WO2018236239A1 - Способ изготовления углеродсодержащих огнеупорных изделий - Google Patents

Способ изготовления углеродсодержащих огнеупорных изделий Download PDF

Info

Publication number
WO2018236239A1
WO2018236239A1 PCT/RU2017/000437 RU2017000437W WO2018236239A1 WO 2018236239 A1 WO2018236239 A1 WO 2018236239A1 RU 2017000437 W RU2017000437 W RU 2017000437W WO 2018236239 A1 WO2018236239 A1 WO 2018236239A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
products
graphite
intercalated graphite
expanded
Prior art date
Application number
PCT/RU2017/000437
Other languages
English (en)
French (fr)
Inventor
Евгений Николаевич ДЕМИН
Владимир Геннадьевич САВКИН
Андрей Анатольевич РЕЧКАЛОВ
Original Assignee
Общество с ограниченной ответственностью "СпецОгнеупорКомплект"
Демин Срм Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "СпецОгнеупорКомплект", Демин Срм Гмбх filed Critical Общество с ограниченной ответственностью "СпецОгнеупорКомплект"
Priority to PCT/RU2017/000437 priority Critical patent/WO2018236239A1/ru
Priority to DE112017007680.3T priority patent/DE112017007680T5/de
Publication of WO2018236239A1 publication Critical patent/WO2018236239A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite

Definitions

  • the invention relates to the production of molded refractories based on high-temperature oxides and can be used for the manufacture of carbon-containing products in the refractory and metallurgical industry, intended in particular for lining high-temperature units, mainly converters, working on gas-oxygen and combined purge technology, as well as electric smelting furnaces and secondary steel processing units that work in direct contact with liquid metals and slag mi
  • the disadvantage of this method is the need for additional drying and subsequent heat treatment of the resulting carbon-containing products, which significantly increases the cost of production of these products and extends many times the cycle of their manufacture.
  • the performance and strength properties of carbon-containing products obtained by this method are reduced due to the removal of volatile components of the binder during heat treatment in the process of manufacturing products.
  • the closest in purpose and technical nature of the proposed method is a method of manufacturing high-density carbon-containing refractories (RU 2166488, publ. 10.05.2001) [2].
  • refractory granular and dispersed powder aggregates are mixed with the carbon-containing component, as well as with liquid organic and powdered phenolic binders.
  • powders of periclase and / or corundum and / or spinel and other powders of magnesia composition, as well as their mixtures, are used as the powder aggregate.
  • fused periclase clinker of a fraction of 3-1 mm with an apparent density of not less than 3.0 g / cm 3 and fused periclase clinker of a fraction of 1-0 mm are used as a granular aggregate, and finely ground as a dispersed grain.
  • periclase clinker fraction ⁇ 0.63mm.
  • the carbon-containing component graphite, siliconized graphite, or its production waste, as well as products related to graphite-containing metallurgical wastes are used.
  • phenol-formaldehyde resin As a liquid organic binder with a dynamic viscosity in the range of 3000-4500 Pa / s, phenol-formaldehyde resin is used, and ethylene glycol and other polyhydric alcohols are used as a powdered phenolic binder. From the mixture obtained in the arc-forming presses molded products of industrial sizes, which are subjected to heat treatment at 200 ° C. Finished products have an apparent density of> 3.0 g / cm 3 and an open porosity of ⁇ 6.0% ..
  • the components of the mixture in this method are loaded in a certain predetermined sequence.
  • Forming products from prepared masses after “sticking out” in the time interval from 2 to 4 hours was carried out on hydraulic presses according to the two- or three-stage peak-like mode of loading the semi-finished product with an increasing force at the final specific pressing pressure of 100-120 N / mm.
  • the objective of the proposed method of manufacturing carbon-containing products is to create a more economical and environmentally friendly, as well as more simple to perform the method of manufacturing carbon-containing refractory products while achieving indicators of the properties of products that are comparable to products made on the prototype.
  • expanded-graphite graphite is used as a carbon-containing component (see figure 1 ) able to bind the grain and particles of the filler, that is, to serve as a binder between the refractory filler and the carbon-containing component.
  • This structure of expanded intercalated graphite provides a more dense packing of the aggregate, regardless of its nature, providing a more durable and reliable connection of particles of graphite, both among themselves and with particles of aggregate of any fraction.
  • the amount of refractory aggregate in the molding mixture of less than 86.0 wt.% Leads to the formation of repressive cracks, and more than 97.5 wt.% - to the lack of adhesion of particles of refractory aggregate and carbon-containing material.
  • the content of the expanded intercalated graphite is less than 2.5 wt.% Leads to a decrease in the mechanical strength of the products, and more than 14.0 wt. - to squeeze the ligament from the expanded intercalated graphite from the mold.
  • molding mixture containing in the stated ratio of refractory aggregate and expanded intercalated graphite allows without the use of environmentally harmful organic binders, including phenolic resins, coal and synthetic bake, and without heat treatment, to make carbon-containing refractory products of specified shapes and sizes. This is the new technical result of the claimed method.
  • intercalated graphite in the composition of the molding mixture provides a certain plasticity of the molded product to impart greater heat resistance compared with the prototype.
  • Figure 1 shows a photo of the structure of the expanded intercalated graphite, which differ in the scale of the image; in table 1 - the composition of the charge for the formation of products; Table 2 shows the characteristics of the tested samples.
  • the molding mass for carbon-containing samples was prepared by sequential mixing of the mixture components.
  • Intercalated graphite was pre-expanded at a temperature of 200 ° C above the intercalated graphite claimed by the manufacturer, in this case up to 800 ° C for 5 minutes in a closed metal container, which was placed in a thermal furnace. With continuous stirring, expanded intercalated graphite was introduced into the aggregate powder and stirred for 3-5 minutes to a bulk density of 1, 1, 4 g / cm 3 . From the resulting mixture, extruded articles with dimensions of 230x115 x65 mm with a pressing pressure of 140 N / mm.
  • Samples of the prototype were made in accordance with the regulations recommended by the authors of the prototype, using fused periclase and fused aluminum-magnesium spinel as a filler, and casting graphite in an amount of 10 wt.%, Https: //ekonomgaz-cs302185.tiu as a carbon-containing component. ru / p4456851 -grafit-liteinyi- kristallicheskij .html
  • refractory products made according to the proposed method will eliminate the use of organic solvents, pitches, coal and phenolic resins as a binder, eliminate heat treatment of molded products and increase the durability of the linings and the duration of the campaign, in particular, the drain opening of the converters and the slag belt of steel-teeming ladles, and also to intensify technological processes in the aggregates of ferrous metallurgy, since their use reduces the specific consumption of refractories and the cost of repairs.
  • jobs will not be exposed to harmful gaseous emissions. The cost of manufacturing refractory products will be significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение и может быть использовано для изготовления углеродсодержащих изделий в огнеупорной и металлургической промышленности, предназначенных, в частности, для футеровки высокотемпературных агрегатов, преимущественно конвертеров, работающих по технологии газокислородной и комбинированной продувки, а также электроплавильных печей и агрегатов внепечной обработки стали, которые работают в непосредственном контакте с жидкими металлами и шлаками. Способ заключается в том, что из смеси, содержащей порошкообразный огнеупорный заполнитель и предварительно вспученный интеркалированный графит, прессуют изделия заданных форм и размеров, при этом огнеупорный заполнитель и предварительно вспученный интеркалированный графит используют при следующем соотношении компонентов, масс. %: огнеупорный заполнитель - 86,0-97,5 вспученный интеркалированный графит - 2,5-14,0.

Description

Способ изготовления углеродсодержащих огнеупорных изделий
Область техники
Изобретение относится к производству формованных огнеупоров на основе высокотемпературных оксидов и может быть использовано для изготовления углеродсодержащих изделий в огнеупорной и металлургической промышленности, предназначенных, в частности, для футеровки высокотемпературных агрегатов, преимущественно конвертеров, работающих по технологии газокислородной и комбинированной продувки, а также электроплавильных печей и агрегатов внепечной обработки стали, которые работают в непосредственном контакте с жидкими металлами и шлаками.
Предшествующий уровень техники
Известны способы изготовления шамотнографитовых, корундографитовых и периклазографитовых изделий, согласно которых изделия получают путем перемешивания порошков заполнителя определенных фракций с глинистой связкой или лигносульфонат натрия технический (ЛСТ), с последующим полусухим формованием на прессе и термической обработкой (Кащеев И. Д. Химическая технология огнеупоров. 2007 с. 469-477) [ 1].
Недостатком данного способа является потребность в дополнительной сушке и последующей термообработке получаемых углеродсодержащих изделий, которая значительно увеличивает затраты на производство данных изделий и удлиняет в разы цикл их изготовления. Кроме этого, эксплуатационные и прочностные свойства углеродсодержащих изделий, получаемых по данному способу, снижаются вследствие удаления летучих компонентов связующего при термообработке в процессе изготовления изделий.
Наиболее близким по назначению и технической сущности к предлагаемому способу является способ изготовления высокоплотного углеродсодержащего огнеупора (RU 2166488, публ. 10.05.2001 ) [2]. Согласно данному способу огнеупорные зернистые и дисперсные порошкообразные заполнители смешивают с углеродсодержащим компонентом, а также с жидким органическим и порошкообразным фенольным связующими. В качестве порошкообразного заполнителя в данном способе используют порошки периклаза и/или корунда и/или шпинели и других порошков магнезиального состава, а также их смесей. В частном случае, для получения вышеуказанной смеси в качестве зернистого заполнителя используют плавленый периклазовый клинкер фракции 3-1 мм с кажущейся плотностью не менее 3,0 г/см3, и плавленый периклазовый клинкер фракции 1-0 мм, а в качестве дисперсного - тонкомолотый периклазовый клинкер фракции < 0,63мм. В качестве углеродсодержащего компонента используют графит, силицированный графит, или отход его производства, а также продукты, относящиеся к графитосодержащим металлургическим отходам. В качестве жидкого органического связующего с динамической вязкостью в пределах 3000-4500 Па/с используют фенол формальдегидную смолу, а в качестве порошкообразного фенольного связующего - этиленгликоль и другие многоатомные спирты. Из полученной смеси на дугостаторных прессах формуют изделия промышленных типоразмеров, которые подвергают термообработке при 200°С. Готовые изделия имеют показатель кажущейся плотности > 3,0 г/см3 и открытую пористость < 6,0%.. Для того, чтобы при подготовке смеси получить высокоплотные гранулы с достаточным количеством графита в межгранульном пространстве с равномерно распределенной на поверхности последнего органического связующего в виде тончайших пленок, компоненты смеси в данном способе загружают в определенной заданной последовательности. Вначале загружают зернистый заполнитель и 2/3 части общего количества жидкого органического связующего с последующим перемешиванием в течение 3 минут, затем 2/3 части общего количества порошкообразного фенольного связующего с последующим перемешиванием в течение 10 минут, далее дисперсный заполнитель и 2/3 части общего количества углеродсодержащего компонента с последующим перемешиванием в течение 10 минут, после этого 1/4- 1/3 части жидкого органического связующего с последующим перемешиванием в течение 3 минут, 1/4- 1/3 части порошкообразного фенольного связующего с последующим перемешиванием в течение 10 минут и 1/4-1 /3 части углеродсодержащего компонента с последующим окончательным перемешиванием массы в течение 10 минут.
Именно такая последовательность подачи и перемешивания компонентов дает возможность образования довольно плотных гранул, с образованием, так называемого «ложного зернового состава». Следовательно, давление прессования такими гранулами передается значительно лучше, что и позволяет получить более плотные изделия.
Формование изделий из приготовленных масс после "вылеживания" в интервале времени от 2-х до 4-х часов велось на гидравлических прессах по режиму двух- или трехступенчатого пикообразного нагружения полуфабриката с нарастающей силой при конечном удельном давлении прессования 100-120 Н/мм .
Таким образом, введение порошкообразного фенольного связующего, совместно с жидким органическим связующим в определенной заданной
з последовательности, способствует более равномерному распределению углеродсодержащего компонента в массе и большему контакту между частицами графита и огнеупорного заполнителя, что обеспечивает лучшую пропрессовку массы при формовании изделий.
Потребность в термообработке углеродсодержащих изделий, получаемых по данному способу, также как и вышеописанном случае, отрицательно сказывается на эксплуатационных характеристиках и на экономических показателях данного способа производства. Кроме того, экологическая составляющая данного способа изготовления углеродсодержащих изделий является резко отрицательным фактором, т.к. признано, что фенольные связующие при их термическом разложении могут быть источником опасных заболеваний, в том числе онкологических. Следует отметить и технологическую «громоздкость» данного способа, предполагающего определенную последовательность загрузки компонентов шихты для формования изделия, а также использование разнофракционных заполнителей.
Раскрытие изобретения
Задача предлагаемого способа изготовления углеродсодержащих изделий заключается в создании более экономичного и экологичного, а также более простого в исполнении способа изготовления углеродсодержащих огнеупорных изделий при достижении показателей свойств изделий, сопоставимых с изделиями, изготовленными по прототипу.
Для этого предложен способ, в котором, как и в прототипе, из смеси, содержащей порошкообразный огнеупорный заполнитель, углеродсодержащий компонент и связующее, прессуют изделия заданных форм и размеров. Новый способ отличается тем, что в качестве углеродсодержащего компонента, а также связующего, используют предварительно вспученный интеркалированный графит при следующем соотношении компонентов, масс.%:
огнеупорный заполнитель - 86,0-97,5
вспученный интеркалированный графит -2,5-14,0.
В отличие от прототипа, где порошкообразный огнеупорный заполнитель и графит, выполняющий, в том числе роль смазочного материла, связывают посредством жидкого органического и порошкообразного фенольного связующих, в заявленном способе в качестве углеродсодержащего компонента используют вспученный нтеркалированный графит, структура которого (см. фиг.1 ) способна связывать зерна и частицы заполнителя, то есть выполнять роль связующего между огнеупорным наполнителем и углеродсодержащим компонентом. Данная структура вспученного интеркалированного графита обеспечивает более плотную укладку заполнителя независимо от его природы, обеспечивая более прочное и надежное соединение частиц графита, как между собой, так и с частицами заполнителя любой фракции. Количество огнеупорного заполнителя в формовочной смеси менее 86,0 масс.% приводит к образованию перепрессовочных трещин, а более 97,5 масс.% - к недостаточному сцеплению частиц огнеупорного заполнителя и углеродсодержащего материала. Содержание вспученного интеркалированного графита менее 2,5 масс.% приводит к снижению механической прочности изделий, а более 14,0 масс. - к выдавливанию связки из вспученного интеркалированного графита из пресс-формы.
Использование формовочной смеси, содержащей в заявленном соотношении огнеупорный заполнитель и вспученный интеркалированный графит, позволяет без использования экологически вредных органических связующих, включая фенольные смолы, каменноугольные и синтетические пеки, а также без термообработки, изготавливать углеродсодержащие огнеупорные изделия заданных форм и размеров. Это есть новый технический результат заявленного способа.
Кроме того, интеркалированный графит в составе формовочной смеси обеспечивает определенную пластичность сформованного изделия для придания большей термостойкости по сравнению с прототипом.
Краткое описание чертежей
На фиг.1 ,2,3 приведено фото структуры вспученного интеркалированного графита, различающиеся масштабом изображения; в таблице 1 - составы шихты для формования изделий; в таблице 2 - характеристики испытанных образцов.
Осуществление изобретения
Для реализации заявленного способа использовались следующие материалы. В качестве порошкообразных наполнителей: плавленый периклаз ТУ 14-8-448-83 на Магнезит плавленый ПППЛ96 (периклаз плавленый) производства комбината "Магнезит";
- алюмомагниевая шпинель марки AMS-78, производства ООО "Кералит": http://www.keralit.com/raw_materials/aluminium_spinel/ ;
- плавленый корунд ТУ 1523-089-00187085-2014 на порошки плавленого корунда производства ОАО "Динур" http /www.dinur.ru/store/ogneupory-neformovannye^pos^l 0033372 в качестве углеродсодержащего компонента использовали интеркалированный графит марки TL80 с размером зерна 80 мм более 80% и
б с содержанием углерода более 90% производства Qingdao Xinghe graphite. Co., Ltd http :// www .qdxhsm.com/products/detai l-en27. htm 1
В определенных частных случаях исполнения способа, например, для увеличения содержания в изделии графита можно. Не изменяя содержание интеркалированного графита, вводить в формовочную смесь в качестве огнеупорного заполнителя добавку обычного графита, см. графит литейный, https://ekonomgaz-cs302185.tiu.ru/p4456851-grafit-liteinyi-kristallicheskii.html
Формовочную массу для углеродсодержащих образцов приготовляли последовательным смешиванием компонентов смеси. Интеркалированный графит предварительно вспучивали при температуре, на 200°С выше заявляемой производителем интеркалированного графита, в данном случае - до 800°С в течение 5 минут в закрытой металлической емкости, которую помещали в термическую печь. При непрерывном перемешивании в порошок заполнителя вводили вспученный интеркалированный графит и перемешивали в течение 3-5 минут до насыпной плотности 1 , 1 - 1 ,4 г/см3 . Из полученной смеси прессовали изделия размерами 230x 1 15 x65 мм при давлении прессования 140 Н/мм .
Образцы по прототипу изготавливали в соответствии с рекомендуемым авторами прототипа регламентом, используя при этом в качестве заполнителя плавленый периклаз и плавленую алюмомагниевую шпинель, а в качестве углеродсодержащего компонента - графит литейный в количестве 10 масс.%, https://ekonomgaz-cs302185.tiu.ru/p4456851 -grafit-liteinyi- kristallicheskij .html
Для определения эксплуатационных свойств образцов по предлагаемому способу и образцов прототипа определяли следующие показатели, на которые ориентируются потребители: - открытая пористость;
- стойкость к окислению;
- эрозионная устойчивость.
Стойкость к окислению образцов оценивали по глубине обезуглероженной зоны после нагревания в воздухе до 1300°С с выдержкой при максимальной температуре в течение 2 часов. Эрозионную устойчивость оценивали по величине потери массы образцов после вращения их в расплаве металлургического шлака с основностью (CaO/SiC ) 2.8 при 1600°С.
Исследуемые свойства образцов, предопределяющие их стойкость в футеровке металлургических агрегатов, изготовленных по заявленному способу без использования органических связующих, а также без термообработки, не уступают показателям свойств образцов, изготовленных по прототипу (см. таблицу 2).
Применение огнеупорных изделий, изготовленных по предлагаемому способу, позволит исключить применение в качестве связующего органические растворители, пеки, каменноугольные и фенольные смолы, исключить термическую обработку сформованных изделий и увеличить стойкость футеровок и продолжительность кампании, в частности, сливного отверстия конвертеров и шлакового пояса сталеразливочных ковшей, а также интенсифицировать технологические процессы в агрегатах черной металлургии, т.к. при их использовании снижаются удельный расход огнеупоров и затраты на ремонт. Кроме этого, при производстве и эксплуатации углеродсодержащих изделий, изготовленных предлагаемым способом, рабочие места не будут подвергаться вредным газообразным выбросам. Затраты на изготовление огнеупорных изделий будут значительно снижены.

Claims

Формула изобретения
Способ изготовления углеродсодержащих огнеупорных изделий, в котором из смеси, содержащей порошкообразный огнеупорный заполнитель, углеродсодержащий компонент и связующее, прессуют изделия заданных форм и размеров, отличающийся тем, что в качестве углеродсодержащего компонента, а также связующего, и используют предварительно вспученный интеркалированный графит при следующем соотношении компонентов, масс.%:
огнеупорный заполнитель - 86,0-97,5
вспученный интеркалированный графит -2,5-14,0.
9
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2017/000437 2017-06-21 2017-06-21 Способ изготовления углеродсодержащих огнеупорных изделий WO2018236239A1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/RU2017/000437 WO2018236239A1 (ru) 2017-06-21 2017-06-21 Способ изготовления углеродсодержащих огнеупорных изделий
DE112017007680.3T DE112017007680T5 (de) 2017-06-21 2017-06-21 Verfahren zur Herstellung von kohlenstoffhaltigen feuerfesten Erzeugnissen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2017/000437 WO2018236239A1 (ru) 2017-06-21 2017-06-21 Способ изготовления углеродсодержащих огнеупорных изделий

Publications (1)

Publication Number Publication Date
WO2018236239A1 true WO2018236239A1 (ru) 2018-12-27

Family

ID=64737809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000437 WO2018236239A1 (ru) 2017-06-21 2017-06-21 Способ изготовления углеродсодержащих огнеупорных изделий

Country Status (2)

Country Link
DE (1) DE112017007680T5 (ru)
WO (1) WO2018236239A1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2166488C1 (ru) * 2000-04-05 2001-05-10 Сороколет Геннадий Петрович Способ изготовления высокоплотного углеродсодержащего огнеупора
US6464932B1 (en) * 1998-09-30 2002-10-15 Shinagawa Refractories Co., Ltd. Unburned carbon-containing refractory material and vessel for molten metal
JP2003245770A (ja) * 2002-02-25 2003-09-02 Kawasaki Refract Co Ltd スライディングノズル用プレート
US20090233783A1 (en) * 2007-01-26 2009-09-17 Jeong Heo Carbon-containing refractory composition containing no resinous binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464932B1 (en) * 1998-09-30 2002-10-15 Shinagawa Refractories Co., Ltd. Unburned carbon-containing refractory material and vessel for molten metal
RU2166488C1 (ru) * 2000-04-05 2001-05-10 Сороколет Геннадий Петрович Способ изготовления высокоплотного углеродсодержащего огнеупора
JP2003245770A (ja) * 2002-02-25 2003-09-02 Kawasaki Refract Co Ltd スライディングノズル用プレート
US20090233783A1 (en) * 2007-01-26 2009-09-17 Jeong Heo Carbon-containing refractory composition containing no resinous binder

Also Published As

Publication number Publication date
DE112017007680T5 (de) 2020-05-14

Similar Documents

Publication Publication Date Title
RU2587194C2 (ru) Способ изготовления футеровки в промышленной печи большого объема, а также промышленная печь с футеровкой и огнеупорный кирпич для такой футеровки.
CN101550016B (zh) 一种镁铬碳质涂抹料及其制备方法
CN102674859B (zh) 一种回转窑窑口及窑头罩用的耐火浇注料
CN103265297A (zh) 一种精炼钢包用无碳方镁石尖晶石免烧砖及其制备方法
CN102898156A (zh) 一种钢包渣线镁碳砖及其制备方法
CN103922771A (zh) 一种采用废弃铁沟料生产的蓄铁沟浇注料
RU2379255C2 (ru) Огнеупорная масса
Bizhanov et al. Blast furnace operation with 100% extruded briquettes charge
CN110256057A (zh) 免浸渍滑板砖及其制备方法
CN103467119A (zh) 一种微孔铝碳砖的制备方法
CN101503303B (zh) 一种钢包砖及其生产方法
CN103030411A (zh) 一种环保型干式振动料及其制造方法
WO2018236239A1 (ru) Способ изготовления углеродсодержащих огнеупорных изделий
CN103833382A (zh) 用于真空精炼炉的环保型耐火浇注料及制备方法
JP3639635B2 (ja) マグネシア−カーボン質耐火れんがの製造方法
CN103145433B (zh) 一种不烧氮化硅铁-尖晶石-刚玉复合耐火材料及制备方法
CN102070346A (zh) 一种铝镁碳砖的制备方法
JP2013249241A (ja) 不焼成れんが
CN106810218A (zh) 高强度无碳钢包衬砖及其制备方法
CN103145432A (zh) 一种不烧氮化硅铁-棕刚玉复合耐火材料的制备方法
JP2001039776A (ja) 耐火性バッチ、該耐火性バッチを用いて製造される成形体、及び該成形体の製造方法
SU1335552A1 (ru) Способ изготовлени периклазоуглеродистого огнеупора
Bahtli et al. The Effect of Carbon Sources on the Thermal Shock Properties of MgO-C Refractories
Mohammed et al. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace
JPH10287477A (ja) 樹脂系結合材を用いて黒鉛を耐火物原料粒子の表面に 被覆固着させた複合耐火物原料を使用した不定形耐火物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914416

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17914416

Country of ref document: EP

Kind code of ref document: A1