WO2019000379A1 - 电子离合器及电动工具 - Google Patents

电子离合器及电动工具 Download PDF

Info

Publication number
WO2019000379A1
WO2019000379A1 PCT/CN2017/091062 CN2017091062W WO2019000379A1 WO 2019000379 A1 WO2019000379 A1 WO 2019000379A1 CN 2017091062 W CN2017091062 W CN 2017091062W WO 2019000379 A1 WO2019000379 A1 WO 2019000379A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
power tool
control
controller
electromagnet
Prior art date
Application number
PCT/CN2017/091062
Other languages
English (en)
French (fr)
Inventor
刘佰祥
陈艳华
周述宇
Original Assignee
深圳和而泰智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳和而泰智能控制股份有限公司 filed Critical 深圳和而泰智能控制股份有限公司
Priority to CN201780003794.9A priority Critical patent/CN108352796B/zh
Priority to PCT/CN2017/091062 priority patent/WO2019000379A1/zh
Publication of WO2019000379A1 publication Critical patent/WO2019000379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step

Definitions

  • the present application relates to the field of power tools, and in particular to an electronic clutch and a power tool.
  • the switchable working mode power tool it is usually necessary to configure or functionally switch the working mode of the power tool during use, so that it is more targeted to meet the operation requirements.
  • the switching of the operating mode is achieved by using a clutch device in the mechanical transmission portion, and the function of the electric tool to be operated can be selected by the clutch device.
  • the switching of the above functions or operating modes is usually selected or configured by a rotary switch mounted outside the power tool housing.
  • the artificial rotary rotary switch drives the clutch in the power tool to slide on the transmission shaft, thereby adjusting the meshing (or occlusion) and disengagement relationship between the gears of the various functional transmissions and the transmission shaft to achieve the power tool.
  • the functional mode is switched functionally to achieve the operational requirements of the power tool.
  • the working state of the mechanical clutch device is not fed back to the main controller of the power tool control system, and the main controller cannot know the working state of the clutch device, which reduces the reliability and safety of the product.
  • the technical problem that the main solution of the present application mainly solves is: avoiding the problem that the mechanical clutch is easy to cause damage to the power tool, the reliability is degraded, and the switching operation is inconvenient during use of the power tool.
  • an embodiment of the present application provides an electronic clutch.
  • the electronic clutch includes a clutch body, a clutch drive, an input device, and a controller.
  • the clutch driving device is configured to drive the clutch body to engage or disengage according to a control command;
  • the input device is configured to collect at least one user command;
  • the controller is respectively connected to the clutch driving device and the input device, and configured Preset control logic;
  • the controller is configured to receive a user command from the input device, and output a corresponding control command to the clutch driving device according to the control logic.
  • the clutch driving device comprises: an electromagnet and a driving circuit thereof;
  • the driving circuit is configured to receive the control command to control movement of the electromagnet.
  • the electromagnet comprises two opposite phase coil windings; wherein one of the phase coil windings is turned on and the other phase coil winding is disconnected, the electromagnet is used to drive the clutch The main body moves in a corresponding direction of the coil winding that is turned on;
  • the driving circuit is configured to receive the control instruction, and controlling the movement of the electromagnet comprises: the driving circuit is configured to receive the control instruction, and control one of the two-phase coil windings according to the control instruction The winding is turned on.
  • the driving circuit specifically includes: a working power source, a pair of switching elements, and a pair of freewheeling diodes; the working power source is connected to the coil winding, and the coil winding is grounded through the switching element;
  • the switching element has an input port for receiving a control signal, and determining an operating state of the switching element according to the control signal, the working state includes turning on or off; the freewheeling diode is connected in reverse parallel to the coil winding At the end, a conduction loop that forms a back electromotive force is formed.
  • the switching element is a power transistor or a MOS tube.
  • the electromagnet is a self-holding electromagnet.
  • the embodiment of the present application further provides a power tool.
  • the electric tool includes: an electric motor that outputs power through a transmission shaft; a plurality of transmission teeth; the transmission teeth are in one-to-one correspondence with an operation mode of the electric tool; and the electronic clutch as described above, the electronic clutch and the electric clutch
  • the transmission teeth are correspondingly arranged to control the clutching state between the transmission shaft and the corresponding transmission teeth.
  • the power tool further includes: a display device coupled to the controller of the power clutch for displaying an operation mode of the current power tool.
  • the display device is an LED indicator; the LED indicator has a plurality of blinking modes, corresponding to an operating mode of the current power tool.
  • the power tool further includes: a communication module; the communication module is coupled to the controller of the electronic clutch for receiving one or more control commands for transmission to the controller.
  • an electronic control method is adopted instead of the traditional mechanical clutch, and the clutch is driven to realize switching of different functional modes of the power tool.
  • the use of the electronic control method does not require confirmation before operation, nor does it require manual adjustment of the clutch.
  • the function of the clutch can be realized more conveniently, simply and flexibly, and the working mode of the power tool can be changed or configured to improve the working efficiency of the work.
  • FIG. 1 is a schematic diagram of a control structure of a power tool according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a working mode switching sequence of a power tool according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a clutch driving device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a transmission shaft connection structure of a power tool according to an embodiment of the present application.
  • a power tool is a very widely used work tool with an outer casing made of engineering plastic, aluminum or other materials.
  • One end of the outer casing is fixedly or detachably connected with a corresponding tool, and the inside of the outer casing is provided with a suitable type of electric motor.
  • the electric motor outputs power through the transmission system, which drives the tool to perform a variety of different operations, such as drilling, hammering, screwing, and the like.
  • power tools can have many different functions or working modes, such as flat drilling function, hammering function and the combination of flat drilling and hammering.
  • the power tool can realize the switching of the above different functions by a transmission system composed of one or more clutches.
  • the electric motor of the electric power tool serves as a power source and outputs power on the transmission shaft.
  • the clutch slides on the transmission shaft to adjust the meshing (or occlusion)/disengagement relationship between the transmission gears of different functions and the transmission shaft, so that the power output is distributed to different gears, thereby completing the power tool.
  • Operation mode functional switching to meet different job requirements.
  • the above-mentioned power tool can also increase or decrease some functional modules, for example, to facilitate movement, reduce restrictions in use, and add batteries, and is not limited to the above functional modules.
  • FIG. 1 is a schematic diagram of a control structure of a switchable mode power tool according to an embodiment of the present application.
  • the clutch is driven in an electronically controlled manner to change or adjust the engagement/disengagement (clutch) relationship between the different gears and the drive shaft.
  • the power tool includes a controller 100, an electric motor 200, a clutch drive device 300, and a power source 400.
  • the controller 100 functions as a main control unit of the power tool, integrates one or more function modules, invokes a corresponding function program, and performs one or more steps to implement different functions of the power tool and switch operations between different functions.
  • the controller 100 can be any suitable type of processor having a certain logic operation capability, such as a single chip microcomputer, a microprocessor or a CPU.
  • the processor may also have one or more processing cores.
  • the motor 200 can be connected to the controller 100 via a motor drive circuit 201, and the controller 100 drives a specific operation mode of the motor 200, for example, controlling the rotational speed or the direction of rotation of the motor 200, and the like.
  • the motor drive circuit 201 is specifically provided according to the motor 200 used in detail, and is well known to those skilled in the art (for example, parameters such as voltage and current required to drive the motor 200).
  • the motor drive circuit 201 can also be integrated into the controller 100 as one of the functional modules of the controller 100.
  • the controller 100 can also provide a plurality of corresponding input/output interfaces according to specific integrated functional modules to implement control of other external devices or receive information collected by external devices.
  • the controller 100 may be provided with a power interface 101 for connection to a power source 400 through which power is supplied to the power source 400.
  • the controller 100 is further provided with a clutch control output port 102 connected to the clutch driving device 300. According to the control command output from the port by the controller 100, The clutch driving device 300 can drive the clutch body to perform a corresponding engagement or disconnection action, thereby achieving switching of the power tool function.
  • the clutch driving device 300 is a clutch driving device that is controlled using an electronic signal. Unlike the mechanical control method, it can control the clutch action by electronic signals without manual manual operation.
  • the clutch driving device 300 may be any suitable action mechanism capable of performing a corresponding action according to an electrical signal, such as an electromagnet, a direct current motor, a stepping motor, or the like.
  • the control command output by the controller 100 corresponds to the user's usage requirements.
  • a corresponding input device 501 such as a button, a touch button, a toggle switch, or the like, can be used to collect user instructions used by the user to meet the usage requirements.
  • the user can simply input information through the input device (such as a button) to complete the switching of different working modes (or functions) of the power tool, and the switching process is quick and convenient, and the original mechanical mechanism is avoided.
  • the clutch uses a rotary switch to switch between a series of problems (such as the operation is cumbersome to align, or the need to stop before the mode switch can be completed).
  • the clutch is controlled electronically. Therefore, in the case where more buttons or other interactive devices are provided, the working mode switching of the power tool can be flexibly adjusted, for example, the control button 502 for configuring the switching mode is additionally provided.
  • the electric hammer tool has a flat drill mode, a hammer drill mode, a hammer mode, and an electric hammer mode.
  • the switching sequence is as shown in FIG. 2.
  • the user may only need to use both the hammer mode and the power mode.
  • the user can change or adjust the corresponding control logic in the controller 100 through the control button 502, so that when the user switches the working mode using the input device 501, the switching sequence of the working mode is modified to the hammer mode and the electric power. ⁇ mode alternates between the two modes.
  • the user can freely set the mode when the function is switched according to his actual needs, which is beneficial to improve the operation time.
  • the controller can know the working mode of the current specific power tool, and improve the reliability and safety of the product. It should be noted that the configuration of the different control logic described above may be determined according to the controller or calculation method actually used, and is well known to those skilled in the art.
  • a display device 600 for displaying a current mode of operation can be added.
  • the display device 600 is coupled to the display signal interface 103 provided by the controller 100 to present the current power tool operating mode to the user.
  • the display device 600 may be any suitable type, devices having different display modes for indicating different working modes, such as a liquid crystal display, a digital display, a plurality of LED indicators, and the like. Specifically, the controller 100 can control the LED indicator corresponding to the current working mode to blink or illuminate, thereby presenting the current working mode of the power tool to the user.
  • the communication module 700 that establishes a communication connection with the outside and transmits data or instructions.
  • the communication module 700 is connected to the controller 100 through a corresponding data transmission interface to transmit external control commands or data to the controller 100.
  • the communication module 700 can be connected to one or more external smart devices by any suitable wireless or wired communication module, including but not limited to a Wi Fi module, a Bluetooth module, and an NFC communication module.
  • an external smart device can run a corresponding client software program (such as an APP, a web version client, etc.). Through the client software program, the user can set the switching sequence of the working mode of the power tool (playing the role of the control button 502), directly switch the working mode of the power tool (play the role of the button 501), or obtain the working state of the current power tool, etc. .
  • client software program such as an APP, a web version client, etc.
  • the function modules in the power tool may be further adjusted, integrated, or increased/decremented based on the computing capabilities of the controller 100 or the provided data interface according to other suitable functional requirements. Some functional modules.
  • FIG. 3 is a schematic structural diagram of a clutch driving device according to an embodiment of the present application.
  • the clutch driving device specifically includes: an electromagnet and a driving circuit 312, and is driven.
  • Circuit 312 has an input port 320 and a working power supply VCC.
  • the electromagnet is an electromagnet having a two-phase coil winding, and includes a first coil winding 311a and a second coil winding 311b.
  • the electromagnet may adopt an electromagnet having a self-holding function (that is, after the working power source VCC is cut off, the electromagnet still maintains its original position without changing). In this way, the influence of the working power source VCC on the electromagnet can be avoided, unnecessary malfunctions can be avoided, and the reliability of the clutch driving device and the power consumption of the clutch driving device can be maintained.
  • the drive circuit is composed of a pair of switching elements (a first switching element 312a and a second switching element 312b) and a pair of freewheeling diodes (a first freewheeling diode D1 and a second freewheeling diode D2).
  • the freewheeling diode may be selected to use a suitable type of diode such as a fast recovery diode or a Schottky diode to exert a freewheeling action in the driver circuit.
  • a suitable type of diode such as a fast recovery diode or a Schottky diode to exert a freewheeling action in the driver circuit.
  • One end of the first coil winding 311a is connected to the working power source VCC, and the other end is grounded through the first switching element 312a, and the control end of the first switching element serves as the first input port 320a, and the voltage that can pass through the first input port 320a
  • the operating state of the first switching element 312a is controlled (ie, turned off/on).
  • One end of the second coil winding 311b is also connected to the working power source VCC, and the other end is grounded through the second switching element 312b.
  • the control end of the second switching element serves as the second input port 320b and can pass through the second input port 320b.
  • the voltage controls the operating state of the second switching element 312b (ie, turns off/on).
  • the first freewheeling diode D1 and the second freewheeling diode D2 are respectively connected in reverse parallel with the first coil winding 311a and the second coil winding 311b to form a conduction path for inducing electromotive force.
  • the instantaneous high voltage reverse induced electromotive force generated by the coil winding is prevented from damaging the first switching element and the second switching element.
  • the first coil winding 311a and the second coil winding 311b can be controlled to be turned on or off by inputting corresponding voltage signals at the first input port 320a and the second input port 320b, thereby implementing action control of the relay, thereby further Control the movement of the clutch.
  • the first switching element can be controlled to be turned on, the second switching element is turned off to move the clutch in the direction of the first coil winding, and the clutch is disconnected from the gear shaft, or
  • the second switching element is controlled to be turned on, and the first switching element is turned off to move the clutch in the direction of the second coil winding, so that the clutch engages the gear and the transmission shaft.
  • any suitable circuit structure or other suitable power device can be used as the switching element, such as a power transistor or a MOS tube.
  • the first switching element and the second switching element are power transistors.
  • the electromagnet is used as the actuator to drive the clutch to be cut or engaged, which can replace the clutch driving mode of the manual rotary switch, avoiding some disadvantages of the mechanical clutch, and can realize the control of the clutch conveniently and accurately.
  • the control mode can be realized by configuring and updating the control logic, and the control is more flexible and can adapt to different application occasions.
  • an electric hammer power tool having three working modes is taken as an example to describe in detail the switching operation process of the working mode of the above electric power tool:
  • the electric hammer power tool includes three working modes: a flat drill mode, a hammer mode and an electric hammer mode.
  • a flat drill mode a hammer mode
  • an electric hammer mode a flat drill mode
  • the first transmission tooth 301 shown in FIG. 4 is in the electric hammer mode
  • the second transmission tooth 302 is in the electric hammer mode
  • the third transmission tooth 303 is in the flat drilling mode.
  • the third drive tooth 303 is coupled to the drive shaft 304, and the second drive tooth 302 and the first drive tooth 301 are disengaged from the drive shaft 304 (ie, the default power tool operates in a flat drill mode).
  • the first clutch 305 and the second clutch 306 are respectively disposed corresponding to the first transmission tooth 301 and the second transmission tooth 302 to control whether the first transmission tooth 301 and the second transmission tooth 302 are engaged with the transmission shaft 304.
  • the electric hammer power tool when the first transmission tooth 301 is engaged with the transmission shaft 304 and the second transmission tooth 302 is disengaged from the transmission shaft 304, the electric hammer power tool is in the electric power mode. If the second transmission tooth 302 is engaged with the transmission shaft 304 and the first transmission tooth 301 is disengaged from the transmission shaft 304, the electric hammer power tool is in the hammer mode.
  • the first clutch 305 and the second clutch 306 are respectively controlled by corresponding first self-holding electromagnets 307 and second self-holding electromagnets 308. For example, when the first self-holding electromagnet 307 moves toward the A-phase coil, the first clutch 305 is driven to cause the first transmission tooth 301 to The drive shaft 304 is engaged. When the first self-holding electromagnet 307 moves toward the B-phase coil, the first clutch 305 is driven to disconnect the first transmission tooth 301 from the transmission shaft 304.
  • the electric hammer power tool is first turned on and the system is reset.
  • the electric hammer power tool is in the flat drilling mode, and the corresponding flat drill mode indicator lights up.
  • the controller then detects if there is specific control or configuration logic and establishes a connection with the external smart device through the communication module. If it is not necessary to establish a connection, it is detected whether the control button 502 needs to be configured with new control logic.
  • the controller preferentially controls according to a custom configuration logic input by the user (ie, a switching sequence of the working mode). In the absence of a rule, the default default configuration logic is used.
  • the controller will control the first self-holding electromagnet 307 and the second self-holding electromagnet 308 respectively.
  • the electric hammer power tool is switched to the electric power mode.
  • the LED indicator corresponding to the power mode is blinking.
  • the user can also change the control logic stored in the controller through the control button 502 to adjust the switching sequence of the working mode.
  • the controller will control the first self-holding electromagnet 307 and the second self-holding electromagnet 308 to their respective B-phase coils and A according to the command and the new control logic.
  • the phase coil moves so that the electric hammer power tool switches to the hammer mode.
  • an external device that establishes a communication connection channel with the electric hammer power tool and can perform data transmission, and realizes the transmission of the above control command, for example, by means of an APP or a web client.
  • the embodiment of the present application provides only a clutch driving device for use on a power tool.
  • those skilled in the art can combine one or more functional modules of the power tool provided by the above embodiments with the clutch driving device to form an electronic clutch or apply the same to others according to the disclosure of the above embodiments.
  • the corresponding technical effect is obtained (accurate and simple control between different modes) Switching and switching control configuration methods are flexible and applicable.
  • the electronic clutch may include a clutch body, the clutch drive, a controller as a control core, and an input device that collects user commands to effect engagement or disconnection of the clutch by electrical signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

一种电子离合器以及电动工具。其中电子离合器包括离合器主体、离合器驱动装置(300),所述离合器驱动装置(300)用于根据控制指令,驱动所述离合器主体接合或者分离;输入设备(501),所述输入设备(501)用于采集至少一个用户指令;以及控制器(100),所述控制器(100)分别与所述离合器驱动装置(300)和输入设备(501)连接,配置有预设的控制逻辑;所述控制器(100)用于接收来自所述输入设备(501)的用户指令,并根据所述控制逻辑,输出相应的控制指令至所述离合器驱动装置(300)。该电子离合器不需要在操作前进行确认,也不需要手动调整离合器,可以更方便、简单和灵活的实现离合器的功能,改变或者配置电动工具的工作模式,提高作业的工作效率。

Description

电子离合器及电动工具 技术领域
本申请涉及电动工具技术领域,特别是涉及一种电子离合器及电动工具。
背景技术
当前市面上可以选用的电动工具种类繁多,电动工具的类型和功能非常丰富。随着社会经济的不断发展,只具备单一功能的电动工具已很难满足人们日常使用的需求。因此,为方便人们的使用,市场上开始出现一些具有多种不同功能,可切换不同工作模式的电动工具,例如,一些多功能冲击钻电动工具,既具有普通的电钻功能(平钻),也具有锤钻功能(锤击+平钻共同作用)。或者是一些多功能的电锤电动工具,既具有电钻功能(平钻),还可以切换工作模式,作为电锤钻或者电镐使用。
对于上述可切换工作模式的电动工具,在使用的过程中通常需要对电动工具的工作模式进行配置或功能性切换,使之更有针对性符合作业需求。工作模式的切换是在机械传动部分使用离合器装置来实现的,可以通过离合器装置来选择电动工具需要作业的功能。
上述功能或者工作模式的切换通常是通过安装在电动工具壳体外部的一个旋转开关来选择或者配置的。人为的转动旋转开关驱动电动工具中的离合器,使其在传动轴上滑动,以此来调节各种功能传动的齿轮与传动轴之间的啮合(或咬合)和脱离的关系,来达到电动工具操作模式功能性的切换,从而实现电动工具的作业需求。
在实现本申请过程中,申请人发现现有技术存在以下问题:目前,由于电动工具的功能切换需要人为的通过旋转开关来操控离合器的离合状态。因此,在每次使用电动工具之前,使用者首先需要选择和确认 电动工具当前的工作模式是否正确,旋转的开关上指示是否对应于电动工具工作模式标识位置,使用较为繁琐和不便。
另外,若出现电动工具作业模式不正确或者电动工具离合器不到位(如处于半离合状态)的情况,很容易使离合器在工作中被损坏,影响电动工具的使用寿命。
另一方面,如果想在作业过程中切换电动工具作业的模式,则需要使用者先停机作业,控制旋转开关选择电动工具的功能后,再继续启动电动工具进行作业。在一些需要频繁切换电动工具作业切换工作模式的场合中,会对电动工具的使用造成很大的不便,影响作业效率。
而且,机械式离合器装置的工作状态不会反馈到电动工具控制系统主控制器中,主控制器无法获知离合器装置的工作状态,会降低产品的可靠性和安全性。
发明内容
本申请实施例主要解决的技术问题是:避免机械式离合器在电动工具使用过程中容易导致电动工具损坏、可靠性下降以及切换操作不便的问题。
为解决上述技术问题,本申请实施例提供一种电子离合器。该电子离合器包括:离合器主体、离合器驱动装置,输入设备以及控制器。
所述离合器驱动装置用于根据控制指令,驱动所述离合器主体接合或者分离;所述输入设备用于采集至少一个用户指令;所述控制器分别与所述离合器驱动装置和输入设备连接,配置有预设的控制逻辑;所述控制器用于接收来自所述输入设备的用户指令,并根据所述控制逻辑,输出相应的控制指令至所述离合器驱动装置。
可选地,所述离合器驱动装置包括:电磁铁及其驱动电路;
所述驱动电路用于接收所述控制指令,控制所述电磁铁的运动。
可选地,所述电磁铁包括对向设置的两相线圈绕组;在其中一相线圈绕组接通,另一相线圈绕组断开时,所述电磁铁用于驱动所述离合器 主体沿接通的线圈绕组对应的方向运动;
所述驱动电路用于接收所述控制指令,控制所述电磁铁的运动包括:所述驱动电路用于接收所述控制指令,根据所述控制指令,控制两相线圈绕组中的其中一相线圈绕组接通。
可选地,所述驱动电路具体包括:工作电源、一对开关元件以及一对续流二极管;所述工作电源与所述线圈绕组连接,所述线圈绕组通过所述开关元件接地;
所述开关元件具有用于接收控制信号的输入端口,根据控制信号确定开关元件的工作状态,所述工作状态包括接通或者断开;所述续流二极管反向并联连接于所述线圈绕组两端,形成反向电动势的导通回路。
可选地,所述开关元件为功率三极管或者MOS管。
可选地,所述电磁铁为自保持电磁铁。
为解决上述技术问题,本申请实施例还提供一种电动工具。该电动工具包括:电动机,所述电动机通过一传动轴输出动力;若干个传动齿;所述传动齿与电动工具的工作模式一一对应;以及如上所述的电子离合器,所述电子离合器与所述传动齿对应设置,控制所述传动轴与对应的传动齿之间的离合状态。
可选地,所述电动工具还包括:显示装置,所述显示装置与所述电力离合器的控制器连接,用于显示当前的电动工具的工作模式。
可选地,所述显示装置为LED指示灯;所述LED指示灯具有若干种闪烁模式,与当前电动工具的工作模式对应。
可选地,所述电动工具还包括:通信模组;所述通信模组与所述电子离合器的控制器连接,用于接收一个或者多个控制指令,传输至所述控制器。
本申请实施例的控制方法中,采用电子控制方式代替传统的机械式离合器,驱动离合器来实现电动工具的不同功能模式的切换。使用电子控制方式不需要在操作前进行确认,也不需要手动调整离合器,可以更方便、简单和灵活的实现离合器的功能,还可以改变或者配置电动工具的工作模式,提高作业的工作效率。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的电动工具的控制结构示意图;
图2为本申请实施例提供的电动工具的工作模式切换顺序的示意图;
图3为本申请实施例提供的离合器驱动装置的结构示意图;
图4为本申请实施例提供的电动工具的传动轴连接结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
电动工具是一种应用非常广泛的作业工具,其具有由工程塑料、铝或者其它材质制备形成的外壳,外壳的一端固定或者可拆卸的连接有对应的工具,外壳的内部设置有合适类型的电动机作为动力源。电动机通过传动系统输出动力,从而带动工具进行多种不同的作业,例如钻孔、锤击、旋拧螺丝等。
为了满足不同的使用需求,电动工具会具有多种不同的功能或者工作模式,例如,平钻功能、锤击功能以及平钻和锤击共同作用等。
一般的,电动工具可以通过一个或者多个离合器组成的传动系统来实现上述不同功能的切换。例如,如图1所示,电动工具的电动机作为动力源,在传动轴上输出动力。所述离合器在所述传动轴上滑动,调节各种不同功能的传动齿轮与传动轴之间的啮合(或咬合)/脱离的关系,使得动力输出或者分配至不同的齿轮,从而完成电动工具的操作模式功能性切换,满足不同的作业需求。
根据实际情况的需求,上述的电动工具还可以增加或者减少一些功能模块,例如为便于移动,减少使用中的限制,增设电池,而不限于上述的功能模块。在一些实施例中,还可以通过使用合适的离合器驱动方法,更方便的驱动离合器,从而简化电动工具的操作模式切换时所需的操作,提高作业效率。
图1为本申请实施例提供的可切换模式的电动工具的控制结构示意图。在本实施例中,使用电子控制的方式驱动离合器,改变或者调节不同齿轮与传动轴之间的啮合/脱离(离合)关系。
如图1所示,所述电动工具包括:控制器100、电动机200、离合器驱动装置300以及电源400。
所述控制器100作为电动工具的主控制单元,集成一个或者多个功能模块,调用对应的功能程序,执行一个或者多个步骤,实现电动工具的不同功能以及不同功能之间切换操作。
所述控制器100可以是任何合适类型的,具有一定逻辑运算能力的处理器,例如单片机、微处理器或者CPU等。所述处理器还可以具有一个或者多个处理核心。
所述电动机200可以通过电动机驱动电路201与所述控制器100连接,由控制器100驱动电动机200的具体运转方式,例如,控制电动机200的转速或者旋转方向等。其中,所述电动机驱动电路201具体是根据具体使用的电动机200所设置的,为本领域技术人员所熟知(例如驱动电动机200需要的电压、电流等参数)。在一些实施例中,所述电动机驱动电路201也可以作为控制器100的其中一个功能模块,整合在所述控制器100中。
所述控制器100还可以根据具体集成的功能模块,提供若干相应的输入/输出接口,用以实现对于其它外部设备的控制或者接收外部设备采集的信息。例如,所述控制器100可以设置有用于与电源400连接的电源接口101,通过所述电源接口101获得电源400的供电。
在本实施例中,所述控制器100还设置有与所述离合器驱动装置300连接的离合控制输出端口102。根据控制器100从端口输出的控制指令, 所述离合器驱动装置300可以驱动离合器主体执行相应的结合或者断开的动作,从而实现电动工具功能的切换。
所述离合器驱动装置300是使用电子信号进行控制的离合器驱动装置。与机械式控制方式不同的是,其可以通过电子信号控制离合器动作而不需要人工手动进行。
在本实施例中,所述离合器驱动装置300具体可以是任何合适的,能够根据电信号执行对应动作的动作机构,例如电磁铁、直流电动机、步进电动机等。
所述控制器100输出的控制指令是与用户的使用要求相对应的。在本实施例中,可以使用相应的输入设备501,例如按键、触摸按钮、切换开关等采集用户为满足使用要求而使用的用户指令。
在本实施例提供的电动工具中,用户可以简单的通过输入设备(如按键)输入信息来完成电动工具不同的工作模式(或功能)的切换,切换的过程迅速、便捷,避免了原有机械式离合器使用旋转开关进行切换时的一系列问题(如操作繁琐需要对准、或者是需要停机后才能完成模式切换)。
可选地,由于采用电子方式对离合器进行控制。因此,在设置有更多的按键或者其它交互设备的情况下,还可以灵活的对电动工具的工作模式切换进行调整,例如额外设置用于配置切换模式的控制按键502。
以多功能的电动电锤工具为例:假设所述电动电锤工具具有平钻模式、冲击钻模式、电锤模式以及电镐模式。每次按压按键后,其切换顺序如图2所示。但在一些应用场景中,用户可能只需要使用电锤模式和电镐模式两种。
这样的,用户可以通过所述控制按键502,改变或者调整控制器100中对应的控制逻辑,使得用户在使用输入设备501进行工作模式的切换时,工作模式的切换顺序修改为电锤模式和电镐模式两种模式之间轮流切换。
这样的,与惯常使用的机械式驱动离合器的方式相比,用户可以根据自己的实际需求,自由的设置功能切换时的模式,有利于提高作业时 的效率,更快的完成电动工具的功能切换。而且,控制器能够获知当前具体的电动工具的工作模式,提高了产品的可靠性和安全性。应当说明的是,上述不同控制逻辑的配置可以根据实际使用的控制器或者计算方式所确定,为本领域技术人员所熟知。
为了更便于用户对于电动工具的工作模式切换,在一些实施例中,还可以在电动工具中,增加其它适用的功能模块。如图1所示,可以增加用于显示当前工作模式的显示装置600。所述显示装置600与控制器100提供的显示信号接口103连接,向用户展示当前的电动工具工作模式。
所述显示装置600具体可以是任何合适类型,具有不同显示模式,用以表示不同的工作模式的设备,例如液晶显示屏、数字式显示屏、若干LED指示灯等。具体的,控制器100可以控制当前工作模式对应的LED指示灯闪烁或者点亮,从而向用户展示电动工具当前的工作模式。
请继续参阅图1,还可以进一步的增加与外部建立通信连接,传输数据或者指令的通信模组700。所述通信模组700通过相应的数据传输接口与控制器100连接,将外部的控制指令或者数据传输至控制器100中。
所述通信模组700可以任何合适的无线或者有线通信模组,能够与一个或者多个外部智能设备建立通信连接,包括但不限于Wi Fi模组、蓝牙模组、NFC通信模组。具体的,外部的智能设备中可以运行有对应的客户端软件程序(如APP、网页版客户端等)。用户可以通过该客户端软件程序,设置电动工具的工作模式的切换顺序(发挥控制按键502的作用)、直接切换电动工具的工作模式(发挥按键501的作用)或者获取当前电动工具的工作状态等。
在本申请的一些实施例中,还可以根据其它合适的功能需求,基于控制器100的运算能力或者提供的数据接口,进一步的对上述电动工具中的功能模块进行调整、整合或者增加/减省一些功能模块。
图3为本申请实施例提供的离合器驱动装置的结构示意图。如图3所示,所述离合器驱动装置具体包括:电磁铁以及驱动电路312,驱动 电路312具有输入端口320以及工作电源VCC。
所述电磁铁为具有两相线圈绕组的电磁铁,包括第一线圈绕组311a以及第二线圈绕组311b。可选地,所述电磁铁可以采用具有自保持功能的电磁铁(即工作电源VCC被切断后,电磁铁仍然保持原有位置不发生变动)。这样的,可以避免工作电源VCC对于电磁铁的影响,避免不必要的误动作,有利于保持离合器驱动装置的可靠性和降低离合器驱动装置的功耗。
相对应地,所述驱动电路由一对开关元件(第一开关元件312a和第二开关元件312b)和一对续流二极管(第一续流二极管D1和第二续流二极管D2)组成。
可选地,所述续流二极管可以选择使用快速恢复二极管或者肖特基二极管等合适的类型的二极管,在驱动电路中发挥续流作用。
所述第一线圈绕组311a的一端与工作电源VCC连接,另一端通过第一开关元件312a接地,所述第一开关元件的控制端作为第一输入端口320a,可以通过第一输入端口320a的电压,控制所述第一开关元件312a的工作状态(即关断/导通)。
所述第二线圈绕组311b的一端也与工作电源VCC连接,另一端通过第二开关元件312b接地,所述第二开关元件的控制端作为第二输入端口320b,可以通过第二输入端口320b的电压,控制所述第二开关元件312b的工作状态(即关断/导通)。
如图3所示,所述第一续流二极管D1和第二续流二极管D2则分别与所述第一线圈绕组311a和第二线圈绕组311b反向并联连接,形成感应电动势的导通通道,避免线圈绕组产生的瞬时高压反向感应电动势损坏所述第一开关元件和第二开关元件。
这样的,可以通过在第一输入端口320a和第二输入端口320b输入相应的电压信号,控制第一线圈绕组311a和第二线圈绕组311b导通或者断开,实现对继电器的动作控制,从而进一步的控制离合器的动作。
例如,可以控制所述第一开关元件导通、第二开关元件关断使离合器沿第一线圈绕组方向运动,令离合器断开齿轮与传动轴的联系,或者 是控制所述第二开关元件导通、第一开关元件关断使离合器沿第二线圈绕组方向运动,令离合器接合齿轮与传动轴。
本领域技术人员可以理解的是,在实际使用过程中,具体可以使用任何合适的电路结构或者其他合适的功率器件作为所述开关元件,例如功率三极管或者MOS管等。在本实施例中,如图3所示,所述第一开关元件和第二开关元件为功率三极管。
在本申请实施例中,通过电磁铁作为执行机构,驱动离合器切断或者接合,能够代替手工旋转开关的离合器驱动方式,避免了机械式离合器的一些弊端,能够便利、准确的实现对于离合器的控制。而且,控制的方式可以通过配置、更新控制逻辑的方式实现,控制更加灵活,能够适应不同的应用场合。
以下结合图4所示的结构示意图,以具有三种工作模式的电锤电动工具为例,详细说明上述电动工具的工作模式的切换操作过程:
所述电锤电动工具包括平钻模式,电锤模式和电镐模式三种工作模式。其中,如图4所示的第一传动齿301为电镐模式,第二传动齿302为电锤模式,第三传动齿303为平钻模式。
在初始状态下,第三传动齿303与传动轴304连接,第二传动齿302和第一传动齿301与传动轴304脱开(亦即默认电动工具的工作模式为平钻模式)。
第一离合器305和第二离合器306分别与所述第一传动齿301和第二传动齿302对应设置,用以控制第一传动齿301和第二传动齿302是否与传动轴304接合。
这样的,当第一传动齿301与传动轴304接合,第二传动齿302与传动轴304脱开时,所述电锤电动工具则处于电镐模式。若第二传动齿302与传动轴304接合,第一传动齿301与传动轴304脱开时,所述电锤电动工具则处于电锤模式。
所述第一离合器305和第二离合器306分别由对应的第一自保持电磁铁307和第二自保持电磁铁308控制。例如,所述第一自保持电磁铁307向A相线圈移动时,驱动所述第一离合器305令第一传动齿301与 传动轴304接合,所述第一自保持电磁铁307向B相线圈移动时,则驱动所述第一离合器305令第一传动齿301与传动轴304断开。
在实际操作过程中,首先令所述电锤电动工具接通电源,系统复位。该电锤电动工具处于平钻模式,相对应的平钻模式指示灯点亮。
然后,控制器检测是否存在特定的控制或者配置逻辑,并通过通信模块与外部智能设备建立连接。若不需要建立连接,则检测该控制按键502是否需要配置新的控制逻辑。
所述控制器优先根据用户输入的自定义的配置逻辑(即工作模式的切换顺序)进行控制。在不存在的情况下,则使用预设的默认配置逻辑。
最后,启动电锤电动工具进行作业。在作业过程中,所述控制器对于所有输入的控制指令均保持有效。
这样的,当所述电锤电动工具处于平钻模式时,用户可以通过按压一次按键501,控制器接收到这个指令后,将控制第一自保持电磁铁307和第二自保持电磁铁308分别向其各自的A相线圈和B相线圈移动,从而使电锤电动工具切换为电镐模式。并且电动工具中,与电镐模式相对应的LED指示灯闪亮。
在另一些情况下,用户还可以通过控制按键502改变存储在控制器中的控制逻辑,调整工作模式的切换顺序。在调整完毕后,用户按压一次按键501后,控制器会根据指令和新的控制逻辑,将控制第一自保持电磁铁307和第二自保持电磁铁308分别向其各自的B相线圈和A相线圈移动,从而电锤电动工具切换为电锤模式。
当然,也可以使用与电锤电动工具之间建立有通信连接信道,可以进行数据传输的外部设备,实现上述的控制指令的发送,例如通过APP或者网页客户端的方式。
应当说明的是,本申请实施例虽然仅提供了应用在电动工具上的离合器驱动装置。但本领域技术人员根据上述实施例揭露的内容,可以将上述实施例提供的电动工具中的一个或者多个功能模块与所述离合器驱动装置结合,组成电子离合器或者将其应用于其它具有相类似应用场合的工具中,获得相应的技术效果(精确、简单的控制不同模式之间的 切换而且切换控制的配置方法灵活,适用范围广)。
例如,所述电子离合器可以包括离合器主体、所述离合器驱动装置、作为控制核心的控制器以及采集用户指令的输入设备,用以实现通过电信号控制离合器的接合或者断开。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种电子离合器,包括离合器主体,其特征在于,还包括:
    离合器驱动装置,所述离合器驱动装置用于根据控制指令,驱动所述离合器主体接合或者分离;
    输入设备,所述输入设备用于采集至少一个用户指令;
    以及控制器,所述控制器分别与所述离合器驱动装置和输入设备连接,配置有预设的控制逻辑;所述控制器用于接收来自所述输入设备的用户指令,并根据所述控制逻辑,输出相应的控制指令至所述离合器驱动装置。
  2. 根据权利要求1所述的电子离合器,其特征在于,所述离合器驱动装置包括:电磁铁及其驱动电路;
    所述驱动电路用于接收所述控制指令,控制所述电磁铁的运动。
  3. 根据权利要求2所述的电子离合器,其特征在于,所述电磁铁包括对向设置的两相线圈绕组;
    在其中一相线圈绕组接通,另一相线圈绕组断开时,所述电磁铁用于驱动所述离合器主体沿接通的线圈绕组对应的方向运动;
    所述驱动电路用于接收所述控制指令,控制所述电磁铁的运动包括:所述驱动电路用于接收所述控制指令,根据所述控制指令,控制两相线圈绕组中的其中一相线圈绕组接通。
  4. 根据权利要求3所述的电子离合器,其特征在于,所述驱动电路具体包括:工作电源、一对开关元件以及一对续流二极管;
    所述工作电源与所述线圈绕组连接,所述线圈绕组通过所述开关元件接地;
    所述开关元件具有用于接收控制信号的输入端口,根据控制信号确定开关元件的工作状态,所述工作状态包括接通或者断开;
    所述续流二极管反向并联连接于所述线圈绕组两端,形成反向电动势的导通回路。
  5. 根据权利要求4所述的电子离合器,其特征在于,所述开关元 件为功率三极管或者MOS管。
  6. 根据权利要求4所述的电子离合器,其特征在于,所述电磁铁为自保持电磁铁。
  7. 一种电动工具,其特征在于,包括:
    电动机,所述电动机通过一传动轴输出动力;
    若干个传动齿;所述传动齿与电动工具的工作模式一一对应;
    如权利要求1-6任一所述的电子离合器,所述电子离合器与所述传动齿对应设置,用于控制所述传动轴与对应的传动齿之间的离合状态。
  8. 根据权利要求7所述的电动工具,其特征在于,还包括:显示装置,所述显示装置与所述电子离合器的控制器连接,用于显示当前的电动工具的工作模式。
  9. 根据权利要求8所述的电动工具,其特征在于,所述显示装置为LED指示灯;所述LED指示灯具有若干种闪烁模式,与当前电动工具的工作模式对应。
  10. 根据权利要求7所述的电动工具,其特征在于,还包括:通信模组;所述通信模组与所述电子离合器的控制器连接,用于接收一个或者多个控制指令,传输至所述控制器。
PCT/CN2017/091062 2017-06-30 2017-06-30 电子离合器及电动工具 WO2019000379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780003794.9A CN108352796B (zh) 2017-06-30 2017-06-30 电子离合器及电动工具
PCT/CN2017/091062 WO2019000379A1 (zh) 2017-06-30 2017-06-30 电子离合器及电动工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091062 WO2019000379A1 (zh) 2017-06-30 2017-06-30 电子离合器及电动工具

Publications (1)

Publication Number Publication Date
WO2019000379A1 true WO2019000379A1 (zh) 2019-01-03

Family

ID=62961011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091062 WO2019000379A1 (zh) 2017-06-30 2017-06-30 电子离合器及电动工具

Country Status (2)

Country Link
CN (1) CN108352796B (zh)
WO (1) WO2019000379A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221928A1 (en) * 2002-05-02 2003-12-04 Oliver Koslowski Overload protection arrangement for a rotatable power tool
CN1765590A (zh) * 2004-10-28 2006-05-03 株式会社牧田 电动工具
CN1898067A (zh) * 2003-11-24 2007-01-17 怀特霍特解决方案公司 具有单驱动轴的双卡盘钻枪
US20100202842A1 (en) * 2007-10-19 2010-08-12 John Whitehead Multiple chuck hand tool
CN102145654A (zh) * 2010-02-10 2011-08-10 陈启星 电信号控制式离合器系统
CN102581343A (zh) * 2011-01-05 2012-07-18 株式会社牧田 电动工具
CN102935636A (zh) * 2007-08-29 2013-02-20 苏州宝时得电动工具有限公司 变速工具
CN206918126U (zh) * 2017-06-30 2018-01-23 深圳和而泰智能控制股份有限公司 电子离合器及电动工具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537122B2 (ja) * 2009-11-02 2014-07-02 株式会社マキタ 電動工具
KR101509744B1 (ko) * 2013-11-20 2015-04-07 현대자동차 주식회사 클러치 조작 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221928A1 (en) * 2002-05-02 2003-12-04 Oliver Koslowski Overload protection arrangement for a rotatable power tool
CN1898067A (zh) * 2003-11-24 2007-01-17 怀特霍特解决方案公司 具有单驱动轴的双卡盘钻枪
CN1765590A (zh) * 2004-10-28 2006-05-03 株式会社牧田 电动工具
CN102935636A (zh) * 2007-08-29 2013-02-20 苏州宝时得电动工具有限公司 变速工具
US20100202842A1 (en) * 2007-10-19 2010-08-12 John Whitehead Multiple chuck hand tool
CN102145654A (zh) * 2010-02-10 2011-08-10 陈启星 电信号控制式离合器系统
CN102581343A (zh) * 2011-01-05 2012-07-18 株式会社牧田 电动工具
CN206918126U (zh) * 2017-06-30 2018-01-23 深圳和而泰智能控制股份有限公司 电子离合器及电动工具

Also Published As

Publication number Publication date
CN108352796B (zh) 2022-04-01
CN108352796A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US8674640B2 (en) Electric power tool
US20220395918A1 (en) Systems and methods for configuring a reciprocating saw
CN201405095Y (zh) 电动工具
CN108472801B (zh) 具有档位切换单元的手持式工具机
EP3202537A1 (en) System and method for configuring a power tool with an impact mechanism
CN102937166B (zh) 变速工具
US11235453B2 (en) Electric working machine and method of controlling rotational state of motor of electric working machine
US11247323B2 (en) Electric working machine and method of controlling rotational state of motor of electric working machine
CN201093036Y (zh) 变速工具
CN102528123B (zh) 变速工具
CN108430708B (zh) 具有可调整的旋转方向的手持式工具机
CN101786178B (zh) 电动工具
JP2012139800A (ja) 電動工具
CN101761615B (zh) 变速工具
CN201300408Y (zh) 变速工具
CN108367421B (zh) 具有切换单元的手持式工具机
CN108367423B (zh) 具有可调整的旋转方向的手持式工具机
CN206918126U (zh) 电子离合器及电动工具
WO2019000379A1 (zh) 电子离合器及电动工具
CN101786268A (zh) 电动工具
JP2015091626A (ja) 電動工具
CN201300407Y (zh) 变速工具
CN201353657Y (zh) 电动工具
CN201300410Y (zh) 变速工具
CN101637904A (zh) 变速工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17915629

Country of ref document: EP

Kind code of ref document: A1