DSL tunnel and the LTE tunnel of the HAAP device, if HAAP The capacity of the DSL tunnel is 50 ms, and the LTE tunnel is 10 ms.
  • the first delay threshold may be 40 ms or greater than 40 ms.
  • the HAAP device may comprehensively consider the throughput of the DSL tunnel and the LTE tunnel and the downlink one-way delay, and determine the target transmission mode, in the DSL tunnel and the LTE tunnel.
  • the sum of the throughputs is greater than the bandwidth threshold of the DSL tunnel, that is, when the link quality of the LTE tunnel is superior, it is determined that the bundled tunnel transmission mode is used to transmit the service packets.
  • the downlink one-way delay difference between the DSL tunnel and the LTE tunnel may be further combined.
  • the HAAP device can use the binding transmission mode to transmit the service packet, if the downlink unidirectional delay difference between the DSL tunnel and the LTE tunnel is greater than the first delay.
  • the value of the threshold may be that the packets passing through the DSL tunnel and the LTE tunnel may not be saved at the receiving end of the packet. In this case, the HAAP device may use the DSL-only transmission mode to transmit service packets.
  • the HAAP device can determine the target transmission mode for transmitting the service packet by combining the throughput of the DSL tunnel and the LTE tunnel and the downlink one-way delay difference, due to the downlink
  • the delay can more accurately reflect the downlink quality of the LTE tunnel. Therefore, the probability of misjudgment is reduced, that is, the switching mode determined by combining the throughput of the DSL tunnel and the LTE tunnel and the downlink one-way delay difference is more accurate.
  • the throughput of the DSL tunnel and the LTE tunnel and the downlink one-way delay difference are acquired by the HAAP in real time, and the HAAP device can be based on the DSL tunnel and the LTE tunnel collected in real time.
  • the throughput and the downlink one-way delay difference are used to determine whether the transmission mode switching is required. Therefore, the determined handover timing is more timely.
  • the method for transmitting the message in the embodiment of the present application can implement the transmission mode in time. Accurate switching.
  • the HAAP device may also determine the throughput and packet loss ratio of the DSL tunnel and the LTE tunnel, or combine the packet loss rate of the DSL tunnel and the LTE tunnel with the downlink one-way delay.
  • the binding transmission mode is adopted.
  • the HAAP device may determine that the throughput of the DSL tunnel and the LTE tunnel is greater than a certain throughput threshold, and the packet loss rate of the DSL tunnel is less than a certain packet loss rate threshold.
  • Bind tunnel transmission mode is adopted, otherwise the DSL-only transmission mode is adopted; or when the packet loss rate of the DSL tunnel is less than a certain packet loss rate threshold, and the downlink one-way delay difference between the DSL tunnel and the LTE tunnel is less than a certain time In the case of a threshold, the binding tunnel transmission mode is determined, otherwise the DSL-only transmission mode is adopted.
  • the S203 may specifically include:
  • the transmission mode corresponding to the target state of the state machine is determined as the target transmission mode of the transmission service message.
  • the state machine includes a first state and a second state, each state corresponding to a different link quality condition
  • the HAAP device may determine the state machine when the link quality information of the at least one tunnel satisfies the first condition.
  • the target state is a first state, so that the transmission mode corresponding to the first state may be determined as the target transmission mode, or when the link quality information of the at least one tunnel satisfies the second condition, determining a target of the state machine
  • the state is a second state, so that the transmission mode corresponding to the second state may be determined as the target transmission mode, and if the transmission mode corresponding to the first state is a single tunnel transmission mode, the transmission corresponding to the second state
  • the mode is a binding tunneling mode, where the first condition is used to indicate that the link quality of the LTE tunnel or the DSL tunnel is poor, that is, the link quality of one of the DSL tunnel and the LTE tunnel is poor.
  • the second condition can be used to indicate that the overall link quality of the LTE tunnel and the DSL tunnel is better than that of a tunnel. Link quality. Therefore, you can use a binding tunnel to transmit packets to improve the user experience.
  • the first condition may be that the throughput of the DSL tunnel and the LTE tunnel is smaller than the throughput of the DSL tunnel, or the throughput of the DSL tunnel and the LTE tunnel is smaller than the throughput of the LTE tunnel, that is, the link quality of the single tunnel is excellent.
  • the quality of the link is bound to the tunnel. Therefore, the packet transmission may be performed by using a single tunnel with better link quality.
  • the first condition may be that the throughput of the DSL tunnel and the LTE tunnel is greater than the throughput of the DSL tunnel.
  • the throughput of the LTE tunnel, that is, the link quality of the bonded tunnel is better than that of the single tunnel. Therefore, the binding tunnel can be used for packet transmission.
  • determining the target state of the state machine according to the link quality information of the at least one tunnel includes:
  • the HAAP device determines a target state of the state machine according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the DSL tunnel and the LTE tunnel.
  • the HAAP device may also combine at least one of a throughput, a packet loss rate, and a downlink one-way delay of the DSL tunnel, and a throughput, a packet loss rate, and a downlink one-way delay of the LTE tunnel. Determine the target state of the state machine.
  • the HAAP device can comprehensively consider the factors such as the throughput, the packet loss rate, or the downlink one-way delay of the DSL tunnel and the LTE tunnel, and determine the target state of the state machine, and use the target state to correspond.
  • the transmission mode transmits service packets, thereby reducing the probability of misjudgment and improving the accuracy of the determined handover mode.
  • the link quality information is obtained in real time by the HAAP device, and the HAAP device determines, according to the link quality information acquired in real time, whether the transmission mode switching needs to be performed. Therefore, the determined switching timing is more timely, in other words, the present application
  • the method for transmitting a message of the embodiment can implement timely and accurate switching of the transmission mode.
  • the state machine may include the following main indicators:
  • the input state that is, the current state of the state machine, can reflect the transmission mode used by the HAAP device and the HG device to transmit the service packet, that is, the source transmission mode;
  • the input signal may correspond to link quality information of at least one tunnel described above;
  • the output state that is, the target state switched from the input state to the target transmission mode.
  • the state machine for determining the target transmission mode may include multiple states, each state may correspond to one or more switching conditions, and each switching condition is correspondingly switched from one state to The other state needs to meet the condition that the HAAP device can state the state machine when a certain switching condition is met. Switching to the target state corresponding to the switching condition, so that the transmission mode of the target state machine can be used to transmit the service message. For example, if the state machine is currently in the first state, the first state is used. The transmission mode transmits a service packet. When the link quality meets a certain handover condition, the state of the state machine switches to the second state, and the HAAP device switches to use the transmission mode corresponding to the second state to transmit the service packet. .
  • the HAAP device collects link quality information of at least one tunnel in real time and uses it as an input signal of the state machine. When the link quality information of at least one tunnel meets a certain switching condition, the state of the state machine is migrated. The HAAP device can perform the switching of the state of the state machine according to the link quality information of the at least one tunnel in time, thereby performing the switching of the transmission mode, and shortening the handover delay with respect to the switching mechanism of the prior art.
  • the method for transmitting a message in the embodiment of the present application is described by taking the state of the state machine, including the first state, the second state, and the third state as an example.
  • the state machine of an example may also include more states, or fewer states.
  • the one or more switching conditions corresponding to each state may also be adjusted according to specific conditions.
  • the switching conditions 1 to 5 listed in the following embodiments are merely exemplary.
  • the first state is a transition state
  • the second state is a binding state
  • the third state is a penalty.
  • the status is taken as an example to describe the specific implementation process of the HAAP device determining the transmission mode according to the state machine.
  • the transition state corresponds to the binding tunnel transmission mode
  • the binding state corresponds to the binding tunnel transmission mode
  • the penalty state may correspond to the DSL-only transmission mode
  • the penalty state may also be referred to as a DSL-only state.
  • the binding state and the penalty state can be regarded as formal working states.
  • the HAAP device can use the corresponding transmission mode to perform service transmission, and the transition The state can be considered as an intermediate state.
  • the link quality detection is mainly performed to determine which working state to enter.
  • the state machine is currently in a transition state, that is, the HAAP device currently uses the binding tunnel transmission mode or the DSL-only transmission mode to transmit the service packet.
  • the input signal of the state machine may be the link quality information of the DSL tunnel and the LTE tunnel, that is, the HAAP device may determine the output state of the state machine according to the link quality information of the DSL tunnel and the LTE tunnel. That is to determine which working state to switch to.
  • the HAAP device can detect link quality information such as the throughput of the DSL tunnel and the LTE tunnel and the downlink one-way delay according to a certain period, and then combine the links of the DSL tunnel and the LTE tunnel and the downlink one-way delay. Quality information to determine the output state of the state machine.
  • link quality information such as the throughput of the DSL tunnel and the LTE tunnel and the downlink one-way delay according to a certain period
  • the HAAP device may determine that the output state of the state machine is the binding state if the link quality information of the DSL tunnel and the LTE tunnel meets the handover condition 1.
  • the link quality information of the DSL tunnel and the LTE tunnel meets the handover condition 1 and can be used to indicate that the link quality of the LTE tunnel is good. Therefore, the HAAP device can switch the state machine from the transition state to the binding state.
  • the binding tunnel transmission mode corresponding to the binding state is used to transmit service packets, thereby improving the user experience.
  • the handover condition 1 may include that the sum of the throughputs of the DSL tunnel and the LTE tunnel is greater than a speed limit value of the DSL tunnel, or may also be another judgment that can represent the link quality of the LTE tunnel. condition.
  • the HAAP device may determine that the output state of the state machine is a penalty state if the link quality information of the DSL tunnel and the LTE tunnel meets the handover condition 2.
  • the link quality information of the DSL tunnel and the LTE tunnel meets the handover condition 2, and can be used to indicate the LTE tunnel.
  • the quality of the link is poor.
  • the HAAP device can switch the state machine from the transition state to the Punishment state, so that the service message transmission is performed using the DSL-only transmission mode corresponding to the penalty state.
  • the switching condition 2 may include that the overall throughput of the DSL tunnel and the LTE tunnel is not greater than a speed limit value of the DSL tunnel, and a downlink delay difference of the LTE tunnel and the DSL tunnel is greater than the foregoing first time
  • the threshold is extended, or may be other judgment conditions indicating that the link quality of the LTE tunnel is poor.
  • the overall throughput of the DSL tunnel and the LTE tunnel is not greater than the rate limit of the DSL tunnel, and the downlink delay difference of the LTE tunnel and the DSL tunnel is greater than the first delay threshold.
  • the receiving end cannot be guaranteed to succeed, and the LTE tunnel joins make the overall throughput of the two tunnels less than the throughput of the DSL tunnel. Therefore, the HAAP device can shut down the LTE tunnel and only use the DSL tunnel for packets. The transmission is beneficial to avoid the impact of the LTE tunnel on the performance of the DSL tunnel.
  • the HAAP device may determine that the output state of the state machine is a transition state when the link quality information of the DSL tunnel and the LTE tunnel meets the handover condition 3, that is, the state machine resides in a transition state.
  • the handover condition 3 may include that the overall throughput of the DSL tunnel and the LTE tunnel is less than a detection threshold, that is, the overall throughput of the DSL tunnel and the LTE tunnel is too small to make a judgment, the HAAP The device needs to perform link quality detection again, and then judges which state it is switched to.
  • a detection threshold that is, the overall throughput of the DSL tunnel and the LTE tunnel is too small to make a judgment
  • the switching condition 3 may also include that the overall throughput of the DSL tunnel and the LTE tunnel is smaller than the throughput of the DSL tunnel, and the downlink one-way delay difference between the DSL tunnel and the LTE tunnel is less than or equal to the first delay. Threshold value. In this case, the packets transmitted through the two tunnels can be saved at the receiving end of the packet. Therefore, the binding tunnel transmission mode can be used for packet transmission.
  • the HAAP device can switch the state machine to the binding state when the overall throughput of the DSL tunnel and the LTE tunnel is greater than the bandwidth threshold of the DSL tunnel, so that the packet tunneling mode is used to transmit the packet.
  • the HAAP device may further determine the downlink one-way delay difference between the DSL tunnel and the LTE tunnel, according to the downlink one-way time. The lag is used to determine the target state to be switched. If the downlink one-way delay difference is greater than the first delay threshold, the HAAP device switches the state machine to the penalty state, thereby transmitting the message using the DSL-only transmission mode.
  • the link state is maintained and the link quality detection is continued to determine which target state to switch to.
  • the HAAP device can judge the throughput of the DSL tunnel and the LTE tunnel as the main condition, and the overall throughput of the DSL tunnel and the LTE tunnel is greater than the bandwidth threshold of the DSL tunnel, that is, the LTE tunnel.
  • the binding tunnel transmission mode is used to provide users with a large bandwidth access service, thereby improving the user experience.
  • the overall throughput of the DSL tunnel and the LTE tunnel is less than or equal to the bandwidth threshold of the DSL tunnel.
  • the DSL-only transmission mode is adopted, which is beneficial to the case where the downlink one-way delay difference is greater than the first delay threshold.
  • the bonded tunnel transmission mode is adopted, which is beneficial to the case where the downlink one-way delay difference is greater than the first delay threshold.
  • the state machine is in the bound state, that is, the HAAP device currently uses the binding tunnel transmission mode to transmit the service packet.
  • the input signal of the state machine may be the link quality information of the DSL tunnel and the LTE tunnel, that is, the HAAP device can detect the link quality information of the DSL tunnel and the LTE tunnel, and then according to the chain of the DSL tunnel and the LTE tunnel.
  • Road quality information determine the output state of the state machine, that is, determine whether to stay in the current state, or cut Change to another state.
  • the HAAP device may determine that the output state of the state machine is a transition state if the link quality information of the DSL tunnel and the LTE tunnel meets the handover condition 4.
  • the handover condition 4 is used to indicate that the link quality of the LTE tunnel is poor, which may affect the performance of the DSL tunnel. Therefore, the HAAP device may switch the state machine from the bound state to the transition state, further to the link. The quality is judged to determine which target state to switch to.
  • the switching condition 4 may include that a throughput of the DSL tunnel and the LTE tunnel is not greater than a bandwidth threshold of the DSL tunnel, and a downlink one-way delay of the DSL tunnel and the LTE tunnel The difference is greater than the second delay threshold.
  • the second delay threshold may be the same as or different from the foregoing first delay threshold.
  • the HAAP device may set the first delay threshold to be smaller than the second delay threshold, that is, the LTE tunnel link quality in the case that the handover condition 1 is satisfied is better than the handover condition 4 is satisfied.
  • the link quality of the LTE tunnel that is, the requirement that the state machine enters the binding state is higher than the requirement of the binding state, or the difficulty of leaving the binding state is higher than the difficulty of entering the binding state, thereby facilitating Maintain the stability of the state machine.
  • the HAAP determines that the link quality of the LTE tunnel is good according to the detected link quality of the DSL tunnel and the LTE tunnel, the HA can continue to provide the access service of the HA, and the HAAP device can keep the state machine in the Bind state, continue to use the tunneled tunnel mode to transmit service packets.
  • the HAAP device may be when the throughput of the DSL tunnel and the LTE tunnel is greater than the bandwidth threshold of the DSL tunnel, or the difference between the downlink one-way delay of the DSL tunnel and the LTE tunnel is less than or equal to the second delay threshold. When it is determined, it remains in the bound state.
  • the state machine is in a penalty state. In this state, the HAAP device can use the DSL-only transmission mode to transmit packets between the HG device and the HG device.
  • the input signal of the state machine can be a timer, that is, the HAAP device can switch to other states when the timer expires.
  • the HAAP device may determine to switch the state machine to a transition state when the handover condition 5 is met.
  • the switching condition 5 may be that the time in the penalty state reaches the first time threshold. Therefore, the switching condition 5 may be the first time threshold with respect to a timer.
  • the The HAAP can perform link quality detection on the DSL tunnel. After the timer expires, the link quality of the DSL tunnel is directly switched to the transition state.
  • the HAAP device can control the opening or closing of the LTE tunnel according to the state machine, and provide the user experience of the HA through the LTE resource when there is a surplus LTE resource or the idle LTE resource, and only when the LTE resource is not available,
  • the DSL tunnel provides services to help avoid the impact on the services of existing network users.
  • the HG device determines the target transmission mode used for transmitting the service packet, and the HG device determines which transmission mode to use, and then notifies the HAAP device, and then the HAAP device performs tunnel switching.
  • the delay from determining the target transmission mode to switching to the target transmission mode is large.
  • the target transmission mode is determined by the HAAP device. After the HAAP device determines the target transmission mode, the tunnel can be directly switched. Therefore, the handover delay is shortened.
  • the HAAP device can collect the link quality information of the LTE tunnel and the DSL tunnel in real time, and then according to the link quality of the LTE tunnel and the DSL tunnel collected in real time.
  • the quantity information is used to determine whether the transmission mode needs to be switched. Therefore, the transmission mode can be switched in time, and the HAAP device can determine the target transmission mode according to the throughput, the packet loss rate or the downlink one-way delay. Therefore, The determined target transmission mode is more accurate, that is, the method for transmitting a message in the embodiment of the present application can implement timely and accurate switching of the transmission mode.
  • the HAAP device in the case that the link quality of the LTE tunnel is poor, can control to close the LTE tunnel and switch to the DSL-only transmission mode, thereby facilitating avoidance of the LTE tunnel. If the link quality is poor, continue to use the bonded tunnel transmission mode to affect the performance of the DSL tunnel. At the same time, if the link quality of the LTE tunnel is good, the LTE tunnel is enabled to provide access services for the HA. Improve the user experience.
  • the process of determining the target transmission mode by the HAAP device according to the state machine is described above with reference to FIG. 4, after the HAAP device determines the target transmission mode, and further, in S204, the source transmission mode is switched to the target transmission mode.
  • the target transmission mode is used to transmit the service message with the HG device.
  • the HAAP device needs to perform tunnel switching, enable the LTE tunnel, and switch the DSL-only transmission mode to Bind the tunnel transmission mode, or if the source transmission mode is the binding tunnel transmission mode, and the target transmission mode is the DSL-only tunnel transmission mode, the HAAP device needs to perform tunnel switching, close the LTE tunnel, and switch the tunnel transmission mode. For DSL-only transmission mode.
  • the HAAP device may not perform tunnel switching, that is, S204 may not be performed.
  • FIG. 5 is a schematic block diagram of an apparatus 500 for transmitting a message according to an embodiment of the present application.
  • the apparatus 500 is used as a first network device, and includes:
  • the determining module 510 is configured to determine, according to link quality information of the at least one tunnel of the first tunnel and the second tunnel, a target transmission mode of the transport service packet, where the target transmission mode is a binding tunnel transmission mode or a single tunnel transmission a mode, the binding tunnel transmission mode is to use the first tunnel and the second tunnel to transmit a service packet, where the single tunnel transmission mode is to use the first tunnel or the second tunnel to transmit a service packet.
  • the first tunnel is a fixed network tunnel
  • the second tunnel is a mobile network tunnel
  • the switching module 520 is configured to switch a transmission mode used by the current transmission message to the target transmission mode.
  • the communication module 530 is configured to transmit a service message with the second network device by using the target transmission mode.
  • the determining module 510 is further configured to:
  • the communication module 530 is further configured to:
  • the determining module 510 is further configured to:
  • the at least one tunnel includes the first tunnel
  • the link quality detection message includes a first link quality detection message sent by the device by using the first tunnel.
  • the first link quality detection message includes at least one of the following:
  • the link quality detection response message includes a first link quality detection response message that is sent by the second network device by using the first tunnel, where the first link quality detection response message includes at least the following One:
  • the number of the packets received by the second network device by using the first tunnel the number of bytes included in the received packet, and the time information of receiving the first link quality detection packet.
  • the first link quality detection message is a first GRE control message
  • the first GRE control message includes a first attribute value pair AVP corresponding to the first tunnel
  • the first AVP is configured to carry at least one of a number of packets sent by the apparatus by using the first tunnel, a number of bytes included in the sent packet, and time information of sending the first link quality detection packet.
  • the first link quality detection response message is a second GRE control message
  • the second GRE control message includes a second AVP corresponding to the first tunnel
  • the second AVP is used to carry the second network.
  • the device receives at least one of the number of the packets received by the first tunnel, the number of bytes included in the received packet, and the time information of the first link quality detection packet.
  • the at least one tunnel includes the second tunnel
  • the link quality detection message includes a second link quality detection message sent by the device by using the second tunnel.
  • the second link quality detection message includes at least one of the following:
  • the number of the packets sent by the device through the second tunnel the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet;
  • the link quality detection response message includes a second link quality detection response message that is sent by the second network device by using the second tunnel, where the second link quality detection response message includes at least the following One:
  • the number of the packets received by the second network device by using the second tunnel the number of bytes included in the received packet, and the time information of receiving the second link quality detection packet.
  • the second link quality detection message is a third GRE control message
  • the third GRE control message includes a third AVP corresponding to the second tunnel, the third AVP At least one of carrying the number of packets sent by the device by using the second tunnel, the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet;
  • the second link quality detection response message is a fourth GRE control message
  • the fourth GRE control message includes a fourth AVP corresponding to the second tunnel
  • the fourth AVP is used to carry the second network.
  • the device receives at least one of the number of the packets received by the second tunnel, the number of bytes included in the received message, and the time information of the second link quality detection packet.
  • the determining module 510 is specifically configured to:
  • determining the target transmission mode according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the first tunnel and the second tunnel.
  • the determining module 510 is specifically configured to:
  • the target transmission mode is the single tunnel transmission mode.
  • the determining module 510 is specifically configured to:
  • the sum of throughputs of the first tunnel and the second tunnel is less than or equal to a bandwidth threshold of the first tunnel And determining, in the case that the difference between the downlink unidirectional delay of the first tunnel and the second tunnel is greater than the first delay threshold, determining that the target transmission mode is the single tunnel transmission mode; or
  • the sum of throughputs of the first tunnel and the second tunnel is less than or equal to a bandwidth threshold of the first tunnel, and a difference between downlink unidirectional delays of the first tunnel and the second tunnel is less than Or equal to the first delay threshold, determining that the target transmission mode is the bound tunnel transmission mode.
  • the determining module 510 is further configured to:
  • the transmission mode corresponding to the target state is determined as the target transmission mode of the transmission service message.
  • the determining module 510 is further configured to:
  • Determining a target state of the state machine according to at least one of a throughput, a packet loss rate, and a downlink one-way delay of the first tunnel and the second tunnel.
  • the apparatus 500 may correspond to the HAAP apparatus in the method 200 of transmitting a message in the embodiment of the present application, and the foregoing and other operations and/or functions of the respective modules in the apparatus 500 are respectively implemented for The corresponding process corresponding to the HAAP device in 2 is not described here for brevity.
  • FIG. 6 is a schematic block diagram of an apparatus 600 for transmitting a message according to another embodiment of the present application.
  • the apparatus 600 is used as a second network device, and includes:
  • the communication module 610 is configured to receive, by the first network device, a link quality detection message that is sent by using at least one of the first tunnel and the second tunnel, and periodically to the first through the at least one tunnel A network device replies with a link quality detection response message, and the link quality detection response message is used by the first network device to determine a target transmission mode for performing service message transmission with the device.
  • the at least one tunnel includes the first tunnel
  • the link quality detection message includes a first link quality detection that is sent by the first network device by using the first tunnel.
  • the packet, the first link quality detection message includes at least one of the following:
  • the number of the packets sent by the first network device by using the first tunnel the number of bytes included in the sent packet, and the time information of sending the first link quality detection packet
  • the link quality detection response message includes a first link quality detection response message that is returned by the device by using the first tunnel, and the first link quality detection response message includes at least one of the following:
  • the number of the packets received by the device through the first tunnel the number of bytes included in the received message, and the time information of receiving the first link quality detection message.
  • the first link quality detection message is a first GRE control message
  • the first GRE control message includes a first attribute value pair AVP corresponding to the first tunnel
  • the first AVP is configured to carry the number of packets sent by the first network device by using the first tunnel, the number of bytes included in the sent packet, and the time information of sending the first link quality detection packet. At least one item;
  • the first link quality detection response message is a second GRE control message
  • the second GRE control message includes a second AVP corresponding to the first tunnel
  • the second AVP is used to carry the device through the device.
  • the at least one tunnel includes the second tunnel
  • the link quality detection message includes a second link quality detection that is sent by the first network device by using the second tunnel.
  • said second The link quality detection packet includes at least one of the following:
  • the number of the packets sent by the first network device by using the second tunnel the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet
  • the link quality detection response message includes a second link quality detection response message that is returned by the device by using the second tunnel, and the second link quality detection response message includes at least one of the following:
  • the number of packets received by the device through the second tunnel the number of bytes included in the received message, and the time information of receiving the second link quality detection message.
  • the second link quality detection message is a third GRE control message
  • the third GRE control message includes a third AVP corresponding to the second tunnel, the third AVP At least one of carrying the number of packets sent by the first network device by using the second tunnel, the number of bytes included in the sent packet, and the time information of sending the second link quality detection packet ;
  • the second link quality detection response message is a fourth GRE control message
  • the fourth GRE control message includes a fourth AVP corresponding to the second tunnel
  • the fourth AVP is used to carry the device through the device. And the at least one of the number of the packets received by the second tunnel, the number of bytes included in the received packet, and the time information of receiving the second link quality detection packet.
  • the apparatus 600 may correspond to the HG apparatus in the method 200 for transmitting a message in the embodiment of the present application, and the foregoing and other operations and/or functions of the respective modules in the apparatus 600 are respectively implemented for The corresponding flow corresponding to the HG device in 2 is not described here for brevity.
  • the embodiment of the present application further provides an apparatus 700 for transmitting a message, where the apparatus 700 includes a transceiver 710, a processor 720, and a memory 730.
  • the transceiver 710, the processor 720 and the memory 730 are used for storing instructions.
  • the memory 730 is configured to execute instructions stored by the memory 730 to control the transceiver 710 to send and receive signals or information.
  • the memory 730 may be configured in the processor 720 or may be independent of the processor 720.
  • the device 700 may correspond to the HAAP device in the embodiment corresponding to FIG. 2 to FIG. 3, and the processor 720, the transceiver 710, and the like in the device 700 may implement the implementation corresponding to FIG. 2 to FIG.
  • the processor 720 is configured to perform all operations of the determining module 510 and the switching module 520 of the apparatus 500 of FIG.
  • the transceiver 710 is configured to perform all of the operations of the communication module 530 of the apparatus 500 of FIG. For the sake of brevity, it will not be repeated here.
  • the embodiment may also be based on a universal physical server and a virtual first network device implemented by a Network Function Virtualization (NFV) technology, where the virtual first network device may be run according to a chain.
  • the path quality information determines a target transmission mode, and a virtual machine (VM) that switches the currently used transmission mode to the program of the target transmission mode function, the virtual machine being deployed on a hardware device (eg, a physical server) .
  • VM virtual machine
  • a virtual machine is a complete computer system that runs through a software and has full hardware system functionality running in a fully isolated environment.
  • the embodiment of the present application further provides an apparatus 800 for transmitting a message, where the apparatus 800 includes a transceiver 810.
  • the device 800 may further include a processor 820 and a memory 830.
  • the transceiver 810, the processor 820 and the memory 830 are used for storing instructions.
  • the memory 830 is configured to execute instructions stored by the memory 830 to control the transceiver 810 to send and receive signals or information.
  • the memory 830 may be configured in the processor 820 or may be independent of the processor 820.
  • the device 800 may correspond to the HG device in the embodiment corresponding to FIG. 2 to FIG. 3, and
  • the processor 820, the transceiver 810, and the like in the device 800 can implement the functions and/or various steps and methods of the HG device in the embodiment corresponding to FIG. 2 to FIG. 3, and the transceiver 810 can be used. All operations of the communication module 610 of the apparatus 600 of FIG. 6 are performed. For the sake of brevity, it will not be repeated here.
  • the embodiment may also be based on a universal physical server and a virtual second network device implemented by Network Function Virtualization (NFV) technology, where the virtual second network device may be run for use with virtual
  • the first network device cooperates with a virtual machine (VM) that implements a program of the link quality detection function, and the virtual machine is deployed on a hardware device (for example, a physical server).
  • VM virtual machine
  • a virtual machine is a complete computer system that runs through a software and has full hardware system functionality running in a fully isolated environment.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a central processing unit (CPU), the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software in the decoding processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method for transmitting a message disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software in the processor.
  • the software can be located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory.
  • the steps of the above method are completed in combination with the hardware. To avoid repetition, it will not be described in detail here.
  • FIG. 9 is a schematic diagram showing a possible structure of an apparatus for transmitting a message according to an embodiment of the present application.
  • the device 900 includes a main control board 910, an interface board 930, a switching network board 920, and an interface board 940.
  • the main control board 910 is used to complete functions such as system management, device maintenance, and protocol processing.
  • the switching network board 920 is used to complete data exchange between each interface board (also referred to as a line card or a service board).
  • the interface boards 930 and 940 are used to provide various service interfaces (for example, a POS interface, a GE interface, an ATM interface, etc.), and implement forwarding of data packets.
  • the main control board 910, the interface boards 930 and 940, and the switching network board 920 are connected to each other through the system bus to implement interworking.
  • the central processing unit 931 on the interface board 930 is used to control and manage the interface board and communicate with the central processing unit 911 on the main control board 910.
  • the central processing unit 911 on the main control board 910 is configured to send a link quality detection message to the central processing unit 931 on the interface board 930.
  • the central processing unit 931 is configured to use the interface on the physical interface card 933.
  • the network device sends a link quality detection packet; the interface on the physical interface card 933 is configured to receive a link quality detection response message replied by the second network device, and the central processing unit 931 on the interface board 930
  • the central processing unit 911 is configured to send the link quality detection response message to the central processing unit 910 on the main control board 910.
  • the central processing unit 911 on the main control board 910 can be configured to use link quality information according to at least one tunnel.
  • the target transmission mode for transmitting the packet is determined. For the specific process, refer to the related description in the embodiment of FIG. 2 and FIG. 3, and details are not described herein.
  • the central processing unit 911 on the main control board 910 can also be configured to calculate a forwarding entry of the target transmission mode, and deliver the forwarding entry of the target transmission mode to a forwarding entry on the interface board 930.
  • the network processor 932 on the interface board 930 can be used to instruct the lookup forwarding entry 934, and according to the search result, instruct the data message to be forwarded according to the target transmission mode.
  • the operation on the interface board 940 in the embodiment of the present application is consistent with the operation of the interface board 930, and details are not described herein for brevity.
  • the apparatus 900 of this embodiment may correspond to the first network device in the embodiment corresponding to the foregoing FIG. 2 to FIG. 3, and the main control board 910, the interface board 930, and/or 940 in the apparatus 900 may implement the diagram. 2 to the functions of the first network device in the embodiment corresponding to FIG. 3 and/or the various steps implemented, for brevity, no further details are provided herein.
  • the main control board may have one or more blocks, and when there are multiple blocks, the main control board and the standby main control board may be included.
  • the interface board may have one or more blocks. The stronger the data processing capability of the first network device, the more interface boards are provided.
  • the physical interface card on the interface board can also have one or more blocks.
  • the switching network board may not exist, and there may be one or more blocks. When there are multiple blocks, the load sharing redundant backup can be implemented together.
  • the first network device does not need to exchange the network board, and the interface board undertakes the processing function of the service data of the entire system.
  • the first network device may have at least one switching network board, and implement data exchange between multiple interface boards through the switching network board to provide large-capacity data exchange and processing capability. Therefore, the distributed access of the gateway device has greater data access and processing capabilities than the centralized architecture. Which architecture is used depends on the specific network deployment scenario, and is not limited here.
  • the embodiment of the present application further provides a system 1000 for transmitting a message, where the system 1000 includes a device 1010 and a device 1020.
  • the device 1010 corresponds to the device 500, the device 700, and the virtual first network device or device 900 in the embodiment of the present application.
  • the device 1020 corresponds to the device 600, the device 800, or the virtual second network device in the embodiment of the present application.
  • Embodiments of the present application also propose a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the instructions are portable electronic including multiple applications When the device is executed, the portable electronic device can be caused to perform the method of the embodiment shown in Figures 2 to 3.
  • the embodiment of the present application also proposes a computer program product comprising instructions which, when executed by a computer, enable a computer to perform a corresponding flow of the method of the embodiment shown in Figures 2 to 3.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供了一种传输报文的方法、装置和系统,能够缩短传输模式的切换时延,该方法包括:第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,所述目标传输模式为绑定隧道传输模式或单隧道传输模式,所述绑定隧道传输模式为使用所述第一隧道和所述第二隧道传输业务报文,所述单隧道传输模式为使用所述第一隧道传输业务报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;所述第一网络设备将当前传输报文使用的传输模式切换为所述目标传输模式;所述第一网络设备使用所述目标传输模式与第二网络设备传输业务报文。

Description

传输报文的方法、装置和系统 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及传输报文的方法、装置和系统。
背景技术
混合接入(Hybrid Access)技术是将终端用户的固定接入网络(例如,数字用户线路(Digital Subscriber Line,DSL)网络)和移动接入网络(例如,长期演进(Long time Evolution,LTE)网络)进行绑定(Bonding),以扩大用户带宽的一门新兴技术。例如,通过隧道绑定机制将家庭网关(Home gateway,HG)和混合链路聚合节点(Hybrid Access Aggregation Point,HAAP)之间的DSL隧道与LTE隧道绑定为一个带宽连接,使得用户的上、下行流量通过DSL和LTE两个隧道传输,共享DSL隧道与LTE隧道的带宽。
当前技术中,采用绑定隧道传输模式还是单隧道传输模式(例如,DSL-only传输模式)是由HG设备决策的,HG设备确定采用哪种传输模式后通知HAAP设备,由HAAP设备切换传输模式。具体的,HG设备检测LTE隧道的往返时延(Round-Trip Time,RTT),根据LTE隧道的RTT确定采用的传输模式,当RTT小于预配置的阈值时,确定采用绑定隧道传输模式,当RTT大于预配置的阈值,确定采用单隧道传输模式。
也就是说,现有技术中,传输模式的切换过程是:由HG设备确定传输模式,然后由HG设备通知HAAP设备切换至哪个传输模式,最后由HAAP设备执行切换过程,因此,传输模式的切换时延较大。
发明内容
本申请实施例提供一种传输报文的方法、装置和系统,能够缩短传输模式的切换时延。
第一方面,提供了一种传输报文的方法,包括:第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,所述目标传输模式为绑定隧道传输模式或单隧道传输模式,所述绑定隧道传输模式为使用所述第一隧道和所述第二隧道传输业务报文,所述单隧道传输模式为使用所述第一隧道传输业务报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;所述第一网络设备将当前传输报文使用的传输模式切换为所述目标传输模式;所述第一网络设备使用所述目标传输模式与第二网络设备传输业务报文。
因此,本申请实施例的传输报文的方法,所述第一网络设备可以根据所述第一网络设备和所述第二网络设备之间的至少一个隧道的链路质量信息,确定与第二网络设备之间进行报文传输的目标传输模式,所述第一网络设备确定目标传输模式后,不用通知其它网络设备进行传输模式的切换,而是可以直接进行传输模式的切换,因此,相对于现有技术,缩短了切换时延。
在一种可能的实现方式中,所述方法还包括:所述第一网络设备确定所述第一隧道和所述第二隧道中的至少一个隧道的链路质量信息。
其中,所述至少一个隧道的链路质量信息是所述第一网络设备实时采集的链路质量信息,因此,HAAP设备根据实时采集的至少一个隧道的链路质量信息,确定所述目标 传输模式,能够在链路质量发生变化时,实现传输模式的及时切换。
在一种可能的实现方式中,所述第一网络设备确定所述第一隧道和所述第二隧道中的至少一个隧道的链路质量信息,包括:所述第一网络设备周期性地通过所述至少一个隧道向所述第二网络设备发送链路质量检测报文;接收所述第二网络设备周期性地通过所述至少一个隧道回复的链路质量检测响应报文;所述第一网络设备至少根据所述链路质量检测响应报文,确定所述至少一个隧道的链路质量信息。
通过所述第一网络设备和第二网络设备之间实时交互链路质量检测报文和链路质量检测响应报文,能够实现所述第一网络设备实时获取所述至少一个隧道的链路质量信息,进一步所述第一网络设备根据实时获取的链路质量信息,判断是否需要进行传输模式的切换,从而能够在需要进行传输模式切换时,实现传输模式的及时切换,有利于避免由于传输模式不能及时切换导致用户报文丢失的问题。
在一种可能的实现方式中,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述第一网络设备通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述第二网络设备通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
所述第一网络设备周期性地通过第一隧道发送第一链路质量检测报文,以及通过第一隧道接收第一链路质量检测响应报文,根据所述第一链路质量检测报文和所述第一链路质量检测响应报文中携带的用于链路质量检测的报文内容,能够实现实时监测第一隧道的链路质量的检测,进一步所述第一网络设备根据实时获取的链路质量信息,判断是否需要进行传输模式的切换,从而能够在需要进行传输模式切换时,实现传输模式的及时切换,有利于避免由于传输模式不能及时切换导致用户报文丢失的问题。
在一种可能的实现方式中,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
其中,第一GRE控制消息和所述第二GRE控制消息为实时交互的GRE控制消息,所述第一GRE控制消息和所述第二GRE控制消息可以为新增的GRE控制消息,即可以通过新增GRE控制消息实现第一网络设备和第二网络设备之间的报文的实时交互,例如,所述第一网络设备和所述第二网络设备通过在所述第一GRE控制消息和所述第二GRE控制消息中相应的属性字段携带用于链路质量检测的报文内容,从而实现实时检测第一隧道的链路质量。
可选地,所述第一网络设备和所述第二网络设备也可以复用现有的GRE控制消息来实现对第一隧道的链路质量的实时监测,只要将现有的GRE控制消息修改为实时发送的消息即可,所述第一网络设备和所述第二网络设备通过采用现有的消息格式携带用于链路质量检测的报文内容的实现方式,简单方便,易于实现。
在一种可能的实现方式中,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述第一网络设备通过所述第二隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述第二网络设备通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
所述第一网络设备通过第二隧道发送第二链路质量检测报文,以及通过第二隧道接收第二链路质量检测响应报文,根据所述第二链路质量检测报文和所述第二链路质量检测响应报文中携带的用于链路质量检测的报文内容,能够实现实时监测第二隧道的链路质量的检测,进一步所述第一网络设备根据实时获取的链路质量信息,判断是否需要进行传输模式的切换,从而能够在需要进行传输模式切换时,实现传输模式的及时切换,有利于避免由于传输模式不能及时切换导致用户报文丢失的问题。
在一种可能的实现方式中,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
其中,第三GRE控制消息和所述第四GRE控制消息为实时交互的GRE控制消息,例如,所述第三GRE控制消息和所述第四GRE控制消息可以为新增的GRE控制消息,即可以通过新增GRE控制消息实现第一网络设备和第二网络设备之间的报文的实时交互,所述第一网络设备和所述第二网络设备通过在所述第三GRE控制消息和所述第四GRE控制消息中相应的属性字段携带用于链路质量检测的报文内容,从而实现实时检测第二隧道的链路质量。
可选地,所述第一网络设备和所述第二网络设备也可以复用现有的GRE控制消息来实现对第二隧道的链路质量的实时监测,只要将现有的GRE控制消息修改为实时发送的消息即可,所述第一网络设备和所述第二网络设备通过采用现有的消息格式携带用于链路质量检测的报文内容的实现方式,简单方便,易于实现。
在一种可能的实现方式中,所述第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,包括:
根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项, 确定所述目标传输模式。
由于吞吐量、丢包率和下行单向时延等传输参数,相对于RTT,更能够反映下行链路的链路状况,因此,所述第一网络设备根据第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式,而不是简单根据RTT确定所述目标传输模式,有利于对链路质量做出更为准确的判断,从而能够提升确定的传输模式的准确性。
在一种可能的实现方式中,所述根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式,包括:
在所述第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式;或
在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述单隧道传输模式。
由于,吞吐量指标能够准确反映两个隧道的链路质量,若第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值,可以确定两个隧道的链路质量优于单隧道的链路质量,因此,通过两个隧道传输报文有利于提升用户体验。若第一隧道和所述第二隧道的吞吐量之和小于所述第一隧道的带宽阈值,可以确定两个隧道的链路质量还不如单隧道的链路质量,因此,通过单个隧道传输报文,从而有利于避免另一个隧道对链路质量的影响。
在一种可能的实现方式中,所述根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式,包括:
在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差大于第一时延阈值的情况下,确定所述目标传输模式为所述单隧道传输模式;或
在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差小于或等于所述第一时延阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式。
因此,所述第一网络设备在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值的情况下,还可以进一步结合所述第一隧道和所述第二隧道的下行单向时延差,确定采用哪种传输模式,若所述第一隧道和所述第二隧道的下行单向时延之差小于或等于所述第一时延阈值,可以认为通过第一隧道和第二隧道的报文能够在报文的接收端保序成功,因此,可以所述第一网络设备使用绑定传输模式进行业务报文的传输,若所述第一隧道和所述第二隧道的下行单向时延差大于所述第一时延阈值,可以认为通过第一隧道和第二隧道的报文可能不能在报文的接收端保序成功,这种情况下,所述第一网络设备可以使用单隧道传输模式进行业务报文的传输。
在一种可能的实现方式中,所述第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,包括:
根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,所述状态机的每个状态对应相应的传输模式;
将所述目标状态对应的传输模式确定为传输业务报文的所述目标传输模式。
因此,本申请实施例的传输报文的方法,所述第一网络设备能够根据实时获取的至 少一个隧道的链路质量信息,确定状态机的目标状态,使用目标状态对应的传输模式传输业务报文,从而能够实现切换模式的及时切换,即缩短了切换时延。
在一种可能的实现方式中,所述根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,包括:
根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述状态机的目标状态。
因此,所述第一网络设备能够综合考虑第一隧道和第二隧道的吞吐量、丢包率或下行单向时延等因素,确定状态机的目标状态,使用目标状态对应的传输模式传输业务报文,有利于降低误判的概率,提升确定的切换模式的准确性。
在一种可能的实现方式中,所述根据所述至少一个隧道的链路质量信息,确定状态机的状态,包括:
若所述状态机当前处于第一状态,所述第一网络设备确定所述第一隧道和所述第二隧道的吞吐量,以及所述第一隧道和所述第二隧道的下行单向时延;
根据所述第一隧道和所述第二隧道的吞吐量,以及所述第一隧道和所述第二隧道的下行单向时延,确定所述状态机的目标状态。
当状态机处于第一状态时,所述第一网络设备可以结合吞吐量和下行单向时延信息对链路质量信息进行判断,由于所述第一网络设备在确定传输模式时,能够综合考虑吞吐量和下行单向时延差,因此,能够对链路质量做出更为准确的判断,有利于提升确定的传输模式的准确性。
在一种可能的实现方式中,所述根据所述第一隧道和所述第二隧道的吞吐量,以及所述第一隧道和所述第二隧道的下行单向时延,确定所述状态机的目标状态,包括:
若所述第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值,确定所述状态机的目标状态为第二状态;或
若所述第一隧道和所述第二隧道的吞吐量之和不大于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延的差值大于第一时延阈值,确定所述状态机的目标状态为第三状态;或
若所述第一隧道和所述第二隧道的吞吐量之和不大于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延的差值小于或等于所述第一时延阈值,或若所述第一隧道和所述第二隧道的吞吐量之和低于第一吞吐量阈值,确定所述状态机的目标状态为所述第一状态。
其中,所述第一状态对应绑定传输模式,所述第二状态对应绑定传输模式,所述第三状态对应单隧道传输模式。
总的来说,第一网络设备在第一隧道和第二隧道的整体吞吐量大于第一隧道的带宽阈值的情况下,将状态机切换至第二状态,从而使用绑定隧道传输模式进行报文的传输,在第一隧道和第二隧道的整体吞吐量小于或等于第一隧道的带宽阈值的情况下,所述第一网络设备还可以进一步判定所述第一隧道和第二隧道的下行单向时延差,根据下行单向时延差,判断切换至哪个状态,若下行单向时延差大于第一时延阈值,将状态机切换至第三状态,从而使用单隧道传输模式进行报文的传输,或若下行单向时延差小于或等于第一时延阈值,所述第一网络设备将状态机保持在第一状态,进一步判断两个隧道的链路状态,从而判断是切换至哪个目标状态,进而可以使用对应的传输模式进行报文的 传输。
因此,本申请实施例的传输报文的方法,第一网络设备可以以第一隧道和第二隧道的吞吐量为主判断条件,在第一隧道和第二隧道的整体吞吐量大于第一隧道的带宽阈值即第二隧道的链路质量较优的情况下,使用绑定隧道传输模式,从而为用户提供大带宽的接入业务,进而提升用户体验。在第一隧道和第二隧道的整体吞吐量小于或等于第一隧道的带宽阈值的情况下,进一步结合所述第一隧道和第二隧道的下行单向时延差,对链路质量进行判断,在下行单向时延差大于第一时延阈值的情况下,此情况下,第二隧道的链路质量较差,采用单隧道传输模式,有利于避免在第二隧道的链路质量较差的情况下,继续使用绑定隧道传输模式,对第一隧道的性能的影响。在下行单向时延差小于或等于第一时延阈值的情况下,即报文可以在两个隧道保序成功的情况下,使用绑定隧道传输模式提升用户体验。
在一种可能的实现方式中,所述根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,包括:
若所述状态机当前处于所述第二状态,所述第一网络设备确定所述第一隧道和所述第二隧道的吞吐量,以及所述第一隧道和所述第二隧道的下行单向时延;
根据所述第一隧道和所述第二隧道的吞吐量,以及所述第一隧道和所述第二隧道的下行单向时延,确定所述状态机的目标状态。
在一种可能的实现方式中,所述根据所述第一隧道和所述第二隧道的吞吐量,以及所述第一隧道和所述第二隧道的下行单向时延,确定所述状态机的目标状态,包括:若所述第一隧道和所述第二隧道的吞吐量之和不大于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延的差值大于第二时延阈值,确定所述状态机的目标状态为第一状态;或若所述第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值,确定所述状态机的目标状态为所述第二状态;或若所述第一隧道和所述第二隧道的下行单向时延差小于或等于所述第二时延阈值,确定所述状态机的目标状态为所述第二状态。
因此,本申请实施例的传输报文的方法,所述第一网络设备可以在第二隧道的链路质量较优的情况下,保持在第二状态,从而使用第二状态对应的绑定传输模式进行业务报文的传输,在所述第二隧道的链路质量较差的情况下,切换至第一状态,进一步对链路质量进行判断,确定切换至哪个目标状态,从而使用对应的传输模式进行报文的传输。
可选地,所述方法还包括:若所述状态机当前处于所述第三状态,在预设的计时器计数结束时,将所述状态机从所述第三状态切换至所述第一状态。
在一种可能的实现方式中,所述第一网络设备为混合接入汇聚节点HAAP,例如,HAAP可以为中/高端路由器、交换机设备。所述第二网络设备为家庭网关HG,例如,HG可以为中/低端路由器、交换设备,或者用户驻地设备(Customer-premises equipment,CPE)。
因此,本申请实施例的传输报文的方法,第一网络设备能够实时采集第一隧道和第二隧道的链路质量信息,然后根据实时采集的第一隧道和第二隧道的链路质量信息,确定是否需要进行传输模式的切换,因此,能够实现传输模式的及时切换,并且,第一网络设备能够结合吞吐量,丢包率或下行单向时延确定采用哪种目标传输模式,因此,确定的目标传输模式更为准确,也就是说,本申请实施例的传输报文的方法,能够实现传 输模式的及时且准确的切换。
第二方面,提供了一种传输报文的方法,包括:第二网络设备接收第一网络设备周期性地通过第一隧道和第二隧道中的至少一个隧道发送的链路质量检测报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;
所述第二网络设备周期性地通过所述至少一个隧道向所述第一网络设备回复链路质量检测响应报文,所述链路质量检测响应报文用于所述第一网络设备确定与所述第二网络设备之间进行业务报文传输的目标传输模式。
所述第二网络设备周期性地通过至少一个隧道接收链路质量检测报文,以及通过至少一个隧道发送链路质量检测响应报文,通过在所述链路质量检测响应报文中携带用于链路质量检测的报文内容,从而使得所述第一网络设备能够根据所述链路质量检测报文和所述链路质量检测响应报文中携带的用于链路质量检测的报文内容,实时获取所述至少一个隧道的链路质量信息。
在一种可能的实现方式中,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述第一网络设备通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述第二网络设备通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
所述第二网络设备周期性地通过第一隧道接收第一链路质量检测报文,以及通过第一隧道发送第一链路质量检测响应报文,通过在所述第一链路质量检测响应报文中携带用于链路质量检测的报文内容,从而使得所述第一网络设备能够根据所述第一链路质量检测报文和所述第一链路质量检测响应报文中携带的用于链路质量检测的报文内容,实时获取第一隧道的链路质量信息。
在一种可能的实现方式中,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
可选地,所述第一GRE控制消息和所述第二GRE控制消息可以为现有的GRE控制消息,或者也可以为新增的GRE控制消息,所述第一网络设备和所述第二网络设备通过实时交互所述第一GRE控制消息和所述第二GRE控制消息,能够实现获取第一隧道的链路质量信息。
通过复用现有的GRE控制消息携带用于链路质量检测的报文内容,简单方便,易于实现。
在一种可能的实现方式中,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述第一网络设备通过所述第二隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述第二网络设备通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
所述第二网络设备周期性地通过第二隧道接收第二链路质量检测报文,以及通过第二隧道发送第二链路质量检测响应报文,通过在所述第二链路质量检测响应报文中携带用于链路质量检测的报文内容,从而使得所述第一网络设备能够根据所述第二链路质量检测报文和所述第二链路质量检测响应报文中携带的用于链路质量检测的报文内容,实时获取第二隧道的链路质量信息。
在一种可能的实现方式中,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
因此,所述第一网络设备和所述第二网络设备可以通过现有的GRE控制消息,携带用于链路质量检测的报文内容,从而实现对第二隧道的链路质量的检测,采用现有的消息格式,简单方便,易于实现。
第三方面,提供了一种传输报文的装置,所述装置用于执行第一方面或第一方面的任一种可能实现方式中的方法。
具体地,所述装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块。
第四方面,提供了一种传输报文的装置,所述装置用于执行第二方面或第二方面的任一种可能实现方式中的方法。
具体地,所述装置可以包括用于执行第二方面或第二方面的任一种可能实现方式中的方法的模块。
第五方面,提供了一种传输报文的装置,所述装置包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面或第一方面的任一种可能实现方式中的方法。
第六方面,提供了一种传输报文的装置,所述装置包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第二方面或第二方面的任一种可能实现方式中的方法。
第七方面,提供了一种传输报文的装置,包括:主控板和接口板。主控板用于完成 系统管理、设备维护、协议处理等功能。接口板用于提供各种业务接口(例如,POS接口、GE接口、ATM接口等),并实现数据包的转发。主控板和接口板通过系统总线与系统背板相连实现互通。接口板上的中央处理器用于对接口板进行控制管理并与主控板上的中央处理器进行通信。
具体地,所述主控板用于通过所述接口板执行第一方面或第一方面的任一可能的实现方式中的方法。
第八方面,提供了一种传输报文的系统,包括:包括第三方面或第三方面的任一可能的实现方式中的传输报文的装置,或第五方面或第五方面的任一可能的实现方式中的传输报文的装置,或第七方面或第七方面的任一可能的实现方式中的传输报文的装置;以及第四方面或第四方面的任一可能的实现方式中的传输报文的装置,或第六方面或第六方面的任一可能的实现方式中的传输报文的装置。
第九方面,提供一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第一方面或第一方面的任一种可能实现方式中的方法的指令。
第十方面,提供一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第二方面或第二方面的任一种可能实现方式中的方法的指令。
附图说明
图1示出了根据本申请实施例的应用场景的示意图。
图2是根据本申请实施例的传输报文的方法的示意性交互图。
图3是根据本申请实施例的确定链路质量信息的方法的示意图。
图4是根据本申请实施例的状态机的状态迁移图。
图5是根据本申请一实施例的传输报文的装置的示意性框图。
图6是根据本申请另一实施例的传输报文的装置的示意性框图。
图7是根据本申请再一实施例的传输报文的装置的示意性框图。
图8是根据本申请再一实施例的传输报文的装置的示意性框图。
图9是根据本申请实施例的传输报文的装置的示意性结构图。
图10是根据本申请实施例的传输报文的系统的示意性框图。
具体实施方式
下面结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,在本申请实施例中,第一网络设备与第二网络设备二者之间建立有第一隧道和第二隧道,其中,所述第一隧道可以为固定网络隧道,例如,DSL隧道,所述第二隧道为移动网络隧道,例如,LTE隧道,这里的DSL隧道也可以叫做DSL连接(DSL connection),LTE隧道也可以叫做LTE连接(LTE connection),DSL隧道和LTE隧道可以采用现有的隧道技术实现,例如,通用路由封装(Generic Routing Encapsulation,GRE)隧道技术,或者现有的其它隧道技术,或者,所述DSL隧道和LTE隧道也可以采用未来的技术或标准中新定义的隧道技术实现,本申请实施例对此并不特别限定。
应理解,所述第一隧道和所述第二隧道仅表示两类隧道,而对隧道的数量和类型等并不特别限定,例如,所述第一隧道可以包括一条或多条DSL隧道,所述第二隧道也可以包括一条或多条LTE隧道。所述第一隧道可以为固定网络隧道,所述第二隧道可以为未来的技术或标准中,新定义的其它类型的隧道,或者,所述第一隧道为未来的技术或标准中,新定义的其它类型的隧道,第二隧道为移动网络隧道,或者,所述第一隧道和所述第二隧道都为未来的技术或标准中新定义的隧道类型,本申请实施例仅以所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道为例进行介绍,更具体地,以所述第一隧道为DSL隧道,所述第二隧道为LTE隧道为例进行介绍,但不应对本申请实施例构成任何限定。
还应理解,在本申请实施例中,第一网络设备与第二网络设备表示二者之间建立有第一隧道和第二隧道的两个隧道端口设备,例如,第一网络设备为HAAP设备,第二网络设备为HG设备,也就是说,所述第一网络设备可以为网络侧的网络设备,所述第二网络设备为用户侧的网络设备。
为了便于理解和描述,以下,以第一隧道为LTE隧道、第二隧道为DSL隧道、第一网络设备为HAAP设备,第二网络设备为HG设备为例进行描述,但本申请实施例并非限定于此。
如图1所示,HAAP设备和HG设备之间建立有DSL隧道和LTE隧道,HAAP设备和HG设备可以只通过DSL隧道或LTE隧道传输业务报文,即单隧道传输模式,只通过DSL隧道传输报文时,该单隧道传输模式也可以叫做DSL-only传输模式,本申请实施例主要以单隧道传输模式为DSL-only传输模式为例进行介绍,但并不排除单隧道传输模式也可以只通过LTE隧道传输的可能。或者所述HAAP设备和HG设备也可以通过DSL隧道和LTE隧道的绑定隧道传输业务报文,即通过绑定隧道传输模式传输业务报文。
由上文描述可知,现有技术中,HAAP设备和HG设备之间使用哪种传输模式进行业务报文传输是由用户侧的网络设备,即HG设备决定的,HG设备确定使用哪种传输模式后,通知HAAP设备进行传输模式的切换,这种切换模式导致切换时延较大,有可能造成由于不能及时进行传输模式的切换,导致用户的报文的丢失的问题,影响用户体验。
现有技术中,HG设备确定传输模式的具体方式是:通过LTE隧道和DSL隧道发送保活报文,检测DSL隧道与LTE隧道的往返时延(Round Trip Time,RTT),当DSL隧道和LTE隧道的RTT的差值大于切换阈值时,确定采用单隧道传输模式,否则,确定采用绑定隧道传输模式,由于RTT参数不能准确反映下行的链路质量,RRT小不一定表示链路质量优,例如,RTT小,丢包率(Package Loss Rate,PLR)大,RTT大也不一定表示链路质量差,例如,RTT大,但是PLR小,因此,根据RTT确定采用哪种传输模式的准确性较低,即误判断的概率较高。
有鉴于此,本申请实施例提出一种传输报文的方法、装置和系统,有利于降低传输模式的切换时延,进一步还可以降低误判断的概率,提高确定的传输模式的可靠性。
以下,结合图2,详细说明根据本申请实施例的传输报文的方法。应理解,图2是本申请实施例的传输报文的方法的示意性交互图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图2的各种操作的变形。此外,图2中的各个步骤可以分别按照与图2所呈现的不同的顺序来执行,并且有可能并非要执行图2中的全部操作。
例如,在图2所示的实施例中,若所述源传输模式和所述目标传输模式相同,也可以不执行S204。
图2是从设备交互的角度描述的本申请实施例的传输报文的方法200的示意性流程图,该方法200可以用于图1所示的系统。
如图2所示,该方法200可以包括如下内容:
在S201中,所述HG设备和HAAP设备采用源传输模式传输业务报文,所述源传输模式是所述HAAP设备和HG设备当前传输业务报文使用的传输模式,所述源传输模式可以是单隧道传输模式,也可以是绑定隧道传输模式。
在S202中,所述HAAP设备确定所述HAAP设备和所述HG设备之间的至少一个隧道的链路质量信息。
所述至少一个隧道的链路质量信息可以用于所述HAAP设备确定进行业务报文传输的目标传输模式,即采用哪种传输模式进行业务报文的传输,若确定的目标传输模式和所述源传输模式相同,则可以不进行传输模式的切换,即可以不执行S204,否则需要进行传输模式的切换,即需要执行S204。
需要说明的是,所述至少一个隧道可以只包括DSL隧道,或只包括LTE隧道,或者也可以包括DSL隧道和LTE隧道,即所述HAAP设备可以只确定DSL隧道的链路质量信息,或者也可以只确定LTE隧道的链路质量信息,或者也可以确定DSL隧道和LTE隧道的链路质量信息。
也就是说,所述S202可以具体包括:所述HAAP设备只确定DSL隧道的链路质量信息,或者只确定LTE隧道的链路质量信息,或者确定DSL隧道和LTE隧道的链路质量信息。
在一种可能的实现方式中,所述S202还可以具体包括:
所述HAAP设备可以根据当前传输报文使用的传输模式,确定需要检测的链路质量信息。
例如,所述HAAP设备可以在源传输模式为DSL-only传输模式的情况下,确定只检测DSL隧道的链路质量信息,或者,在源传输模式为绑定隧道传输模式的情况下,确定检测DSL隧道和LTE隧道的链路质量信息。
总而言之,所述HAAP设备可以根据源传输模式,确定需要检测哪些链路质量信息,或者也可以不论所述源传输模式是单隧道传输模式还是绑定隧道传输模式,都检测两个隧道的链路质量信息,或者只检测DSL隧道的链路质量信息或LTE隧道的链路质量信息,即需要检测的链路质量信息可以与源传输模式有关也可以无关,本申请实施例对此并非特别限定。
应理解,在本申请实施例中,所述HAAP设备在S202中确定的链路质量信息,并不表示后续进行传输模式判断时,一定要使用确定的全部的链路质量信息,在S203中,根据链路质量信息确定传输模式时,具体使用哪些链路质量信息,可以根据实际情况选择。也就是说,S203中使用的链路质量信息可以包括S202中确定的链路质量信息的部分或全部,即所述HAAP设备可以使用S202中确定的全部链路质量信息进行传输模式判断,或者也可以只使用其中的部分链路质量信息进行传输模式判断,本申请实施例对此不作特别限定。
可选地,若所述至少一个隧道只包括DSL隧道,那么所述DSL隧道的链路质量信 息可以包括所述DSL隧道的吞吐量(Throughout)、PLR和下行单向时延中的至少一项;或
若所述至少一个隧道只包括LTE隧道,所述LTE隧道的链路质量下行可以包括LTE隧道的吞吐量,丢包率和下行单向时延中的至少一项。
或者,若所述至少一个隧道包括DSL隧道和LTE隧道,所述DSL隧道和所述LTE隧道对应的链路质量信息可以相同,也可以不同,例如,所述DSL隧道的链路质量信息可以包括DSL隧道的吞吐量和下行单向时延,所述LTE隧道的链路质量信息可以包括LTE隧道的吞吐量和下行单向时延,或者所述LTE隧道的链路质量信息可以只包括所述LTE隧道的下行单向时延等,本申请实施例对此不作特别限定。
应理解,上述每个隧道对应的链路质量信息仅为示例而非限定,本申请实施例对于DSL隧道和LTE隧道的链路质量信息具体包括哪些链路质量参数不作限定,换句话说,本申请实施例并不特别限定HAAP设备根据所述DSL隧道和LTE隧道的哪些链路质量参数,确定所述目标传输模式。
在一种可能的实施例中,S202可以具体包括:
所述HAAP设备周期性地通过所述至少一个隧道向所述第二网络设备发送链路质量检测报文;
接收所述HG设备周期性地通过所述至少一个隧道回复的链路质量检测响应报文;
所述HAAP设备至少根据所述链路质量检测响应报文,确定所述至少一个隧道的链路质量信息。
也就是说,所述HAAP设备可以通过和HG设备交互链路质量检测报文和链路质量检测响应报文,确定所述至少一个隧道的链路质量信息,所述链路质量检测报文和所述链路质量检测响应报文携带的报文内容可以根据需要确定的链路质量信息决定。
作为一个实施例,所述至少一个隧道包括DSL隧道,那么所述链路质量检测报文可以包括所述HAAP设备通过DSL隧道发送的第一链路质量检测报文,此情况下,所述第一链路质量检测报文可以包括以下中的至少一项:
所述HAAP设备通过所述DSL隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
相应地,所述链路质量检测响应报文包括所述HG设备通过所述DSL隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
所述HG设备通过所述DSL隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
需要说明的是,所述第一链路质量检测报文和所述第一链路质量检测响应报文携带的报文内容可以根据需要确定DSL隧道的哪些链路质量信息确定,例如,若需要确定DSL隧道的吞吐量,由于吞吐量跟接收端接收的报文的字节数和时间有关,那么所述第一链路质量检测响应报文可以包括所述HG设备通过所述DSL隧道接收到的报文的字节数和接收到报文的时间信息;或者若需要确定所述DSL隧道的丢包率,所述第一链路质量检测报文可以包括所述HAAP设备通过所述DSL隧道发送的报文数、发送所述第一链路质量检测报文的时间信息,所述第一链路质量检测响应报文可以包括所述HG设备接收到的报文数和接收到报文的时间信息。
作为另一个实施例,若所述至少一个隧道包括LTE隧道,那么所述链路质量检测报 文可以包括所述HAAP设备通过所述LTE隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
所述HAAP设备通过所述LTE隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
相应地,所述链路质量检测响应报文可以包括所述HG设备通过所述LTE隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
所述HG设备通过所述LTE隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
类似地,所述第二链路质量检测报文和所述第二链路质量检测响应报文携带的报文内容可以根据需要确定LTE隧道的哪些链路质量信息确定,这里不再赘述。
可选地,若所述至少一个隧道包括DSL隧道和LTE隧道,那么所述链路质量检测报文可以包括上述实施例中的第一链路质量检测报文和第二链路质量检测报文,所述链路质量检测响应报文可以包括上述实施例中的第一链路质量检测响应报文和第二链路质量检测响应报文。
应理解,在本申请实施例中,所述链路质量检测报文和所述链路质量检测响应报文可以采用现有协议中规定的用于所述HAAP设备和HG设备之间的通信的已有的消息或报文,例如,可以在已有的消息或报文中新增属性字段,在新增的属性字段中包括需要携带的报文内容;或者,也可以在所述HAAP设备和HG设备之间新增消息或报文,通过新增的消息或报文携带用于链路质量检测的报文内容,从而实现所述HAAP设备和HG设备之间的链路质量检测。
在一种可能的实现方式中,所述第一链路质量检测报文可以为第一通用路由封装(Generic Routing Encapsulation,GRE)控制消息,所述第一GRE控制消息包括所述DSL隧道对应的第一属性值对(Attribute Value Pair,AVP),所述第一AVP用于携带所述HAAP设备通过所述DSL隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项。
相应地,所述第一链路质量检测响应报文可以为第二GRE控制消息,所述第二GRE控制消息包括所述DSL隧道对应的第二AVP,所述第二AVP用于携带所述HG设备通过所述DSL隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
类似地,所述第二链路质量检测报文可以为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述HAAP设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
所述第二链路质量检测响应报文可以为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述HG设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
也就是说,HAAP设备向HG设备发送的所述链路质量检测报文,以及HG设备向HAAP设备发送的所述链路质量检测响应报文,可以采用现有的GRE控制消息,例如,GRE隧道建立请求(GRE Tunnel Setup Request)消息,GRE隧道建立接受(GRE Tunnel  Setup Accept)消息,GRE隧道建立拒绝(GRE Tunnel Setup Deny)消息或GRE隧道通知(GRE Tunnel Notify)消息等,具体地,可以在现有的GRE控制消息中新增属性字段用于携带进行链路质量检测的报文内容。
由于所述链路质量检测报文和所述链路质量检测响应报文为实时交互的报文,那么采用现有的GRE控制消息,修改现有的GRE控制消息为实时可以交互的报文类型,以实现该GER控制消息能够实时发送,从而实现实时获取待检测的隧道的链路质量信息。
可选地,所述链路质量检测报文和所述链路质量检测响应报文也可以为能够实时交互的新增的GRE控制消息,也就是说,可以在HAAP设备和HG设备之间新增GRE控制消息,通过新增的GRE控制消息携带用于链路质量检测的报文内容,从而实现HAAP设备和HG设备之间的链路质量检测的功能。
需要说明的是,所述HAAP设备通过DSL隧道发送的所述第一GRE控制消息,以及通过LTE隧道发送的所述第三GRE控制消息可以为相同的GRE控制消息,也可以为不同的GRE控制消息,例如,所述第一GRE控制消息和所述第三GRE控制消息可以都为GRE隧道建立请求消息,或者也可以一个为GRE隧道建立请求消息,一个为GRE隧道通知消息。对于所述HG设备通过DSL隧道发送的第二GRE控制消息,以及通过LTE隧道发送的所述第四GRE控制消息亦是如此,例如,所述第二GRE控制消息和所述第四GRE控制消息可以都为GRE隧道建立接受消息,或者也可以一个为GRE隧道建立接受消息,一个为GRE隧道拒绝消息。
另外,HAAP设备通过DSL隧道发送的第一GRE控制消息,以及通过LTE隧道发送的第三GRE控制消息可以包括相应的属性值对(Attribute Value Pair,AVP),或者说,属性字段,例如,通过DSL隧道发送的所述第一GRE控制消息可以包括第一AVP,用于携带进行DSL隧道的链路质量检测的报文内容,通过LTE隧道发送的所述第三GRE控制消息可以包括第三AVP,用于携带进行LTE隧道的链路质量检测的报文内容。
若所述第一GRE控制消息和第三控制消息为相同的GRE控制消息,所述第一AVP和第三AVP可以为不同的属性字段,即可以通过不同的属性字段分别携带用于DSL隧道和LTE隧道的链路质量检测的报文内容,或者若所述第一GRE控制消息和第三控制消息为不同的GRE控制消息,所述第一AVP和第三AVP可以为相同或不同的属性字段。
类似地,对于所述HG设备通过DSL隧道发送的第二GRE控制消息,和通过LTE隧道发送的第四GRE控制消息亦是如此,这里不再赘述。
以下,以所述链路质量检测报文和链路质量检测响应报文采用同一格式的GER控制消息为例介绍一种新增的GRE控制消息,即采用新增的GRE控制消息用作所述链路质量检测报文和链路质量检测响应报文,若采用不同格式的GER控制消息实现链路质量检测报文和链路质量检测响应报文,可以采用类似的方式实现,这里不再赘述。
新增的GRE控制消息的报文包头格式如下:
Figure PCTCN2017091232-appb-000001
Figure PCTCN2017091232-appb-000002
其中,报文包头的前两行为GRE包头,共8字节,第三行的第一个字节即Msg Type(消息类型)为HAAP协议的报文包头,用于指示该GRE控制消息的消息类型,占8个字节,由于现有的协议中,MsgType为7~15为预留值,因此,可以在7~15中选择一个值用于指示该报文为链路质量检测报文或链路质量检测响应报文,例如,可以设置Msg Type为10时,表示该报文为链路质量检测报文或链路质量检测响应报文,这样网络设备可以根据报文的包头中的Msg Type即可确定该报文的消息类型。
HAAP报文封装的Attributes(属性)为类型长度数值(Type Length Value,TLV)格式的AVP,GRE控制消息的Attribute字段格式如下:
Figure PCTCN2017091232-appb-000003
例如,可以设置不同的“Attribute Type”(属性类型)分别用于指示不同的隧道,例如,可以设置Attribute Type为60指示该报文为对DSL隧道的链路质量检测报文或链路质量检测响应报文,Attribute Type为61指示该报文为对LTE隧道的链路质量检测报文或链路质量检测响应报文等。作为示例而非限定,不同的Attribute Type对应的“Attribute Length”(属性长度)和“Attribute Value”(属性值)分别如表1所示:
表1
Figure PCTCN2017091232-appb-000004
Figure PCTCN2017091232-appb-000005
由表1可知,属性类型为60的属性值字段携带用于对DSL隧道进行链路质量检测的报文内容,属性类型为61的属性值字段携带用于对LTE隧道进行链路质量检测的报文内容,属性类型为60或61对应的属性值字段都包括多个子AVP,每个子AVP也为TLV格式,可以通过多个子AVP分别携带用于链路质量检测的不同的报文内容,例如,属性类型为60,子属性类型为1时,属性值字段携带HAAP设备通过DSL隧道发送的报文数,例如,图3中的TX1或TX2,子属性类型为2时,属性值字段携带HAAP设备通过DSL隧道发送的报文的字节数,例如,图3中的TX_BYTE 1或TX_BYTE 2,子属性类型为3时,属性值字段携带HAAP设备通过DSL隧道发送该报文的时间戳,例如,图3中的T0或T1
需要说明的是,不同的Attribute Type包括的子AVP的个数和属性可以相同也可以不同,本申请实施例对此不作特别限定,表1示出的不同的Attribute Type包括的多个子AVP的属性类型和属性值等信息仅为示例,本申请实施例还可以根据需要检测的链路质量信息对AVP的属性值字段进行调整。
以下,结合图3所示的具体示例,介绍所述HAAP设备确定链路质量信息的具体过程。
需要说明的是,若只需要确定DSL隧道的链路质量信息,所述HAAP设备和HG设备可以按照图3中S301~S304所示的方式,通过DSL隧道发送链路质量检测报文和链路 质量检测响应报文;或若只需要确定LTE隧道的链路质量信息,所述HAAP设备和HG设备可以按照图3中S301~S304所示的方式,通过LTE隧道发送链路质量检测报文和链路质量检测响应报文;或者,若需要确定DSL隧道和LTE隧道的链路质量信息,所述HAAP设备和HG设备可以按照图3中S301~S304所示的方式,通过DSL隧道以及LTE隧道发送链路质量检测报文以及链路质量检测响应报文。
以确定DSL隧道的链路质量信息为例介绍S301~S304的执行过程,应理解,确定LTE隧道的链路质量信息与确定DSL隧道的链路质量信息类似,这里不再赘述。
在S301中,所述HAAP设备通过DSL隧道向HG设备发送第一报文,所述第一报文包括发送的报文的字节数(TX_BYTE1),发送的报文数(TX1)和发送所述第一报文的时间信息(T0)。
其中,所述第一报文可以对应于前文描述的第一链路质量检测报文,所述HAAP设备通过DSL隧道和LTE隧道发送的链路质量检测报文可以对应不同的属性字段,所述HAAP设备通过DSL隧道或LTE隧道发送链路质量检测报文时,在相应的属性字段填充相应的报文内容。例如,DSL隧道对应AVP60的属性字段,LTE隧道对应AVP61的属性字段,那么所述HAAP设备通过DSL隧道发送链路质量检测报文时,可以填充AVP60的属性字段,通过LTE隧道发送链路质量检测报文时,填充AVP61的属性字段,填充的报文内容根据需要确定的链路质量信息决定。
在S302中,所述HG设备通过DSL隧道向HAAP设备回复第一响应报文,所述第一响应报文包括接收到的报文的字节数(RX_BYTE1),接收到的报文数(RX1)和接收所述第一报文的时间信息(T4)。
其中,所述第一响应报文用于指示所述HG设备对第一报文的接收情况,所述第一响应报文可以对应于前文描述的第一链路质量检测响应报文,所述HG设备通过DSL隧道和LTE隧道回复的链路质量检测响应报文也可以对应不同的属性字段,所述HG设备通过DSL隧道或LTE隧道回复链路质量检测响应报文时,在相应的属性字段填充相应的报文内容,这里不再赘述。
在S303中,所述HAAP设备通过DSL隧道向HG设备发送第二报文,所述第二报文包括发送的报文的字节数(TX_BYTE2),发送的报文数(TX2)和发送所述第二报文的时间信息(T2)。
应理解,这里的第二报文和前文的第一报文类似,所述第二报文和所述第一报文携带的报文内容可以相同,也可以不同,或者说,所述第一报文携带的TX_BYTE1和TX1和所述第二报文携带的TX_BYTE2和TX2可以相同,也可以不同。
在S304中,所述HG设备通过DSL隧道向HAAP设备回复第二响应报文,所述第二响应报文包括接收到的报文的字节数(RX_BYTE2),接收到的报文数(RX2)和接收所述第二报文的时间信息(T6)。
需要说明的是,这里的第二响应报文和前述的第一响应报文类似,这里不再赘述,所述第二响应报文携带的报文内容用于指示所述第二报文的接收情况。
所述HAAP设备可以根据至少两个周期内的报文的接收情况,确定所述DSL隧道的链路质量信息,以下,以HAAP设备根据两个周期内的报文的接收情况,确定所述DSL隧道的吞吐量、丢包率为例进行介绍。
1、吞吐量(Throughput)
Figure PCTCN2017091232-appb-000006
即,下个周期内HG设备接收到的报文的字节数减去上个周期内HG设备接收到的报文的字节数乘以8,除以两个周期HG设备接收报文的时间差。
2、丢包率(PLR)
Figure PCTCN2017091232-appb-000007
即,下个周期HAAP设备发送的报文数减去上个周期发送的报文数的差值,减去下个周期HG设备接收到的报文数减去上个周期HG设备接收的报文数的差值,再除以下个周期HAAP设备发送的报文数减去上个周期HAAP设备发送的报文数的差值。
类似地,所述HAAP设备也可以根据上述公式(1)和公式(2)计算LTE隧道的链路质量信息。
若需要确定LTE隧道和DSL隧道的下行单向时延差,HAAP设备可以同时通过DSL隧道和LTE隧道发送第一报文,进一步根据公式(3)确定DSL隧道和LTE隧道的下行单向时延差T:
T=|(T4_LTE-T4_DSL)|             (4)
其中,T4_LTE为LTE隧道上HG设备接收到所述第一报文的时间,T4_DSL为DSL隧道上HG设备接收到所述第一报文的时间,通过LTE隧道和DSL隧道发送的所述第一报文可以相同也可以不同,本申请实施例对此不作限定。
上面列举的对DSL隧道的链路质量信息的计算方法仅为示例而非限定,本申请实施例并不排除采用其它方法计算DSL隧道或LTE隧道的链路质量信息,只要所述HAAP设备根据DSL隧道和LTE隧道中的至少一个隧道的链路质量信息,确定目标传输模式,都落入本申请的保护范围内。
在S203中,所述HAAP设备根据确定的所述至少一个隧道的链路质量信息,确定目标传输模式。
例如,所述HAAP设备可以只根据DSL隧道的链路质量信息,确定所述目标传输模式,或者也可以只根据LTE隧道的链路质量信息,确定所述目标传输模式,或者也可以根据LTE隧道和DSL隧道的链路质量信息,确定所述目标传输模式。
在一种可能的实施例中,所述S203可以具体包括:
根据所述DSL隧道和所述LTE隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式。
例如,所述HAAP设备可以只根据DSL隧道和LTE隧道的吞吐量,确定所述目标传输模式,或者可以根据DSL隧道和LTE隧道的吞吐量,以及DSL隧道和LTE隧道的下行单向时延,确定所述目标传输模式,或者也可以根据DSL隧道和LTE隧道的吞吐量,以及所述DSL隧道的丢包率,确定所述目标传输模式。
应理解,本申请实施例还可以根据DSL隧道和LTE隧道的其它链路质量参数,确定所述目标传输模式,只要能够用于判断DSL隧道和LTE隧道的链路质量的传输参数,都可以用于确定所述目标传输模式。
作为一个实施例,所述根据所述DSL隧道和所述LTE隧道的吞吐量、丢包率和下行 单向时延中的至少一项,确定所述目标传输模式,可以具体包括:
所述HAAP设备根据所述DSL隧道和所述LTE隧道的吞吐量之和,确定所述目标传输模式。
例如,所述HAAP设备可以在所述DSL隧道和LTE隧道的吞吐量之和(即整体吞吐量)大于吞吐量阈值时,确定所述目标传输模式为所述绑定隧道传输模式,此情况下,可以认为LTE隧道的质量较优,可以通过绑定隧道给用户提供服务,以提升用户体验。或者,所述HAAP设备可以在所述DSL隧道和LTE隧道的整体吞吐量小于所述吞吐量阈值时,确定所述目标传输模式为DSL-only传输模式。
需要说明的是,这里的吞吐量阈值可以根据DSL隧道的限速值,或者带宽阈值确定。例如,所述吞吐量阈值为DSL隧道的带宽阈值,或者所述吞吐量阈值可以为略大于DSL隧道的带宽阈值的值等,将DSL隧道的带宽阈值记为BW,那么所述吞吐量阈值可以为BW,或1.05BW,或1.1BW等,本申请实施例对此不作特别限定。
因此,本申请实施例的传输报文的方法,所述HAAP设备能够根据DSL隧道和LTE隧道的吞吐量,确定用于传输业务报文的目标传输模式,由于吞吐量能够准确反映链路质量,因此,相对于简单根据RTT确定所述目标传输模式,降低了误判断的概率,提高了确定的切换模式的准确性。
或者,所述HAAP设备可以在所述DSL隧道和LTE隧道的吞吐量大于DSL隧道的吞吐量的情况下,确定采用绑定隧道传输模式,否则采用DSL-only传输模式。DSL隧道和LTE隧道的吞吐量大于DSL隧道的吞吐量,可以认为LTE隧道的加入,有利于提高DSL隧道和LTE隧道的共享带宽,因此,通过绑定隧道给用户提供服务,能够提升用户体验,否则,可以认为LTE隧道的链路质量较差,不但没有提高DSL隧道和LTE隧道的共享带宽,反而影响DSL隧道的带宽,这种情况下,所述HAAP设备可以采用DSL-only传输模式,即关闭LTE隧道,只通过DSL隧道传输业务报文,从而保证DSL隧道的性能不受影响。
也就是说,所述HAAP设备可以在LTE隧道的质量较差的情况下,采用DSL-only传输模式,即只通过DSL隧道进行业务报文的传输,从而保证DSL隧道的性能不受影响,在LTE隧道的链路质量较优的情况下,采用绑定隧道传输模式,即通过DSL隧道和LTE隧道的绑定隧道传输业务报文,从而提升用户体验。
并且,在绑定隧道传输模式下,所述HAAP设备可以使用富余的LTE资源或空闲LTE资源传输业务报文,从而有利于避免通过LTE隧道传输业务报文对移动网络的业务的影响。
作为另一个实施例,所述根据所述DSL隧道和所述LTE隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式,可以具体包括:
在所述DSL隧道和所述LTE隧道的吞吐量之和小于或等于所述DSL隧道的带宽阈值,并且所述DSL隧道和所述LTE隧道的下行单向时延之差大于第一时延阈值的情况下,确定所述目标传输模式为所述单隧道传输模式;或
在所述DSL隧道和所述LTE隧道的吞吐量之和小于或等于所述DSL隧道的带宽阈值,并且所述DSL隧道和所述LTE隧道的下行单向时延之差小于或等于所述第一时延阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式。
其中,所述第一时延阈值可以根据报文的接收端的保序能力确定,可选地,所述第 一时延阈值可以为接收端的保序能力,或者所述第一时延阈值可以为略大于接收端的保序能力的值等,本申请实施例对此不作特别限定。
例如,若报文是从HAAP设备发送给HG设备的,那么所述第一时延阈值可以为HG设备的保序能力,即HG设备在DSL隧道和LTE隧道的保序时延差,若HG设备在DSL隧道的保序能力为100ms,在LTE隧道的保序能力为20ms,那么所述第一时延阈值可以为80ms,或大于80ms的值。
再如,报文是从HG设备发送给HAAP设备的,那么所述第一时延阈值可以为HAAP设备的保序能力,即HAAP设备在DSL隧道和LTE隧道的保序时延差,若HAAP设备在DSL隧道的保序能力为50ms,LTE隧道的保序能力为10ms,那么所述第一时延阈值可以为40ms,或大于40ms的值。
也就是说,在本实施例中,所述HAAP设备可以综合考虑所述DSL隧道和LTE隧道的吞吐量和下行单向时延,确定所述目标传输模式,在DSL隧道和所述LTE隧道的吞吐量之和大于所述DSL隧道的带宽阈值,即LTE隧道的链路质量较优的情况下,确定使用绑定隧道传输模式进行业务报文的传输。在所述DSL隧道和所述LTE隧道的吞吐量之和小于或等于所述DSL隧道的带宽阈值的情况下,还可以进一步结合所述DSL隧道和所述LTE隧道的下行单向时延差,确定采用哪种传输模式,若所述DSL隧道和所述LTE隧道的下行单向时延差小于或等于所述第一时延阈值,可以认为通过DSL隧道和LTE隧道的报文能够在报文的接收端保序成功,因此,可以所述HAAP设备使用绑定传输模式进行业务报文的传输,若所述DSL隧道和所述LTE隧道的下行单向时延差大于所述第一时延阈值,可以认为通过DSL隧道和LTE隧道的报文可能不能在报文的接收端保序成功,这种情况下,所述HAAP设备可以使用DSL-only传输模式进行业务报文的传输。
因此,本申请实施例的传输报文的方法,所述HAAP设备能够结合DSL隧道和LTE隧道的吞吐量和下行单向时延差,确定用于传输业务报文的目标传输模式,由于下行单向时延能够更为准确反映LTE隧道的下行链路质量,因此,降低了误判断的概率,即结合DSL隧道和LTE隧道的吞吐量和下行单向时延差确定的切换模式更为准确。
并且,本申请实施例的传输报文的方法,所述DSL隧道和LTE隧道的吞吐量和下行单向时延差是HAAP实时获取的,所述HAAP设备能够根据实时采集的DSL隧道和LTE隧道的吞吐量和下行单向时延差,确定是否需要进行传输模式切换,因此,确定的切换时机更加及时,换句话说,本申请实施例的传输报文的方法,能够实现传输模式的及时且准确的切换。
可选地,在本申请实施例中,所述HAAP设备也可以结合DSL隧道和LTE隧道的吞吐量和丢包率,或结合DSL隧道和LTE隧道的丢包率和下行单向时延,确定采用绑定传输模式,例如,所述HAAP设备可以在DSL隧道和LTE隧道的吞吐量大于一定的吞吐量阈值,且所述DSL隧道的丢包率小于一定的丢包率阈值的情况下,确定采用绑定隧道传输模式,否则采用DSL-only传输模式;或者在DSL隧道的丢包率小于一定的丢包率阈值,且所述DSL隧道和LTE隧道的下行单向时延差小于一定的时延阈值的情况下,确定采用绑定隧道传输模式,否则采用DSL-only传输模式。
作为一种优选的实现方式,所述S203可以具体包括:
根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,其中,所述状态机的每个状态对应相应的传输模式;
将所述状态机的目标状态对应的传输模式确定为传输业务报文的所述目标传输模式。
例如,所述状态机包括第一状态和第二状态,每个状态对应不同的链路质量条件,所述HAAP设备可以在至少一个隧道的链路质量信息满足第一条件时,确定状态机的目标状态为第一状态,从而可以将所述第一状态对应的传输模式确定为所述目标传输模式,或者在所述至少一个隧道的链路质量信息满足第二条件时,确定状态机的目标状态为第二状态,从而可以将所述第二状态对应的传输模式确定为所述目标传输模式,若所述第一状态对应的传输模式为单隧道传输模式,所述第二状态对应的传输模式为绑定隧道传输模式,那么所述第一条件用于指示所述LTE隧道或DSL隧道的链路质量较差,即所述DSL隧道和LTE隧道中的一条隧道的链路质量较差,只能使用另一条隧道进行报文传输,所述第二条件可以用于指示所述LTE隧道和DSL隧道的整体链路质量优于一条隧道的链路质量,因此,可以使用绑定隧道进行报文传输,提升用户体验。
其中,所述第一条件可以为所述DSL隧道和LTE隧道的吞吐量小于DSL隧道的吞吐量,或DSL隧道和LTE隧道的吞吐量小于LTE隧道的吞吐量,即单隧道的链路质量优于绑定隧道的链路质量,因此,可以使用链路质量较优的单隧道进行报文传输;所述第一条件可以为所述DSL隧道和LTE隧道的吞吐量大于所述DSL隧道的吞吐量,或LTE隧道的吞吐量,即绑定隧道的链路质量优于单隧道的链路质量,因此可以使用绑定隧道进行报文传输。
作为一个实施例,所述根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,包括:
所述HAAP设备根据所述DSL隧道和LTE隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述状态机的目标状态。
即所述HAAP设备也可以结合所述DSL隧道的吞吐量、丢包率和下行单向时延,以及所述LTE隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定状态机的目标状态。
因此,本申请实施例的传输报文的方法,HAAP设备能够综合考虑DSL隧道和LTE隧道的吞吐量、丢包率或下行单向时延等因素,确定状态机的目标状态,使用目标状态对应的传输模式传输业务报文,从而降低了误判断的概率,提高了确定的切换模式的准确性。
并且,上述链路质量信息是HAAP设备实时获取的,所述HAAP设备根据实时获取的链路质量信息,确定是否需要进行传输模式切换,因此,确定的切换时机更加及时,换句话说,本申请实施例的传输报文的方法,能够实现传输模式的及时且准确的切换。
需要说明的是,在本申请实施例中,状态机可以包括如下主要指标:
1、输入状态,即状态机当前的状态,能够反映HAAP设备和HG设备当前传输业务报文使用的传输模式,即源传输模式;
2、输入信号,可以对应于前文描述的至少一个隧道的链路质量信息;
3、输出状态,即从输入状态切换至的目标状态,对应目标传输模式。
还需要说明的是,在本申请实施例中,用于确定目标传输模式的状态机可以包括多个状态,每个状态可以对应一个或多个切换条件,每个切换条件对应从一个状态切换至另一状态需要满足的条件,所述HAAP设备可以在满足某个切换条件时,将状态机的状 态切换至所述切换条件对应的目标状态,从而可以使用所述目标状态机对应的传输模式进行业务报文的传输,例如,若所述状态机当前处于第一状态,则使用第一状态对应的传输模式传输业务报文,当链路质量满足某个切换条件时,状态机的状态切换至第二状态,所述HAAP设备则切换为使用第二状态对应的传输模式进行业务报文的传输。
所述HAAP设备实时采集至少一个隧道的链路质量信息,将其作为状态机的输入信号,当至少一个隧道的链路质量信息满足一定的切换条件时,则进行状态机的状态的迁移,因此,所述HAAP设备能够及时根据至少一个隧道的链路质量信息,进行状态机的状态的切换,从而进行传输模式的切换,相对于现有技术的切换机制,缩短了切换时延。
以下,以所述状态机的状态包括第一状态、第二状态和第三状态为例,介绍本申请实施例的传输报文的方法,但不应对本申请实施例构成任何限定,本申请实施例的状态机还可以包括更多个状态,或更少个状态。其中,每种状态对应的一个或多个切换条件还可以根据具体情况进行调整,以下实施例中列举的切换条件1~切换条件5仅为示例性说明。
图4示出了根据本申请实施例的一种状态机的状态迁移图,以下,结合图4,以所述第一状态为为过渡状态,第二状态为绑定状态,第三状态为惩罚状态为例,介绍HAAP设备根据状态机确定传输模式的具体实现过程。
这里假定,过渡状态对应绑定隧道传输模式,绑定状态对应绑定隧道传输模式,惩罚状态可以对应DSL-only传输模式,惩罚状态也可以称为DSL-only状态。
需要说明的是,状态机的三种状态中,绑定状态和惩罚状态可以认为是正式的工作状态,在绑定状态和惩罚状态时,HAAP设备可以使用对应的传输模式进行业务的传输,过渡状态可以认为是中间态,状态机在过渡状态时,主要进行链路质量检测,从而确定进入哪个工作状态。
1、状态机当前处于过渡状态,即所述HAAP设备当前使用绑定隧道传输模式或DSL-only传输模式进行所述业务报文的传输。
状态机处于过渡状态时,状态机的输入信号可以是DSL隧道和LTE隧道的链路质量信息,即所述HAAP设备可以根据DSL隧道和LTE隧道的链路质量信息,确定状态机的输出状态,即确定切换至哪个工作状态。
例如,HAAP设备可以检测按照一定的周期检测DSL隧道和LTE隧道的吞吐量和下行单向时延等链路质量信息,然后结合DSL隧道和LTE隧道的吞吐量和下行单向时延等链路质量信息,确定状态机的输出状态。
(1)所述HAAP设备可以在DSL隧道和LTE隧道的链路质量信息满足切换条件1的情况下,确定状态机的输出状态为绑定状态。
其中,DSL隧道和LTE隧道的链路质量信息满足切换条件1可以用于指示LTE隧道的链路质量较好,因此,所述HAAP设备可以将所述状态机从过渡状态切换为绑定状态,使用绑定状态对应的绑定隧道传输模式进行业务报文的传输,从而提升用户体验。
可选地,切换条件1可以包括所述DSL隧道和所述LTE隧道的吞吐量之和大于DSL隧道的限速值,或者也可以为其它能够表征所述LTE隧道的链路质量较好的判断条件。
(2)所述HAAP设备可以在DSL隧道和LTE隧道的链路质量信息满足切换条件2的情况下,确定状态机的输出状态为惩罚状态。
其中,DSL隧道和LTE隧道的链路质量信息满足切换条件2,可以用于指示LTE隧 道的链路质量很差,所述HAAP设备可以将所述状态机从过渡状态切换为惩罚(Punishment)状态,从而使用惩罚状态对应的DSL-only传输模式进行业务报文的传输。
可选地,切换条件2可以包括所述DSL隧道和所述LTE隧道的整体吞吐量不大于DSL隧道的限速值,并且所述LTE隧道和DSL隧道的下行时延差大于前述的第一时延阈值,或者也可以为其它指示所述LTE隧道的链路质量很差的判断条件。
其中,DSL隧道和所述LTE隧道的整体吞吐量不大于DSL隧道的限速值,并且所述LTE隧道和DSL隧道的下行时延差大于前述的第一时延阈值,可以认为报文在两个隧道上传输时,接收端不能保序成功,并且LTE隧道的加入使得两个隧道的整体吞吐量还不如DSL隧道的吞吐量,因此,HAAP设备可以关闭LTE隧道,只使用DSL隧道进行报文的传输,从而有利于避免LTE隧道对DSL隧道的性能的影响。
(3)所述HAAP设备可以在DSL隧道和LTE隧道的链路质量信息满足切换条件3的情况下,确定状态机的输出状态为过渡状态,即所述状态机驻留在过渡状态。
可选地,所述切换条件3可以包括所述DSL隧道和LTE隧道的整体吞吐量小于检测阈值,即所述DSL隧道和LTE隧道的整体吞吐量过小,不足以做出判断,所述HAAP设备需要再次进行链路质量检测,再判断是切换至哪个状态。
或者,所述切换条件3也可以包括DSL隧道和LTE隧道的整体吞吐量小于DSL隧道的吞吐量,并且所述DSL隧道和LTE隧道的下行单向时延差小于或等于所述第一时延阈值,此条件下,通过两个隧道传输的报文能够在报文的接收端保序成功,因此,可以使用绑定隧道传输模式进行报文的传输。
总的来说,HAAP设备可以在DSL隧道和LTE隧道的整体吞吐量大于DSL隧道的带宽阈值的情况下,将状态机切换至绑定状态,从而使用绑定隧道传输模式进行报文的传输,在DSL隧道和LTE隧道的整体吞吐量小于或等DSL隧道的带宽阈值的情况下,所述HAAP设备还可以进一步判定所述DSL隧道和LTE隧道的下行单向时延差,根据下行单向时延差,判断切换至哪个目标状态,若下行单向时延差大于第一时延阈值,所述HAAP设备将状态机切换至惩罚状态,从而使用DSL-only传输模式进行报文的传输,在下行单向时延差小于或等于第一时延阈值的情况下,保持在过渡状态,继续进行链路质量检测,以判断切换至哪个目标状态。
因此,本申请实施例的传输报文的方法,HAAP设备可以以DSL隧道和LTE隧道的吞吐量为主判断条件,在DSL隧道和LTE隧道的整体吞吐量大于DSL隧道的带宽阈值即LTE隧道的链路质量较优的情况下,使用绑定隧道传输模式,从而为用户提供大带宽的接入业务,进而提升用户体验,在DSL隧道和LTE隧道的整体吞吐量小于或等于DSL隧道的带宽阈值的情况下,进一步结合所述DSL隧道和LTE隧道的下行单向时延差进行判断,在下行单向时延差大于第一时延阈值的情况下,采用DSL-only传输模式,从而有利于避免在LTE隧道的链路质量较差的情况下,继续使用绑定隧道传输模式,对DSL隧道的性能的影响。
2、状态机处于绑定状态,即所述HAAP设备当前使用绑定隧道传输模式进行所述业务报文的传输。
此情况下,状态机的输入信号可以是DSL隧道和LTE隧道的链路质量信息,即所述HAAP设备可以检测DSL隧道和LTE隧道的链路质量信息,然后可以根据DSL隧道和LTE隧道的链路质量信息,确定状态机的输出状态,即确定是停留在当前状态,还是切 换为其它状态。
例如,所述HAAP设备可以在DSL隧道和LTE隧道的链路质量信息满足切换条件4的情况下,确定所述状态机的输出状态为过渡状态。
其中,切换条件4用于指示LTE隧道的链路质量较差,可能会影响DSL隧道的性能,因此,所述HAAP设备可以将所述状态机从绑定状态切换为过渡状态,进一步对链路质量进行判断,以确定切换至哪个目标状态。
可选地,所述切换条件4可以包括所述DSL隧道和所述LTE隧道的吞吐量不大于所述DSL隧道的带宽阈值,并且所述DSL隧道和所述LTE隧道的下行单向时延的差值大于第二时延阈值。
需要说明的是,所述第二时延阈值可以与前述的第一时延阈值可以相同,也可以不同。例如,所述HAAP设备可以设置所述第一时延阈值可以小于所述第二时延阈值,也就是说,满足切换条件1的情况下的LTE隧道链路质量优于满足切换条件4的情况下的LTE隧道的链路质量,即可以设置状态机进入绑定状态的要求高于从绑定状态的要求,或者说,离开绑定状态的难度高于进入绑定状态的难度,从而有利于维持状态机的稳定性。
可选地,若所述HAAP根据检测的DSL隧道和LTE隧道的链路质量,确定LTE隧道的链路质量较好,可以继续提供HA的接入业务,所述HAAP设备可以将状态机保持在绑定状态,继续使用绑定隧道传输模式传输业务报文。
例如,所述HAAP设备可以在DSL隧道和LTE隧道的吞吐量大于DSL隧道的带宽阈值时,或在DSL隧道和LTE隧道的下行单向时延的差值小于或等于所述第二时延阈值时,确定保持在所述绑定状态。
3、状态机处于惩罚状态,此状态下,所述HAAP设备可以使用DSL-only传输模式与HG设备之间进行报文传输。
此状态下,状态机的输入信号可以是计时器,也就是说,所述HAAP设备可以在计时器计时结束时,切换至其它状态。
可选地,所述HAAP设备可以在满足切换条件5时,确定将状态机切换为过渡状态。所述切换条件5可以为停留在惩罚状态的时间达到第一时间阈值,因此,切换条件5相对于一个定时器,定时器的计数值可以为所述第一时间阈值,这种情况下,所述HAAP可以不对DSL隧道进行链路质量检测,在计时器结束后不论DSL隧道的链路质量好坏都直接切换为过渡状态。
因此,所述HAAP设备可以根据状态机控制LTE隧道的开启或关闭,在有富余的LTE资源或空闲LTE资源的情况下,通过LTE资源提供HA的用户体验,没有空闲LTE资源时,则只通过DSL隧道提供服务,有利于避免对现网用户的业务的影响。
从执行主体来讲,现有技术中,是由HG设备确定传输业务报文采用的目标传输模式的,HG设备确定采用哪种传输模式后,通知HAAP设备,然后由HAAP设备进行隧道切换,因此,从确定目标传输模式到切换至目标传输模式的时延较大。而本申请实施例由HAAP设备确定目标传输模式,HAAP设备确定所述目标传输模式后,可以直接进行隧道的切换,因此,缩短了切换时延。
从另一方面来讲,本申请实施例的传输报文的方法,HAAP设备能够实时采集LTE隧道和DSL隧道的链路质量信息,然后根据实时采集的LTE隧道和DSL隧道的链路质 量信息,确定是否需要进行传输模式的切换,因此,能够实现传输模式的及时切换,并且,HAAP设备能够结合吞吐量,丢包率或下行单向时延确定采用哪种目标传输模式,因此,确定的目标传输模式更为准确,也就是说,本申请实施例的传输报文的方法,能够实现传输模式的及时且准确的切换。
因此,本申请实施例的传输报文的方法,在LTE隧道的链路质量较差的情况下,HAAP设备能够控制关闭LTE隧道,切换为DSL-only传输模式,从而有利于避免在LTE隧道的链路质量较差的情况下,继续使用绑定隧道传输模式,对DSL隧道的性能的影响,同时在LTE隧道的链路质量较好的情况下,开启LTE隧道,提供HA的接入业务,提升用户体验。
以上,结合图4介绍了HAAP设备根据状态机,确定目标传输模式的过程,所述HAAP设备确定目标传输模式后,进一步地,在S204中,将源传输模式切换为目标传输模式;
在S205中,使用目标传输模式与HG设备进行业务报文的传输。
应理解,若源传输模式为DSL-only传输模式,目标传输模式为绑定隧道传输模式,那么在S204中,所述HAAP设备需要进行隧道切换,开启LTE隧道,将DSL-only传输模式切换为绑定隧道传输模式,或者,若源传输模式为绑定隧道传输模式,目标传输模式为DSL-only隧道传输模式,所述HAAP设备需要进行隧道切换,关闭LTE隧道,将绑定隧道传输模式切换为DSL-only传输模式。
需要说明的是,若源传输模式和目标传输模式相同,即都为DSL-only传输模式,或都为绑定隧道传输模式,所述HAAP设备可以不进行隧道切换,即可以不执行S204。
图5示出了根据本申请一实施例提供的传输报文的装置500的示意性框图,该装置500用作第一网络设备,包括:
确定模块510,用于根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,所述目标传输模式为绑定隧道传输模式或单隧道传输模式,所述绑定隧道传输模式为使用所述第一隧道和所述第二隧道传输业务报文,所述单隧道传输模式为使用所述第一隧道或所述第二隧道传输业务报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;
切换模块520,用于将当前传输报文使用的传输模式切换为所述目标传输模式;
通信模块530,用于使用所述目标传输模式与第二网络设备传输业务报文。
在一种可能的实施例中,所述确定模块510还用于:
确定所述第一隧道和所述第二隧道中的至少一个隧道的链路质量信息。
在一种可能的实施例中,所述通信模块530还用于:
周期性地通过所述至少一个隧道向所述第二网络设备发送链路质量检测报文;
接收所述第二网络设备周期性地通过所述至少一个隧道回复的链路质量检测响应报文;
所述确定模块510还用于:
至少根据所述链路质量检测响应报文,确定所述至少一个隧道的链路质量信息。
在一种可能的实施例中,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述装置通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
所述装置通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第 一链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述第二网络设备通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
在一种可能的实施例中,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述装置通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
在一种可能的实施例中,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述装置通过所述第二隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
所述装置通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述第二网络设备通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
在一种可能的实施例中,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述装置通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
在一种可能的实施例中,所述确定模块510具体用于:
根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式。
在一种可能的实施例中,所述确定模块510具体用于:
在所述第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式;或
在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述单隧道传输模式。
在一种可能的实施例中,所述确定模块510具体用于:
在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈 值,并且所述第一隧道和所述第二隧道的下行单向时延之差大于第一时延阈值的情况下,确定所述目标传输模式为所述单隧道传输模式;或
在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差小于或等于所述第一时延阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式。
在一种可能的实施例中,所述确定模块510还用于:
根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,所述状态机的每个状态对应相应的传输模式;
将所述目标状态对应的传输模式确定为传输业务报文的所述目标传输模式。
在一种可能的实施例中,所述确定模块510还用于:
根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述状态机的目标状态。
应理解,根据本申请实施例的装置500可对应于本申请实施例的传输报文的方法200中的HAAP设备,并且装置500中的各个模块的上述和其它操作和/或功能分别为了实现图2中HAAP设备对应的相应流程,为了简洁,在此不再赘述。
图6示出了根据本申请另一实施例提供的传输报文的装置600的示意性框图,该装置600用作第二网络设备,包括:
通信模块610,用于接收第一网络设备周期性地通过第一隧道和第二隧道中的至少一个隧道发送的链路质量检测报文,以及周期性地通过所述至少一个隧道向所述第一网络设备回复链路质量检测响应报文,所述链路质量检测响应报文用于所述第一网络设备确定与所述装置之间进行业务报文传输的目标传输模式。
在一种可能的实施例中,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述第一网络设备通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述装置通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
所述装置通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
在一种可能的实施例中,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述装置通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
在一种可能的实施例中,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述第一网络设备通过所述第二隧道发送的第二链路质量检测报文,所述第二 链路质量检测报文包括以下中的至少一项:
所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
所述链路质量检测响应报文包括所述装置通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
所述装置通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
在一种可能的实施例中,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述装置通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
应理解,根据本申请实施例的装置600可对应于本申请实施例的传输报文的方法200中的HG设备,并且装置600中的各个模块的上述和其它操作和/或功能分别为了实现图2中HG设备对应的相应流程,为了简洁,在此不再赘述。
如图7所示,本申请实施例还提供了一种传输报文的装置700,该装置700包括收发器710、处理器720、存储器730。其中,该收发器710、处理器720和存储器730通信连接,该存储器730用于存储指令,该处理器720用于执行该存储器730存储的指令,以控制收发器710收发信号或信息。其中,存储器730可以配置于处理器720中,也可以独立于处理器720。
具体地,该装置700可对应于图2至图3所对应的实施例中的HAAP设备,并且,该装置700中的处理器720、收发器710等可以实现图2至图3所对应的实施例中的HAAP设备所具有的功能和/或所实施的各种步骤和方法,所述处理器720用于执行图5中所述装置500的确定模块510及切换模块520的所有操作,所述收发器710用于执行图5所述装置500的通信模块530的所有操作。为了简洁,在此不再赘述。
需要说明的是,本实施例也可以基于通用的物理服务器结合网络功能虚拟化(Network Function Virtualization,NFV)技术实现的虚拟第一网络设备,所述虚拟第一网络设备可以是运行有用于根据链路质量信息确定目标传输模式,以及将当前使用的传输模式切换至所述目标传输模式功能的程序的虚拟机(Virtual Machine,VM),所述虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。
如图8所示,本申请实施例还提供了一种传输报文的装置800,该装置800包括收发器810。可选地,所述装置800还可以包括处理器820、存储器830。其中,该收发器810、处理器820和存储器830通信连接,该存储器830用于存储指令,该处理器820用于执行该存储器830存储的指令,以控制收发器810收发信号或信息。其中,存储器830可以配置于处理器820中,也可以独立于处理器820。
具体地,该装置800可对应于图2至图3所对应的实施例中的HG设备,并且,该 装置800中的处理器820、收发器810等可以实现图2至图3所对应的实施例中的HG设备所具有的功能和/或所实施的各种步骤和方法,所述收发器810用于执行图6所述装置600的通信模块610的所有操作。为了简洁,在此不再赘述。
需要说明的是,本实施例也可以基于通用的物理服务器结合网络功能虚拟化(Network Function Virtualization,NFV)技术实现的虚拟第二网络设备,所述虚拟第二网络设备可以是运行有用于与虚拟第一网络设备配合实现链路质量检测功能的程序的虚拟机(Virtual Machine,VM),所述虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理单元(Central Processing Unit,CPU)、该处理器还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的传输报文的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件器组合执行完成。软件器可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息, 结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图9示出了本申请实施例提出的传输报文的装置的一种可能的结构示意图。如图9所示,装置900包括:主控板910、接口板930、交换网板920和接口板940。主控板910用于完成系统管理、设备维护、协议处理等功能。交换网板920用于完成各接口板(接口板也称为线卡或业务板)之间的数据交换。接口板930和940用于提供各种业务接口(例如,POS接口、GE接口、ATM接口等),并实现数据包的转发。主控板910、接口板930和940,以及交换网板920之间通过系统总线与系统背板相连实现互通。接口板930上的中央处理器931用于对接口板进行控制管理并与主控板910上的中央处理器911进行通信。
其中,主控板910上的中央处理器911用于向接口板930上的中央处理器931发送链路质量检测报文,所述中央处理器931用于通过物理接口卡933上的接口向第二网络设备发送链路质量检测报文;所述物理接口卡933上的接口用于接收所述第二网络设备回复的链路质量检测响应报文,所述接口板930上的中央处理器931用于将所述链路质量检测响应报文发送给主控板910上的中央处理器911;所述主控板910上的中央处理器911可以用于根据至少一个隧道的链路质量信息,确定用于传输报文的目标传输模式(具体过程请参考图2和图3实施例中的相关描述,这里不再赘述)。
所述主控板910上的中央处理器911还可以用于计算所述目标传输模式的转发表项,并将该目标传输模式的转发表项下发至所述接口板930上的转发表项存储器934。所述接口板930上的网络处理器932可以用于指令查找转发表项存储器934,并根据查找结果,指令数据报文按照该目标传输模式进行转发。
应理解,本申请实施例中接口板940上的操作与所述接口板930的操作一致,为了简洁,不再赘述。应理解,本实施例的装置900可对应于上述图2至图3所对应的实施例中的第一网络设备,该装置900中的主控板910、接口板930和/或940可以实现图2至图3所对应的实施例中的第一网络设备所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。
需要说明的是,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,第一网络设备的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实现负荷分担冗余备份。在集中式转发架构下,第一网络设备可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,第一网络设备可以有至少一块交换网板,通过交换网板实现多块接口板之间的数据交换,提供大容量的数据交换和处理能力。所以,分布式架构的网关设备的数据接入和处理能力要大于集中式架构的设备。具体采用哪种架构,取决于具体的组网部署场景,此处不做任何限定。
如图10所示,本申请实施例还提供了一种传输报文的系统1000,该系统1000包括装置1010和装置1020。其中,该装置1010对应于本申请实施例的装置500、装置700,虚拟第一网络设备或装置900,该装置1020对应于本申请实施例的装置600、装置800或虚拟第二网络设备。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子 设备执行时,能够使该便携式电子设备执行图2至图3所示实施例的方法。
本申请实施例还提出了一种计算机程序产品,该计算机程序产品包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图2至图3所示实施例的方法的相应流程。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围 为准。

Claims (37)

  1. 一种传输报文的方法,其特征在于,包括:
    第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,所述目标传输模式为绑定隧道传输模式或单隧道传输模式,所述绑定隧道传输模式为使用所述第一隧道和所述第二隧道传输业务报文,所述单隧道传输模式为使用所述第一隧道或所述第二隧道传输业务报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;
    所述第一网络设备将当前传输报文使用的传输模式切换为所述目标传输模式;
    所述第一网络设备使用所述目标传输模式与第二网络设备传输业务报文。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备确定所述第一隧道和所述第二隧道中的至少一个隧道的链路质量信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一网络设备确定所述第一隧道和所述第二隧道中的至少一个隧道的链路质量信息,包括:
    所述第一网络设备周期性地通过所述至少一个隧道向所述第二网络设备发送链路质量检测报文;
    接收所述第二网络设备周期性地通过所述至少一个隧道回复的链路质量检测响应报文;
    所述第一网络设备至少根据所述链路质量检测响应报文,确定所述至少一个隧道的链路质量信息。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述第一网络设备通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
    所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
    相应地,所述链路质量检测响应报文包括所述第二网络设备通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
    所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
    所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述第一网络设备通过所述第二隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
    所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
    相应地,所述链路质量检测响应报文包括所述第二网络设备通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
    所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
    所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,包括:
    根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式,包括:
    在所述第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式;或
    在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述单隧道传输模式。
  10. 根据权利要求8或9所述的方法,其特征在于,所述根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式,包括:
    在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差大于第一时延阈值的情况下,确定所述目标传输模式为所述单隧道传输模式;或
    在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差小于或等于所述第一时延阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式。
  11. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一网络设备根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,包括:
    根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,所述状态机的每个状态对应相应的传输模式;
    将所述目标状态对应的传输模式确定为传输业务报文的所述目标传输模式。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,包括:
    根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述状态机的目标状态。
  13. 一种传输报文的方法,其特征在于,包括:
    第二网络设备接收第一网络设备周期性地通过第一隧道和第二隧道中的至少一个隧道发送的链路质量检测报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;
    所述第二网络设备周期性地通过所述至少一个隧道向所述第一网络设备回复链路质量检测响应报文,所述链路质量检测响应报文用于所述第一网络设备确定与所述第二网络设备之间进行业务报文传输的目标传输模式。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述第一网络设备通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
    所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
    所述链路质量检测响应报文包括所述第二网络设备通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
    所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
    所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述第一网络设备通过所述第二隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
    所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
    所述链路质量检测响应报文包括所述第二网络设备通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
    所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字 节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
    所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
  18. 一种传输报文的装置,其特征在于,包括:
    确定模块,用于根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确定传输业务报文的目标传输模式,所述目标传输模式为绑定隧道传输模式或单隧道传输模式,所述绑定隧道传输模式为使用所述第一隧道和所述第二隧道传输业务报文,所述单隧道传输模式为使用所述第一隧道或所述第二隧道传输业务报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道;
    切换模块,用于将当前传输报文使用的传输模式切换为所述目标传输模式;
    通信模块,用于使用所述目标传输模式与第二网络设备传输业务报文。
  19. 根据权利要求18所述的装置,其特征在于,所述确定模块还用于:
    确定所述第一隧道和所述第二隧道中的至少一个隧道的链路质量信息。
  20. 根据权利要求19所述的装置,其特征在于,所述通信模块还用于:
    周期性地通过所述至少一个隧道向所述第二网络设备发送链路质量检测报文;
    接收所述第二网络设备周期性地通过所述至少一个隧道回复的链路质量检测响应报文;
    所述确定模块还用于:
    至少根据所述链路质量检测响应报文,确定所述至少一个隧道的链路质量信息。
  21. 根据权利要求20所述的装置,其特征在于,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述装置通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
    所述装置通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
    所述链路质量检测响应报文包括所述第二网络设备通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
    所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
  22. 根据权利要求21所述的装置,其特征在于,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述装置通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
    所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述第二网络设备通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
  23. 根据权利要求20至22中任一项所述的装置,其特征在于,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述装置通过所述第二隧道发送的第二 链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
    所述装置通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
    所述链路质量检测响应报文包括所述第二网络设备通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
    所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
  24. 根据权利要求23所述的装置,其特征在于,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述装置通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
    所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述第二网络设备通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
  25. 根据权利要求18至24中任一项所述的装置,其特征在于,所述确定模块具体用于:
    根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述目标传输模式。
  26. 根据权利要求25所述的装置,其特征在于,所述确定模块具体用于:
    在所述第一隧道和所述第二隧道的吞吐量之和大于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式;或
    在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值的情况下,确定所述目标传输模式为所述单隧道传输模式。
  27. 根据权利要求25或26所述的装置,其特征在于,所述确定模块具体用于:
    在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差大于第一时延阈值的情况下,确定所述目标传输模式为所述单隧道传输模式;或
    在所述第一隧道和所述第二隧道的吞吐量之和小于或等于所述第一隧道的带宽阈值,并且所述第一隧道和所述第二隧道的下行单向时延之差小于或等于所述第一时延阈值的情况下,确定所述目标传输模式为所述绑定隧道传输模式。
  28. 根据权利要求18至24中任一项所述的装置,其特征在于,所述确定模块还用于:
    根据所述至少一个隧道的链路质量信息,确定状态机的目标状态,所述状态机的每个状态对应相应的传输模式;
    将所述目标状态对应的传输模式确定为传输业务报文的所述目标传输模式。
  29. 根据权利要求28所述的装置,其特征在于,所述确定模块还用于:
    根据所述第一隧道和所述第二隧道的吞吐量、丢包率和下行单向时延中的至少一项,确定所述状态机的目标状态。
  30. 一种传输报文的装置,其特征在于,包括:
    通信模块,用于接收第一网络设备周期性地通过第一隧道和第二隧道中的至少一个隧道发送的链路质量检测报文,以及周期性地通过所述至少一个隧道向所述第一网络设备回复链路质量检测响应报文,所述链路质量检测响应报文用于所述第一网络设备确定与所述装置之间进行业务报文传输的目标传输模式。
  31. 根据权利要求30所述的装置,其特征在于,所述至少一个隧道包括所述第一隧道,所述链路质量检测报文包括所述第一网络设备通过所述第一隧道发送的第一链路质量检测报文,所述第一链路质量检测报文包括以下中的至少一项:
    所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息;
    所述链路质量检测响应报文包括所述装置通过所述第一隧道回复的第一链路质量检测响应报文,所述第一链路质量检测响应报文包括以下中的至少一项:
    所述装置通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息。
  32. 根据权利要求31所述的装置,其特征在于,所述第一链路质量检测报文为第一GRE控制消息,所述第一GRE控制消息包括所述第一隧道对应的第一属性值对AVP,所述第一AVP用于携带所述第一网络设备通过所述第一隧道发送的报文数、发送的报文包括的字节数和发送所述第一链路质量检测报文的时间信息中的至少一项;
    所述第一链路质量检测响应报文为第二GRE控制消息,所述第二GRE控制消息包括所述第一隧道对应的第二AVP,所述第二AVP用于携带所述装置通过所述第一隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第一链路质量检测报文的时间信息中的至少一项。
  33. 根据权利要求30至32中任一项所述的装置,其特征在于,所述至少一个隧道包括所述第二隧道,所述链路质量检测报文包括所述第一网络设备通过所述第二隧道发送的第二链路质量检测报文,所述第二链路质量检测报文包括以下中的至少一项:
    所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息;
    所述链路质量检测响应报文包括所述装置通过所述第二隧道回复的第二链路质量检测响应报文,所述第二链路质量检测响应报文包括以下中的至少一项:
    所述装置通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息。
  34. 根据权利要求33所述的装置,其特征在于,所述第二链路质量检测报文为第三GRE控制消息,所述第三GRE控制消息包括所述第二隧道对应的第三AVP,所述第三AVP用于携带所述第一网络设备通过所述第二隧道发送的报文数、发送的报文包括的字节数和发送所述第二链路质量检测报文的时间信息中的至少一项;
    所述第二链路质量检测响应报文为第四GRE控制消息,所述第四GRE控制消息包括所述第二隧道对应的第四AVP,所述第四AVP用于携带所述装置通过所述第二隧道接收到的报文数、接收到的报文包括的字节数和接收到所述第二链路质量检测报文的时间信息中的至少一项。
  35. 一种传输报文的装置,其特征在于,包括:处理器和收发器;
    所述处理器,用于根据第一隧道和第二隧道中的至少一个隧道的链路质量信息,确 定传输业务报文的目标传输模式,所述目标传输模式为绑定隧道传输模式或单隧道传输模式,所述绑定隧道传输模式为使用所述第一隧道和所述第二隧道传输业务报文,所述单隧道传输模式为使用所述第一隧道传输业务报文,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道,并将当前传输报文使用的传输模式切换为所述目标传输模式;
    所述收发器,用于使用所述目标传输模式与第二网络设备传输业务报文。
  36. 一种传输报文的装置,其特征在于,包括:
    收发器,用于接收第一网络设备周期性地通过第一隧道和第二隧道中的至少一个隧道发送的链路质量检测报文,以及周期性地通过所述至少一个隧道向所述第一网络设备回复链路质量检测响应报文,所述链路质量检测响应报文用于所述第一网络设备确定与所述装置之间进行业务报文传输的目标传输模式,其中,所述第一隧道为固定网络隧道,所述第二隧道为移动网络隧道。
  37. 一种传输报文的系统,其特征在于,包括:
    如权利要求18至29中任一项所述的传输报文的装置,或如权利要求35所述的传输报文的装置;以及
    如权利要求30至34中任一项所述的传输报文的装置,或如权利要求36所述的传输报文的装置。
PCT/CN2017/091232 2017-06-30 2017-06-30 传输报文的方法、装置和系统 WO2019000419A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/091232 WO2019000419A1 (zh) 2017-06-30 2017-06-30 传输报文的方法、装置和系统
EP17916034.6A EP3637695B1 (en) 2017-06-30 2017-06-30 Message transmission method, apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091232 WO2019000419A1 (zh) 2017-06-30 2017-06-30 传输报文的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2019000419A1 true WO2019000419A1 (zh) 2019-01-03

Family

ID=64740877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091232 WO2019000419A1 (zh) 2017-06-30 2017-06-30 传输报文的方法、装置和系统

Country Status (2)

Country Link
EP (1) EP3637695B1 (zh)
WO (1) WO2019000419A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728802A1 (en) * 2012-11-02 2014-05-07 Deutsche Telekom AG Method and apparatus for network and service controlled hybrid access
CN105657748A (zh) * 2016-03-16 2016-06-08 华为技术有限公司 基于隧道绑定的通信方法和网络设备
CN105743760A (zh) * 2014-12-12 2016-07-06 华为技术有限公司 一种流量切换方法和装置
CN106304397A (zh) * 2015-05-15 2017-01-04 北京华为数字技术有限公司 一种建立隧道的方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728802A1 (en) * 2012-11-02 2014-05-07 Deutsche Telekom AG Method and apparatus for network and service controlled hybrid access
CN105743760A (zh) * 2014-12-12 2016-07-06 华为技术有限公司 一种流量切换方法和装置
CN106304397A (zh) * 2015-05-15 2017-01-04 北京华为数字技术有限公司 一种建立隧道的方法及相关设备
CN105657748A (zh) * 2016-03-16 2016-06-08 华为技术有限公司 基于隧道绑定的通信方法和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEYMANN, N. ET AL.: "GRE Notifications for Hybrid Accessdraft-lhwxz-gre-notifications-hybrid-access-00", INTERDOMAIN ROUTING WORKING GROUP, INTERNET -DRAFT, 27 June 2014 (2014-06-27), pages 1 - 36, XP055558651 *
See also references of EP3637695A4 *

Also Published As

Publication number Publication date
EP3637695B1 (en) 2022-03-23
EP3637695A4 (en) 2020-05-13
EP3637695A1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US11601323B2 (en) Techniques for wireless access and wireline network integration
US10321513B2 (en) Method for PDCP control PDU transmission by user equipment (UE)
CN110351160B (zh) 监测业务质量的方法和装置
WO2017084487A1 (zh) 用于获得目标传输路径的方法和网络节点
US20220086073A1 (en) Data packet detection method, device, and system
KR102463978B1 (ko) 네트워크 전환 방법, 전자 장치 및 시스템 온 칩
US9871723B2 (en) Method and device for handling multi path connections
CN111817977B (zh) 一种网络拥塞控制方法和装置
CN101379781A (zh) 通信方法、通信系统、节点及程序
EP4047888A1 (en) Method for issuing oam configuration information and control node
CN112448885A (zh) 一种业务报文传输的方法及设备
WO2020192397A1 (zh) 一种发送设备的调整方法和通信装置
WO2022062931A1 (zh) 网络异常确定方法及装置
US20230269626A1 (en) Flow control method and device
CN113055293A (zh) 软件定义广域网中的选路方法及装置、通信系统
CN112134747A (zh) 一种检测传输时延的方法及相关设备
US10999210B2 (en) Load sharing method and network device
WO2019000419A1 (zh) 传输报文的方法、装置和系统
CN113133060B (zh) 接入网系统、传输方法以及相关设备
WO2024012205A1 (zh) 一种通信方法、装置及系统
WO2024001562A1 (zh) Tsn网络时延监控方法及装置、系统、电子设备、存储介质
CN113498073B (zh) 一种灌包方法、相关装置以及系统
WO2022057706A1 (zh) 一种数据传输方法及相关设备
CN108964933A (zh) 用于传输报文的方法、装置和系统
EP4236143A2 (en) Techniques for wireless access and wireline network integration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017916034

Country of ref document: EP

Effective date: 20191209

NENP Non-entry into the national phase

Ref country code: DE