WO2018235961A1 - Elastomer composition containing rubber particles and production method therefor - Google Patents

Elastomer composition containing rubber particles and production method therefor Download PDF

Info

Publication number
WO2018235961A1
WO2018235961A1 PCT/JP2018/023904 JP2018023904W WO2018235961A1 WO 2018235961 A1 WO2018235961 A1 WO 2018235961A1 JP 2018023904 W JP2018023904 W JP 2018023904W WO 2018235961 A1 WO2018235961 A1 WO 2018235961A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mass
side chain
crosslinking site
parts
Prior art date
Application number
PCT/JP2018/023904
Other languages
French (fr)
Japanese (ja)
Inventor
知野 圭介
由浩 森永
俊幸 堤
雄介 松尾
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Publication of WO2018235961A1 publication Critical patent/WO2018235961A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubber particle-containing elastomer composition and a method for producing the same.
  • thermoplastic elastomer composition is an industrially very useful material because it melts at its processing temperature during its molding process and can be molded by a known resin molding method. Therefore, in recent years, research on various types of thermoplastic elastomer compositions has been advanced.
  • JP-A-8-291239 discloses a thermoplastic elastomer composition containing a crystalline polyolefin resin, an olefin rubber, a styrene block copolymer, and a softener. It is done. Further, in JP-A-2016-193970 (Patent Document 2), it has a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and has a glass transition point From an elastomeric polymer (A) having a temperature of 25 ° C.
  • thermoplastic elastomer composition comprising at least one elastomer component selected from the group consisting of: and a clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the elastomer component.
  • the present invention has been made in view of the problems of the prior art, and provides a rubber particle-containing elastomer composition capable of reducing compression set at a higher level, and such a rubber particle-containing elastomer
  • An object of the present invention is to provide a method for producing a rubber particle-containing elastomer composition capable of efficiently producing the composition.
  • thermoplastic resin having no chemically bondable crosslinking site and a hydrogen bondable bridge having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring.
  • A having a side chain
  • the rubber particle-containing elastomer composition of the present invention contains a matrix and rubber particles dispersed in the matrix, and A thermoplastic resin wherein the matrix does not have a chemically bondable crosslinking site;
  • Clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, Containing It is characterized by
  • the method for producing a first rubber particle-containing elastomer composition of the present invention comprises A rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles; Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C.
  • thermoplastic polymer composition (II) comprising a clay having a content ratio of 20 parts by mass or less;
  • the method for producing a second rubber particle-containing elastomer composition of the present invention is A polymer having a cyclic anhydride group in the side chain; Compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, and compound which reacts with the compound (i) and the cyclic acid anhydride group to form a covalent crosslinking site (Ii) at least one starting compound of the mixed starting materials; Clay having a content of 20 parts by mass or less based on 100 parts by mass of the total amount of the polymer and the raw material compound; A rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles; By mixing The polymer having the cyclic acid anhydride group in the side chain is reacted with the raw material compound to have a side chain (a) having a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing
  • a polymer (A) having a glass transition temperature of 25 ° C. or less, and a polymer having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less (B) Form at least one polymer component selected from the group consisting of Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles It is a method characterized by obtaining an elastomer composition.
  • the third method for producing a rubber particle-containing elastomer composition of the present invention is A polymer having a cyclic anhydride group in the side chain; Compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, and compound which reacts with the compound (i) and the cyclic acid anhydride group to form a covalent crosslinking site (Ii) at least one starting compound of the mixed starting materials; Clay having a content of 20 parts by mass or less based on 100 parts by mass of the total amount of the polymer and the raw material compound; A thermoplastic resin having no chemically bondable crosslinking site; A diene rubber having no hydrogen bondable crosslinking site; At least one crosslinker selected from the group consisting of peroxide crosslinkers, phenolic resin crosslinkers, sulfur crosslinkers and silane crosslinkers; By mixing The polymer having the cyclic acid anhydride group in the side chain is reacted with the raw material compound to have a side
  • a polymer (A) having a glass transition temperature of 25 ° C. or less, and a polymer having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less (B) And at least one polymer component selected from the group consisting of: a rubber comprising a crosslinked product of a diene rubber by reacting the diene rubber not having the hydrogen bondable crosslinking site with the crosslinking agent.
  • the fourth method for producing a rubber particle-containing elastomer composition of the present invention is A thermoplastic resin having no chemically bondable crosslinking site; A diene rubber having no hydrogen bondable crosslinking site; At least one crosslinker selected from the group consisting of peroxide crosslinkers, phenolic resin crosslinkers, sulfur crosslinkers and silane crosslinkers; Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C.
  • a thermoplastic polymer composition (II) comprising a clay having a content ratio of 20 parts by mass or less
  • a rubber particle-containing elastomer composition capable of reducing compression set at a higher level, and a rubber particle capable of efficiently producing such a rubber particle-containing elastomer composition It becomes possible to provide a method for producing a containing elastomeric composition.
  • Example 3 is a transmission electron micrograph (TEM photograph: 3000 ⁇ magnification) of a cross section of the rubber particle-containing elastomer composition obtained in Example 1. It is a transmission electron micrograph (TEM photograph: 10000 times of magnification) which expands and shows a part of cross section of the rubber particle containing elastomer composition shown in FIG.
  • the rubber particle-containing elastomer composition of the present invention contains a matrix and rubber particles dispersed in the matrix, and the matrix does not have a chemically bondable crosslinking site;
  • At least one polymer component more preferably a carbonyl-containing group and selected from the group consisting of polymers (B) containing a reactive crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C.
  • thermoplastic resin which does not have a chemically bondable crosslinking site
  • a thermoplastic resin is a component contained in the matrix and has no chemically bondable crosslinking site.
  • chemically linked crosslinking site refers to hydrogen bond, covalent bond, chelation between metal ion and polar functional group, ⁇ - ⁇ interaction between metal-unsaturated bond (double bond, triple bond) It refers to a site where a crosslink is formed by a chemical bond such as a bond formed.
  • “having no chemically bondable crosslinking site” means hydrogen bond, covalent bond, chelation between metal ion and polar functional group, metal-unsaturated bond (double bond, triple bond) It means that it does not have a chemical bond formed by the bond etc. formed by the ⁇ - ⁇ interaction between them.
  • thermoplastic resin which does not have such a chemically bondable crosslinking site a functional group (for example, a hydroxyl group, a carbonyl group, a carboxyl group, a thiol group, an amide group, an amino group, or the like) which forms a crosslinking point by chemical bonding Those which do not contain a group) and do not contain a binding site (such as a crosslinking site by covalent bond) which directly crosslinks polymer chains are preferably used.
  • the thermoplastic resin which does not have such a chemically bondable crosslinking site is at least a side chain (a), a side chain (a '), a side chain (b), a side chain (c) etc. It can be said that it is a thermoplastic resin not possessed.
  • thermoplastic resin it is preferable that it is polyolefin which does not have a chemically bondable crosslinking site.
  • a polyolefin is not particularly limited, but is preferably an ⁇ -olefin resin (homopolymer of ⁇ -olefin, copolymer of ⁇ -olefin).
  • alpha-olefin refers to an alkene having a carbon-carbon double bond at the alpha position (alkenes having a carbon-carbon double bond at the end: such alkenes may be linear It may be branched, and preferably has 2 to 20 (more preferably 2 to 10) carbon atoms), for example, ethylene, propylene, 1-butene, 1-pentene, 1 -Hexene, 1-Heptene, 1-octene, 1-nonene, 1-decene and the like.
  • thermoplastic resin is not particularly limited, and a known thermoplastic resin can be appropriately used (for example, a thermoplastic resin used for a so-called dynamic cross-linked thermoplastic elastomer (TPV: Thermo Plastic Vulcanizate) is appropriately used. Available).
  • TPV Dynamic cross-linked thermoplastic elastomer
  • polyethylene and polypropylene are preferable and polypropylene is particularly preferable from the viewpoint of flowability, heat resistance and availability.
  • Such a polypropylene is not particularly limited, and a method of polymerizing by a known polymerization method can be appropriately adopted.
  • Such polypropylene may be a copolymer of propylene with an ⁇ -olefin such as ethylene, butene-1, pentene-1, 4-methylpentene-1.
  • thermoplastic resin in such a matrix from the viewpoints of fluidity, heat resistance, availability, and compatibility, polypropylene and polypropylene; from among polyethylene, ethylene-propylene copolymer and ethylene-butene copolymer More preferably, at least one selected from: and is contained in combination.
  • thermoplastic resin which does not have such a chemically bondable crosslinking site a commercial item may be suitably used.
  • commercial products for example, trade name "Sun Aroma” manufactured by Sun Aroma, trade name "Novatec PP” manufactured by Japan Polypropylene, trade name "Prime Polypro” manufactured by Prime Polymer, etc. may be mentioned.
  • a rubber particle-containing thermoplastic elastomer (I) (which will be described later) containing a rubber particle and a thermoplastic resin having no chemically bondable crosslinking site at the time of production is used as a result.
  • “a thermoplastic resin having no chemically bondable crosslinking site” may be contained.
  • thermoplastic resin which does not have such a chemically bondable crosslinking site is one kind alone. You may use or you may use it in combination of 2 or more types.
  • the polymer component is a component contained in a matrix, and is at least one selected from the group consisting of the polymers (A) to (B) described above.
  • the “side chain” refers to the side chain and the end of the polymer (when the polymers (A) to (B) are elastomeric polymers, elastomeric polymers). .
  • a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle means that the polymer (when the polymers (A) to (B) are elastomeric polymers)
  • a carbonyl-containing group as a hydrogen-bondable crosslinking site and / or a nitrogen-containing heterocycle (more preferably a carbonyl-containing group and a nitrogen-containing heterocycle) at an atom (usually a carbon atom) forming the main chain of the elastomeric polymer) Means a chemically stable bond (covalent bond).
  • a side chain containing a hydrogen bonding crosslinking site and a covalent bonding crosslinking site means a side chain having a hydrogen bonding crosslinking site (hereinafter, for convenience, sometimes referred to as “side chain (a ′)” And a hydrogen bonding crosslinking site to the side chain of the polymer by including both side chains having a covalent crosslinking site (hereinafter, for convenience, sometimes referred to as “side chain (b)”).
  • a side chain having both a hydrogen bonding crosslinking site and a covalent crosslinking site in one side chain a hydrogen bonding crosslinking site and a covalent bonding site, as well as when both a covalent crosslinking site are contained
  • Side chain containing both crosslinking sites hereinafter, by including such a side chain for convenience, sometimes referred to as “side chain (c)”, a hydrogen bondable crosslinking site and a covalent bond can be formed on the side chain of the polymer In the concept including the case where both of the binding crosslinking sites are contained is there.
  • an elastomer having a side chain (a) containing a hydrogen bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and having a glass transition point of 25 ° C. or less
  • Polymer (A) and an elastomeric polymer (B) having a hydrogen bondable crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less
  • the polymer (A) is the elastomeric polymer (A)
  • the polymer (B) is the elastomeric polymer (B).
  • An elastomer component suitable as such a polymer component is the same as the elastomer component described in Japanese Patent No. 5918878, and those described in paragraph [0032] to paragraph [0145] of the same publication can be suitably used. .
  • the main chain (polymer forming the main chain portion) of such a polymer component is a generally known natural polymer or synthetic polymer, and its glass It is not particularly limited as long as it has a transition point of a polymer at room temperature (25 ° C.) or less.
  • main chains of such polymers (A) to (B) diene rubbers, hydrogenated products of diene rubbers, olefin rubbers, polystyrene polymers which may be hydrogenated (preferably polystyrene polymers) are preferable.
  • Elastomeric polymer polyolefin-based polymer (preferably high density polyethylene (HDPE), polyolefin-based elastomeric polymer), polyvinyl chloride-based polymer (preferably polyvinyl chloride-based elastomeric polymer), polyurethane-based polymer (preferably polyurethane) Based on at least one selected from an elastomeric polymer (based on elastomeric polymer), a polyester based polymer (preferably based on polyester based elastomeric polymer), and a polyamide based polymer (preferably based on a polyamide based elastomeric polymer) Preferred.
  • HDPE high density polyethylene
  • polyolefin-based elastomeric polymer polyvinyl chloride-based elastomeric polymer
  • polyurethane-based polymer preferably polyurethane
  • polystyrene resin examples include low density polyethylene (LDPE), high density polyethylene (HDPE), linear polyethylene (LLDPE), and polypropylene.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear polyethylene
  • polypropylene examples include polypropylene.
  • the main chain (polymer forming the main chain portion) of such elastomeric polymers (A) to (B) is generally Known natural polymers or synthetic polymers which are elastomeric polymers having a glass transition temperature of room temperature (25 ° C.) or less (as long as they consist of so-called elastomers), It is not particularly limited.
  • the main chain (polymer forming the main chain portion) of such elastomeric polymers (A) to (B) known elastomeric polymers having a glass transition temperature of room temperature (25.degree. C.) or less (e.g. No. 5,918,878) can be appropriately used.
  • main chains of the elastomeric polymers (A) to (B) suitable as such polymer components diene rubbers, hydrogenated products of diene rubbers, olefin rubbers, optionally hydrogenated polystyrenes At least one selected from an elastomeric polymer, a polyolefin-based elastomeric polymer, a polyvinyl chloride-based elastomeric polymer, a polyurethane-based elastomeric polymer, a polyester-based elastomeric polymer, and a polyamide-based elastomeric polymer is preferred.
  • elastomeric polymers (A) to (B) suitable as such a polymer component from the viewpoint that there is no aging-prone double bond, hydrogenated products of diene rubbers, olefins A rubber is preferred, and a diene rubber is preferred from the viewpoint of low cost and high reactivity (having a large number of double bonds capable of reacting with a compound such as maleic anhydride).
  • olefin rubber is used in the main chains of the elastomeric polymers (A) and (B)
  • the deterioration of the composition tends to be sufficiently suppressed since no double bond is present.
  • polyethylene more preferably high density polyethylene (HDPE)
  • ethylene-butene copolyester as the main chain of such a polymer component, from the viewpoint that compression set can be reduced without reducing fluidity.
  • it is more preferable that it is at least one selected from the group consisting of a polymer, an ethylene-propylene copolymer, an ethylene-octene copolymer, and polypropylene
  • polyethylene more preferably high density polyethylene (HDPE)
  • Particularly preferred is at least one selected from the group consisting of ethylene-butene copolymers.
  • the high density polyethylene said here means polyethylene with a density of 0.93 g / cm 3 or more.
  • one of the polymers (A) to (B) is used alone Or a mixture of two or more.
  • the glass transition point of such polymers (A) to (B) is 25 ° C. or less as described above.
  • the polymers (A) to (B) are elastomeric polymers, they exhibit rubbery elasticity at room temperature.
  • the “glass transition point” is a glass transition point measured by differential scanning calorimetry (DSC-differential scanning calorimetry). In the measurement, the temperature rising rate is preferably 10 ° C./min.
  • the polymers (A) to (B) (more preferably, the above-mentioned elastomeric polymers (A) to (B)) have a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring as a side chain as described above.
  • the side chain (c) is a side chain which functions as the side chain (a ') and also functions as the side chain (b).
  • Each side chain is described below.
  • the side chain (a ′) containing a hydrogen bondable crosslinking site has a group capable of forming a crosslink by a hydrogen bond (eg, a hydroxyl group, a hydrogen bondable crosslinking site contained in the side chain (a) described later, etc.)
  • the side chain may be any side chain that forms a hydrogen bond based on the group, and the structure is not particularly limited.
  • the hydrogen bonding crosslinking site is a site that crosslinks polymers (more preferably, elastomers) by hydrogen bonding.
  • crosslinking by hydrogen bonding includes a hydrogen acceptor (a group containing an atom containing a lone electron pair, etc.) and a hydrogen donor (a group with a hydrogen atom covalently bonded to an atom having a high electronegativity etc.)
  • a hydrogen acceptor a group containing an atom containing a lone electron pair, etc.
  • a hydrogen donor a group with a hydrogen atom covalently bonded to an atom having a high electronegativity etc.
  • a portion that can function as a hydrogen acceptor such as a carbonyl group
  • a portion that can function as a hydrogen donor such as a hydroxyl group
  • a side chain (a) described later is more preferable as the hydrogen bonding crosslinking site in such side chain (a ′).
  • the hydrogen bonding crosslinking site in the side chain (a ′) is more preferably a hydrogen bonding crosslinking site having a carbonyl-containing group and a nitrogen-containing heterocyclic ring.
  • the side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring may be any one having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and other structures are particularly preferred It is not limited.
  • a hydrogen bondable crosslinking site one having a carbonyl-containing group and a nitrogen-containing heterocyclic ring is more preferable.
  • Such a carbonyl-containing group is not particularly limited as long as it contains a carbonyl group, and specific examples thereof include an amide, an ester, an imide, a carboxy group, a carbonyl group and the like.
  • Such a carbonyl-containing group may be a group introduced into the main chain (polymer of main chain portion) using a compound capable of introducing a carbonyl-containing group into the main chain.
  • the compound which can introduce such a carbonyl-containing group into the main chain is not particularly limited, and specific examples thereof include ketones, carboxylic acids and derivatives thereof.
  • the nitrogen-containing heterocyclic ring may be introduced into the main chain directly or through an organic group, and the configuration thereof is particularly limited. It is not a thing.
  • a nitrogen-containing heterocyclic ring as long as it contains a nitrogen atom in the heterocyclic ring, one having a hetero atom other than a nitrogen atom in the heterocyclic ring, for example, a sulfur atom, an oxygen atom, or a phosphorus atom may be used it can.
  • a nitrogen-containing heterocyclic ring when used in the side chain (a), a hydrogen bond forming a crosslink becomes stronger when having a heterocyclic structure, and thus the thermoplastic elastomer composition of the present invention obtained. It is preferable because tensile strength is further improved.
  • known ones for example, those described in paragraphs [0054] to [0067] of Japanese Patent No. 5918878) can be appropriately used.
  • Such nitrogen-containing heterocycles are excellent in recyclability, compression set, hardness and mechanical strength, particularly tensile strength, and thus triazole ring, isocyanurate ring, thiadiazole ring, pyridine ring, imidazole ring, triazine ring and hydantoin It is preferably at least one selected from among rings, and is preferably at least one selected from among a triazole ring, a thiadiazole ring, a pyridine ring, an imidazole ring and a hydantoin ring.
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as mutually independent side chains.
  • the carbonyl-containing group and the nitrogen-containing heterocyclic ring be introduced into the main chain as one side chain linked via different groups.
  • Such a side chain (a) may have a structure as described in, for example, paragraphs [0068] to [0081] of Japanese Patent No. 5918878.
  • the functional group (cyclic group) is formed using a polymer having a maleic anhydride group (a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain)).
  • An acid anhydride group is reacted with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site (a compound capable of introducing a nitrogen-containing heterocycle) to form a hydrogen bondable crosslinking site.
  • the side chain of the polymer be a side chain (a).
  • the compound forming such a hydrogen bondable crosslinking site may be the above-mentioned nitrogen-containing heterocycle itself, and reacts with a cyclic acid anhydride group such as maleic anhydride It may be a nitrogen-containing heterocyclic ring having a substituent (eg, a hydroxyl group, a thiol group, an amino group, etc.).
  • the “side chain (b) containing a covalent crosslinking site” is a covalent crosslinking site at an atom (usually a carbon atom) forming the main chain of a polymer (more preferably an elastomeric polymer).
  • a “compound forming a covalent bond” such as an amino group-containing compound described later, at least one bond selected from the group consisting of an amide, an ester, a lactone, a urethane, an ether, a thiourethane and a thioether It means that a functional group etc.
  • the side chain (b) is a side chain containing a covalent bond crosslinking site, it has a group capable of hydrogen bonding while having a covalent bond site, and a hydrogen bond between the side chains
  • a side chain (c) described later note that hydrogen bonds can be formed between side chains of polymers (preferably elastomers)
  • both hydrogen donor and hydrogen acceptor are not contained, for example, in the case where only a side chain containing only an ester group (-COO-) is present in the system, an ester group
  • Such groups do not function as hydrogen bondable crosslinking sites because (—COO—) does not form hydrogen bonds in particular, and on the other hand, sites that serve as hydrogen donors for hydrogen bonds, such as carboxy groups and triazole rings.
  • each side chain of polymers preferably elastomers
  • hydrogen bonds are formed between the side chains of polymers (preferably elastomers)
  • an ester group and a hydroxyl group coexist between side chains of polymers (preferably, elastomers), and hydrogen is generated between the side chains by these groups.
  • the site forming the hydrogen bond is a hydrogen bondable crosslink site, so the structure of the side chain (b) itself or the structure of the side chain (b) and other side chains It may be used as a side chain (c) depending on the kind of substituent group etc.).
  • the “covalently crosslinking site” referred to here is a site that crosslinks polymers (preferably, elastomers) by covalent bonding.
  • the side chain (b) containing such a covalent crosslinking site is not particularly limited, but, for example, a polymer having a functional group in the side chain (a polymer for forming the main chain portion (also, such a functional) As the polymer having a group in the side chain, an elastomeric polymer having a functional group in the side chain is preferable) and a compound that reacts with the functional group to form a covalent crosslinking site (compound that forms a covalent bond) It is preferable to contain the covalent bond crosslinking site formed by reacting with The crosslinking at the covalent crosslinking site of the side chain (b) is formed by at least one bond selected from the group consisting of an amide, an ester, a lactone, a urethane, an ether, a thiourethane and a thioether.
  • the functional group contained in the polymer constituting the main chain is a functional group capable of generating at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. Is preferred.
  • Examples of such a “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” include, for example, two or more amino groups and / or imino groups (both amino and imino groups in one molecule). When it has these, a polyamine compound having a total of two or more of these groups; a polyol compound having two or more hydroxyl groups in one molecule; a polyisocyanate compound having two or more isocyanate (NCO) groups in one molecule; And polythiol compounds having two or more thiol groups (mercapto groups) in the molecule.
  • the “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” is a kind of a substituent that such a compound has, and the degree of progress of the reaction when reacted using such a compound
  • the compound is a compound capable of introducing both the hydrogen bondable crosslinking site and the covalent bond crosslinking site (for example, in the case of forming a covalent bond crosslinking site using a compound having three or more hydroxyl groups).
  • the two hydroxyl groups react with the functional group of the polymer having a functional group in the side chain (more preferably, the elastomeric polymer having the functional group in the side chain).
  • the “compound that forms a covalent crosslinking site (compound that forms a covalent bond)” exemplified here also includes “a compound that forms both a hydrogen bonding crosslinking site and a covalent crosslinking site”. obtain. From such a point of view, when the side chain (b) is to be formed, the compound is appropriately selected from the “compound forming the covalent bond crosslinking site (compound forming the covalent bond)” in accordance with the intended design.
  • the side chain (b) may be formed by appropriately controlling the degree of progress of the reaction or the like.
  • crosslinking site has a heterocyclic ring
  • side chain (c) It becomes possible to efficiently form the side chain having the covalent bond crosslink site. Therefore, specific examples of the compound having such a heterocyclic ring will be described as a suitable compound for producing the side chain (c), particularly together with the side chain (c).
  • the side chain (c) can also be said to be a suitable form of side chain such as side chain (a) or side chain (b) from the structure.
  • Examples of the polyamine compound, the polyol compound, the polyisocyanate compound, and the polythiol compound which can be used as such a “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” (for example, for example, Those described in paragraphs [0094] to [0106] of Japanese Patent No. 5918878 can be appropriately used.
  • polyethylene glycol lauryl amine eg, N, N-bis (2-hydroxyethyl) lauryl amine
  • polypropylene Glycol laurylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine
  • polyethylene glycol octylamine eg, N, N-bis (2-hydroxyethyl) octylamine
  • polypropylene glycol octyl Amines eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine
  • polyethylene glycol stearylamine eg, N, N-bis (2-hydroxyethyl) stearylamine
  • polypropylene glycol stearylamine eg, N, is preferably N- bis (2-methyl-2-hydroxyethyl) stearylamine).
  • Examples of the functional group possessed by the polymer constituting the main chain which reacts with such a “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” include amide, ester, lactone, urethane, thiourethane And functional groups capable of generating (forming: forming) at least one bond selected from the group consisting of A thiol group etc. are illustrated suitably.
  • Such side chain (c) is a side chain containing both a hydrogen bonding crosslinking site and a covalent crosslinking site in one side chain.
  • the hydrogen bonding crosslinking site contained in such a side chain (c) is the same as the hydrogen bonding crosslinking site described in the side chain (a ′), and the hydrogen bonding crosslinking in the side chain (a) The same as the site is preferred.
  • the covalent crosslinking site contained in the side chain (c) the same one as the covalent crosslinking site in the side chain (b) can be used (the same suitable crosslinking can also be used. ).
  • Such a side chain (c) is a polymer having a functional group in a side chain (a polymer for forming the main chain portion: more preferably an elastomeric polymer having a functional group in a side chain), and the functional group
  • a heterocycle particularly preferably a nitrogen-containing compound
  • Compounds having a heterocycle and capable of forming a covalent crosslinking site are preferable, and among them, a heterocycle-containing polyol, a heterocycle-containing polyamine, a heterocycle-containing polythiol and the like are more preferable. preferable.
  • polyols, polyamines and polythiols containing such a heterocycle may form the above-mentioned “covalent bond crosslinking site” except that they have a heterocycle (particularly preferably a nitrogen-containing heterocycle).
  • the same polyol compounds, polyamine compounds and polythiol compounds as described in the section “Compatible Compounds (Compounds that Form a Covalent Bond)” can be appropriately used.
  • polyols, polyamines and polythiols containing a heterocycle known ones (for example, those described in paragraph [0113] of Japanese Patent No. 5918878) can be appropriately used.
  • the above-mentioned main chain is made to react with “a compound that forms both a hydrogen bondable crosslinking site and a covalent bond crosslinking site (a compound that introduces both a hydrogen bondable crosslinking site and a covalent bond crosslinking site)”.
  • the functional group possessed by the polymer is preferably a functional group capable of generating (forming: forming) at least one bond selected from the group consisting of an amide, an ester, a lactone, a urethane, a thiourethane and a thioether.
  • Preferred examples include cyclic acid anhydride group, hydroxyl group, amino group, carboxy group, isocyanate group, thiol group and the like.
  • a compound capable of reacting with a functional group of a polymer constituting the main chain to form a covalent bond crosslinking site containing the tertiary amino bond and / or the ester bond hydrogen bondable crosslink
  • compounds capable of forming both a moiety and a covalent crosslinking site include polyethylene glycol lauryl amine (eg, N, N-bis (2-hydroxyethyl) lauryl amine), polypropylene glycol lauryl amine (eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine), polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octylamine (eg, N, N-Bis (2-methyl-2-hydroxyethyl) octyl Min), polyethylene glycol stearylamine (eg, N, N-bis (2-hydroxyethyl) stearyl
  • the crosslinking at the covalent bond crosslinking site of the side chain (b) and / or the side chain (c) contains at least one structure represented by any one of the following general formulas (4) to (6) Are preferable, and those in which G in the formula contains a tertiary amino bond or an ester bond are more preferable.
  • the chains are those utilized as side chains (c)).
  • E, J, K and L are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) Or a sulfur atom; or an organic group which may contain these atoms or groups, G may contain an oxygen atom, a sulfur atom or a nitrogen atom, and the number of linear, branched or cyclic carbon atoms It is a hydrocarbon group of 1 to 20.
  • substituent G groups represented by the following general formulas (111) to (114) are preferable, and from the viewpoint of high heat resistance and high strength due to hydrogen bonding, the following general formula (111) And the group represented by the following general formula (112) is more preferable.
  • the crosslinking at the covalent bond crosslinking site is preferably formed by the reaction of a cyclic acid anhydride group with a hydroxyl group or an amino group and / or an imino group.
  • the polymer forming the main chain after reaction has a cyclic acid anhydride group (eg, maleic anhydride group) as a functional group
  • a cyclic acid anhydride group eg, maleic anhydride group
  • the cyclic acid anhydride group of the polymer a hydroxyl group or an amino group
  • And / or a compound which forms the covalent bond-forming site having an imino group is reacted to form a site to be crosslinked by covalent bond to form crosslinks between polymers. It is good also as a bridge.
  • the crosslink at the covalent bond crosslink site is at least one selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether More preferably, they are formed by bonding.
  • each group (structure) of the side chain in such a polymer is NMR, It can confirm by the analysis means used normally, such as IR spectrum.
  • the polymer (A) (preferably, the elastomeric polymer (A)) is a polymer having a glass transition temperature of 25 ° C. or less having the side chain (a) (more preferably, has the side chain (a))
  • the polymer (B) (preferably the elastomeric polymer (B)) has a hydrogen bondable crosslinking site and a covalent crosslinking site in its side chain. Polymers having a glass transition temperature of 25 ° C. or less (more preferably, an elastomeric polymer having a glass transition temperature of 25 ° C.
  • a side chain A polymer having both of a side chain (a ′) and a side chain (b), a polymer containing at least one side chain (c) in a side chain, etc.) a polymer component (more preferably, an elastomer component)
  • one of the polymers (A) to (B) is used alone. Alternatively, two or more of them may be mixed and used.
  • the polymer (B) (more preferably, the elastomeric polymer (B)) is a polymer having a side chain (c) even if it is a polymer having both a side chain (a ') and a side chain (b)
  • the hydrogen bond may be formed as a hydrogen bondable crosslinking site contained in the side chain of such polymer (B) (more preferably, the elastomeric polymer (B)).
  • a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring is preferred.
  • the method for producing such polymers (A) to (B) is not particularly limited, and known methods (for example, described in Japanese Patent No. 5918878). A method (the method described in paragraphs [0139] to [0140], etc.) can be adopted as appropriate.
  • polymers (A) to (B) for example, functional groups (eg, cyclic acid anhydride group etc.)
  • a polymer having a chain more preferably, an elastomeric polymer having a functional group (such as a cyclic acid anhydride group) in the side chain
  • the polymer (more preferably the elastomeric polymer) is reacted with the functional group Mixed with the compound forming the hydrogen bondable crosslinking site, the compound reacting with the functional group to form the hydrogen bondable crosslinking site, and the mixed raw material of the compound reacting with the functional group to form the covalent bond crosslinking site
  • a polymer having the side chain (a) more preferably, an elastomeric polymer having the side chain (a)
  • a polymer having a side chain (b) more preferably, an elastomeric polymer having a side chain (a
  • the conditions (temperature conditions, atmosphere conditions, etc.) employed in such a reaction are not particularly limited, and a functional group or a compound to be reacted with the functional group (a compound forming a hydrogen bondable crosslinking site and / or a covalent bond It may be appropriately set according to the type of the compound forming the binding crosslinking site.
  • the polymer (A) (more preferably, the elastomeric polymer (A)), it may be manufactured by polymerizing a monomer having a hydrogen bonding site.
  • the main chains of the aforementioned polymers (A) to (B) Polymers capable of forming (more preferably, polymers capable of forming the main chain of the above-mentioned elastomeric polymers (A) to (B)), which preferably have a functional group in a side chain .
  • a polymer having a functional group in a side chain means a bond in which a functional group (such as the above-mentioned functional group, for example, a cyclic acid anhydride group) is chemically stable at an atom forming the main chain
  • a polymer having a covalent bond is preferably used, and one obtained by reacting a polymer (for example, known natural polymer or synthetic polymer) with a compound capable of introducing a functional group can be suitably used.
  • an elastomeric polymer containing a functional group in a side chain suitable as a polymer containing such a functional group in a side chain means a functional group (an above-mentioned functional group, etc.
  • a cyclic acid anhydride group etc. means a chemically stable bond (covalent bond), and an elastomeric polymer (eg, a known natural polymer or synthetic polymer) and a functional group are introduced. What is obtained by making it react with a compound to be obtained can be used suitably.
  • such a functional group is preferably a functional group capable of generating at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether, among which cyclic An acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, a thiol group and the like are preferable, and from the viewpoint of being able to disperse the clay more efficiently in the composition, the cyclic acid anhydride group is particularly preferable. preferable.
  • a succinic anhydride group a maleic anhydride group, a glutaric anhydride group, and a phthalic anhydride group are preferable, and among them, they can be easily introduced into polymer side chains and are industrially available Maleic anhydride group is more preferable from the viewpoint that is easy.
  • the functional group is a cyclic acid anhydride group
  • compounds capable of introducing the functional group include succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride and derivatives thereof, etc.
  • Cyclic acid anhydrides may be used to introduce functional groups into the polymer (eg, known natural or synthetic polymers, elastomeric polymers being preferred as such polymers).
  • At least one polymer component selected from the group consisting of such polymers (A) and (B) (more preferably at least one selected from the group consisting of elastomeric polymers (A) and (B)
  • a polymer having a cyclic acid anhydride group in a side chain (more preferably an elastomeric polymer having a cyclic acid anhydride group in a side chain, still more preferably a maleic anhydride modified elastomeric polymer);
  • Triazole which may have at least one substituent of hydroxyl group, thiol group and amino group, pyridine which may have at least one substituent of hydroxyl group, thiol group and amino group, Thiadiazole which may have at least one substituent of hydroxyl group, thiol group and amino group, imidazole which may have at least one substituent
  • a polymer component containing a covalent crosslinking site in a side chain (more preferably, an elastomer component containing a covalent crosslinking site in a side chain) is contained (for example, polymer (B) (more preferably elastomeric polymer (more preferably The present inventors speculate that, in the case where B) is included, the side chain containing the covalent crosslinking site also makes it possible to express a higher level of compression set resistance.
  • the polymer having a side chain (b) other than the polymer (B) as described above has a functional group (eg cyclic)
  • a polymer having an acid anhydride group in a side chain more preferably, an elastomeric polymer having a functional group (eg, a cyclic acid anhydride group) in a side chain
  • the polymer (more preferably, the elastomeric polymer) ) Is reacted with the functional group to form a covalent crosslinking site (compound forming a covalent bond)
  • the polymer having the side chain (b) (more preferably, the side chain (more preferably, the side chain (b))
  • the polymer component (more preferably, the elastomer component)
  • the side chain (a) is derived from the composition.
  • the breaking elongation, the breaking strength and the flowability can be improved.
  • the polymer (B) is a polymer component (more preferably, when the elastomeric polymer (B) is a polymer component suitable as an elastomer component)
  • covalent bonds in side chains are included in the composition.
  • the polymer (B) is contained as a polymer component (more preferably, when the elastomeric polymer (B) is contained as a suitable elastomer component as a polymer component), covalent crosslinking is caused in the composition.
  • the characteristics derived from the hydrogen bondable crosslinking site (the hydrogen bondable crosslinking site described in the side chain (a ')) can also be imparted in addition to the properties derived from the site, the flowability (moldability) is maintained It is also possible to further improve the compression set resistance, and by appropriately changing the type of side chain, the type of polymer (B), etc., it is possible to exhibit desired properties according to the application more efficiently. It also becomes possible.
  • the polymer component contains the polymers (A) and (B) (when the polymer component is the elastomer component, it contains the elastomeric polymers (A) and (B) as the elastomer component.
  • the content ratio of the polymer (A) to the polymer (B) is (mass ratio) [Polymer (A)]: [Polymer (B)]) is preferably 1: 9 to 9: 1, and more preferably 2: 8 to 8: 2. If the content ratio of such polymer (A) is less than the above lower limit, the flowability (moldability) and mechanical strength tend to be insufficient, while if it exceeds the above upper limit, the resistance to compression set tends to be reduced. It is in.
  • the total amount and side of the side chains (a') is preferably 1: 9 to 9: 1, and more preferably 2: 8 to 8: 2, based on the mass ratio. If the total amount of such side chains (a ′) is less than the above lower limit, the flowability (formability) and mechanical strength tend to be insufficient, while if it exceeds the above upper limit, the resistance to compression set is lowered. There is a tendency.
  • such a side chain (a ') is a concept including a side chain (a). Therefore, even when only the side chain (a) is contained as the side chain (a '), both the side chain (a) and the side chain (b) are present in the composition at the above mass ratio. Is preferred.
  • the clay is not particularly limited, and known clays (for example, those described in paragraph [0146] to paragraph [0156] of Patent No. 5918878) can be appropriately used.
  • known clays for example, those described in paragraph [0146] to paragraph [0156] of Patent No. 5918878
  • at least one selected from the group consisting of clays containing silicon and magnesium as main components, and organized clays is preferable from the viewpoint of high dispersibility.
  • the organic clay is not particularly limited, but it is preferable that the clay be organicized by an organic agent.
  • the organic agent is not particularly limited, and a known organic agent capable of organicizing clay (for example, the one described in paragraph [0152] of Japanese Patent No. 5918878) may be appropriately used.
  • a quaternary ammonium salt of clay can be suitably used from the viewpoint of single layer dispersibility.
  • the quaternary ammonium salt of such organically modified clay is not particularly limited, and, for example, trimethylstearyl ammonium salt, salt of oleylbis (2-hydroxyethyl), methyl ammonium salt, dimethyl stearyl benzyl ammonium salt, dimethyl octadecyl ammonium salt And mixtures of two or more of these can be suitably used. From the viewpoint of improving tensile strength and heat resistance, dimethyl stearyl benzyl ammonium salt, dimethyl octadecyl ammonium salt, and a mixture thereof can be more suitably used as the quaternary ammonium salt of such organically modified clay, and dimethyl dimethyl is more preferable. A mixture of stearyl benzyl ammonium salt and dimethyl octadecyl ammonium salt can be further suitably used.
  • the matrix according to the present invention comprises the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and the clay.
  • the content (content ratio) of the clay in such a matrix is 20 parts by mass with respect to 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component) It is below.
  • the content of such clay is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component)
  • the amount is more preferably 0.05 to 5 parts by mass, and particularly preferably 0.08 to 3 parts by mass.
  • the polymer component (more preferably, the elastomer component) and the clay are in the following state. That is, first, as described above, the polymer component (more preferably, the elastomer component) contains a polymer having a side chain having at least a hydrogen bondable crosslinking site (a side chain (a); a side chain (a)) ') And side chain (b); and a polymer containing at least one of side chains (c): as the polymer containing the side chain having the hydrogen bonding crosslinking site, the polymer having the hydrogen bonding crosslinking site Preferred are elastomeric polymers containing side chains).
  • the polymer component (more preferably, the elastomer component) and the clay are in a state in which the polymer component (more preferably, the elastomer component) is surface-crosslinked using the surface of the clay, and the matrix
  • the present inventors infer that it exists as a component of
  • the content of the thermoplastic resin is 1 to 10000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) Is preferred. If the content of such a thermoplastic resin is less than the above lower limit, the flowability tends to decrease, while if it exceeds the above upper limit, the hardness tends to be too high.
  • the content of the thermoplastic resin is 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 mass parts of the elastomer component The amount is more preferably 1 to 900 parts by mass, and further preferably 10 to 800 parts by mass.
  • the content of the thermoplastic resin is 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer The amount is more preferably 400 to 8000 parts by mass, and still more preferably 500 to 7,000 parts by mass with respect to 100 parts by mass of the component.
  • the matrix may contain additives other than the thermoplastic resin, the polymer component (more preferably the elastomer component), and the clay, as needed, as long as the object of the present invention is not impaired.
  • additives are not particularly limited as long as they can be used for a thermoplastic elastomer composition, and can be appropriately used with known additives, for example, the thermoplastic resin And polymers other than the above polymer component (more preferably, the above elastomer component) (for example, styrene block copolymer having no chemically bondable crosslinking site), reinforcing agent (filler), hydrogen bonding reinforcing agent (filled) Agent, a filler obtained by introducing an amino group (hereinafter referred to simply as "amino group introduced filler"), an amino group-containing compound other than the amino group introduced filler, a compound containing a metal element (hereinafter referred to simply as " Metal salt)), maleic anhydride modified polymer, anti-aging agent, antioxidant, pigment (
  • the additive is not particularly limited, and, for example, slip agents, antioxidants, ultraviolet absorbers, light stabilizers, conductivity imparting agents, antistatic agents, dispersants, flame retardants, antibacterial agents, and the like
  • gum such as a softener, a softener, a filler, a coloring agent, a thermally conductive filler.
  • additives and the like are not particularly limited, and those generally used (known ones: for example, those described in paragraphs [0169] to [0174] of Japanese Patent No. 5918878, JP-A-2006-131663, And the like) may be used as appropriate.
  • the total amount of the thermoplastic resin and the polymer component (more preferably, the elastomer component) in the matrix is preferably 1 to 99% by mass, and 10 to 98% by mass. It is more preferable that If the total amount (total amount) of the thermoplastic resin and the polymer component (more preferably, the elastomer component (the polymer (A) and / or the polymer (B))) is less than the lower limit, the polymerizability tends to decrease. On the other hand, if the above upper limit is exceeded, the effect of the additive tends to be insufficient.
  • the method for incorporating the additive and the like in the matrix is not particularly limited, but, for example, in the case of using the one containing the additive as the "rubber particle-containing thermoplastic elastomer (I)" in the production method described later; In the production process of the present invention, when using those containing the above-mentioned additives as the “thermoplastic polymer composition (II)”; “rubber particle-containing thermoplastic elastomer (I)” and “thermoplastic polymer composition (II)” In the case of using the additives containing the additive and the like in both of the above); the above-mentioned addition when mixing the respective raw materials of “rubber particle-containing thermoplastic elastomer (I)” and “thermoplastic polymer composition (II)” And the like (wherein the thermoplastic polymer composition (II) is a thermoplastic elastomer). Is preferably Narubutsu (II)).
  • such a matrix further contains a styrene block copolymer having no chemically bondable crosslinking site.
  • a styrene block copolymer having no such chemically bondable crosslinking site those described in paragraph [0156] to paragraph [0163] of JP-A 2017-57393 can be suitably used.
  • the "styrene block copolymer” may be a polymer having a styrene block structure at any site.
  • the styrene block copolymer having no such chemically bondable crosslinking site has a styrene content of 20 to 40% by mass (more preferably 25 to 37% by mass) from the viewpoint of mechanical strength and oil absorption. It is preferable that it is a styrene block copolymer of. Further, the weight average molecular weight (Mw), number average molecular weight (Mn) and dispersion degree (Mw / Mn) of molecular weight distribution of such a styrene block copolymer are each from the viewpoint of mechanical strength and oil absorbability.
  • Mw is preferably 200,000 or more and 700,000 or less, more preferably 300,000 or more and 600,000 or less, still more preferably 350,000 or more and 550,000 or less
  • Mn is preferably 100,000 or more and 600,000 or less. Or less, more preferably 150,000 or more and 550,000 or less, still more preferably 200,000 or more and 500,000 or less, and further preferably Mw / Mn is 5 or less, 1 to More preferably, it is 3.
  • the glass transition temperature of such a styrene block copolymer is preferably ⁇ 80 to ⁇ 40 ° C., and more preferably ⁇ 70 to ⁇ 50 ° C., from the viewpoint of the elastomeric property.
  • the measuring methods (Mw, Mn, etc.) of such various characteristics adopt the methods described in paragraph [0156] to paragraph [0163] of JP-A-2017-57393.
  • styrene block copolymer having no such chemically bondable crosslinking site from the viewpoint of coexistence of rubber elasticity and thermoplasticity, styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-propylene- Styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-butadiene-styrene block copolymer (SIBS), and hydrogenated products thereof (so-called hydrogenated products) are preferable, and SEBS and SEEPS are more preferable.
  • SIS styrene-isoprene-styren
  • the content ratio of such a styrene block copolymer is 1 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) Is preferable, and 5 to 800 parts by mass is more preferable. If the content ratio is less than the lower limit, oil bleeding tends to occur easily. If the content ratio exceeds the upper limit, moldability tends to decrease.
  • paraffin oil is not particularly limited, and any known paraffin oil can be appropriately used. For example, those described in paragraph [0153] to paragraph [0157] of JP-A-2017-57323 are preferably used. Available.
  • paraffin oil the correlation ring analysis (ndM ring analysis) based on ASTM D3238-85 is performed on the oil, and the percentage of paraffin carbon number to total carbon number (paraffin) Part: CP), naphthene carbon number to total carbon number (naphthene part: CN), and aromatic carbon number to total carbon number (aromatic part: CA), respectively, paraffin carbon number It is preferable that the percentage (CP) to the total carbon number of is 60% or more.
  • the paraffin oil is flowable, from the viewpoint of safety, is measured according to JIS K 2283 (published in 2000), the kinematic viscosity of 10mm 2 / s ⁇ 700mm 2 / s at 40 ° C.
  • the paraffin oil preferably has an aniline point of 80 ° C. to 145 ° C. measured by the U-shaped tube method according to JIS K 2 256 (issued in 2013) from the viewpoint of fluidity and safety.
  • the temperature is more preferably 145 ° C., further preferably 105 to 145 ° C.
  • the kinematic viscosity and the aniline point can be measured by the methods described in paragraph [0153] to paragraph [0157] of JP-A-2017-57323, respectively.
  • As such paraffin oil a commercially available one can be appropriately used.
  • the content ratio of such paraffin oil is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component), The amount is more preferably 30 to 900 parts by mass, still more preferably 50 to 800 parts by mass, and particularly preferably 75 to 700 parts by mass. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there tends to be no sufficient effect in terms of flowability and processability, and on the other hand, the above upper limit is exceeded And, it tends to be easy to induce the bleeding of paraffin oil.
  • Rubber particles Such rubber particles are not particularly limited as long as they can be used as so-called thermoplastic elastomers, and known rubber particles can be appropriately used. As such rubber particles, for example, those similar to rubber particles contained as a so-called soft segment in a known dynamic cross-linked thermoplastic elastomer (TPV: Thermo Plastic Vulcanizate) can be appropriately used. As such rubber particles, rubber particles described in, for example, JP-A-8-291239, Patent No. 5661439, etc. may be appropriately used.
  • the average particle diameter of such rubber particles is preferably 20 ⁇ m or less (more preferably 10 ⁇ m or less, still more preferably 8 ⁇ m or less, particularly preferably 5 ⁇ m or less, most preferably 4 ⁇ m or less).
  • the average particle diameter of such rubber particles is preferably 0.01 to 20.0 ⁇ m (Note that the lower limit of the numerical range of such average particle diameter is preferably 0.1 ⁇ m,
  • the upper limit of the numerical range of the average particle diameter is preferably 10.0 ⁇ m, more preferably 8.0 ⁇ m, and further preferably 0.2 ⁇ m, more preferably 0.3 ⁇ m, particularly preferably 0.5 ⁇ m. Preferably it is 5.0 ⁇ m, particularly preferably 4.0 ⁇ m, most preferably 3.0 ⁇ m).
  • the average particle diameter of such rubber particles is more preferably 0.1 to 10.0 ⁇ m, still more preferably 0.3 to 8.0 ⁇ m, and further preferably 0.5 to 5.0 ⁇ m. Being particularly preferred. If the average particle size is less than the lower limit, the particle size is too small and mixing tends to be difficult, while if it exceeds the upper limit, it tends to be too large to become foreign matter and to deteriorate physical properties such as tensile strength. is there. When the cross section of the composition is observed using an electron microscope (SEM or TEM) as a measuring device, the average particle diameter of such rubber particles is any 30 or more (more preferably 50 or more) in the cross section. It can measure by calculating
  • the diameter of the largest circumscribed circle of the outer shape of the cross section of the particle which can be measured by the cross section observation is adopted as the diameter of the rubber particle (if the cross section is circular, the circle You can measure the diameter).
  • the diameter may be determined for each particle.
  • the magnification of the electron microscope (SEM or TEM) at the time of measurement of the diameter of each rubber particle may be appropriately changed within a suitable range depending on the size of the rubber particle etc., and it is not particularly limited.
  • a sheet is formed using a rubber particle containing elastomer composition (for example, a sheet is formed by a hot press etc.), and a sample piece (finally thickness 10) from the sheet
  • a sample piece finally thickness 10
  • an ultrathin section is prepared from such a sample piece by a microtome or the like, and the obtained ultrathin section is used as a measurement sample
  • the cut surface (cut surface) at the time of preparation of the section may be measured as a cross section (observation surface) of the composition.
  • such rubber particles are selected from the group consisting of a diene rubber having no hydrogen bondable crosslinking site, a peroxide crosslinking agent, a phenol resin crosslinking agent, a sulfur crosslinking agent and a silane crosslinking agent. It is preferable to be a crosslinked product of a diene rubber which is a reaction product with at least one crosslinking agent. The dispersion tends to be high by using rubber particles composed of such a diene rubber crosslinked product. Further, such a crosslinked product of a diene rubber is more preferably a reactant (dynamic crosslinked product) by so-called dynamic crosslinking because preparation is easier.
  • "having no hydrogen bondable crosslinking site” means that there is no site to be crosslinked by hydrogen bonding between diene rubbers and other components. .
  • the diene-based rubber having no such hydrogen bondable crosslinking site is not particularly limited, and known diene-based rubbers (eg, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1 Known rubbers such as 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR) and ethylene-propylene-diene rubber (EPDM) It can be used appropriately.
  • known diene-based rubbers eg, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1 Known rubbers such as 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR) and ethylene-propylene-diene rubber (EPDM) It
  • ethylene-propylene-diene rubber ethylene-propylene-diene rubber, natural rubber, butadiene rubber, styrene-butadiene rubber, nitrile butadiene rubber are preferable from the viewpoint of compatibility (dispersibility), ethylene-propylene-diene rubber, natural rubber Styrene-butadiene rubber is more preferred, and ethylene-propylene-diene rubber is even more preferred.
  • the peroxide-based crosslinking agent used as such a crosslinking agent is not particularly limited, and a crosslinking agent composed of a known peroxide used for a diene rubber crosslinking agent can be appropriately used.
  • organic peroxides are preferable, and as such organic peroxides, for example, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2 , 5-Dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-Dimethyl-2,5-di (t-butylperoxy) hexyne-3,1,3-bis (t-butyl) Dialkyl peroxides such as peroxyisopropyl) benzene and 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane; t-butylperoxybenzoate
  • the organic peroxide when used as such a peroxide-based crosslinking agent, the organic peroxide preferably has a half-life temperature of 140 ° C. to 230 ° C. for 1 minute.
  • organic peroxides that satisfy such conditions include di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl).
  • a crosslinking assistant may be further blended and used.
  • a crosslinking assistant for example, divinyl compounds such as divinylbenzene; oxime compounds such as p-quinone dioxime, p, p'-dibenzoylquinone dioxime; N-methyl-N-4-dinitrosoaniline , Nitroso compounds such as nitrosobenzene; malereimide compounds such as trimethylolpropane-N, N'-m-phenylenedimaleimide; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, allyl methacrylate etc.
  • polyfunctional vinyl monomers such as vinyl butyrate and vinyl stearate; and other sulfur, diphenyl guanidine, triallyl cyanurate
  • benzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 3M, P, 25P are preferable from the viewpoint of crosslinking, and dicumyl peroxide is more preferable preferable.
  • a phenol resin-based crosslinking agent is not particularly limited, and a crosslinking agent composed of a known phenol resin used for a diene rubber crosslinking agent can be appropriately used.
  • a crosslinking agent composed of a known phenol resin used for a diene rubber crosslinking agent can be appropriately used.
  • Japanese Patent No. 6000714, US The phenolic resin described in Patent No. 3287440, U.S. Patent No. 3,709,840 and U.S. Patent No. 4,311,628 can be suitably used.
  • a phenol resin based crosslinking agent for example, a phenol based resin obtained by condensation of a substituted phenol or unsubstituted phenol with an aldehyde (preferably formaldehyde), a substituted phenol or unsubstituted phenol and a difunctional phenol dialcohol And phenolic resins obtained by condensation with these.
  • an aldehyde preferably formaldehyde
  • a substituted phenol or unsubstituted phenol preferably an alkyl group substituted with 1 to 10 carbon atoms.
  • a halogenated phenol resin can also be suitably used.
  • a commercially available phenol resin can be appropriately selected and used.
  • a commercial item which can be used as such a phenol resin type crosslinking agent for example, tackilol 201 (alkylphenol formaldehyde resin, manufactured by Taoka Chemical Industry Co., Ltd.), tackilol 250-I (bromine ratio 4% bromine) Alkylphenol formaldehyde resin, made by Taoka Chemical Industry Co., Ltd., Takiroll 250-III (brominated alkylphenol formaldehyde resin, made by Taoka Chemical Industry Co., Ltd.), PR-4507 (made by Gunei Chemical Industry Co., Ltd.) Vulkaresat 510E (Hoechst), Vulkaresat 532E (Hoechst), Vulkaresen E (Hoechst), Vulkaresen 105E (Hoechst), Vulkaresen 130E (Hoech) t), Vulkar
  • a phenol resin type crosslinking agent as such a crosslinking agent, it is preferable to use this crosslinking agent with an activator.
  • an activator known ones can be appropriately used.
  • stannous chloride, ferric chloride, chlorinated paraffin, halogenated polyethylene such as chlorinated polyethylene, chlorosulfonated polyethylene, and iron oxide Acid acceptors such as titanium oxide, magnesium oxide, silicon dioxide and zinc oxide are used.
  • the phenolic resin is halogenated, the halogen donor may not be used.
  • the addition amount of the halogen donor is preferably 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, with respect to 100 parts by mass of the diene rubber. It is more preferable that it is a part.
  • the addition amount of the acid acceptor is preferably 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass, per 100 parts by mass of the diene rubber. Is more preferred.
  • the well-known sulfur type crosslinking agent utilized for the crosslinking agent of diene rubber can be utilized suitably.
  • a sulfur-based crosslinking agent powdered sulfur and oil-treated sulfur are preferable, and oil-treated sulfur is more preferable, from the viewpoint of reactivity.
  • silane crosslinking agent is not particularly limited, and a known silane crosslinking agent used for a diene rubber crosslinking agent can be appropriately used.
  • the silane type crosslinking agent described can be suitably used.
  • a silane compound may be graft-copolymerized to crosslink the diene rubber.
  • a silane compound a compound having both a group capable of reacting with a diene rubber and an alkoxy group forming a crosslink by silanol condensation is preferable.
  • silane compound for example, vinylsilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N Aminosilane compounds such as - ⁇ - (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ - (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ - (3, Epoxysilane compounds such as 4 epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and acrylic silane compounds such as
  • a silane compound When a silane compound is graft-copolymerized to the diene rubber, a known general method, that is, mixing a predetermined amount of the silane compound and a free radical generator into the diene rubber, A method of melt kneading at temperature may be used. Moreover, as such a silane type crosslinking agent, a polysilane is more preferable from a crosslinkable viewpoint.
  • crosslinking agents such as peroxide type crosslinking agent, phenol resin type crosslinking agent, sulfur type crosslinking agent and silane type crosslinking agent, from the viewpoint of high reactivity, high crosslinking density and high physical properties, Peroxide crosslinking agents and phenol resin crosslinking agents are preferred.
  • the ratio of 0.1 to 10 parts by mass (more preferably 0.1 to 5 parts by mass) of the crosslinking agent is based on 100 parts by mass of the diene rubber. It is preferable that it is used and made to react. If the content (use amount) of such a crosslinking agent is less than the above lower limit, the crosslink density tends to be low and the physical properties tend to be low. There is a tendency.
  • the rubber particle-containing elastomer composition of the present invention comprises the matrix and rubber particles dispersed in the matrix.
  • the rubber particles are dispersed in the matrix.
  • rubber particles are dispersed like an island phase with respect to the sea phase comprising the matrix. Therefore, it can be said that the rubber particle-containing elastomer composition of the present invention has a so-called sea-island structure. Such a dispersed state can be confirmed by electron microscope measurement.
  • the content of such rubber particles is preferably 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass, still more preferably 20 to 800 parts by mass) with respect to 100 parts by mass of the matrix. If the content of such rubber particles is less than the above lower limit, the effect of the compression set resistance tends to be lowered, while if it exceeds the above upper limit, the thermoplastic property is lowered and the formability tends to be lowered.
  • the content of such rubber particles is 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass, further preferably 20 to 800 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. preferable. If the content of such rubber particles is less than the above lower limit, the effect of the compression set resistance tends to be lowered, while if it exceeds the above upper limit, the thermoplastic property is lowered and the formability tends to be lowered.
  • the content of such rubber particles is preferably 1 to 1000 parts by mass (more preferably 10 parts by mass) with respect to 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component).
  • the preferred range is about 900 parts by weight, more preferably 20 to 800 parts by weight. If the content of such rubber particles is less than the above lower limit, the effect of the compression set resistance tends to be lowered, while if it exceeds the above upper limit, the thermoplastic property is lowered and the formability tends to be lowered.
  • thermoplastic elastomer other components that can be used for the thermoplastic elastomer may be appropriately used within the range that does not impair the effects of the present invention (for example, various additives in the matrix as described above) And other components may be contained).
  • the rubber particle-containing elastomer composition of the present invention is, for example, an elastomer product for use in any application selected from the group consisting of civil engineering and construction materials, industrial parts, electric and electronic parts and household goods. It can be suitably used as a material or the like.
  • these applications are not particularly limited, but for example, various gaskets and sheets for civil engineering / building, gap filling Materials (for example, joint materials), sealing materials for construction, sealing materials for pipe joints, sealing materials for construction sash, piping protection materials, wiring protection materials, heat insulation materials, packing materials, shock absorbing materials, automotive parts (for example, rubber for automobiles described above) Parts, interior and exterior parts of automobiles, constant velocity joint boots, weather strips, dampers, wiper blades, insulating covers, hood seal rubbers, body panels, side shields, packing materials (for automobiles: for example, automobile engine packings), etc.
  • gap filling Materials for example, joint materials
  • sealing materials for construction sealing materials for pipe joints
  • sealing materials for construction sash sealing materials for construction sash
  • piping protection materials wiring protection materials
  • heat insulation materials heat insulation materials
  • packing materials shock absorbing materials
  • automotive parts for example, rubber for automobiles described above Parts, interior and exterior parts of automobiles, constant velocity joint boots, weather strips, dampers, wiper blades,
  • thermoplastic resin having no chemically bondable crosslinking site and a rubber particle-containing thermoplastic elastomer (I) containing rubber particles;
  • At least one polymer component (more preferably a carbonyl-containing group and selected from the group consisting of polymers (B) containing a reactive crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less) And / or an elastomeric polymer (A) having a side chain (a) containing a hydrogen bonding crosslinking site having a nitrogen-containing heterocyclic ring and having a glass transition point of 25 ° C.
  • Thermoplastic comprising a tomer component) and clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component)
  • An elastomeric composition (II) By mixing The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component)
  • a rubber particle-containing elastomer composition is obtained, which comprises a clay having a content ratio of not more than 20 parts by mass with respect to 100 parts by mass) and rubber particles.
  • the rubber particle-containing thermoplastic elastomer (I) used in the first production method contains a thermoplastic resin having no chemically bondable crosslinking site and rubber particles.
  • the thermoplastic resin having no chemically bondable crosslinking site and the rubber particles are the same as those described as the components in the rubber particle-containing elastomer composition of the present invention described above. From the viewpoint of flowability, heat resistance and availability, polyethylene and polypropylene are preferred as the thermoplastic resin having no chemically bondable crosslinking site in such elastomer (I), and polypropylene is particularly preferred.
  • the content of the thermoplastic resin is preferably 1 to 99% by mass, and more preferably 5 to 80% by mass. If the content of such a thermoplastic resin is less than the lower limit, the flowability tends not to be sufficiently obtained, while if it exceeds the upper limit, the rubber property tends to be lost.
  • the content of the rubber particles is preferably 1 to 99% by mass, and preferably 10 to 80% by mass. If the content of such rubber particles is less than the above lower limit, the rubber property tends to be low, while if it exceeds the above upper limit, the thermoplasticity (formability) tends to be low. From the same viewpoint, the content of the rubber particles is preferably 1 to 1000 parts by mass (more preferably 10 to 500 parts by mass) with respect to 100 parts by mass of the thermoplastic resin.
  • thermoplastic elastomer (I) one in which rubber particles are dispersed in a thermoplastic resin is preferable. That is, as said rubber particle containing thermoplastic elastomer (I), what has a sea-island structure which makes a thermoplastic resin a matrix (sea phase) and makes a rubber particle an island phase is preferable.
  • thermoplastic elastomer (I) in which rubber particles are dispersed in such a thermoplastic resin is crosslinked to a thermoplastic resin having no chemically bondable crosslinking site (for example, PP, PE, etc.)
  • thermoplastic resin having no chemically bondable crosslinking site for example, PP, PE, etc.
  • TPV dynamically crosslinked thermoplastic elastomers
  • rubber particles eg EPDM etc.
  • such rubber particle-containing thermoplastic elastomer (I) may appropriately contain various additives used for the thermoplastic elastomer.
  • additives are not particularly limited as long as they can be used for a thermoplastic elastomer composition, and known additives can be appropriately used (additives in the above matrix) The same as described above is preferred).
  • the rubber particle-containing thermoplastic elastomer (I) may contain, a slip agent, an antioxidant, an ultraviolet light absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant,
  • a slip agent such as a flame retardant, a microbicide, a neutralizing agent, a softener, a filler, a coloring agent, a thermally conductive filler
  • the content of the additive is 0. 0. 100 parts by mass of the thermoplastic resin having no chemically bondable crosslinking site. The amount is preferably 1 to 100 parts by mass (more preferably 1 to 10 parts by mass).
  • the method for producing such a rubber particle-containing thermoplastic elastomer (I) is not particularly limited, and a known method (for example, a method described in Japanese Patent No. 6000714) may be used. It can be adopted appropriately.
  • a method of producing such rubber particle-containing thermoplastic elastomer (I) when preparing a dynamically cross-linked thermoplastic elastomer suitable as a rubber particle-containing thermoplastic resin, for example, the chemically bondable crosslinking site is possessed.
  • Thermoplastic resin, diene rubber having no hydrogen bondable crosslinking site, and the crosslinking agent (peroxide crosslinking agent, phenol resin crosslinking agent, sulfur crosslinking agent and silane crosslinking agent) The method of melt-kneading at least 1 sort (s) selected from a group, and making it dynamic-crosslink, and preparing a dynamic-crosslinking-type thermoplastic elastomer can be employ
  • the time of melt-kneading according to the design of the object of elastomer (I), you may contain the said additive suitably.
  • Thermoplastic resins not having such chemically bondable crosslinking sites, diene rubbers not having hydrogen bondable crosslinking sites, crosslinking agents (peroxide based crosslinking agents, phenolic resin based crosslinking agents, sulfur based crosslinking agents And at least one selected from the group consisting of silane-based crosslinking agents, and additives are the same as those described for the rubber particle-containing elastomer composition of the present invention above (also preferred examples thereof) The same).
  • crosslink dynamically For example, a method of mixing for 1 minute to 1 hour at a temperature (preferably 100 to 250 ° C.) higher than the melting point of the added resin component may be adopted.
  • the conditions of the shear force applied at this time are not particularly limited, and the conditions may be appropriately set so as to enable dynamic crosslinking, but the shear rate is adjusted to 1 to 100 sec -1. It is preferable to do.
  • the amount of the diene rubber used is 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. It is more preferable to set it as a mass part). If the amount of such a diene rubber used is less than the above lower limit, the rubber property tends to be low, while if it exceeds the above upper limit, the thermoplasticity (moldability) tends to be low.
  • the amount of the crosslinking agent used is 0.1 to 20 parts by mass (more preferably 0. 0 to 20 parts by mass) with respect to 100 parts by mass of the diene rubber. More preferably, it is 3 to 15 parts by mass. If the amount of such a crosslinking agent used is less than the above lower limit, the crosslink density tends to be low, while if it exceeds the above upper limit, the crosslink density tends to be too high.
  • a slip agent an antioxidant, an ultraviolet light absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant
  • additives which are usually added to rubber, such as flame retardants, fungicides, neutralizing agents, softeners, fillers, colorants, heat conductive fillers and the like.
  • the amount of the additive used is 0 with respect to 100 parts by mass of the thermoplastic resin. More preferably, the amount is from 1 to 100 parts by mass (more preferably 0.5 to 30 parts by mass). If the amount of such an additive used is less than the lower limit, the effect of the additive tends to be low, while if the amount is more than the upper limit, the effect of the additive tends to be too high.
  • any one containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles may be used, and a commercially available product is appropriately used.
  • a commercially available product of the dynamically crosslinked thermoplastic elastomer (TPV) suitable as the rubber particle-containing thermoplastic elastomer (I) (trade name "Milastomer” manufactured by Mitsui Chemicals, Inc .; trade name “Santoprene” manufactured by Exxon Mobil “Geolast”, “Trefcine”; trade name “Sumitomo TPE” manufactured by Sumitomo Chemical Co., Ltd .; trade name "Thermoran” manufactured by Mitsubishi Chemical Corp., “Zelas”; trade name “Actymar” manufactured by Riken Technos, etc. You may use suitably.
  • thermoplastic elastomer TPV
  • TPV dynamically crosslinked thermoplastic elastomer
  • TPV dynamically crosslinked thermoplastic elastomer
  • thermoplastic polymer composition II
  • matrix component including the thermoplastic resin
  • thermoplastic polymer composition II
  • thermoplastic polymer composition (II) used in the first production method comprises the polymer component (more preferably the elastomer component) and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) And clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass).
  • a thermoplastic polymer composition (II) a thermoplastic elastomer composition (II) comprising the elastomer component and a clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the elastomer component Is preferred.
  • the polymer component (more preferably, the elastomer component) and the clay in such composition (II) are the same as those described as the components in the rubber particle-containing elastomer composition of the present invention described above (its preferred Conditions are the same).
  • the content (content ratio) of the clay in such a thermoplastic polymer composition (II) is 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) In contrast, it is 20 parts by mass or less. When the content of such clay exceeds the above upper limit, the tensile properties are degraded.
  • the content of such clay is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component)
  • the amount is more preferably 0.05 to 5 parts by mass, and particularly preferably 0.08 to 3 parts by mass.
  • the content of such a clay is less than the above lower limit, the content of the clay is too small to obtain sufficient effects, while if it exceeds the above upper limit, the crosslink becomes too strong and the elongation or strength is rather Tend to be difficult to use for various applications (the practicability decreases).
  • the polymer component (more preferably the elastomer component) and the clay are the polymer components (more preferably the elastomer) using the surface of the clay. The present inventors speculate that the component is in a state of surface cross-linking.
  • clay in the form of a monolayer is present in the thermoplastic polymer composition (II) (more preferably, in the thermoplastic elastomer composition (II)) preferable.
  • the presence of such clay in the form of a monolayer is confirmed by measuring the surface of the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) by transmission electron microscopy (TEM).
  • thermoplastic polymer composition (II) of the present invention (more preferably, the thermoplastic elastomer composition (II)), 5.63 ⁇ m 2 of any three or more points on the surface of the composition (II)
  • TEM transmission electron microscope
  • 50% or more (more preferably 70% or more, more preferably 80% or more) of the total clay based on the number at all measurement points. 100%, particularly preferably 85 to 100%) are preferably present as monolayer clays. If the content of clay in the single layer is less than the above lower limit, the breaking elongation and breaking strength tend to be reduced.
  • the method similar to the method described in patent 5918878 is employable.
  • clay of a single layer is contained in the above-mentioned ratio (presence ratio) in a composition, clay is more dispersed and contained rather than multilayer clay being dispersed as it is. Since it is in the state (the multilayer clay is decomposed to form a monolayer clay), it is possible to disperse the clay in the composition with higher dispersibility.
  • the clay in a single layer state is contained at the ratio as described above, whereby the clay is more dispersed, and it is possible to more efficiently improve the heat resistance and the breaking strength.
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II))
  • measuring points of any three or more points of 5.63 ⁇ m 2 on the surface of the composition When it is measured by a transmission electron microscope, it is preferable that 1 to 100 (more preferably 3 to 80, still more preferably 5 to 50) particles be dispersed per 1 ⁇ m 2 at all measurement points. If the number of clays in such a single layer is less than the above lower limit, the amount of clay is too small, and a sufficient effect tends not to be obtained. In addition, the number of pieces of clay of such a single layer can be calculated
  • thermoplastic polymer composition (II) (more preferably, a thermoplastic elastomer composition (II))
  • various additives used for a thermoplastic resin may be suitably contained.
  • Such additives are not particularly limited as long as they can be used for a thermoplastic polymer composition (more preferably, a thermoplastic elastomer composition), and are not particularly limited, and known additives may be appropriately It can be used (preferred to the ones described as additives in the matrix above).
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II))
  • a styrene block copolymer is the same as that described in the rubber particle-containing elastomer composition of the present invention described above.
  • the content ratio of such a styrene block copolymer 100 parts by mass of the polymer component in the thermoplastic polymer composition (II) (the thermoplastic polymer composition (II) is the thermoplastic elastomer composition (II) Is preferably 1 to 1000 parts by mass, and more preferably 5 to 800 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II). If the content ratio is less than the lower limit, oil bleeding tends to occur easily, and if the content ratio exceeds the upper limit, physical properties tend to decrease.
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II))
  • one further containing the paraffin oil is preferable.
  • paraffin oil is similar to that described in the rubber particle-containing elastomer composition of the present invention described above.
  • the content ratio of such paraffin oil 100 parts by mass of the polymer component in the thermoplastic polymer composition (II) (the thermoplastic polymer composition (II) is the thermoplastic elastomer composition (II)
  • the amount is preferably 10 to 1000 parts by mass, more preferably 30 to 900 parts by mass, and 50 to 800 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II).
  • paraffin oil It is more preferably part, and particularly preferably 75 to 700 parts by mass. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there tends to be no sufficient effect in terms of flowability and processability, and on the other hand, the above upper limit is exceeded And, it tends to be easy to induce the bleeding of paraffin oil.
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II))
  • the polymer component (more preferably, the ester component) from the viewpoint of the balance between moldability and mechanical properties. It is more preferable to contain a combination of a styrene block copolymer having no chemically bondable crosslinking site and paraffin oil together with paraffin oil and clay.
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is an ⁇ -olefin having no chemically bondable crosslinking site from the viewpoint of moldability (flowability). It is preferable to further contain a resin.
  • ⁇ -olefin resin refers to homopolymers of ⁇ -olefins and copolymers of ⁇ -olefins, and " ⁇ -olefins" have a carbon-carbon double bond at the ⁇ -position.
  • alkenes such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • ⁇ -olefin resin having no such chemically bondable crosslinking site for example, those described in paragraphs [0204] to [0214] of JP-A-2017-57322 can be suitably used.
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II))
  • polypropylene, polyethylene, ethylene-propylene copolymer, and ethylene-butene copolymer are preferable.
  • an ⁇ -olefin resin having no such chemically bondable crosslinking site an ⁇ -olefin resin (polypropylene, an ethylene-propylene copolymer, ethylene, etc.) having a degree of crystallinity of 10% or more can be mentioned, among others. -A butene copolymer, polyethylene, polybutene etc. can be used suitably.
  • the method for producing the ⁇ -olefin resin having no such chemically bondable crosslinking site is not particularly limited, and a known method can be appropriately adopted.
  • a commercially available product may be used as such an ⁇ -olefin resin.
  • the ⁇ -olefin resins having no such chemically bondable crosslinking site may be used alone or in combination of two or more.
  • the content ratio of the ⁇ -olefin resin having no such chemically bondable crosslinking site can be appropriately changed according to the intended application and design, and is not particularly limited.
  • the content is 250 parts by mass or less (more preferably 5 to 250 parts by mass, more preferably 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component)) It is more preferable to use 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, and most preferably 35 to 175 parts by mass. If the content is less than the lower limit, the flowability tends not to be sufficiently obtained. On the other hand, if the content exceeds the upper limit, the rubber elasticity is reduced and the resin property is increased (the hardness becomes higher than necessary) Tend to
  • thermoplastic polymer composition (II) is not particularly limited, and known methods can be appropriately adopted.
  • the method for preparing the thermoplastic elastomer composition (II), which can be suitably used as such a thermoplastic polymer composition (II) is not particularly limited, and known methods can be suitably adopted, for example, The methods for producing the thermoplastic elastomer composition described in Japanese Patent No. 5918878, Japanese Patent Application Laid-Open No. 2016-193970, Japanese Patent Application Laid-Open No. 2017-057323, International Publication No.
  • thermoplastic polymer composition (II) (more preferably, a thermoplastic elastomer composition (II)), among them, a polymer having a cyclic acid anhydride group in a side chain (more preferably a cyclic An elastomeric polymer having an acid anhydride group in a side chain); a compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bonding crosslinking site; and the compound (i) and the cyclic acid anhydride A raw material compound of at least one of the mixed raw materials of the compound (ii) which reacts with a substance group to form a covalent bond crosslinking site; 100 parts by mass of the total amount of the polymer and the raw material compound And mixing the clay with a content ratio of 20 parts by mass or less with respect to the total of 100 parts by mass of the elastomeric polymer and the raw material compound).
  • the polymer (A) is obtained by reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound.
  • At least one polymer component (more preferably, the elastomeric polymer (A) selected from the group consisting of the polymer (B), and at least one polymer selected from the group consisting of the elastomeric polymer (B)) Form the elastomeric component) Clay having a content ratio of 20 parts by mass or less based on the polymer component (more preferably, the elastomer component) and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component) It is preferable to adopt a method of obtaining a thermoplastic polymer composition (II) (more preferably a thermoplastic elastomer composition (II)) comprising
  • a polymer having a cyclic acid anhydride group in a side chain means a polymer having a cyclic acid anhydride group having a chemically stable bond (covalent bond) to an atom forming the main chain of the polymer.
  • a polymer capable of forming the main chain portion of the polymers (A) to (B) with a compound capable of introducing a cyclic acid anhydride group are preferable.
  • a polyolefin polymer having a cyclic acid anhydride group in a side chain for example, a polyolefin polymer having a cyclic acid anhydride group in a side chain (eg, high density polyethylene having a cyclic acid anhydride group in a side chain (HDPE) Polypropylene (PP) having cyclic acid anhydride group in side chain, ethylene-propylene copolymer having cyclic acid anhydride group in side chain, ethylene butylene copolymer having cyclic acid anhydride group in side chain, cyclic acid anhydride group
  • ethylene-octene copolymer which has a side chain, the polyolefin-type elastomeric polymer etc. which have a cyclic acid anhydride group in a side chain etc. are mentioned.
  • the “elastomeric polymer having a cyclic acid anhydride group in a side chain which is suitable as a polymer having a cyclic acid anhydride group in a side chain, has a cyclic acid anhydride group at an atom forming the main chain of the polymer
  • Chemically stable (covalently bonded) elastomeric polymers such as polymers capable of forming the main chain portion of the above-mentioned elastomeric polymers (A) to (B) What is obtained by making it react with the compound which can introduce an acid anhydride group can be used suitably.
  • an elastomeric polymer having a cyclic acid anhydride group in a side chain which is suitable as a polymer having such a cyclic acid anhydride group in a side chain
  • known ones for example, paragraph [0183] of Patent No. 5918878
  • Those described in paragraph [0193] can be used as appropriate.
  • an elastomeric polymer having a cyclic acid anhydride group in a side chain which is suitable as a polymer having such a cyclic acid anhydride group in a side chain
  • maleic anhydride modified from the viewpoint of high molecular weight and high strength Ethylene-propylene rubber and maleic anhydride-modified ethylene-butene rubber are more preferable.
  • the compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site a compound which forms a hydrogen bondable crosslinking site described in the rubber particle-containing elastomer composition of the present invention
  • the same compounds as those capable of introducing a nitrogen-containing heterocyclic ring can be suitably used.
  • the nitrogen-containing heterocycle itself described in the conductive thermoplastic elastomer composition of the present invention may be itself, or a substituent which reacts with the nitrogen-containing heterocycle with a cyclic acid anhydride group such as maleic anhydride.
  • a compound which forms both a hydrogen bondable crosslinking site and a covalent bond crosslinking site it is possible to simultaneously introduce both a hydrogen bondable crosslinking site and a covalent bond crosslinking site
  • the side chain having both a hydrogen bonding crosslinking site and a covalent bonding crosslinking site can be said to be a preferable form of a side chain having a hydrogen bonding crosslinking site.
  • the compound (ii) which reacts with the cyclic acid anhydride group to form a covalent crosslinking site the “compound forming the covalent crosslinking site” described in the rubber particle-containing elastomer composition of the present invention
  • the same compounds as (compound forming a covalent bond) ” can be suitably used (the same as the compound is also preferable).
  • a compound which forms both a hydrogen bondable crosslinking site and a covalent bond crosslinking site (it is possible to simultaneously introduce both a hydrogen bondable crosslinking site and a covalent bond crosslinking site).
  • the side chain having both the hydrogen bondable crosslinking site and the covalent bond crosslinking site can be said to be one preferable form of the side chain having the covalent bond crosslinking site.
  • a compound which forms both of such a hydrogen bondable crosslinking site and a covalent bond crosslinking site trishydroxyethyl isocyanurate and 2,4-diamino-6-phenyl-1,3,5-triazine are particularly preferable.
  • raw material compounds (compound (i) and compound (ii)) for example, compounds described in paragraphs [0203] to [0207] of Japanese Patent No. 5918878 can be appropriately used.
  • the above-mentioned compound (X) is more preferable.
  • the addition amount of the compound (i) and the compound (ii) (total amount of them: when only one compound is used, it is the amount of one compound thereof) and the addition method are not particularly limited, It can be set appropriately according to the target design (for example, the design may be changed with reference to paragraphs [0208] to [0210] of Japanese Patent No. 5918878).
  • raw material compounds compound (i) and / or compound (ii)
  • trishydroxyethyl isocyanurate, sulfamide, pentaerythritol, 2,4-diamino- 6-phenyl-1,3,5-triazine and polyether polyol are preferable, and pentaerythritol, 2,4-diamino-6-phenyl-1,3,5-triazine and trishydroxyethyl isocyanurate are more preferable.
  • a polymer having the cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain) and the raw material compound (compound (i) and / or compound (ii))
  • 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain (when the polymer is the elastomeric polymer, 100 parts by mass of the elastomeric polymer).
  • the addition amount (the amount based on the mass part) of such a raw material compound is less than the above lower limit, there is a tendency that the raw material compound is too small to increase the crosslink density and desired physical properties are not expressed. There is a tendency for the number of branches to increase and the crosslink density to decrease.
  • a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain) and the raw material compound (compound (i) and / or compound (ii))
  • the cyclic acid anhydride group possessed by the polymer is ring-opened to chemically bond the cyclic acid anhydride group to the raw material compound (the compound (i) and / or the compound (ii)).
  • At least one polymer component selected from the group consisting of the polymer (A) and the polymer (B) (more preferably, the elastomeric polymer (A), and the elastomeric polymer (B)
  • At least one elastomeric component selected from the group consisting of there are no particular restrictions on the temperature conditions at which such a polymer and the starting compound (the compound (i) and / or the compound (ii)) are reacted (ring opening of the cyclic acid anhydride group).
  • the temperature may be adjusted to a temperature at which they can react, for example, from the viewpoint of accelerating the reaction instantaneously by softening, it is preferable to set to 100 to 250 ° C. It is more preferable to set it as 230 degreeC.
  • the method of such mixing is not particularly limited, and known methods can be appropriately adopted. For example, a method of mixing using a roll, a kneader, an extruder, a universal stirrer or the like can be adopted. Furthermore, the addition order of the respective components is not particularly limited, but from the viewpoint of further improving the dispersibility of the clay, a polymer having a cyclic acid anhydride group in a side chain in advance (more preferably a cyclic acid anhydride group) After plasticizing the elastomeric polymer having a side chain, clay is added to obtain a mixture, and the above-mentioned raw material compound (compound (i) and / or compound (ii)) is added and mixed there Is preferred.
  • a polymer having a cyclic acid anhydride group in a side chain in advance more preferably a cyclic acid anhydride group
  • additives such as a styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, an ⁇ -olefin resin having no chemical bondable crosslinkable site, etc.
  • a mixture containing a polymer having the cyclic acid anhydride group in a side chain so that the clay is sufficiently dispersed, and various additives It is preferable to add clay after preparing in advance, and then to add and mix the raw material compounds (compound (i) and / or compound (ii)).
  • a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomer having a cyclic acid anhydride group in a side chain) from the viewpoint of further improving the dispersibility of clay.
  • Polymer component) and, of the various additives optionally added are preferably plasticized.
  • the method of such plasticization is not particularly limited, and a known method can be appropriately adopted.
  • a roll, a kneader, or the like at a temperature for example, about 100 to 250 ° C.
  • a method of kneading using an extruder, a universal stirrer or the like can be appropriately adopted.
  • thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)), the thermoplastic polymer composition (II) containing the polymer (A) as a polymer component (more preferably, it is elastomeric) Thermoplastic elastomer composition (II) having polymer (A) as an elastomer component, and thermoplastic polymer composition (II) having polymer (B) as a polymer component (more preferably elastomer polymer (B)) Thermoplastic polymer composition (II) (II) containing (A) and (B) as polymer components after separately preparing the component thermoplastic elastomer composition (II) and separately mixing them More preferably, heat containing elastomeric polymers (A) and (B) as said elastomeric component It may be plastically elastomer composition (II)).
  • thermoplastic elastomer (I) (more preferably, the thermoplastic elastomer composition (II));
  • the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component)
  • a rubber particle-containing elastomer composition is obtained which contains a clay and a rubber particle in a content ratio of 20 parts by mass or less with respect to 100 parts by mass).
  • the method of mixing the rubber particle-containing thermoplastic elastomer (I) and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is not particularly limited. Known methods and the like can be appropriately adopted. For example, a method of mixing using a roll, a kneader, an extruder, a universal stirrer and the like can be adopted. Moreover, in the case of such a mixing step, the rubber particle-containing thermoplastic elastomer (I) and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) are plasticized and mixed. It is preferable to do.
  • the method of such plasticization is not particularly limited, and a known method can be appropriately adopted, and mixing (kneading) under temperature conditions of 100 to 250 ° C. (more preferably 120 to 230 ° C.) is more preferable. If such temperature is less than the lower limit, it tends to be difficult to disperse each component sufficiently (difficult to mix and disperse each component uniformly), while if it exceeds the upper limit, deterioration occurs There is a tendency.
  • the mixing ratio of the rubber particle-containing thermoplastic elastomer (I) and the thermoplastic polymer composition (II) is particularly limited in the mixing step.
  • the content of the composition (II) relative to 100 parts by mass of the elastomer (I) is preferably 1 to 1000 parts by mass. From the viewpoint of further improving the 100% modulus and the 300% modulus, the content of the composition (II) is 10 to 1000 parts by mass (more preferably 100 to 1000 parts by mass) with respect to 100 parts by mass of the elastomer (I).
  • the content of the composition (II) is preferably 1 to 700 parts by mass with respect to 100 parts by mass of the elastomer (I) from the viewpoint that mechanical strength such as breaking strength and elongation at break is further improved. (More preferably 10 to 500 parts by mass) is more preferable.
  • the amount of the rubber particle-containing thermoplastic elastomer (I) used is the same as that in the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)).
  • the amount is preferably 1 to 15000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component), and 100% modulus and 300% modulus are From the viewpoint of further improving, 1 to 700 parts by mass (more preferably 10 to 500 parts by mass) is more preferable, and on the other hand, from the viewpoint of improving mechanical strength such as breaking strength and breaking elongation And 1000 to 10000 parts by mass (more preferably 2000 to 9000 parts by mass). It is more preferable.
  • the thermoplastic resin in the rubber particle-containing thermoplastic elastomer (I) is 100 parts by mass of the polymer component in the thermoplastic polymer composition (II) (the thermoplastic polymer When the composition (II) is the thermoplastic elastomer composition (II), it is 1 to 10000 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II) From the viewpoint of further improving the 100% modulus and the 300% modulus, it is more preferable to mix in an amount of 1 to 900 parts by mass (more preferably 10 to 800 parts by mass). On the other hand, from the viewpoint of further improving the mechanical strength such as the breaking strength and the breaking elongation, To 8000 parts by weight (more preferably from 500 to 7000 parts by weight) and more preferably mixed as a.
  • a rubber particle-containing elastomer composition containing the thermoplastic resin, the polymer component (more preferably the elastomer component), the clay, and rubber particles can be obtained.
  • TPV thermoplastic elastomer
  • the thermoplastic resin, the polymer component (more preferably the elastomer component), and the clay are derived from the TPV structure.
  • the rubber particle-containing elastomer composition of the present invention in which the rubber particles are dispersed in the resulting matrix can be produced more efficiently.
  • the thermoplastic resin having no chemically bondable crosslinking site the polymer component (more preferably the elastomer component), the clay, and the rubber particles
  • the content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention.
  • the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the content thereof is the rubber particle-containing elastomer composition of the present invention in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things.
  • each component can be easily made into content as above-mentioned by suitably adjusting the usage-amount of the raw material (component) to utilize at the time of manufacture of a rubber particle containing elastomer composition.
  • thermoplastic polymer composition (II) (more preferably, said thermoplastic elastomer composition (II))
  • thermoplastic polymer composition (II) more preferably, said thermoplastic elastomer composition (II)
  • the ⁇ -olefin resin having no chemically bondable crosslinking site is a kind of thermoplastic resin having no chemically bondable crosslinkable site, After mixing), the ⁇ -olefin resin having no chemically bondable crosslinking site is contained in the rubber particle-containing elastomer composition as one component of the thermoplastic resin.
  • the 1st manufacturing method was demonstrated, the 2nd manufacturing method is demonstrated hereafter.
  • the method for producing a second rubber particle-containing elastomer composition of the present invention is A polymer having a cyclic acid anhydride group in a side chain (more preferably an elastomeric polymer having a cyclic acid anhydride group in a side chain); the compound (i), and the compound (i) and the compound (ii) A total of 100 parts by mass of at least one of the raw material compounds of the mixed raw materials; a total of 100 parts by mass of the polymer and the raw material compound (when the polymer is the elastomeric polymer, a total of 100 mass parts of the elastomeric polymer and the raw material compound Mixing 20 parts by weight or less of clay and rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles; A polymer having the cyclic acid
  • a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain) used in such a second production method, a starting compound (compound (i), a compound (ii) ), Clay and rubber particle-containing thermoplastic elastomer (I) are the same as those described in the first production method (the preferred ones are also the same).
  • a polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain); the raw material compound; the clay; the rubber
  • the method for mixing the particle-containing thermoplastic elastomer (I) is not particularly limited, and a known mixing method can be appropriately adopted. For example, a method of mixing using a roll, a kneader, an extruder, a universal stirrer, etc. Can be adopted.
  • the addition order of the respective components is not particularly limited, a method of adding each component once (simultaneously) and mixing, and sequentially adding and mixing each component Method:
  • the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) is mixed and reacted with the starting compound, and then other components are mixed.
  • the method may be such as mixing the respective components.
  • a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomer having a cyclic acid anhydride group in a side chain) It is preferable to add a clay after preparing a mixture of a polymer) and the rubber particle-containing thermoplastic elastomer (I), and then add and mix the raw material compounds.
  • various additives such as a styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, an ⁇ -olefin resin having no chemical bondable crosslinkable site, etc.
  • a polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain) and the rubber particle-containing thermoplastic elastomer (the elastomeric polymer having the cyclic acid anhydride group in the side chain)
  • the clay is added after preparing a mixture containing I) and various additives, and then the raw material compounds are added and mixed.
  • a component to be plasticized for example, the cyclic acid anhydride group is used as a side chain
  • the polymer more preferably, the elastomeric polymer having a cyclic acid anhydride group in the side chain
  • the rubber particle-containing thermoplastic elastomer (I) the polymer component in various additives, and the like.
  • the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) is reacted with the raw material compound.
  • the temperature conditions for reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound are the same as described above. It is preferable to set the temperature to 100 to 250 ° C.
  • a polymer having the cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain); the raw material compound; the clay; the rubber
  • a polymer having the cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain); the raw material compound; the clay; the rubber
  • the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound (compound (i) and / or By reacting the compound (ii) with the polymer (A), and at least one polymer component selected from the group consisting of the polymer (B) (more preferably, the elastomeric polymer (A)) And at least one elastomer component selected from the group consisting of the above-mentioned elastomeric polymers (B).
  • the amount of the clay used is the total of 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (compound (i), compound (ii)) (the above
  • the polymer having a cyclic acid anhydride group in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain
  • the elastomeric polymer having the cyclic acid anhydride group in the side chain and the starting compound compound It is necessary to make it 20 mass parts or less with respect to (i) and a total amount of 100 mass parts of compounds (ii)).
  • the content of clay with respect to 100 parts by mass of the elastomer component can be 20 parts by mass or less.
  • a tensile property will fall.
  • the amount of such clay used is a total of 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (a polymer having the cyclic acid anhydride group in the side chain is the cyclic acid anhydride
  • the amount is 0.01 to 10 parts by mass with respect to the total amount of 100 parts by mass of the elastomeric polymer having the cyclic acid anhydride group in the side chain and the raw material compound). Is more preferable, 0.05 to 5 parts by mass is more preferable, and 0.08 to 3 parts by mass is particularly preferable.
  • the amounts of the raw material compounds (compound (i) and compound (ii)) used are the same as in the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) used in the first production method 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain (the elastomer having the cyclic acid anhydride group in the side chain having the cyclic acid anhydride group in the side chain) for the same reason as the explained reason When it is a hydrophobic polymer, it is preferably 0.1 to 10 parts by mass, preferably 0.3 to 7 parts by mass, with respect to 100 parts by mass of the elastomeric polymer having the cyclic acid anhydride group in the side chain) Is more preferably 0.5 to 5.0 parts by mass.
  • the amount of the rubber particle-containing thermoplastic elastomer (I) used is the total of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of polymer component to be obtained) 100 Parts by mass (when the polymer having the cyclic acid anhydride group in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain, an elastomeric polymer having the cyclic acid anhydride group in the side chain and the The amount is preferably 1 to 15,000 parts by mass with respect to 100 parts by mass of the total amount of raw material compounds (the mass of the obtained elastomer component), and from the viewpoint of further improving 100% modulus and 300% modulus, 1 to 700 It is more preferable to use parts by mass (more preferably 10 to 500 parts by mass), and on the other hand, machines such as breaking strength and breaking elongation From the viewpoint of a strength it is further improved, and more preferably to 1,000 to 10,000 parts by weight (
  • a polymer having the above cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the above cyclic acid anhydride group in a side chain), a raw material compound, clay, etc. It is preferable to use the styrene block copolymer which does not have the said chemically bondable crosslinking site as the said additive with each component of.
  • the addition amount of such a styrene block copolymer is 100 parts by mass of the total amount of the polymer and the raw material compound (the mass of the polymer component to be obtained) (when the polymer is the elastomeric polymer, the elastomeric polymer and The amount is preferably 1 to 1000 parts by mass, and more preferably 10 to 800 parts by mass with respect to the total amount of the raw material compounds (the mass of the obtained elastomer component). If the content ratio is less than the lower limit, oil bleeding tends to occur easily. If the content ratio exceeds the upper limit, mechanical properties such as breaking strength tend to decrease.
  • the paraffin oil as the additive together with each of the above components.
  • the addition amount of such paraffin oil is 100 parts by mass of the total amount of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of the polymer component to be obtained) (the cyclic acid anhydride group in the side chain
  • the polymer having the cyclic acid anhydride group is an elastomeric polymer having a side chain
  • the total content of the elastomeric polymer having the cyclic acid anhydride group in a side chain and the raw material compound (mass of the obtained elastomer component) 100
  • 10 to 600 parts by mass more preferably 50 to 550 parts by mass, still more preferably 75 to 500 parts by mass, and 100 to 400 parts by mass.
  • the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there tends to be no sufficient effect in terms of flowability and processability, and on the other hand, the above upper limit is exceeded And, it tends to be easy to induce the bleeding of paraffin oil.
  • an ⁇ -olefin resin having no chemically bondable crosslinking site is used as the additive together with the above respective components.
  • the amount of such ⁇ -olefin resin added is 100 parts by mass of the total amount of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of the polymer component to be obtained) (the cyclic acid anhydride group
  • the polymer having in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain
  • the total amount of the elastomeric polymer having the cyclic acid anhydride group in the side chain and the raw material compound elastomer component obtained 250 parts by mass or less (more preferably 5 to 250 parts by mass, still more preferably 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, most preferably 35 to 175 parts by mass) per 100 parts by mass) It is more preferable to use it as If the content is an elastomeric polymer having the cycl
  • the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain); the raw material compound; and the cyclic acid anhydride group
  • the total of 100 parts by mass of the polymer having a side chain and the raw material compound (when the polymer having a cyclic acid anhydride group in a side chain is an elastomeric polymer having a cyclic acid anhydride group in a side chain, the cyclic acid anhydride is The content ratio of 20 parts by mass or less with respect to the total amount of the elastomeric polymer having side groups in the material group and the raw material compound) and the rubber particle-containing thermoplastic elastomer (I); Forming the polymer component (more preferably the elastomer component), the thermoplastic resin, and the polymer component (more preferably the elastomer) A rubber component and a clay having a content ratio of 20 parts by mass or less based on
  • the thermoplastic resin having no chemically bondable crosslinking site the polymer component (more preferably the elastomer component), the clay, and the rubber particles
  • the content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention.
  • the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the rubber particle-containing elastomer composition of the present invention is also contained in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things. As mentioned above, although 2nd manufacturing method was demonstrated, the 3rd manufacturing method is demonstrated hereafter.
  • the third method for producing a rubber particle-containing elastomer composition of the present invention is A polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain); the compound (i), and the compound (i) and the compound (ii) And 100 parts by mass of the total of the polymer and the raw material compound (when the polymer is the elastomeric polymer, the total amount 100 of the elastomeric polymer and the raw material compound) 20% by mass or less of a clay with respect to the mass part), a thermoplastic resin having no chemically bondable crosslinking site, and a diene rubber having no hydrogen bondable crosslinking site; Agents (at least one selected from the group consisting of peroxide-based crosslinking agents, phenol resin-based crosslinking
  • a rubber particle-containing elastomer composition is obtained, which comprises a clay having a content ratio of not more than 20 parts by mass with respect to 100 parts by mass) and rubber particles.
  • a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain) used in such a third production method, a starting compound (compound (i), a compound (ii) )), Clay, thermoplastic resin having no chemically bonding crosslinking site, diene rubber having no hydrogen bonding crosslinking site, crosslinking agent (peroxide crosslinking agent, phenol resin crosslinking agent, sulfur system)
  • the crosslinking agent and at least one selected from the group consisting of silane crosslinking agents are the same as those components described in the first production method and the rubber particle-containing elastomer composition of the present invention, respectively. (The preferred one is similar as well).
  • the addition order of the respective components is not particularly limited, and a method of adding the respective components once (simultaneously) and mixing them; sequentially adding the respective components and mixing them Method for mixing and reacting other components, after previously mixing and reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound
  • the mixing step of the third production method a known mixing method or the like can be appropriately adopted.
  • the addition order of the respective components is not particularly limited, but from the viewpoint of further improving the dispersibility of clay and from the viewpoint of sufficiently dispersing the formed rubber particles.
  • a polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain), a thermoplastic resin having no chemically bondable crosslinking site, and the hydrogen Diene-based rubber having no bondable crosslinking site; clay; the raw material compound; the crosslinking agent (peroxide-based crosslinking agent, phenolic resin-based crosslinking agent, sulfur-based crosslinking agent, and silane-based crosslinking agent selected from the group consisting of It is preferable to add and mix in order of at least one of In addition, when various additives (a styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, etc.) are added, the additive; a polymer having the cyclic acid anhydride group in a side chain (More preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain), a thermoplastic resin having no chemically
  • a polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain) is reacted with the raw material compound.
  • a polymer component (more preferably an elastomeric component). It is preferable to make it the same as the conditions demonstrated in the said 2nd manufacturing method as conditions of such mixing.
  • the diene rubber having no hydrogen bondable crosslinking site is reacted with the crosslinking agent to form rubber particles composed of a crosslinked product of the diene rubber. .
  • mixing may be carried out under such temperature conditions that a crosslinked product of a diene rubber is simultaneously formed, and the polymer having a cyclic acid anhydride group in a side chain (more preferably, the cyclic acid anhydride)
  • the same conditions as the temperature conditions at the time of forming the polymer component (more preferably, the elastomer component) by reacting an elastomeric polymer having a substance group in a side chain with the raw material compound can be suitably used.
  • at least the thermoplastic resin and the hydrogen bondable crosslinking site among the respective components from the viewpoint that the formed rubber particles are sufficiently dispersed in the mixing step.
  • melt-knead and dynamically crosslink the diene rubber which does not have and the crosslinking agent are preferable to melt-knead and dynamically crosslink the diene rubber which does not have and the crosslinking agent.
  • mixing is preferably carried out using a twin-screw extruder, a screw extruder, a kneader, a Banbury mixer or the like.
  • well-known conditions can be employ
  • a method of mixing for 1 minute to 1 hour at a temperature (preferably 100 to 250 ° C.) higher than the melting point of the added resin component may be adopted.
  • the shear force applied at this time is also not particularly limited, and conditions may be appropriately set so as to allow dynamic crosslinking, but it is preferable to prepare so that the shear rate is 1 to 100 sec -1. .
  • the amount of the clay used is the total of 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (the polymer having the cyclic acid anhydride group in the side chain 20 parts by mass or less with respect to the total amount of 100 parts by mass of the elastomeric polymer having the cyclic acid anhydride group in the side chain and the raw material compound, when the elastomeric polymer has the cyclic acid anhydride group in the side chain You need to Such a content ratio is the same as the conditions described in the second production method (note that the preferable conditions are also the same).
  • the amount of the thermoplastic resin used is 100 parts by mass of the total amount of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of the polymer component to be obtained)
  • the total amount of the elastomeric polymer and the raw material compound (the mass of the obtained elastomer component) 100 parts by mass
  • the amount is preferably 1 to 10000 parts by mass, and from the viewpoint of further improving the 100% modulus and 300% modulus, it is more preferably 1 to 900 parts by mass (more preferably 10 to 800 parts by mass).
  • 400 to 800 Parts by weight (more preferably from 500 to 7000 parts by weight) and more preferably in the.
  • the amount of the diene rubber used is more preferably 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. If the amount of such a diene rubber used is less than the above lower limit, the rubber property tends to be low, while if it exceeds the above upper limit, the thermoplasticity (moldability) tends to be low.
  • the amount of the crosslinking agent used is 0.1 to 20 parts by mass (more preferably 0.3 to 15 parts by mass) with respect to 100 parts by mass of the diene rubber. preferable. If the amount of such a crosslinking agent used is less than the above lower limit, the crosslink density tends to be low, while if it exceeds the above upper limit, the crosslink density tends to be too high.
  • the respective components are mixed to form the polymer component (more preferably the elastomer component) and the rubber particles, whereby the thermoplastic resin and the polymer component (more preferably the elastomer component)
  • Particulate-containing elastomeric compositions can be obtained.
  • the thermoplastic resin having no chemically bondable crosslinking site the polymer component (more preferably the elastomer component), the clay, and the rubber particles
  • the content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention.
  • the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the rubber particle-containing elastomer composition of the present invention is also contained in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things.
  • the rubber particle-containing elastomer composition of the present invention in which the rubber particles are dispersed in the matrix by such mixing step It is also possible to produce efficiently.
  • the third manufacturing method has been described above, and the fourth manufacturing method will be described below.
  • the fourth method for producing a rubber particle-containing elastomer composition of the present invention is A thermoplastic resin having no chemically bondable crosslinking site; a diene rubber not having a hydrogen bondable crosslinking site; a crosslinking agent (peroxide crosslinking agent, phenol resin crosslinking agent, sulfur crosslinking agent, By mixing at least one member selected from the group consisting of silane based crosslinking agents; and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)); The diene rubber having no hydrogen bondable crosslinking site is reacted with the crosslinking agent to form a rubber particle comprising a crosslinked product of diene rubber, The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the poly
  • the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is at least one selected from the group consisting of a crosslinking agent, a sulfur-based crosslinking agent and a silane-based crosslinking agent;
  • the components are the same as those described in the rubber particle-containing elastomer composition of the present invention and the first production method described above (the preferred ones are also the same).
  • the addition order of the respective components is not particularly limited, and each component is added once (simultaneously) and mixed; the respective components are sequentially added and mixed Method: Thermoplastic resin not having the crosslinking site having the chemical bonding property in advance, diene rubber having no the hydrogen bonding crosslinking site, and the crosslinking agent (peroxide crosslinking agent, phenolic resin crosslinking agent And the thermoplastic polymer composition (II) after mixing the diene rubber and the crosslinking agent by mixing at least one selected from the group consisting of a sulfur crosslinking agent and a silane crosslinking agent; Preferably, the thermoplastic elastomer composition (II) may be added and mixed, and as a result, the respective components may be mixed; As described above, in the mixing step of the fourth production method, the addition order of the respective components is not particularly limited, but from the viewpoint of sufficiently dispersing the formed rubber particles, the crosslink site having the chemical bonding property A thermoplastic resin not having the crosslinking site having the chemical
  • each component when melt-mixing each component as described above, conditions are adopted that can dynamically crosslink the diene rubber and the crosslinking agent that do not have the hydrogen bondable crosslinking site at the time of the melt mixing. It is preferable that a known method (conditions) of dynamic crosslinking can be adopted as appropriate. For example, using either a twin-screw extruder, a screw extruder, a kneader, or a Banbury mixer as a mixer, each component is added once (simultaneously) and a resin component (including an elastomer component) added A method of mixing at a temperature above the melting point (preferably 100 to 250 ° C.) for 1 minute to 1 hour may be employed.
  • the shear force applied at this time is also not particularly limited, and conditions may be appropriately set so as to allow dynamic crosslinking, but it is preferable to prepare so that the shear rate is 1 to 100 sec -1. .
  • a method is a so-called dynamic method using the thermoplastic resin, the diene rubber and the crosslinking agent.
  • the thermoplastic elastomer composition (II) is further added to produce a final product when producing a dynamically crosslinked elastomer. Therefore, as the production conditions, the conditions adopted in the method of producing a so-called dynamically crosslinked elastomer (for example, the method described in Japanese Patent No. 6000714) may be adopted appropriately. According to such a method, it is also possible to efficiently produce a rubber particle-containing elastomer composition in which rubber particles are sufficiently dispersed.
  • the amount of the thermoplastic resin used is the polymer component in the thermoplastic polymer composition (II)
  • the thermoplastic polymer composition (II) is the thermoplastic elastomer composition ( In the case of II)
  • the conditions for the amount of the diene rubber used and the amount of the crosslinking agent used are preferably the same as the conditions for the amounts used in the third production method.
  • the amount of the additives used (the amount of each of the additives used when combining a plurality of types)
  • the amount is more preferably 0.1 to 100 parts by mass (more preferably 0.5 to 30 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. If the amount of such an additive used is less than the lower limit, the effect of the additive tends to be low, while if the amount is more than the upper limit, the effect of the additive tends to be too high.
  • a slip agent As additives to be added together with the above-mentioned thermoplastic resin in the fourth production method, a slip agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant, a flame retardant, an antifungal agent
  • a slip agent As additives to be added together with the above-mentioned thermoplastic resin in the fourth production method, a slip agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant, a flame retardant, an antifungal agent
  • gum such as an agent, a neutralizing agent, a softener, a filler, a coloring agent, a thermally conductive filler, is preferable.
  • the polymer component is the elastomer component
  • the thermoplastic resin having no chemically bondable crosslinking site the polymer component (more preferably the elastomer component), the clay, and the rubber particles
  • the content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention.
  • the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the rubber particle-containing elastomer composition of the present invention is also contained in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things.
  • the rubber particles are contained in the rubber particle-containing elastomer composition of the present invention in which the rubber particles are dispersed in the matrix by the mixing step, since the rubber particles are formed by reaction during mixing. It is also possible to produce efficiently.
  • dumbbell-shaped test piece is punched out of the sheet obtained in this manner, and a tensile test at a tensile speed of 500 mm / min is performed according to JIS K6251 (issued in 2010), 100% modulus (M 100 ) [unit: MPa], 300% modulus (M 300 ) [unit: MPa], breaking strength (T B ) [unit: MPa], and breaking elongation (E B ) [unit:%] at room temperature (%) It measured at 25 degreeC.
  • the average particle sizes of the rubber particles in the rubber particle-containing elastomer compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were measured as follows. That is, for each rubber particle-containing elastomer composition, the cross section of the composition is observed using a transmission electron microscope (TEM, trade name "SU-70" manufactured by Hitachi High-Technologies Corporation) and included in the cross section. The average particle size of the rubber particles was determined by calculating and averaging the diameters of 30 optional rubber particles. In the measurement, the diameter of the largest circumscribed circle of the outer shape of the rubber particles in the cross section was measured as the diameter of the rubber particles.
  • TEM transmission electron microscope
  • the diameter was determined for each particle by dragging the portion of the largest diameter of each particle on the screen from the start point to the end point using the length measurement function of the above-mentioned apparatus (the TEM). .
  • the rubber particle-containing elastomer composition is heat-pressed at 200 ° C. for 10 minutes using the rubber particle-containing elastomer composition obtained in each example and each comparative example.
  • a sheet is prepared to have a size of about 2 mm, a sample piece is cut out from the sheet having a thickness of about 2 mm, and a temperature of ⁇ 80 ° C. so that the cut surface becomes an observation surface using a cryomicrotome from the sample piece.
  • Synthesis Example 1 Preparation of Thermoplastic Elastomer Composition
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • G1633 styrene-ethylene-butylene-styrene block copolymer
  • styrene Content 30% by mass
  • 10 g is put into a pressure kneader, and while kneading under conditions of 180 ° C., 20 g of paraffin oil (trade name "YUBASE8J” manufactured by SK Lubricants) is dropped in the pressure kneader,
  • the SEBS and paraffin oil were mixed for 1 minute.
  • maleic anhydride-modified ethylene-butene copolymer (trade name "Tafmer MH 5040" manufactured by Mitsui Chemicals, Inc., crystallinity degree: 4%, hereinafter sometimes referred to as "maleated EBM” )
  • maleated EBM ethylene-butene copolymer
  • HDPE trade name "HJ 590N” made by Japan Polyethylene
  • anti-aging agent trade name "AO-50” made by Adeka Co., Ltd.
  • thermoplastic elastomer composition ( A) was prepared.
  • thermoplastic elastomer composition (A) was a reaction product of maleated EBM and pentaerythritol. Further, for convenience, the thermoplastic elastomer composition (A) obtained in Synthesis Example 1 is hereinafter sometimes referred to as "TPE- (A)".
  • thermoplastic Elastomer Composition (B) Synthesis Example 1 except that 0.141 g of 2,4-diamino-6-phenyl-1,3,5-triazine (trade name “benzoguanamine” manufactured by Nippon Shokuhin Co., Ltd.) was used instead of using 0.051 g of pentaerythritol
  • the thermoplastic elastomer composition (B) was obtained in the same manner as in the above.
  • the elastomer component in the thermoplastic elastomer composition (B) was a reaction product of maleated EBM and benzoguanamine. Further, for convenience, the thermoplastic elastomer composition (B) obtained in Synthesis Example 2 is hereinafter sometimes referred to as "TPE- (B)".
  • thermoplastic Elastomer Composition (C) A thermoplastic elastomer composition in the same manner as in Synthesis Example 1 except that 0.131 g of trishydroxyethyl isocyanurate (trade name "Tanac P” manufactured by Nichise Sangyo Co., Ltd.) is used instead of using 0.051 g of pentaerythritol. I got (C).
  • the elastomer component in the thermoplastic elastomer composition (C) was a reaction product of maleated EBM and trishydroxyethyl isocyanurate.
  • TPE- (C) the thermoplastic elastomer composition obtained in Synthesis Example 3 is hereinafter sometimes referred to as "TPE- (C)".
  • thermoplastic elastomer composition (D) was obtained in the same manner as in Synthesis Example 2 except that the composition was changed to The elastomer component in the thermoplastic elastomer composition (D) was a reaction product of maleated EBM and benzoguanamine. Further, for convenience, the thermoplastic elastomer composition (D) obtained in Synthesis Example 4 is hereinafter sometimes referred to as “TPE- (D)”.
  • composition example 5 instead of using maleic anhydride modified ethylene-butene copolymer (maleated EBM), maleic anhydride modified high density polyethylene (trade name "Husabond E 265" manufactured by DuPont Co., Ltd., density 0.95 g / cm 3 , In some cases, 7 g of “maleated HDPE” is used, the usage of trishydroxyethyl isocyanurate is changed to 0.0623 g, the usage of paraffin oil is changed to 21 g, and the usage of polyethylene is changed to 14 g And the amount of SEBS was changed to 14 g, the amount of organophilic clay was changed to 0.007 g, and the amount of anti-aging agent was changed to 0.168 g.
  • thermoplastic polymer composition (E) was obtained.
  • the polymer component in the thermoplastic polymer composition (E) was a reaction product of maleated HDPE and trishydroxyethyl isocyanurate.
  • thermoplastic polymer composition (E) obtained in Synthesis Example 5 is hereinafter sometimes referred to as “TPC- (E)” for convenience.
  • thermoplastic polymer composition (F) was obtained in the same manner as in Synthesis Example 3, except that the amount of the anti-aging agent used was changed to 0.117 g.
  • the polymer component in the thermoplastic polymer composition (F) was a reaction product of maleated HDPE and trishydroxyethyl isocyanurate, and a reaction product of maleated EBM and trishydroxyethyl isocyanurate.
  • the thermoplastic polymer composition (F) obtained in Synthesis Example 6 is hereinafter sometimes referred to as “TPC- (F)” for convenience.
  • TPE- (A) to TPE- (D) and TPC- (E) to (F) are shown in Table 1. All numerical values in Table 1 indicate parts by mass.
  • thermoplastic elastomer used in each example and comparative example
  • TSV dynamic crosslinking thermoplastic elastomer
  • TPV- (1) trade name "Santoprene 121-75 M100” manufactured by Exxon Mobil
  • TPV- (2) trade name "Santoprene 121-50M100” manufactured by Exxon Mobil
  • TPV- (3) trade name "Milastomer 4010 NS” manufactured by Mitsui Chemicals, Inc .
  • TPV- (4) trade name "Milastomer 6020NS” manufactured by Mitsui Chemicals, Inc .
  • TPV- (5) trade name "Milastomer 7030NS” manufactured by Mitsui Chemicals, Inc.
  • thermoplastic elastomer composition selected from TPE- (A) to TPE- (D) or a thermoplastic polymer selected from TPC- (E) and TPC- (F)
  • TPE- (A) to TPE- (D) or a thermoplastic polymer selected from TPC- (E) and TPC- (F) 40 g of the composition and 10 g of one dynamically cross-linked thermoplastic elastomer selected from TPV- (1) to TPV- (5) in the combinations shown in Table 2, these are pressurized
  • the mixture was charged into a kneader and mixed at a temperature of 180 ° C. for 10 minutes to obtain 50 g of the rubber particle-containing elastomer composition.
  • TPV- (1) to TPV- (5) were used as they were as rubber particle-containing elastomer compositions for comparison (Comparative Example 1: TPV- (1), Comparative Example 2: TPV- (2), Comparative Example 3: TPV- (3), Comparative Example 4: TPV- (4), Comparative Example 5: TPV- (5)).
  • TPE- (A) to TPE were obtained for each TPV as compared with the case where TPV- (1) to TPV- (5) were used as they were (Comparative Examples 1 to 5).
  • the rubber particle-containing elastomer compositions (Examples 1 to 8) obtained by mixing one selected from (D) and TPC- (E) to (F), each of them is compressed It has been found that the resistance to permanent set is at a higher level.
  • the rubber particle-containing elastomer composition obtained in each example is a polymer component (a polymer in Examples 1 to 3, 5 and 7 to 8). It is apparent that the rubber particles have a structure in which rubber particles are dispersed in a matrix containing an elastomer component suitable as a component, a clay and a thermoplastic resin.
  • Example 9 First, 10 g of a styrene block copolymer (SEBS, trade name "G1633” manufactured by Kraton Co., Ltd.) is introduced into a pressure kneader and kneaded under the conditions of 180 ° C in a paraffin oil (SK Lubricants Co., Ltd.) 20g of brand names "YUBASE8J” (trade name) manufactured by Japan Electronics Co., Ltd. was dropped, and SEBS and paraffin oil were mixed for 1 minute.
  • SEBS styrene block copolymer
  • 0.051 g of pentaerythritol (trade name "Nylizer P” manufactured by Mitsubishi Chemical Corporation) is added to the second mixture in the pressure kneader, and the mixture is mixed at 180 ° C for 8 minutes to obtain a rubber particle-containing elastomer
  • the composition was obtained.
  • the elastomer component was a reaction product of maleated EBM and pentaerythritol, and the rubber particles were derived from the rubber particles in TPV- (1).
  • Example 10 A rubber particle-containing elastomer composition was obtained in the same manner as in Example 9 except that 7.5 g of TPV- (2) was used instead of 7.5 g of TPV- (1).
  • the elastomer component was a reaction product of maleated EBM and pentaerythritol, and the rubber particles were derived from the rubber particles in TPV- (2).
  • Example 11 Instead of using 7.5 g of TPV- (1), 7.5 g of TPV- (3) was used, and instead of using 0.051 g of pentaerythritol, 2,4-diamino-6-phenyl-1,3,5- was used.
  • a rubber particle-containing elastomer composition was obtained in the same manner as in Example 9 except that 0.141 g of triazine (trade name "benzoguanamine” manufactured by Nippon Shokubai Co., Ltd.) was used.
  • the elastomer component is a reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine, and the rubber particles are TPV- (3). It was derived from rubber particles.
  • Example 12 A rubber particle-containing elastomer composition was obtained in the same manner as in Example 11 except that 7.5 g of TPV- (4) was used instead of 7.5 g of TPV- (3).
  • the elastomer component is the reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine, and the rubber particles are TPV- (4). It was derived from rubber particles.
  • Example 7 An elastomer composition for comparison was prepared in the same manner as in Example 11 except that 7.5 g of EBM (trade name "Tafmer DF7350" manufactured by Mitsui Chemicals, Inc.) was used instead of using 7.5 g of TPV- (3). Obtained.
  • the elastomer component was a reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine.
  • the obtained elastomer composition does not contain rubber particles.
  • Example 13 Instead of using 7.5 g of TPV- (1), 7.5 g of TPV- (5) was used, and instead of using 0.051 g of pentaerythritol, trishydroxyethyl isocyanurate (trade name “TANAC manufactured by Nichise Sangyo Co., Ltd.
  • a rubber particle-containing elastomer composition was obtained in the same manner as in Example 9 except that 0.131 g of P ′ ′) was used.
  • the elastomer component was a reaction product of maleated EBM and trishydroxyethyl isocyanurate, and the rubber particles were derived from the rubber particles in TPV- (5).
  • elastomer composition for comparison was prepared in the same manner as in Example 13 except that 7.5 g of EBM (trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, Inc.) was used instead of using 7.5 g of TPV- (5). Obtained.
  • the elastomer component was a reaction product of maleated EBM and trishydroxyethyl isocyanurate.
  • the obtained elastomer composition does not contain rubber particles.
  • compositions obtained in Examples 9 to 13 and Comparative Examples 6 to 8 are shown in Table 3.
  • the numerical values indicate parts by mass, and the symbol "-" indicates that the component is not used (the amount of the component used is 0 parts by mass).
  • the elastomer component is a reaction product of maleated EBM and pentaerythritol (the rubber particle elastomer composition obtained in Examples 9 to 10 and Comparative Example 6)
  • the rubber particle elastomer composition obtained in Examples 9 to 10 and Comparative Example 6 When using TPV as compared with the case where only thermoplastic resin (EBM) not containing rubber particles (EBM) is used without using TPV (Comparative Example 6) (Example 9) It was found that the resistance to compression set of the resulting composition is higher in (10).
  • a rubber particle-containing elastomer composition capable of reducing compression set at a higher level, and such a rubber particle-containing elastomer composition are efficiently produced. It is possible to provide a method of producing a rubber particle-containing elastomer composition that can be As described above, since the rubber particle-containing elastomer composition of the present invention can make the resistance to compression set to a higher level, in particular, various gaskets for civil engineering and construction, sealing materials for construction, and construction sash sealing materials , Packing materials, shock absorbing materials, automobile parts and the like.

Abstract

An elastomer composition containing rubber particles which is characterized by comprising a matrix and the rubber particles dispersed in the matrix, the matrix comprising: a thermoplastic resin having no crosslinking moiety capable of undergoing chemical bonding; a polymer component, e.g., a polymer (A) which has a side chain (a) comprising a crosslinking moiety capable of undergoing hydrogen bonding and including a carbonyl-containing group and/or a nitrogenous heterocycle and has a glass transition temperature of 25°C or lower; and clay contained in an amount of 20 parts by mass or less per 100 parts by mass of the polymer component.

Description

ゴム粒子含有エラストマー組成物及びその製造方法Rubber particle-containing elastomer composition and method for producing the same
 本発明は、ゴム粒子含有エラストマー組成物並びにその製造方法に関する。 The present invention relates to a rubber particle-containing elastomer composition and a method for producing the same.
 熱可塑性のエラストマー組成物は、その成形加工時に加工温度で溶融し、周知の樹脂成形法で成形することが可能であることから産業上極めて有用な材料である。そのため、近年では、様々な種類の熱可塑性のエラストマー組成物の研究が進められている。 A thermoplastic elastomer composition is an industrially very useful material because it melts at its processing temperature during its molding process and can be molded by a known resin molding method. Therefore, in recent years, research on various types of thermoplastic elastomer compositions has been advanced.
 例えば、特開平8-291239号公報(特許文献1)においては、結晶性ポリオレフィン樹脂と、オレフィン系ゴムと、スチレン系ブロック共重合体と、軟化剤とを含有する熱可塑性のエラストマー組成物が開示されている。また、特開2016-193970号公報(特許文献2)においては、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性エラストマー組成物が開示されている。しかしながら、このような特許文献1や特許文献2に記載のような従来の熱可塑性のエラストマー組成物においても、より高度な水準で圧縮永久歪を低減させるといった観点では必ずしも十分なものではなかった。 For example, JP-A-8-291239 (Patent Document 1) discloses a thermoplastic elastomer composition containing a crystalline polyolefin resin, an olefin rubber, a styrene block copolymer, and a softener. It is done. Further, in JP-A-2016-193970 (Patent Document 2), it has a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and has a glass transition point From an elastomeric polymer (A) having a temperature of 25 ° C. or less and an elastomeric polymer (B) having a hydrogen bondable crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less There is disclosed a thermoplastic elastomer composition comprising at least one elastomer component selected from the group consisting of: and a clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the elastomer component. However, even such conventional thermoplastic elastomer compositions as described in Patent Document 1 and Patent Document 2 are not necessarily sufficient from the viewpoint of reducing the compression set at a higher level.
特開平8-291239号公報JP-A-8-291239 特開2016-193970号公報JP, 2016-193970, A
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、より高度な水準で圧縮永久歪を低減させることが可能なゴム粒子含有エラストマー組成物、並びに、そのようなゴム粒子含有エラストマー組成物を効率よく製造することが可能なゴム粒子含有エラストマー組成物の製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and provides a rubber particle-containing elastomer composition capable of reducing compression set at a higher level, and such a rubber particle-containing elastomer An object of the present invention is to provide a method for producing a rubber particle-containing elastomer composition capable of efficiently producing the composition.
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、化学結合性の架橋部位を有さない熱可塑性樹脂と;カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と;前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと;を含有してなるマトリックスと、該マトリックス中に分散されているゴム粒子とを含有するゴム粒子含有エラストマー組成物により、より高度な水準で圧縮永久歪を低減させることが可能となることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a thermoplastic resin having no chemically bondable crosslinking site and a hydrogen bondable bridge having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. (A) having a side chain (a) containing a site and having a glass transition temperature of 25 ° C. or less, and a side chain containing a hydrogen bondable crosslinking site and a covalent crosslinking site and a glass Containing at least one polymer component selected from the group consisting of polymer (B) having a transition point of 25 ° C. or less; and clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the polymer component A rubber particle-containing elastomer composition containing a matrix which is obtained by the above method and rubber particles dispersed in the matrix, it is possible to reduce the compression set at a higher level. Found that, it has led to the completion of the present invention.
 すなわち、本発明のゴム粒子含有エラストマー組成物は、マトリックスと、該マトリックス中に分散されているゴム粒子とを含有し、かつ、
 該マトリックスが、化学結合性の架橋部位を有さない熱可塑性樹脂と、
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と、
 前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、
を含有してなるものであること、
を特徴とするものである。
That is, the rubber particle-containing elastomer composition of the present invention contains a matrix and rubber particles dispersed in the matrix, and
A thermoplastic resin wherein the matrix does not have a chemically bondable crosslinking site;
Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less
Clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component,
Containing
It is characterized by
 本発明の第一のゴム粒子含有エラストマー組成物の製造方法(第一の製法)は、
 化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)と;
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性ポリマー組成物(II)と;
を混合することにより、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
The method for producing a first rubber particle-containing elastomer composition of the present invention (first method) comprises
A rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles;
Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less, and 100 parts by mass of the polymer component And a thermoplastic polymer composition (II) comprising a clay having a content ratio of 20 parts by mass or less;
By mixing
Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles It is a method characterized by obtaining an elastomer composition.
 本発明の第二のゴム粒子含有エラストマー組成物の製造方法(第二の製法)は、
 環状酸無水物基を側鎖に有するポリマーと;
 前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(i)、並びに、前記化合物(i)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(ii)の混合原料のうちの少なくとも1種の原料化合物と;
 前記ポリマー及び前記原料化合物の総量100質量部に対して20質量部以下の含有割合のクレイと;
 化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)と;
を混合することにより、
 前記環状酸無水物基を側鎖に有するポリマーと前記原料化合物とを反応せしめて、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分を形成し、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
The method for producing a second rubber particle-containing elastomer composition of the present invention (second production method) is
A polymer having a cyclic anhydride group in the side chain;
Compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, and compound which reacts with the compound (i) and the cyclic acid anhydride group to form a covalent crosslinking site (Ii) at least one starting compound of the mixed starting materials;
Clay having a content of 20 parts by mass or less based on 100 parts by mass of the total amount of the polymer and the raw material compound;
A rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles;
By mixing
The polymer having the cyclic acid anhydride group in the side chain is reacted with the raw material compound to have a side chain (a) having a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. And a polymer (A) having a glass transition temperature of 25 ° C. or less, and a polymer having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less (B) Form at least one polymer component selected from the group consisting of
Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles It is a method characterized by obtaining an elastomer composition.
 本発明の第三のゴム粒子含有エラストマー組成物の製造方法(第三の製法)は、
 環状酸無水物基を側鎖に有するポリマーと;
 前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(i)、並びに、前記化合物(i)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(ii)の混合原料のうちの少なくとも1種の原料化合物と;
 前記ポリマー及び前記原料化合物の総量100質量部に対して20質量部以下の含有割合のクレイと;
 化学結合性の架橋部位を有さない熱可塑性樹脂と;
 水素結合性架橋部位を有さないジエン系ゴムと;
 過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種の架橋剤と;
を混合することにより、
 前記環状酸無水物基を側鎖に有するポリマーと前記原料化合物とを反応せしめて、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分を形成するとともに、前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめて、ジエン系ゴムの架橋物からなるゴム粒子を形成し、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
The third method for producing a rubber particle-containing elastomer composition of the present invention (third method) is
A polymer having a cyclic anhydride group in the side chain;
Compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, and compound which reacts with the compound (i) and the cyclic acid anhydride group to form a covalent crosslinking site (Ii) at least one starting compound of the mixed starting materials;
Clay having a content of 20 parts by mass or less based on 100 parts by mass of the total amount of the polymer and the raw material compound;
A thermoplastic resin having no chemically bondable crosslinking site;
A diene rubber having no hydrogen bondable crosslinking site;
At least one crosslinker selected from the group consisting of peroxide crosslinkers, phenolic resin crosslinkers, sulfur crosslinkers and silane crosslinkers;
By mixing
The polymer having the cyclic acid anhydride group in the side chain is reacted with the raw material compound to have a side chain (a) having a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. And a polymer (A) having a glass transition temperature of 25 ° C. or less, and a polymer having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less (B) And at least one polymer component selected from the group consisting of: a rubber comprising a crosslinked product of a diene rubber by reacting the diene rubber not having the hydrogen bondable crosslinking site with the crosslinking agent. Form particles,
Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles It is a method characterized by obtaining an elastomer composition.
 本発明の第四のゴム粒子含有エラストマー組成物の製造方法(第四の製法)は、
 化学結合性の架橋部位を有さない熱可塑性樹脂と;
 水素結合性架橋部位を有さないジエン系ゴムと;
 過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種の架橋剤と;
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性ポリマー組成物(II)と;
を混合することにより、
 前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめて、ジエン系ゴムの架橋物からなるゴム粒子を形成し、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
The fourth method for producing a rubber particle-containing elastomer composition of the present invention (fourth production method) is
A thermoplastic resin having no chemically bondable crosslinking site;
A diene rubber having no hydrogen bondable crosslinking site;
At least one crosslinker selected from the group consisting of peroxide crosslinkers, phenolic resin crosslinkers, sulfur crosslinkers and silane crosslinkers;
Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less, and 100 parts by mass of the polymer component And a thermoplastic polymer composition (II) comprising a clay having a content ratio of 20 parts by mass or less;
By mixing
The diene rubber having no hydrogen bondable crosslinking site is reacted with the crosslinking agent to form a rubber particle comprising a crosslinked product of diene rubber,
Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles It is a method characterized by obtaining an elastomer composition.
 本発明によれば、より高度な水準で圧縮永久歪を低減させることが可能なゴム粒子含有エラストマー組成物、並びに、そのようなゴム粒子含有エラストマー組成物を効率よく製造することが可能なゴム粒子含有エラストマー組成物の製造方法を提供することが可能となる。 According to the present invention, a rubber particle-containing elastomer composition capable of reducing compression set at a higher level, and a rubber particle capable of efficiently producing such a rubber particle-containing elastomer composition It becomes possible to provide a method for producing a containing elastomeric composition.
実施例1で得られたゴム粒子含有エラストマー組成物の断面の透過型電子顕微鏡写真(TEM写真:倍率3000倍)である。3 is a transmission electron micrograph (TEM photograph: 3000 × magnification) of a cross section of the rubber particle-containing elastomer composition obtained in Example 1. 図1に示すゴム粒子含有エラストマー組成物の断面の一部を拡大して示す透過型電子顕微鏡写真(TEM写真:倍率10000倍)である。It is a transmission electron micrograph (TEM photograph: 10000 times of magnification) which expands and shows a part of cross section of the rubber particle containing elastomer composition shown in FIG.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail in line with its preferred embodiments.
 [ゴム粒子含有エラストマー組成物]
 本発明のゴム粒子含有エラストマー組成物は、マトリックスと、該マトリックス中に分散されているゴム粒子とを含有し、かつ、該マトリックスが、化学結合性の架橋部位を有さない熱可塑性樹脂と;カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分(より好ましくは、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分)と;前記ポリマー成分100質量部(前記ポリマー成分がエラストマー成分である場合には、エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと;を含有してなるものであることを特徴とするものである。
[Rubber particle-containing elastomer composition]
The rubber particle-containing elastomer composition of the present invention contains a matrix and rubber particles dispersed in the matrix, and the matrix does not have a chemically bondable crosslinking site; Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component (more preferably a carbonyl-containing group and selected from the group consisting of polymers (B) containing a reactive crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less) And / or an elastomeric polymer (A) having a side chain (a) containing a hydrogen bonding crosslinking site having a nitrogen-containing heterocycle and having a glass transition temperature of 25 ° C. or less And at least one elastomer selected from the group consisting of an elastomeric polymer (B) having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less Component) and clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component); It is characterized by a certain thing.
 (化学結合性の架橋部位を有さない熱可塑性樹脂)
 このような熱可塑性樹脂は、マトリックス中に含有される成分であり、化学結合性の架橋部位を有さないものである。ここにおいて「化学結合性の架橋部位」とは、水素結合、共有結合、金属イオン-極性官能基間のキレーション、金属-不飽和結合(二重結合、三重結合)間のσ-π相互作用により形成される結合等といった化学結合により架橋が形成されている部位をいう。そのため、本明細書において「化学結合性の架橋部位を有さない」とは、水素結合、共有結合、金属イオン-極性官能基間のキレーション、金属-不飽和結合(二重結合、三重結合)間のσ-π相互作用により形成される結合等によって形成される化学結合を有さない状態であることをいう。
(Thermoplastic resin which does not have a chemically bondable crosslinking site)
Such a thermoplastic resin is a component contained in the matrix and has no chemically bondable crosslinking site. Here, “chemically linked crosslinking site” refers to hydrogen bond, covalent bond, chelation between metal ion and polar functional group, σ-π interaction between metal-unsaturated bond (double bond, triple bond) It refers to a site where a crosslink is formed by a chemical bond such as a bond formed. Therefore, in the present specification, "having no chemically bondable crosslinking site" means hydrogen bond, covalent bond, chelation between metal ion and polar functional group, metal-unsaturated bond (double bond, triple bond) It means that it does not have a chemical bond formed by the bond etc. formed by the σ-π interaction between them.
 このような化学結合性の架橋部位を有さない熱可塑性樹脂としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、かつ、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。なお、このような化学結合性の架橋部位を有さない熱可塑性樹脂は、少なくとも、後述の側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していない熱可塑性樹脂であるといえる。 As a thermoplastic resin which does not have such a chemically bondable crosslinking site, a functional group (for example, a hydroxyl group, a carbonyl group, a carboxyl group, a thiol group, an amide group, an amino group, or the like) which forms a crosslinking point by chemical bonding Those which do not contain a group) and do not contain a binding site (such as a crosslinking site by covalent bond) which directly crosslinks polymer chains are preferably used. In addition, the thermoplastic resin which does not have such a chemically bondable crosslinking site is at least a side chain (a), a side chain (a '), a side chain (b), a side chain (c) etc. It can be said that it is a thermoplastic resin not possessed.
 このような熱可塑性樹脂としては、化学結合性の架橋部位を有さないポリオレフィンであることが好ましい。このようなポリオレフィンとしては、特に制限されないが、α-オレフィン系樹脂(α-オレフィンの単独重合体、α-オレフィンの共重合体)であることが好ましい。ここにいう「α-オレフィン」とは、α位に炭素-炭素二重結合を有するアルケン(末端に炭素-炭素二重結合を有するアルケン:なお、かかるアルケンは直鎖状のものであっても分岐鎖状のものであってもよく、炭素数が2~20(より好ましくは2~10)であることが好ましい。)をいい、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。 As such a thermoplastic resin, it is preferable that it is polyolefin which does not have a chemically bondable crosslinking site. Such a polyolefin is not particularly limited, but is preferably an α-olefin resin (homopolymer of α-olefin, copolymer of α-olefin). The term "alpha-olefin" as used herein refers to an alkene having a carbon-carbon double bond at the alpha position (alkenes having a carbon-carbon double bond at the end: such alkenes may be linear It may be branched, and preferably has 2 to 20 (more preferably 2 to 10) carbon atoms), for example, ethylene, propylene, 1-butene, 1-pentene, 1 -Hexene, 1-Heptene, 1-octene, 1-nonene, 1-decene and the like.
 このような熱可塑性樹脂としては、特に制限されず、公知の熱可塑性樹脂を適宜利用できる(例えば、いわゆる動的架橋型熱可塑性エラストマー(TPV:Thermo Plastic Vulcanizate)に用いられる熱可塑性樹脂等を適宜利用できる)。このような熱可塑性樹脂としては、流動性、耐熱性、入手性の観点から、ポリエチレン、ポリプロピレンが好ましく、ポリプロピレンが特に好ましい。 Such a thermoplastic resin is not particularly limited, and a known thermoplastic resin can be appropriately used (for example, a thermoplastic resin used for a so-called dynamic cross-linked thermoplastic elastomer (TPV: Thermo Plastic Vulcanizate) is appropriately used. Available). As such a thermoplastic resin, polyethylene and polypropylene are preferable and polypropylene is particularly preferable from the viewpoint of flowability, heat resistance and availability.
 また、このようなポリプロピレンとしては、特に制限されず、公知のポリプロピレンを適宜利用することができる。このようなポリプロピレンの調製方法も特に制限されず、公知の重合方法によって重合する方法を適宜採用することができる。また、このようなポリプロピレンは、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1等のα-オレフィンと、プロピレンとの共重合体であってもよい。 Moreover, it does not restrict | limit especially as such a polypropylene, Well-known polypropylene can be utilized suitably. The preparation method of such a polypropylene is not particularly limited, and a method of polymerizing by a known polymerization method can be appropriately adopted. Such polypropylene may be a copolymer of propylene with an α-olefin such as ethylene, butene-1, pentene-1, 4-methylpentene-1.
 また、このようなマトリックス中の熱可塑性樹脂としては、流動性、耐熱性、入手性、相溶性の観点から、ポリプロピレンと;ポリエチレン、エチレン-プロピレン共重合体及びエチレン-ブテン共重合体の中から選択される少なくとも1種と;を組み合わせて含有していることがより好ましい。 Moreover, as a thermoplastic resin in such a matrix, from the viewpoints of fluidity, heat resistance, availability, and compatibility, polypropylene and polypropylene; from among polyethylene, ethylene-propylene copolymer and ethylene-butene copolymer More preferably, at least one selected from: and is contained in combination.
 さらに、このような化学結合性の架橋部位を有さない熱可塑性樹脂としては、市販品を適宜利用してもよい。このような市販品としては、例えば、サンアロマー社製の商品名「サンアロマー」、日本ポリプロ社製の商品名「ノバテックPP」、プライムポリマー社製の商品名「プライムポリプロ」等が挙げられる。なお、製造時に、化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)(かかる成分については後述する)の市販品を利用して、結果として、本発明のゴム粒子含有エラストマー組成物中に「化学結合性の架橋部位を有さない熱可塑性樹脂」を含有させてもよい。なお、このような化学結合性の架橋部位を有さない熱可塑性樹脂(ただし、後述の「化学結合性の架橋部位を有さないスチレンブロック共重合体」を除く)は、1種を単独で用いてもよく、或いは、2種以上を組み合わせて用いてもよい。 Furthermore, as a thermoplastic resin which does not have such a chemically bondable crosslinking site, a commercial item may be suitably used. As such commercial products, for example, trade name "Sun Aroma" manufactured by Sun Aroma, trade name "Novatec PP" manufactured by Japan Polypropylene, trade name "Prime Polypro" manufactured by Prime Polymer, etc. may be mentioned. In addition, a rubber particle-containing thermoplastic elastomer (I) (which will be described later) containing a rubber particle and a thermoplastic resin having no chemically bondable crosslinking site at the time of production is used as a result. In the rubber particle-containing elastomer composition of the present invention, “a thermoplastic resin having no chemically bondable crosslinking site” may be contained. In addition, the thermoplastic resin which does not have such a chemically bondable crosslinking site (however, except for the later-mentioned "styrene block copolymer which does not have a chemical bondable crosslinking site") is one kind alone. You may use or you may use it in combination of 2 or more types.
 (ポリマー成分)
 前記ポリマー成分は、マトリックス中に含有される成分であり、上述のポリマー(A)~(B)からなる群から選択される少なくとも1種のものである。このようなポリマー(A)~(B)において、「側鎖」とは、ポリマー(前記ポリマー(A)~(B)がエラストマー性ポリマーである場合、エラストマー性ポリマー)の側鎖および末端をいう。また、「カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)」とは、ポリマー(前記ポリマー(A)~(B)がエラストマー性ポリマーである場合、エラストマー性ポリマー)の主鎖を形成する原子(通常、炭素原子)に、水素結合性架橋部位としてのカルボニル含有基および/または含窒素複素環(より好ましくはカルボニル含有基および含窒素複素環)が化学的に安定な結合(共有結合)をしていることを意味する。また、「側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有され」とは、水素結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(a’)」と称する。)と、共有結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(b)」と称する。)の双方の側鎖を含むことによってポリマーの側鎖に水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合の他、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖(1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖:以下、このような側鎖を便宜上、場合により「側鎖(c)」と称する。)を含むことで、ポリマーの側鎖に、水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合を含む概念である。ここで、このようなポリマー成分としては、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分であることが好ましい。すなわち、このようなポリマー成分においては、前記ポリマー(A)が前記エラストマー性ポリマー(A)であり、かつ、前記ポリマー(B)が前記エラストマー性ポリマー(B)であることが好ましい。なお、このようなポリマー成分として好適なエラストマー成分は、特許第5918878号公報に記載のエラストマー成分と同義であり、同公報の段落[0032]~段落[0145]に記載のものを好適に利用できる。
(Polymer component)
The polymer component is a component contained in a matrix, and is at least one selected from the group consisting of the polymers (A) to (B) described above. In such polymers (A) to (B), the “side chain” refers to the side chain and the end of the polymer (when the polymers (A) to (B) are elastomeric polymers, elastomeric polymers). . In addition, “a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle” means that the polymer (when the polymers (A) to (B) are elastomeric polymers) A carbonyl-containing group as a hydrogen-bondable crosslinking site and / or a nitrogen-containing heterocycle (more preferably a carbonyl-containing group and a nitrogen-containing heterocycle) at an atom (usually a carbon atom) forming the main chain of the elastomeric polymer) Means a chemically stable bond (covalent bond). In addition, “a side chain containing a hydrogen bonding crosslinking site and a covalent bonding crosslinking site” means a side chain having a hydrogen bonding crosslinking site (hereinafter, for convenience, sometimes referred to as “side chain (a ′)” And a hydrogen bonding crosslinking site to the side chain of the polymer by including both side chains having a covalent crosslinking site (hereinafter, for convenience, sometimes referred to as “side chain (b)”). And a side chain having both a hydrogen bonding crosslinking site and a covalent crosslinking site (in one side chain a hydrogen bonding crosslinking site and a covalent bonding site, as well as when both a covalent crosslinking site are contained) Side chain containing both crosslinking sites: Hereinafter, by including such a side chain for convenience, sometimes referred to as “side chain (c)”, a hydrogen bondable crosslinking site and a covalent bond can be formed on the side chain of the polymer In the concept including the case where both of the binding crosslinking sites are contained is there. Here, as such a polymer component, an elastomer having a side chain (a) containing a hydrogen bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and having a glass transition point of 25 ° C. or less Polymer (A), and an elastomeric polymer (B) having a hydrogen bondable crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less It is preferred to be at least one elastomer component. That is, in such a polymer component, it is preferable that the polymer (A) is the elastomeric polymer (A), and the polymer (B) is the elastomeric polymer (B). An elastomer component suitable as such a polymer component is the same as the elastomer component described in Japanese Patent No. 5918878, and those described in paragraph [0032] to paragraph [0145] of the same publication can be suitably used. .
 また、このようなポリマー成分(前記ポリマー(A)~(B))の主鎖(主鎖部分を形成するポリマー)は、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく、特に限定されるものではない。このようなポリマー(A)~(B)の主鎖としては、それぞれ、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系ポリマー(好ましくはポリスチレン系エラストマー性ポリマー)、ポリオレフィン系ポリマー(好ましくは、高密度ポリエチレン(HDPE)、ポリオレフィン系エラストマー性ポリマー)、ポリ塩化ビニル系ポリマー(好ましくはポリ塩化ビニル系エラストマー性ポリマー)、ポリウレタン系ポリマー(好ましくはポリウレタン系エラストマー性ポリマー)、ポリエステル系ポリマー(好ましくはポリエステル系エラストマー性ポリマー)、及び、ポリアミド系ポリマー(好ましくはポリアミド系エラストマー性ポリマー)の中から選択される少なくとも1種からなることが好ましい。なお、このようなポリオレフィン系ポリマーとしては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、リニアポリエチレン(LLDPE)、ポリプロピレン等が挙げられる。また、このようなポリマー成分(前記ポリマー(A)~(B))の主鎖としては、老化しやすい二重結合がないという観点からは、ジエン系ゴムの水添物、オレフィン系ゴム、ポリオレフィン系ポリマーが好ましく、コストの低さ、反応性の高さ(無水マレイン酸等の化合物のエン反応が可能な二重結合を多数有する)の観点からは、ジエン系ゴムが好ましい。 Moreover, the main chain (polymer forming the main chain portion) of such a polymer component (the polymers (A) to (B)) is a generally known natural polymer or synthetic polymer, and its glass It is not particularly limited as long as it has a transition point of a polymer at room temperature (25 ° C.) or less. As main chains of such polymers (A) to (B), diene rubbers, hydrogenated products of diene rubbers, olefin rubbers, polystyrene polymers which may be hydrogenated (preferably polystyrene polymers) are preferable. Elastomeric polymer), polyolefin-based polymer (preferably high density polyethylene (HDPE), polyolefin-based elastomeric polymer), polyvinyl chloride-based polymer (preferably polyvinyl chloride-based elastomeric polymer), polyurethane-based polymer (preferably polyurethane) Based on at least one selected from an elastomeric polymer (based on elastomeric polymer), a polyester based polymer (preferably based on polyester based elastomeric polymer), and a polyamide based polymer (preferably based on a polyamide based elastomeric polymer) Preferred. Examples of such polyolefin polymers include low density polyethylene (LDPE), high density polyethylene (HDPE), linear polyethylene (LLDPE), and polypropylene. Also, from the viewpoint that there is no aging-prone double bond as the main chain of such polymer components (the polymers (A) to (B)), hydrogenated products of diene-based rubbers, olefin-based rubbers, polyolefins From the viewpoint of low cost and high reactivity (having many double bonds capable of reacting with a compound such as maleic anhydride), diene based rubbers are preferred.
 さらに、前記ポリマー成分が、前記エラストマー性ポリマー(A)~(B)である場合、このようなエラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)は、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のエラストマー性のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。このようなエラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)としては、ガラス転移点が室温(25℃)以下の公知のエラストマー性のポリマー(例えば、特許第5918878号公報の段落[0033]~[0036]に記載のもの)を適宜利用できる。 Furthermore, when the polymer component is the elastomeric polymers (A) to (B), the main chain (polymer forming the main chain portion) of such elastomeric polymers (A) to (B) is generally Known natural polymers or synthetic polymers which are elastomeric polymers having a glass transition temperature of room temperature (25 ° C.) or less (as long as they consist of so-called elastomers), It is not particularly limited. As the main chain (polymer forming the main chain portion) of such elastomeric polymers (A) to (B), known elastomeric polymers having a glass transition temperature of room temperature (25.degree. C.) or less (e.g. No. 5,918,878) can be appropriately used.
 さらに、このようなポリマー成分として好適なエラストマー性ポリマー(A)~(B)の主鎖としては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種が好ましい。また、このようなポリマー成分として好適な前記エラストマー性ポリマー(A)~(B)の主鎖としては、老化しやすい二重結合がないという観点からは、ジエン系ゴムの水添物、オレフィン系ゴムが好ましく、コストの低さ、反応性の高さ(無水マレイン酸等の化合物のエン反応が可能な二重結合を多数有する)の観点からは、ジエン系ゴムが好ましい。また、前記エラストマー性ポリマー(A)~(B)の主鎖に、それぞれオレフィン系ゴムを用いると、二重結合が存在しないため組成物の劣化がより十分に抑制される傾向にある。 Furthermore, as main chains of the elastomeric polymers (A) to (B) suitable as such polymer components, diene rubbers, hydrogenated products of diene rubbers, olefin rubbers, optionally hydrogenated polystyrenes At least one selected from an elastomeric polymer, a polyolefin-based elastomeric polymer, a polyvinyl chloride-based elastomeric polymer, a polyurethane-based elastomeric polymer, a polyester-based elastomeric polymer, and a polyamide-based elastomeric polymer is preferred. Moreover, as the main chain of the above-mentioned elastomeric polymers (A) to (B) suitable as such a polymer component, from the viewpoint that there is no aging-prone double bond, hydrogenated products of diene rubbers, olefins A rubber is preferred, and a diene rubber is preferred from the viewpoint of low cost and high reactivity (having a large number of double bonds capable of reacting with a compound such as maleic anhydride). When an olefin rubber is used in the main chains of the elastomeric polymers (A) and (B), the deterioration of the composition tends to be sufficiently suppressed since no double bond is present.
 また、このようなポリマー成分の主鎖としては、流動性を低下させずに圧縮永久歪を低下できるといった観点からは、中でも、ポリエチレン(より好ましくは高密度ポリエチレン(HDPE))、エチレン-ブテン共重合体、エチレン-プロピレン共重合体、エチレン-オクテン共重合体及び、ポリプロピレンからなる群から選択される少なくとも1種であることがより好ましく、ポリエチレン(より好ましくは高密度ポリエチレン(HDPE))、及び、エチレン-ブテン共重合体からなる群から選択される少なくとも1種であることが特に好ましい。なお、ここにいう高密度ポリエチレンとは、密度が0.93g/cm以上のポリエチレンをいう。 Among these, polyethylene (more preferably high density polyethylene (HDPE)), ethylene-butene copolyester, as the main chain of such a polymer component, from the viewpoint that compression set can be reduced without reducing fluidity. It is more preferable that it is at least one selected from the group consisting of a polymer, an ethylene-propylene copolymer, an ethylene-octene copolymer, and polypropylene, polyethylene (more preferably high density polyethylene (HDPE)), Particularly preferred is at least one selected from the group consisting of ethylene-butene copolymers. In addition, the high density polyethylene said here means polyethylene with a density of 0.93 g / cm 3 or more.
 また、このようなポリマー成分(より好ましくはエラストマー成分)としては、前記ポリマー(A)~(B)(より好ましくはエラストマー性ポリマー(A)~(B))は1種を単独で利用するものであってもあるいは2種以上の混合物であってもよい。また、このようなポリマー(A)~(B)(より好ましくは前記エラストマー性ポリマー(A)~(B))のガラス転移点は、前述のように25℃以下である。なお、前記ポリマー(A)~(B)がエラストマー性ポリマーである場合、室温でゴム状弾性を示す。また、本発明において「ガラス転移点」は、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。測定に際しては、昇温速度は10℃/minにするのが好ましい。 Moreover, as such a polymer component (more preferably, an elastomer component), one of the polymers (A) to (B) (more preferably, elastomeric polymers (A) to (B)) is used alone Or a mixture of two or more. Further, the glass transition point of such polymers (A) to (B) (more preferably, the above-mentioned elastomeric polymers (A) to (B)) is 25 ° C. or less as described above. When the polymers (A) to (B) are elastomeric polymers, they exhibit rubbery elasticity at room temperature. Further, in the present invention, the “glass transition point” is a glass transition point measured by differential scanning calorimetry (DSC-differential scanning calorimetry). In the measurement, the temperature rising rate is preferably 10 ° C./min.
 また、前記ポリマー(A)~(B)(より好ましくは上記エラストマー性ポリマー(A)~(B))は、上述のように、側鎖として、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a);水素結合性架橋部位を含有する側鎖(a’)及び共有結合性架橋部位を含有する側鎖(b);並びに、水素結合性架橋部位及び共有結合性架橋部位を含有する側鎖(c);のうちの少なくとも1種を有するものとなる。なお、本発明において、側鎖(c)は、側鎖(a’)としても機能しつつ側鎖(b)としても機能するような側鎖であるとも言える。以下において、各側鎖を説明する。 Further, the polymers (A) to (B) (more preferably, the above-mentioned elastomeric polymers (A) to (B)) have a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring as a side chain as described above. A side chain (a) containing a hydrogen bonding crosslinking site; a side chain (a ') containing a hydrogen bonding crosslinking site; and a side chain (b) containing a covalent crosslinking site; and a hydrogen bonding crosslinking site And at least one of side chains (c) containing a covalent crosslinking site. In the present invention, it can be said that the side chain (c) is a side chain which functions as the side chain (a ') and also functions as the side chain (b). Each side chain is described below.
 〈側鎖(a’):水素結合性架橋部位を含有する側鎖〉
 水素結合性架橋部位を含有する側鎖(a’)は、水素結合による架橋を形成し得る基(例えば、水酸基、後述の側鎖(a)に含まれる水素結合性架橋部位等)を有し、その基に基づいて水素結合を形成する側鎖であればよく、その構造は特に制限されるものではない。ここにおいて、水素結合性架橋部位は、水素結合によりポリマー同士(より好ましくはエラストマー同士)を架橋する部位である。なお、水素結合による架橋は、水素のアクセプター(孤立電子対を含む原子を含有する基等)と、水素のドナー(電気陰性度が大きな原子に共有結合した水素原子を備える基等)とがあって初めて形成されることから、ポリマー同士(より好ましくはエラストマー同士)の側鎖間において水素のアクセプターと水素のドナーの双方が存在しない場合には、水素結合による架橋が形成されない。そのため、ポリマー同士(より好ましくはエラストマー同士)の側鎖間において、水素のアクセプターと水素のドナーの双方が存在することによって初めて、水素結合性架橋部位が系中に存在することとなる。なお、本発明においては、ポリマー同士(より好ましくはエラストマー同士)の側鎖間において、水素のアクセプターとして機能し得る部分(例えばカルボニル基等)と、水素のドナーとして機能し得る部分(例えば水酸基等)の双方が存在することをもって、その側鎖の水素のアクセプターとして機能し得る部分とドナーとして機能し得る部分とを、水素結合性架橋部位と判断することができる。
<Side chain (a ′): side chain containing a hydrogen bondable crosslinking site>
The side chain (a ′) containing a hydrogen bondable crosslinking site has a group capable of forming a crosslink by a hydrogen bond (eg, a hydroxyl group, a hydrogen bondable crosslinking site contained in the side chain (a) described later, etc.) The side chain may be any side chain that forms a hydrogen bond based on the group, and the structure is not particularly limited. Here, the hydrogen bonding crosslinking site is a site that crosslinks polymers (more preferably, elastomers) by hydrogen bonding. Note that crosslinking by hydrogen bonding includes a hydrogen acceptor (a group containing an atom containing a lone electron pair, etc.) and a hydrogen donor (a group with a hydrogen atom covalently bonded to an atom having a high electronegativity etc.) As it is formed for the first time, no crosslinking by hydrogen bonding is formed if both a hydrogen acceptor and a hydrogen donor are not present between side chains of polymers (more preferably, elastomers). Therefore, a hydrogen bonding crosslinking site is present in the system only when both a hydrogen acceptor and a hydrogen donor are present between side chains of polymers (more preferably, elastomers). In the present invention, between the side chains of polymers (more preferably, elastomers), a portion that can function as a hydrogen acceptor (such as a carbonyl group) and a portion that can function as a hydrogen donor (such as a hydroxyl group) It is possible to judge that the moiety capable of functioning as a hydrogen acceptor of the side chain and the functionality capable of functioning as a donor are hydrogen-bondable crosslinking sites by the presence of both of).
 このような側鎖(a’)中の水素結合性架橋部位としては、より強固な水素結合を形成するといった観点から、後述の側鎖(a)がより好ましい。また、同様の観点で、前記側鎖(a’)中の水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位であることがより好ましい。 From the viewpoint of forming a stronger hydrogen bond, a side chain (a) described later is more preferable as the hydrogen bonding crosslinking site in such side chain (a ′). From the same point of view, the hydrogen bonding crosslinking site in the side chain (a ′) is more preferably a hydrogen bonding crosslinking site having a carbonyl-containing group and a nitrogen-containing heterocyclic ring.
 〈側鎖(a):カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖〉
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、カルボニル含有基および/または含窒素複素環を有するものであればよく、他の構成は特に限定されない。このような水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有するものがより好ましい。
<Side chain (a): side chain containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle
The side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring may be any one having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and other structures are particularly preferred It is not limited. As such a hydrogen bondable crosslinking site, one having a carbonyl-containing group and a nitrogen-containing heterocyclic ring is more preferable.
 このようなカルボニル含有基としては、カルボニル基を含むものであればよく、特に限定されず、その具体例としては、アミド、エステル、イミド、カルボキシ基、カルボニル基等が挙げられる。このようなカルボニル含有基は、カルボニル含有基を前記主鎖に導入し得る化合物を用いて、前記主鎖(主鎖部分のポリマー)に導入した基であってもよい。このようなカルボニル含有基を前記主鎖に導入し得る化合物は特に限定されず、その具体例としては、ケトン、カルボン酸およびその誘導体等が挙げられる。なお、このようなカルボン酸およびその誘導体等のカルボニル含有基を前記主鎖に導入し得る化合物としては、公知のもの(例えば特許第5918878号公報の段落[0051]~[0053]に記載のもの等)を適宜利用できる。また、このようなカルボニル基(カルボニル含有基)を導入し得る化合物としては、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸等の環状酸無水物が好ましく、無水マレイン酸が特に好ましい。 Such a carbonyl-containing group is not particularly limited as long as it contains a carbonyl group, and specific examples thereof include an amide, an ester, an imide, a carboxy group, a carbonyl group and the like. Such a carbonyl-containing group may be a group introduced into the main chain (polymer of main chain portion) using a compound capable of introducing a carbonyl-containing group into the main chain. The compound which can introduce such a carbonyl-containing group into the main chain is not particularly limited, and specific examples thereof include ketones, carboxylic acids and derivatives thereof. In addition, as a compound which can introduce carbonyl containing groups, such as such carboxylic acid and its derivative (s) into the said principal chain, it is a well-known thing (For example, the thing as described in stage-of patent 5918878-[0053] Etc. can be used as appropriate. Moreover, as a compound which can introduce such a carbonyl group (carbonyl-containing group), cyclic acid anhydrides such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride and the like are preferable, and maleic anhydride is particularly preferable. .
 また、前記側鎖(a)が含窒素複素環を有する場合、前記含窒素複素環は、直接又は有機基を介して前記主鎖に導入されていればよく、その構成等は特に制限されるものではない。このような含窒素複素環は、複素環内に窒素原子を含むものであれば複素環内に窒素原子以外のヘテロ原子、例えば、イオウ原子、酸素原子、リン原子等を有するものでも用いることができる。ここで、前記側鎖(a)中に含窒素複素環を用いた場合には、複素環構造を有すると架橋を形成する水素結合がより強くなり、得られる本発明の熱可塑性エラスマー組成物の引張強度がより向上するため好ましい。なお、このような含窒素複素環としては、公知のもの(例えば特許第5918878号公報の段落[0054]~[0067]に記載のもの等)を適宜利用できる。 When the side chain (a) has a nitrogen-containing heterocyclic ring, the nitrogen-containing heterocyclic ring may be introduced into the main chain directly or through an organic group, and the configuration thereof is particularly limited. It is not a thing. As such a nitrogen-containing heterocyclic ring, as long as it contains a nitrogen atom in the heterocyclic ring, one having a hetero atom other than a nitrogen atom in the heterocyclic ring, for example, a sulfur atom, an oxygen atom, or a phosphorus atom may be used it can. Here, when a nitrogen-containing heterocyclic ring is used in the side chain (a), a hydrogen bond forming a crosslink becomes stronger when having a heterocyclic structure, and thus the thermoplastic elastomer composition of the present invention obtained. It is preferable because tensile strength is further improved. As such a nitrogen-containing heterocyclic ring, known ones (for example, those described in paragraphs [0054] to [0067] of Japanese Patent No. 5918878) can be appropriately used.
 このような含窒素複素環としては、リサイクル性、圧縮永久歪、硬度および機械的強度、特に引張強度に優れるため、トリアゾール環、イソシアヌレート環、チアジアゾール環、ピリジン環、イミダゾール環、トリアジン環及びヒダントイン環の中から選択される少なくとも1種であることが好ましく、トリアゾール環、チアジアゾール環、ピリジン環、イミダゾール環およびヒダントイン環の中から選択される少なくとも1種であることが好ましい。 Such nitrogen-containing heterocycles are excellent in recyclability, compression set, hardness and mechanical strength, particularly tensile strength, and thus triazole ring, isocyanurate ring, thiadiazole ring, pyridine ring, imidazole ring, triazine ring and hydantoin It is preferably at least one selected from among rings, and is preferably at least one selected from among a triazole ring, a thiadiazole ring, a pyridine ring, an imidazole ring and a hydantoin ring.
 また、前記側鎖(a)において、上記カルボニル含有基および上記含窒素複素環の双方が含まれる場合、上記カルボニル含有基および上記含窒素複素環は、互いに独立の側鎖として主鎖に導入されていてもよいが、上記カルボニル含有基と上記含窒素複素環とが互いに異なる基を介して結合した1つの側鎖として主鎖に導入されていることが好ましい。このような側鎖(a)の構造としては、例えば、特許第5918878号公報の段落[0068]~[0081]に記載されているような構造としてもよい。 When both the carbonyl-containing group and the nitrogen-containing heterocycle are included in the side chain (a), the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as mutually independent side chains. Although it may be preferable, it is preferable that the carbonyl-containing group and the nitrogen-containing heterocyclic ring be introduced into the main chain as one side chain linked via different groups. Such a side chain (a) may have a structure as described in, for example, paragraphs [0068] to [0081] of Japanese Patent No. 5918878.
 また、側鎖(a)としては、反応後に前記主鎖を形成するポリマー(ポリマー形成用の材料(より好ましくはエラストマー性ポリマー形成用の材料))に、官能基として環状酸無水物基(より好ましくは無水マレイン酸基)を有するポリマー(環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー))を用いて、前記官能基(環状酸無水物基)と、該環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)とを反応させて、水素結合性架橋部位を形成して、ポリマーの側鎖を側鎖(a)としたものが好ましい。このような水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)は、上記含窒素複素環そのものであってもよく、無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)を有する含窒素複素環であってもよい。 Further, as the side chain (a), a cyclic acid anhydride group (more than a functional group) in the polymer (the material for forming the polymer (more preferably the material for forming the elastomeric polymer)) which forms the main chain after the reaction Preferably, the functional group (cyclic group) is formed using a polymer having a maleic anhydride group (a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain)). An acid anhydride group) is reacted with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site (a compound capable of introducing a nitrogen-containing heterocycle) to form a hydrogen bondable crosslinking site. It is preferable that the side chain of the polymer be a side chain (a). The compound forming such a hydrogen bondable crosslinking site (compound capable of introducing a nitrogen-containing heterocycle) may be the above-mentioned nitrogen-containing heterocycle itself, and reacts with a cyclic acid anhydride group such as maleic anhydride It may be a nitrogen-containing heterocyclic ring having a substituent (eg, a hydroxyl group, a thiol group, an amino group, etc.).
 〈側鎖(b):共有結合性架橋部位を含有する側鎖〉
 本明細書において「共有結合性架橋部位を含有する側鎖(b)」は、ポリマー(より好ましくはエラストマー性ポリマー)の主鎖を形成する原子(通常、炭素原子)に、共有結合性架橋部位(後述するアミノ基含有化合物等の「共有結合を生成する化合物」等と反応することで、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基等)が化学的に安定な結合(共有結合)をしていることを意味する。なお、側鎖(b)は共有結合性架橋部位を含有する側鎖であるが、共有結合性部位を有しつつ、更に、水素結合が可能な基を有して、側鎖間において水素結合による架橋を形成するような場合には、後述の側鎖(c)として利用されることとなる(なお、ポリマー同士(好ましくはエラストマー同士)の側鎖間に水素結合を形成することが可能な、水素のドナーと、水素のアクセプターの双方が含まれていない場合、例えば、系中に単にエステル基(-COO-)が含まれている側鎖のみが存在するような場合には、エステル基(-COO-)同士では特に水素結合は形成されないため、かかる基は水素結合性架橋部位としては機能しない。他方、例えば、カルボキシ基やトリアゾール環のような、水素結合の水素のドナーとなる部位と、水素のアクセプターとなる部位の双方を有する構造をポリマー同士(好ましくはエラストマー同士)の側鎖にそれぞれ含む場合には、ポリマー同士(好ましくはエラストマー同士)の側鎖間で水素結合が形成されるため、水素結合性架橋部位が含有されることとなる。また、例えば、ポリマー同士(好ましくはエラストマー同士)の側鎖間に、エステル基と水酸基とが共存して、それらの基により側鎖間で水素結合が形成される場合、その水素結合を形成する部位が水素結合性架橋部位となる。そのため、側鎖(b)が有する構造自体や、側鎖(b)が有する構造と他の側鎖が有する置換基の種類等に応じて、側鎖(c)として利用される場合がある。)。また、ここにいう「共有結合性架橋部位」は、共有結合によりポリマー同士(好ましくはエラストマー同士)を架橋する部位である。
<Side chain (b): side chain containing a covalent crosslinking site>
In the present specification, the “side chain (b) containing a covalent crosslinking site” is a covalent crosslinking site at an atom (usually a carbon atom) forming the main chain of a polymer (more preferably an elastomeric polymer). (By reacting with a “compound forming a covalent bond” such as an amino group-containing compound described later, at least one bond selected from the group consisting of an amide, an ester, a lactone, a urethane, an ether, a thiourethane and a thioether It means that a functional group etc. which can occur has a chemically stable bond (covalent bond). In addition, although the side chain (b) is a side chain containing a covalent bond crosslinking site, it has a group capable of hydrogen bonding while having a covalent bond site, and a hydrogen bond between the side chains In the case of forming a crosslink by the above, it will be used as a side chain (c) described later (note that hydrogen bonds can be formed between side chains of polymers (preferably elastomers)) In the case where both hydrogen donor and hydrogen acceptor are not contained, for example, in the case where only a side chain containing only an ester group (-COO-) is present in the system, an ester group Such groups do not function as hydrogen bondable crosslinking sites because (—COO—) does not form hydrogen bonds in particular, and on the other hand, sites that serve as hydrogen donors for hydrogen bonds, such as carboxy groups and triazole rings. And the water In the case where each side chain of polymers (preferably elastomers) contains a structure having both of the sites to be acceptors, hydrogen bonds are formed between the side chains of polymers (preferably elastomers), For example, an ester group and a hydroxyl group coexist between side chains of polymers (preferably, elastomers), and hydrogen is generated between the side chains by these groups. When a bond is formed, the site forming the hydrogen bond is a hydrogen bondable crosslink site, so the structure of the side chain (b) itself or the structure of the side chain (b) and other side chains It may be used as a side chain (c) depending on the kind of substituent group etc.). In addition, the “covalently crosslinking site” referred to here is a site that crosslinks polymers (preferably, elastomers) by covalent bonding.
 このような共有結合性架橋部位を含有する側鎖(b)は特に制限されないが、例えば、官能基を側鎖に有するポリマー(前記主鎖部分を形成させるためのポリマー(なお、このような官能基を側鎖に有するポリマーとしては、官能基を側鎖に有するエラストマー性ポリマーが好ましい))と、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させることで、形成される共有結合性架橋部位を含有するものであることが好ましい。このような側鎖(b)の前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることが好ましい。そのため、前記主鎖を構成するポリマーが有する前記官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基であることが好ましい。 The side chain (b) containing such a covalent crosslinking site is not particularly limited, but, for example, a polymer having a functional group in the side chain (a polymer for forming the main chain portion (also, such a functional) As the polymer having a group in the side chain, an elastomeric polymer having a functional group in the side chain is preferable) and a compound that reacts with the functional group to form a covalent crosslinking site (compound that forms a covalent bond) It is preferable to contain the covalent bond crosslinking site formed by reacting with The crosslinking at the covalent crosslinking site of the side chain (b) is formed by at least one bond selected from the group consisting of an amide, an ester, a lactone, a urethane, an ether, a thiourethane and a thioether. Is preferred. Therefore, the functional group contained in the polymer constituting the main chain is a functional group capable of generating at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. Is preferred.
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、例えば、1分子中にアミノ基および/またはイミノ基を2個以上(アミノ基およびイミノ基をともに有する場合はこれらの基を合計して2個以上)有するポリアミン化合物;1分子中に水酸基を2個以上有するポリオール化合物;1分子中にイソシアネート(NCO)基を2個以上有するポリイソシアネート化合物;1分子中にチオール基(メルカプト基)を2個以上有するポリチオール化合物;等が挙げられる。ここにおいて「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」は、かかる化合物が有する置換基の種類や、かかる化合物を利用して反応せしめた場合に反応の進行の程度、等によっては、前記水素結合性架橋部位及び前記共有結合性架橋部位の双方を導入し得る化合物となる(例えば、水酸基を3個以上有する化合物を利用して、共有結合による架橋部位を形成する場合において、反応の進行の程度によっては、官能基を側鎖に有するポリマー(より好ましくは官能基を側鎖に有するエラストマー性ポリマー)の該官能基に2個の水酸基が反応して、残りの1個の水酸基が水酸基として残るような場合も生じ、その場合には、水素結合性の架橋を形成する部位も併せて導入され得ることとなる。)。そのため、ここに例示する「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」には、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物」も含まれ得る。このような観点から、側鎖(b)を形成する場合には、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」の中から目的の設計に応じて化合物を適宜選択したり、反応の進行の程度を適宜制御する等して、側鎖(b)を形成すればよい。なお、共有結合性架橋部位を形成する化合物が複素環を有している場合には、より効率よく水素結合性架橋部位も同時に製造することが可能になり、後述の側鎖(c)として、前記共有結合性架橋部位を有する側鎖を効率よく形成することが可能となる。そのため、かかる複素環を有しているような化合物の具体例については、側鎖(c)を製造するための好適な化合物として、特に側鎖(c)と併せて説明する。なお、側鎖(c)は、その構造から、側鎖(a)や側鎖(b)等の側鎖の好適な一形態であるとも言える。 Examples of such a “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” include, for example, two or more amino groups and / or imino groups (both amino and imino groups in one molecule). When it has these, a polyamine compound having a total of two or more of these groups; a polyol compound having two or more hydroxyl groups in one molecule; a polyisocyanate compound having two or more isocyanate (NCO) groups in one molecule; And polythiol compounds having two or more thiol groups (mercapto groups) in the molecule. Here, the “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” is a kind of a substituent that such a compound has, and the degree of progress of the reaction when reacted using such a compound, In some cases, the compound is a compound capable of introducing both the hydrogen bondable crosslinking site and the covalent bond crosslinking site (for example, in the case of forming a covalent bond crosslinking site using a compound having three or more hydroxyl groups). Depending on the degree of progress of the reaction, the two hydroxyl groups react with the functional group of the polymer having a functional group in the side chain (more preferably, the elastomeric polymer having the functional group in the side chain). It also occurs in the case where individual hydroxyl groups remain as hydroxyl groups, in which case a site that forms a hydrogen bondable crosslink can also be introduced. Therefore, the “compound that forms a covalent crosslinking site (compound that forms a covalent bond)” exemplified here also includes “a compound that forms both a hydrogen bonding crosslinking site and a covalent crosslinking site”. obtain. From such a point of view, when the side chain (b) is to be formed, the compound is appropriately selected from the “compound forming the covalent bond crosslinking site (compound forming the covalent bond)” in accordance with the intended design. The side chain (b) may be formed by appropriately controlling the degree of progress of the reaction or the like. In addition, when the compound which forms a covalent bond bridge | crosslinking site has a heterocyclic ring, it becomes possible to manufacture a hydrogen bondable bridge | crosslinking site simultaneously more efficiently, and it becomes as below-mentioned side chain (c), It becomes possible to efficiently form the side chain having the covalent bond crosslink site. Therefore, specific examples of the compound having such a heterocyclic ring will be described as a suitable compound for producing the side chain (c), particularly together with the side chain (c). The side chain (c) can also be said to be a suitable form of side chain such as side chain (a) or side chain (b) from the structure.
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」として利用可能な前記ポリアミン化合物、前記ポリオール化合物、前記ポリイソシアネート化合物、前記ポリチオール化合物としては、公知のもの(例えば特許第5918878号公報の段落[0094]~[0106]に記載のもの等)を適宜利用することができる。 Examples of the polyamine compound, the polyol compound, the polyisocyanate compound, and the polythiol compound which can be used as such a “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” (for example, for example, Those described in paragraphs [0094] to [0106] of Japanese Patent No. 5918878 can be appropriately used.
 また、このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)であることが好ましい。 In addition, as such “compound forming a covalent bond crosslinking site (compound forming a covalent bond)”, polyethylene glycol lauryl amine (eg, N, N-bis (2-hydroxyethyl) lauryl amine), polypropylene Glycol laurylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine), polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octyl Amines (eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine), polyethylene glycol stearylamine (eg, N, N-bis (2-hydroxyethyl) stearylamine), polypropylene glycol stearylamine For example, N, is preferably N- bis (2-methyl-2-hydroxyethyl) stearylamine).
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。 Examples of the functional group possessed by the polymer constituting the main chain which reacts with such a “compound forming a covalent bond crosslinking site (compound forming a covalent bond)” include amide, ester, lactone, urethane, thiourethane And functional groups capable of generating (forming: forming) at least one bond selected from the group consisting of A thiol group etc. are illustrated suitably.
 〈側鎖(c):水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖〉
 このような側鎖(c)は、1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖である。このような側鎖(c)に含まれる水素結合性架橋部位は、側鎖(a’)において説明した水素結合性架橋部位と同様のものであり、側鎖(a)中の水素結合性架橋部位と同様のものが好ましい。また、側鎖(c)に含まれる共有結合性架橋部位としては、側鎖(b)中の共有結合性架橋部位と同様のものを利用できる(その好適な架橋も同様のものを利用できる。)。
<Side chain (c): side chain containing both a hydrogen bonding crosslinking site and a covalent crosslinking site>
Such side chain (c) is a side chain containing both a hydrogen bonding crosslinking site and a covalent crosslinking site in one side chain. The hydrogen bonding crosslinking site contained in such a side chain (c) is the same as the hydrogen bonding crosslinking site described in the side chain (a ′), and the hydrogen bonding crosslinking in the side chain (a) The same as the site is preferred. In addition, as the covalent crosslinking site contained in the side chain (c), the same one as the covalent crosslinking site in the side chain (b) can be used (the same suitable crosslinking can also be used. ).
 このような側鎖(c)は、官能基を側鎖に有するポリマー(前記主鎖部分を形成させるためのポリマー:より好ましくは官能基を側鎖に有するエラストマー性ポリマー)と、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)とを反応させることで、形成される側鎖であることが好ましい。 Such a side chain (c) is a polymer having a functional group in a side chain (a polymer for forming the main chain portion: more preferably an elastomeric polymer having a functional group in a side chain), and the functional group The side formed by reacting with a compound that reacts to form both a hydrogen bondable crosslinking site and a covalent bond crosslinking site (a compound that introduces both a hydrogen bondable crosslinking site and a covalent bond crosslinking site) It is preferably a chain.
 このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)としては、複素環(特に好ましくは含窒素複素環)を有しかつ共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)が好ましく、中でも、複素環含有ポリオール、複素環含有ポリアミン、複素環含有ポリチオール等がより好ましい。なお、このような複素環を含有する、ポリオール、ポリアミンおよびポリチオールは、複素環(特に好ましくは含窒素複素環)を有するものである以外は、前述の「共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)」において説明した前記ポリオール化合物、前記ポリアミン化合物および前記ポリチオール化合物と同様のものを適宜利用することができる。また、複素環を含有する、ポリオール、ポリアミンおよびポリチオールとしては公知のもの(例えば、特許5918878号公報の段落[0113]に記載のもの)を適宜利用できる。なお、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。 As a compound which forms both such a hydrogen bondable crosslinking site and a covalent bond crosslinking site (a compound which introduces both a hydrogen bondable crosslinking site and a covalent bond crosslinking site), a heterocycle (particularly preferably a nitrogen-containing compound) is particularly preferable. Compounds having a heterocycle) and capable of forming a covalent crosslinking site (compounds which form a covalent bond) are preferable, and among them, a heterocycle-containing polyol, a heterocycle-containing polyamine, a heterocycle-containing polythiol and the like are more preferable. preferable. In addition, polyols, polyamines and polythiols containing such a heterocycle may form the above-mentioned “covalent bond crosslinking site” except that they have a heterocycle (particularly preferably a nitrogen-containing heterocycle). The same polyol compounds, polyamine compounds and polythiol compounds as described in the section “Compatible Compounds (Compounds that Form a Covalent Bond)” can be appropriately used. In addition, as polyols, polyamines and polythiols containing a heterocycle, known ones (for example, those described in paragraph [0113] of Japanese Patent No. 5918878) can be appropriately used. The above-mentioned main chain is made to react with “a compound that forms both a hydrogen bondable crosslinking site and a covalent bond crosslinking site (a compound that introduces both a hydrogen bondable crosslinking site and a covalent bond crosslinking site)”. The functional group possessed by the polymer is preferably a functional group capable of generating (forming: forming) at least one bond selected from the group consisting of an amide, an ester, a lactone, a urethane, a thiourethane and a thioether. Preferred examples include cyclic acid anhydride group, hydroxyl group, amino group, carboxy group, isocyanate group, thiol group and the like.
 (側鎖(b)~(c)中の共有結合性架橋部位として好適な構造について)
 側鎖(b)及び/又は(c)に関して、共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している場合であって、これらの結合部位が水素結合性架橋部位としても機能する場合、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより高度に改善されるとの理由から好ましい。このように、共有結合性架橋部位を有する側鎖中の第三級アミノ結合(-N=)やエステル結合(-COO-)が、他の側鎖との間において、水素結合を形成するような場合、かかる第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している共有結合性架橋部位は、水素結合性架橋部位も備えることとなり、側鎖(c)として機能し得る。
(About a structure suitable as a covalent bond crosslinking site in side chains (b) to (c))
In the case of the side chains (b) and / or (c), the crosslink at the covalent bond crosslink contains a tertiary amino bond (-N =), an ester bond (-COO-), When these bonding sites also function as hydrogen bonding crosslinking sites, the reason for the higher compression set and mechanical strength (breaking elongation, breaking strength) of the resulting thermoplastic elastomer (composition) is improved It is preferable from Thus, a tertiary amino bond (-N =) or an ester bond (-COO-) in the side chain having a covalent crosslink site forms a hydrogen bond with the other side chain. In such a case, the covalent bond crosslinking site containing such a tertiary amino bond (-N =) or ester bond (-COO-) is also provided with a hydrogen bondable crosslinking site, and as a side chain (c) It can work.
 前記主鎖を構成するポリマーが有する官能基と反応して前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を形成させることが可能な化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を形成することが可能な化合物)としては、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)を好適なものとして挙げることができる。 A compound capable of reacting with a functional group of a polymer constituting the main chain to form a covalent bond crosslinking site containing the tertiary amino bond and / or the ester bond (hydrogen bondable crosslink Examples of compounds capable of forming both a moiety and a covalent crosslinking site include polyethylene glycol lauryl amine (eg, N, N-bis (2-hydroxyethyl) lauryl amine), polypropylene glycol lauryl amine (eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine), polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octylamine (eg, N, N-Bis (2-methyl-2-hydroxyethyl) octyl Min), polyethylene glycol stearylamine (eg, N, N-bis (2-hydroxyethyl) stearylamine), polypropylene glycol stearylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) stearylamine) Can be mentioned as suitable.
 前記側鎖(b)及び/又は側鎖(c)の上記共有結合性架橋部位における架橋としては、下記一般式(4)~(6)のいずれかで表される構造を少なくとも1つ含有しているものが好ましく、式中のGが第三級アミノ結合、エステル結合を含有しているものがより好ましい(なお、以下の構造において、水素結合性架橋部位を含む場合、その構造を有する側鎖は、側鎖(c)として利用されるものである。)。 The crosslinking at the covalent bond crosslinking site of the side chain (b) and / or the side chain (c) contains at least one structure represented by any one of the following general formulas (4) to (6) Are preferable, and those in which G in the formula contains a tertiary amino bond or an ester bond are more preferable. The chains are those utilized as side chains (c)).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記一般式(4)~(6)中、E、J、KおよびLはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基であり、Gは酸素原子、イオウ原子または窒素原子を含んでいてもよく、直鎖状、分岐鎖状又は環状の炭素数1~20の炭化水素基である。 In the above general formulas (4) to (6), E, J, K and L are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) Or a sulfur atom; or an organic group which may contain these atoms or groups, G may contain an oxygen atom, a sulfur atom or a nitrogen atom, and the number of linear, branched or cyclic carbon atoms It is a hydrocarbon group of 1 to 20.
 このような置換基Gとしては、下記一般式(111)~(114)で表される基が好ましく、耐熱性が高く、水素結合により、高強度になるという観点から、下記一般式(111)で表される基及び下記一般式(112)で表される基であることがより好ましい。 As such substituent G, groups represented by the following general formulas (111) to (114) are preferable, and from the viewpoint of high heat resistance and high strength due to hydrogen bonding, the following general formula (111) And the group represented by the following general formula (112) is more preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、前記側鎖(b)及び(c)において、上記共有結合性架橋部位における架橋は、環状酸無水物基と、水酸基あるいはアミノ基及び/又はイミノ基との反応により形成されることが好ましい。例えば、反応後に主鎖部分を形成するポリマーが官能基として環状酸無水物基(例えば無水マレイン酸基)を有している場合に、該ポリマーの環状酸無水物基と、水酸基あるいはアミノ基および/またはイミノ基を有する前記共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させて、共有結合により架橋する部位を形成してポリマー間を架橋させることで、形成される架橋としてもよい。 Furthermore, in the side chains (b) and (c), the crosslinking at the covalent bond crosslinking site is preferably formed by the reaction of a cyclic acid anhydride group with a hydroxyl group or an amino group and / or an imino group. . For example, when the polymer forming the main chain after reaction has a cyclic acid anhydride group (eg, maleic anhydride group) as a functional group, the cyclic acid anhydride group of the polymer, a hydroxyl group or an amino group, and And / or a compound which forms the covalent bond-forming site having an imino group (compound which forms a covalent bond) is reacted to form a site to be crosslinked by covalent bond to form crosslinks between polymers. It is good also as a bridge.
 また、このような側鎖(b)及び(c)において、前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることがより好ましい。 Also, in such side chains (b) and (c), the crosslink at the covalent bond crosslink site is at least one selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether More preferably, they are formed by bonding.
 以上、側鎖(a’)、側鎖(a)、側鎖(b)、側鎖(c)について説明したが、このようなポリマー中の側鎖の各基(構造)等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。 The side chain (a ′), side chain (a), side chain (b) and side chain (c) have been described above, but each group (structure) of the side chain in such a polymer is NMR, It can confirm by the analysis means used normally, such as IR spectrum.
 また、前記ポリマー(A)(好ましくは前記エラストマー性ポリマー(A))は、前記側鎖(a)を有するガラス転移点が25℃以下のポリマー(より好ましくは、前記側鎖(a)を有するガラス転移点が25℃以下のエラストマー性ポリマー)であり、前記ポリマー(B)(好ましくは前記エラストマー性ポリマー(B))は、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有しているガラス転移点が25℃以下のポリマー(より好ましくは、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有しているガラス転移点が25℃以下のエラストマー性ポリマー(側鎖として、側鎖(a’)及び側鎖(b)の双方を有するポリマーや、側鎖に側鎖(c)を少なくとも一つ含むポリマー等))である。このようなポリマー成分(より好ましくはエラストマー成分)としては、前記ポリマー(A)~(B)(より好ましくは前記エラストマー性ポリマー(A)~(B))のうちの1種を単独で利用してもよく、あるいは、それらのうちの2種以上を混合して利用してもよい。 Further, the polymer (A) (preferably, the elastomeric polymer (A)) is a polymer having a glass transition temperature of 25 ° C. or less having the side chain (a) (more preferably, has the side chain (a)) The polymer (B) (preferably the elastomeric polymer (B)) has a hydrogen bondable crosslinking site and a covalent crosslinking site in its side chain. Polymers having a glass transition temperature of 25 ° C. or less (more preferably, an elastomeric polymer having a glass transition temperature of 25 ° C. or less containing a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain (as a side chain A polymer having both of a side chain (a ′) and a side chain (b), a polymer containing at least one side chain (c) in a side chain, etc.)). As such a polymer component (more preferably, an elastomer component), one of the polymers (A) to (B) (more preferably, the elastomeric polymers (A) to (B)) is used alone. Alternatively, two or more of them may be mixed and used.
 なお、前記ポリマー(B)(より好ましくはエラストマー性ポリマー(B))は、側鎖(a’)及び側鎖(b)の双方を有するポリマーであっても、側鎖(c)を有するポリマーであってもよいが、このようなポリマー(B)(より好ましくは前記エラストマー性ポリマー(B))の側鎖に含有される水素結合性架橋部位としては、より強固な水素結合が形成されるといった観点から、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(より好ましくはカルボニル含有基および含窒素複素環を有する水素結合性架橋部位)であることが好ましい。 The polymer (B) (more preferably, the elastomeric polymer (B)) is a polymer having a side chain (c) even if it is a polymer having both a side chain (a ') and a side chain (b) The hydrogen bond may be formed as a hydrogen bondable crosslinking site contained in the side chain of such polymer (B) (more preferably, the elastomeric polymer (B)). From the viewpoint of the above, a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring (more preferably, a hydrogen-bondable crosslinking site having a carbonyl-containing group and a nitrogen-containing heterocyclic ring) is preferred.
 このようなポリマー(A)~(B)(より好ましくはエラストマー性ポリマー(A)~(B))を製造する方法としては特に制限されず、公知の方法(例えば、特許5918878号公報に記載の方法(段落[0139]~[0140]に記載の方法等))を適宜採用できる。また、このようなポリマー(A)~(B)(より好ましくはエラストマー性ポリマー(A)~(B))を製造する方法としては、例えば、官能基(例えば環状酸無水物基等)を側鎖に有するポリマー(より好ましくは官能基(例えば環状酸無水物基等)を側鎖に有するエラストマー性ポリマー)を用いて、該ポリマー(より好ましくは該エラストマー性ポリマー)を、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物と反応させて、前記側鎖(a)を有するポリマー(より好ましくは、前記側鎖(a)を有するエラストマー性ポリマー);側鎖(a')及び側鎖(b)を有するポリマー(より好ましくは、側鎖(a')及び側鎖(b)を有するエラストマー性ポリマー);及び/又は前記側鎖(c)を有するポリマー(より好ましくは、前記側鎖(c)を有するエラストマー性ポリマー)を製造する方法(より好ましくは、前記エラストマー性ポリマー(A)~(B)を製造する方法)を採用してもよい。なお、このような反応の際に採用する条件(温度条件や雰囲気条件等)は特に制限されず、官能基や該官能基と反応させる化合物(水素結合性架橋部位を形成する化合物及び/又は共有結合性架橋部位を形成する化合物)の種類に応じて適宜設定すればよい。なお、前記ポリマー(A)(より好ましくは前記エラストマー性ポリマー(A))の場合は、水素結合部位を持つモノマーを重合して製造しても良い。 The method for producing such polymers (A) to (B) (more preferably elastomeric polymers (A) to (B)) is not particularly limited, and known methods (for example, described in Japanese Patent No. 5918878). A method (the method described in paragraphs [0139] to [0140], etc.) can be adopted as appropriate. Moreover, as a method for producing such polymers (A) to (B) (more preferably, elastomeric polymers (A) to (B)), for example, functional groups (eg, cyclic acid anhydride group etc.) Using a polymer having a chain (more preferably, an elastomeric polymer having a functional group (such as a cyclic acid anhydride group) in the side chain), the polymer (more preferably the elastomeric polymer) is reacted with the functional group Mixed with the compound forming the hydrogen bondable crosslinking site, the compound reacting with the functional group to form the hydrogen bondable crosslinking site, and the mixed raw material of the compound reacting with the functional group to form the covalent bond crosslinking site A polymer having the side chain (a) (more preferably, an elastomeric polymer having the side chain (a)); ') And a polymer having a side chain (b) (more preferably, an elastomeric polymer having a side chain (a') and a side chain (b)); and / or a polymer having the side chain (c) (more preferably The method may be a method of producing an elastomeric polymer having the side chain (c) (more preferably, a method of producing the elastomeric polymers (A) to (B)). The conditions (temperature conditions, atmosphere conditions, etc.) employed in such a reaction are not particularly limited, and a functional group or a compound to be reacted with the functional group (a compound forming a hydrogen bondable crosslinking site and / or a covalent bond It may be appropriately set according to the type of the compound forming the binding crosslinking site. In the case of the polymer (A) (more preferably, the elastomeric polymer (A)), it may be manufactured by polymerizing a monomer having a hydrogen bonding site.
 このような官能基(例えば環状酸無水物基)を側鎖に有するポリマー(より好ましくは官能基を側鎖に有するエラストマー性ポリマー)としては、前述のポリマー(A)~(B)の主鎖を形成することが可能なポリマー(より好ましくは前述のエラストマー性ポリマー(A)~(B)の主鎖を形成することが可能なポリマー)であって、官能基を側鎖に有するものが好ましい。ここで、「官能基を側鎖に含有するポリマー」とは、主鎖を形成する原子に官能基(上述の官能基等、例えば、環状酸無水物基等)が化学的に安定な結合(共有結合)をしているポリマーをいい、ポリマー(例えば公知の天然高分子または合成高分子)と官能基を導入し得る化合物とを反応させることにより得られるものを好適に利用できる。また、このような官能基を側鎖に含有するポリマーとして好適な「官能基を側鎖に含有するエラストマー性ポリマー」とは、主鎖を形成する原子に官能基(上述の官能基等、例えば、環状酸無水物基等)が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーをいい、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)と官能基を導入し得る化合物とを反応させることにより得られるものを好適に利用できる。 As a polymer having such a functional group (for example, a cyclic acid anhydride group) in the side chain (more preferably, an elastomeric polymer having a functional group on the side chain), the main chains of the aforementioned polymers (A) to (B) Polymers capable of forming (more preferably, polymers capable of forming the main chain of the above-mentioned elastomeric polymers (A) to (B)), which preferably have a functional group in a side chain . Here, “a polymer having a functional group in a side chain” means a bond in which a functional group (such as the above-mentioned functional group, for example, a cyclic acid anhydride group) is chemically stable at an atom forming the main chain A polymer having a covalent bond) is preferably used, and one obtained by reacting a polymer (for example, known natural polymer or synthetic polymer) with a compound capable of introducing a functional group can be suitably used. In addition, “an elastomeric polymer containing a functional group in a side chain” suitable as a polymer containing such a functional group in a side chain means a functional group (an above-mentioned functional group, etc. (A cyclic acid anhydride group etc.) means a chemically stable bond (covalent bond), and an elastomeric polymer (eg, a known natural polymer or synthetic polymer) and a functional group are introduced. What is obtained by making it react with a compound to be obtained can be used suitably.
 また、このような官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起し得る官能基であることが好ましく、中でも、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好ましく、組成物中にクレイをより効率よく分散させることが可能であるといった観点からは、環状酸無水物基が特に好ましい。また、このような環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、容易にポリマー側鎖に導入可能で、工業上入手が容易である観点からは、無水マレイン酸基がより好ましい。また、前記官能基が環状酸無水物基である場合には、例えば、前記官能基を導入しうる化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物を用いて、ポリマー(例えば公知の天然高分子または合成高分子、このようなポリマーとしてはエラストマー性ポリマーが好ましい)に官能基を導入してもよい。 In addition, such a functional group is preferably a functional group capable of generating at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether, among which cyclic An acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, a thiol group and the like are preferable, and from the viewpoint of being able to disperse the clay more efficiently in the composition, the cyclic acid anhydride group is particularly preferable. preferable. Moreover, as such a cyclic acid anhydride group, a succinic anhydride group, a maleic anhydride group, a glutaric anhydride group, and a phthalic anhydride group are preferable, and among them, they can be easily introduced into polymer side chains and are industrially available Maleic anhydride group is more preferable from the viewpoint that is easy. When the functional group is a cyclic acid anhydride group, for example, compounds capable of introducing the functional group include succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride and derivatives thereof, etc. Cyclic acid anhydrides may be used to introduce functional groups into the polymer (eg, known natural or synthetic polymers, elastomeric polymers being preferred as such polymers).
 また、このようなポリマー(A)及び(B)からなる群から選択される少なくとも1種のポリマー成分(より好ましくは、エラストマー性ポリマー(A)及び(B)からなる群から選択される少なくとも1種のエラストマー成分)としては、工業的に入手しやすく、しかも機械的強度及び圧縮永久歪に対する耐性を高度にバランスよく有するものとすることが可能であるといった観点から、
 環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー、更に好ましくは無水マレイン酸変性エラストマー性ポリマー)と;
 水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、トリスヒドロキシエチルイソシアヌレート、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、ペンタエリスリトール(pentaerythritol)、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物(以下、場合により単に「化合物(X)」と称する。)と;
の反応物からなる群から選択される少なくとも1種であることが好ましい。このように、ポリマー(A)及び(B)(より好ましくはエラストマー性ポリマー(A)及び(B))としては、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー、更に好ましくは前記無水マレイン酸変性エラストマー性ポリマー)と前記化合物(X)との反応物が好ましい。
Also, at least one polymer component selected from the group consisting of such polymers (A) and (B) (more preferably at least one selected from the group consisting of elastomeric polymers (A) and (B) As the kind of elastomer component), it is industrially easy to obtain, and from the viewpoint of being able to have mechanical strength and resistance to compression set in a highly balanced manner,
A polymer having a cyclic acid anhydride group in a side chain (more preferably an elastomeric polymer having a cyclic acid anhydride group in a side chain, still more preferably a maleic anhydride modified elastomeric polymer);
Triazole which may have at least one substituent of hydroxyl group, thiol group and amino group, pyridine which may have at least one substituent of hydroxyl group, thiol group and amino group, Thiadiazole which may have at least one substituent of hydroxyl group, thiol group and amino group, imidazole which may have at least one substituent of hydroxyl group, thiol group and amino group, Isocyanurate which may have at least one substituent of hydroxyl group, thiol group and amino group, triazine which may have at least one substituent of hydroxyl group, thiol group and amino group , Hydantoin optionally having substituent of at least one of hydroxyl group, thiol group and amino group, trishydroxyethyl At least one compound selected from the group consisting of socyanurate, 2,4-diamino-6-phenyl-1,3,5-triazine, pentaerythritol, sulfamide, and polyether polyol (hereinafter referred to simply as “compound ( X) ") and
It is preferable that it is at least one selected from the group consisting of the following: Thus, as the polymers (A) and (B) (more preferably elastomeric polymers (A) and (B)), polymers having the cyclic acid anhydride group in the side chain (more preferably the cyclic acid anhydride) The reaction product of the above-mentioned compound (X) with an elastomeric polymer having a substance group in a side chain, more preferably the above-mentioned maleic anhydride-modified elastomeric polymer) is preferred.
 なお、側鎖に共有結合性架橋部位を含むポリマー成分(より好ましくは側鎖に共有結合性架橋部位を含むエラストマー成分)を含有する場合(例えば、ポリマー(B)(より好ましくはエラストマー性ポリマー(B))を含む場合)には、共有結合性架橋部位を含む側鎖により、より高い水準の耐圧縮永久歪性を発現させることも可能となるものと本発明者らは推察する。また、ポリマー成分(より好ましくはエラストマー成分)中に、水素結合性架橋部位と共有結合性架橋部位とが存在する場合(ポリマー(B)(より好ましくはエラストマー性ポリマー(B)))を含有する場合、ポリマー(B)(より好ましくはエラストマー性ポリマー(B))と他のポリマー(好ましくはエラストマー性ポリマー)の混合物を含有する場合、ポリマー(A)(より好ましくはエラストマー性ポリマー(A))と、ポリマー(B)(より好ましくはエラストマー性ポリマー(B))との混合物を含有する場合、ポリマー(A)(より好ましくはエラストマー性ポリマー(A))とポリマー(B)以外の側鎖(b)を有するポリマー(より好ましくはエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマー)との混合物を利用する場合等)には、水素結合性架橋部位と共有結合性架橋部位の存在に起因して、使用時に、共有結合による、より高度な機械的強度と、水素結合による加熱時の開裂による、より高度な流動性(成形性)を同時に発現させることも可能となる。そのため、側鎖の種類に応じて組成を適宜変更して、用途に応じた特性を適宜発揮させることも可能となるものと本発明者らは推察する。なお、上述のようなポリマー(B)以外の側鎖(b)を有するポリマー(より好ましくはエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマー)は、官能基(例えば環状酸無水物基)を側鎖に有するポリマー(より好ましくは、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマー)を用いて、該ポリマー(より好ましくは、該エラストマー性ポリマー)を、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と反応させて、前記側鎖(b)を有するポリマー(より好ましくは、前記側鎖(b)を有する前記エラストマー性ポリマー)を製造する方法により得ることが可能である。なお、この場合においても、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することができる。 In addition, when a polymer component containing a covalent crosslinking site in a side chain (more preferably, an elastomer component containing a covalent crosslinking site in a side chain) is contained (for example, polymer (B) (more preferably elastomeric polymer (more preferably The present inventors speculate that, in the case where B) is included, the side chain containing the covalent crosslinking site also makes it possible to express a higher level of compression set resistance. Also, when a hydrogen bondable crosslinking site and a covalent bond crosslinking site are present in the polymer component (more preferably the elastomer component) (polymer (B) (more preferably elastomeric polymer (B))) When containing a mixture of polymer (B) (more preferably elastomeric polymer (B)) and another polymer (preferably elastomeric polymer), polymer (A) (more preferably elastomeric polymer (A)) And a mixture of polymer (B) (more preferably elastomeric polymer (B)), side chains other than polymer (A) (more preferably elastomeric polymer (A)) and polymer (B) Polymer having b) (more preferably elastomeric having side chains (b) other than elastomeric polymer (B) When using a mixture with a lymer), etc.), due to the presence of the hydrogen bondable crosslinking site and the covalent bond crosslink site, higher mechanical strength by covalent bond, hydrogen bond by use at the time of use It is also possible to simultaneously develop higher fluidity (moldability) by cleavage at the time of heating. Therefore, the present inventors speculate that the composition can be appropriately changed in accordance with the type of side chain to appropriately exhibit the characteristics according to the application. The polymer having a side chain (b) other than the polymer (B) as described above (more preferably, the elastomeric polymer having a side chain (b) other than the elastomeric polymer (B)) has a functional group (eg cyclic) Using a polymer having an acid anhydride group in a side chain (more preferably, an elastomeric polymer having a functional group (eg, a cyclic acid anhydride group) in a side chain), the polymer (more preferably, the elastomeric polymer) ) Is reacted with the functional group to form a covalent crosslinking site (compound forming a covalent bond), and the polymer having the side chain (b) (more preferably, the side chain (more preferably, the side chain (b)) It is possible to obtain by the method of producing the above-mentioned elastomeric polymer having b). Also in this case, as the compound forming the covalent bond crosslinking site (compound forming the covalent bond), the aforementioned “compound forming the covalent bond crosslinking site (compound forming the covalent bond)” is used can do.
 このように、前記ポリマー成分(より好ましくはエラストマー成分)の種類に応じて、得られる組成物に用途に応じた特性を適宜付与することも可能となる。例えば、前記ポリマー(A)をポリマー成分とする場合(より好ましくは、エラストマー性ポリマー(A)をポリマー成分として好適なエラストマー成分とする場合)においては、組成物中に側鎖(a)に由来する特性をより多く付与できるため、特に破断伸び、破断強度、流動性を向上させることが可能となる。また、前記ポリマー(B)をポリマー成分とする場合(より好ましくは、エラストマー性ポリマー(B)をポリマー成分として好適なエラストマー成分とする場合)においては、組成物中に、側鎖中の共有結合性架橋部位に由来する特性をより多く付与できるため、特に圧縮永久歪に対する耐性(耐圧縮永久歪性)を向上させることが可能となる。なお、前記ポリマー(B)をポリマー成分として含有する場合(より好ましくは、エラストマー性ポリマー(B)をポリマー成分として好適なエラストマー成分として含有する場合)においては、組成物中において、共有結合性架橋部位に由来する特性の他に、水素結合性架橋部位(側鎖(a’)において説明した水素結合性架橋部位)に由来する特性をも付与できるため、流動性(成形性)を保持した状態で、耐圧縮永久歪性をより向上させることも可能となり、その側鎖の種類やポリマー(B)の種類等を適宜変更することで、用途に応じた所望の特性を、より効率よく発揮させることも可能となる。 Thus, depending on the type of the polymer component (more preferably, the elastomer component), it is also possible to appropriately impart properties to the composition obtained according to the application. For example, in the case where the polymer (A) is a polymer component (more preferably, when the elastomeric polymer (A) is a polymer component suitable as an elastomer component), the side chain (a) is derived from the composition. In particular, the breaking elongation, the breaking strength and the flowability can be improved. In addition, in the case where the polymer (B) is a polymer component (more preferably, when the elastomeric polymer (B) is a polymer component suitable as an elastomer component), covalent bonds in side chains are included in the composition. In particular, it is possible to improve the resistance to compression set (compression set resistance) because it is possible to impart more properties derived from the crosslinkable sites. In addition, in the case where the polymer (B) is contained as a polymer component (more preferably, when the elastomeric polymer (B) is contained as a suitable elastomer component as a polymer component), covalent crosslinking is caused in the composition. Since the characteristics derived from the hydrogen bondable crosslinking site (the hydrogen bondable crosslinking site described in the side chain (a ')) can also be imparted in addition to the properties derived from the site, the flowability (moldability) is maintained It is also possible to further improve the compression set resistance, and by appropriately changing the type of side chain, the type of polymer (B), etc., it is possible to exhibit desired properties according to the application more efficiently. It also becomes possible.
 また、前記ポリマー成分として、ポリマー(A)及び(B)を含有する場合(前記ポリマー成分が前記エラストマー成分である場合において、前記エラストマー成分として、エラストマー性ポリマー(A)及び(B)を含有する場合)には、ポリマー(A)とポリマー(B)の含有比率(前記ポリマー成分が前記エラストマー成分である場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の含有比率)は質量比([ポリマー(A)]:[ポリマー(B)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。 When the polymer component contains the polymers (A) and (B) (when the polymer component is the elastomer component, it contains the elastomeric polymers (A) and (B) as the elastomer component. In the case where the content ratio of the polymer (A) to the polymer (B) (when the polymer component is the elastomer component, the content ratio of the elastomeric polymer (A) to the elastomeric polymer (B)) is (mass ratio) [Polymer (A)]: [Polymer (B)]) is preferably 1: 9 to 9: 1, and more preferably 2: 8 to 8: 2. If the content ratio of such polymer (A) is less than the above lower limit, the flowability (moldability) and mechanical strength tend to be insufficient, while if it exceeds the above upper limit, the resistance to compression set tends to be reduced. It is in.
 また、ポリマー成分(好ましくはエラストマー成分)に由来して、マトリックス中に側鎖(a’)と側鎖(b)の双方が存在する場合には、その側鎖(a’)の全量と側鎖(b)の全量とが、質量比を基準として、1:9~9:1となっていることが好ましく、2:8~8:2となっていることがより好ましい。このような側鎖(a’)の全量が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。なお、このような側鎖(a’)は、側鎖(a)を含む概念である。そのため、側鎖(a’)として側鎖(a)のみが含まれるような場合においても、上記質量比で、組成物中に側鎖(a)と側鎖(b)の双方が存在することが好ましい。 When both side chains (a ') and side chains (b) are present in the matrix derived from a polymer component (preferably an elastomer component), the total amount and side of the side chains (a') The total amount of the chain (b) is preferably 1: 9 to 9: 1, and more preferably 2: 8 to 8: 2, based on the mass ratio. If the total amount of such side chains (a ′) is less than the above lower limit, the flowability (formability) and mechanical strength tend to be insufficient, while if it exceeds the above upper limit, the resistance to compression set is lowered. There is a tendency. In addition, such a side chain (a ') is a concept including a side chain (a). Therefore, even when only the side chain (a) is contained as the side chain (a '), both the side chain (a) and the side chain (b) are present in the composition at the above mass ratio. Is preferred.
 (クレイ)
 前記クレイとしては特に制限されず、公知のクレイ(例えば、特許第5918878号公報の段落[0146]~段落[0156]に記載のもの等)を適宜利用することができる。このようなクレイの中でも、高分散性の観点から、ケイ素及びマグネシウムを主成分とするクレイ、並びに、有機化クレイからなる群から選択される少なくとも1種が好ましい。このようなクレイとしては、より高度な引張応力(モジュラス)が得られることから、有機化クレイを用いることが特に好ましい。
(Clay)
The clay is not particularly limited, and known clays (for example, those described in paragraph [0146] to paragraph [0156] of Patent No. 5918878) can be appropriately used. Among such clays, at least one selected from the group consisting of clays containing silicon and magnesium as main components, and organized clays is preferable from the viewpoint of high dispersibility. As such a clay, it is particularly preferable to use an organically modified clay because a higher tensile stress (modulus) can be obtained.
 また、前記有機化クレイとしては特に制限されないが、クレイが有機化剤により有機化されてなるものであることが好ましい。また、前記有機化剤としては特に制限されず、クレイを有機化することが可能な公知の有機化剤(例えば、特許第5918878号公報の段落[0152]に記載のもの)を適宜利用することができる。また、このような有機化クレイとしては、単層分散性の観点から、クレイの4級アンモニウム塩を好適に利用することができる。このような有機化クレイの4級アンモニウム塩としては、特に制限されないが、例えば、トリメチルステアリルアンモニウム塩、オレイルビス(2-ヒドロキシルエチル)の塩、メチルアンモニウム塩、ジメチルステアリルベンジルアンモニウム塩、ジメチルオクタデシルアンモニウム塩、及び、これらのうちの2種以上の混合物を好適に用いることができる。なお、このような有機化クレイの4級アンモニウム塩としては、引張強度、耐熱性向上の観点から、ジメチルステアリルベンジルアンモニウム塩、ジメチルオクタデシルアンモニウム塩、及び、これらの混合物をより好適に利用でき、ジメチルステアリルベンジルアンモニウム塩とジメチルオクタデシルアンモニウム塩との混合物を更に好適に利用できる。 The organic clay is not particularly limited, but it is preferable that the clay be organicized by an organic agent. Further, the organic agent is not particularly limited, and a known organic agent capable of organicizing clay (for example, the one described in paragraph [0152] of Japanese Patent No. 5918878) may be appropriately used. Can. Moreover, as such organically modified clay, a quaternary ammonium salt of clay can be suitably used from the viewpoint of single layer dispersibility. The quaternary ammonium salt of such organically modified clay is not particularly limited, and, for example, trimethylstearyl ammonium salt, salt of oleylbis (2-hydroxyethyl), methyl ammonium salt, dimethyl stearyl benzyl ammonium salt, dimethyl octadecyl ammonium salt And mixtures of two or more of these can be suitably used. From the viewpoint of improving tensile strength and heat resistance, dimethyl stearyl benzyl ammonium salt, dimethyl octadecyl ammonium salt, and a mixture thereof can be more suitably used as the quaternary ammonium salt of such organically modified clay, and dimethyl dimethyl is more preferable. A mixture of stearyl benzyl ammonium salt and dimethyl octadecyl ammonium salt can be further suitably used.
 (マトリックス)
 本発明にかかるマトリックスは、前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記クレイとを含有してなるものである。
(matrix)
The matrix according to the present invention comprises the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and the clay.
 また、このようなマトリックス中の前記クレイの含有量(含有比率)は、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下である。このようなクレイの含有量が前記上限を超えると、引張り特性が低下する。このようなクレイの含有量としては、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して0.01~10質量部であることがより好ましく、0.05~5質量部であることが更に好ましく、0.08~3質量部であることが特に好ましい。このようなクレイの含有量が前記下限未満では、クレイの含有量が少なすぎて十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると架橋が強くなり過ぎて、却って伸びや強度が低下してしまい、各種用途に利用することが困難となる(実用性が低下する)傾向にある。 In addition, the content (content ratio) of the clay in such a matrix is 20 parts by mass with respect to 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component) It is below. When the content of such clay exceeds the above upper limit, the tensile properties are degraded. The content of such clay is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) The amount is more preferably 0.05 to 5 parts by mass, and particularly preferably 0.08 to 3 parts by mass. If the content of such a clay is less than the above lower limit, the content of the clay is too small to obtain sufficient effects, while if it exceeds the above upper limit, the crosslink becomes too strong and the elongation or strength is rather Tend to be difficult to use for various applications (the practicability decreases).
 なお、マトリックス中において、前記ポリマー成分(より好ましくは前記エラストマー成分)と前記クレイとは、以下のような状態となっているものと本発明者らは推察する。すなわち、先ず、前記ポリマー成分(より好ましくは前記エラストマー成分)は、前述のように、少なくとも水素結合性架橋部位を有する側鎖を含むポリマー(側鎖に、側鎖(a);側鎖(a’)及び側鎖(b);並びに、側鎖(c)のうちの少なくとも1種を含むポリマー:なお、前記水素結合性架橋部位を有する側鎖を含むポリマーとしては水素結合性架橋部位を有する側鎖を含むエラストマー性ポリマーが好ましい)を含有してなる。そのため、かかるポリマー(より好ましくはエラストマー性ポリマー)とクレイとを組み合わせると、先ず、クレイと水素結合性架橋部位との間で相互作用(新たな水素結合が形成される等)して、クレイの表面を利用して前記ポリマー成分(より好ましくはエラストマー成分)が面架橋されるものと推察される。そして、このような面架橋が形成されると、共有結合と水素結合による架橋点が均一化されるものと推察される。このように、前記ポリマー成分(より好ましくは前記エラストマー成分)と前記クレイとは、該クレイの表面を利用して前記ポリマー成分(より好ましくは前記エラストマー成分)が面架橋された状態なって、マトリックスの成分として存在するものと本発明者らは推察する。 The present inventors speculate that in the matrix, the polymer component (more preferably, the elastomer component) and the clay are in the following state. That is, first, as described above, the polymer component (more preferably, the elastomer component) contains a polymer having a side chain having at least a hydrogen bondable crosslinking site (a side chain (a side chain (a); a side chain (a)) ') And side chain (b); and a polymer containing at least one of side chains (c): as the polymer containing the side chain having the hydrogen bonding crosslinking site, the polymer having the hydrogen bonding crosslinking site Preferred are elastomeric polymers containing side chains). Therefore, when such a polymer (more preferably, an elastomeric polymer) and a clay are combined, first, interaction (for example, formation of a new hydrogen bond) between the clay and a hydrogen bondable crosslinking site is obtained. It is surmised that the surface of the polymer component (more preferably, the elastomer component) is surface-crosslinked using a surface. And if such surface crosslinks are formed, it is guessed that the crosslink point by a covalent bond and a hydrogen bond will be equalized. Thus, the polymer component (more preferably, the elastomer component) and the clay are in a state in which the polymer component (more preferably, the elastomer component) is surface-crosslinked using the surface of the clay, and the matrix The present inventors infer that it exists as a component of
 このようなマトリックスにおいては、前記熱可塑性樹脂の含有量が、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して1~10000質量部であることが好ましい。このような熱可塑性樹脂の含有量が前記下限未満では流動性が低下する傾向にあり、他方、前記上限を超えると硬度が高くなりすぎる傾向にある。なお、100%モジュラス及び300%モジュラスがより向上するといった観点からは、前記熱可塑性樹脂の含有量が、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して1~900質量部であることがより好ましく、10~800質量部であることが更に好ましい。他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、前記熱可塑性樹脂の含有量が、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して400~8000質量部であることがより好ましく、500~7000質量部であることが更に好ましい。 In such a matrix, the content of the thermoplastic resin is 1 to 10000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) Is preferred. If the content of such a thermoplastic resin is less than the above lower limit, the flowability tends to decrease, while if it exceeds the above upper limit, the hardness tends to be too high. From the viewpoint of further improving the 100% modulus and the 300% modulus, the content of the thermoplastic resin is 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 mass parts of the elastomer component The amount is more preferably 1 to 900 parts by mass, and further preferably 10 to 800 parts by mass. On the other hand, from the viewpoint that mechanical strength such as breaking strength and breaking elongation is further improved, the content of the thermoplastic resin is 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer The amount is more preferably 400 to 8000 parts by mass, and still more preferably 500 to 7,000 parts by mass with respect to 100 parts by mass of the component.
 また、前記マトリックスは、本発明の目的を損わない範囲において、必要に応じて、前記熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)及びクレイ以外の添加剤を含んでいてもよい。このような添加剤としては、熱可塑性のエラストマー組成物に利用することが可能なものであればよく、特に制限されず、公知の添加剤と適宜利用することができ、例えば、前記熱可塑性樹脂及び前記ポリマー成分(より好ましくは前記エラストマー成分)以外のポリマー(例えば、化学結合性の架橋部位を有さないスチレンブロック共重合体)、補強剤(充填剤)、水素結合性の補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、可塑剤(軟化剤)、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、各種オイル(例えば、パラフィンオイル等)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、フィラー、滑材などの各種添加剤等を含有するものであってもよい。このように、添加剤としては特に制限されず、例えば、スリップ剤、酸化防止剤、紫外線吸収剤、光安定剤、導電性付与剤、帯電防止剤、分散剤、難燃剤、防菌剤、中和剤、軟化剤、充填材、着色剤、熱伝導性充填材など通常ゴムに添加される公知の添加剤を適宜含有させてもよい。このような添加剤等は、特に制限されず、一般に用いられるもの(公知のもの:例えば、特許5918878号公報の段落[0169]~[0174]に記載のものや、特開2006-131663号公報に例示されているようなもの等)を適宜使用することができる。 In addition, the matrix may contain additives other than the thermoplastic resin, the polymer component (more preferably the elastomer component), and the clay, as needed, as long as the object of the present invention is not impaired. . Such additives are not particularly limited as long as they can be used for a thermoplastic elastomer composition, and can be appropriately used with known additives, for example, the thermoplastic resin And polymers other than the above polymer component (more preferably, the above elastomer component) (for example, styrene block copolymer having no chemically bondable crosslinking site), reinforcing agent (filler), hydrogen bonding reinforcing agent (filled) Agent, a filler obtained by introducing an amino group (hereinafter referred to simply as "amino group introduced filler"), an amino group-containing compound other than the amino group introduced filler, a compound containing a metal element (hereinafter referred to simply as " Metal salt)), maleic anhydride modified polymer, anti-aging agent, antioxidant, pigment (dye), plasticizer (softener), thixotropic agent, UV absorber, flame retardant, solvent, surfactant Agents (including leveling agents), various oils (for example, paraffin oil etc.), dispersants, dehydrating agents, antirust agents, adhesion inhibitors, antistatic agents, fillers, various additives such as fillers, etc. It may be Thus, the additive is not particularly limited, and, for example, slip agents, antioxidants, ultraviolet absorbers, light stabilizers, conductivity imparting agents, antistatic agents, dispersants, flame retardants, antibacterial agents, and the like You may make it contain suitably the well-known additive normally added to rubber | gum, such as a softener, a softener, a filler, a coloring agent, a thermally conductive filler. Such additives and the like are not particularly limited, and those generally used (known ones: for example, those described in paragraphs [0169] to [0174] of Japanese Patent No. 5918878, JP-A-2006-131663, And the like) may be used as appropriate.
 このような添加剤を含む場合において、前記マトリックス中における前記熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)の総量は1~99質量%であることが好ましく、10~98質量%であることがより好ましい。このような前記熱可塑性樹脂と前記ポリマー成分(より好ましくはエラストマー成分(前記ポリマー(A)及び/又はポリマー(B)))の総量(合計量)が前記下限未満では高分子性が低下する傾向にあり、他方、前記上限を超えると添加剤の効果を十分発揮できない傾向にある。 When such an additive is included, the total amount of the thermoplastic resin and the polymer component (more preferably, the elastomer component) in the matrix is preferably 1 to 99% by mass, and 10 to 98% by mass. It is more preferable that If the total amount (total amount) of the thermoplastic resin and the polymer component (more preferably, the elastomer component (the polymer (A) and / or the polymer (B))) is less than the lower limit, the polymerizability tends to decrease. On the other hand, if the above upper limit is exceeded, the effect of the additive tends to be insufficient.
 また、前記マトリックス中に添加剤等を含有せしめる方法としては特に制限されないが、例えば、後述の製法において「ゴム粒子含有熱可塑性エラストマー(I)」として前記添加剤を含むものを利用する場合;後述の製法において「熱可塑性ポリマー組成物(II)」として前記添加剤等を含むものを利用する場合;後述の製法において「ゴム粒子含有熱可塑性エラストマー(I)」及び「熱可塑性ポリマー組成物(II)」の双方に記添加剤等を含むものを利用する場合;「ゴム粒子含有熱可塑性エラストマー(I)」及び「熱可塑性ポリマーー組成物(II)」のそれぞれの原材料を混合する際に前記添加剤を組み合わせて混合する場合;等が挙げられる(ここにおいて、熱可塑性ポリマー組成物(II)は、熱可塑性エラストマー組成物(II)であることが好ましい)。 Further, the method for incorporating the additive and the like in the matrix is not particularly limited, but, for example, in the case of using the one containing the additive as the "rubber particle-containing thermoplastic elastomer (I)" in the production method described later; In the production process of the present invention, when using those containing the above-mentioned additives as the “thermoplastic polymer composition (II)”; “rubber particle-containing thermoplastic elastomer (I)” and “thermoplastic polymer composition (II)” In the case of using the additives containing the additive and the like in both of the above); the above-mentioned addition when mixing the respective raw materials of “rubber particle-containing thermoplastic elastomer (I)” and “thermoplastic polymer composition (II)” And the like (wherein the thermoplastic polymer composition (II) is a thermoplastic elastomer). Is preferably Narubutsu (II)).
 さらに、このようなマトリックスとしては、化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有するものであることが好ましい。このような化学結合性の架橋部位を有さないスチレンブロック共重合体としては、特開2017-57393号公報の段落[0156]~段落[0163]に記載のものを好適に利用できる。なお、「スチレンブロック共重合体」とは、いずれかの部位にスチレンブロック構造を有するポリマーであればよい。 Furthermore, it is preferable that such a matrix further contains a styrene block copolymer having no chemically bondable crosslinking site. As the styrene block copolymer having no such chemically bondable crosslinking site, those described in paragraph [0156] to paragraph [0163] of JP-A 2017-57393 can be suitably used. The "styrene block copolymer" may be a polymer having a styrene block structure at any site.
 このような化学結合性の架橋部位を有さないスチレンブロック共重合体としては、機械的強度、オイル吸収性の観点から、スチレン含有量が20~40質量%(より好ましくは25~37質量%)のスチレンブロック共重合体であることが好ましい。また、このようなスチレンブロック共重合体の重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布の分散度(Mw/Mn)は、それぞれ、機械的強度、オイル吸収性の観点から、Mwは20万以上70万以下であることが好ましく、30万以上60万以下であることがより好ましく、35万以上55万以下であることが更に好ましく、他方、Mnは、10万以上60万以下であることが好ましく、15万以上55万以下であることがより好ましく、20万以上50万以下であることが更に好ましく、更に、Mw/Mnは、5以下であることが好ましく、1~3であることがより好ましい。このようなスチレンブロック共重合体のガラス転移点は、エラストマー性の観点から、-80~-40℃であることが好ましく、-70~-50℃であることがより好ましい。このような各種特性の測定方法(Mw、Mnなど)は、特開2017-57393号公報の段落[0156]~段落[0163]に記載の方法を採用する。 The styrene block copolymer having no such chemically bondable crosslinking site has a styrene content of 20 to 40% by mass (more preferably 25 to 37% by mass) from the viewpoint of mechanical strength and oil absorption. It is preferable that it is a styrene block copolymer of. Further, the weight average molecular weight (Mw), number average molecular weight (Mn) and dispersion degree (Mw / Mn) of molecular weight distribution of such a styrene block copolymer are each from the viewpoint of mechanical strength and oil absorbability. Mw is preferably 200,000 or more and 700,000 or less, more preferably 300,000 or more and 600,000 or less, still more preferably 350,000 or more and 550,000 or less, and Mn is preferably 100,000 or more and 600,000 or less. Or less, more preferably 150,000 or more and 550,000 or less, still more preferably 200,000 or more and 500,000 or less, and further preferably Mw / Mn is 5 or less, 1 to More preferably, it is 3. The glass transition temperature of such a styrene block copolymer is preferably −80 to −40 ° C., and more preferably −70 to −50 ° C., from the viewpoint of the elastomeric property. The measuring methods (Mw, Mn, etc.) of such various characteristics adopt the methods described in paragraph [0156] to paragraph [0163] of JP-A-2017-57393.
 このような化学結合性の架橋部位を有さないスチレンブロック共重合体としてはゴム弾性と熱可塑性の両立の観点から、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEPS)、スチレン‐エチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体(SIBS)、これらの水素添加物(いわゆる水添物)が好ましく、SEBS、SEEPSがより好ましい。このようなスチレンブロック共重合体は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて利用してもよい。このようなスチレンブロック共重合体としては、適宜市販のものを利用することができる。 As a styrene block copolymer having no such chemically bondable crosslinking site, from the viewpoint of coexistence of rubber elasticity and thermoplasticity, styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-propylene- Styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-butadiene-styrene block copolymer (SIBS), and hydrogenated products thereof (so-called hydrogenated products) are preferable, and SEBS and SEEPS are more preferable. Such a styrene block copolymer may be used individually by 1 type, or may be used in combination of 2 or more type. As such a styrene block copolymer, a commercially available thing can be utilized suitably.
 このようなスチレンブロック共重合体の含有比率としては、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して1~1000質量部であることが好ましく、5~800質量部であることがより好ましい。このような含有比率が前記下限未満ではオイルブリードし易くなる傾向にあり、他方、前記上限を超えると成形性が低下する傾向にある。 The content ratio of such a styrene block copolymer is 1 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) Is preferable, and 5 to 800 parts by mass is more preferable. If the content ratio is less than the lower limit, oil bleeding tends to occur easily. If the content ratio exceeds the upper limit, moldability tends to decrease.
 また、このようなマトリックスとしては、パラフィンオイルを更に含有することがより好ましい。このようなパラフィンオイルとしては特に制限されず、公知のパラフィンオイルを適宜利用することができ、例えば、特開2017-57323号公報の段落[0153]~段落[0157]に記載のものを好適に利用できる。なお、このようなパラフィンオイルとしては、そのオイルに対して、ASTM D3238-85に準拠した相関環分析(n-d-M環分析)を行って、パラフィン炭素数の全炭素数に対する百分率(パラフィン部:CP)、ナフテン炭素数の全炭素数に対する百分率(ナフテン部:CN)、及び、芳香族炭素数の全炭素数に対する百分率(芳香族部:CA)をそれぞれ求めた場合において、パラフィン炭素数の全炭素数に対する百分率(CP)が60%以上であることが好ましい。また、前記パラフィンオイルは、流動性、安全性の観点から、JIS K 2283(2000年発行)に準拠して測定される、40℃における動粘度が10mm/s~700mm/sのものであることが好ましく、20~600mm/sであることがより好ましく、30~500mm/sであることが更に好ましい。さらに、前記パラフィンオイルは、流動性、安全性の観点から、JIS K2256(2013年発行)に準拠したU字管法により測定されるアニリン点が80℃~145℃であることが好ましく、100~145℃であることがより好ましく、105~145℃であることが更に好ましい。なお、これらの動粘度及びアニリン点の測定方法はそれぞれ特開2017-57323号公報の段落[0153]~段落[0157]に記載されている方法を採用できる。このようなパラフィンオイルとしては、適宜市販のものを利用することができる。 Moreover, as such a matrix, it is more preferable to further contain paraffin oil. Such paraffin oil is not particularly limited, and any known paraffin oil can be appropriately used. For example, those described in paragraph [0153] to paragraph [0157] of JP-A-2017-57323 are preferably used. Available. In addition, as such paraffin oil, the correlation ring analysis (ndM ring analysis) based on ASTM D3238-85 is performed on the oil, and the percentage of paraffin carbon number to total carbon number (paraffin) Part: CP), naphthene carbon number to total carbon number (naphthene part: CN), and aromatic carbon number to total carbon number (aromatic part: CA), respectively, paraffin carbon number It is preferable that the percentage (CP) to the total carbon number of is 60% or more. In addition, the paraffin oil is flowable, from the viewpoint of safety, is measured according to JIS K 2283 (published in 2000), the kinematic viscosity of 10mm 2 / s ~ 700mm 2 / s at 40 ° C. It is preferably 20 to 600 mm 2 / s, more preferably 30 to 500 mm 2 / s. Furthermore, the paraffin oil preferably has an aniline point of 80 ° C. to 145 ° C. measured by the U-shaped tube method according to JIS K 2 256 (issued in 2013) from the viewpoint of fluidity and safety. The temperature is more preferably 145 ° C., further preferably 105 to 145 ° C. The kinematic viscosity and the aniline point can be measured by the methods described in paragraph [0153] to paragraph [0157] of JP-A-2017-57323, respectively. As such paraffin oil, a commercially available one can be appropriately used.
 このようなパラフィンオイルの含有比率としては、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して10~1000質量部であることが好ましく、30~900質量部であることがより好ましく、50~800質量部であることが更に好ましく、75~700質量部であることが特に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発され易くなる傾向にある。 The content ratio of such paraffin oil is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component), The amount is more preferably 30 to 900 parts by mass, still more preferably 50 to 800 parts by mass, and particularly preferably 75 to 700 parts by mass. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there tends to be no sufficient effect in terms of flowability and processability, and on the other hand, the above upper limit is exceeded And, it tends to be easy to induce the bleeding of paraffin oil.
 (ゴム粒子)
 このようなゴム粒子としては、いわゆる熱可塑性エラストマーに利用することが可能なものであればよく、特に制限されず、公知のゴム粒子を適宜利用することができる。このようなゴム粒子としては、例えば、公知の動的架橋型熱可塑性エラストマー(TPV:Thermo Plastic Vulcanizate)中において、いわゆるソフトセグメントとして含有されているゴム粒子と同様のものを適宜利用できる。なお、このようなゴム粒子としては、例えば、特開平8-291239号公報、特許第5661439号号公報等に記載のゴム粒子を適宜利用してもよい。
(Rubber particles)
Such rubber particles are not particularly limited as long as they can be used as so-called thermoplastic elastomers, and known rubber particles can be appropriately used. As such rubber particles, for example, those similar to rubber particles contained as a so-called soft segment in a known dynamic cross-linked thermoplastic elastomer (TPV: Thermo Plastic Vulcanizate) can be appropriately used. As such rubber particles, rubber particles described in, for example, JP-A-8-291239, Patent No. 5661439, etc. may be appropriately used.
 このようなゴム粒子の平均粒子径は、20μm以下(より好ましくは10μm以下、更に好ましくは8μm以下、特に好ましくは5μm以下、最も好ましくは4μm以下)であることが好ましい。また、このようなゴム粒子の平均粒子径としては、0.01~20.0μmであることが好ましい(なお、このような平均粒子径の数値範囲の下限値は、好ましくは0.1μm、より好ましくは0.2μm、更に好ましくは0.3μm、特に好ましくは0.5μmであり、他方、前記平均粒子径の数値範囲の上限値は、好ましくは10.0μm、より好ましくは8.0μm、更に好ましくは5.0μm、特に好ましくは4.0μm、最も好ましくは3.0μmである)。さらに、このようなゴム粒子の平均粒子径としては、0.1~10.0μmであることがより好ましく、0.3~8.0μmであることが更に好ましく、0.5~5.0μmであることが特に好ましい。このような平均粒子径が前記下限未満では粒径が小さすぎて混合が困難となる傾向にあり、他方、前記上限を超えると大きすぎて異物となって引張強度等の物性が低下する傾向にある。このようなゴム粒子の平均粒子径は、測定装置として電子顕微鏡(SEMやTEM)を用い、組成物の断面を観測した場合において、該断面中の任意の30個以上(より好ましくは50個以上)のゴム粒子の直径の平均を求めることにより測定できる。このような平均粒子径の測定に際しては、前記断面観測により測定できる該粒子の断面の外形の最大の外接円の直径を前記ゴム粒子の直径として採用する(断面が円形の場合にはその円の直径を測定すればよい)。また、個々の粒子の直径の具体的な測定の方法としては、例えば、前記測定装置の測長機能を用いて、画面で各粒子の最大の直径の部分をポインタで始点から終点までドラッグすることにより、粒子ごとにそれぞれ直径を求める方法を採用してもよい。また、個々のゴム粒子の直径の測定時の電子顕微鏡(SEMやTEM)の倍率は、そのゴム粒子の大きさ等によって倍率を適切な範囲に適宜変更すればよく、特に制限されるものではないが、3000倍以上とすることが好ましい。なお、このような断面観察をする際には、ゴム粒子含有エラストマー組成物を用いてシートを形成し(例えば、熱プレス等によりシートを形成し)、そのシートからサンプル片(最終的に厚み10~300nm程度の極めて薄い切片(超薄切片)を形成するために利用する)を切り出した後、かかるサンプル片からミクロトーム等により超薄切片を作成し、得られた超薄切片を測定試料として利用して、その切片の作成時の切り出し面(切断面)を前記組成物の断面(観測面)として測定してもよい。 The average particle diameter of such rubber particles is preferably 20 μm or less (more preferably 10 μm or less, still more preferably 8 μm or less, particularly preferably 5 μm or less, most preferably 4 μm or less). The average particle diameter of such rubber particles is preferably 0.01 to 20.0 μm (Note that the lower limit of the numerical range of such average particle diameter is preferably 0.1 μm, The upper limit of the numerical range of the average particle diameter is preferably 10.0 μm, more preferably 8.0 μm, and further preferably 0.2 μm, more preferably 0.3 μm, particularly preferably 0.5 μm. Preferably it is 5.0 μm, particularly preferably 4.0 μm, most preferably 3.0 μm). Furthermore, the average particle diameter of such rubber particles is more preferably 0.1 to 10.0 μm, still more preferably 0.3 to 8.0 μm, and further preferably 0.5 to 5.0 μm. Being particularly preferred. If the average particle size is less than the lower limit, the particle size is too small and mixing tends to be difficult, while if it exceeds the upper limit, it tends to be too large to become foreign matter and to deteriorate physical properties such as tensile strength. is there. When the cross section of the composition is observed using an electron microscope (SEM or TEM) as a measuring device, the average particle diameter of such rubber particles is any 30 or more (more preferably 50 or more) in the cross section. It can measure by calculating | requiring the average of the diameter of the rubber particle of. When measuring such an average particle diameter, the diameter of the largest circumscribed circle of the outer shape of the cross section of the particle which can be measured by the cross section observation is adopted as the diameter of the rubber particle (if the cross section is circular, the circle You can measure the diameter). Also, as a specific method of measuring the diameter of each particle, for example, by dragging the portion of the maximum diameter of each particle on the screen from the start point to the end point using the length measuring function of the measuring device According to the method, the diameter may be determined for each particle. Further, the magnification of the electron microscope (SEM or TEM) at the time of measurement of the diameter of each rubber particle may be appropriately changed within a suitable range depending on the size of the rubber particle etc., and it is not particularly limited. However, it is preferable to make it 3000 times or more. In addition, when performing such cross-sectional observation, a sheet is formed using a rubber particle containing elastomer composition (for example, a sheet is formed by a hot press etc.), and a sample piece (finally thickness 10) from the sheet After cutting out an extremely thin section (approximately ultrathin section) of about 300 nm, an ultrathin section is prepared from such a sample piece by a microtome or the like, and the obtained ultrathin section is used as a measurement sample Then, the cut surface (cut surface) at the time of preparation of the section may be measured as a cross section (observation surface) of the composition.
 また、このようなゴム粒子は、水素結合性架橋部位を有さないジエン系ゴムと、過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種の架橋剤との反応物であるジエン系ゴムの架橋物からなるものであることが好ましい。このようなジエン系ゴムの架橋物からなるゴム粒子を利用することで、高分散となる傾向にある。また、このようなジエン系ゴムの架橋物は、調製がより容易であることから、いわゆる動的架橋による反応物(動的架橋物)であることがより好ましい。なお、ここにいうジエン系ゴムにおいて「水素結合性架橋部位を有さない」とは、ジエン系ゴム同士や他の成分との間で水素結合により架橋する部位を有していないことを意味する。 Further, such rubber particles are selected from the group consisting of a diene rubber having no hydrogen bondable crosslinking site, a peroxide crosslinking agent, a phenol resin crosslinking agent, a sulfur crosslinking agent and a silane crosslinking agent. It is preferable to be a crosslinked product of a diene rubber which is a reaction product with at least one crosslinking agent. The dispersion tends to be high by using rubber particles composed of such a diene rubber crosslinked product. Further, such a crosslinked product of a diene rubber is more preferably a reactant (dynamic crosslinked product) by so-called dynamic crosslinking because preparation is easier. In the diene rubber referred to herein, "having no hydrogen bondable crosslinking site" means that there is no site to be crosslinked by hydrogen bonding between diene rubbers and other components. .
 このような水素結合性架橋部位を有さないジエン系ゴムとしては、特に制限されず、公知のジエン系ゴム(例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などの公知のジエン系ゴム)を適宜利用できる。このようなジエン系ゴムとしては、相溶性(分散性)の観点から、エチレン-プロピレン-ジエンゴム、天然ゴム、ブタジエンゴム、スチレン-ブタジエンゴム、ニトリルブタジエンゴムが好ましく、エチレン-プロピレン-ジエンゴム、天然ゴム、スチレン-ブタジエンゴムがより好ましく、エチレン-プロピレン-ジエンゴムが更に好ましい。 The diene-based rubber having no such hydrogen bondable crosslinking site is not particularly limited, and known diene-based rubbers (eg, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1 Known rubbers such as 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR) and ethylene-propylene-diene rubber (EPDM) It can be used appropriately. As such a diene rubber, ethylene-propylene-diene rubber, natural rubber, butadiene rubber, styrene-butadiene rubber, nitrile butadiene rubber are preferable from the viewpoint of compatibility (dispersibility), ethylene-propylene-diene rubber, natural rubber Styrene-butadiene rubber is more preferred, and ethylene-propylene-diene rubber is even more preferred.
 また、このような架橋剤として用いられる前記過酸化物系架橋剤としては、特に制限されず、ジエン系ゴムの架橋剤に利用される公知の過酸化物からなる架橋剤を適宜利用できる。このような過酸化物系架橋剤としては、有機過酸化物が好ましく、かかる有機過酸化物としては、例えば、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のジアルキルパーオキシド類;t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3等のパーオキシエステル類;ジアセチルパーオキシド、ラウロイルパーオキシド、ジベンゾイルパーオキシド、p-クロロベンゾイルパーオキシド、2,4-ジクロロベンゾイルパーオキシド等のジアシルパーオキシド類等が挙げられる。この中では、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼンを好適に使用することができる。 The peroxide-based crosslinking agent used as such a crosslinking agent is not particularly limited, and a crosslinking agent composed of a known peroxide used for a diene rubber crosslinking agent can be appropriately used. As such a peroxide based crosslinking agent, organic peroxides are preferable, and as such organic peroxides, for example, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2 , 5-Dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-Dimethyl-2,5-di (t-butylperoxy) hexyne-3,1,3-bis (t-butyl) Dialkyl peroxides such as peroxyisopropyl) benzene and 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane; t-butylperoxybenzoate, t-butylperoxyisopropyl monocarbonate, n-Butyl-4,4-bis (t-butylperoxy) valerate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexene Peroxy esters such as 2, 5-dimethyl-2, 5-di (benzoylperoxy) hexin-3; diacetyl peroxide, lauroyl peroxide, dibenzoyl peroxide, p-chlorobenzoyl peroxide, And diacyl peroxides such as 4-dichlorobenzoyl peroxide. Among these, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 1,3-bis (t-butylperoxyisopropyl) benzene can be suitably used.
 また、このような過酸化物系架橋剤として有機過酸化物を用いる場合、該有機過酸化物は、1分間半減期温度が140℃~230℃であることが好ましい。このような条件を満たす有機過酸化物としては、例えば、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のジアルキルパーオキシド類;t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3等が挙げられる。 When an organic peroxide is used as such a peroxide-based crosslinking agent, the organic peroxide preferably has a half-life temperature of 140 ° C. to 230 ° C. for 1 minute. Examples of organic peroxides that satisfy such conditions include di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl). Peroxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-di (t-) Dialkylperoxides such as hexylperoxy) -3,3,5-trimethylcyclohexane; t-butylperoxybenzoate, t-butylperoxyisopropyl monocarbonate, n-butyl-4,4-bis (t-butylperoxy) ) Valerate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di Peroxy) hexyne-3, and the like.
 このような架橋剤として有機過酸化物(過酸化物系架橋剤の一種)を用いる場合、架橋助剤を更に配合して利用してもよい。このような架橋助剤としては、例えば、ジビニルベンゼン等のジビニル化合物;p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム等のオキシム化合物;N-メチル-N-4-ジニトロソアニリン、ニトロソベンゼン等のニトロソ化合物;トリメチロールプロパン-N,N’-m-フェニレンジマレイミド等のマレレイミド化合物;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレート等の多官能性メタクリレートモノマー;ビニルブチラート、ビニルステアレート等の多官能性ビニルモノマー等;その他イオウ、ジフェニルグアニジン、トリアリルシアヌレート等が挙げられる。 When using an organic peroxide (a type of peroxide based crosslinking agent) as such a crosslinking agent, a crosslinking assistant may be further blended and used. As such a crosslinking assistant, for example, divinyl compounds such as divinylbenzene; oxime compounds such as p-quinone dioxime, p, p'-dibenzoylquinone dioxime; N-methyl-N-4-dinitrosoaniline , Nitroso compounds such as nitrosobenzene; malereimide compounds such as trimethylolpropane-N, N'-m-phenylenedimaleimide; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, allyl methacrylate etc. And polyfunctional vinyl monomers such as vinyl butyrate and vinyl stearate; and other sulfur, diphenyl guanidine, triallyl cyanurate and the like.
 また、このような過酸化物系架橋剤としては、架橋性の観点から、ベンゾイルパーオキシド、ジt-ブチルパーオキシド、ジクミルパーオキシド、3M、P、25Pが好ましく、ジクミルパーオキシドがより好ましい。 Moreover, as such a peroxide based crosslinking agent, benzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 3M, P, 25P are preferable from the viewpoint of crosslinking, and dicumyl peroxide is more preferable preferable.
 また、このようなフェノール樹脂系架橋剤としては、特に制限されず、ジエン系ゴムの架橋剤に利用される公知のフェノール樹脂からなる架橋剤を適宜利用でき、例えば、特許第6000714号公報、米国特許第3287440号、米国特許第3709840号及び米国特許第4,311,628号等に記載されているフェノール樹脂を好適に利用できる。 Further, such a phenol resin-based crosslinking agent is not particularly limited, and a crosslinking agent composed of a known phenol resin used for a diene rubber crosslinking agent can be appropriately used. For example, Japanese Patent No. 6000714, US The phenolic resin described in Patent No. 3287440, U.S. Patent No. 3,709,840 and U.S. Patent No. 4,311,628 can be suitably used.
 このようなフェノール樹脂系架橋剤としては、例えば、置換フェノールまたは未置換フェノールとアルデヒド(好ましくはホルムアルデヒド)との縮合により得られるフェノール系樹脂、置換フェノールまたは未置換フェノールと二官能性フェノールジアルコール類との縮合により得られるフェノール系樹脂等を挙げることができる。また、このような置換フェノールは炭素数1~10のアルキル基置換体が好ましい。さらに、このようなフェノール樹脂系架橋剤としては、ハロゲン化フェノール樹脂も好適に使用することができる。 As such a phenol resin based crosslinking agent, for example, a phenol based resin obtained by condensation of a substituted phenol or unsubstituted phenol with an aldehyde (preferably formaldehyde), a substituted phenol or unsubstituted phenol and a difunctional phenol dialcohol And phenolic resins obtained by condensation with these. Further, such substituted phenol is preferably an alkyl group substituted with 1 to 10 carbon atoms. Furthermore, as such a phenol resin-based crosslinking agent, a halogenated phenol resin can also be suitably used.
 このようなフェノール樹脂系架橋剤としては、市販されているフェノール系樹脂を適宜選択して使用することもできる。このようなフェノール樹脂系架橋剤として用いることが可能な市販品としては、例えば、タッキロール201(アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、タッキロール250-I(臭素化率4%の臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、タッキロール250-III(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、PR-4507(群栄化学工業(株)社製)、Vulkaresat510E(Hoechst社製)、Vulkaresat532E(Hoechst社製)、Vulkaresen E(Hoechst社製)、Vulkaresen 105E(Hoechst社製)、Vulkaresen 130E(Hoechst社製)、Vulkaresol 315E(Hoechst社製)、Amberol ST 137X(Rohm&Haas社製)、スミライトレジンPR-22193(住友デュレズ(株)社製)、Symphorm-C-100(Anchor Chem.社製)、Symphorm-C-1001(Anchor Chem.社製)、タマノル531(荒川化学(株)社製)、Schenectady SP1059(Schenectady Chem.社製)、Schenectady SP1045(SchenectadyChem.社製)、CRR-0803(U.C.C社製)、Schenectady SP-1055(Schenectady Chem.社製)、Schenectady SP-1056(Schenectady Chem.社製)、CRM-0803(昭和ユニオン合成(株)社製)、Vulkadur A(Bayer社製)などを挙げることができる。これらの中でも、臭素化アルキルフェノールホルムアルデヒド樹脂であるものが好ましく使用できる。 As such a phenol resin crosslinking agent, a commercially available phenol resin can be appropriately selected and used. As a commercial item which can be used as such a phenol resin type crosslinking agent, for example, tackilol 201 (alkylphenol formaldehyde resin, manufactured by Taoka Chemical Industry Co., Ltd.), tackilol 250-I (bromine ratio 4% bromine) Alkylphenol formaldehyde resin, made by Taoka Chemical Industry Co., Ltd., Takiroll 250-III (brominated alkylphenol formaldehyde resin, made by Taoka Chemical Industry Co., Ltd.), PR-4507 (made by Gunei Chemical Industry Co., Ltd.) Vulkaresat 510E (Hoechst), Vulkaresat 532E (Hoechst), Vulkaresen E (Hoechst), Vulkaresen 105E (Hoechst), Vulkaresen 130E (Hoech) t), Vulkaresol 315E (Hoechst), Amberol ST 137X (Rohm & Haas), Sumilite resin PR-22193 (Sumitomo Durez Co., Ltd.), Symphorm-C-100 (Anchor Chem.) Symphorm-C-1001 (Anchor Chem.), Tamanol 531 (Arakawa Chemical Co., Ltd.), Schenectady SP 1059 (Schenectady Chem.), Schenectady SP 1045 (Schenectady Chem.), CRR-0803 (U) .C.C), Schenectady SP-1055 (Schenectady Chem.), Schenectady SP-1056 (S) henectady Chem. companies made), CRM-0803 (Showa Union Synthesis Co., Ltd.), Vulkadur A (Bayer Co., Ltd.) and the like. Among these, those which are brominated alkylphenol formaldehyde resins can be preferably used.
 また、このような架橋剤としてフェノール樹脂系架橋剤を用いる場合、かかる架橋剤を活性剤と共に使用することが好ましい。このような活性剤としては、公知のものを適宜利用でき、例えば、塩化第一スズ、塩化第二鉄、塩素化パラフィン、塩素化ポリエチレン、クロロスルフォン化ポリエチレンのようなハロゲン供与体、及び酸化鉄、酸化チタン、酸化マグネシウム、二酸化珪素、酸化亜鉛のような受酸剤が用いられる。フェノール系樹脂がハロゲン化されている場合にはハロゲン供与体は用いなくてもよい。なお、このようなハロゲン供与体を利用する場合、ハロゲン供与体の添加量は前記ジエン系ゴム100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。また、前記受酸剤を利用する場合、前記受酸剤の添加量は前記ジエン系ゴム100質量部あたり、0.01~5質量部であることが好ましく、0.05~3質量部であることがより好ましい。 Moreover, when using a phenol resin type crosslinking agent as such a crosslinking agent, it is preferable to use this crosslinking agent with an activator. As such an activator, known ones can be appropriately used. For example, stannous chloride, ferric chloride, chlorinated paraffin, halogenated polyethylene such as chlorinated polyethylene, chlorosulfonated polyethylene, and iron oxide Acid acceptors such as titanium oxide, magnesium oxide, silicon dioxide and zinc oxide are used. When the phenolic resin is halogenated, the halogen donor may not be used. When such a halogen donor is used, the addition amount of the halogen donor is preferably 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, with respect to 100 parts by mass of the diene rubber. It is more preferable that it is a part. When the acid acceptor is used, the addition amount of the acid acceptor is preferably 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass, per 100 parts by mass of the diene rubber. Is more preferred.
 さらに、前記硫黄系架橋剤としては、特に制限されず、ジエン系ゴムの架橋剤に利用される公知の硫黄系の架橋剤を適宜利用できる。このような硫黄系架橋剤としては、反応性の観点から、粉末硫黄、油処理硫黄が好ましく、油処理硫黄がより好ましい。 Furthermore, it does not restrict | limit especially as said sulfur type crosslinking agent, The well-known sulfur type crosslinking agent utilized for the crosslinking agent of diene rubber can be utilized suitably. As such a sulfur-based crosslinking agent, powdered sulfur and oil-treated sulfur are preferable, and oil-treated sulfur is more preferable, from the viewpoint of reactivity.
 また、このようなシラン系架橋剤としては、特に制限されず、ジエン系ゴムの架橋剤に利用される公知のシラン系の架橋剤を適宜利用でき、例えば、特開2016-20450号公報等に記載されているシラン系の架橋剤を好適に利用できる。 Further, such a silane crosslinking agent is not particularly limited, and a known silane crosslinking agent used for a diene rubber crosslinking agent can be appropriately used. The silane type crosslinking agent described can be suitably used.
 また、このようなシラン系の架橋剤を用いる場合には、前記ジエン系ゴムにシラン架橋させるためにシラン化合物をグラフト共重合してもよい。このようなシラン化合物としては、ジエン系ゴムと反応可能な基とシラノール縮合により架橋を形成するアルコキシ基をともに有しているものが好ましい。このようなシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシラン、ビニルトリス(β-メトキシエトキシ)シラン等のビニルシラン化合物、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、β-(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン化合物、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン化合物、γ-メタクリロキシプロピルトリメトキシシラン等のアクリルシラン化合物、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィドなどのポリスルフィドシラン化合物、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランなどのメルカプトシラン化合物等を挙げることができる。 When such a silane-based crosslinking agent is used, a silane compound may be graft-copolymerized to crosslink the diene rubber. As such a silane compound, a compound having both a group capable of reacting with a diene rubber and an alkoxy group forming a crosslink by silanol condensation is preferable. As such a silane compound, for example, vinylsilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N Aminosilane compounds such as -β- (aminoethyl) γ-aminopropyltrimethoxysilane, β- (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, β- (3, Epoxysilane compounds such as 4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and acrylic silane compounds such as γ-methacryloxypropyltrimethoxysilane And polysulfide silane compounds such as bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane and the like Mercaptosilane compounds and the like can be mentioned.
 なお、前記ジエン系ゴムにシラン化合物をグラフト共重合させる場合には、既知の一般的手法、すなわち、前記ジエン系ゴムに所定量のシラン化合物及び遊離ラジカル発生剤を混合し、80~200℃の温度で溶融混練する方法を用いてもよい。また、このようなシラン系架橋剤としては、架橋性の観点から、ポリシランがより好ましい。 When a silane compound is graft-copolymerized to the diene rubber, a known general method, that is, mixing a predetermined amount of the silane compound and a free radical generator into the diene rubber, A method of melt kneading at temperature may be used. Moreover, as such a silane type crosslinking agent, a polysilane is more preferable from a crosslinkable viewpoint.
 また、このような過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤といった架橋剤の中でも、反応性が高く、架橋密度が上がり、高物性になる観点から、過酸化物系架橋剤、フェノール樹脂系架橋剤が好ましい。 Further, among the crosslinking agents such as peroxide type crosslinking agent, phenol resin type crosslinking agent, sulfur type crosslinking agent and silane type crosslinking agent, from the viewpoint of high reactivity, high crosslinking density and high physical properties, Peroxide crosslinking agents and phenol resin crosslinking agents are preferred.
 また、このようなジエン系ゴムの架橋物としては、前記ジエン系ゴム100質量部に対して前記架橋剤を0.1~10質量部(より好ましくは0.1~5質量部)の割合で用いて反応させたものであることが好ましい。このような架橋剤の含有量(使用量)が前記下限未満では架橋密度が低すぎて、物性が低くなる傾向にあり、他方、前記上限を超えると架橋密度が高すぎて、物性が低下する傾向にある。 In addition, as a crosslinked product of such diene rubber, the ratio of 0.1 to 10 parts by mass (more preferably 0.1 to 5 parts by mass) of the crosslinking agent is based on 100 parts by mass of the diene rubber. It is preferable that it is used and made to react. If the content (use amount) of such a crosslinking agent is less than the above lower limit, the crosslink density tends to be low and the physical properties tend to be low. There is a tendency.
 (ゴム粒子含有エラストマー組成物)
 本発明のゴム粒子含有エラストマー組成物は、前記マトリックスと、該マトリックス中に分散されているゴム粒子とを含有するものである。
(Rubber particle-containing elastomer composition)
The rubber particle-containing elastomer composition of the present invention comprises the matrix and rubber particles dispersed in the matrix.
 このように、本発明のゴム粒子含有エラストマー組成物においては、前記ゴム粒子は前記マトリックス中に分散されている。言い換えれば、本発明のゴム粒子含有エラストマー組成物においては、前記マトリックスからなる海相に対して、ゴム粒子が島相のように分散された構造のものとなる。そのため、本発明のゴム粒子含有エラストマー組成物は、いわゆる海島構造を有するものであるといえる。なお、このような分散状態は電子顕微鏡測定により確認することができる。 Thus, in the rubber particle-containing elastomer composition of the present invention, the rubber particles are dispersed in the matrix. In other words, in the rubber particle-containing elastomer composition of the present invention, rubber particles are dispersed like an island phase with respect to the sea phase comprising the matrix. Therefore, it can be said that the rubber particle-containing elastomer composition of the present invention has a so-called sea-island structure. Such a dispersed state can be confirmed by electron microscope measurement.
 このようなゴム粒子の含有量は、前記マトリックス100質量部に対して1~1000質量部(より好ましくは10~900質量部、更に好ましくは20~800質量部)であることが好ましい。このようなゴム粒子の含有量が前記下限未満では耐圧縮永久ひずみ性の効果が低くなる傾向にあり、他方、前記上限を超えると熱可塑性が低下して成形性が低下する傾向にある。 The content of such rubber particles is preferably 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass, still more preferably 20 to 800 parts by mass) with respect to 100 parts by mass of the matrix. If the content of such rubber particles is less than the above lower limit, the effect of the compression set resistance tends to be lowered, while if it exceeds the above upper limit, the thermoplastic property is lowered and the formability tends to be lowered.
 また、このようなゴム粒子の含有量は、前記熱可塑性樹脂100質量部に対して1~1000質量部(より好ましくは10~900質量部、更に好ましくは20~800質量部)であることが好ましい。このようなゴム粒子の含有量が前記下限未満では耐圧縮永久ひずみ性の効果が低くなる傾向にあり、他方、前記上限を超えると熱可塑性が低下して成形性が低下する傾向にある。 In addition, the content of such rubber particles is 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass, further preferably 20 to 800 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. preferable. If the content of such rubber particles is less than the above lower limit, the effect of the compression set resistance tends to be lowered, while if it exceeds the above upper limit, the thermoplastic property is lowered and the formability tends to be lowered.
 さらに、このようなゴム粒子の含有量は、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して1~1000質量部(より好ましくは10~900質量部、更に好ましくは20~800質量部)であることが好ましい。このようなゴム粒子の含有量が前記下限未満では耐圧縮永久ひずみ性の効果が低くなる傾向にあり、他方、前記上限を超えると熱可塑性が低下して成形性が低下する傾向にある。 Furthermore, the content of such rubber particles is preferably 1 to 1000 parts by mass (more preferably 10 parts by mass) with respect to 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component). The preferred range is about 900 parts by weight, more preferably 20 to 800 parts by weight. If the content of such rubber particles is less than the above lower limit, the effect of the compression set resistance tends to be lowered, while if it exceeds the above upper limit, the thermoplastic property is lowered and the formability tends to be lowered.
 なお、本発明においては、本発明の効果を損なわない範囲で、熱可塑性エラストマーに利用することが可能な他の成分を適宜利用してもよい(例えば、前述のように、マトリックスに各種添加剤を含有させるなどして他の成分を含有させてもよい)。 In the present invention, other components that can be used for the thermoplastic elastomer may be appropriately used within the range that does not impair the effects of the present invention (for example, various additives in the matrix as described above) And other components may be contained).
 また、本発明のゴム粒子含有エラストマー組成物は、例えば、土木・建築材、工業部品、電気・電子部品及び日用品からなる群から選択されるいずれかの用途に利用するためのエラストマー製の製品の材料等として好適に利用できる。なお、これらの用途(前記土木・建築材、前記工業部品、前記電気・電子部品、前記日用品)としては、特に制限されるものではないが、例えば、土木・建築用各種ガスケットおよびシート、隙間埋め材(例えば目地材)、建築用シール材、管継ぎ手用シール材、建築サッシシール材、配管プロテクト材、配線プロテクト材、断熱材、パッキン材、緩衝材、自動車部品(例えば、前述の自動車用ゴム部品、自動車の内装・外装部品、等速ジョイントブーツ、ウエザーストリップ、ダンパー、ワイパーブレード、絶縁カバー、フードシールゴム、ボディパネル、サイドシールド、パッキン材(自動車用:例えば、自動車エンジン用パッキン)等)、農業機械用の部品、農業資材、コンベヤベルト、コンタクトラバーシート、電気絶縁体、各種電子機器のハウジングや内部部品、電線被覆材、コネクター、キャップ、プラグ、スポーツ・レジャー用品(水泳用フィン、水中眼鏡、ゴルフクラブグリップ、野球バットグリップ等)、履物(靴底、サンダル等)、雑貨(包装材、ガーデンホース、階段用滑り止めテープ、掃除用具、化粧用品等)が挙げられる。また、本発明のゴム粒子含有エラストマー組成物は、従来の熱可塑性のエラストマー組成物と比較して、より高度な水準で圧縮永久歪を低減させることが可能であるため、中でも、土木・建築用各種ガスケット、建築用シール材、建築サッシシール材、パッキン材、緩衝材、自動車部品(例えば、前述の自動車用ゴム部品、自動車の内装・外装部品、等速ジョイントブーツ、ウエザーストリップ、ダンパー、ワイパーブレード、絶縁カバー、フードシールゴム、ボディパネル、サイドシールド、パッキン材(自動車用:例えば、自動車エンジン用パッキン)等の用途に特に有用である。 In addition, the rubber particle-containing elastomer composition of the present invention is, for example, an elastomer product for use in any application selected from the group consisting of civil engineering and construction materials, industrial parts, electric and electronic parts and household goods. It can be suitably used as a material or the like. In addition, these applications (the civil engineering / building materials, the industrial parts, the electric / electronic parts, the daily items) are not particularly limited, but for example, various gaskets and sheets for civil engineering / building, gap filling Materials (for example, joint materials), sealing materials for construction, sealing materials for pipe joints, sealing materials for construction sash, piping protection materials, wiring protection materials, heat insulation materials, packing materials, shock absorbing materials, automotive parts (for example, rubber for automobiles described above) Parts, interior and exterior parts of automobiles, constant velocity joint boots, weather strips, dampers, wiper blades, insulating covers, hood seal rubbers, body panels, side shields, packing materials (for automobiles: for example, automobile engine packings), etc. Parts for agricultural machinery, agricultural materials, conveyor belts, contact rubber sheets, electrical insulators, various electrical Equipment housing and internal parts, wire coverings, connectors, caps, plugs, sports and leisure products (fins for swimming, underwater glasses, golf club grips, baseball bat grips, etc.), footwear (shoe soles, sandals, etc.), miscellaneous goods (shoes etc) Packaging materials, garden hoses, anti-slip tapes for stairs, cleaning tools, cosmetics, etc. can be mentioned. Moreover, since the rubber particle-containing elastomer composition of the present invention can reduce the compression set at a higher level compared to the conventional thermoplastic elastomer composition, it is particularly suitable for civil engineering and construction. Various gaskets, building sealing materials, building sash sealing materials, packing materials, shock absorbing materials, automobile parts (for example, the above-mentioned automobile rubber parts, automobile interior / exterior parts, constant velocity joint boots, weather strips, dampers, wiper blades It is particularly useful for applications such as insulation covers, hood seal rubbers, body panels, side shields, packing materials (for automobiles: for example, automobile engine packings).
 以上、本発明のゴム粒子含有エラストマー組成物について説明したが、以下、本発明の第一~第四のゴム粒子含有エラストマー組成物の製造方法について説明する。 Although the rubber particle-containing elastomer composition of the present invention has been described above, the method for producing the first to fourth rubber particle-containing elastomer compositions of the present invention will be described below.
 [第一のゴム粒子含有エラストマー組成物の製造方法(第一の製法)]
 このような第一の製法は、化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)と;
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分(より好ましくは、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性エラストマー組成物(II)と;
を混合することにより、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。以下、このような第一の製法に用いる各成分について説明した後に、第一の製法で採用する工程について説明する。
[Method of Producing First Rubber Particle-Containing Elastomer Composition (First Method)]
In such a first production method, a thermoplastic resin having no chemically bondable crosslinking site and a rubber particle-containing thermoplastic elastomer (I) containing rubber particles;
Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component (more preferably a carbonyl-containing group and selected from the group consisting of polymers (B) containing a reactive crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less) And / or an elastomeric polymer (A) having a side chain (a) containing a hydrogen bonding crosslinking site having a nitrogen-containing heterocyclic ring and having a glass transition point of 25 ° C. or less, and a hydrogen bonding crosslinking to the side chain At least one kind of elastomer selected from the group consisting of elastomeric polymers (B) which contain a site and a covalent crosslinking site and have a glass transition temperature of 25 ° C. or less Thermoplastic comprising a tomer component) and clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) An elastomeric composition (II);
By mixing
The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) A rubber particle-containing elastomer composition is obtained, which comprises a clay having a content ratio of not more than 20 parts by mass with respect to 100 parts by mass) and rubber particles. Hereinafter, after explaining each component used for such a 1st manufacturing method, the process employ | adopted by a 1st manufacturing method is demonstrated.
 (ゴム粒子含有熱可塑性エラストマー(I))
 このような第一の製法に用いるゴム粒子含有熱可塑性エラストマー(I)は、化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するものである。このような化学結合性の架橋部位を有さない熱可塑性樹脂、及び、ゴム粒子はそれぞれ、前述の本発明のゴム粒子含有エラストマー組成物中の成分として説明したものと同様のものである。なお、このようなエラストマー(I)中の化学結合性の架橋部位を有さない熱可塑性樹脂としては、流動性、耐熱性、入手性の観点から、ポリエチレン、ポリプロピレンが好ましく、ポリプロピレンが特に好ましい。
(Rubber particle-containing thermoplastic elastomer (I))
The rubber particle-containing thermoplastic elastomer (I) used in the first production method contains a thermoplastic resin having no chemically bondable crosslinking site and rubber particles. The thermoplastic resin having no chemically bondable crosslinking site and the rubber particles are the same as those described as the components in the rubber particle-containing elastomer composition of the present invention described above. From the viewpoint of flowability, heat resistance and availability, polyethylene and polypropylene are preferred as the thermoplastic resin having no chemically bondable crosslinking site in such elastomer (I), and polypropylene is particularly preferred.
 このようなゴム粒子含有熱可塑性エラストマー(I)においては、前記熱可塑性樹脂の含有量は1~99質量%であることが好ましく、5~80質量%であることが好ましい。このような熱可塑性樹脂の含有量が前記下限未満では流動性が十分に得られない傾向にあり、他方、前記上限を超えるとゴム性が失われる傾向にある。 In such rubber particle-containing thermoplastic elastomer (I), the content of the thermoplastic resin is preferably 1 to 99% by mass, and more preferably 5 to 80% by mass. If the content of such a thermoplastic resin is less than the lower limit, the flowability tends not to be sufficiently obtained, while if it exceeds the upper limit, the rubber property tends to be lost.
 また、このようなゴム粒子含有熱可塑性エラストマー(I)においては、ゴム粒子の含有量は1~99質量%であることが好ましく、10~80質量%であることが好ましい。このようなゴム粒子の含有量が前記下限未満ではゴム性が低くなる傾向にあり、他方、前記上限を超えると熱可塑性(成形性)が低くなる傾向にある。また、同様の観点で、ゴム粒子の含有量は熱可塑性樹脂100質量部に対して1~1000質量部(より好ましくは10~500質量部)であることが好ましい。 Further, in such rubber particle-containing thermoplastic elastomer (I), the content of the rubber particles is preferably 1 to 99% by mass, and preferably 10 to 80% by mass. If the content of such rubber particles is less than the above lower limit, the rubber property tends to be low, while if it exceeds the above upper limit, the thermoplasticity (formability) tends to be low. From the same viewpoint, the content of the rubber particles is preferably 1 to 1000 parts by mass (more preferably 10 to 500 parts by mass) with respect to 100 parts by mass of the thermoplastic resin.
 また、このようなゴム粒子含有熱可塑性エラストマー(I)としては、熱可塑性樹脂中にゴム粒子が分散されているものが好ましい。すなわち、前記ゴム粒子含有熱可塑性エラストマー(I)としては、熱可塑性樹脂をマトリックス(海相)とし、ゴム粒子を島相とする海島構造を有するものが好ましい。このような熱可塑性樹脂中にゴム粒子が分散されているゴム粒子含有熱可塑性エラストマー(I)としては、化学結合性の架橋部位を有さない熱可塑性樹脂(例えばPPやPE等)に、架橋ゴムの粒子(例えばEPDM等)が分散された、いわゆる動的架橋型熱可塑性エラストマー(TPV:Thermo Plastic Vulcanizate)が好ましい。 Further, as such a rubber particle-containing thermoplastic elastomer (I), one in which rubber particles are dispersed in a thermoplastic resin is preferable. That is, as said rubber particle containing thermoplastic elastomer (I), what has a sea-island structure which makes a thermoplastic resin a matrix (sea phase) and makes a rubber particle an island phase is preferable. The rubber particle-containing thermoplastic elastomer (I) in which rubber particles are dispersed in such a thermoplastic resin is crosslinked to a thermoplastic resin having no chemically bondable crosslinking site (for example, PP, PE, etc.) So-called dynamically crosslinked thermoplastic elastomers (TPV: Thermo Plastic Vulcanizate) in which rubber particles (eg EPDM etc.) are dispersed are preferred.
 また、このようなゴム粒子含有熱可塑性エラストマー(I)は、熱可塑性エラストマーに用いられる各種添加剤を適宜含有していてもよい。このような添加剤としては、熱可塑性のエラストマー組成物に利用することが可能なものであればよく、特に制限されず、公知の添加剤を適宜利用することができる(上記マトリックス中の添加剤として説明したものと同様のものが好ましい)。なお、このようなゴム粒子含有熱可塑性エラストマー(I)が含有し得る添加剤の中でも、スリップ剤、酸化防止剤、紫外線吸収剤、光安定剤、導電性付与剤、帯電防止剤、分散剤、難燃剤、防菌剤、中和剤、軟化剤、充填材、着色剤、熱伝導性充填材など通常ゴムに添加される公知の添加剤を好適に利用できる。また、このようなゴム粒子含有熱可塑性エラストマー(I)に添加剤を含有させる場合、その添加剤の含有量は化学結合性の架橋部位を有さない熱可塑性樹脂100質量部に対して0.1~100質量部(より好ましくは1~10質量部)であることが好ましい。 Further, such rubber particle-containing thermoplastic elastomer (I) may appropriately contain various additives used for the thermoplastic elastomer. Such additives are not particularly limited as long as they can be used for a thermoplastic elastomer composition, and known additives can be appropriately used (additives in the above matrix) The same as described above is preferred). Among the additives that the rubber particle-containing thermoplastic elastomer (I) may contain, a slip agent, an antioxidant, an ultraviolet light absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant, The well-known additive normally added to rubber | gum, such as a flame retardant, a microbicide, a neutralizing agent, a softener, a filler, a coloring agent, a thermally conductive filler, can be used suitably. In addition, when the rubber particle-containing thermoplastic elastomer (I) contains an additive, the content of the additive is 0. 0. 100 parts by mass of the thermoplastic resin having no chemically bondable crosslinking site. The amount is preferably 1 to 100 parts by mass (more preferably 1 to 10 parts by mass).
 このようなゴム粒子含有熱可塑性エラストマー(I)(好ましくは動的架橋型熱可塑性エラストマー)の製造方法は特に制限されず、公知の方法(例えば、特許第6000714号公報等に記載の方法)を適宜採用することができる。このようなゴム粒子含有熱可塑性エラストマー(I)の製造方法としては、ゴム粒子含有熱可塑性樹脂として好適な動的架橋型熱可塑性エラストマーを調製する場合、例えば、前記化学結合性の架橋部位を有さない熱可塑性樹脂、前記水素結合性架橋部位を有さないジエン系ゴム、及び、前記架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)を溶融混練して動的架橋させて動的架橋型熱可塑性エラストマーを調製する方法を好適に採用することができる。なお、溶融混練時に、エラストマー(I)の目的の設計に応じて前記添加剤を適宜含有させてもよい。このような化学結合性の架橋部位を有さない熱可塑性樹脂、水素結合性架橋部位を有さないジエン系ゴム、架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)、および、添加剤は、それぞれ上記本発明のゴム粒子含有エラストマー組成物において説明したものと同様のものである(その好適なものも同様である)。また、このように、各成分を溶融混練させる場合、二軸押出機、スクリュー押出機、ニーダー、バンバリーミキサー等を用いて混合(混練)することが好ましい。また、動的架橋させるための条件としては公知の条件を適宜採用することができる。例えば、添加した樹脂成分の融点以上の温度(好ましくは100~250℃)で1分~1時間混合する方法を採用してもよい。なお、この際に加える剪断力の条件等も特に制限されず、動的架橋させることが可能となるように適宜条件を設定すればよいが、剪断速度が1~100sec-1となるように調製することが好ましい。 The method for producing such a rubber particle-containing thermoplastic elastomer (I) (preferably, a dynamically crosslinked thermoplastic elastomer) is not particularly limited, and a known method (for example, a method described in Japanese Patent No. 6000714) may be used. It can be adopted appropriately. As a method of producing such rubber particle-containing thermoplastic elastomer (I), when preparing a dynamically cross-linked thermoplastic elastomer suitable as a rubber particle-containing thermoplastic resin, for example, the chemically bondable crosslinking site is possessed. Thermoplastic resin, diene rubber having no hydrogen bondable crosslinking site, and the crosslinking agent (peroxide crosslinking agent, phenol resin crosslinking agent, sulfur crosslinking agent and silane crosslinking agent) The method of melt-kneading at least 1 sort (s) selected from a group, and making it dynamic-crosslink, and preparing a dynamic-crosslinking-type thermoplastic elastomer can be employ | adopted suitably. In addition, at the time of melt-kneading, according to the design of the object of elastomer (I), you may contain the said additive suitably. Thermoplastic resins not having such chemically bondable crosslinking sites, diene rubbers not having hydrogen bondable crosslinking sites, crosslinking agents (peroxide based crosslinking agents, phenolic resin based crosslinking agents, sulfur based crosslinking agents And at least one selected from the group consisting of silane-based crosslinking agents, and additives are the same as those described for the rubber particle-containing elastomer composition of the present invention above (also preferred examples thereof) The same). When the components are melt-kneaded as described above, it is preferable to mix (knead) using a twin-screw extruder, a screw extruder, a kneader, a Banbury mixer or the like. Moreover, well-known conditions can be suitably employ | adopted as conditions for making it bridge | crosslink dynamically. For example, a method of mixing for 1 minute to 1 hour at a temperature (preferably 100 to 250 ° C.) higher than the melting point of the added resin component may be adopted. The conditions of the shear force applied at this time are not particularly limited, and the conditions may be appropriately set so as to enable dynamic crosslinking, but the shear rate is adjusted to 1 to 100 sec -1. It is preferable to do.
 また、前述のようにして動的架橋型熱可塑性エラストマーを調製する場合、前記ジエン系ゴムの使用量は、前記熱可塑性樹脂100質量部に対して1~1000質量部(更に好ましくは10~900質量部)とすることがより好ましい。このようなジエン系ゴムの使用量が前記下限未満ではゴム性が低くなる傾向にあり、他方、前記上限を超えると熱可塑性(成形性)が低くなる傾向にある。 In addition, when preparing the dynamically crosslinked thermoplastic elastomer as described above, the amount of the diene rubber used is 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. It is more preferable to set it as a mass part). If the amount of such a diene rubber used is less than the above lower limit, the rubber property tends to be low, while if it exceeds the above upper limit, the thermoplasticity (moldability) tends to be low.
 また、前述のようにして動的架橋型熱可塑性エラストマーを調製する場合、前記架橋剤の使用量は、前記ジエン系ゴム100質量部に対して0.1~20質量部(更に好ましくは0.3~15質量部)とすることがより好ましい。このような架橋剤の使用量が前記下限未満では架橋密度が低くなる傾向にあり、他方、前記上限を超えると架橋密度が高くなり過ぎる傾向にある。 In addition, when preparing a dynamically crosslinked thermoplastic elastomer as described above, the amount of the crosslinking agent used is 0.1 to 20 parts by mass (more preferably 0. 0 to 20 parts by mass) with respect to 100 parts by mass of the diene rubber. More preferably, it is 3 to 15 parts by mass. If the amount of such a crosslinking agent used is less than the above lower limit, the crosslink density tends to be low, while if it exceeds the above upper limit, the crosslink density tends to be too high.
 さらに、前述のようにして動的架橋型熱可塑性エラストマーを調製する場合、添加剤としてスリップ剤、酸化防止剤、紫外線吸収剤、光安定剤、導電性付与剤、帯電防止剤、分散剤、難燃剤、防菌剤、中和剤、軟化剤、充填材、着色剤、熱伝導性充填材など通常ゴムに添加される公知の添加剤を更に使用することが好ましい。このような添加剤を用いる場合、添加剤の使用量(複数種のものを組み合わせて利用する場合には各添加剤のそれぞれの使用量)としては、前記熱可塑性樹脂100質量部に対して0.1~100質量部(更に好ましくは0.5~30質量部)とすることがより好ましい。このような添加剤の使用量が前記下限未満では添加剤の効果が低くなる傾向にあり、他方、前記上限を超えると添加剤の効果が高くなりすぎる傾向にある。 Furthermore, when preparing a dynamically crosslinked thermoplastic elastomer as described above, as an additive, a slip agent, an antioxidant, an ultraviolet light absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant, It is preferable to further use known additives which are usually added to rubber, such as flame retardants, fungicides, neutralizing agents, softeners, fillers, colorants, heat conductive fillers and the like. When such an additive is used, the amount of the additive used (the amount of each additive used when combining a plurality of types) is 0 with respect to 100 parts by mass of the thermoplastic resin. More preferably, the amount is from 1 to 100 parts by mass (more preferably 0.5 to 30 parts by mass). If the amount of such an additive used is less than the lower limit, the effect of the additive tends to be low, while if the amount is more than the upper limit, the effect of the additive tends to be too high.
 また、このようなゴム粒子含有熱可塑性エラストマー(I)としては、前記化学結合性の架橋部位を有さない熱可塑性樹脂と、ゴム粒子とを含有するものであればよく、市販品を適宜利用してもよい。例えば、ゴム粒子含有熱可塑性エラストマー(I)として好適な前記動的架橋型熱可塑性エラストマー(TPV)の市販品(三井化学社製の商品名「ミラストマー」;エクソン・モービル社製の商品名「サントプレン」、「ジオラスト」、「トレフシン」;住友化学社製の商品名「住友TPE」;三菱ケミカル社製の商品名「サーモラン」、「ゼラス」;リケンテクノス社製の商品名「アクティマー」等)を適宜利用してもよい。 In addition, as such a rubber particle-containing thermoplastic elastomer (I), any one containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles may be used, and a commercially available product is appropriately used. You may For example, a commercially available product of the dynamically crosslinked thermoplastic elastomer (TPV) suitable as the rubber particle-containing thermoplastic elastomer (I) (trade name "Milastomer" manufactured by Mitsui Chemicals, Inc .; trade name "Santoprene" manufactured by Exxon Mobil "Geolast", "Trefcine"; trade name "Sumitomo TPE" manufactured by Sumitomo Chemical Co., Ltd .; trade name "Thermoran" manufactured by Mitsubishi Chemical Corp., "Zelas"; trade name "Actymar" manufactured by Riken Technos, etc. You may use suitably.
 なお、前記動的架橋型熱可塑性エラストマー(TPV)を前記ゴム粒子含有熱可塑性エラストマー(I)として利用した場合には、かかる動的架橋型熱可塑性エラストマーと、後述する熱可塑性ポリマー組成物(II)とを混合することで、得られる混合物においてマトリックスを、前記動的架橋型熱可塑性エラストマー中のマトリックス成分(前記熱可塑性樹脂を含む)と、後述の熱可塑性ポリマー組成物(II)中の成分との混合物からなるものとして、そのマトリックスにゴム粒子が分散された状態の組成物を容易に製造することが可能となり、結果として、上記本発明のゴム粒子含有エラストマー組成物を効率よく製造することが可能となる。 In the case where the dynamically crosslinked thermoplastic elastomer (TPV) is used as the rubber particle-containing thermoplastic elastomer (I), such a dynamically crosslinked thermoplastic elastomer and a thermoplastic polymer composition (II) described later (II) And the matrix component (including the thermoplastic resin) in the dynamically crosslinked thermoplastic elastomer and the components in the thermoplastic polymer composition (II) described later. It becomes possible to easily manufacture a composition in the state where rubber particles are dispersed in its matrix as a mixture of them and, as a result, efficiently manufacture the rubber particle-containing elastomer composition of the present invention. Is possible.
 (熱可塑性ポリマー組成物(II))
 第一の製法に用いる熱可塑性ポリマー組成物(II)は、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイとを含有してなるものである。なお、熱可塑性ポリマー組成物(II)としては、前記エラストマー成分と、前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性エラストマー組成物(II)が好ましい。このような組成物(II)中の前記ポリマー成分(より好ましくはエラストマー成分)及びクレイは、前述の本発明のゴム粒子含有エラストマー組成物中の成分として説明したものと同様である(その好適な条件も同様である)。
(Thermoplastic polymer composition (II))
The thermoplastic polymer composition (II) used in the first production method comprises the polymer component (more preferably the elastomer component) and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) And clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass). In addition, as a thermoplastic polymer composition (II), a thermoplastic elastomer composition (II) comprising the elastomer component and a clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the elastomer component Is preferred. The polymer component (more preferably, the elastomer component) and the clay in such composition (II) are the same as those described as the components in the rubber particle-containing elastomer composition of the present invention described above (its preferred Conditions are the same).
 このような熱可塑性ポリマー組成物(II)中の前記クレイの含有量(含有比率)は、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下である。このようなクレイの含有量が前記上限を超えると、引張り特性が低下する。このようなクレイの含有量としては、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して0.01~10質量部であることがより好ましく、0.05~5質量部であることが更に好ましく、0.08~3質量部であることが特に好ましい。このようなクレイの含有量が前記下限未満では、クレイの含有量が少なすぎて十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると架橋が強くなり過ぎて、却って伸びや強度が低下してしまい、各種用途に利用することが困難となる(実用性が低下する)傾向にある。なお、熱可塑性ポリマー組成物(II)において、前記ポリマー成分(より好ましくは前記エラストマー成分)と前記クレイは、前述のように、該クレイの表面を利用して前記ポリマー成分(より好ましくは前記エラストマー成分)が面架橋された状態となるものと本発明者らは推察する。 The content (content ratio) of the clay in such a thermoplastic polymer composition (II) is 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) In contrast, it is 20 parts by mass or less. When the content of such clay exceeds the above upper limit, the tensile properties are degraded. The content of such clay is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) The amount is more preferably 0.05 to 5 parts by mass, and particularly preferably 0.08 to 3 parts by mass. If the content of such a clay is less than the above lower limit, the content of the clay is too small to obtain sufficient effects, while if it exceeds the above upper limit, the crosslink becomes too strong and the elongation or strength is rather Tend to be difficult to use for various applications (the practicability decreases). In the thermoplastic polymer composition (II), as described above, the polymer component (more preferably the elastomer component) and the clay are the polymer components (more preferably the elastomer) using the surface of the clay. The present inventors speculate that the component is in a state of surface cross-linking.
 また、このようなクレイとしては、単層の形態のクレイ(単層のクレイ)が熱可塑性ポリマー組成物(II)中(より好ましくは熱可塑性エラストマー組成物(II)中)に存在することが好ましい。このような単層状の形態のクレイの存在は、熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))の表面を透過型電子顕微鏡(TEM)により測定することにより確認してもよい。さらに、本発明の熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))においては、該組成物(II)の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡(TEM)により測定した場合において、全測定点において、個数を基準として、全クレイのうちの50%以上(より好ましくは70%以上、更に好ましくは80~100%、特に好ましくは85~100%)が単層のクレイとして存在することが好ましい。単層のクレイの存在率が前記下限未満では破断伸び、破断強度が低下する傾向にある。なお、このような単層のクレイの存在率(割合)の測定方法としては特許5918878号公報に記載されている方法と同様の方法を採用できる。なお、組成物中に、上述のような割合(存在率)で単層のクレイが含有されている場合、多層状のクレイがそのまま分散されているよりも、クレイがより分散して含有された状態となるため(多層状のクレイが分解されて単層のクレイが形成されるためである。)、より高い分散性でクレイを組成物中に分散させることが可能となる。このように、前記クレイは、組成物中において多層状のまま存在するよりも、単層状のものが前記割合で存在する場合に、より高い分散性が得られ、耐熱性や破断強度をより高度なものとすることが可能である。そのため、上述のような割合で、単層の状態のクレイを含有させることがより好ましく、これによりクレイがより分散されて耐熱性や破断強度の向上をより効率よく図ることが可能となる。 In addition, as such clay, clay in the form of a monolayer (clay of monolayer) is present in the thermoplastic polymer composition (II) (more preferably, in the thermoplastic elastomer composition (II)) preferable. The presence of such clay in the form of a monolayer is confirmed by measuring the surface of the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) by transmission electron microscopy (TEM). You may Furthermore, in the thermoplastic polymer composition (II) of the present invention (more preferably, the thermoplastic elastomer composition (II)), 5.63 μm 2 of any three or more points on the surface of the composition (II) When the measurement points of the size are measured by a transmission electron microscope (TEM), 50% or more (more preferably 70% or more, more preferably 80% or more) of the total clay based on the number at all measurement points. 100%, particularly preferably 85 to 100%) are preferably present as monolayer clays. If the content of clay in the single layer is less than the above lower limit, the breaking elongation and breaking strength tend to be reduced. In addition, as a measuring method of the abundance ratio (ratio) of such a clay of a single layer, the method similar to the method described in patent 5918878 is employable. In addition, when clay of a single layer is contained in the above-mentioned ratio (presence ratio) in a composition, clay is more dispersed and contained rather than multilayer clay being dispersed as it is. Since it is in the state (the multilayer clay is decomposed to form a monolayer clay), it is possible to disperse the clay in the composition with higher dispersibility. As described above, when the single layer is present in the above proportion in the composition, the clay has higher dispersibility than the existing in the form of multilayer, and the heat resistance and the breaking strength are higher. It is possible to Therefore, it is more preferable that the clay in a single layer state is contained at the ratio as described above, whereby the clay is more dispersed, and it is possible to more efficiently improve the heat resistance and the breaking strength.
 また、前記熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))においては、該組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡により測定した場合において、全測定点において、1μmあたり、1~100個(より好ましくは3~80個、更に好ましくは5~50個)分散されていることが好ましい。このような単層のクレイの個数が前記下限未満ではクレイの量が少なすぎて、十分な効果が得られなくなる傾向にある。なお、このような単層のクレイの個数は、単層のクレイの存在率(割合)の測定と同様の方法でTEM画像を確認することにより求めることができる。 Further, in the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)), measuring points of any three or more points of 5.63 μm 2 on the surface of the composition When it is measured by a transmission electron microscope, it is preferable that 1 to 100 (more preferably 3 to 80, still more preferably 5 to 50) particles be dispersed per 1 μm 2 at all measurement points. If the number of clays in such a single layer is less than the above lower limit, the amount of clay is too small, and a sufficient effect tends not to be obtained. In addition, the number of pieces of clay of such a single layer can be calculated | required by confirming a TEM image by the method similar to the measurement of the abundance (rate) of the clay of a single layer.
 また、このような熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))としては、熱可塑性樹脂に用いられる各種添加剤を適宜含有していてもよい。このような添加剤としては、熱可塑性のポリマー組成物(より好ましくは、熱可塑性のエラストマー組成物)に利用することが可能なものであればよく、特に制限されず、公知の添加剤を適宜利用することができる(上記マトリックス中の添加剤として説明したものと同様のものが好ましい)。 Moreover, as such a thermoplastic polymer composition (II) (more preferably, a thermoplastic elastomer composition (II)), various additives used for a thermoplastic resin may be suitably contained. Such additives are not particularly limited as long as they can be used for a thermoplastic polymer composition (more preferably, a thermoplastic elastomer composition), and are not particularly limited, and known additives may be appropriately It can be used (preferred to the ones described as additives in the matrix above).
 前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))としては、前記化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有するものが好ましい。なお、このようなスチレンブロック共重合体は前述の本発明のゴム粒子含有エラストマー組成物において説明したものと同様のものである。このようなスチレンブロック共重合体の含有比率としては、前記熱可塑性ポリマー組成物(II)中の前記ポリマー成分100質量部(前記熱可塑性ポリマー組成物(II)が前記熱可塑性エラストマー組成物(II)である場合、前記熱可塑性エラストマー組成物(II)中の前記エラストマー成分100質量部)に対して1~1000質量部であることが好ましく、5~800質量部であることがより好ましい。このような含有比率が前記下限未満ではオイルブリードし易くなる傾向にあり、他方、前記上限を超えると物性が低下する傾向にある。 As the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)), it is preferable to further contain a styrene block copolymer having no chemically bondable crosslinking site. Such a styrene block copolymer is the same as that described in the rubber particle-containing elastomer composition of the present invention described above. As for the content ratio of such a styrene block copolymer, 100 parts by mass of the polymer component in the thermoplastic polymer composition (II) (the thermoplastic polymer composition (II) is the thermoplastic elastomer composition (II) Is preferably 1 to 1000 parts by mass, and more preferably 5 to 800 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II). If the content ratio is less than the lower limit, oil bleeding tends to occur easily, and if the content ratio exceeds the upper limit, physical properties tend to decrease.
 また、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))としては、前記パラフィンオイルを更に含有するものが好ましい。なお、このようパラフィンオイルは前述の本発明のゴム粒子含有エラストマー組成物において説明したものと同様のものである。このようなパラフィンオイルの含有比率としては、前記熱可塑性ポリマー組成物(II)中の前記ポリマー成分100質量部(前記熱可塑性ポリマー組成物(II)が前記熱可塑性エラストマー組成物(II)である場合、前記熱可塑性エラストマー組成物(II)中の前記エラストマー成分100質量部)に対して10~1000質量部であることが好ましく、30~900質量部であることがより好ましく、50~800質量部であることが更に好ましく、75~700質量部であることが特に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発され易くなる傾向にある。 Further, as the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)), one further containing the paraffin oil is preferable. Such paraffin oil is similar to that described in the rubber particle-containing elastomer composition of the present invention described above. As for the content ratio of such paraffin oil, 100 parts by mass of the polymer component in the thermoplastic polymer composition (II) (the thermoplastic polymer composition (II) is the thermoplastic elastomer composition (II) In this case, the amount is preferably 10 to 1000 parts by mass, more preferably 30 to 900 parts by mass, and 50 to 800 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II). It is more preferably part, and particularly preferably 75 to 700 parts by mass. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there tends to be no sufficient effect in terms of flowability and processability, and on the other hand, the above upper limit is exceeded And, it tends to be easy to induce the bleeding of paraffin oil.
 また、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))としては、成形性と機械特性のバランスの観点から、前記ポリマー成分(より好ましくは前記エステル成分)及びクレイとともに、化学結合性の架橋部位を有さないスチレンブロック共重合体と、パラフィンオイルとを組み合わせて含有するものがより好ましい。 In addition, as the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)), the polymer component (more preferably, the ester component) from the viewpoint of the balance between moldability and mechanical properties. It is more preferable to contain a combination of a styrene block copolymer having no chemically bondable crosslinking site and paraffin oil together with paraffin oil and clay.
 また、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))は、成形性(流動性)の観点から、化学結合性の架橋部位を有さないα-オレフィン系樹脂を更に含有するものが好ましい。ここにいう「α-オレフィン系樹脂」とは、α-オレフィンの単独重合体、α-オレフィンの共重合体をいい、「α-オレフィン」とは、α位に炭素-炭素二重結合を有するアルケンをいい、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、例えば、特開2017-57322号公報の段落[0204]~[0214]に記載のものを好適に利用できる。 The thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is an α-olefin having no chemically bondable crosslinking site from the viewpoint of moldability (flowability). It is preferable to further contain a resin. The term "α-olefin resin" as used herein refers to homopolymers of α-olefins and copolymers of α-olefins, and "α-olefins" have a carbon-carbon double bond at the α-position. And alkenes such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. As the α-olefin resin having no such chemically bondable crosslinking site, for example, those described in paragraphs [0204] to [0214] of JP-A-2017-57322 can be suitably used.
 また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))の母体となるポリマー成分(より好ましくはエラストマー成分)に対する相溶性の観点から、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体が好ましい。また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、中でも、結晶化度が10%以上となるα-オレフィン系樹脂(ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、ポリエチレン、ポリブテン等)を好適に利用できる。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなα-オレフィン系樹脂としては、市販品を用いてもよい。なお、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。 In addition, as an α-olefin resin having no such chemically bondable crosslinking site, it becomes a matrix of the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) From the viewpoint of compatibility with the polymer component (more preferably, the elastomer component), polypropylene, polyethylene, ethylene-propylene copolymer, and ethylene-butene copolymer are preferable. Further, as an α-olefin resin having no such chemically bondable crosslinking site, an α-olefin resin (polypropylene, an ethylene-propylene copolymer, ethylene, etc.) having a degree of crystallinity of 10% or more can be mentioned, among others. -A butene copolymer, polyethylene, polybutene etc. can be used suitably. The method for producing the α-olefin resin having no such chemically bondable crosslinking site is not particularly limited, and a known method can be appropriately adopted. Moreover, as such an α-olefin resin, a commercially available product may be used. The α-olefin resins having no such chemically bondable crosslinking site may be used alone or in combination of two or more.
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有比率としては、目的とする用途や設計に応じて適宜変更することが可能であり、特に制限されるものではないが、例えば、その含有量が前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して250質量部以下(より好ましくは5~250質量部、更に好ましくは10~225質量部、特に好ましくは25~200質量部、最も好ましくは35~175質量部)となるようにして利用することがより好ましい。このような含有量が前記下限未満では流動性が十分得られない傾向にあり、他方、前記上限を超えるとゴム弾性が低下して樹脂性が高くなってしまう(硬度が必要以上に高くなってしまう)傾向にある。 The content ratio of the α-olefin resin having no such chemically bondable crosslinking site can be appropriately changed according to the intended application and design, and is not particularly limited. For example, the content is 250 parts by mass or less (more preferably 5 to 250 parts by mass, more preferably 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component)) It is more preferable to use 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, and most preferably 35 to 175 parts by mass. If the content is less than the lower limit, the flowability tends not to be sufficiently obtained. On the other hand, if the content exceeds the upper limit, the rubber elasticity is reduced and the resin property is increased (the hardness becomes higher than necessary) Tend to
 前記熱可塑性ポリマー組成物(II)の調製方法は特に制限されず、公知の方法を適宜採用することができる。また、このような熱可塑性ポリマー組成物(II)として好適に利用可能な、前記熱可塑性エラストマー組成物(II)の調製方法は特に制限されず、公知の方法を適宜採用することができ、例えば、特許第5918878号公報、特開2016-193970号公報、特開2017-057323号公報、国際公開第2017/047274号公報などに記載されている熱可塑性エラストマー組成物の製造方法を適宜利用できる。 The method for preparing the thermoplastic polymer composition (II) is not particularly limited, and known methods can be appropriately adopted. In addition, the method for preparing the thermoplastic elastomer composition (II), which can be suitably used as such a thermoplastic polymer composition (II), is not particularly limited, and known methods can be suitably adopted, for example, The methods for producing the thermoplastic elastomer composition described in Japanese Patent No. 5918878, Japanese Patent Application Laid-Open No. 2016-193970, Japanese Patent Application Laid-Open No. 2017-057323, International Publication No.
 また、このような熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))の製造方法としては、中でも、環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)と;前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(i)、並びに、前記化合物(i)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(ii)の混合原料のうちの少なくとも1種の原料化合物と;前記ポリマー及び前記原料化合物の総量100質量部(前記ポリマーがエラストマー性ポリマーである場合、前記エラストマー性ポリマー及び前記原料化合物の総量100質量部)に対して20質量部以下の含有割合のクレイと;を混合することにより、
 前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応せしめて、前記ポリマー(A)、並びに、前記ポリマー(B)からなる群から選択される少なくとも1種のポリマー成分(より好ましくは、前記エラストマー性ポリマー(A)、並びに、前記エラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分)を形成して、
 前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))を得る方法を採用することが好ましい。
Moreover, as a method for producing such a thermoplastic polymer composition (II) (more preferably, a thermoplastic elastomer composition (II)), among them, a polymer having a cyclic acid anhydride group in a side chain (more preferably a cyclic An elastomeric polymer having an acid anhydride group in a side chain); a compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bonding crosslinking site; and the compound (i) and the cyclic acid anhydride A raw material compound of at least one of the mixed raw materials of the compound (ii) which reacts with a substance group to form a covalent bond crosslinking site; 100 parts by mass of the total amount of the polymer and the raw material compound And mixing the clay with a content ratio of 20 parts by mass or less with respect to the total of 100 parts by mass of the elastomeric polymer and the raw material compound). By and,
The polymer (A) is obtained by reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound. At least one polymer component (more preferably, the elastomeric polymer (A) selected from the group consisting of the polymer (B), and at least one polymer selected from the group consisting of the elastomeric polymer (B)) Form the elastomeric component)
Clay having a content ratio of 20 parts by mass or less based on the polymer component (more preferably, the elastomer component) and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, 100 parts by mass of the elastomer component) It is preferable to adopt a method of obtaining a thermoplastic polymer composition (II) (more preferably a thermoplastic elastomer composition (II)) comprising
 ここで、「環状酸無水物基を側鎖に有するポリマー」とは、ポリマーの主鎖を形成する原子に環状酸無水物基が化学的に安定な結合(共有結合)をしているポリマーのことをいい、例えば、前記ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーと、環状酸無水物基を導入し得る化合物とを反応させることにより得られるものを好適に利用することができる。このような環状酸無水物基を側鎖に有するポリマーとしては、例えば、環状酸無水物基を側鎖に有するポリオレフィンポリマー(例えば、環状酸無水物基を側鎖に有する高密度ポリエチレン(HDPE)、環状酸無水物基を側鎖に有するポリプロピレン(PP)、環状酸無水物基を側鎖に有するエチレンプロピレンコポリマー、環状酸無水物基を側鎖に有するエチレンブチレンコポリマー、環状酸無水物基を側鎖に有するエチレンオクテンコポリマー、環状酸無水物基を側鎖に有するポリオレフィン系エラストマー性ポリマー等)等が挙げられる。 Here, "a polymer having a cyclic acid anhydride group in a side chain" means a polymer having a cyclic acid anhydride group having a chemically stable bond (covalent bond) to an atom forming the main chain of the polymer. For example, those obtained by reacting a polymer capable of forming the main chain portion of the polymers (A) to (B) with a compound capable of introducing a cyclic acid anhydride group are preferable. It can be used to As such a polymer having a cyclic acid anhydride group in a side chain, for example, a polyolefin polymer having a cyclic acid anhydride group in a side chain (eg, high density polyethylene having a cyclic acid anhydride group in a side chain (HDPE) Polypropylene (PP) having cyclic acid anhydride group in side chain, ethylene-propylene copolymer having cyclic acid anhydride group in side chain, ethylene butylene copolymer having cyclic acid anhydride group in side chain, cyclic acid anhydride group The ethylene-octene copolymer which has a side chain, the polyolefin-type elastomeric polymer etc. which have a cyclic acid anhydride group in a side chain etc. are mentioned.
 また、前記環状酸無水物基を側鎖に有するポリマーとして好適な「環状酸無水物基を側鎖に有するエラストマー性ポリマー」とは、ポリマーの主鎖を形成する原子に環状酸無水物基が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーのことをいい、例えば、前記エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーと、環状酸無水物基を導入し得る化合物とを反応させることにより得られるものを好適に利用することができる。このような環状酸無水物基を側鎖に有するポリマーとして好適な環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、公知のもの(例えば、特許第5918878号公報の段落[0183]~段落[0193]に記載のもの)を適宜利用することができる。また、このような環状酸無水物基を側鎖に有するポリマーとして好適な環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、高分子量で高強度であるといった観点から、無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴムがより好ましい。 In addition, the “elastomeric polymer having a cyclic acid anhydride group in a side chain, which is suitable as a polymer having a cyclic acid anhydride group in a side chain, has a cyclic acid anhydride group at an atom forming the main chain of the polymer Chemically stable (covalently bonded) elastomeric polymers, such as polymers capable of forming the main chain portion of the above-mentioned elastomeric polymers (A) to (B) What is obtained by making it react with the compound which can introduce an acid anhydride group can be used suitably. As an elastomeric polymer having a cyclic acid anhydride group in a side chain, which is suitable as a polymer having such a cyclic acid anhydride group in a side chain, known ones (for example, paragraph [0183] of Patent No. 5918878) Those described in paragraph [0193] can be used as appropriate. Moreover, as an elastomeric polymer having a cyclic acid anhydride group in a side chain, which is suitable as a polymer having such a cyclic acid anhydride group in a side chain, maleic anhydride modified from the viewpoint of high molecular weight and high strength. Ethylene-propylene rubber and maleic anhydride-modified ethylene-butene rubber are more preferable.
 また、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(i)としては、上記本発明のゴム粒子含有エラストマー組成物において説明した水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)と同様のものを好適に利用することができる。例えば、上記本発明の導電性熱可塑性エラストマー組成物において説明した含窒素複素環そのものであってもよく、あるいは、前記含窒素複素環に無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)が結合した化合物(前記置換基を有する含窒素複素環)であってもよい。なお、このような化合物(i)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、水素結合性架橋部位を有する側鎖の好適な一形態といえる。)。 Further, as the compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, a compound which forms a hydrogen bondable crosslinking site described in the rubber particle-containing elastomer composition of the present invention The same compounds as those capable of introducing a nitrogen-containing heterocyclic ring can be suitably used. For example, the nitrogen-containing heterocycle itself described in the conductive thermoplastic elastomer composition of the present invention may be itself, or a substituent which reacts with the nitrogen-containing heterocycle with a cyclic acid anhydride group such as maleic anhydride. It may be a compound (a nitrogen-containing heterocyclic ring having the above-mentioned substituent) in which (for example, a hydroxyl group, a thiol group, an amino group, etc.) is bonded. In addition, as such a compound (i), a compound which forms both a hydrogen bondable crosslinking site and a covalent bond crosslinking site (it is possible to simultaneously introduce both a hydrogen bondable crosslinking site and a covalent bond crosslinking site The side chain having both a hydrogen bonding crosslinking site and a covalent bonding crosslinking site can be said to be a preferable form of a side chain having a hydrogen bonding crosslinking site.
 また、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(ii)としては、上記本発明のゴム粒子含有エラストマー組成物において説明した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と同様のものを好適に利用することができる(その化合物として好適なものも同様である。)。 Further, as the compound (ii) which reacts with the cyclic acid anhydride group to form a covalent crosslinking site, the “compound forming the covalent crosslinking site” described in the rubber particle-containing elastomer composition of the present invention The same compounds as (compound forming a covalent bond) ”can be suitably used (the same as the compound is also preferable).
 また、このような化合物(ii)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、共有結合性架橋部位を有する側鎖の好適な一形態といえる。)。このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物としては、トリスヒドロキシエチルイソシアヌレート、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンが特に好ましい。 Moreover, as such a compound (ii), a compound which forms both a hydrogen bondable crosslinking site and a covalent bond crosslinking site (it is possible to simultaneously introduce both a hydrogen bondable crosslinking site and a covalent bond crosslinking site The side chain having both the hydrogen bondable crosslinking site and the covalent bond crosslinking site can be said to be one preferable form of the side chain having the covalent bond crosslinking site. As a compound which forms both of such a hydrogen bondable crosslinking site and a covalent bond crosslinking site, trishydroxyethyl isocyanurate and 2,4-diamino-6-phenyl-1,3,5-triazine are particularly preferable.
 なお、このような原料化合物(化合物(i)及び化合物(ii))としては、例えば、特許5918878号公報の段落[0203]~[0207]に記載のものを適宜利用できる。また、前記原料化合物(化合物(i)及び/又は化合物(ii))としては、前述の化合物(X)がより好ましい。さらに、化合物(i)及び化合物(ii)の添加量(これらの総量:一方の化合物のみを利用する場合には、その一方の化合物の量となる。)や添加方法は、特に制限されず、目的とする設計に応じて適宜設定できる(例えば、特許5918878号公報の段落[0208]~[0210]を参照して適宜設計変更してもよい)。 As such raw material compounds (compound (i) and compound (ii)), for example, compounds described in paragraphs [0203] to [0207] of Japanese Patent No. 5918878 can be appropriately used. Moreover, as said raw material compound (compound (i) and / or compound (ii)), the above-mentioned compound (X) is more preferable. Furthermore, the addition amount of the compound (i) and the compound (ii) (total amount of them: when only one compound is used, it is the amount of one compound thereof) and the addition method are not particularly limited, It can be set appropriately according to the target design (for example, the design may be changed with reference to paragraphs [0208] to [0210] of Japanese Patent No. 5918878).
 また、このような原料化合物(化合物(i)及び/又は化合物(ii))としては、耐圧縮永久歪性の観点からは、トリスヒドロキシエチルイソシアヌレート、スルファミド、ペンタエリスリトール、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、ポリエーテルポリオールが好ましく、ペンタエリスリトール、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、トリスヒドロキシエチルイソシアヌレートが更に好ましい。 Moreover, as such raw material compounds (compound (i) and / or compound (ii)), from the viewpoint of compression set resistance, trishydroxyethyl isocyanurate, sulfamide, pentaerythritol, 2,4-diamino- 6-phenyl-1,3,5-triazine and polyether polyol are preferable, and pentaerythritol, 2,4-diamino-6-phenyl-1,3,5-triazine and trishydroxyethyl isocyanurate are more preferable.
 また、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物(化合物(i)及び/又は化合物(ii))とを反応させる際には、前記原料化合物の使用量を、前記環状酸無水物基を側鎖に有するポリマー100質量部(前記ポリマーが前記エラストマー性ポリマーである場合、前記エラストマー性ポリマー100質量部)に対して0.1~10質量部とすることが好ましく、0.3~7質量部とすることがより好ましく、0.5~5.0質量部とすることが更に好ましい。このような原料化合物の添加量(質量部に基づく量)が前記下限未満では、原料化合物が少なすぎて架橋密度が上がらず所望の物性が発現しない傾向にあり、他方、前記上限を超えると多すぎてブランチが多くなり架橋密度が下がってしまう傾向にある。 Further, a polymer having the cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain) and the raw material compound (compound (i) and / or compound (ii)) And 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain (when the polymer is the elastomeric polymer, 100 parts by mass of the elastomeric polymer). Is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass, and still more preferably 0.5 to 5.0 parts by mass. If the addition amount (the amount based on the mass part) of such a raw material compound is less than the above lower limit, there is a tendency that the raw material compound is too small to increase the crosslink density and desired physical properties are not expressed. There is a tendency for the number of branches to increase and the crosslink density to decrease.
 前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物(化合物(i)及び/又は化合物(ii))とを反応させると、前記ポリマーが有する環状酸無水物基が開環されて、環状酸無水物基と前記原料化合物(前記化合物(i)及び/又は化合物(ii))とが化学結合されるため、これにより、前記ポリマー(A)、並びに、前記ポリマー(B)からなる群から選択される少なくとも1種のポリマー成分(より好ましくは、前記エラストマー性ポリマー(A)、並びに、前記エラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分)を形成することができる。このような前記ポリマーと前記原料化合物(前記化合物(i)及び/又は化合物(ii))とを反応(環状酸無水物基を開環)させる際の温度条件は特に制限されず、前記化合物と環状酸無水物基との種類に応じて、これらが反応可能な温度に調整すればよく、例えば、軟化させて反応を瞬時に進める観点からは、100~250℃とすることが好ましく、120~230℃とすることがより好ましい。 A polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain) and the raw material compound (compound (i) and / or compound (ii)) When reacted, the cyclic acid anhydride group possessed by the polymer is ring-opened to chemically bond the cyclic acid anhydride group to the raw material compound (the compound (i) and / or the compound (ii)). Thereby, at least one polymer component selected from the group consisting of the polymer (A) and the polymer (B) (more preferably, the elastomeric polymer (A), and the elastomeric polymer (B) At least one elastomeric component selected from the group consisting of There are no particular restrictions on the temperature conditions at which such a polymer and the starting compound (the compound (i) and / or the compound (ii)) are reacted (ring opening of the cyclic acid anhydride group). Depending on the type of cyclic acid anhydride group, the temperature may be adjusted to a temperature at which they can react, for example, from the viewpoint of accelerating the reaction instantaneously by softening, it is preferable to set to 100 to 250 ° C. It is more preferable to set it as 230 degreeC.
 また、このような混合の方法は特に制限されず、公知の方法等を適宜採用することができ、例えば、ロール、ニーダー、押出し機、万能攪拌機等により混合する方法を採用することができる。さらに、各成分の添加順序は特に制限されるものではないが、クレイの分散性をより向上させるといった観点から、予め環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)を可塑化した後に、クレイを添加して混合物を得た後、そこに前記原料化合物(化合物(i)及び/又は化合物(ii))を添加して混合することが好ましい。また、各種添加剤(前記化学結合性の架橋部位を有さないスチレンブロック共重合体、パラフィンオイル、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂など)を添加する場合には、クレイが十分に分散するように、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と各種添加剤とを含む混合物を予め調製した後にクレイを添加し、その後、前記原料化合物(化合物(i)及び/又は化合物(ii))を添加して混合することが好ましい。なお、このような混合の際には、クレイの分散性をより向上させるといった観点から、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)、及び、場合によって添加する各種添加剤のうちのポリマー成分は、可塑化することが好ましい。このような可塑化の方法としては特に制限されず、公知の方法を適宜採用でき、例えば、これらを可塑化することが可能となるような温度(例えば100~250℃程度)でロール、ニーダー、押出し機、万能攪拌機等を用いて混練する方法等を適宜採用できる。なお、熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))においては、ポリマー(A)をポリマー成分とする熱可塑性ポリマー組成物(II)(より好ましくは、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物(II))と、ポリマー(B)をポリマー成分とする熱可塑性ポリマー組成物(II)(より好ましくは、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物(II))とをそれぞれ別々に製造した後、これを混合して、ポリマー成分としてポリマー(A)及び(B)を含有する熱可塑性ポリマー組成物(II)(より好ましくは、前記エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物(II))としてもよい。 Further, the method of such mixing is not particularly limited, and known methods can be appropriately adopted. For example, a method of mixing using a roll, a kneader, an extruder, a universal stirrer or the like can be adopted. Furthermore, the addition order of the respective components is not particularly limited, but from the viewpoint of further improving the dispersibility of the clay, a polymer having a cyclic acid anhydride group in a side chain in advance (more preferably a cyclic acid anhydride group) After plasticizing the elastomeric polymer having a side chain, clay is added to obtain a mixture, and the above-mentioned raw material compound (compound (i) and / or compound (ii)) is added and mixed there Is preferred. In addition, when various additives (such as a styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, an α-olefin resin having no chemical bondable crosslinkable site, etc.) are added. A mixture containing a polymer having the cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain) so that the clay is sufficiently dispersed, and various additives It is preferable to add clay after preparing in advance, and then to add and mix the raw material compounds (compound (i) and / or compound (ii)). In addition, in the case of such mixing, a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomer having a cyclic acid anhydride group in a side chain) from the viewpoint of further improving the dispersibility of clay. Polymer component) and, of the various additives optionally added, are preferably plasticized. The method of such plasticization is not particularly limited, and a known method can be appropriately adopted. For example, a roll, a kneader, or the like at a temperature (for example, about 100 to 250 ° C.) which makes it possible to plasticize these. A method of kneading using an extruder, a universal stirrer or the like can be appropriately adopted. In the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)), the thermoplastic polymer composition (II) containing the polymer (A) as a polymer component (more preferably, it is elastomeric) Thermoplastic elastomer composition (II) having polymer (A) as an elastomer component, and thermoplastic polymer composition (II) having polymer (B) as a polymer component (more preferably elastomer polymer (B)) Thermoplastic polymer composition (II) (II) containing (A) and (B) as polymer components after separately preparing the component thermoplastic elastomer composition (II) and separately mixing them More preferably, heat containing elastomeric polymers (A) and (B) as said elastomeric component It may be plastically elastomer composition (II)).
 以上、第一の製法に利用する各成分について説明したが、以下、第一の製法の工程について説明する。 As mentioned above, although each component utilized for a 1st manufacturing method was demonstrated, the process of a 1st manufacturing method is demonstrated hereafter.
 (第一の製法の工程について)
 第一の製法においては、前記ゴム粒子含有熱可塑性エラストマー(I)と;前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))と;を混合することにより、前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得る。
(About the process of the first production process)
In the first production method, by mixing the rubber particle-containing thermoplastic elastomer (I) with the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)); The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) A rubber particle-containing elastomer composition is obtained which contains a clay and a rubber particle in a content ratio of 20 parts by mass or less with respect to 100 parts by mass).
 このような前記ゴム粒子含有熱可塑性エラストマー(I)と、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))との混合の方法としては、特に制限されず、公知の方法等を適宜採用することができ、例えば、ロール、ニーダー、押出し機、万能攪拌機等により混合する方法を採用することができる。また、このような混合工程に際しては、前記ゴム粒子含有熱可塑性エラストマー(I)と前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))とを可塑化して混合することが好ましい。このような可塑化の方法としては特に制限されず、公知の方法を適宜採用でき、100~250℃(より好ましくは120~230℃)の温度条件下において混合(混練)することがより好ましい。このような温度が前記下限未満では各成分を十分に分散させることが困難(各成分を均一に混合分散することが困難)となる傾向にあり、他方、前記上限を超えると劣化が起こってしまう傾向にある。 The method of mixing the rubber particle-containing thermoplastic elastomer (I) and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is not particularly limited. Known methods and the like can be appropriately adopted. For example, a method of mixing using a roll, a kneader, an extruder, a universal stirrer and the like can be adopted. Moreover, in the case of such a mixing step, the rubber particle-containing thermoplastic elastomer (I) and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) are plasticized and mixed. It is preferable to do. The method of such plasticization is not particularly limited, and a known method can be appropriately adopted, and mixing (kneading) under temperature conditions of 100 to 250 ° C. (more preferably 120 to 230 ° C.) is more preferable. If such temperature is less than the lower limit, it tends to be difficult to disperse each component sufficiently (difficult to mix and disperse each component uniformly), while if it exceeds the upper limit, deterioration occurs There is a tendency.
 また、このような混合工程に際して、前記ゴム粒子含有熱可塑性エラストマー(I)と前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))との混合比は特に制限されないが、エラストマー(I)100質量部に対する組成物(II)の含有量が1~1000質量部であることが好ましい。なお、100%モジュラス及び300%モジュラスがより向上するといった観点からは、エラストマー(I)100質量部に対する組成物(II)の含有量が10~1000質量部(更に好ましくは100~1000質量部)であることがより好ましく、他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、エラストマー(I)100質量部に対する組成物(II)の含有量が1~700質量部(更に好ましくは10~500質量部)であることがより好ましい。 In addition, the mixing ratio of the rubber particle-containing thermoplastic elastomer (I) and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is particularly limited in the mixing step. Although not preferred, the content of the composition (II) relative to 100 parts by mass of the elastomer (I) is preferably 1 to 1000 parts by mass. From the viewpoint of further improving the 100% modulus and the 300% modulus, the content of the composition (II) is 10 to 1000 parts by mass (more preferably 100 to 1000 parts by mass) with respect to 100 parts by mass of the elastomer (I). The content of the composition (II) is preferably 1 to 700 parts by mass with respect to 100 parts by mass of the elastomer (I) from the viewpoint that mechanical strength such as breaking strength and elongation at break is further improved. (More preferably 10 to 500 parts by mass) is more preferable.
 また、このような混合工程に際して、前記ゴム粒子含有熱可塑性エラストマー(I)の使用量は、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))中の前記ポリマー成分の質量100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分の質量100質量部)に対して1~15000質量部とすることが好ましく、100%モジュラス及び300%モジュラスがより向上するといったの観点からは、1~700質量部(更に好ましくは10~500質量部)とすることがより好ましく、他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、1000~10000質量部(更に好ましくは2000~9000質量部)とすることがより好ましい。 Further, in the mixing step, the amount of the rubber particle-containing thermoplastic elastomer (I) used is the same as that in the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)). The amount is preferably 1 to 15000 parts by mass with respect to 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component), and 100% modulus and 300% modulus are From the viewpoint of further improving, 1 to 700 parts by mass (more preferably 10 to 500 parts by mass) is more preferable, and on the other hand, from the viewpoint of improving mechanical strength such as breaking strength and breaking elongation And 1000 to 10000 parts by mass (more preferably 2000 to 9000 parts by mass). It is more preferable.
 さらに、このような混合工程に際して、前記ゴム粒子含有熱可塑性エラストマー(I)中の熱可塑性樹脂が、前記熱可塑性ポリマー組成物(II)中の前記ポリマー成分の質量100質量部(前記熱可塑性ポリマー組成物(II)が前記熱可塑性エラストマー組成物(II)である場合、前記熱可塑性エラストマー組成物(II)中の前記エラストマー成分の質量100質量部)に対して1~10000質量部となるようにして混合することが好ましく、100%モジュラス及び300%モジュラスがより向上するといったの観点からは、1~900質量部(更に好ましくは10~800質量部)となるようにして混合することがより好ましく、他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、400~8000質量部(更に好ましくは500~7000質量部)となるようにして混合することがより好ましい。 Furthermore, in the mixing step, the thermoplastic resin in the rubber particle-containing thermoplastic elastomer (I) is 100 parts by mass of the polymer component in the thermoplastic polymer composition (II) (the thermoplastic polymer When the composition (II) is the thermoplastic elastomer composition (II), it is 1 to 10000 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II) From the viewpoint of further improving the 100% modulus and the 300% modulus, it is more preferable to mix in an amount of 1 to 900 parts by mass (more preferably 10 to 800 parts by mass). On the other hand, from the viewpoint of further improving the mechanical strength such as the breaking strength and the breaking elongation, To 8000 parts by weight (more preferably from 500 to 7000 parts by weight) and more preferably mixed as a.
 このように混合することにより、前記熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)、前記クレイ、及び、ゴム粒子を含有するゴム粒子含有エラストマー組成物を得ることができる。また、前記ゴム粒子含有熱可塑性エラストマー(I)としてTPVを利用した場合には、TPVの構造に由来して、前記熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)及び前記クレイを含有してなるマトリックスに、前記ゴム粒子が分散した状態の上記本発明のゴム粒子含有エラストマー組成物を、より効率よく製造することが可能となる。 By mixing in this manner, a rubber particle-containing elastomer composition containing the thermoplastic resin, the polymer component (more preferably the elastomer component), the clay, and rubber particles can be obtained. When TPV is used as the rubber particle-containing thermoplastic elastomer (I), the thermoplastic resin, the polymer component (more preferably the elastomer component), and the clay are derived from the TPV structure. Thus, the rubber particle-containing elastomer composition of the present invention in which the rubber particles are dispersed in the resulting matrix can be produced more efficiently.
 なお、このようにして得られるゴム粒子含有エラストマー組成物において、前記化学結合性の架橋部位を有さない熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)、前記クレイ、前記ゴム粒子の含有量は、上記本発明のゴム粒子含有エラストマー組成物において説明した各成分の含有量と同様であることが好ましい。また、このようにして得られるゴム粒子含有エラストマー組成物に前記添加剤を含有させる場合、その含有量は、最終的に得られるゴム粒子含有エラストマー組成物において、上記本発明のゴム粒子含有エラストマー組成物中の成分として既に説明した各成分の含有量と同様の量となるように、適宜調整することが好ましい。このように、ゴム粒子含有エラストマー組成物の製造時に、利用する原料(成分)の使用量を適宜調製することで容易に各成分を、上述のような含有量とすることができる。 In the rubber particle-containing elastomer composition thus obtained, the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), the clay, and the rubber particles The content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention. When the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the content thereof is the rubber particle-containing elastomer composition of the present invention in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things. Thus, each component can be easily made into content as above-mentioned by suitably adjusting the usage-amount of the raw material (component) to utilize at the time of manufacture of a rubber particle containing elastomer composition.
 なお、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))として、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂を含有するものを用いる場合について、化学結合性の架橋部位を有さないα-オレフィン系樹脂が、化学結合性の架橋部位を有さない熱可塑性樹脂の一種であることから、得られるゴム粒子含有エラストマー組成物においては(混合後においては)、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂は、前記熱可塑性樹脂の一成分としてゴム粒子含有エラストマー組成物に含まれることとなる。以上、第一の製法について説明したが、以下、第二の製法について説明する。 In addition, when using what contains the alpha-olefin resin which does not have the said chemically bondable crosslinking site as said thermoplastic polymer composition (II) (more preferably, said thermoplastic elastomer composition (II)) In the rubber particle-containing elastomer composition obtained, since the α-olefin resin having no chemically bondable crosslinking site is a kind of thermoplastic resin having no chemically bondable crosslinkable site, After mixing), the α-olefin resin having no chemically bondable crosslinking site is contained in the rubber particle-containing elastomer composition as one component of the thermoplastic resin. As mentioned above, although the 1st manufacturing method was demonstrated, the 2nd manufacturing method is demonstrated hereafter.
 [第二のゴム粒子含有エラストマー組成物の製造方法(第二の製法)]
 本発明の第二のゴム粒子含有エラストマー組成物の製造方法(第二の製法)は、
 環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)と;前記化合物(i)、並びに、前記化合物(i)及び前記化合物(ii)の混合原料のうちの少なくとも1種の前記原料化合物と;前記ポリマー及び前記原料化合物の総量100質量部(前記ポリマーが前記エラストマー性ポリマーである場合、前記エラストマー性ポリマー及び前記原料化合物の総量100質量部)に対して20質量部以下の含有割合のクレイと;化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)と;を混合することにより、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応せしめて、前記ポリマー成分(より好ましくは前記エラストマー成分)を形成し、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
[Method of Producing Second Rubber Particle-Containing Elastomer Composition (Second Method)]
The method for producing a second rubber particle-containing elastomer composition of the present invention (second production method) is
A polymer having a cyclic acid anhydride group in a side chain (more preferably an elastomeric polymer having a cyclic acid anhydride group in a side chain); the compound (i), and the compound (i) and the compound (ii) A total of 100 parts by mass of at least one of the raw material compounds of the mixed raw materials; a total of 100 parts by mass of the polymer and the raw material compound (when the polymer is the elastomeric polymer, a total of 100 mass parts of the elastomeric polymer and the raw material compound Mixing 20 parts by weight or less of clay and rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles; A polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain) Mer) and reacted with said raw material compound, the polymer component (more preferably forms the elastomer component),
The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) A rubber particle-containing elastomer composition is obtained, which comprises a clay having a content ratio of not more than 20 parts by mass with respect to 100 parts by mass) and rubber particles.
 このような第二の製法に用いる環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)、原料化合物(化合物(i)、化合物(ii))、クレイ、及び、ゴム粒子含有熱可塑性エラストマー(I)は、第一の製法において説明したものと同様のものである(その好適なものも同様である)。 A polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain) used in such a second production method, a starting compound (compound (i), a compound (ii) ), Clay and rubber particle-containing thermoplastic elastomer (I) are the same as those described in the first production method (the preferred ones are also the same).
 第二の製法において、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と;前記原料化合物と;前記クレイと;前記ゴム粒子含有熱可塑性エラストマー(I)と;を混合する方法としては特に制限されず、公知の混合方法等を適宜採用することができ、例えば、ロール、ニーダー、押出し機、万能攪拌機等により混合する方法を採用することができる。 In the second production method, a polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain); the raw material compound; the clay; the rubber The method for mixing the particle-containing thermoplastic elastomer (I) is not particularly limited, and a known mixing method can be appropriately adopted. For example, a method of mixing using a roll, a kneader, an extruder, a universal stirrer, etc. Can be adopted.
 また、第二の製法の前記混合工程において、各成分の添加順序は特に制限されるものではなく、各成分を一度(同時)に添加して混合する方法、各成分を順次添加して混合する方法、予め前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを混合反応させた後に他の成分を混合することで、結果的に前記各成分を混合する方法等であってもよい。また、このような混合工程においては、クレイの分散性をより向上させるといった観点からは、環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記ゴム粒子含有熱可塑性エラストマー(I)との混合物を調製した後にクレイを添加し、その後、前記原料化合物を添加して混合することが好ましい。また、各種添加剤(前記化学結合性の架橋部位を有さないスチレンブロック共重合体、パラフィンオイル、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂など)を添加する場合には、クレイが十分に分散するように、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記ゴム粒子含有熱可塑性エラストマー(I)と各種添加剤とを含む混合物を予め調製した後にクレイを添加し、その後、前記原料化合物を添加して混合することが好ましい。なお、このような混合の際には、クレイの分散性をより向上させるといった観点、ゴム粒子を十分に分散させるといった観点から、可塑化する成分(例えば、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)、前記ゴム粒子含有熱可塑性エラストマー(I)、各種添加剤中のポリマー成分等)を可塑化することが好ましい。 Further, in the mixing step of the second production method, the addition order of the respective components is not particularly limited, a method of adding each component once (simultaneously) and mixing, and sequentially adding and mixing each component Method: The polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) is mixed and reacted with the starting compound, and then other components are mixed. As a result, the method may be such as mixing the respective components. In addition, in such a mixing step, from the viewpoint of further improving the dispersibility of the clay, a polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomer having a cyclic acid anhydride group in a side chain) It is preferable to add a clay after preparing a mixture of a polymer) and the rubber particle-containing thermoplastic elastomer (I), and then add and mix the raw material compounds. In addition, when various additives (such as a styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, an α-olefin resin having no chemical bondable crosslinkable site, etc.) are added. A polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain) and the rubber particle-containing thermoplastic elastomer (the elastomeric polymer having the cyclic acid anhydride group in the side chain) Preferably, the clay is added after preparing a mixture containing I) and various additives, and then the raw material compounds are added and mixed. In addition, in the case of such mixing, from the viewpoint of further improving the dispersibility of the clay and the viewpoint of sufficiently dispersing the rubber particles, a component to be plasticized (for example, the cyclic acid anhydride group is used as a side chain) It is preferable to plasticize the polymer (more preferably, the elastomeric polymer having a cyclic acid anhydride group in the side chain), the rubber particle-containing thermoplastic elastomer (I), the polymer component in various additives, and the like.
 また、このような混合工程においては、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応させる。このように、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応させる際の温度条件は、前述の第一の製法において説明した条件と同様であり、100~250℃(より好ましくは120~230℃)とすることが好ましい。このような観点で、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と;前記原料化合物と;前記クレイと;前記ゴム粒子含有熱可塑性エラストマー(I)と;を混合する際には、100~250℃(より好ましくは120~230℃)の温度条件下において混合することが好ましい。このように混合して、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物(化合物(i)及び/又は化合物(ii))とを反応させることにより、前記ポリマー(A)、並びに、前記ポリマー(B)からなる群から選択される少なくとも1種のポリマー成分(より好ましくは、前記エラストマー性ポリマー(A)、並びに、前記エラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分)を形成することができる。 Further, in such a mixing step, the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) is reacted with the raw material compound. Thus, the temperature conditions for reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound are the same as described above. It is preferable to set the temperature to 100 to 250 ° C. (more preferably 120 to 230 ° C.) under the same conditions as described in the first production method of From such a viewpoint, a polymer having the cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in a side chain); the raw material compound; the clay; the rubber When mixing the particle-containing thermoplastic elastomer (I), it is preferable to mix under the temperature condition of 100 to 250 ° C. (more preferably 120 to 230 ° C.). By mixing in this manner, the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound (compound (i) and / or By reacting the compound (ii) with the polymer (A), and at least one polymer component selected from the group consisting of the polymer (B) (more preferably, the elastomeric polymer (A)) And at least one elastomer component selected from the group consisting of the above-mentioned elastomeric polymers (B).
 また、第二の製法においては、前記クレイの使用量は、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物(化合物(i)、化合物(ii))の総量100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物(化合物(i)、化合物(ii))の総量100質量部)に対して20質量部以下とする必要がある。このような含有割合で利用することで、前記熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))において、ポリマー成分100質量部(前記ポリマー成分がエラストマー成分である場合、エラストマー成分100質量部)に対するクレイの含有量を20質量部以下とすることが可能となる。なお、このようなクレイの使用量が前記上限を超えると、引張り特性が低下する。このようなクレイの使用量としては、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物の総量100質量部)に対して0.01~10質量部であることがより好ましく、0.05~5質量部であることが更に好ましく、0.08~3質量部であることが特に好ましい。 In the second production method, the amount of the clay used is the total of 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (compound (i), compound (ii)) (the above When the polymer having a cyclic acid anhydride group in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain, the elastomeric polymer having the cyclic acid anhydride group in the side chain and the starting compound (compound It is necessary to make it 20 mass parts or less with respect to (i) and a total amount of 100 mass parts of compounds (ii)). In such a content ratio, 100 parts by mass of the polymer component (when the polymer component is an elastomer component) in the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) The content of clay with respect to 100 parts by mass of the elastomer component can be 20 parts by mass or less. In addition, when the usage-amount of such a clay exceeds the said upper limit, a tensile property will fall. The amount of such clay used is a total of 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (a polymer having the cyclic acid anhydride group in the side chain is the cyclic acid anhydride When it is an elastomeric polymer having a side chain, the amount is 0.01 to 10 parts by mass with respect to the total amount of 100 parts by mass of the elastomeric polymer having the cyclic acid anhydride group in the side chain and the raw material compound). Is more preferable, 0.05 to 5 parts by mass is more preferable, and 0.08 to 3 parts by mass is particularly preferable.
 また、前記原料化合物(化合物(i)、化合物(ii))の使用量は、前記第一の製法に用いる熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))において説明した理由と同様の理由で、前記環状酸無水物基を側鎖に有するポリマー100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー100質量部)に対して0.1~10質量部であることが好ましく、0.3~7質量部であることがより好ましく、0.5~5.0質量部であることが更に好ましい。 In addition, the amounts of the raw material compounds (compound (i) and compound (ii)) used are the same as in the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) used in the first production method 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain (the elastomer having the cyclic acid anhydride group in the side chain having the cyclic acid anhydride group in the side chain) for the same reason as the explained reason When it is a hydrophobic polymer, it is preferably 0.1 to 10 parts by mass, preferably 0.3 to 7 parts by mass, with respect to 100 parts by mass of the elastomeric polymer having the cyclic acid anhydride group in the side chain) Is more preferably 0.5 to 5.0 parts by mass.
 また、第二の製法において、前記ゴム粒子含有熱可塑性エラストマー(I)の使用量は、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量(得られるポリマー成分の質量)100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物の総量(得られるエラストマー成分の質量)100質量部)に対して1~15000質量部とすることが好ましく、100%モジュラス及び300%モジュラスがより向上するといったの観点からは、1~700質量部(更に好ましくは10~500質量部)とすることがより好ましく、他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、1000~10000質量部(更に好ましくは2000~9000質量部)とすることがより好ましい。 In the second production method, the amount of the rubber particle-containing thermoplastic elastomer (I) used is the total of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of polymer component to be obtained) 100 Parts by mass (when the polymer having the cyclic acid anhydride group in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain, an elastomeric polymer having the cyclic acid anhydride group in the side chain and the The amount is preferably 1 to 15,000 parts by mass with respect to 100 parts by mass of the total amount of raw material compounds (the mass of the obtained elastomer component), and from the viewpoint of further improving 100% modulus and 300% modulus, 1 to 700 It is more preferable to use parts by mass (more preferably 10 to 500 parts by mass), and on the other hand, machines such as breaking strength and breaking elongation From the viewpoint of a strength it is further improved, and more preferably to 1,000 to 10,000 parts by weight (more preferably 2,000 to 9,000 parts by weight).
 また、第二の製法の前記混合工程においては、上記環状酸無水物基を側鎖に有するポリマー(より好ましくは上記環状酸無水物基を側鎖に有するエラストマー性ポリマー)、原料化合物、クレイ等の各成分とともに、前記添加剤として前記化学結合性の架橋部位を有さないスチレンブロック共重合体を用いることが好ましい。このようなスチレンブロック共重合体の添加量は、前記ポリマー及び前記原料化合物の総量(得られるポリマー成分の質量)100質量部(前記ポリマーが前記エラストマー性ポリマーである場合、前記エラストマー性ポリマー及び前記原料化合物の総量(得られるエラストマー成分の質量)100質量部)に対して1~1000質量部であることが好ましく、10~800質量部であることがより好ましい。このような含有比率が前記下限未満ではオイルブリードし易くなる傾向にあり、他方、前記上限を超えると破断強度等の機械的物性が低下する傾向にある。 Further, in the mixing step of the second production method, a polymer having the above cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having the above cyclic acid anhydride group in a side chain), a raw material compound, clay, etc. It is preferable to use the styrene block copolymer which does not have the said chemically bondable crosslinking site as the said additive with each component of. The addition amount of such a styrene block copolymer is 100 parts by mass of the total amount of the polymer and the raw material compound (the mass of the polymer component to be obtained) (when the polymer is the elastomeric polymer, the elastomeric polymer and The amount is preferably 1 to 1000 parts by mass, and more preferably 10 to 800 parts by mass with respect to the total amount of the raw material compounds (the mass of the obtained elastomer component). If the content ratio is less than the lower limit, oil bleeding tends to occur easily. If the content ratio exceeds the upper limit, mechanical properties such as breaking strength tend to decrease.
 また、第二の製法の前記混合工程においては、上記各成分とともに前記添加剤として前記パラフィンオイルを用いることが好ましい。このようなパラフィンオイルの添加量は、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量(得られるポリマー成分の質量)100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物の総量(得られるエラストマー成分の質量)100質量部)に対して10~600質量部であることが好ましく、50~550質量部であることがより好ましく、75~500質量部であることが更に好ましく、100~400質量部であることが特に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少な過ぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発されやすくなる傾向にある。 Moreover, in the mixing step of the second production method, it is preferable to use the paraffin oil as the additive together with each of the above components. The addition amount of such paraffin oil is 100 parts by mass of the total amount of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of the polymer component to be obtained) (the cyclic acid anhydride group in the side chain When the polymer having the cyclic acid anhydride group is an elastomeric polymer having a side chain, the total content of the elastomeric polymer having the cyclic acid anhydride group in a side chain and the raw material compound (mass of the obtained elastomer component) 100 Preferably 10 to 600 parts by mass, more preferably 50 to 550 parts by mass, still more preferably 75 to 500 parts by mass, and 100 to 400 parts by mass. Particularly preferred. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there tends to be no sufficient effect in terms of flowability and processability, and on the other hand, the above upper limit is exceeded And, it tends to be easy to induce the bleeding of paraffin oil.
 また、第二の製法の前記混合工程においては、上記各成分とともに前記添加剤として前記化学結合性の架橋部位を有さないα-オレフィン系樹脂を用いることが好ましい。このようなα-オレフィン系樹脂の添加量は、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量(得られるポリマー成分の質量)100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物の総量(得られるエラストマー成分の質量)100質量部)に対して250質量部以下(より好ましくは5~250質量部、更に好ましくは10~225質量部、特に好ましくは25~200質量部、最も好ましくは35~175質量部)となるようにして利用することがより好ましい。このような含有量が前記下限未満では流動性が十分得られない傾向にあり、他方、前記上限を超えるとゴム弾性が低下して樹脂性が高くなってしまう(硬度が必要以上に高くなってしまう)傾向にある。 In addition, in the mixing step of the second production method, it is preferable to use an α-olefin resin having no chemically bondable crosslinking site as the additive together with the above respective components. The amount of such α-olefin resin added is 100 parts by mass of the total amount of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of the polymer component to be obtained) (the cyclic acid anhydride group When the polymer having in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain, the total amount of the elastomeric polymer having the cyclic acid anhydride group in the side chain and the raw material compound (elastomer component obtained 250 parts by mass or less (more preferably 5 to 250 parts by mass, still more preferably 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, most preferably 35 to 175 parts by mass) per 100 parts by mass) It is more preferable to use it as If the content is less than the lower limit, the flowability tends not to be sufficiently obtained. On the other hand, if the content exceeds the upper limit, the rubber elasticity is reduced and the resin property is increased (the hardness becomes higher than necessary) Tend to
 このようにして、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と;前記原料化合物と;前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物の総量100質量部)に対して20質量部以下の含有割合のクレイと;前記ゴム粒子含有熱可塑性エラストマー(I)と;を混合して、前記ポリマー成分(より好ましくは前記エラストマー成分)を形成することで、前記熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有する、ゴム粒子含有エラストマー組成物を得ることができる。なお、このようにして得られるゴム粒子含有エラストマー組成物において、前記化学結合性の架橋部位を有さない熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)、前記クレイ、前記ゴム粒子の含有量は、上記本発明のゴム粒子含有エラストマー組成物において説明した各成分の含有量と同様とすることが好ましい。また、このようにして得られるゴム粒子含有エラストマー組成物に前記添加剤を含有させる場合、その含有量も、最終的に得られるゴム粒子含有エラストマー組成物において、上記本発明のゴム粒子含有エラストマー組成物中の成分として既に説明した各成分の含有量と同様の量となるように適宜調整することが好ましい。以上、第二の製法について説明したが、以下、第三の製法について説明する。 Thus, the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain); the raw material compound; and the cyclic acid anhydride group The total of 100 parts by mass of the polymer having a side chain and the raw material compound (when the polymer having a cyclic acid anhydride group in a side chain is an elastomeric polymer having a cyclic acid anhydride group in a side chain, the cyclic acid anhydride is The content ratio of 20 parts by mass or less with respect to the total amount of the elastomeric polymer having side groups in the material group and the raw material compound) and the rubber particle-containing thermoplastic elastomer (I); Forming the polymer component (more preferably the elastomer component), the thermoplastic resin, and the polymer component (more preferably the elastomer) A rubber component and a clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) And rubber particle-containing elastomer compositions can be obtained. In the rubber particle-containing elastomer composition thus obtained, the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), the clay, and the rubber particles The content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention. When the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the rubber particle-containing elastomer composition of the present invention is also contained in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things. As mentioned above, although 2nd manufacturing method was demonstrated, the 3rd manufacturing method is demonstrated hereafter.
 [第三のゴム粒子含有エラストマー組成物の製造方法(第三の製法)]
 本発明の第三のゴム粒子含有エラストマー組成物の製造方法(第三の製法)は、
 前記環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)と;前記化合物(i)、並びに、前記化合物(i)及び前記化合物(ii)の混合原料のうちの少なくとも1種の前記原料化合物と;前記ポリマー及び前記原料化合物の総量100質量部(前記ポリマーが前記エラストマー性ポリマーである場合、前記エラストマー性ポリマー及び前記原料化合物の総量100質量部)に対して20質量部以下の含有割合のクレイと;前記化学結合性の架橋部位を有さない熱可塑性樹脂と;前記水素結合性架橋部位を有さないジエン系ゴムと;前記架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)と;を混合することにより、
 前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応せしめて前記ポリマー成分(より好ましくは前記エラストマー成分)を形成するとともに、前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめてジエン系ゴムの架橋物からなるゴム粒子を形成し、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
[Method of Producing Third Rubber Particle-Containing Elastomer Composition (Third Method)]
The third method for producing a rubber particle-containing elastomer composition of the present invention (third method) is
A polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain); the compound (i), and the compound (i) and the compound (ii) And 100 parts by mass of the total of the polymer and the raw material compound (when the polymer is the elastomeric polymer, the total amount 100 of the elastomeric polymer and the raw material compound) 20% by mass or less of a clay with respect to the mass part), a thermoplastic resin having no chemically bondable crosslinking site, and a diene rubber having no hydrogen bondable crosslinking site; Agents (at least one selected from the group consisting of peroxide-based crosslinking agents, phenol resin-based crosslinking agents, sulfur-based crosslinking agents, and silane-based crosslinking agents); By case,
The polymer component (more preferably, the elastomer component) is reacted by reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound. Forming a rubber particle comprising a crosslinked product of a diene-based rubber by reacting the diene-based rubber not having the hydrogen bondable crosslinking site with the crosslinking agent.
The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) A rubber particle-containing elastomer composition is obtained, which comprises a clay having a content ratio of not more than 20 parts by mass with respect to 100 parts by mass) and rubber particles.
 このような第三の製法に用いる環状酸無水物基を側鎖に有するポリマー(より好ましくは環状酸無水物基を側鎖に有するエラストマー性ポリマー)、原料化合物(化合物(i)、化合物(ii))、クレイ、化学結合性の架橋部位を有さない熱可塑性樹脂、水素結合性架橋部位を有さないジエン系ゴム、架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)は、上記第一の製法及び上記本発明のゴム粒子含有エラストマー組成物において説明した、それらの成分とそれぞれ同様のものである(好適なものも同様である)。 A polymer having a cyclic acid anhydride group in a side chain (more preferably, an elastomeric polymer having a cyclic acid anhydride group in a side chain) used in such a third production method, a starting compound (compound (i), a compound (ii) )), Clay, thermoplastic resin having no chemically bonding crosslinking site, diene rubber having no hydrogen bonding crosslinking site, crosslinking agent (peroxide crosslinking agent, phenol resin crosslinking agent, sulfur system) The crosslinking agent and at least one selected from the group consisting of silane crosslinking agents are the same as those components described in the first production method and the rubber particle-containing elastomer composition of the present invention, respectively. (The preferred one is similar as well).
 また、前記第三の製法の前記混合工程において、各成分の添加順序は特に制限されるものではなく、各成分を一度(同時)に添加して混合する方法;各成分を順次添加して混合する方法;予め前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを混合反応させた後に他の成分を混合することで、結果的に前記各成分を混合する方法;予め前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記水素結合性架橋部位を有さないジエン系ゴムと、前記架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)とを混合して、ジエン系ゴムと前記架橋剤を反応させた後に、他の成分を混合することで、結果的に前記各成分を混合する方法等であってもよい。 In addition, in the mixing step of the third production method, the addition order of the respective components is not particularly limited, and a method of adding the respective components once (simultaneously) and mixing them; sequentially adding the respective components and mixing them Method for mixing and reacting other components, after previously mixing and reacting the polymer having the cyclic acid anhydride group in the side chain (more preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain) and the raw material compound A method of mixing the respective components as a result by mixing; a thermoplastic resin which does not have the crosslinking site of the chemical bonding property in advance, a diene rubber which does not have the hydrogen bonding crosslinking site, and the crosslinking Agent (a peroxide type crosslinking agent, a phenol resin type crosslinking agent, at least one selected from the group consisting of a sulfur type crosslinking agent and a silane type crosslinking agent) is mixed to react the diene rubber with the above-mentioned crosslinking agent After By mixing the ingredients, or a method such as to mix the results in each of the components.
 また、第三の製法の混合工程においては、公知の混合方法等を適宜採用することができる。さらに、第三の製法においては、各成分の添加順序は特に制限されるものではないが、クレイの分散性をより向上させるといった観点、及び、形成されるゴム粒子を十分に分散させるといった観点から、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)、前記化学結合性の架橋部位を有さない熱可塑性樹脂および前記水素結合性架橋部位を有さないジエン系ゴム;クレイ;前記原料化合物;前記架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種);の順に添加して混合することが好ましい。また、各種添加剤(前記化学結合性の架橋部位を有さないスチレンブロック共重合体、パラフィンオイル等)を添加する場合には、前記添加剤;前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)、前記化学結合性の架橋部位を有さない熱可塑性樹脂および前記水素結合性架橋部位を有さないジエン系ゴム;クレイ;前記原料化合物;前記架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種);の順に添加して混合することが好ましい。なお、添加剤として好適な前記化学結合性の架橋部位を有さないスチレンブロック共重合体、パラフィンオイル等の添加量の条件は第二の製法において説明したものと同様とすることが好ましい。 In addition, in the mixing step of the third production method, a known mixing method or the like can be appropriately adopted. Further, in the third production method, the addition order of the respective components is not particularly limited, but from the viewpoint of further improving the dispersibility of clay and from the viewpoint of sufficiently dispersing the formed rubber particles. A polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain), a thermoplastic resin having no chemically bondable crosslinking site, and the hydrogen Diene-based rubber having no bondable crosslinking site; clay; the raw material compound; the crosslinking agent (peroxide-based crosslinking agent, phenolic resin-based crosslinking agent, sulfur-based crosslinking agent, and silane-based crosslinking agent selected from the group consisting of It is preferable to add and mix in order of at least one of In addition, when various additives (a styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, etc.) are added, the additive; a polymer having the cyclic acid anhydride group in a side chain (More preferably, the elastomeric polymer having the cyclic acid anhydride group in the side chain), a thermoplastic resin having no chemically bonding crosslinking site, and a diene rubber having no hydrogen bonding crosslinking site; clay The raw material compound; the crosslinking agent (at least one selected from the group consisting of a peroxide crosslinking agent, a phenol resin crosslinking agent, a sulfur crosslinking agent, and a silane crosslinking agent) are sequentially added and mixed Is preferred. The conditions for the addition amount of the styrene block copolymer having no chemically bondable crosslinking site, paraffin oil, etc. suitable as an additive are preferably the same as those described in the second production method.
 また、このような混合工程においては、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応させてポリマー成分(より好ましくはエラストマー成分)を形成する。このような混合の条件としては、前記第二の製法において説明した条件と同様にすることが好ましい。さらに、第三の製法においては、かかる混合工程において、前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめて、ジエン系ゴムの架橋物からなるゴム粒子を形成する。このような反応に際しては、前記混同時にジエン系ゴムの架橋物が形成されるような温度条件で混合すればよく、前記環状酸無水物基を側鎖に有するポリマー(より好ましくは前記環状酸無水物基を側鎖に有するエラストマー性ポリマー)と前記原料化合物とを反応させてポリマー成分(より好ましくはエラストマー成分)を形成する際の温度条件と同様の条件を好適に利用できる。また、第三の製法においては、混合工程において、形成されるゴム粒子を十分に分散させた状態とするといった観点からは、各成分のうち、少なくとも、前記熱可塑性樹脂、水素結合性架橋部位を有さないジエン系ゴム、及び、前記架橋剤を溶融混練して動的架橋させることが好ましい。このように溶融混練させるといった観点からは、混合に際して、二軸押出機、スクリュー押出機、ニーダー、バンバリーミキサー等を用いて混合することが好ましい。なお、動的架橋させるための条件としては公知の条件(例えば、特許第6000714号公報に記載の条件)を適宜採用することができる。例えば、添加した樹脂成分の融点以上の温度(好ましくは100~250℃)で1分~1時間混合する方法を採用してもよい。なお、この際に加える剪断力も特に制限されず、動的架橋させることが可能となるように適宜条件を設定すればよいが、剪断速度が1~100sec-1となるように調製することが好ましい。 Moreover, in such a mixing step, a polymer having the cyclic acid anhydride group in the side chain (more preferably, an elastomeric polymer having the cyclic acid anhydride group in the side chain) is reacted with the raw material compound. Form a polymer component (more preferably an elastomeric component). It is preferable to make it the same as the conditions demonstrated in the said 2nd manufacturing method as conditions of such mixing. Furthermore, in the third production method, in the mixing step, the diene rubber having no hydrogen bondable crosslinking site is reacted with the crosslinking agent to form rubber particles composed of a crosslinked product of the diene rubber. . In such a reaction, mixing may be carried out under such temperature conditions that a crosslinked product of a diene rubber is simultaneously formed, and the polymer having a cyclic acid anhydride group in a side chain (more preferably, the cyclic acid anhydride) The same conditions as the temperature conditions at the time of forming the polymer component (more preferably, the elastomer component) by reacting an elastomeric polymer having a substance group in a side chain with the raw material compound can be suitably used. In the third production method, at least the thermoplastic resin and the hydrogen bondable crosslinking site among the respective components from the viewpoint that the formed rubber particles are sufficiently dispersed in the mixing step. It is preferable to melt-knead and dynamically crosslink the diene rubber which does not have and the crosslinking agent. From the viewpoint of melt-kneading in this way, mixing is preferably carried out using a twin-screw extruder, a screw extruder, a kneader, a Banbury mixer or the like. In addition, well-known conditions (For example, the conditions as described in patent 6000714) can be employ | adopted suitably as conditions for making it dynamically bridge | crosslink. For example, a method of mixing for 1 minute to 1 hour at a temperature (preferably 100 to 250 ° C.) higher than the melting point of the added resin component may be adopted. The shear force applied at this time is also not particularly limited, and conditions may be appropriately set so as to allow dynamic crosslinking, but it is preferable to prepare so that the shear rate is 1 to 100 sec -1. .
 また、第三の製法においても、前記クレイの使用量は、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー及び前記原料化合物の総量100質量部)に対して20質量部以下とする必要がある。このような含有割合は前記第二の製法において説明した条件と同様である(なお、好適な条件も同様である)。 In the third production method, the amount of the clay used is the total of 100 parts by mass of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (the polymer having the cyclic acid anhydride group in the side chain 20 parts by mass or less with respect to the total amount of 100 parts by mass of the elastomeric polymer having the cyclic acid anhydride group in the side chain and the raw material compound, when the elastomeric polymer has the cyclic acid anhydride group in the side chain You need to Such a content ratio is the same as the conditions described in the second production method (note that the preferable conditions are also the same).
 また、第三の製法において、前記熱可塑性樹脂の使用量は、前記環状酸無水物基を側鎖に有するポリマー及び前記原料化合物の総量(得られるポリマー成分の質量)100質量部(前記環状酸無水物基を側鎖に有するポリマーが前記環状酸無水物基を側鎖に有するエラストマー性ポリマーである場合、前記エラストマー性ポリマー及び前記原料化合物の総量(得られるエラストマー成分の質量)100質量部)に対して1~10000質量部とすることが好ましく、100%モジュラス及び300%モジュラスがより向上するといったの観点からは1~900質量部(更に好ましくは10~800質量部)とすることがより好ましく、他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、400~8000質量部(更に好ましくは500~7000質量部)とすることがより好ましい。 In the third production method, the amount of the thermoplastic resin used is 100 parts by mass of the total amount of the polymer having the cyclic acid anhydride group in the side chain and the raw material compound (mass of the polymer component to be obtained) When the polymer having an anhydride group in the side chain is an elastomeric polymer having the cyclic acid anhydride group in the side chain, the total amount of the elastomeric polymer and the raw material compound (the mass of the obtained elastomer component) 100 parts by mass) The amount is preferably 1 to 10000 parts by mass, and from the viewpoint of further improving the 100% modulus and 300% modulus, it is more preferably 1 to 900 parts by mass (more preferably 10 to 800 parts by mass). On the other hand, from the viewpoint of further improving the mechanical strength such as the breaking strength and the breaking elongation, 400 to 800 Parts by weight (more preferably from 500 to 7000 parts by weight) and more preferably in the.
 また、第三の製法において、前記ジエン系ゴムの使用量は、前記熱可塑性樹脂100質量部に対して1~1000質量部(更に好ましくは10~900質量部)とすることがより好ましい。このようなジエン系ゴムの使用量が前記下限未満ではゴム性が低くなる傾向にあり、他方、前記上限を超えると熱可塑性(成形性)が低くなる傾向にある。 In the third production method, the amount of the diene rubber used is more preferably 1 to 1000 parts by mass (more preferably 10 to 900 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. If the amount of such a diene rubber used is less than the above lower limit, the rubber property tends to be low, while if it exceeds the above upper limit, the thermoplasticity (moldability) tends to be low.
 また、第三の製法において、前記架橋剤の使用量は、前記ジエン系ゴム100質量部に対して0.1~20質量部(更に好ましくは0.3~15質量部)とすることがより好ましい。このような架橋剤の使用量が前記下限未満では架橋密度が低くなる傾向にあり、他方、前記上限を超えると架橋密度が高くなり過ぎる傾向にある。 In the third production method, the amount of the crosslinking agent used is 0.1 to 20 parts by mass (more preferably 0.3 to 15 parts by mass) with respect to 100 parts by mass of the diene rubber. preferable. If the amount of such a crosslinking agent used is less than the above lower limit, the crosslink density tends to be low, while if it exceeds the above upper limit, the crosslink density tends to be too high.
 このようにして、各成分を混合して、前記ポリマー成分(より好ましくは前記エラストマー成分)と前記ゴム粒子とを形成することで、前記熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有する、ゴム粒子含有エラストマー組成物を得ることができる。なお、このようにして得られるゴム粒子含有エラストマー組成物において、前記化学結合性の架橋部位を有さない熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)、前記クレイ、前記ゴム粒子の含有量は、上記本発明のゴム粒子含有エラストマー組成物において説明した各成分の含有量と同様とすることが好ましい。また、このようにして得られるゴム粒子含有エラストマー組成物に前記添加剤を含有させる場合、その含有量も、最終的に得られるゴム粒子含有エラストマー組成物において、上記本発明のゴム粒子含有エラストマー組成物中の成分として既に説明した各成分の含有量と同様の量となるように適宜調整することが好ましい。また、このような第三の製法においては、混合時に反応させてゴム粒子を形成することから、そのような混合工程により、マトリックスにゴム粒子が分散した上記本発明のゴム粒子含有エラストマー組成物を効率よく製造することも可能である。以上、第三の製法について説明したが、以下、第四の製法について説明する。 In this manner, the respective components are mixed to form the polymer component (more preferably the elastomer component) and the rubber particles, whereby the thermoplastic resin and the polymer component (more preferably the elastomer component) A rubber containing 20 parts by mass or less of a content ratio of 20 parts by mass or less based on 100 parts by mass of the polymer component (100 parts by mass of the elastomer component when the polymer component is the elastomer component) Particulate-containing elastomeric compositions can be obtained. In the rubber particle-containing elastomer composition thus obtained, the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), the clay, and the rubber particles The content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention. When the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the rubber particle-containing elastomer composition of the present invention is also contained in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things. In addition, in such a third production method, since the rubber particles are formed by reaction at the time of mixing, the rubber particle-containing elastomer composition of the present invention in which the rubber particles are dispersed in the matrix by such mixing step It is also possible to produce efficiently. The third manufacturing method has been described above, and the fourth manufacturing method will be described below.
 [第四のゴム粒子含有エラストマー組成物の製造方法(第四の製法)]
 本発明の第四のゴム粒子含有エラストマー組成物の製造方法(第四の製法)は、
 化学結合性の架橋部位を有さない熱可塑性樹脂と;水素結合性架橋部位を有さないジエン系ゴムと;架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)と;前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))と;を混合することにより、
 前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめて、ジエン系ゴムの架橋物からなるゴム粒子を形成し、
 前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とする方法である。
[Method of Producing Fourth Rubber Particle-Containing Elastomer Composition (Fourth Method)]
The fourth method for producing a rubber particle-containing elastomer composition of the present invention (fourth production method) is
A thermoplastic resin having no chemically bondable crosslinking site; a diene rubber not having a hydrogen bondable crosslinking site; a crosslinking agent (peroxide crosslinking agent, phenol resin crosslinking agent, sulfur crosslinking agent, By mixing at least one member selected from the group consisting of silane based crosslinking agents; and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II));
The diene rubber having no hydrogen bondable crosslinking site is reacted with the crosslinking agent to form a rubber particle comprising a crosslinked product of diene rubber,
The thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), and 100 parts by mass of the polymer component (when the polymer component is the elastomer component, the elastomer component) A rubber particle-containing elastomer composition is obtained, which comprises a clay having a content ratio of not more than 20 parts by mass with respect to 100 parts by mass) and rubber particles.
 このような第四の製法に用いる化学結合性の架橋部位を有さない熱可塑性樹脂と、水素結合性架橋部位を有さないジエン系ゴムと、架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)、前記熱可塑性ポリマー組成物(II)(より好ましくは熱可塑性エラストマー組成物(II))は、上記本発明のゴム粒子含有エラストマー組成物及び上記第一の製法において説明した、それらの成分とそれぞれ同様のものである(好適なものも同様である)。 A thermoplastic resin having no chemically bondable crosslinking site, a diene rubber having no hydrogen bondable crosslinking site, and a crosslinking agent (peroxide crosslinking agent, phenol resin) used in the fourth production method The thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II)) is at least one selected from the group consisting of a crosslinking agent, a sulfur-based crosslinking agent and a silane-based crosslinking agent; The components are the same as those described in the rubber particle-containing elastomer composition of the present invention and the first production method described above (the preferred ones are also the same).
 また、第四の製法の前記混合工程において、各成分の添加順序は特に制限されるものではなく、各成分を一度(同時)に添加して混合する方法;各成分を順次添加して混合する方法;予め前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記水素結合性架橋部位を有さないジエン系ゴムと、前記架橋剤(過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種)とを混合して、ジエン系ゴムと前記架橋剤を反応させた後に前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))を添加して混合することで、結果的に前記各成分を混合する方法;等であってもよい。このように、第四の製法の混合工程においては、各成分の添加順序は特に制限されるものではないが、形成されるゴム粒子を十分に分散させるといった観点から、前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記水素結合性架橋部位を有さないジエン系ゴムと、前記架橋剤と、前記熱可塑性ポリマー組成物(II)(より好ましくは前記熱可塑性エラストマー組成物(II))とを一度に添加して、溶融混合することが好ましい。このようにして溶融混合することにより、混合時に前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応させて、いわゆる動的架橋させることが可能となり、形成されたゴム粒子を十分に分散した状態のゴム粒子含有エラストマー組成物を得ることが可能となる。また、各種添加剤を添加する場合においても、添加順序は特に制限されるものではなく、目的の設計となるように添加剤を適宜添加すればよい。 Also, in the mixing step of the fourth production method, the addition order of the respective components is not particularly limited, and each component is added once (simultaneously) and mixed; the respective components are sequentially added and mixed Method: Thermoplastic resin not having the crosslinking site having the chemical bonding property in advance, diene rubber having no the hydrogen bonding crosslinking site, and the crosslinking agent (peroxide crosslinking agent, phenolic resin crosslinking agent And the thermoplastic polymer composition (II) after mixing the diene rubber and the crosslinking agent by mixing at least one selected from the group consisting of a sulfur crosslinking agent and a silane crosslinking agent; Preferably, the thermoplastic elastomer composition (II) may be added and mixed, and as a result, the respective components may be mixed; As described above, in the mixing step of the fourth production method, the addition order of the respective components is not particularly limited, but from the viewpoint of sufficiently dispersing the formed rubber particles, the crosslink site having the chemical bonding property A thermoplastic resin having no hydrogen bondable crosslinking site, the crosslinker, and the thermoplastic polymer composition (II) (more preferably, the thermoplastic elastomer composition (II) )) Is preferably added at once and melt mixed. Thus, by melting and mixing, it is possible to cause the so-called dynamic crosslinking by reacting the diene rubber having no hydrogen bondable crosslinking site at the time of mixing with the crosslinking agent, so that the formed rubber particles are formed. It is possible to obtain a rubber particle-containing elastomer composition in a state of being sufficiently dispersed. Further, even when various additives are added, the order of addition is not particularly limited, and the additives may be appropriately added so as to achieve the intended design.
 また、上述のように各成分を溶融混合する場合、その溶融混合時に、前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを動的架橋させることが可能な条件を採用することが好ましく、公知の動的架橋の方法(条件)を適宜採用することができる。例えば、混合機として二軸押出機、スクリュー押出機、ニーダー、バンバリーミキサーのうちのいずれかを用いて、各成分を一度(同時)に添加して、添加した樹脂成分(エラストマー成分を含む)の融点以上の温度(好ましくは100~250℃)で1分~1時間混合する方法を採用してもよい。なお、この際に加える剪断力も特に制限されず、動的架橋させることが可能となるように適宜条件を設定すればよいが、剪断速度が1~100sec-1となるように調製することが好ましい。なお、第四の製法において、前述のように溶融混合して最終生成物を製造する場合、かかる方法は、前記熱可塑性樹脂と、前記ジエン系ゴムと、前記架橋剤とを用いて、いわゆる動的架橋エラストマーを製造する際に、前記熱可塑性エラストマー組成物(II)を更に添加して最終生成物を製造する方法であるともいえる。そのため、その製造条件としては、いわゆる動的架橋エラストマーを製造する方法(例えば、特許第6000714号公報に記載の方法等)において採用している条件を適宜採用してもよい。このような方法によれば、ゴム粒子が十分に分散された状態のゴム粒子含有エラストマー組成物を効率よく製造することも可能となる。 In addition, when melt-mixing each component as described above, conditions are adopted that can dynamically crosslink the diene rubber and the crosslinking agent that do not have the hydrogen bondable crosslinking site at the time of the melt mixing. It is preferable that a known method (conditions) of dynamic crosslinking can be adopted as appropriate. For example, using either a twin-screw extruder, a screw extruder, a kneader, or a Banbury mixer as a mixer, each component is added once (simultaneously) and a resin component (including an elastomer component) added A method of mixing at a temperature above the melting point (preferably 100 to 250 ° C.) for 1 minute to 1 hour may be employed. The shear force applied at this time is also not particularly limited, and conditions may be appropriately set so as to allow dynamic crosslinking, but it is preferable to prepare so that the shear rate is 1 to 100 sec -1. . In the fourth production method, when the final product is produced by melt-mixing as described above, such a method is a so-called dynamic method using the thermoplastic resin, the diene rubber and the crosslinking agent. It can be said that the thermoplastic elastomer composition (II) is further added to produce a final product when producing a dynamically crosslinked elastomer. Therefore, as the production conditions, the conditions adopted in the method of producing a so-called dynamically crosslinked elastomer (for example, the method described in Japanese Patent No. 6000714) may be adopted appropriately. According to such a method, it is also possible to efficiently produce a rubber particle-containing elastomer composition in which rubber particles are sufficiently dispersed.
 また、第四の製法において、前記熱可塑性樹脂の使用量は、前記熱可塑性ポリマー組成物(II)中のポリマー成分(なお、前記熱可塑性ポリマー組成物(II)が前記熱可塑性エラストマー組成物(II)である場合、前記熱可塑性エラストマー組成物(II)中のエラストマー成分)100質量部に対して1~10000質量部とすることが好ましく、100%モジュラス及び300%モジュラスがより向上するといったの観点からは、1~900質量部(更に好ましくは10~800質量部)とすることがより好ましく、他方、破断強度及び破断伸びといった機械的な強度がより向上するといった観点からは、400~8000質量部(更に好ましくは500~7000質量部)とすることがより好ましい。なお、第四の製法において、前記ジエン系ゴムの使用量及び前記架橋剤の使用量の条件は、第三の製法において説明したそれらの使用量の条件と同様にすることが好ましい。 In the fourth production method, the amount of the thermoplastic resin used is the polymer component in the thermoplastic polymer composition (II) (in addition, the thermoplastic polymer composition (II) is the thermoplastic elastomer composition ( In the case of II), it is preferable to be 1 to 10000 parts by mass with respect to 100 parts by mass of the elastomer component in the thermoplastic elastomer composition (II), and 100% modulus and 300% modulus are further improved From the viewpoint, it is more preferable to use 1 to 900 parts by mass (more preferably 10 to 800 parts by mass), and from the viewpoint of further improving the mechanical strength such as the breaking strength and the breaking elongation, 400 to 8000. It is more preferable to use parts by mass (more preferably 500 to 7000 parts by mass). In the fourth production method, the conditions for the amount of the diene rubber used and the amount of the crosslinking agent used are preferably the same as the conditions for the amounts used in the third production method.
 また、第四の製法において、各種添加剤を添加する場合には、その添加剤の使用量(複数種のものを組み合わせて利用する場合には各添加剤のそれぞれの使用量)としては、前記熱可塑性樹脂100質量部に対して0.1~100質量部(更に好ましくは0.5~30質量部)とすることがより好ましい。このような添加剤の使用量が前記下限未満では添加剤の効果が低くなる傾向にあり、他方、前記上限を超えると添加剤の効果が高くなりすぎる傾向にある。なお、第四の製法において上記熱可塑性樹脂とともに添加する添加剤としてはスリップ剤、酸化防止剤、紫外線吸収剤、光安定剤、導電性付与剤、帯電防止剤、分散剤、難燃剤、防菌剤、中和剤、軟化剤、充填材、着色剤、熱伝導性充填材など通常ゴムに添加される公知の添加剤が好ましい。 In addition, in the fourth production method, when various additives are added, the amount of the additives used (the amount of each of the additives used when combining a plurality of types) The amount is more preferably 0.1 to 100 parts by mass (more preferably 0.5 to 30 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. If the amount of such an additive used is less than the lower limit, the effect of the additive tends to be low, while if the amount is more than the upper limit, the effect of the additive tends to be too high. As additives to be added together with the above-mentioned thermoplastic resin in the fourth production method, a slip agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a conductivity imparting agent, an antistatic agent, a dispersant, a flame retardant, an antifungal agent The well-known additive normally added to rubber | gum, such as an agent, a neutralizing agent, a softener, a filler, a coloring agent, a thermally conductive filler, is preferable.
 このようにして、各成分を混合して、混合物中において前記ゴム粒子を形成することで、前記熱可塑性樹脂と、前記ポリマー成分(より好ましくは前記エラストマー成分)と、前記ポリマー成分100質量部(前記ポリマー成分が前記エラストマー成分である場合、前記エラストマー成分100質量部)に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有する、ゴム粒子含有エラストマー組成物を得ることができる。なお、このようにして得られるゴム粒子含有エラストマー組成物において、前記化学結合性の架橋部位を有さない熱可塑性樹脂、前記ポリマー成分(より好ましくは前記エラストマー成分)、前記クレイ、前記ゴム粒子の含有量は、上記本発明のゴム粒子含有エラストマー組成物において説明した各成分の含有量と同様とすることが好ましい。また、このようにして得られるゴム粒子含有エラストマー組成物に前記添加剤を含有させる場合、その含有量も、最終的に得られるゴム粒子含有エラストマー組成物において、上記本発明のゴム粒子含有エラストマー組成物中の成分として既に説明した各成分の含有量と同様の量となるように適宜調整することが好ましい。さらに、このような第四の製法においては、混合時に反応させてゴム粒子を形成することから、そのような混合工程により、マトリックスにゴム粒子が分散した上記本発明のゴム粒子含有エラストマー組成物を効率よく製造することも可能である。 Thus, by mixing the components to form the rubber particles in the mixture, 100 parts by mass of the thermoplastic resin, the polymer component (more preferably the elastomer component), and the polymer component When the polymer component is the elastomer component, it is possible to obtain a rubber particle-containing elastomer composition containing clay and a rubber particle in a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the elastomer component) . In the rubber particle-containing elastomer composition thus obtained, the thermoplastic resin having no chemically bondable crosslinking site, the polymer component (more preferably the elastomer component), the clay, and the rubber particles The content is preferably the same as the content of each component described in the rubber particle-containing elastomer composition of the present invention. When the rubber particle-containing elastomer composition thus obtained is made to contain the additive, the rubber particle-containing elastomer composition of the present invention is also contained in the rubber particle-containing elastomer composition finally obtained. It is preferable to adjust suitably so that it may become the quantity similar to content of each component already demonstrated as a component in things. Furthermore, in such a fourth production method, the rubber particles are contained in the rubber particle-containing elastomer composition of the present invention in which the rubber particles are dispersed in the matrix by the mixing step, since the rubber particles are formed by reaction during mixing. It is also possible to produce efficiently.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 <JIS-A硬度>
 各実施例及び各比較例で得られたゴム粒子含有エラストマー組成物をそれぞれ用い、先ず、該ゴム粒子含有エラストマー組成物を200℃で10分間熱プレスし、厚みが約2mmとなるようにシートを調製した。次に、このようにして得られたシートを直径29mmの円盤状に打ち抜いて、7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにサンプルを調製した。このようにして得られたサンプルを用い、JIS K6253(2012年発行)に準拠して、JIS-A硬度を測定した。
<JIS-A hardness>
Using the rubber particle-containing elastomer composition obtained in each Example and each Comparative Example, first, the rubber particle-containing elastomer composition is heat-pressed at 200 ° C. for 10 minutes, and the sheet is made to have a thickness of about 2 mm. Prepared. Next, the sheet obtained in this manner was punched into a disk shape having a diameter of 29 mm, seven sheets were stacked, and a sample was prepared so that the height (thickness) was 12.5 ± 0.5 mm. Using the samples thus obtained, JIS-A hardness was measured in accordance with JIS K6253 (issued in 2012).
 <100%モジュラス、300%モジュラス、破断強度、破断伸び>
 各実施例及び各比較例で得られたゴム粒子含有エラストマー組成物をそれぞれ用い、先ず、該ゴム粒子含有エラストマー組成物を温度:200℃、予熱3分の条件で加熱した厚さ2mm、縦150mm、横150mmの金型に入れた後、温度:200℃、圧力:18MPa、加圧時間:5分の条件の加熱プレスにより加圧を加えた後、水冷冷却プレスで圧力:18MPa、加圧時間:2分の条件で加圧を加え、金型から取り出すことにより、2mm厚のシート(厚さ2mm、縦150mm、横150mm)をそれぞれ形成した。次に、このようにして得られたシートから3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251(2010年発行)に準拠して行い、100%モジュラス(M100)[単位:MPa]、300%モジュラス(M300)[単位:MPa]、破断強度(T)[単位:MPa]、及び、破断伸び(E)[単位:%]をそれぞれ室温(25℃)にて測定した。
<100% modulus, 300% modulus, breaking strength, breaking elongation>
Using the rubber particle-containing elastomer composition obtained in each Example and each Comparative Example, first, the rubber particle-containing elastomer composition was heated at a temperature of 200 ° C. for 3 minutes of preheating thickness 2 mm, length 150 mm After putting in a mold of 150 mm in width, pressure is applied by a heating press under the conditions of temperature: 200 ° C., pressure: 18 MPa, pressurization time: 5 minutes, then pressure: 18 MPa in a water-cooled cooling press: pressurization time A 2 mm thick sheet (thickness 2 mm, length 150 mm, width 150 mm) was formed by applying pressure under conditions of 2 minutes and taking it out of the mold. Next, a No. 3 dumbbell-shaped test piece is punched out of the sheet obtained in this manner, and a tensile test at a tensile speed of 500 mm / min is performed according to JIS K6251 (issued in 2010), 100% modulus (M 100 ) [unit: MPa], 300% modulus (M 300 ) [unit: MPa], breaking strength (T B ) [unit: MPa], and breaking elongation (E B ) [unit:%] at room temperature (%) It measured at 25 degreeC.
 <圧縮永久歪(C-Set)>
 各実施例及び各比較例で得られたゴム粒子含有エラストマー組成物をそれぞれ用い、先ず、該ゴム粒子含有エラストマー組成物を200℃で10分間熱プレスし、厚みが約2mmとなるようにシートを調製した。このようにして得られたシートを直径29mmの円盤状に打ち抜いて7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにサンプルを調製した。このようにして得られたサンプルを用い、専用治具で25%圧縮し、70℃で22時間放置した後の圧縮永久歪(単位:%)をJIS K6262(2013年発行)に準拠して測定した。なお、圧縮装置としてはダンベル社製の商品名「加硫ゴム圧縮永久歪試験器 SCM-1008L」を用いた。
<Compression set (C-Set)>
Using the rubber particle-containing elastomer composition obtained in each Example and each Comparative Example, first, the rubber particle-containing elastomer composition is heat-pressed at 200 ° C. for 10 minutes, and the sheet is made to have a thickness of about 2 mm. Prepared. The sheet thus obtained was punched into a disk shape having a diameter of 29 mm, and seven sheets were stacked, and a sample was prepared so that the height (thickness) was 12.5 ± 0.5 mm. The compression set (unit:%) after compression at a rate of 25% with a dedicated jig and leaving at 70 ° C. for 22 hours was measured according to JIS K6262 (issued in 2013) using the sample thus obtained. did. As a compression device, a trade name "Vulcanized rubber compression set tester SCM-1008L" manufactured by Dumbbell Co., Ltd. was used.
 <組成物中のゴム粒子の平均粒子径の測定>
 実施例1~8及び比較例1~5で得られたゴム粒子含有エラストマー組成物中のゴム粒子の平均粒子径は、それぞれ以下のようにして測定した。すなわち、各ゴム粒子含有エラストマー組成物ごとに、該組成物の断面を透過型電子顕微鏡(TEM、日立ハイテクノロジーズ社製の商品名「SU-70」)を用いて観測し、その断面中に含まれる任意の30個のゴム粒子の直径を求めて平均化することにより、ゴム粒子の平均粒子径を求めた。なお、測定に際しては、断面中のゴム粒子の外形の最大の外接円の直径を、該ゴム粒子の直径として測定した。また、かかる測定に際しては、前記装置(前記TEM)の測長機能を用いて、画面で各粒子の最大の直径の部分をポインタで始点から終点までドラッグすることにより、粒子ごとに直径を求めた。さらに、このような測定に際しては、各実施例及び各比較例で得られたゴム粒子含有エラストマー組成物をそれぞれ用いて、該ゴム粒子含有エラストマー組成物を200℃で10分間熱プレスし、厚みが約2mmとなるようにシートを調製し、その約2mm厚のシートからサンプル片を切り出した後、該サンプル片からクライオミクロトームを用いて、切断面が観測面となるように、-80℃の温度条件で、厚さ100nmの超薄切片を切り出して作成し、これを測定用の試料として利用して、前記切断面を前記組成物の断面として観測した。また、ゴム粒子の直径の測定時(測長時)の透過型電子顕微鏡の倍率は10000倍とした。なお、実施例1で得られたゴム粒子含有エラストマー組成物に関して、該組成物の断面の透過型電子顕微鏡写真(倍率3000倍のTEM写真:ゴム粒子の平均粒子径の測定の際に確認した組成物の断面の状態を示す写真)を図1に示し、図1に示す断面の一部の拡大図(倍率10000倍のTEM写真)を図2に示す。
<Measurement of Average Particle Size of Rubber Particles in Composition>
The average particle sizes of the rubber particles in the rubber particle-containing elastomer compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were measured as follows. That is, for each rubber particle-containing elastomer composition, the cross section of the composition is observed using a transmission electron microscope (TEM, trade name "SU-70" manufactured by Hitachi High-Technologies Corporation) and included in the cross section. The average particle size of the rubber particles was determined by calculating and averaging the diameters of 30 optional rubber particles. In the measurement, the diameter of the largest circumscribed circle of the outer shape of the rubber particles in the cross section was measured as the diameter of the rubber particles. In addition, at the time of such measurement, the diameter was determined for each particle by dragging the portion of the largest diameter of each particle on the screen from the start point to the end point using the length measurement function of the above-mentioned apparatus (the TEM). . Furthermore, in the case of such measurement, the rubber particle-containing elastomer composition is heat-pressed at 200 ° C. for 10 minutes using the rubber particle-containing elastomer composition obtained in each example and each comparative example. A sheet is prepared to have a size of about 2 mm, a sample piece is cut out from the sheet having a thickness of about 2 mm, and a temperature of −80 ° C. so that the cut surface becomes an observation surface using a cryomicrotome from the sample piece. Under the conditions, an ultrathin section with a thickness of 100 nm was cut out and prepared, and this was used as a sample for measurement, and the cut surface was observed as a cross section of the composition. Further, the magnification of the transmission electron microscope at the time of measurement of the diameter of the rubber particles (during measurement) was set to 10000 times. In addition, regarding the rubber particle-containing elastomer composition obtained in Example 1, a transmission electron micrograph of a cross section of the composition (TEM photograph at a magnification of 3000 times: composition confirmed in measurement of average particle diameter of rubber particles) A photograph showing the state of the cross section of the object is shown in FIG. 1, and an enlarged view of a part of the cross section shown in FIG. 1 (a TEM photograph at a magnification of 10000) is shown in FIG.
 (合成例1:熱可塑性エラストマー組成物(A)の調製)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(以下、場合により「SEBS」と称する)、クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)10gを加圧ニーダーに投入して、180℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(SKルブリカンツ社製の商品名「YUBASE8J」)20gを滴下し、SEBSとパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(三井化学社製の商品名「タフマーMH5040」、結晶化度:4%、以下において場合により「マレイン化EBM」と称する)5g、ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)7.5gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.12gを更に投入し、温度を180℃として2分間混練して可塑化させて第一の混合物を得た。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(株式会社ホージュン製の商品名「エスベンWX」)0.006gを更に加えて、180℃で4分間混練して第二の混合物を得た。次に、前記加圧ニーダー中の前記第二の混合物にペンタエリスリトール(三菱ケミカル社製の商品名「ノイライザーP」)を0.051g加え、180℃で8分間混合し、熱可塑性エラストマー組成物(A)を調製した。なお、かかる熱可塑性エラストマー組成物(A)中のエラストマー成分は、マレイン化EBMとペンタエリスリトールとの反応物となった。また、合成例1で得られた熱可塑性エラストマー組成物(A)を、便宜上、以下、場合により「TPE-(A)」と称する。
Synthesis Example 1: Preparation of Thermoplastic Elastomer Composition (A)
First, a styrene block copolymer (styrene-ethylene-butylene-styrene block copolymer (hereinafter sometimes referred to as “SEBS”), trade name “G1633” manufactured by Kraton, molecular weight: 400,000 to 500,000, styrene Content: 30% by mass) 10 g is put into a pressure kneader, and while kneading under conditions of 180 ° C., 20 g of paraffin oil (trade name "YUBASE8J" manufactured by SK Lubricants) is dropped in the pressure kneader, The SEBS and paraffin oil were mixed for 1 minute. Then, in the pressure kneader, maleic anhydride-modified ethylene-butene copolymer (trade name "Tafmer MH 5040" manufactured by Mitsui Chemicals, Inc., crystallinity degree: 4%, hereinafter sometimes referred to as "maleated EBM" ) Add 5 g of polyethylene (HDPE: trade name "HJ 590N" made by Japan Polyethylene) and 0.12 g of anti-aging agent (trade name "AO-50" made by Adeka Co., Ltd.), and set the temperature to 180 ° C. The mixture was kneaded for 2 minutes and plasticized to obtain a first mixture. Next, to the first mixture in the pressure kneader, 0.006 g of organically modified clay (trade name "Esben WX" manufactured by Hojun Co., Ltd.) is further added, and the mixture is kneaded at 180 ° C for 4 minutes. A second mixture was obtained. Next, 0.051 g of pentaerythritol (trade name "Nylizer P" manufactured by Mitsubishi Chemical Corporation) is added to the second mixture in the pressure kneader, and the mixture is mixed at 180 ° C. for 8 minutes to obtain a thermoplastic elastomer composition ( A) was prepared. The elastomer component in the thermoplastic elastomer composition (A) was a reaction product of maleated EBM and pentaerythritol. Further, for convenience, the thermoplastic elastomer composition (A) obtained in Synthesis Example 1 is hereinafter sometimes referred to as "TPE- (A)".
 (合成例2:熱可塑性エラストマー組成物(B)の調製)
 ペンタエリスリトールを0.051g用いる代わりに、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.141g用いた以外は合成例1と同様にして、熱可塑性エラストマー組成物(B)を得た。なお、かかる熱可塑性エラストマー組成物(B)中のエラストマー成分は、マレイン化EBMとベンゾグアナミンとの反応物となった。また、合成例2で得られた熱可塑性エラストマー組成物(B)を、便宜上、以下、場合により「TPE-(B)」と称する。
Synthesis Example 2: Preparation of Thermoplastic Elastomer Composition (B)
Synthesis Example 1 except that 0.141 g of 2,4-diamino-6-phenyl-1,3,5-triazine (trade name “benzoguanamine” manufactured by Nippon Shokuhin Co., Ltd.) was used instead of using 0.051 g of pentaerythritol The thermoplastic elastomer composition (B) was obtained in the same manner as in the above. The elastomer component in the thermoplastic elastomer composition (B) was a reaction product of maleated EBM and benzoguanamine. Further, for convenience, the thermoplastic elastomer composition (B) obtained in Synthesis Example 2 is hereinafter sometimes referred to as "TPE- (B)".
 (合成例3:熱可塑性エラストマー組成物(C)の調製)
 ペンタエリスリトールを0.051g用いる代わりに、トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナックP」)を0.131g用いた以外は合成例1と同様にして、熱可塑性エラストマー組成物(C)を得た。なお、かかる熱可塑性エラストマー組成物(C)中のエラストマー成分は、マレイン化EBMとトリスヒドロキシエチルイソシアヌレートとの反応物となった。また、合成例3で得られた熱可塑性エラストマー組成物(C)を、便宜上、以下、場合により「TPE-(C)」と称する。
Synthesis Example 3 Preparation of Thermoplastic Elastomer Composition (C)
A thermoplastic elastomer composition in the same manner as in Synthesis Example 1 except that 0.131 g of trishydroxyethyl isocyanurate (trade name "Tanac P" manufactured by Nichise Sangyo Co., Ltd.) is used instead of using 0.051 g of pentaerythritol. I got (C). The elastomer component in the thermoplastic elastomer composition (C) was a reaction product of maleated EBM and trishydroxyethyl isocyanurate. Further, for convenience, the thermoplastic elastomer composition (C) obtained in Synthesis Example 3 is hereinafter sometimes referred to as "TPE- (C)".
 (合成例4)
 ポリエチレンを使用せず、老化防止剤の使用量を0.0524gに変更し、SEBSの使用量を12gに変更し、パラフィンオイルの使用量を40gに変更し、無水マレイン酸変性エチレン-ブテン共重合体の使用量を0.4gに変更し、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンの使用量を0.01128gに変更し、有機化クレイの使用量を0.0004gに変更した以外は、合成例2と同様にして、熱可塑性エラストマー組成物(D)を得た。なお、かかる熱可塑性エラストマー組成物(D)中のエラストマー成分は、マレイン化EBMとベンゾグアナミンとの反応物となった。また、合成例4で得られた熱可塑性エラストマー組成物(D)を、便宜上、以下、場合により「TPE-(D)」と称する。
(Composition example 4)
Do not use polyethylene, change the amount of antioxidant used to 0.0524 g, change the amount of SEBS used to 12 g, change the amount of paraffin oil used to 40 g, maleic anhydride modified ethylene-butene co-weight The amount of coalescence was changed to 0.4 g, the amount of 2,4-diamino-6-phenyl-1,3,5-triazine was changed to 0.01128 g, and the amount of organic clay used was 0.0004 g A thermoplastic elastomer composition (D) was obtained in the same manner as in Synthesis Example 2 except that the composition was changed to The elastomer component in the thermoplastic elastomer composition (D) was a reaction product of maleated EBM and benzoguanamine. Further, for convenience, the thermoplastic elastomer composition (D) obtained in Synthesis Example 4 is hereinafter sometimes referred to as “TPE- (D)”.
 (合成例5)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を利用する代わりに無水マレイン酸変性高密度ポリエチレン(デュポン株式会社製の商品名「フサボンドE265」、密度0.95g/cm、以下において場合により「マレイン化HDPE」と称する)を7g利用し、トリスヒドロキシエチルイソシアヌレートの使用量を0.0623gに変更し、パラフィンオイルの使用量を21gに変更し、ポリエチレンの使用量を14gに変更し、SEBSの使用量を14gに変更し、有機化クレイの使用量を0.007gに変更し、老化防止剤の使用量を0.168gに変更した以外は、合成例3と同様にして、熱可塑性ポリマー組成物(E)を得た。なお、かかる熱可塑性ポリマー組成物(E)中のポリマー成分は、マレイン化HDPEとトリスヒドロキシエチルイソシアヌレートとの反応物となった。また、合成例5で得られた熱可塑性ポリマー組成物(E)を、便宜上、以下、場合により「TPC-(E)」と称する。
(Composition example 5)
Instead of using maleic anhydride modified ethylene-butene copolymer (maleated EBM), maleic anhydride modified high density polyethylene (trade name "Husabond E 265" manufactured by DuPont Co., Ltd., density 0.95 g / cm 3 , In some cases, 7 g of “maleated HDPE” is used, the usage of trishydroxyethyl isocyanurate is changed to 0.0623 g, the usage of paraffin oil is changed to 21 g, and the usage of polyethylene is changed to 14 g And the amount of SEBS was changed to 14 g, the amount of organophilic clay was changed to 0.007 g, and the amount of anti-aging agent was changed to 0.168 g. Thermoplastic polymer composition (E) was obtained. The polymer component in the thermoplastic polymer composition (E) was a reaction product of maleated HDPE and trishydroxyethyl isocyanurate. In addition, the thermoplastic polymer composition (E) obtained in Synthesis Example 5 is hereinafter sometimes referred to as “TPC- (E)” for convenience.
 (合成例6)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を単独で利用する代わりに、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)3.7gと無水マレイン酸変性高密度ポリエチレン(マレイン化HDPE:デュポン株式会社製の商品名「フサボンドE265」)6.3gの混合物を利用し、トリスヒドロキシエチルイソシアヌレートの使用量を0.176gに変更し、SEBSの使用量を6.52gに変更し、パラフィンオイルの使用量を15.22gに変更し、有機化クレイの使用量を0.01gに変更し、ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)の使用量を15gに変更し、該ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を加圧ニーダー中に投入する際に該ポリエチレン15gとともにエチレン-ブテン共重合体(三井化学社製の商品名「タフマーDF7350」、以下において場合により「EBM」と称する)5.22gを併せて投入し、更に、老化防止剤の使用量を0.117gに変更した以外は、合成例3と同様にして、熱可塑性ポリマー組成物(F)を得た。なお、かかる熱可塑性ポリマー組成物(F)中のポリマー成分は、マレイン化HDPEとトリスヒドロキシエチルイソシアヌレートとの反応物、及び、マレイン化EBMとトリスヒドロキシエチルイソシアヌレートとの反応物となった。また、合成例6で得られた熱可塑性ポリマー組成物(F)を、便宜上、以下、場合により「TPC-(F)」と称する。
Synthesis Example 6
Instead of using maleic anhydride modified ethylene-butene copolymer (maleated EBM) alone, 3.7 g of maleic anhydride modified ethylene-butene copolymer (maleated EBM) and maleic anhydride modified high density polyethylene ( Maleated HDPE: Using a mixture of 6.3 g of trade name “Husabond E 265” manufactured by DuPont Co., Ltd., the amount of trishydroxyethyl isocyanurate was changed to 0.176 g, and the amount of SEBS used was 6.52 g Change the amount of paraffin oil used to 15.22 g, change the amount of organic clay used to 0.01 g, and use 15 g of polyethylene (HDPE: trade name "HJ590N" made by Japan Polyethylene) Change the polyethylene (HDPE: trade name "HJ 590 N" made by Japan Polyethylene) In addition to 15 g of the polyethylene, 5.22 g of ethylene-butene copolymer (trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, hereinafter sometimes referred to as “EBM”) is also added together with 15 g of the polyethylene. A thermoplastic polymer composition (F) was obtained in the same manner as in Synthesis Example 3, except that the amount of the anti-aging agent used was changed to 0.117 g. The polymer component in the thermoplastic polymer composition (F) was a reaction product of maleated HDPE and trishydroxyethyl isocyanurate, and a reaction product of maleated EBM and trishydroxyethyl isocyanurate. In addition, the thermoplastic polymer composition (F) obtained in Synthesis Example 6 is hereinafter sometimes referred to as “TPC- (F)” for convenience.
 TPE-(A)~TPE-(D)及びTPC-(E)~(F)の組成を表1に示す。なお、表1中の数値はいずれも質量部を示す。 The compositions of TPE- (A) to TPE- (D) and TPC- (E) to (F) are shown in Table 1. All numerical values in Table 1 indicate parts by mass.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (各実施例及び比較例で利用する動的架橋型熱可塑性エラストマーの略称について)
 各実施例等において使用する動的架橋型熱可塑性エラストマー(TPV)の略称を以下に示す。
(About the abbreviation of the dynamically crosslinked thermoplastic elastomer used in each example and comparative example)
The abbreviation of the dynamic crosslinking thermoplastic elastomer (TPV) used in each Example etc. is shown below.
 TPV-(1):エクソン・モービル社製の商品名「サントプレン121-75M100」;
 TPV-(2):エクソン・モービル社製の商品名「サントプレン121-50M100」;
TPV-(3):三井化学社製の商品名「ミラストマー4010NS」;
TPV-(4):三井化学社製の商品名「ミラストマー6020NS」;
TPV-(5):三井化学社製の商品名「ミラストマー7030NS」。
TPV- (1): trade name "Santoprene 121-75 M100" manufactured by Exxon Mobil;
TPV- (2): trade name "Santoprene 121-50M100" manufactured by Exxon Mobil;
TPV- (3): trade name "Milastomer 4010 NS" manufactured by Mitsui Chemicals, Inc .;
TPV- (4): trade name "Milastomer 6020NS" manufactured by Mitsui Chemicals, Inc .;
TPV- (5): trade name "Milastomer 7030NS" manufactured by Mitsui Chemicals, Inc.
 (実施例1~8)
 TPE-(A)~TPE-(D)の中から選択される1種の熱可塑性エラストマー組成物40g又はTPC-(E)及びTPC-(F)の中から選択される1種の熱可塑性ポリマー組成物40gと、TPV-(1)~TPV-(5)の中から選択される1種の動的架橋型熱可塑性エラストマー10gとを、表2に示す組み合わせで利用して、これらを加圧ニーダーに投入して180℃の温度条件で10分間混合することにより、ゴム粒子含有エラストマー組成物50gをそれぞれ得た。
(Examples 1 to 8)
40 g of a thermoplastic elastomer composition selected from TPE- (A) to TPE- (D) or a thermoplastic polymer selected from TPC- (E) and TPC- (F) Using 40 g of the composition and 10 g of one dynamically cross-linked thermoplastic elastomer selected from TPV- (1) to TPV- (5) in the combinations shown in Table 2, these are pressurized The mixture was charged into a kneader and mixed at a temperature of 180 ° C. for 10 minutes to obtain 50 g of the rubber particle-containing elastomer composition.
 (比較例1~5)
 表2に示すように、TPV-(1)~TPV-(5)をそれぞれ、そのまま比較のためのゴム粒子含有エラストマー組成物として用いた(比較例1:TPV-(1)、比較例2:TPV-(2)、比較例3:TPV-(3)、比較例4:TPV-(4)、比較例5:TPV-(5))。
(Comparative Examples 1 to 5)
As shown in Table 2, TPV- (1) to TPV- (5) were used as they were as rubber particle-containing elastomer compositions for comparison (Comparative Example 1: TPV- (1), Comparative Example 2: TPV- (2), Comparative Example 3: TPV- (3), Comparative Example 4: TPV- (4), Comparative Example 5: TPV- (5)).
 実施例1~8及び比較例1~5で得られたゴム粒子含有エラストマー組成物の特性を表2に示す。なお、表2中のTPE-(A)~(D)及びTPC-(E)~(F)並びにTPV-(1)~(5)について、数値は質量比(質量%)を示し、記号「-」はその成分を利用していないこと(その成分の使用量が0質量%であること)を示す。 The properties of the rubber particle-containing elastomer compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 are shown in Table 2. In addition, about TPE- (A)-(D), TPC- (E)-(F), and TPV- (1)-(5) in Table 2, a numerical value shows mass ratio (mass%), The symbol " "-" Indicates that the component is not used (the amount of the component used is 0% by mass).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示す結果からも明らかなように、TPV-(1)~TPV-(5)をそのまま利用した場合(比較例1~5)と比較して、各TPVにTPE-(A)~TPE-(D)及びTPC-(E)~(F)の中から選択される1種を混合して、それぞれ得られたゴム粒子含有エラストマー組成物(実施例1~8)においては、いずれも圧縮永久歪に対する耐性がより高い水準のものとなることが分かった。なお、各実施例において利用した成分を考慮すれば、各実施例において得られたゴム粒子含有エラストマー組成物は、ポリマー成分(実施例1~3、実施例5及び実施例7~8においてはポリマー成分として好適なエラストマー成分)とクレイと熱可塑性樹脂とを含有するマトリックス中にゴム粒子が分散した構造を有するものであることは明らかである。 As apparent from the results shown in Table 2, TPE- (A) to TPE were obtained for each TPV as compared with the case where TPV- (1) to TPV- (5) were used as they were (Comparative Examples 1 to 5). In the rubber particle-containing elastomer compositions (Examples 1 to 8) obtained by mixing one selected from (D) and TPC- (E) to (F), each of them is compressed It has been found that the resistance to permanent set is at a higher level. In addition, in consideration of the components used in each example, the rubber particle-containing elastomer composition obtained in each example is a polymer component (a polymer in Examples 1 to 3, 5 and 7 to 8). It is apparent that the rubber particles have a structure in which rubber particles are dispersed in a matrix containing an elastomer component suitable as a component, a clay and a thermoplastic resin.
 (実施例9)
 先ず、スチレンブロック共重合体(SEBS、クレイトン社製の商品名「G1633」)10gを加圧ニーダーに投入して、180℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(SKルブリカンツ社製の商品名「YUBASE8J」)20gを滴下し、SEBSとパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、マレイン化EBM(三井化学社製の商品名「タフマーMH5040」)5g、TPV-(1)7.5gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.12gを更に投入し、温度を180℃として2分間混練して可塑化させて第一の混合物を得た。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(株式会社ホージュン製の商品名「エスベンWX」)0.006gを更に加えて、180℃で4分間混練して第二の混合物を得た。次に、前記加圧ニーダー中の前記第二の混合物にペンタエリスリトール(三菱ケミカル社製の商品名「ノイライザーP」)を0.051g加え、180℃で8分間混合することにより、ゴム粒子含有エラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMとペンタエリスリトールとの反応物であり、ゴム粒子はTPV-(1)中のゴム粒子に由来したものであった。
(Example 9)
First, 10 g of a styrene block copolymer (SEBS, trade name "G1633" manufactured by Kraton Co., Ltd.) is introduced into a pressure kneader and kneaded under the conditions of 180 ° C in a paraffin oil (SK Lubricants Co., Ltd.) 20g of brand names "YUBASE8J" (trade name) manufactured by Japan Electronics Co., Ltd. was dropped, and SEBS and paraffin oil were mixed for 1 minute. Next, 5 g of maleated EBM (trade name "Tafmer MH 5040" manufactured by Mitsui Chemicals, Inc.), 7.5 g of TPV- (1), and an antiaging agent (trade name "AO-50 manufactured by Adeka Co., Ltd." in the pressure kneader. 0.12 g was further added, and the mixture was kneaded at a temperature of 180 ° C. for 2 minutes for plasticization to obtain a first mixture. Next, to the first mixture in the pressure kneader, 0.006 g of organically modified clay (trade name "Esben WX" manufactured by Hojun Co., Ltd.) is further added, and the mixture is kneaded at 180 ° C for 4 minutes. A second mixture was obtained. Next, 0.051 g of pentaerythritol (trade name "Nylizer P" manufactured by Mitsubishi Chemical Corporation) is added to the second mixture in the pressure kneader, and the mixture is mixed at 180 ° C for 8 minutes to obtain a rubber particle-containing elastomer The composition was obtained. In the composition obtained, the elastomer component was a reaction product of maleated EBM and pentaerythritol, and the rubber particles were derived from the rubber particles in TPV- (1).
 (実施例10)
 TPV-(1)を7.5g用いる代わりにTPV-(2)を7.5g用いた以外は実施例9と同様にして、ゴム粒子含有エラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMとペンタエリスリトールとの反応物であり、ゴム粒子はTPV-(2)中のゴム粒子に由来したものであった。
(Example 10)
A rubber particle-containing elastomer composition was obtained in the same manner as in Example 9 except that 7.5 g of TPV- (2) was used instead of 7.5 g of TPV- (1). In the composition obtained, the elastomer component was a reaction product of maleated EBM and pentaerythritol, and the rubber particles were derived from the rubber particles in TPV- (2).
 (比較例6)
 TPV-(1)を7.5g用いる代わりに、熱可塑性樹脂であるエチレン-ブテン共重合体(三井化学社製の商品名「タフマーDF7350」、以下において場合により「EBM」と称する)を7.5g用いた以外は実施例9と同様にして、比較のためのエラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMとペンタエリスリトールとの反応物であった。なお、製造に用いた成分からも明らかなように、得られたエラストマー組成物はゴム粒子を含んでいない。
(Comparative example 6)
Instead of using 7.5 g of TPV- (1), an ethylene-butene copolymer (trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, Inc .; hereinafter sometimes referred to as “EBM”) which is a thermoplastic resin; An elastomer composition for comparison was obtained in the same manner as in Example 9 except that 5 g was used. In the composition obtained, the elastomer component was a reaction product of maleated EBM and pentaerythritol. In addition, as is clear from the components used for production, the obtained elastomer composition does not contain rubber particles.
 (実施例11)
 TPV-(1)を7.5g用いる代わりにTPV-(3)を7.5g用い、かつ、ペンタエリスリトールを0.051g用いる代わりに2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.141g用いた以外は実施例9と同様にして、ゴム粒子含有エラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMと2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物であり、ゴム粒子はTPV-(3)中のゴム粒子に由来したものであった。
(Example 11)
Instead of using 7.5 g of TPV- (1), 7.5 g of TPV- (3) was used, and instead of using 0.051 g of pentaerythritol, 2,4-diamino-6-phenyl-1,3,5- was used. A rubber particle-containing elastomer composition was obtained in the same manner as in Example 9 except that 0.141 g of triazine (trade name "benzoguanamine" manufactured by Nippon Shokubai Co., Ltd.) was used. In the composition obtained, the elastomer component is a reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine, and the rubber particles are TPV- (3). It was derived from rubber particles.
 (実施例12)
 TPV-(3)を7.5g用いる代わりにTPV-(4)を7.5g用いた以外は実施例11と同様にして、ゴム粒子含有エラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMと2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物であり、ゴム粒子はTPV-(4)中のゴム粒子に由来したものであった。
(Example 12)
A rubber particle-containing elastomer composition was obtained in the same manner as in Example 11 except that 7.5 g of TPV- (4) was used instead of 7.5 g of TPV- (3). In the composition obtained, the elastomer component is the reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine, and the rubber particles are TPV- (4). It was derived from rubber particles.
 (比較例7)
 TPV-(3)を7.5g用いる代わりにEBM(三井化学社製の商品名「タフマーDF7350」)を7.5g用いた以外は実施例11と同様にして、比較のためのエラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMと2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物であった。なお、製造に用いた成分からも明らかなように、得られたエラストマー組成物はゴム粒子を含んでいない。
(Comparative example 7)
An elastomer composition for comparison was prepared in the same manner as in Example 11 except that 7.5 g of EBM (trade name "Tafmer DF7350" manufactured by Mitsui Chemicals, Inc.) was used instead of using 7.5 g of TPV- (3). Obtained. In the composition obtained, the elastomer component was a reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine. In addition, as is clear from the components used for production, the obtained elastomer composition does not contain rubber particles.
 (実施例13)
 TPV-(1)を7.5g用いる代わりにTPV-(5)を7.5g用い、かつ、ペンタエリスリトールを0.051g用いる代わりにトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナックP」)を0.131g用いた以外は実施例9と同様にして、ゴム粒子含有エラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMとトリスヒドロキシエチルイソシアヌレートとの反応物であり、ゴム粒子はTPV-(5)中のゴム粒子に由来したものであった。
(Example 13)
Instead of using 7.5 g of TPV- (1), 7.5 g of TPV- (5) was used, and instead of using 0.051 g of pentaerythritol, trishydroxyethyl isocyanurate (trade name “TANAC manufactured by Nichise Sangyo Co., Ltd. A rubber particle-containing elastomer composition was obtained in the same manner as in Example 9 except that 0.131 g of P ′ ′) was used. In the composition obtained, the elastomer component was a reaction product of maleated EBM and trishydroxyethyl isocyanurate, and the rubber particles were derived from the rubber particles in TPV- (5).
 (比較例8)
 TPV-(5)を7.5g用いる代わりにEBM(三井化学社製の商品名「タフマーDF7350」)を7.5g用いた以外は実施例13と同様にして、比較のためのエラストマー組成物を得た。なお、得られた組成物中、エラストマー成分はマレイン化EBMとトリスヒドロキシエチルイソシアヌレートとの反応物であった。なお、製造に用いた成分からも明らかなように、得られたエラストマー組成物はゴム粒子を含んでいない。
(Comparative example 8)
An elastomer composition for comparison was prepared in the same manner as in Example 13 except that 7.5 g of EBM (trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, Inc.) was used instead of using 7.5 g of TPV- (5). Obtained. In the composition obtained, the elastomer component was a reaction product of maleated EBM and trishydroxyethyl isocyanurate. In addition, as is clear from the components used for production, the obtained elastomer composition does not contain rubber particles.
 実施例9~13及び比較例6~8で得られた組成物の特性を表3に示す。なお、表3中の組成の記載において数値は質量部を示し、記号「-」はその成分を利用していないこと(その成分の使用量が0質量部であること)を示す。 The properties of the compositions obtained in Examples 9 to 13 and Comparative Examples 6 to 8 are shown in Table 3. In the composition description in Table 3, the numerical values indicate parts by mass, and the symbol "-" indicates that the component is not used (the amount of the component used is 0 parts by mass).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示す結果から、先ず、エラストマー成分がマレイン化EBMとペンタエリスリトールとの反応物である場合について考察すると(実施例9~10で得られたゴム粒子エラストマー組成物と比較例6で得られたエラストマー組成物とを対比すると)、TPVを利用せずにゴム粒子を含まない熱可塑性樹脂(EBM)を単に利用した場合(比較例6)と比較してTPVを利用した場合(実施例9~10)に、得られる組成物の圧縮永久歪に対する耐性がより高度なものとなることが分かった。 From the results shown in Table 3, considering first the case where the elastomer component is a reaction product of maleated EBM and pentaerythritol (the rubber particle elastomer composition obtained in Examples 9 to 10 and Comparative Example 6) When using TPV as compared with the case where only thermoplastic resin (EBM) not containing rubber particles (EBM) is used without using TPV (Comparative Example 6) (Example 9) It was found that the resistance to compression set of the resulting composition is higher in (10).
 また、表3に示す結果から、エラストマー成分がマレイン化EBMと2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物である場合について考察すると(実施例11~12で得られたゴム粒子エラストマー組成物と比較例7で得られたエラストマー組成物とを対比すると)、TPVを利用せずにゴム粒子を含まない熱可塑性樹脂(EBM)を単に利用した場合(比較例7)と比較して、TPVを利用した場合(実施例11~12)に、得られる組成物の圧縮永久歪に対する耐性がより高度なものとなることが分かった。 Also, from the results shown in Table 3, it is considered that the case where the elastomer component is a reaction product of maleated EBM and 2,4-diamino-6-phenyl-1,3,5-triazine (Examples 11 to 12) When the obtained rubber particle elastomer composition and the elastomer composition obtained in Comparative Example 7 are compared with each other, the case where a thermoplastic resin (EBM) not containing rubber particles is simply used without using TPV (Comparative Example) In comparison with 7), it was found that the resistance to compression set of the resulting composition was higher when TPV was used (Examples 11 to 12).
 さらに、表3に示す結果から、エラストマー成分はマレイン化EBMとトリスヒドロキシエチルイソシアヌレートとの反応物である場合について考察すると(実施例13で得られたゴム粒子エラストマー組成物と比較例8で得られたエラストマー組成物とを対比すると)、TPVを利用せずにゴム粒子を含まない熱可塑性樹脂(EBM)を単に利用した場合(比較例8)と比較してTPVを利用した場合(実施例13)に、得られる組成物の圧縮永久歪に対する耐性がより高度なものとなることが分かった。 Further, from the results shown in Table 3, when considering that the elastomer component is a reaction product of maleated EBM and trishydroxyethyl isocyanurate (obtained from the rubber particle elastomer composition obtained in Example 13 and Comparative Example 8). In the case of using TPV as compared with the case of using only thermoplastic resin (EBM) containing no rubber particles without using TPV and comparing with the case of using the elastomer composition (Comparative Example 8) (Example) It was found in 13) that the resistance to compression set of the resulting composition was higher.
 このような結果(表3)から、TPVに由来する熱可塑性樹脂と、エラストマー成分と、エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物(実施例9~13)によれば、得られる組成物の圧縮永久歪に対する耐性がより高度なものとなることが確認された。なお、実施例9~13において利用した成分を考慮すれば、各実施例において得られたゴム粒子含有エラストマー組成物は、エラストマー成分とクレイと熱可塑性樹脂を含有するマトリックス中にゴム粒子が分散した構造を有するものであることは明らかである。 From these results (Table 3), rubber particles containing a thermoplastic resin derived from TPV, an elastomer component, a clay having a content ratio of 20 parts by mass or less based on 100 parts by mass of the elastomer component, and rubber particles According to the contained elastomer compositions (Examples 9 to 13), it was confirmed that the resistance to compression set of the resulting composition is higher. In addition, in consideration of the components used in Examples 9 to 13, the rubber particle-containing elastomer composition obtained in each Example was that the rubber particles were dispersed in the matrix containing the elastomer component, the clay and the thermoplastic resin. It is clear that it has a structure.
 以上説明したように、本発明によれば、より高度な水準で圧縮永久歪を低減させることが可能なゴム粒子含有エラストマー組成物、並びに、そのようなゴム粒子含有エラストマー組成物を効率よく製造することが可能なゴム粒子含有エラストマー組成物の製造方法を提供することが可能となる。このように、本発明のゴム粒子含有エラストマー組成物は、圧縮永久歪に対する耐性をより高度なものとすることができることから、特に、土木・建築用各種ガスケット、建築用シール材、建築サッシシール材、パッキン材、緩衝材、自動車部品等の前述の各種用途に有用である。 As described above, according to the present invention, a rubber particle-containing elastomer composition capable of reducing compression set at a higher level, and such a rubber particle-containing elastomer composition are efficiently produced. It is possible to provide a method of producing a rubber particle-containing elastomer composition that can be As described above, since the rubber particle-containing elastomer composition of the present invention can make the resistance to compression set to a higher level, in particular, various gaskets for civil engineering and construction, sealing materials for construction, and construction sash sealing materials , Packing materials, shock absorbing materials, automobile parts and the like.

Claims (7)

  1.  マトリックスと、該マトリックス中に分散されているゴム粒子とを含有し、かつ、
     該マトリックスが、化学結合性の架橋部位を有さない熱可塑性樹脂と、
     カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と、
     前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、
    を含有してなるものであること、
    を特徴とするゴム粒子含有エラストマー組成物。
    A matrix and rubber particles dispersed in the matrix, and
    A thermoplastic resin wherein the matrix does not have a chemically bondable crosslinking site;
    Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less
    Clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component,
    Containing
    Rubber particle containing elastomer composition characterized by the above-mentioned.
  2.  前記ゴム粒子の平均粒子径が0.01~20.0μmであることを特徴とする請求項1に記載のゴム粒子含有エラストマー組成物。 The rubber particle-containing elastomer composition according to claim 1, wherein an average particle diameter of the rubber particles is 0.01 to 20.0 μm.
  3.  前記ゴム粒子が、水素結合性架橋部位を有さないジエン系ゴムと、過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種の架橋剤との反応物であるジエン系ゴムの架橋物からなるものであることを特徴とする請求項1又は2に記載のゴム粒子含有エラストマー組成物。 The rubber particle is at least one selected from the group consisting of a diene rubber having no hydrogen bondable crosslinking site, a peroxide crosslinker, a phenol resin crosslinker, a sulfur crosslinker, and a silane crosslinker. The rubber particle-containing elastomer composition according to claim 1 or 2, which is made of a cross-linked product of a diene rubber which is a reaction product with a cross-linking agent of a kind.
  4.  化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)と;
     カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性ポリマー組成物(II)と;
    を混合することにより、
     前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とするゴム粒子含有エラストマー組成物の製造方法。
    A rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles;
    Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less, and 100 parts by mass of the polymer component And a thermoplastic polymer composition (II) comprising a clay having a content ratio of 20 parts by mass or less;
    By mixing
    Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles A method of producing a rubber particle-containing elastomer composition, comprising obtaining an elastomer composition.
  5.  環状酸無水物基を側鎖に有するポリマーと;
     前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(i)、並びに、前記化合物(i)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(ii)の混合原料のうちの少なくとも1種の原料化合物と;
     前記ポリマー及び前記原料化合物の総量100質量部に対して20質量部以下の含有割合のクレイと;
     化学結合性の架橋部位を有さない熱可塑性樹脂及びゴム粒子を含有するゴム粒子含有熱可塑性エラストマー(I)と;
    を混合することにより、
     前記環状酸無水物基を側鎖に有するポリマーと前記原料化合物とを反応せしめて、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分を形成し、
     前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とするゴム粒子含有エラストマー組成物の製造方法。
    A polymer having a cyclic anhydride group in the side chain;
    Compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, and compound which reacts with the compound (i) and the cyclic acid anhydride group to form a covalent crosslinking site (Ii) at least one starting compound of the mixed starting materials;
    Clay having a content of 20 parts by mass or less based on 100 parts by mass of the total amount of the polymer and the raw material compound;
    A rubber particle-containing thermoplastic elastomer (I) containing a thermoplastic resin having no chemically bondable crosslinking site and rubber particles;
    By mixing
    The polymer having the cyclic acid anhydride group in the side chain is reacted with the raw material compound to have a side chain (a) having a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. And a polymer (A) having a glass transition temperature of 25 ° C. or less, and a polymer having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less (B) Form at least one polymer component selected from the group consisting of
    Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles A method of producing a rubber particle-containing elastomer composition, comprising obtaining an elastomer composition.
  6.  環状酸無水物基を側鎖に有するポリマーと;
     前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(i)、並びに、前記化合物(i)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(ii)の混合原料のうちの少なくとも1種の原料化合物と;
     前記ポリマー及び前記原料化合物の総量100質量部に対して20質量部以下の含有割合のクレイと;
     化学結合性の架橋部位を有さない熱可塑性樹脂と;
     水素結合性架橋部位を有さないジエン系ゴムと;
     過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種の架橋剤と;
    を混合することにより、
     前記環状酸無水物基を側鎖に有するポリマーと前記原料化合物とを反応せしめて、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分を形成するとともに、前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめて、ジエン系ゴムの架橋物からなるゴム粒子を形成し、
     前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とするゴム粒子含有エラストマー組成物の製造方法。
    A polymer having a cyclic anhydride group in the side chain;
    Compound (i) which reacts with the cyclic acid anhydride group to form a hydrogen bondable crosslinking site, and compound which reacts with the compound (i) and the cyclic acid anhydride group to form a covalent crosslinking site (Ii) at least one starting compound of the mixed starting materials;
    Clay having a content of 20 parts by mass or less based on 100 parts by mass of the total amount of the polymer and the raw material compound;
    A thermoplastic resin having no chemically bondable crosslinking site;
    A diene rubber having no hydrogen bondable crosslinking site;
    At least one crosslinker selected from the group consisting of peroxide crosslinkers, phenolic resin crosslinkers, sulfur crosslinkers and silane crosslinkers;
    By mixing
    The polymer having the cyclic acid anhydride group in the side chain is reacted with the raw material compound to have a side chain (a) having a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. And a polymer (A) having a glass transition temperature of 25 ° C. or less, and a polymer having a hydrogen bonding crosslinking site and a covalent crosslinking site in the side chain and having a glass transition temperature of 25 ° C. or less (B) And at least one polymer component selected from the group consisting of: a rubber comprising a crosslinked product of a diene rubber by reacting the diene rubber not having the hydrogen bondable crosslinking site with the crosslinking agent. Form particles,
    Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles A method of producing a rubber particle-containing elastomer composition, comprising obtaining an elastomer composition.
  7.  化学結合性の架橋部位を有さない熱可塑性樹脂と;
     水素結合性架橋部位を有さないジエン系ゴムと;
     過酸化物系架橋剤、フェノール樹脂系架橋剤、硫黄系架橋剤及びシラン系架橋剤からなる群から選択される少なくとも1種の架橋剤と;
     カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるポリマー(B)からなる群から選択される少なくとも1種のポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイとを含有してなる熱可塑性ポリマー組成物(II)と;
    を混合することにより、
     前記水素結合性架橋部位を有さないジエン系ゴムと前記架橋剤とを反応せしめて、ジエン系ゴムの架橋物からなるゴム粒子を形成し、
     前記化学結合性の架橋部位を有さない熱可塑性樹脂と、前記ポリマー成分と、前記ポリマー成分100質量部に対して20質量部以下の含有比率のクレイと、ゴム粒子とを含有するゴム粒子含有エラストマー組成物を得ることを特徴とするゴム粒子含有エラストマー組成物の製造方法。
    A thermoplastic resin having no chemically bondable crosslinking site;
    A diene rubber having no hydrogen bondable crosslinking site;
    At least one crosslinker selected from the group consisting of peroxide crosslinkers, phenolic resin crosslinkers, sulfur crosslinkers and silane crosslinkers;
    Polymer (A) having a side chain (a) containing a hydrogen bondable crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or less, and hydrogen bond to the side chain At least one polymer component selected from the group consisting of a polymer (B) containing an anionic crosslinking site and a covalent crosslinking site and having a glass transition temperature of 25 ° C. or less, and 100 parts by mass of the polymer component And a thermoplastic polymer composition (II) comprising a clay having a content ratio of 20 parts by mass or less;
    By mixing
    The diene rubber having no hydrogen bondable crosslinking site is reacted with the crosslinking agent to form a rubber particle comprising a crosslinked product of diene rubber,
    Rubber particles containing: thermoplastic resin having no chemically bondable crosslinking site, the polymer component, clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the polymer component, and rubber particles A method of producing a rubber particle-containing elastomer composition, comprising obtaining an elastomer composition.
PCT/JP2018/023904 2017-06-23 2018-06-22 Elastomer composition containing rubber particles and production method therefor WO2018235961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-123642 2017-06-23
JP2017123642 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235961A1 true WO2018235961A1 (en) 2018-12-27

Family

ID=64737772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023904 WO2018235961A1 (en) 2017-06-23 2018-06-22 Elastomer composition containing rubber particles and production method therefor

Country Status (1)

Country Link
WO (1) WO2018235961A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027109A1 (en) * 2018-07-30 2020-02-06 Jxtgエネルギー株式会社 Resin composition
EP3663349A4 (en) * 2017-08-02 2021-02-24 JXTG Nippon Oil & Energy Corporation Rubber composition, crosslinked rubber composition, tire, and rubber part for industrial use
WO2021261406A1 (en) 2020-06-24 2021-12-30 Eneos株式会社 Rubber composition and crosslinked rubber composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338220A (en) * 2002-05-20 2003-11-28 Mitsubishi Cable Ind Ltd Electric wire and cable
JP2010242013A (en) * 2009-04-09 2010-10-28 Yokohama Rubber Co Ltd:The Blend rubber composition containing polymer which can form two or more kinds of crosslinkable groups
JP2012131950A (en) * 2010-12-24 2012-07-12 Riken Technos Corp Thermoplastic resin composition
JP2014024929A (en) * 2012-07-25 2014-02-06 Mitsufuku Industry Co Ltd Method for manufacturing olefinic thermoplastic elastomer composition
JP2016155523A (en) * 2015-02-26 2016-09-01 横浜ゴム株式会社 Method for regenerating solid tire
JP2016193970A (en) * 2015-03-31 2016-11-17 Jxエネルギー株式会社 Thermoplastic elastomer composition and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338220A (en) * 2002-05-20 2003-11-28 Mitsubishi Cable Ind Ltd Electric wire and cable
JP2010242013A (en) * 2009-04-09 2010-10-28 Yokohama Rubber Co Ltd:The Blend rubber composition containing polymer which can form two or more kinds of crosslinkable groups
JP2012131950A (en) * 2010-12-24 2012-07-12 Riken Technos Corp Thermoplastic resin composition
JP2014024929A (en) * 2012-07-25 2014-02-06 Mitsufuku Industry Co Ltd Method for manufacturing olefinic thermoplastic elastomer composition
JP2016155523A (en) * 2015-02-26 2016-09-01 横浜ゴム株式会社 Method for regenerating solid tire
JP2016193970A (en) * 2015-03-31 2016-11-17 Jxエネルギー株式会社 Thermoplastic elastomer composition and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663349A4 (en) * 2017-08-02 2021-02-24 JXTG Nippon Oil & Energy Corporation Rubber composition, crosslinked rubber composition, tire, and rubber part for industrial use
WO2020027109A1 (en) * 2018-07-30 2020-02-06 Jxtgエネルギー株式会社 Resin composition
US11952483B2 (en) 2018-07-30 2024-04-09 Eneos Corporation Resin composition
WO2021261406A1 (en) 2020-06-24 2021-12-30 Eneos株式会社 Rubber composition and crosslinked rubber composition

Similar Documents

Publication Publication Date Title
US8071220B2 (en) Thermoplastic vulcanizates having improved adhesion to polar substrates
JP7055808B2 (en) Rubber compositions, crosslinked rubber compositions, tires and industrial rubber parts
WO2018235961A1 (en) Elastomer composition containing rubber particles and production method therefor
JP3601185B2 (en) Thermoplastic elastomer composition
JP2003003023A (en) Thermoplastic elastomer composition and its use
JP2018154707A (en) Dynamic-crosslinking thermoplastic elastomer composition
JP4625150B2 (en) Flame-retardant thermoplastic elastomer resin composition and method for producing the same
CN110461933B (en) Thermoplastic elastomer composition having excellent molded appearance and molded article thereof
JP2017025315A (en) Thermoplastic elastomer composition, molded body and component for automobile
JP2019056033A (en) Rubber composition
JP2023121852A (en) Thermoplastic elastomer composition, and joining member and method for manufacturing the same
JP4231367B2 (en) Thermoplastic elastomer composition
JP2008226850A (en) Flame-retardant thermoplastic elastomer resin composition and manufacturing method therefor
JP6686629B2 (en) Thermoplastic elastomer composition for extrusion molding
JP7293261B2 (en) Thermoplastic elastomer composition and use thereof
JP2019127528A (en) Thermoplastic elastomer composition
JPH07103274B2 (en) Olefin-based thermoplastic elastomer composition
JP3996456B2 (en) Thermoplastic elastomer composition
WO2022064869A1 (en) Thermoplastic elastomer composition and composite molded object
JP6838439B2 (en) Thermoplastic elastomer composition
JP7413866B2 (en) joining member
JP4231356B2 (en) Thermoplastic elastomer composition
JP2010272531A (en) Flame-retardant thermoplastic elastomer resin composition and method for manufacturing the same
JP2023070446A (en) Thermoplastic elastomer composition
JP2024041456A (en) Thermoplastic elastomer compositions and their uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP