WO2018235787A1 - Method using fluorescent proteins for determining interaction between proteins - Google Patents

Method using fluorescent proteins for determining interaction between proteins Download PDF

Info

Publication number
WO2018235787A1
WO2018235787A1 PCT/JP2018/023187 JP2018023187W WO2018235787A1 WO 2018235787 A1 WO2018235787 A1 WO 2018235787A1 JP 2018023187 W JP2018023187 W JP 2018023187W WO 2018235787 A1 WO2018235787 A1 WO 2018235787A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
fluorescent
cells
interaction
tetrameric
Prior art date
Application number
PCT/JP2018/023187
Other languages
French (fr)
Japanese (ja)
Inventor
拓 渡部
井上 健
ウリケシ ワシュル
Original Assignee
株式会社医学生物学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社医学生物学研究所 filed Critical 株式会社医学生物学研究所
Priority to JP2019525614A priority Critical patent/JPWO2018235787A1/en
Publication of WO2018235787A1 publication Critical patent/WO2018235787A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to a method of determining protein-protein interaction and its application, and a kit for use in the method.
  • FRET fluorescence resonance energy transfer
  • the present inventors have also previously developed a method for determining protein-protein interaction using a protein having multimerization ability (Patent Document 1). Specifically, a desired protein (a first protein and a second protein) is fused to a protein having multimerization ability (association inducing protein and a fluorescent protein having multimerization ability) and expressed in cells. In this case, if the first protein and the second protein interact with each other, the association between the proteins having multimerization ability is induced, whereby an aggregate (fluorescent spot) is formed autonomously. The present inventors have succeeded in developing a method for determining protein-protein interaction based on the finding of formation of the fluorescent luminescent spot.
  • PB1, SAM, etc. which are suitably used as the association-inducing protein, are functional domains possessed by the p62 protein for autophagy control, TEL protein, etc., which is a transcriptional repressor, and are deeply involved in the function of each protein in cells Do. Therefore, when the fusion protein containing such a functional domain is expressed in cells, the functions of endogenous p62 protein, TEL protein and the like of the cells will be disturbed, and thus determination of desired protein-protein interaction and There is a concern to affect their functional analysis.
  • the present inventors set a fluorescent protein to be a foreign protein for cells to be expressed together with a protein having both multimerizing ability to be fused to a desired protein, thereby providing a functional domain (PB1) in the endogenous protein It was conceived to determine protein-protein interactions without using domains, SAM domains, etc.).
  • the present invention has been made in view of the problems of the prior art described above, and a fluorescent luminescent spot formed when a fluorescent protein is fused to both of the target proteins and is expressed or introduced into cells
  • An object of the present invention is to provide a method for determining the interaction between target proteins as an indicator.
  • Non-Patent Document 1 Even if the same tetrameric fluorescent protein is fused to both of the target proteins and expressed in cells, the fluorescent bright spots are not formed, and the target The interaction between the proteins could not be determined. Furthermore, even when a monomeric fluorescent protein or a dimeric fluorescent protein is fused to any one of the proteins of interest and expressed in cells, a fluorescent bright spot indicating interaction between the proteins of interest is formed. It was not done.
  • fluorescent bright spot is formed depending on the interaction between proteins, and fluorescence resonance energy is further generated at the fluorescent bright spot. It has been found that movement or the like (FRET phenomenon) occurs.
  • the FRET obtained as compared with the case where a combination of fluorescent proteins which do not form a fluorescent bright spot when the subject interacts with each other is used. It was also revealed that the strength of the phenomenon (signal of FRET phenomenon, efficiency of FRET phenomenon) is increased.
  • the present invention relates to a method of determining protein-protein interaction and its application, and a kit for use in the method, and more specifically, provides the following invention.
  • a method for determining the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins And a method (1) comprising the following steps (1) to (3): a first fusion protein comprising a first protein and a first tetrameric fluorescent protein, a second protein and a second tetrameric fluorescence Expressing the Cell into a Cell or Introducing a Cell into a Cell with a Second Fusion Protein Containing a Protein (2) Detecting a Fluorescent Spot Generated by Association of the First Fusion Protein with the Second Fusion Protein in the Cell Step (3) of determining the interaction between the first protein and the second protein by detecting the fluorescent luminescent spot.
  • One of the first four-mer fluorescent protein and the second four-mer fluorescent protein is a donor fluorescent protein, the other is an acceptor fluorescent protein, and in the step (3) The method according to ⁇ 1>, wherein the interaction between the first protein and the second protein is determined by detection of the FRET phenomenon through formation.
  • ⁇ 3> A method for screening a protein that interacts with a specific protein, wherein one of the first protein and the second protein is the specific protein, and the other is a test protein, The method as described in ⁇ 1> or ⁇ 2> which selects the protein which interacts with this specific protein by detection of the said fluorescent luminescent point or the said FRET phenomenon.
  • ⁇ 4> A method for identifying an amino acid residue in a first protein involved in the interaction or an amino acid residue in a second protein, which comprises the first protein and the second protein
  • a protein into which a mutation has been introduced is used and the intensity of the fluorescent spot or the FRET phenomenon is attenuated as compared to the case where a protein without a mutation is used, the mutation is introduced.
  • a method for screening a substance that regulates the interaction between the first protein and the second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different A method (1) which is a protein and comprises the following steps (1) to (3): (1) a first fusion protein comprising a first protein and a first tetrameric fluorescent protein in the presence of a test compound, A step of expressing in a cell or introducing into a cell a second fusion protein comprising a second protein and a second tetrameric fluorescent protein, or A first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second fusion protein comprising a second protein and a second tetrameric fluorescent protein in a cell Placing the cells in the presence of a test compound after introduction into cells or cells, (2) detecting a fluorescent bright spot generated by association of the first fusion protein and the second fusion protein in the cell; (3) When the intensity of the fluorescent spot is higher than the intensity of the fluorescent spot generated
  • a method for screening a substance that modulates the interaction between a first protein and a second protein, which is any one of a first tetrameric fluorescent protein and a second tetrameric fluorescent protein Method in which one is a donor fluorescent protein and the other is an acceptor fluorescent protein and includes the following steps (1) to (3) (1) the first protein and the first four amounts in the presence of the test compound
  • ⁇ 8> To be used in the method according to any one of ⁇ 1> to ⁇ 7>, including at least one substance selected from the group consisting of the following (a) to (k) and instructions for use: (A) A DNA encoding a first tetrameric fluorescent protein, and a DNA encoding any protein so as to be expressed fused to the first tetrameric fluorescent protein A vector containing a cloning site (b) insertion of DNA encoding any protein so as to be expressed fused to the second tetramer fluorescent protein and DNA encoding the second tetramer fluorescent protein (C) a vector encoding a first fusion protein (d) a vector encoding a second fusion protein (e) (a) or (c) And a vector set comprising the vector according to (b) or (d) (f) a transformed cell carrying a vector encoding a first fusion protein (g) a vector carrying a second fusion protein Transformed cell (h) Transformed cell carrying a vector
  • the interaction between the target proteins is determined using the formed fluorescent bright spots as an index. Is possible. Furthermore, the fluorescent protein to be fused is not inherently endogenous to the cell in which it is expressed or introduced. Therefore, there is little risk of disturbing the function of the cells, and protein-protein interaction can be determined.
  • the formation of a fluorescent bright spot is caused.
  • the FRET phenomenon can be generated efficiently, and the interaction between the target proteins can also be determined by detecting the FRET phenomenon.
  • the FRET phenomenon can be generated also in the immobilized cells, it is also possible to determine the protein-protein interaction by the signal of the FRET phenomenon.
  • the fluorescence microscope which shows the result of having observed the COS7 cell which made mAG1 or mEGFP which is monomer fluorescence protein fuse on one side of detection object (p53 and MDM2), and made it fuse and express it on the other is shown. It is a photograph. It is a fluorescence-microscope photograph which shows the result of having observed the COS7 cell which fused and expressed the same tetrameric fluorescent protein AG or Mmj to both detection object (p53 and MDM2). It is a fluorescence-microscope photograph which shows the result of having observed the COS7 cell which each fused different tetramer fluorescent protein (AG and Mmj) to detection object (p53 and MDM2), and was made to express it.
  • a protein (AG-MDM2) formed by fusing tetramer fluorescent protein AG with N terminal of MDM2 and a tetrameric fluorescent protein MR different from AG with C terminal of p53 It is each fluorescence image of AG and MR which show the result of having analyzed the HEK293 cell which made it express with the protein (p53-MR) which becomes, and a Ratio image which shows the efficiency of the FRET phenomenon of MR / AG. It is a graph which shows the result of having analyzed the HEK293 cell which made AG-MDM2 and p53-MR expressed before and after addition of Nutlin-3.
  • the graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Before and after the addition of Nutlin-3, a protein (AG-MDM2) formed by fusing tetramer fluorescent protein AG with N terminal of MDM2 and a tetrameric fluorescent protein MR different from AG with N terminal of p53 It is each fluorescence image of AG and MR which show the result of having analyzed the HEK293 cell which made it express with the protein (MR-p53) which becomes, and a ratio image which shows the efficiency of the FRET phenomenon of MR / AG.
  • AG-MDM2 a protein formed by fusing tetramer fluorescent protein AG with N terminal of MDM2 and a tetrameric fluorescent protein MR different from AG with N terminal of p53
  • HEK293 cells expressing p53-MR and AG-MDM2 are analyzed by images showing fluorescence intensities of AG and MR and ratio images showing the efficiency of FRET phenomenon. is there. It is a graph showing the result of having analyzed the efficiency of the FRET phenomenon before and behind addition of Nutlin-3 about HEK293 cells which made p53-MR and AG-MDM2 express.
  • the graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates
  • AG and MR The results of analysis of HEK293 cells expressing p53-MR and a protein (mAG1-MDM2) fused with mAG1 at the N-terminus of MDM2 before and after the addition of Nutlin-3 are shown as AG and MR, respectively. It is an image which shows fluorescence intensity, and a Ratio image which shows the efficiency of a FRET phenomenon.
  • FIG. 6 is a graph showing the analysis results of the efficiency of the FRET phenomenon before and after the addition of Nutlin-3 for HEK293 cells expressing p53-MR and mAG1-MDM2.
  • the graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates
  • the analysis results of HEK293 cells expressing MR-p53 and AG-MDM2 before and after the addition of Nutlin-3 are images showing fluorescence intensities of AG and MR and Ratio images showing the efficiency of the FRET phenomenon. is there.
  • FIG. 8 is a graph showing the results of analysis of the efficiency of the FRET phenomenon before and after the addition of Nutlin-3 for HEK293 cells in which MR-p53 and mAG1-MDM2 were expressed.
  • the graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Before or after the addition of Nutlin-3, a signal of FRET phenomenon (MR / AG or mAG1 in HEK293 cells expressing p53-MR and AG-MDM2 and HEK293 cells expressing p53-MR and mAG1-MDM2 It is a graph which shows the result of having analyzed Em: 610 / Em: 510) and mAG1 / AG.
  • HEK293 cells expressing p53-MR and AG-MDM2 (p53-MR / AG-MDM2) in the absence or presence of Nutlin-3
  • HEK293 cells expressing p53-MR and mAG1-MDM2 (p53-MR and mAG1-MDM2) It is an image showing fluorescence intensity of AG or mAG1 and MR after immobilizing p53-MR / mAG1-MDM2) with paraformaldehyde and a Ratio image showing the efficiency of the FRET phenomenon.
  • HEK293 cells expressing MR-p53 and AG-MDM2 (MR-p53 / AG-MDM2) in the absence or presence of Nutlin-3 and HEK293 cells expressing MR-p53 and mAG1-MDM2
  • MR-p53 / AG-MDM2 Nutlin-3 and HEK293 cells expressing MR-p53 and mAG1-MDM2
  • A-1210477 It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAK and mAG1-MCL1 express before 5 minutes after addition.
  • “MAG1-MCL1” represents a protein obtained by fusing the monomeric fluorescent protein mAG1 to the N-terminus of MCL1.
  • time course (upper in the figure) of each fluorescence intensity derived from MR and mAG1 in cells expressing MR-BAK and mAG1-MCL1 and MR / mAG1 ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510).
  • the dotted line located above indicates the fluorescence intensity (Em: 510) derived from mAG1
  • the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR.
  • It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAX and AG-MCL1 express before and 5 minutes after addition of BAX and MCL1 interaction inhibitor (A-1210477) addition.
  • MR-BAX represents a protein obtained by fusing tetramer fluorescent protein MR to the N-terminus of BAX.
  • time course (upper in the figure) of each fluorescence intensity derived from MR and AG in cells expressing MR-BAX and AG-MCL1 and the MR / AG ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510).
  • the dotted line located above indicates the fluorescence intensity (Em: 510) derived from AG
  • the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR.
  • A-1210477 It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAX and mAG1-MCL1 express before 5 minutes after addition. Before and after addition of A-1210477, time course (upper in the figure) of each fluorescence intensity derived from MR and mAG1 in cells expressing MR-BAX and mAG1-MCL1 and MR / mAG1 ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510).
  • the dotted line located above indicates the fluorescence intensity (Em: 510) derived from mAG1
  • the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR.
  • It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-mTOR and AG-FKBP12 express before and 5 minutes after addition of mTOR and FKBP12 interaction inducer (Rapamycin) addition.
  • MR-mTOR represents a protein obtained by fusing the tetrameric fluorescent protein MR to the N-terminal of mTOR
  • AG-FKBP12 fuses the tetrameric fluorescent protein AG to the N-terminal of FKBP12
  • MAG1-FKBP12 represents a protein obtained by fusing the monomeric fluorescent protein mAG1 to the N-terminus of FKBP12.
  • the dotted line located at the top indicates the fluorescence intensity (Em: 610) derived from MR
  • the dotted line located at the bottom indicates the fluorescence intensity derived from mAG1 (Em: 510).
  • MTOR-DsRed2 represents a protein obtained by fusing the tetrameric fluorescent protein DsRed2 to the C-terminus of mTOR.
  • MTOR-COR5 represents a protein obtained by fusing the tetrameric fluorescent protein COR5 to the C-terminus of mTOR.
  • the ratio image (upper stage) which shows the efficiency of the FRET phenomenon in the cell which made MR-FKBP12 and mTOR-KikGR1 express before and 10 minutes after addition of rapamycin shows the graph which shows the signal of the FRET phenomenon (lower stage) .
  • MR-FKBP12 represents a protein obtained by fusing the tetrameric fluorescent protein MR to the N-terminus of FKBP12
  • mTOR-KikGR1 fuses the tetrameric fluorescent protein KikGR1 to the C-terminal of mTOR
  • KikGR1 represents a protein that A ratio image (upper part) showing the efficiency of FRET phenomenon and a graph (lower part) showing signals of FRET phenomenon in cells expressing FKBP12-DsRed2 and mTOR-KikGR1 before and 10 minutes after addition of rapamycin are shown.
  • the ratio image (upper part) which shows the efficiency of the FRET phenomenon in the cell which made FKBP12-COR5 and mTOR-KikGR1 express before the rapamycin addition 10 minutes after addition is shown, and the graph which shows the signal of the FRET phenomenon (lower) .
  • Ratio image (upper row) showing the efficiency of FRET phenomenon and the graph (lower row) showing the signal of FRET phenomenon in cells expressing Mmj-p53 and MR-MDM2 before and 10 minutes after addition of Nutlin-3
  • Mmj-p53 represents a protein obtained by fusing the tetrameric fluorescent protein Momiji (Mmj) to the N-terminal of p53
  • MR-MDM2 represents the tetrameric fluorescent protein MR at the N-terminal of MDM2.
  • the left side shows the result of detection and observation of fluorescence from AG, and the right side shows the result of detection and observation of fluorescence from mKO1.
  • MTOR-mKO1 represents a protein obtained by fusing the monomeric fluorescent protein mKO1 to the C-terminus of mTOR. It is a fluorescence-micrograph which shows the result of having observed the cell which made AG-FKBP12 and mTOR-mKO2 express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of fluorescence from AG, and the right side shows the results of detection and observation of fluorescence from mKO2.
  • MTOR-mKO2 represents a protein obtained by fusing the monomeric fluorescent protein mKO2 to the C-terminus of mTOR.
  • MTOR-KO1 represents a protein obtained by fusing the dimeric fluorescent protein KO1 to the C-terminus of mTOR. It is a fluorescence-micrograph which shows the result of having observed the cell which made AG-FKBP12 and mTOR-mKeima express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of fluorescence from AG, and the right side shows the results of detection and observation of fluorescence from mKeima.
  • MTOR-mKeima represents a protein obtained by fusing the monomeric fluorescent protein mKeima to the C-terminus of mTOR. It is a fluorescence microscope picture which shows the result of having observed the cell which made AG-FKBP12 and mTOR-dKeima express 30 minutes after Rapamycin addition.
  • the left side shows the result of detection and observation of fluorescence from AG, and the right side shows the result of detection and observation of fluorescence from dKeima.
  • MTOR-dKeima represents a protein obtained by fusing the dimeric fluorescent protein dKeima to the C-terminus of mTOR. It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-mKO1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from mKO1. It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-mKO2 express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from mKO2. It is a fluorescence-micrograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-KO1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from KO1. It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-mKeima express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from mKeima. It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-dKeima express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from dKeima. It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-dAG (AB) express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of MR-derived fluorescence
  • the right side shows the results of detection and observation of dAG (AB) -derived fluorescence.
  • MTOR-dAG (AB) represents a protein obtained by fusing the dimeric fluorescent protein dAG (AB) to the C-terminus of mTOR. It is a fluorescence-microscope photograph which shows the result of having observed the cell which made MR-FKBP12 and mTOR-dAG (AC) express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of MR-derived fluorescence
  • the right side shows the results of detection and observation of dAG (AC) -derived fluorescence.
  • MTOR-dAG (AC) represents a protein obtained by fusing the dimeric fluorescent protein dAG (AC) to the C-terminus of mTOR. It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-mUkG1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of mUkG1-derived fluorescence. “MTOR-mUkG1” represents a protein obtained by fusing the monomeric fluorescent protein mUkG1 to the C-terminus of mTOR.
  • MTOR-mMiCy1 represents a protein obtained by fusing the monomeric fluorescent protein mMiCy1 to the C-terminus of mTOR. It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-MiCy1 express 30 minutes after Rapamycin addition.
  • MTOR-MiCy1 represents a protein obtained by fusing the dimeric fluorescent protein MiCy1 to the C-terminus of mTOR. It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-KCy1 express 30 minutes after Rapamycin addition.
  • the left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of KCy1-derived fluorescence.
  • MTOR-KCy1 represents a protein obtained by fusing the dimeric fluorescent protein KCy1 to the C-terminus of mTOR.
  • the method for determining protein-protein interaction of the present invention comprises A method for determining the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins, and the following steps: (1) A first fusion protein containing a first protein and a first four-mer fluorescent protein, and a second fusion protein containing a second protein and a second four-mer fluorescent protein (1) to (3) 2.
  • protein means a molecule in which two or more amino acids are linked by peptide bond, and a modified form thereof. Therefore, the concept includes not only full-length proteins but also so-called oligopeptides and polypeptides. Protein modifications include, for example, phosphorylation, glycosylation, palmitoylation, prenylation (eg, geranylgeranylation), methylation, acetylation, ubiquitination, SUMOylation, hydroxylation, amidification.
  • first protein and the “second protein” according to the present invention, desired proteins for which an interaction is desired to be detected can be used. Also, the first protein and the second protein may be different or identical.
  • the “interaction between the first protein and the second protein” includes not only direct interaction but also another molecule (protein, etc.) between the first protein and the second protein. Also included are indirect interactions such as complex formation via nucleic acids, sugars, lipids, low molecular weight compounds etc.).
  • the “tetrameric fluorescent protein” according to the present invention may be a protein capable of emitting fluorescence and capable of forming a homotetramer in cells, for example, the fluorescence shown in Tables 1 to 4 below. Protein is mentioned.
  • amino acid sequences of these fluorescent proteins can be mutated in nature (ie, non-artificially). Also, mutations can be artificially introduced. Therefore, not only fluorescent proteins consisting of typical amino acid sequences shown in Tables 1 to 4 but also such mutants can emit fluorescence and form homotetramers in cells. As long as it can, it can be used in the present invention.
  • Such variants include, for example, the typical amino acid sequences shown in Tables 1 to 4 and 90% or more (eg, 91% or more, 92% or more, 93% or more, 94% or more, 94% or more, 95% or more, 96% or more And tetramer fluorescent proteins consisting of amino acid sequences having homology of 97% or more, 98% or more, 99% or more).
  • Sequence homology can be determined using the BLASTP (amino acid level) program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990).
  • BLASTP amino acid level program
  • the specific procedure of the method of analyzing an amino acid sequence by BLASTP is known, and those skilled in the art can analyze, for example, using the default parameters of the program.
  • first tetrameric fluorescent protein and the "second tetrameric fluorescent protein” are different proteins.
  • “different” means a relationship in which the first tetrameric fluorescent protein and the second tetrameric fluorescent protein do not associate with each other and can not form a multimer.
  • the protein-protein interaction can be determined by detecting the FRET phenomenon through the formation of a fluorescent bright spot.
  • one of the first tetrameric fluorescent protein and the second tetrameric fluorescent protein is a donor fluorescent protein and the other is an acceptor fluorescent protein.
  • the “donor fluorescent protein” and the “acceptor fluorescent protein” may be in the overlapping relationship between the former fluorescence spectrum and the latter excitation spectrum in order to cause the FRET phenomenon.
  • a combination of these proteins can be selected based on the excitation wavelength and fluorescence wavelength of each fluorescent protein as shown in 4.
  • the first or second 4-mer fluorescent protein is the N-terminal side or the C-terminal side of the first or second protein. It may be fused to any of Furthermore, it may be fused directly to the first or second protein, or indirectly through the spacer protein.
  • another functional protein may be fused to the “first fusion protein” or the “second fusion protein” according to the present invention. In this case, the other functional protein is either the N-terminal side or C-terminal side or both sides of the fusion protein, or between the first or second tetrameric fluorescent protein and the first or second protein. Directly or indirectly.
  • functional proteins used to facilitate the purification of the fusion protein include Myc-tag (tag) protein, His-tag protein, hemagglutin (HA) -tag protein, FLAG-tag protein (registered trademark, Sigma-) Aldrich), glutathione-S-transferase (GST) protein.
  • the "cell” according to the present invention is not particularly limited, and may be a eukaryotic cell or a prokaryotic cell, for example, animal cells (HEK 293 cells, HeLa S3 cells, U2OS cells, etc.), insect cells (eg, insect cells). Sf9 cells, etc.), plant cells, yeast, and E. coli.
  • animal cells HEK 293 cells, HeLa S3 cells, U2OS cells, etc.
  • insect cells eg, insect cells.
  • plant cells yeast, and E. coli.
  • such cells may be in the state of being cultured ex vivo (for example, cells grown in or on the medium), and are in the state of being present in vivo (for example, encoding the first fusion protein)
  • the DNA encoding the second fusion protein may be introduced into cells of a transgenic animal).
  • the fusion protein concerning this invention will be normally introduce
  • immobilization means to stop the dynamic change that usually occurs in all or part of the structure in cells.
  • the method of immobilization is not particularly limited, and examples thereof include a method of treating cells with a protein coagulant or a protein crosslinker.
  • a drug is not particularly limited, but examples thereof include paraformaldehyde, formaldehyde (formalin), glutaraldehyde, alcohol (ethanol, methanol), formalin alcohol, picric acid, Bouin, Zenker, Hely, osmium, carnoir .
  • the expression of the fusion protein of the present invention in the cell may be transient expression or constant expression depending on the purpose.
  • Expression of the fusion protein in cells can be performed by introducing the vector according to the present invention described later into the cells.
  • a known method for introducing a vector into cells for animal cells, lipofection, electroporation, calcium phosphate method, DEAE-dextran method, viruses (adenovirus, lentivirus, adeno-associated virus, etc.) were used. The method is mentioned.
  • insect cells a method using baculovirus is mentioned.
  • the Agrobacterium method, the electroporation method, the particle gun method and the like can be mentioned.
  • yeast the lithium acetate method, electroporation method and spheroplast method can be mentioned.
  • a heat shock method for example, calcium chloride method, rubidium chloride method, electroporation method and the like can be mentioned.
  • the fusion protein can be introduced into the cells according to the type of cells by those skilled in the art.
  • Examples of known techniques for introducing proteins into cells include methods using protein transfer reagents, electroporation, and microinjection.
  • the “fluorescent spot” to be detected in the present invention is caused by the association of the first fusion protein and the second fusion protein, and typically, the first or second existing in the diffusion state
  • the region of 0.2 to 50 ⁇ m (usually 0.2 to 10 ⁇ m) having a fluorescence intensity higher than the fluorescence intensity of the fluorescent protein, preferably, the fluorescence intensities of the first and second fluorescent proteins are each in a diffusion state In the region of 0.2 to 50 ⁇ m (usually 0.2 to 10 ⁇ m), which both have higher fluorescence intensity than present.
  • the “detection of a fluorescent bright spot” can be performed using, for example, a commercially available fluorescence detection device as shown in the examples below.
  • a fluorescence device for example, a fluorescence microscope, a fluorescence scanner, a CCD camera type imager, an imaging cytometer such as IN Cell Analyzer (manufactured by GE Healthcare), a microtiter plate reader (a fluorescence plate reader), a flow cytometer, etc.
  • the fluorescent bright spot can also be detected by processing the obtained image with an image analysis program (for example, the icy spot detection program described later).
  • an image analysis program for example, the icy spot detection program described later.
  • filters, detectors, various parameters, etc. are adjusted according to the characteristics of the fluorescent luminescent spots to be detected (wavelength of fluorescence emitted from the fluorescent luminescent spots, intensity etc.) Selection and setting can be appropriately performed by those skilled in the art.
  • spot detection analysis program Icy J.-C. Olivo-Marin "Extraction of spots in biological images using multiscale products" Pattern recognition, vol. 35-9, pp. 1989-1996, 2002, http: // icy.
  • Set value Spot Detector plug-in scale1, scale2, scale3 all checked in bioimageanalysis. org
  • Detectable by analysis program “Fluorescence intensity value per unit” represents the background (eg, negative control Detection point at least 2.0 times or more, more preferably 2.5 times or more, still more preferably 5.0 times or more, and particularly preferably 10 times or more of the same fluorescence intensity value) It can be determined that it was possible.
  • the determination of protein-protein interaction can also be performed by “detection of FRET phenomenon through formation of a fluorescent bright spot”.
  • the “FRET phenomenon” detected in the present invention is that the excitation energy is transferred and transferred from the photoexcited donor fluorescent protein to the non-excited acceptor fluorescent protein without donor fluorescence emission, from the donor. It may be a phenomenon in which the fluorescence intensity decreases and the fluorescence intensity from the acceptor fluorescent protein increases (so-called ordinary “fluorescence resonance energy transfer (FRET)”), and fluorescence is once emitted from the donor fluorescent protein It may be a phenomenon (reabsorption, false FRET) in which the acceptor fluorescent protein is excited and the fluorescence intensity from the acceptor fluorescent protein is increased, but in the present invention, both are detected without discrimination.
  • FRET fluorescence resonance energy transfer
  • the detection of the FRET phenomenon can be performed by a conventional method, and can be performed, for example, using the above-mentioned fluorescence detection device. Furthermore, in order to remove the influence of background, it can also be performed using a device equipped with a time-resolved fluorescence detection function.
  • the fluorescent luminescent spot or the FRET phenomenon through the formation of the fluorescent luminescent spot is detected in the cell, it is considered that the first protein and the second protein interact with each other. It can be determined that if the fluorescent spot is not detected, it can be determined that the first protein and the second protein do not interact.
  • the method of the present invention can detect not only the occurrence of protein-protein interaction but also the disappearance of protein-protein interaction by using the presence or absence of the fluorescent luminescent spot according to the present invention as an indicator. In addition, the occurrence of such protein-protein interaction can also be traced over time. Furthermore, in the present invention, protein-protein interactions can also be detected in any region of the cell without being affected by the localization, signals and the like of association-inducing proteins such as PB1 and SAM.
  • the present invention by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot, generation or disappearance of protein-protein interaction, generation or disappearance of the interaction is achieved.
  • Methods can be provided to detect time, or duration of the interaction.
  • the intracellular region in which the protein-protein interaction takes place can also be identified.
  • generation or loss of protein-protein interaction generation and loss of signal transduction involving the protein-protein interaction
  • time until generation or loss of signal transduction and The duration of the signaling can be detected, as well as the region within the cell in which the signaling occurs can also be identified.
  • the present invention relates to the generation or disappearance of protein-protein interaction in response to a specific stimulus by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot. Methods can also be provided to detect the time to development or disappearance, or the duration of the interaction.
  • the “specific stimulation” may be a stimulation capable of inducing or inhibiting protein-protein interaction directly or indirectly, and stimulation by an endogenous factor generated in a cell (eg, intracellular calcium) It may be an increase or decrease of ion concentration, activation or inactivation of an enzyme, or an external stimulus given to cells (for example, administration of a ligand for a receptor (agonist or antagonist) to cells) .
  • generation or disappearance of a specific stimulus, generation or disappearance of the stimulus is detected by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot.
  • the time up to, or the duration of the stimulation can also be detected.
  • the method of the present invention it is also possible to detect an increase or decrease in protein-protein interaction depending on the degree of a particular stimulus (for example, if the particular stimulus is a drug, its concentration).
  • a 50% effective concentration (EC50) and a 50% inhibitory concentration (IC50) of the drug to protein-protein interactions can be determined according to the present invention.
  • the present invention provides a method for screening a protein that interacts with a specific protein, wherein one of the first protein and the second protein is the specific protein, and the other is the test protein. By doing this, it is possible to provide a method of selecting a protein that interacts with the specific protein by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot.
  • test protein is not particularly limited. From the viewpoint of being able to select proteins that interact with a specific protein efficiently in a comprehensive manner, a protein group encoded by a cDNA library can be suitably used.
  • ⁇ Method of identifying amino acid residues involved in protein-protein interaction the fluorescence intensity of the fluorescent spot and the strength of the protein-protein interaction are correlated. Therefore, according to the present invention, there is provided a method for identifying an amino acid residue in a first protein involved in protein-protein interaction or an amino acid residue in a second protein, said first protein and Using a protein in which a mutation has been introduced into any of the second proteins, the intensity of the fluorescent spot and / or the intensity of the FRET phenomenon through the formation of the fluorescent spot, the protein in which the mutation has not been introduced When attenuated as compared to the case of use, it can provide a method of determining that the amino acid residue into which the mutation has been introduced is involved in the interaction.
  • the “intensity of fluorescent luminescent spot” includes not only the fluorescent intensity of one fluorescent luminescent spot but also a certain area (eg, in one cell, in one field of view in fluorescence microscope observation, in one fluorescence image, plate reader Also included is the total fluorescence intensity of the fluorescent spot present in one well in the detection at
  • the above determination can be performed using “the intensity of the FRET phenomenon through“ as an index.
  • the result of the determination using the fluorescence intensity of the fluorescent light spot as an indicator can be confirmed by performing the determination using the intensity of the FRET phenomenon as an indicator.
  • the result of the determination using the intensity of the FRET phenomenon as an indicator can be confirmed by performing the determination using the fluorescence intensity of the fluorescent luminescent spot as an indicator.
  • the “intensity of FRET phenomenon” is not particularly limited, and the degree of decrease in fluorescence intensity of donor fluorescent protein, the degree of increase in fluorescence intensity of acceptor fluorescent protein, the fluorescence lifetime of donor fluorescent protein caused by occurrence of FRET phenomenon And more specifically, the efficiency of the FRET phenomenon and the signal of the FRET phenomenon.
  • F D indicates the fluorescence intensity of the donor fluorescent protein in the absence of the acceptor fluorescent protein
  • F D ′ indicates the fluorescence intensity of the donor fluorescent protein in the presence of the acceptor fluorescent protein.
  • E ((Donorpost-Backpost)-(Donorpre-Backpre)) / (Donorpost-Backpost)
  • Donorpost is the fluorescence intensity of the donor fluorescent protein after fading the acceptor fluorescent protein
  • Backpost is the fluorescence intensity of the background after the fading
  • Donorpre is the fluorescence intensity of the donor fluorescent protein before the fading
  • Backpre is the back of the fading before It shows the fluorescence intensity of the ground.
  • the “signal of the FRET phenomenon” can be expressed as the ratio of the fluorescence intensity of the acceptor fluorescent protein to the fluorescence intensity of the donor fluorescent protein, as shown in the examples below.
  • the “fluorescent intensity of the donor fluorescent protein” and the “fluorescent intensity of the acceptor fluorescent protein” according to the present invention are not only the fluorescent intensity of the donor fluorescent protein at one fluorescent bright spot and the fluorescent intensity of the acceptor fluorescent protein but also constant.
  • the total fluorescence intensity of the donor fluorescent protein and the total fluorescence intensity of the acceptor fluorescent protein per region (for example, in one cell, in one field in fluorescence microscopy, in a fluorescence image, in one well for detection with a plate reader) included.
  • the “protein in which a mutation is introduced into the first protein or the like” can be prepared by those skilled in the art by appropriately selecting known methods. Such known techniques include site-directed mutagenesis.
  • a first fusion protein comprising a first protein and a first tetrameric fluorescent protein in the presence of a test compound, a second protein and a second protein A step of expressing the second fusion protein containing the monomeric fluorescent protein intracellularly or introducing it into the cell, or a first fusion protein comprising the first protein and the first tetrameric fluorescent protein, (B) placing the cell in the presence of a test compound after intracellularly expressing the second fusion protein containing the two proteins and the second tetrameric fluorescent protein or introducing the same into the cell; 2) detecting a fluorescent luminescent spot generated by association of the first fusion protein and the second fusion protein in the cell, and (3) the intensity of the fluorescent luminescent spot is an odor in the absence of the test compound.
  • the test compound When the intensity of the fluorescent luminescent spot is increased, the test compound is selected as an inducer of the interaction, and the intensity of the fluorescent luminescent spot is higher than the intensity of the fluorescent luminescent spot produced in the absence of the test compound. In the case of attenuating, selecting the test compound as an inhibitor of the interaction can be provided.
  • protein-protein interaction can be determined not only with the intensity of the fluorescent bright spot but also with the FRET phenomenon through the formation of the fluorescent bright spot as an index. Therefore, according to the present invention, (1) in the presence of a test compound, a first fusion protein comprising a first protein and a first tetrameric fluorescent protein, a second protein and a second fourth amount A step of expressing the second fusion protein containing the somatic fluorescent protein intracellularly or introducing it into the cell, or a first fusion protein comprising the first protein and the first tetrameric fluorescent protein, and Placing the cell in the presence of a test compound after intracellularly expressing or introducing into the cell a second fusion protein comprising the B.) Detecting the FRET phenomenon through formation of a fluorescent bright spot caused by the association of the first fusion protein and the second fusion protein in the cell, and (3) the intensity of the FRET phenomenon When the intensity of the FRET phenomenon which occurs in the absence of the test compound is increased, the test compound
  • test compound used in the screening method of the present invention is not particularly limited, and examples thereof include expression products of gene libraries, synthetic low molecular weight compound libraries, peptide libraries, antibodies, bacterial substances, cells (microbes, plant cells , Extracts of animal cells) and culture supernatants, purified or partially purified polypeptides, extracts from marine organisms, plants or animals, soil, random phage peptide display libraries.
  • the state in the presence of the test compound means, for example, the state in which the test compound is in contact with the cell according to the present invention by addition of the test compound to the culture medium, etc. It includes the state of being introduced into cells.
  • the present invention can provide a kit to be used in the above method.
  • the kit of the present invention is a kit comprising at least one substance selected from the group consisting of the following (a) to (k) and instructions for use.
  • the vector of the present invention may be any vector as long as it contains the control sequences necessary for expressing (transcription and translation) the inserted DNA in the cell of the present invention.
  • control sequences include promoters, enhancers, silencers, terminators, poly A tails, ribosome binding sequences (Shine-Dalgano (SD) sequences).
  • the vector according to the present invention may contain a selection marker (drug resistance gene etc.) and a reporter gene (luciferase gene, ⁇ -galactosidase gene, chloramphenicol acetyltransferase (CAT) gene etc.).
  • examples of such a vector according to the present invention include a plasmid vector, an episomal vector, and a virus vector.
  • the proteins encoded in the vector according to the present invention are the first tetramer, the second tetramer fluorescent protein, and a fusion protein with these proteins, and the expression of the DNA encoding such a protein
  • a DNA for example, a DNA in which a codon is humanized
  • whose codon is optimized according to the species of the cell in which the protein is expressed is inserted into the vector according to the present invention. It may be
  • Examples of the "cloning site that allows insertion of DNA encoding any protein" include a multicloning site including one or more restriction enzyme recognition sites, a TA cloning site, and a GATEWAY (registered trademark) cloning site. .
  • a buffer In the preparation of the vector according to the present invention, other components such as a buffer, a stabilizer, a preservative, a preservative and the like may be added.
  • the transformed cell of the present invention can be prepared by introducing the vector of the present invention into cells as described above.
  • other components such as a medium necessary for storage and culture of the cells, stabilizers, preservatives, preservatives and the like may be added or attached to the preparation of transformed cells according to the present invention.
  • the "instructions" according to the present invention are instructions for using the vector or transformed cell in the method of the present invention. Instructions are, for example, the experimental method and conditions of the method of the present invention, and information on the preparation of the present invention (for example, information such as the vector map in which the nucleotide sequence of the vector, cloning site etc. are shown, transformed cells Information, such as the origin, nature, culture conditions of the cells, and the like.
  • Example 1 Detection of protein-protein interaction 1
  • desired proteins a first protein and a second protein
  • proteins having multimerization ability association-inducing protein and fluorescent protein having multimerization ability
  • Non-patent Document 1 when the same tetrameric fluorescent protein is fused to each of the desired proteins as the protein having the multimerization ability, the fluorescence is expressed in cells, The present inventors have also found that no bright spots are formed and the interaction between these proteins can not be detected (Non-patent Document 1).
  • the target of detection in this screening is the interaction between p53 protein and MDM2 protein.
  • Natrin-3 (Nutlin-3), which is known as an inhibitor of the interaction, was also used as described later in this screening (Vassilev LT et al., Science, Feb. 6, 2004, No. 303, No. 5659, 2004). , Pp. 844-848).
  • fluorescent proteins to be fused and expressed to be detected tetrameric fluorescent proteins (Azami-Green (AG), Momiji (Mmj)), dimeric fluorescent proteins (EGFP), monomeric fluorescent proteins (mAG1) , MEGFP) were used as evaluation targets, and were used in combination as appropriate as described later.
  • pmAG1-p53 A plasmid vector pAsh-p53 contained in a kit for protein-protein interaction analysis Fluoppi: Ash-hAG [p53-MDM2] (manufactured by Medical Biology Research Institute, code number: AM-8201M), with restriction enzymes BamHI and NotI By processing, the region encoding p53 was cut out. Next, p53 (mAG1-p53) in which mAG1 was fused to N-terminal by inserting into phmAG1-MCL (Medical Biology Research Institute, code number: AM-V0039M) treated with the same combination of restriction enzymes The plasmid vector (pmAG1-p53) for expressing was prepared.
  • pAG-p53 a plasmid vector for expressing p53 (AG-p53) in which AG is fused to N-terminal by inserting pAGM1-p53 excluding the region encoding p53 by treating with the same restriction enzyme combination and removing p53-encoding region (PAG-p53) was produced.
  • Mmj can be inserted by inserting the NheI-Mmj-AgeI treated with the same combination of restriction enzymes.
  • a plasmid vector (pMmj-p53) was constructed to express p53 (Mmj-p53) fused to the N-terminus.
  • pEGFP-p53 The region encoding AG was cleaved off by treating pAG-p53 with restriction enzymes NheI and AgeI.
  • DNA NheI-EGFP-AgeI, SEQ ID NO: 45
  • EGFP-p53 DNA encoding EGFP and having recognition sequences for NheI and AgeI at its ends was prepared by artificial synthesis. Then, the DNA is treated with the same restriction enzyme combination, and then inserted into a plasmid vector from which the region encoding AG is removed to express p53 (EGFP-p53) in which EGFP is fused to the N-terminus.
  • a plasmid vector (pEGFP-p53) was prepared.
  • ⁇ Preparation of pmEGFP-p53> The region encoding AG was cleaved off by treating pAG-p53 with restriction enzymes NheI and AgeI.
  • DNA (NheI-mEGFP-AgeI, SEQ ID NO: 46) encoding mEGFP and having recognition sequences for NheI and AgeI at its ends was prepared by artificial synthesis. Then, the DNA is treated with the same restriction enzyme combination, and then inserted into a plasmid vector from which the region encoding AG has been removed to express p53 (mEGFP-p53) fused to mEGFP at the N-terminus A plasmid vector (pmEGFP-p53) was prepared.
  • COS7 cells are cultured in DMEM [DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.).
  • DMEM DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.).
  • DMEM DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.).
  • the same cells were seeded on an 8-well chamber slide (manufactured by Nunc) the day before gene transfer, and cultured in a culture solution of 200 ⁇ L per well.
  • A pmAG1-p53 + pAG-MDM2
  • B pmEGFP-p53 + pAG-MDM2
  • C pmEGFP-p53 + pMmj-MDM2
  • D pEGFP-p53 + pAG-MDM2
  • E pEGFP-p53 + pMmj-MDM2
  • F pAG-p53 + pAG-MDM2
  • G pMmj-p53 + pMmj-MDM2
  • H pAG-p53 + pMmj-MDM2
  • I pMmj-p53 + pAG-MDM2.
  • the interaction inhibitor p53 and MDM2 inhibitor Nutlin-3 was added to the culture solution to a final concentration of 20 ⁇ M, and cells were also allowed to stand at room temperature for 15 minutes. Images before and 15 minutes after drug addition are shown in FIG. 1D.
  • Example 2 Detection of protein-protein interaction 2 As shown below, the same study as in Example 1 was performed using HEK293 cells instead of COS7 cells. Furthermore, it was examined whether the protein-protein interaction could be detected using the tetrameric protein Monti-Red (MR).
  • MR tetrameric protein Monti-Red
  • pmAG1-MDM2 ⁇ Preparation of pmAG1-MDM2>
  • the region encoding MDM2 was excised by treating the plasmid vector phAG-MDM2 contained in the above-described protein-protein interaction analysis kit with restriction enzymes BamHI and NotI.
  • a plasmid vector (pmAG1-MDM2) for expressing MDM2 (mAG1-MDM2) in which mAG1 was fused to N-terminal was constructed by inserting into phmAG1-MCL treated with the same combination of restriction enzymes.
  • pMR-MDM2 ⁇ Preparation of pMR-MDM2>
  • the region encoding MDM2 was excised by treating pAG-MDM2 with restriction enzymes BamHI and NotI. Then, by inserting the vector into pMonti-Red-MCL (Medical Biology Research Institute, code number: AM-VS0802M) treated with the same restriction enzyme combination, MDM is fused to N-terminal MDM2 (MR 2)
  • MR 2 N-terminal MDM2
  • pMR-MDM2 N-terminal MDM2
  • pMR-p53 plasmid vector for expressing p53 fused to MR at the N-terminus is prepared by inserting into pMonti-Red-MCL treated with the same restriction enzyme combination. did.
  • HEK293 cells were cultured in DMEM [DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.). Next, the same cells were seeded on an 8-well chamber slide (manufactured by Nunc) the day before gene transfer, and cultured in a culture solution of 200 ⁇ L per well.
  • DMEM DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.).
  • DMEM DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.).
  • A pAG-p53 + pAG-MDM2
  • B pAG-p53 + pmAG1-MDM2
  • C pMmj-p53 + pMmj-MDM2
  • D pMmj-p53 + pmAG1-MDM2
  • E pMmj-p53 + pAG-MDM2
  • F pMmj-p53 + pMR-MDM2
  • G pMR-p53 + pAG-MDM2.
  • HEK 293 cells in which the same tetrameric fluorescent protein (AG or Mmj) is fused and expressed to both of the detection targets (p53 and MDM2), and a monomer to one of the detection targets
  • AG or Mmj tetrameric fluorescent protein
  • mAG1 fluorescent protein
  • Example 3 Application to a Method of Determining Protein-Protein Interaction Using FRET
  • a different tetrameric fluorescent protein is fused to a detection target to be intracellular It is characterized in that it is expressed in Therefore, it is shown below whether the FRET phenomenon (fluorescence resonance energy transfer, reabsorption) can be caused by using one tetrameric fluorescent protein as an acceptor and the other tetrameric fluorescent protein as a donor. It analyzed as follows.
  • pp53-MR> a nucleotide sequence was designed in which a BamHI recognition sequence and a NotI recognition sequence were added to the 5 'end and the 3' end of a DNA encoding a part of p53 (a region consisting of 1 to 70 amino acids of p53 protein).
  • a DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM- By inserting into VS0802M), a plasmid vector (pp53-MR) for expressing p53 (p53-MR) in which MR was fused to C-terminal was prepared.
  • the plasmid vector was introduced into HEK293 cells in the combination of (A) to (B) shown below by the method described in Example 2 above.
  • the obtained image data was analyzed by MetaMorph ver 8.9.0 (manufactured by Molecular Device), and the fluorescence intensities of MR (Em: 610) and AG (Em: 510) of the whole cell area were calculated. Furthermore, the ratio of the fluorescence intensity on the acceptor side to the fluorescence intensity on the donor side (AG) (MR / AG ratio (Em: 610 / Em: 510)) was calculated as a signal of the FRET phenomenon to obtain a Ratio image.
  • the fluorescence images of AG and MR before and 15 minutes after the addition of Nutlin-3, and the ratio images of MR / AG are shown in FIGS. 3A and 3C. Furthermore, time-lapse graphs of each fluorescence intensity are shown in FIGS. 3B and 3D.
  • the efficiency of the FRET phenomenon in HEK 293 cells subjected to gene transfer treatment was measured by acceptor photo-bleaching method. More specifically, MR is bleached (bleach, bleach) by irradiating excitation light of 530 to 550 nm for 5 minutes using fluorescence mirror unit U-MWIG3 (manufactured by Olympus) to the cells before addition of the drug.
  • the efficiency of the FRET phenomenon was obtained by observing the change in the fluorescence intensity of AG using a fluorescent mirror unit U-MNIBA3 (excitation wavelength: 470 to 495 nm, fluorescence wavelength: 510 to 550 nm, manufactured by Olympus).
  • the AG fluorescence intensity image before (Post-bleach) and 530-550 nm excitation light irradiation (Pre-bleach) and after (Post-bleach), and the efficiency of the FRET phenomenon were determined using the following formula. ((Donorpost-Backpost)-(Donorpre-Backpre)) / (Donorpost-Backpost) Donorpost represents fluorescence intensity of AG after fading, Backpost represents fluorescence intensity of background after fading, Donorpre represents fluorescence intensity of AG before fading, and Backpre represents fluorescence intensity of background before fading.
  • the results obtained in this way are shown in FIG. 3E.
  • the MR / AG ratio is high centering on the fluorescent bright spot and after the addition of Nutlin-3. Decreased as it diffused throughout the cell. MR (Em: 610) decreased and AG (Em: 510) increased as a change in each fluorescence intensity after the addition of Nutlin-3. This indicates that the addition of the protein-protein interaction inhibitor (Nutlin-3) increases the fluorescence intensity on the donor side and decreases the fluorescence intensity on the acceptor side, that is, the signal of the FRET phenomenon decreases. There is.
  • Example 4 Comparison of the efficiency of FRET phenomenon When a fluorescent protein is fused to a detection target and expressed in cells, it is generated through the formation of interaction-dependent fluorescent luminescent spots between the detection targets. It verified about whether the efficiency of FRET phenomenon improves. More specifically, as described below, when a combination of tetrameric fluorescent proteins (AG and MR) that forms a fluorescent luminescent spot is used when the detection target interacts with a protein, the fluorescent luminescent spot is The efficiencies of the resulting FRET phenomena were compared to those with the combination of fluorescent proteins not formed (mAG1 and MR).
  • AG and MR tetrameric fluorescent proteins
  • the plasmid vector was introduced into HEK293 cells in the combination of (A) to (D) shown below by the method described in Example 2 above.
  • D pMR-p53 + pmAG1-MDM2.
  • FIGS. 4A, 4C, 4E and 4G The fluorescence images of AG and MR and the ratio images of MR / AG before and 15 minutes after Nutlin-3 addition are shown in FIGS. 4A, 4C, 4E and 4G. Furthermore, time-lapse graphs of each fluorescence intensity are shown in FIGS. 4B, 4D, 4F and 4H. Further, time-lapse graphs of the MR / AG ratio, the MR / mAG1 ratio, and the mAG1 / AG ratio by the addition of Nutlin-3 are shown in FIGS. 4I and 4J.
  • FIG. 4K The results of comparing the signals of the FRET phenomenon (MR / AG ratio and MR / mAG1 ratio) are shown in FIG. 4K.
  • 4B, 4D, 4F and 4H mean values of MR / AG ratio and MR / mAG1 ratio in each of 11 cells in p53-MR and AG-MDM2 and p53-MR and mAG1-MDM2 respectively.
  • the MR / AG ratio indicates the fluorescent spot. It was high in the center and decreased with diffusion throughout the cells after Nutlin-3 addition. MR (Em: 610) decreases and AG (Em: 510) increases as changes in fluorescence intensity after Nutlin-3 addition, and a decrease in the signal of FRET phenomenon due to the inhibition of protein-protein interaction is observed.
  • the MR / mAG1 ratio is higher after addition than that of Nutlin-3. It decreased overall. As each change in fluorescence intensity, MR (Em: 610) decreased, AG (Em: 510) increased, and a decrease in the signal of the FRET phenomenon due to the inhibition of protein-protein interaction was observed. Thus, it was confirmed that the protein-protein interaction can be detected by the detection of the FRET phenomenon even when using a combination of fluorescent proteins (mAG1 and MR) that do not form a fluorescent luminescent spot.
  • the MR / AG ratio in cells expressing p53-MR and AG-MDM2 and the ratio MR / mAG1 in cells expressing p53-MR and mAG1-MDM2 As a result, the difference at 600 seconds was the highest between 0 and 600 seconds after the addition of Nutlin-3, and the MR / AG ratio decreased 1.2 times after the addition of the inhibitor.
  • the MR / AG ratio in cells in which MR-p53 and AG-MDM2 were expressed was compared with the MR / mAG1 ratio in cells in which MR-p53 and mAG1-MDM2 were expressed.
  • the difference at 160 seconds was the highest, and the MR / AG ratio dropped 1.52 times. In addition, it decreased by 1.4 times at 600 seconds after the addition.
  • the combination of tetrameric fluorescent proteins that form fluorescent luminescent spots is more efficient in the FRET phenomenon than the combination of fluorescent proteins that can not form fluorescent luminescent spots. It became clear that it became high (it improved 1.2 to 1.52 times). The reason why the efficiency of the FRET phenomenon is thus improved is not necessarily clear, but the aggregation density of these fluorescent proteins is increased in the aggregates (fluorescent spots) formed by using different tetrameric fluorescent proteins. Is presumed to be due to
  • Example 5 Comparison of efficiency of FRET phenomenon in cells after fixation As shown in Examples 3 and 4 above, by combining different tetrameric fluorescent proteins with the object to be detected and expressing them in cells, the fluorescence intensity can be enhanced. It has become clear that FRET phenomena can occur when points are formed.
  • FIGS. 5A and 5B The fluorescence images of AG and MR obtained with or without Nutlin-3 and the ratio images of MR / AG are shown in FIGS. 5A and 5B.
  • a graph of the signal of each FRET phenomenon (Em: 610 / Em: 510, MR / AG ratio, MR / mAG1 ratio) is shown in FIG. 5C.
  • the data shown in FIG. 5C is an average value of three fields of fluorescence intensity ratio in the whole field of view, and error bars indicate standard errors.
  • the FRET phenomenon can not be detected when the cells are immobilized.
  • the FRET phenomenon can be maintained and detected even in the immobilized cells when using a combination of tetrameric fluorescent proteins that form fluorescent luminescent spots when the detection targets interact with each other.
  • Example 6 Detection of Protein-Protein Interaction 3
  • the target of detection in Example 3 above was changed from p53 and MDM2 to MAX and Myc, and it was verified whether the interaction between these proteins could also be detected.
  • DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-Myc) for expressing Myc (MR-Myc) in which MR was fused to N-terminal was prepared.
  • pMR-Myc plasmid vector for expressing Myc
  • pAG-Max a 4-amino acid sequence (N-terminal) of the amino acid region from which the nuclear localization signal (amino acids 153 and 154 of Max protein) and the DNA binding region (region consisting of 1-35 amino acids of Max protein) are removed from the full length of Max Nucleotide sequence (SEQ ID NO: 49) obtained by inserting SEQ ID NO: 48) and adding BamHI recognition sequence to the 5 'end of the DNA encoding the obtained amino acid sequence and stop codon TAA and XhoI recognition sequence at the 3' end Designed.
  • a DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and XhoI, and treated with the same combination of restriction enzymes, phAG-MCL (Medical Biology Research Institute, Inc., code number: AM-VS0801M)
  • phAG-MCL Medical Biology Research Institute, Inc., code number: AM-VS0801M
  • a plasmid vector (pAG-Max) for expressing Max (AG-Max) in which AG was fused to N-terminal was constructed by inserting into.
  • HEK293T cells were first cultured by the method described in Example 2 above. Then, 200 ng of each of the above plasmid vectors (pMR-Myc and pAG-Max) was mixed with 10 ⁇ L of Opti-MEM (manufactured by Thermo Fisher Scientific) to prepare a DNA solution. Separately, 0.2 ⁇ L of a gene transfer reagent Transficient (manufactured by MBL International) was added to 10 ⁇ L of OptiMEM, and the mixture was stirred to prepare a Transficient solution.
  • Opti-MEM manufactured by Thermo Fisher Scientific
  • Example 7 Detection of Protein-Protein Interaction 4
  • the target of detection in Example 3 above was changed from p53 and MDM2 to another protein to detect the interaction between these proteins. More specifically, it is confirmed that fluorescent light spots are formed even by protein interactions other than p53 and MDM2 by the method described below, and that the formation of the fluorescent light spots causes an increase in the efficiency of the FRET phenomenon. did. Furthermore, when the protein-protein interaction is detected using a combination of tetrameric fluorescent proteins that form fluorescent spots (AG and MR) and a combination of fluorescent proteins that do not form fluorescent spots (mAG1 and MR) Were compared with those detected using
  • Example 7 the target protein-protein interaction is an interaction between MCL1 and BAX or BAK. Both BAX and BAK have been shown to interact with MCL1 via the BH3 domain (see Ku B et al., Cell Res., April 2009, Vol. 21, No. 4, pages 627-641). Also, A-1210477 (BH3 mimetic) is known as a compound that binds to the BH3 binding groove of MCL1 and inhibits the interaction with BH3 (Xiao Y et al., Mol Cancer Ther., August 2015, 14 Volume 8, pages 1837 to 1847).
  • pAG-MCL1 a nucleotide sequence in which a BamHI recognition sequence, a stop codon and a NotI recognition sequence are added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding a part of MCL1 (region consisting of 173 to 327 amino acids of MCL1 protein) Number: 50) designed. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes, phAG-MCL (Medical Biology Research Institute Co., Ltd. code number: AM-VS0801M) A plasmid vector (pAG-MCL1) for expressing MCL1 (AG-MCL1) in which AG was fused to the N-terminus was constructed by inserting into.
  • phAG-MCL1 a plasmid vector for expressing MCL1 (AG-MCL1) in which AG was fused to the N-terminus was constructed
  • pmAG1-MCL1 A nucleotide sequence including a part of MCL1 to which a BamHI recognition sequence and a NotI recognition sequence are added is treated with phmAG1-MCL (Medical Biology Research Institute, code number: AM-V0039M) treated with the same restriction enzyme combination.
  • phmAG1-MCL Medical Biology Research Institute, code number: AM-V0039M
  • a plasmid vector (pmAG1-MCL1) for expressing MCL1 (mAG1-MCL1) in which mAG1 was fused to the N-terminal was prepared.
  • pMR-BAK a nucleotide sequence in which a BamHI recognition sequence, a stop codon and a NotI recognition sequence are added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding a part of BAK (region consisting of 72-87 amino acids of BAK protein) Number: 51) designed. Then, DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-BAK) for expressing BAK (MR-BAK) in which MR was fused to N-terminal was prepared.
  • pMonti-Red-MCL Medical Biology Research Institute, Inc. Code No. AM-
  • pMR-BAX a nucleotide sequence in which a BamHI recognition sequence, a stop codon and a NotI recognition sequence are added to the 5 'end and the 3' end of the nucleotide sequence encoding a part of BAX (region consisting of 35-55 amino acids of BAX protein) Number: 52) designed. Then, DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-BAX) for expressing BAX (MR-BAX) in which MR was fused to N-terminal was prepared.
  • pMonti-Red-MCL Medical Biology Research Institute, Inc. Code No. AM-
  • HEK293 cells were cultured by the method described in Example 2 above, and 200 ng of each of the plasmid vectors prepared above was introduced into the cells in combination of (A) to (D) shown below.
  • FIG. 7A Ratio images before and 5 minutes after addition of the drug are shown in FIG. 7A, and the time course graph of each fluorescence intensity and the MR / AG ratio ( A time lapse graph of Em: 610 / Em: 510) is shown in FIG. 7B.
  • Figure 7C shows the ratio images of MR-BAK and mAG1-MCL1 expressing cells before and after addition of the drug in Figure 7C, and the time course graph of each fluorescence intensity and the time course graph of the MR / AG ratio are shown in Figure 7D. Shown in.
  • the MR / AG ratio of cells expressing MR-BAK or MR-BAX and AG-MCL1 is high, centering on the fluorescent spot, and after addition of A-1210477, cells are added. It decreased while spreading throughout.
  • MR Em: 610
  • AG Em: 510
  • the difference at 600 seconds is the highest between 0 and 600 seconds after the addition of A-1210477
  • the MR / AG ratio decreased significantly after the addition of the inhibitor (a 4-fold decrease for MR-BAK and AG-MCL1 and a 2.8-fold decrease for MR-BAX and AG-MCL1). That is, the combination of MR / AG indicates that the energy transfer efficiency by FRET is higher, suggesting that the efficiency of the FRET phenomenon is improved by increasing the aggregation density using the tetrameric fluorescent protein. doing.
  • Example 8 Detection of protein-protein interaction 5 Similarly to Example 7 above, a fluorescent bright spot is formed also by a drug-induced protein interaction other than p53 and MDM2 by the method described below, and the efficiency of FRET phenomenon due to the fluorescent bright spot formation. Confirmed that a rise in Furthermore, when the protein-protein interaction is detected using a combination of tetrameric fluorescent proteins that form fluorescent spots (AG and MR) and a combination of fluorescent proteins that do not form fluorescent spots (mAG1 and MR) Were compared with those detected using
  • the targeted protein-protein interaction is an interaction between the FRB domain of mTOR protein and the FKBP12 protein, and it is known that these interact in the presence of rapamycin. (See Chen J et al., Proc Natl Acad Sci USA., May 23, 1995, Vol. 92, No. 11, pp. 4947-4951).
  • a plasmid vector pAsh-FKBP12 contained in Ash-hAG [mTOR-FKBP12] (Medical Biology Research Institute, code number: AM-8202M) is treated with NheI and AgeI, and the Ash peptide from the plasmid vector is processed. Removed the coding region.
  • phAG-MCL manufactured by Medical Biology Laboratory Co., Ltd., code number: AM-VS0801M
  • pAG-FKBP12 was treated with NheI and AgeI to remove the region encoding AG from the plasmid vector.
  • phmAG1-MCL manufactured by Medical Biology Research Institute, Inc., code number: AM-V0039M
  • a plasmid vector for expressing FKBP12 (mAG1-FKBP12) in which mAG1 is fused to the N-terminus was prepared.
  • pMR-mTOR a nucleotide sequence (SEQ ID NO: 53) in which an EcoRI recognition sequence and an XhoI recognition sequence are added to the 5 'end and the 3' end of the nucleotide sequence encoding a part of mTOR (region consisting of 2025-2114 amino acids of mTOR protein). ) Designed. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with EcoRI and XhoI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-mTOR) for expressing a part of mTOR (MR-mTOR) in which MR was fused to N-terminal was prepared.
  • pMR-mTOR plasmid vector for expressing a part of mTOR (MR-mTOR) in which MR was fused
  • HEK 293 cells were cultured in the same manner as in Example 7 described above, and 200 ng of each of the plasmid vectors prepared above was introduced into the cells in the combination of (E) and (F) shown below.
  • F pMR-mTOR + pmAG1-FKBP12
  • Rapamycin necessary for interaction between mTOR and FKBP12 is added to the culture solution of HEK 293 cells to a final concentration of 1 ⁇ M.
  • FIG. 8A the ratio images of the cells expressing MR-mTOR and AG-FKBP12 before and 5 minutes after addition of the drug are shown in FIG. 8A, and the time course graph of each fluorescence intensity and the MR / AG ratio ( The time lapse graph of Em: 610 / Em: 510) is shown in FIG. 8B.
  • Figure 8C shows the ratio images of MR-mTOR and mAG1-FKBP12-expressing cells before and 5 minutes after drug addition, and the time course graph of each fluorescence intensity and the time course graph of MR / AG ratio are shown in FIG. 8D. Shown in.
  • the difference at 320 seconds is the highest between 0 seconds and 430 seconds after the addition of rapamycin, and the MR / AG ratio Increased 2.7 times after the induction agent was added. That is, similar to the result of the above-mentioned Example 7, the MR / AG combination shows that the energy transfer efficiency by FRET is higher, and the fluorescence density is increased by using the tetrameric fluorescent protein to increase the aggregation density. A bright spot is formed, and it is suggested that the efficiency of the FRET phenomenon is improved by interposing the fluorescent bright spot.
  • HEK 293 cells were cultured in a culture solution (DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (manufactured by Thermo Fisher Scientific)).
  • DMEM High glucose manufactured by SIGMA ALDRICH
  • FBS manufactured by EQUITECH
  • penicillin / streptomycin manufactured by Thermo Fisher Scientific
  • the 96-well plate is set in a multi-label plate reader (Perkin Elmer, product name: EnVision 2102 Multilabel Reader), excitation 430/8 filter (2100-5250, Perkin Elmer), D480 (custom-made dichroic mirror) and Optical filter
  • the fluorescence value of the donor was measured using a Fura2 51/10 filter (2100-5320, manufactured by Perkin Elmer). Further, the fluorescence value of the acceptor was measured using an excitation 430/8 filter, D480, Cy5 620/40 filter (2100-5760, manufactured by Perkin Elmer).
  • the signal of the FRET phenomenon was changed depending on the concentration of the interaction modifier, and could be detected by the plate reader. Furthermore, when the maximum value of the dose-response curve is FRET + and the minimum value is FRET-, the FRET ratio (FRET + / FRET-) is calculated, and the case where a tetrameric fluorescent protein is used and the case where a monomeric fluorescent protein is used As a result, the FRET ratio in the former was increased 1.6 times in the interaction between MCL1 and BAK and 2.0 times in the interaction between mTOR and FKBP12.
  • the FRET phenomenon can be detected by the plate reader even in the fixed cells when tetramer fluorescent protein is used.
  • the IC 50 may not be calculated, or the IC 50 measured in the living cells may largely deviate from the value, and an accurate evaluation could not be performed.
  • the former is 1.5 times the interaction between MCL1 and BAK, mTOR And FKBP12 interaction increased FRET ratio 1.9 times.
  • the combination of tetrameric fluorescent proteins that form fluorescent luminescent spots is more efficient in the FRET phenomenon than the combination of fluorescent proteins that can not form fluorescent luminescent spots. Since it became high, it was confirmed that the said phenomenon can be detected by a plate reader, and the degree of protein-protein interaction to be detected can be analyzed with high sensitivity. Further, similarly to the results shown in Example 5, when a combination of tetrameric fluorescent proteins that form fluorescent bright spots when the detection targets interact with each other, the FRET phenomenon is maintained even in the immobilized cells. It was also confirmed that it could be detected.
  • HEK293 cells are cultured by the method described in Example 9, and the plasmid prepared above is used as the cells. Introduced to Then, add the plasmid DNA solution and Fugene HD, culture for 24 hours, collect the cells after trypsin treatment, pass to 24 wells of a 96 well plate (Corning # 356640), and add 100 ⁇ L per well. The cultures were cultured for 24 hours.
  • the obtained image was analyzed using software Harmony (manufactured by Parkin Elmer).
  • the fluorescent spots were detected at a setting of Radius 2 ⁇ m, Contrast 0.3 or more, Uncorrected Spot to Region Intensity 0.5 or more, Distance 0.9 ⁇ m, and Spot Peak Radius 0 ⁇ m in Find Spots Method C, which is an analysis algorithm of Harmony.
  • "sum of fluorescence intensities of AG at fluorescent spots in the field / total number of cells expressing AG in the field” and "sum of fluorescence intensities of MR at fluorescent spots in the field / MR in the field”"Total number of cells expressing" was calculated.
  • both the AG-derived and MR-derived fluorescence intensities at the fluorescent spots changed in an inhibitor concentration-dependent manner. Therefore, it was confirmed that protein-protein interaction can also be determined by analyzing a fluorescence microscope image obtained using an imaging system.
  • Example 11 Detection of fluorescent spot formation and FRET phenomenon using tetrameric fluorescent proteins other than AG and MR Even tetrameric fluorescent proteins (DsRed2, COR5, KikGR1) other than AG and MR can be used. It was confirmed by the method described below that the formation of fluorescent spots and the detection of the FRET phenomenon can be performed.
  • a nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence (SEQ ID NO: 27) encoding DsRed2, respectively. Then, a DNA consisting of the nucleotide sequence was artificially synthesized and cleaved with AgeI and XbaI.
  • pmTOR-AG manufactured by Medical Biology Research Institute, code number: AM-8202M
  • AM-8202M the same restriction enzyme combination to remove the region encoding AG from the plasmid DNA
  • DsRed2 the DsRed2 is The coding DNA was inserted, and a plasmid vector (pmTOR-DsRed2) for expressing mTOR (mTOR-DsRed2) in which DsRed2 was fused to C-terminal was prepared.
  • a nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding COR5 (SEQ ID NO: 23), respectively. Then, a DNA consisting of the nucleotide sequence was artificially synthesized and cleaved with AgeI and XbaI.
  • pmTOR-AG is treated with a combination of the same restriction enzymes to remove the AG coding region from the plasmid DNA, and then the DNA coding for the COR5 is inserted and mTOR (COR5 is fused to the C-terminal)
  • a plasmid vector (pmTOR-COR5) was constructed to express mTOR-COR5).
  • pmTOR-KikGR1 ⁇ Preparation of pmTOR-KikGR1>
  • the region encoding AG was removed from the pmTOR-AG by treatment with AgeI and XbaI.
  • pmKikGR11-MNL manufactured by Medical Biology Laboratory Co., Ltd., code number: AM-V0150M
  • the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-KikGR1) for expressing mTOR (mTOR-KikGR1) in which KikGR1 is fused to C-terminal.
  • a nucleotide sequence (SEQ ID NO: 54) was designed in which an EcoRI recognition sequence and an XhoI recognition sequence were added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding the full-length FKBP12, respectively.
  • a DNA consisting of the nucleotide sequence is artificially synthesized, digested with EcoRI and XhoI, and treated with the same combination of restriction enzymes, phAG-MNL (Medical Biology Research Institute Co., Ltd., code number: AM-VS0801M)
  • phAG-MNL Medical Biology Research Institute Co., Ltd., code number: AM-VS0801M
  • a plasmid vector (pFKBP12-AG) for expressing FKBP12 (FKBP12-AG) in which AG was fused to C-terminus was prepared.
  • pFKBP12-DsRed2 ⁇ Preparation of pFKBP12-DsRed2>
  • the region encoding AG was removed from the pFKBP12-AG by treatment with AgeI and XbaI. Further, the pmTOR-DsRed2 was treated with the same restriction enzyme combination to cut out the DNA encoding DsRed2. Then, the DNA was inserted into the restriction enzyme-treated pFKBP12-AG to prepare a plasmid vector (pFKBP12-DsRed2) for expressing FKBP12 (FKBP12-DsRed2) in which DsRed2 is fused to C-terminal.
  • pFKBP12-COR5 ⁇ Preparation of pFKBP12-COR5> The region encoding AG was removed from the pFKBP12-AG by treatment with AgeI and XbaI. In addition, the pmTOR-COR5 was treated with the same restriction enzyme combination to cut out the DNA encoding COR5. Then, the DNA was inserted into the restriction enzyme-treated pFKBP12-AG, and a plasmid vector (pFKBP12-COR5) was constructed to express FKBP12 (FKBP12-COR5) in which COR5 was fused to C-terminal.
  • pMR-FKBP12 ⁇ Preparation of pMR-FKBP12> From pAG-FKBP12 prepared in Example 8, the region encoding AG was removed by treatment with NheI and AgeI. Also, pMonti-Red-MCL (Medical Biology Research Institute, Inc., code number: AM-VS0802M) was treated with the same restriction enzyme combination to cut out the DNA encoding Monti-Red (MR). Then, the DNA was inserted into the restriction enzyme-treated pAG-FKBP12 to prepare a plasmid vector (pMR-FKBP12) for expressing FKBP12 (MR-FKBP12) in which MR was fused to N-terminal.
  • pMR-FKBP12 plasmid vector for expressing FKBP12 (MR-FKBP12) in which MR was fused to N-terminal.
  • the donor side was AG, KikGR1 or Mmj, and the acceptor side was MR, DsRed2 or COR5.
  • Rapamycin is added to the culture solution of HEK 293 cells to a final concentration of 1 ⁇ M as its interaction inducer, or in p53 and MDM2, Nutlin-3 is used as its interaction inhibitor.
  • the culture solution of HEK 293 cells was added to a final concentration of 20 ⁇ M, and the change in each fluorescence intensity for 10 minutes before and after the addition of the drug was measured. And it carried out by the method of Example 3 except the above-mentioned matter.
  • FIGS. 11A to 11E Ratio images before and after addition of Rapamycin and graphs relating to signal values of the FRET phenomenon are respectively shown in FIGS. 11A to 11E. Further, regarding (F), FIG. 11F shows a ratio image before and after the addition of Nutlin-3 and a graph regarding the signal value of the FRET phenomenon, respectively.
  • the signal value (MR / AG ratio) of the FRET phenomenon before the addition of Nutlin-3 was high centering on the fluorescent bright spot, and after the addition, it decreased while diffusing to the whole cell. That is, it was confirmed that the energy transfer efficiency between the tetrameric fluorescent proteins (Mmj and MR) was reduced and the FRET phenomenon was reduced by the inhibition of the interaction between p53 and MDM2.
  • pmTOR-mKO1 ⁇ Preparation of pmTOR-mKO1>
  • the region encoding AG was removed from the pmTOR-AG by treatment with AgeI and XbaI.
  • phmKO1-MNL manufactured by Medical Biology Research Institute, Inc., code number: AM-V0050M
  • the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mKO1) for expressing mTOR (mTOR-mKO1) in which mKO1 was fused to C-terminal.
  • pmTOR-mKO2 ⁇ Preparation of pmTOR-mKO2>
  • the region encoding AG was removed from the pmTOR-AG by treatment with AgeI and XbaI.
  • phmKO2-MNL manufactured by Medical Biology Research Institute, Inc., code number: AM-V0140M
  • the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mKO2) for expressing mTOR (mTOR-mKO2) in which mKO2 was fused to C-terminal.
  • a nucleotide sequence (SEQ ID NO: 55) was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding KO1, respectively. Then, DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, thereby KO1 is inserted.
  • a plasmid vector (pmTOR-KO1) for expressing mTOR (mTOR-KO1) fused to the C end was prepared.
  • pmTOR-mKeima ⁇ Preparation of pmTOR-mKeima>
  • the region encoding AG was removed from pmTOR-AG by treatment with AgeI and XbaI.
  • phmKeima-Red-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0090M) was treated with the same restriction enzyme combination to cut out the DNA encoding mKeima. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mKeima) for expressing mTOR (mTOR-mKeima) in which mKeima was fused to C-terminal.
  • pmTOR-dKeima ⁇ Preparation of pmTOR-dKeima>
  • the region encoding AG was removed from pmTOR-AG by treatment with AgeI and XbaI.
  • phdKeima-Red-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0100M) was treated with the same restriction enzyme combination to cut out the DNA encoding dKeima. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-dKeima) for expressing mTOR (mTOR-dKeima) in which dKeima was fused to C-terminal.
  • ⁇ Preparation of pmTOR-dAG (AB)> A nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence (SEQ ID NO: 56) encoding dAG (AB), respectively.
  • a DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, to obtain dAG (
  • a plasmid vector (pmTOR-dAG (AB)) was constructed to express mTOR (mTOR-dAG (AB)) in which AB) was fused to C-terminus.
  • a nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence (SEQ ID NO: 57) encoding dAG (AC), respectively.
  • a DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, to obtain dAG (
  • a plasmid vector (pmTOR-dAG (AC)) was constructed to express mTOR (mTOR-dAG (AC)) in which AC) was fused to C-terminus.
  • a nucleotide sequence (SEQ ID NO: 58) was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding mUkG1, respectively. Then, DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, mUkG1 can be obtained.
  • a plasmid vector (pmTOR-mUkG1) for expressing mTOR (mTOR-mUkG1) fused to the C end was constructed.
  • pmTOR-mMiCy1 The region encoding AG was removed from pmTOR-AG by treatment with AgeI and XbaI.
  • phmMiCy1-MNL manufactured by Medical Biology Research Institute, Inc., code number: AM-V0110M
  • the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mMiCy1) for expressing mTOR (mTOR-mMiCy1) in which mMiCy1 was fused to C-terminal.
  • a nucleotide sequence (SEQ ID NO: 59) was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding MiCy1, respectively. Then, DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same combination of restriction enzymes, and inserted into pmTOR-AG from which the region encoding AG has been removed, whereby MiCy1 is inserted.
  • a plasmid vector (pmTOR-MiCy1) for expressing mTOR (mTOR-MiCy1) fused to the C end was prepared.
  • ⁇ Preparation of pmTOR-KCy1> A nucleotide sequence (SEQ ID NO: 60) in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding KCy1, respectively, was artificially synthesized and cleaved with AgeI and XbaI
  • a plasmid vector for expressing mTOR (mTOR-KCy1) in which KCy1 is fused to C-terminal by treating with the same restriction enzyme combination and inserting into pmTOR-AG from which the AG coding region has been removed pmTOR-KCy1) was produced.
  • the transfected HEK 293 cells were observed using an IX-81 inverted microscope (manufactured by Olympus).
  • mAG1, dAG (AB), dAG (AC), mUkG1, mM iCy1, MiCy1 and KCy1 use BP460-480HQ, BA495 and DM485HQ (U-MGFPHQ, manufactured by Olympus), mKO1
  • mKO2 and KO1 use BP520-540HQ, BA555-600HQ, DM545HQ (FSET-KOHQ, manufactured by Olympus), and for mKeima and dKeima, use 440AF21, 610ALP, 590DRLP (manufactured by Olympus), and for MR , BP 530-550, BA 575IF, and DM 570 (U-MWIG3, manufactured by Olympus Corporation) were used.
  • the objective lens was
  • the fluorescent bright spots formed are used as an index between the target proteins. It is possible to determine the interaction. Furthermore, since the fluorescent protein to be fused is not intrinsically inherent to the cell to be expressed or introduced, there is little risk of disturbing the function of the cell, and protein-protein interaction can be determined.
  • the donor tetrameric fluorescent protein is fused to one of the target proteins and the acceptor tetrameric fluorescent protein is fused to the other and expressed or introduced into cells, a fluorescent luminescent spot is formed,
  • the interaction between the target proteins can also be determined by efficiently detecting the signal of the increased FRET phenomenon via that.
  • the FRET phenomenon can be caused to occur, and the protein-protein interaction can be determined by the signal detection of the FRET phenomenon or the FRET phenomenon. Therefore, the present invention can be suitably used in high throughput screening or the like which requires immobilization of a sample (cell) in order to make detection conditions uniform.
  • the process of image analysis such as a fluorescent luminescent spot
  • detecting a FRET phenomenon the region of the fluorescent bright spot is designated manually or by a program for designating the region on an image such as a computer, and the fluorescence intensity in that region is measured and calculated (although it is necessary to perform image analysis, on the other hand, in the case of detection of the FRET phenomenon, the presence or absence of interaction can be determined without passing through the stage of image analysis.
  • the method of the present invention for determining protein-protein interactions and the like, and the vector or kit to be used in these methods are elucidating various signal transductions in the living body, control of various biological reactions, etc. It is useful in the development of medicines etc. through the elucidation of

Abstract

This method determines the interaction between a first protein and a second protein by: introducing into cells, or inducing expression in the cells of, a first fusion protein including the first protein and a first tetramer fluorescent protein, and a second fusion protein including the second protein, and a tetramer fluorescent protein different to the first tetramer fluorescent protein; and detecting fluorescent bright spots generated by the association of the first fusion protein and the second fusion protein in the cells or detecting fluorescence resonance energy transfer (FRET) phenomenon signals via the formation of fluorescent bright spots.

Description

蛍光タンパク質を用いたタンパク質間相互作用の判定方法Method of determining protein-protein interaction using fluorescent protein
 本発明は、タンパク質間相互作用の判定方法及びその応用、並びに当該方法に用いられるためのキットに関する。 The present invention relates to a method of determining protein-protein interaction and its application, and a kit for use in the method.
 多くのタンパク質の機能は、他のタンパク質等との相互作用によって発揮され、シグナル伝達、輸送、代謝といった生命の根本をなす多種多様なシステムの制御に深く関与している。そのため、タンパク質間相互作用を分析することは、タンパク質機能や生物学的機能を解明することのみならず、疾患メカニズムの解明を通した医薬品の開発等においても極めて重要である。 The functions of many proteins are exerted by interactions with other proteins etc., and are deeply involved in the control of a wide variety of life-based systems such as signal transduction, transport, and metabolism. Therefore, analyzing protein-protein interactions is extremely important not only for elucidating protein functions and biological functions, but also for drug development through elucidation of disease mechanisms.
 タンパク質間相互作用を分析する手法は多々開発されており、ツーハイブリッド法、共免疫沈降法、表面プラズモン共鳴法、蛍光共鳴エネルギー移動(FRET)法といった様々な方法が利用されている。 Many methods for analyzing protein-protein interactions have been developed, and various methods such as two-hybrid method, co-immunoprecipitation method, surface plasmon resonance method, and fluorescence resonance energy transfer (FRET) method are used.
 本発明者らも、従前、多量化能を有するタンパク質を利用したタンパク質間相互作用の判定方法を開発している(特許文献1)。具体的には、所望のタンパク質(第1のタンパク質及び第2のタンパク質)に、多量化能を有するタンパク質(会合誘導タンパク質及び多量化能を有する蛍光タンパク質)を各々融合させて細胞内に発現させた場合において、第1のタンパク質と第2のタンパク質とが相互作用すれば、多量化能を有するタンパク質同士の会合作用が誘導され、これにより自立的に会合体(蛍光輝点)が形成されるということを見出し、該蛍光輝点の形成を指標としたタンパク質間相互作用の判定方法の開発に、本発明者らは成功している。 The present inventors have also previously developed a method for determining protein-protein interaction using a protein having multimerization ability (Patent Document 1). Specifically, a desired protein (a first protein and a second protein) is fused to a protein having multimerization ability (association inducing protein and a fluorescent protein having multimerization ability) and expressed in cells. In this case, if the first protein and the second protein interact with each other, the association between the proteins having multimerization ability is induced, whereby an aggregate (fluorescent spot) is formed autonomously. The present inventors have succeeded in developing a method for determining protein-protein interaction based on the finding of formation of the fluorescent luminescent spot.
 しかしながら、前記会合誘導タンパク質として好適に用いられるPB1、SAM等は、オートファジー制御に関するp62タンパク質、転写抑制因子であるTELタンパク質等が有する機能ドメインであり、細胞内における各タンパク質の機能発揮に深く関与する。そのため、かかる機能ドメインを含む前記融合タンパク質を細胞内において発現させた場合には、当該細胞の内在性p62タンパク質、TELタンパク質等の機能を乱すことになり、ひいては所望のタンパク質間相互作用の判定及びそれらの機能解析に影響を与えることが懸念される。 However, PB1, SAM, etc., which are suitably used as the association-inducing protein, are functional domains possessed by the p62 protein for autophagy control, TEL protein, etc., which is a transcriptional repressor, and are deeply involved in the function of each protein in cells Do. Therefore, when the fusion protein containing such a functional domain is expressed in cells, the functions of endogenous p62 protein, TEL protein and the like of the cells will be disturbed, and thus determination of desired protein-protein interaction and There is a concern to affect their functional analysis.
 そこで、本発明者らは、所望のタンパク質に融合させる双方の多量化能を有するタンパク質を共に、発現させる細胞にとって外来タンパク質となる蛍光タンパク質とすることで、内在性のタンパク質にある機能ドメイン(PB1ドメイン、SAMドメイン等)を用いずに、タンパク質間相互作用を判定することを着想した。 Therefore, the present inventors set a fluorescent protein to be a foreign protein for cells to be expressed together with a protein having both multimerizing ability to be fused to a desired protein, thereby providing a functional domain (PB1) in the endogenous protein It was conceived to determine protein-protein interactions without using domains, SAM domains, etc.).
 しかしながら、所望のタンパク質の双方に、同一の4量体蛍光タンパク質(Azami-Green(アザミグリーン、AG)タンパク質)を前記多量化能を有するタンパク質として融合させ、細胞内に発現させた場合には、蛍光輝点が形成されず、タンパク質間相互作用の判定に利用できないことを、本発明者らは昨今見出している(非特許文献1 補足図5のd)。 However, when the same tetrameric fluorescent protein (Azami-Green (Azamin green, AG) protein) is fused as both of the proteins capable of multimerization to both of the desired proteins, and expressed in cells, The present inventors have recently found that fluorescent luminescent spots are not formed and can not be used for determination of protein-protein interaction (D in Non-Patent Document 1, Supplemental Figure 5).
国際公開第2013/084950号International Publication No. 2013/084950
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、対象とするタンパク質の双方に蛍光タンパク質を融合させ、細胞内に発現させ又は導入した場合に、形成される蛍光輝点を指標に、対象タンパク質間の相互作用を判定できる方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above, and a fluorescent luminescent spot formed when a fluorescent protein is fused to both of the target proteins and is expressed or introduced into cells An object of the present invention is to provide a method for determining the interaction between target proteins as an indicator.
 本発明者らは、前記目的を達成すべく、様々な蛍光タンパク質の組み合わせを用いて検討した。その結果、非特許文献1において開示しているように、対象とするタンパク質の双方に同一の4量体蛍光タンパク質を融合させ、細胞内に発現させても、蛍光輝点は形成されず、対象タンパク質間の相互作用を判定することができなかった。さらに、対象とするタンパク質のいずれか一方に、単量体蛍光タンパク質又は2量体蛍光タンパク質を融合させて細胞内に発現させた場合においても、対象タンパク質間の相互作用を示す蛍光輝点は形成されなかった。 The present inventors examined using combinations of various fluorescent proteins to achieve the above purpose. As a result, as disclosed in Non-Patent Document 1, even if the same tetrameric fluorescent protein is fused to both of the target proteins and expressed in cells, the fluorescent bright spots are not formed, and the target The interaction between the proteins could not be determined. Furthermore, even when a monomeric fluorescent protein or a dimeric fluorescent protein is fused to any one of the proteins of interest and expressed in cells, a fluorescent bright spot indicating interaction between the proteins of interest is formed. It was not done.
 しかしながら、対象とするタンパク質に各々異なる4量体蛍光タンパク質を融合させ、細胞内に発現させた場合においては、蛍光輝点が形成され、該蛍光輝点を指標として、対象タンパク質間の相互作用を判定することができた。 However, when different tetrameric fluorescent proteins are fused to the target protein and expressed in cells, a fluorescent bright spot is formed, and the interaction between the target proteins is determined using the fluorescent bright spot as an index. It was possible to judge.
 また、前記4量体蛍光タンパク質の一方をドナー蛍光タンパク質に、他方をアクセプター蛍光タンパク質とした場合においても、タンパク質間相互作用依存的に蛍光輝点が形成され、さらに当該蛍光輝点において蛍光共鳴エネルギー移動等(FRET現象)が生じることを見出した。 Further, even when one of the four-mer fluorescent proteins is a donor fluorescent protein and the other is an acceptor fluorescent protein, a fluorescent bright spot is formed depending on the interaction between proteins, and fluorescence resonance energy is further generated at the fluorescent bright spot. It has been found that movement or the like (FRET phenomenon) occurs.
 また、前述の異なる4量体蛍光タンパク質の組み合わせを用いた場合においては、対象がタンパク質間相互作用した際に蛍光輝点を形成しない蛍光タンパク質の組み合わせを用いた場合と比較して、得られるFRET現象の強度(FRET現象のシグナル、FRET現象の効率)が高くなることも明らかにした。 In addition, when the combination of the aforementioned different tetrameric fluorescent proteins is used, the FRET obtained as compared with the case where a combination of fluorescent proteins which do not form a fluorescent bright spot when the subject interacts with each other is used. It was also revealed that the strength of the phenomenon (signal of FRET phenomenon, efficiency of FRET phenomenon) is increased.
 さらに、前述の蛍光輝点を形成できない蛍光タンパク質の組み合わせを用いた場合には、細胞を固定化するとFRET現象のシグナルを検出することすらできなくなる一方で、上述の異なる4量体蛍光タンパク質の組み合わせを用いた場合には、固定化した細胞においてもFRET現象のシグナルを検出でき、かつ、検出対象のタンパク質間相互作用の度合いを感度よく解析できることを見出し、本発明を完成するに至った。 Furthermore, in the case of using a combination of fluorescent proteins which can not form the above-mentioned fluorescent luminescent spots, when cells are immobilized, it becomes impossible to detect even the signal of the FRET phenomenon, while the combination of different tetrameric fluorescent proteins mentioned above It has been found that the signal of the FRET phenomenon can be detected even in the immobilized cells and the degree of protein-protein interaction to be detected can be analyzed with high sensitivity, and the present invention has been completed.
 したがって、本発明は、タンパク質間相互作用の判定方法及びその応用、並びに当該方法に用いられるためのキットに関し、より詳しくは、以下の発明を提供するものである。
<1> 第1のタンパク質と第2のタンパク質との相互作用を判定するための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とは異なるタンパク質であり、かつ下記工程(1)~(3)を含む方法
(1) 第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる又は細胞に導入する工程
(2) 前記細胞内における第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点を検出する工程
(3) 前記蛍光輝点の検出により、第1のタンパク質と第2のタンパク質との相互作用を判定する工程。
<2> 第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方がドナー蛍光タンパク質であり、他方がアクセプター蛍光タンパク質であり、工程(3)において、前記蛍光輝点の形成を介したFRET現象の検出により、第1のタンパク質と第2のタンパク質との相互作用を判定する、<1>に記載の方法。
<3> 特定のタンパク質と相互作用するタンパク質をスクリーニングするための方法であって、第1のタンパク質及び第2のタンパク質のいずれか一方が該特定のタンパク質であり、他方が被検タンパク質であり、前記蛍光輝点又は前記FRET現象の検出により、該特定のタンパク質と相互作用するタンパク質を選択する、<1>又は<2>に記載の方法。
<4> 前記相互作用に関与する第1のタンパク質中のアミノ酸残基又は第2のタンパク質中のアミノ酸残基を同定するための方法であって、該第1のタンパク質及び該第2のタンパク質のいずれかに変異が導入されたタンパク質を用い、前記蛍光輝点又は前記FRET現象の強度が、変異が導入されていないタンパク質を用いた場合と比較して減弱した場合は、該変異が導入されたアミノ酸残基を前記相互作用に関与すると判定する、<1>又は<2>に記載の方法。
<5> 第1のタンパク質と第2のタンパク質との相互作用を調節する物質をスクリーニングするための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とは異なるタンパク質であり、かつ下記工程(1)~(3)を含む方法
(1)被検化合物の存在下で、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる若しくは細胞に導入する工程、又は、
 第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させた若しくは細胞に導入した後、該細胞を被検化合物の存在下におく工程、
(2)前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点を検出する工程、
(3)前記蛍光輝点の強度が前記被検化合物の非存在下において生じる蛍光輝点の強度より増大する場合は、前記被検化合物を前記相互作用の誘導物質として選択し、前記蛍光輝点の強度が前記被検化合物の非存在下において生じる蛍光輝点の強度より減弱する場合は、前記被検化合物を前記相互作用の抑制物質として選択する工程。
<6> 第1のタンパク質と第2のタンパク質との相互作用を調節する物質をスクリーニングするための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方がドナー蛍光タンパク質であり、他方がアクセプター蛍光タンパク質であり、かつ下記工程(1)~(3)を含む方法
(1)被検化合物の存在下で、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる若しくは細胞に導入する工程、又は、
 第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させた若しくは細胞に導入した後、該細胞を被検化合物の存在下におく工程、
(2)前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点の形成を介したFRET現象を検出する工程、
(3)前記FRET現象の強度が、前記被検化合物の非存在下において生じるFRET現象の強度より増大する場合は、前記被検化合物を前記相互作用の誘導物質として選択し、前記FRET現象の強度が、前記被検化合物の非存在下において生じるFRET現象の強度より減弱する場合は、前記被検化合物を前記相互作用の抑制物質として選択する工程。
<7> 前記細胞が固定化された細胞である、<1>~<6>のいずれか一に記載の方法。
<8> 下記(a)~(k)からなる群から選択される少なくとも一の物質及び使用説明書を含む、<1>~<7>のうちのいずれか一に記載の方法に用いられるためのキット
 (a)第1の4量体蛍光タンパク質をコードするDNAと、第1の4量体蛍光タンパク質と融合して発現されるように、任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位とを含むベクター
 (b)第2の4量体蛍光タンパク質をコードするDNAと、第2の4量体蛍光タンパク質と融合して発現されるように、任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位とを含むベクター
 (c)第1の融合タンパク質をコードするベクター
 (d)第2の融合タンパク質をコードするベクター
 (e)(a)又は(c)に記載のベクター及び(b)又は(d)に記載のベクターを含むベクターセット
 (f)第1の融合タンパク質をコードするベクターを保持する形質転換細胞
 (g)第2の融合タンパク質をコードするベクターを保持する形質転換細胞
 (h)第1の融合タンパク質をコードするベクターと第2の融合タンパク質をコードするベクターとを保持する形質転換細胞
 (i)第1の融合タンパク質
 (j)第2の融合タンパク質
 (k)第1の融合タンパク質及び第2の融合タンパク質を含むタンパク質セット。
Therefore, the present invention relates to a method of determining protein-protein interaction and its application, and a kit for use in the method, and more specifically, provides the following invention.
<1> A method for determining the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins, And a method (1) comprising the following steps (1) to (3): a first fusion protein comprising a first protein and a first tetrameric fluorescent protein, a second protein and a second tetrameric fluorescence Expressing the Cell into a Cell or Introducing a Cell into a Cell with a Second Fusion Protein Containing a Protein (2) Detecting a Fluorescent Spot Generated by Association of the First Fusion Protein with the Second Fusion Protein in the Cell Step (3) of determining the interaction between the first protein and the second protein by detecting the fluorescent luminescent spot.
<2> One of the first four-mer fluorescent protein and the second four-mer fluorescent protein is a donor fluorescent protein, the other is an acceptor fluorescent protein, and in the step (3) The method according to <1>, wherein the interaction between the first protein and the second protein is determined by detection of the FRET phenomenon through formation.
<3> A method for screening a protein that interacts with a specific protein, wherein one of the first protein and the second protein is the specific protein, and the other is a test protein, The method as described in <1> or <2> which selects the protein which interacts with this specific protein by detection of the said fluorescent luminescent point or the said FRET phenomenon.
<4> A method for identifying an amino acid residue in a first protein involved in the interaction or an amino acid residue in a second protein, which comprises the first protein and the second protein When a protein into which a mutation has been introduced is used and the intensity of the fluorescent spot or the FRET phenomenon is attenuated as compared to the case where a protein without a mutation is used, the mutation is introduced. The method according to <1> or <2>, wherein an amino acid residue is determined to be involved in the interaction.
<5> A method for screening a substance that regulates the interaction between the first protein and the second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different A method (1) which is a protein and comprises the following steps (1) to (3): (1) a first fusion protein comprising a first protein and a first tetrameric fluorescent protein in the presence of a test compound, A step of expressing in a cell or introducing into a cell a second fusion protein comprising a second protein and a second tetrameric fluorescent protein, or
A first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second fusion protein comprising a second protein and a second tetrameric fluorescent protein in a cell Placing the cells in the presence of a test compound after introduction into cells or cells,
(2) detecting a fluorescent bright spot generated by association of the first fusion protein and the second fusion protein in the cell;
(3) When the intensity of the fluorescent spot is higher than the intensity of the fluorescent spot generated in the absence of the test compound, the test compound is selected as an inducer of the interaction, and the fluorescent spot is selected. A step of selecting the test compound as an inhibitor of the interaction, if the intensity of the light is attenuated more than the intensity of the fluorescent luminescent spot generated in the absence of the test compound.
<6> A method for screening a substance that modulates the interaction between a first protein and a second protein, which is any one of a first tetrameric fluorescent protein and a second tetrameric fluorescent protein Method in which one is a donor fluorescent protein and the other is an acceptor fluorescent protein and includes the following steps (1) to (3) (1) the first protein and the first four amounts in the presence of the test compound A step of causing the first fusion protein containing the body fluorescent protein and the second fusion protein containing the second protein and the second tetrameric fluorescent protein to be expressed in cells or introduced into cells, or
A first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second fusion protein comprising a second protein and a second tetrameric fluorescent protein in a cell Placing the cells in the presence of a test compound after introduction into cells or cells,
(2) detecting a FRET phenomenon through formation of a fluorescent bright spot caused by the association of the first fusion protein and the second fusion protein in the cell;
(3) When the strength of the FRET phenomenon is higher than the strength of the FRET phenomenon generated in the absence of the test compound, the test compound is selected as an inducer of the interaction, and the strength of the FRET phenomenon is selected. And a step of selecting the test compound as an inhibitor of the interaction, when the intensity of the FRET phenomenon which occurs in the absence of the test compound is attenuated.
<7> The method according to any one of <1> to <6>, wherein the cell is a fixed cell.
<8> To be used in the method according to any one of <1> to <7>, including at least one substance selected from the group consisting of the following (a) to (k) and instructions for use: (A) A DNA encoding a first tetrameric fluorescent protein, and a DNA encoding any protein so as to be expressed fused to the first tetrameric fluorescent protein A vector containing a cloning site (b) insertion of DNA encoding any protein so as to be expressed fused to the second tetramer fluorescent protein and DNA encoding the second tetramer fluorescent protein (C) a vector encoding a first fusion protein (d) a vector encoding a second fusion protein (e) (a) or (c) And a vector set comprising the vector according to (b) or (d) (f) a transformed cell carrying a vector encoding a first fusion protein (g) a vector carrying a second fusion protein Transformed cell (h) Transformed cell carrying a vector encoding a first fusion protein and a vector encoding a second fusion protein (i) First fusion protein (j) Second fusion protein (k 2.) A protein set comprising a first fusion protein and a second fusion protein.
 本発明によれば、対象とするタンパク質の双方に蛍光タンパク質を融合させ、細胞内に発現させ又は導入した場合において、形成される蛍光輝点を指標に、対象タンパク質間の相互作用を判定することが可能となる。さらに、融合させる蛍光タンパク質は、発現させる又は導入する細胞が生来内在するものではない。そのため、当該細胞の機能を乱すおそれが少なく、タンパク質間相互作用の判定を行なうことができる。 According to the present invention, when the fluorescent protein is fused to both of the target proteins, and expressed or introduced in cells, the interaction between the target proteins is determined using the formed fluorescent bright spots as an index. Is possible. Furthermore, the fluorescent protein to be fused is not inherently endogenous to the cell in which it is expressed or introduced. Therefore, there is little risk of disturbing the function of the cells, and protein-protein interaction can be determined.
 また、対象とするタンパク質の一方にドナー4量体蛍光タンパク質を融合させ、他方にアクセプター4量体蛍光タンパク質を融合させて細胞内に発現させ又は導入した場合には、蛍光輝点の形成を介し、FRET現象を効率よく発生させることができ、そのFRET現象を検出することにより、対象タンパク質間の相互作用を判定することもできる。さらに、本発明によれば、固定化した細胞においてもFRET現象を生じさせることができるため、当該FRET現象のシグナルによるタンパク質間相互作用の判定も可能となる。 In addition, when the donor tetrameric fluorescent protein is fused to one of the target proteins and the acceptor tetrameric fluorescent protein is fused to the other to be expressed or introduced into cells, the formation of a fluorescent bright spot is caused. The FRET phenomenon can be generated efficiently, and the interaction between the target proteins can also be determined by detecting the FRET phenomenon. Furthermore, according to the present invention, since the FRET phenomenon can be generated also in the immobilized cells, it is also possible to determine the protein-protein interaction by the signal of the FRET phenomenon.
検出対象(p53及びMDM2)の一方に単量体蛍光タンパク質であるmAG1又はmEGFPを融合させ、他方に4量体蛍光タンパク質を融合させて発現させたCOS7細胞を、観察した結果を示す、蛍光顕微鏡写真である。The fluorescence microscope which shows the result of having observed the COS7 cell which made mAG1 or mEGFP which is monomer fluorescence protein fuse on one side of detection object (p53 and MDM2), and made it fuse and express it on the other is shown. It is a photograph. 検出対象(p53及びMDM2)の双方に同一の4量体蛍光タンパク質であるAG又はMmjを融合させて発現させたCOS7細胞を、観察した結果を示す、蛍光顕微鏡写真である。It is a fluorescence-microscope photograph which shows the result of having observed the COS7 cell which fused and expressed the same tetrameric fluorescent protein AG or Mmj to both detection object (p53 and MDM2). 検出対象(p53及びMDM2)に異なる4量体蛍光タンパク質(AG及びMmj)を各々融合させて発現させたCOS7細胞を、観察した結果を示す、蛍光顕微鏡写真である。It is a fluorescence-microscope photograph which shows the result of having observed the COS7 cell which each fused different tetramer fluorescent protein (AG and Mmj) to detection object (p53 and MDM2), and was made to express it. p53とMDM2とのタンパク質間相互作用の阻害剤であるNutlin-3の添加前後において、p53及びMDM2に異なる4量体蛍光タンパク質(AG及びMmj)を各々融合させて発現させたCOS7細胞を、観察した結果を示す、蛍光顕微鏡写真である。Before and after addition of Nutlin-3, which is an inhibitor of the protein-protein interaction between p53 and MDM2, observe COS7 cells in which p53 and MDM2 were fused with different tetrameric fluorescent proteins (AG and Mmj) and expressed respectively Are fluorescence micrographs showing the results. Nutlin-3の添加前後において、p53及びMDM2に異なる4量体蛍光タンパク質(AG、Mmj又はMR)を融合させて発現させたHEK293細胞を、観察した結果を示す、蛍光顕微鏡写真である。It is a fluorescence-microscope photograph which shows the result of having observed the HEK293 cell which fused different tetramer fluorescent protein (AG, Mmj or MR) to p53 and MDM2 and expressed it before and behind addition of Nutlin-3. Nutlin-3の添加前後において、MDM2のN末に4量体蛍光タンパク質AGを融合させてなるタンパク質(AG-MDM2)と、p53のC末にAGとは異なる4量体蛍光タンパク質MRを融合させてなるタンパク質(p53-MR)とを発現させたHEK293細胞を解析した結果を示す、AG及びMRの各蛍光画像、並びにMR/AGのFRET現象の効率を示すRatio画像である。Before and after the addition of Nutlin-3, a protein (AG-MDM2) formed by fusing tetramer fluorescent protein AG with N terminal of MDM2 and a tetrameric fluorescent protein MR different from AG with C terminal of p53 It is each fluorescence image of AG and MR which show the result of having analyzed the HEK293 cell which made it express with the protein (p53-MR) which becomes, and a Ratio image which shows the efficiency of the FRET phenomenon of MR / AG. Nutlin-3の添加前後において、AG-MDM2及びp53-MRを発現させたHEK293細胞を解析した結果を示す、グラフである。なお、グラフは蛍光強度の時間経過を示し、グラフ中、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。It is a graph which shows the result of having analyzed the HEK293 cell which made AG-MDM2 and p53-MR expressed before and after addition of Nutlin-3. The graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Nutlin-3の添加前後において、MDM2のN末に4量体蛍光タンパク質AGを融合させてなるタンパク質(AG-MDM2)と、p53のN末にAGとは異なる4量体蛍光タンパク質MRを融合させてなるタンパク質(MR-p53)とを発現させたHEK293細胞を解析した結果を示す、AG及びMRの各蛍光画像、並びにMR/AGのFRET現象の効率を示すRatio画像である。Before and after the addition of Nutlin-3, a protein (AG-MDM2) formed by fusing tetramer fluorescent protein AG with N terminal of MDM2 and a tetrameric fluorescent protein MR different from AG with N terminal of p53 It is each fluorescence image of AG and MR which show the result of having analyzed the HEK293 cell which made it express with the protein (MR-p53) which becomes, and a ratio image which shows the efficiency of the FRET phenomenon of MR / AG. Nutlin-3の添加前後において、AG-MDM2及びMR-p53を発現させたHEK293細胞を解析した結果を示す、グラフである。なお、グラフは蛍光強度の時間経過を示し、グラフ中、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。It is a graph which shows the result of having analyzed the HEK293 cell which made AG-MDM2 and MR-p53 express before and after addition of Nutlin-3. The graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates p53及びMDM2に異なる4量体蛍光タンパク質(AG又はMR)を融合させて発現させたHEK293細胞におけるFRET現象の効率を、アクセプターフォトブリーチング法によって解析した結果を示す、疑似カラー画像、各蛍光輝点の拡大図、及びグラフである。A pseudo-color image, each fluorescence showing the result of analyzing the efficiency of the FRET phenomenon in HEK293 cells in which different tetrameric fluorescent proteins (AG or MR) are fused and expressed to p53 and MDM2 by the acceptor photobleaching method It is the enlarged view of a luminescent point, and a graph. Nutlin-3の添加前後において、p53-MR及びAG-MDM2を発現させたHEK293細胞について、解析した結果を示す、AG及びMRの各蛍光強度を示す画像、及びFRET現象の効率を示すRatio画像である。Before and after the addition of Nutlin-3, HEK293 cells expressing p53-MR and AG-MDM2 are analyzed by images showing fluorescence intensities of AG and MR and ratio images showing the efficiency of FRET phenomenon. is there. p53-MR及びAG-MDM2を発現させたHEK293細胞について、Nutlin-3の添加前後におけるFRET現象の効率を解析した結果を示す、グラフである。なお、グラフは蛍光強度の時間経過を示し、グラフ中、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。It is a graph showing the result of having analyzed the efficiency of the FRET phenomenon before and behind addition of Nutlin-3 about HEK293 cells which made p53-MR and AG-MDM2 express. The graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Nutlin-3の添加前後において、p53-MRと、MDM2のN末にmAG1を融合させてなるタンパク質(mAG1-MDM2)とを発現させたHEK293細胞を、解析した結果を示す、AG及びMRの各蛍光強度を示す画像、及びFRET現象の効率を示すRatio画像である。The results of analysis of HEK293 cells expressing p53-MR and a protein (mAG1-MDM2) fused with mAG1 at the N-terminus of MDM2 before and after the addition of Nutlin-3 are shown as AG and MR, respectively. It is an image which shows fluorescence intensity, and a Ratio image which shows the efficiency of a FRET phenomenon. p53-MR及びmAG1-MDM2を発現させたHEK293細胞について、Nutlin-3の添加前後におけるFRET現象の効率を、解析した結果を示す、グラフである。なお、グラフは蛍光強度の時間経過を示し、グラフ中、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。FIG. 6 is a graph showing the analysis results of the efficiency of the FRET phenomenon before and after the addition of Nutlin-3 for HEK293 cells expressing p53-MR and mAG1-MDM2. The graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Nutlin-3の添加前後において、MR-p53及びAG-MDM2を発現させたHEK293細胞を、解析した結果を示す、AG及びMRの各蛍光強度を示す画像、及びFRET現象の効率を示すRatio画像である。The analysis results of HEK293 cells expressing MR-p53 and AG-MDM2 before and after the addition of Nutlin-3 are images showing fluorescence intensities of AG and MR and Ratio images showing the efficiency of the FRET phenomenon. is there. MR-p53及びAG-MDM2を発現させたHEK293細胞について、Nutlin-3の添加前後におけるFRET現象の効率を、解析した結果を示す、グラフである。なお、グラフは蛍光強度の時間経過を示し、グラフ中、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。It is a graph which shows the result of having analyzed the efficiency of the FRET phenomenon before and behind addition of Nutlin-3 about HEK293 cells which made MR-p53 and AG-MDM2 express. The graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Nutlin-3の添加前後において、MR-p53及びmAG1-MDM2を発現させたHEK293細胞を、解析した結果を示す、mAG1及びMRの各蛍光強度を示す画像、及びFRET現象の効率を示すRatio画像である。Before and after the addition of Nutlin-3, HEK293 cells expressing MR-p53 and mAG1-MDM2 are analyzed by an image showing fluorescence intensity of mAG1 and MR and a Ratio image showing efficiency of FRET phenomenon. is there. MR-p53とmAG1-MDM2とを発現させたHEK293細胞について、Nutlin-3の添加前後におけるFRET現象の効率を、解析した結果を示す、グラフである。なお、グラフは蛍光強度の時間経過を示し、グラフ中、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。FIG. 8 is a graph showing the results of analysis of the efficiency of the FRET phenomenon before and after the addition of Nutlin-3 for HEK293 cells in which MR-p53 and mAG1-MDM2 were expressed. The graph shows the time course of the fluorescence intensity, and in the graph, the dotted line at the top shows the fluorescence intensity derived from AG (Em: 510), and the dotted line at the bottom shows fluorescence intensity from MR (Em: 610) Indicates Nutlin-3の添加前後において、p53-MR及びAG-MDM2を発現させたHEK293細胞と、p53-MR及びmAG1-MDM2を発現させたHEK293細胞とにおける、FRET現象のシグナル(MR/AG又はmAG1(Em:610/Em:510))及びmAG1/AGを、解析した結果を示すグラフである。Before or after the addition of Nutlin-3, a signal of FRET phenomenon (MR / AG or mAG1 in HEK293 cells expressing p53-MR and AG-MDM2 and HEK293 cells expressing p53-MR and mAG1-MDM2 It is a graph which shows the result of having analyzed Em: 610 / Em: 510) and mAG1 / AG. Nutlin-3の添加前後において、MR-p53及びAG-MDM2を発現させたHEK293細胞と、MR-p53及びmAG1-MDM2を発現させたHEK293細胞とにおける、FRET現象のシグナル及びmAG1/AGを、解析した結果を示すグラフである。Analysis of signal and mAG1 / AG of FRET phenomenon in HEK293 cells expressing MR-p53 and AG-MDM2 and HEK293 cells expressing MR-p53 and mAG1-MDM2 before and after the addition of Nutlin-3 It is a graph which shows the result. p53-MR及びAG-MDM2を発現させたHEK293細胞と、p53-MR及びmAG1-MDM2を発現させたHEK293細胞とにおいて、Nutlin-3の添加前のFRET現象のシグナルを、Nutlin-3の添加後のそれに対する比率として表すグラフである。In HEK293 cells expressing p53-MR and AG-MDM2, and in HEK293 cells expressing p53-MR and mAG1-MDM2, the signal of FRET phenomenon before the addition of Nutlin-3 is after the addition of Nutlin-3 It is a graph represented as a ratio to it. MR-p53及びAG-MDM2を発現させたHEK293細胞と、MR-p53及びmAG1-MDM2を発現させたHEK293細胞とにおいて、Nutlin-3の添加前のFRET現象のシグナルを、Nutlin-3の添加後のそれに対する比率として表すグラフである。In HEK293 cells expressing MR-p53 and AG-MDM2, and in HEK293 cells expressing MR-p53 and mAG1-MDM2, the signal of FRET phenomenon before the addition of Nutlin-3 is after the addition of Nutlin-3 It is a graph represented as a ratio to it. Nutlin-3非存在下又は存在下において、p53-MR及びAG-MDM2が発現しているHEK293細胞(p53-MR/AG-MDM2)と、p53-MR及びmAG1-MDM2を発現させたHEK293細胞(p53-MR/mAG1-MDM2)とを各々パラホルムアルデヒドにより固定化した後の、AG又はmAG1とMRとの蛍光強度を示す画像、及びFRET現象の効率を示すRatio画像である。HEK293 cells expressing p53-MR and AG-MDM2 (p53-MR / AG-MDM2) in the absence or presence of Nutlin-3, and HEK293 cells expressing p53-MR and mAG1-MDM2 (p53-MR and mAG1-MDM2) It is an image showing fluorescence intensity of AG or mAG1 and MR after immobilizing p53-MR / mAG1-MDM2) with paraformaldehyde and a Ratio image showing the efficiency of the FRET phenomenon. Nutlin-3非存在下又は存在下において、MR-p53及びAG-MDM2が発現しているHEK293細胞(MR-p53/AG-MDM2)と、MR-p53及びmAG1-MDM2を発現させたHEK293細胞(MR-p53/mAG1-MDM2)とを各々パラホルムアルデヒドにより固定化した後の、AG又はmAG1とMRとの蛍光強度を示す画像、及びFRET現象の効率を示すRatio画像である。HEK293 cells expressing MR-p53 and AG-MDM2 (MR-p53 / AG-MDM2) in the absence or presence of Nutlin-3 and HEK293 cells expressing MR-p53 and mAG1-MDM2 These are images showing fluorescence intensity of AG or mAG1 and MR after immobilizing MR-p53 / mAG1-MDM2) with paraformaldehyde and Ratio images showing the efficiency of the FRET phenomenon. Nutlin-3非存在下又は存在下において、p53-MR/AG-MDM2、p53-MR/mAG1-MDM2、MR-p53/AG-MDM2及びMR-p53/mAG1-MDM2における、パラホルムアルデヒドにより固定化した後のFRET現象の効率を解析した結果を示す、グラフである。Immobilized by paraformaldehyde in p53-MR / AG-MDM2, p53-MR / mAG1-MDM2, MR-p53 / AG-MDM2 and MR-p53 / mAG1-MDM2 in the absence or presence of Nutlin-3 It is a graph which shows the result of having analyzed the efficiency of the later FRET phenomenon. 検出対象(MAX及びMyc)に異なる4量体蛍光タンパク質(AG及びMR)を各々融合させて発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。It is a fluorescence-microscope photograph which shows the result of having observed the cell which fused different tetrameric fluorescent protein (AG and MR) to detection object (MAX and Myc), respectively, and was made to express it. 検出対象(MAX及びMyc)に異なる4量体蛍光タンパク質(AG及びMR)を各々融合させて発現させた細胞を、アクセプターフォトブリーチング法によって解析した結果を示す、蛍光顕微鏡写真である。It is a fluorescence-microscope photograph which shows the result of having analyzed the cell which made each detection object (MAX and Myc) fuse | diffuse different tetrameric fluorescent protein (AG and MR), and was expressed by the acceptor photobleaching method. BAK及びMCL1間相互作用阻害剤(A-1210477)添加前と添加5分後において、MR-BAK及びAG-MCL1を発現させた細胞における、FRET現象の効率を示すRatio画像である。なお、「MR-BAK」は、BAKのN末に4量体蛍光タンパク質MRを融合させてなるタンパク質を表し、「AG-MCL1」は、MCL1のN末に4量体蛍光タンパク質AGを融合させてなるタンパク質を表す。It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAK and AG-MCL1 express before and 5 minutes after addition of BAK and MCL1 interaction inhibitor (A-1210477) addition. "MR-BAK" represents a protein obtained by fusing tetramer fluorescent protein MR to N terminal of BAK, and "AG-MCL1" fuses tetrameric fluorescent protein AG to N terminal of MCL1. Represents a protein that A-1210477の添加前後において、MR-BAK及びAG-MCL1を発現させた細胞における、MR及びAGに由来する各蛍光強度の時間経過(図中、上段)、並びにMR/AG比(Em:610/Em:510)の時間経過(図中、下段)を示す、グラフである。上段のグラフにおいて、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。なお、それぞれA-1210477の添加60秒前の蛍光強度又は蛍光強度の比率を1として標準化した値の推移を示している。Before and after addition of A-1210477, time course (upper in the figure) of each fluorescence intensity derived from MR and AG in cells expressing MR-BAK and AG-MCL1 and MR / AG ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510). In the upper graph, the dotted line located above indicates the fluorescence intensity (Em: 510) derived from AG, and the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR. In addition, the transition of the value which standardized the ratio of the fluorescence intensity or fluorescence intensity 60 seconds before addition of A-12 10477 as 1 respectively is shown. A-1210477添加前と添加5分後において、MR-BAK及びmAG1-MCL1を発現させた細胞における、FRET現象の効率を示すRatio画像である。なお、「mAG1-MCL1」は、MCL1のN末に単量体蛍光タンパク質mAG1を融合させてなるタンパク質を表す。A-1210477 It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAK and mAG1-MCL1 express before 5 minutes after addition. “MAG1-MCL1” represents a protein obtained by fusing the monomeric fluorescent protein mAG1 to the N-terminus of MCL1. A-1210477の添加前後において、MR-BAK及びmAG1-MCL1を発現させた細胞における、MR及びmAG1に由来する各蛍光強度の時間経過(図中、上段)、並びにMR/mAG1比(Em:610/Em:510)の時間経過(図中、下段)を示す、グラフである。上段のグラフにおいて、上に位置する点線はmAG1由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。Before and after addition of A-1210477, time course (upper in the figure) of each fluorescence intensity derived from MR and mAG1 in cells expressing MR-BAK and mAG1-MCL1 and MR / mAG1 ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510). In the upper graph, the dotted line located above indicates the fluorescence intensity (Em: 510) derived from mAG1, and the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR. MR-BAK及びmAG1-MCL1を発現させた細胞におけるEm:610/Em:510と、MR-BAK及びAG-MCL1を発現させた細胞におけるそれとを比較した結果を示す、グラフである。It is a graph which shows the result of having compared the Em: 610 / Em: 510 in the cell which made MR-BAK and mAG1-MCL1 express, and the cell in which MR-BAK and AG-MCL1 were made to express. BAX及びMCL1間相互作用阻害剤(A-1210477)添加前と添加5分後において、MR-BAX及びAG-MCL1を発現させた細胞における、FRET現象の効率を示すRatio画像である。なお、「MR-BAX」は、BAXのN末に4量体蛍光タンパク質MRを融合させてなるタンパク質を表す。It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAX and AG-MCL1 express before and 5 minutes after addition of BAX and MCL1 interaction inhibitor (A-1210477) addition. "MR-BAX" represents a protein obtained by fusing tetramer fluorescent protein MR to the N-terminus of BAX. A-1210477の添加前後において、MR-BAX及びAG-MCL1を発現させた細胞における、MR及びAGに由来する各蛍光強度の時間経過(図中、上段)、並びにMR/AG比(Em:610/Em:510)の時間経過(図中、下段)を示す、グラフである。上段のグラフにおいて、上に位置する点線はAG由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。Before and after addition of A-1210477, the time course (upper in the figure) of each fluorescence intensity derived from MR and AG in cells expressing MR-BAX and AG-MCL1 and the MR / AG ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510). In the upper graph, the dotted line located above indicates the fluorescence intensity (Em: 510) derived from AG, and the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR. A-1210477添加前と添加5分後において、MR-BAX及びmAG1-MCL1を発現させた細胞における、FRET現象の効率を示すRatio画像である。A-1210477 It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-BAX and mAG1-MCL1 express before 5 minutes after addition. A-1210477の添加前後において、MR-BAX及びmAG1-MCL1を発現させた細胞における、MR及びmAG1に由来する各蛍光強度の時間経過(図中、上段)、並びにMR/mAG1比(Em:610/Em:510)の時間経過(図中、下段)を示す、グラフである。上段のグラフにおいて、上に位置する点線はmAG1由来の蛍光強度(Em:510)を示し、下に位置する点線はMR由来の蛍光強度(Em:610)を示す。Before and after addition of A-1210477, time course (upper in the figure) of each fluorescence intensity derived from MR and mAG1 in cells expressing MR-BAX and mAG1-MCL1 and MR / mAG1 ratio (Em: 610) It is a graph which shows time progress (in the figure, lower stage) of / Em: 510). In the upper graph, the dotted line located above indicates the fluorescence intensity (Em: 510) derived from mAG1, and the dotted line located below indicates the fluorescence intensity (Em: 610) derived from MR. MR-BAX及びmAG1-MCL1を発現させた細胞におけるEm:610/Em:510と、MR-BAX及びAG-MCL1を発現させた細胞におけるそれとを比較した結果を示す、グラフである。It is a graph which shows the result of having compared the Em: 610 / Em: 510 in the cell which made MR-BAX and mAG1-MCL1 express, and the cell in which MR-BAX and AG-MCL1 were made to express. mTOR及びFKBP12間相互作用誘導剤(Rapamycin)添加前と添加5分後において、MR-mTOR及びAG-FKBP12を発現させた細胞における、FRET現象の効率を示すRatio画像である。なお、「MR-mTOR」は、mTORのN末に4量体蛍光タンパク質MRを融合させてなるタンパク質を表し、「AG-FKBP12」は、FKBP12のN末に4量体蛍光タンパク質AGを融合させてなるタンパク質を表す。It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-mTOR and AG-FKBP12 express before and 5 minutes after addition of mTOR and FKBP12 interaction inducer (Rapamycin) addition. "MR-mTOR" represents a protein obtained by fusing the tetrameric fluorescent protein MR to the N-terminal of mTOR, and "AG-FKBP12" fuses the tetrameric fluorescent protein AG to the N-terminal of FKBP12 Represents a protein that Rapamycinの添加前後において、MR-mTOR及びAG-FKBP12を発現させた細胞における、MR及びAGに由来する各蛍光強度の時間経過(図中、上段)、並びにMR/AG比(Em:610/Em:510)の時間経過(図中、下段)を示す、グラフである。上段のグラフにおいて、上に位置する点線はMR由来の蛍光強度(Em:610)を示し、下に位置する点線はAG由来の蛍光強度(Em:510)を示す。Time course (upper in the figure) of each fluorescence intensity derived from MR and AG in cells expressing MR-mTOR and AG-FKBP12 before and after addition of Rapamycin, and MR / AG ratio (Em: 610 / Em It is a graph which shows time progress (in the figure, lower stage) of: 510). In the upper graph, the dotted line at the top indicates the fluorescence intensity from MR (Em: 610), and the dotted line at the bottom indicates the fluorescence intensity from AG (Em: 510). Rapamycin添加前と添加5分後において、MR-mTOR及びmAG1-FKBP12を発現させた細胞における、FRET現象の効率を示すRatio画像である。なお、「mAG1-FKBP12」は、FKBP12のN末に単量体蛍光タンパク質mAG1を融合させてなるタンパク質を表す。It is a Ratio image which shows the efficiency of the FRET phenomenon in the cell which made MR-mTOR and mAG1-FKBP12 express before and 5 minutes after addition of Rapamycin. “MAG1-FKBP12” represents a protein obtained by fusing the monomeric fluorescent protein mAG1 to the N-terminus of FKBP12. Rapamycinの添加前後において、MR-mTOR及びmAG1-FKBP12を発現させた細胞における、MR及びmAG1に由来する各蛍光強度の時間経過(図中、上段)、並びにMR/mAG1比(Em:610/Em:510)の時間経過(図中、下段)を示す、グラフである。上段のグラフにおいて、上に位置する点線はMR由来の蛍光強度(Em:610)を示し、下に位置する点線はmAG1由来の蛍光強度(Em:510)を示す。Time course (upper in the figure) of each fluorescence intensity derived from MR and mAG1 in cells expressing MR-mTOR and mAG1-FKBP12 before and after addition of Rapamycin, and MR / mAG1 ratio (Em: 610 / Em It is a graph which shows time progress (in the figure, lower stage) of: 510). In the upper graph, the dotted line located at the top indicates the fluorescence intensity (Em: 610) derived from MR, and the dotted line located at the bottom indicates the fluorescence intensity derived from mAG1 (Em: 510). MR-mTOR及びmAG1-FKBP12を発現させた細胞におけるEm:610/Em:510と、MR-mTOR及びAG-FKBP12を発現させた細胞におけるそれとを比較した結果を示す、グラフである。It is a graph which shows the result of having compared the Em: 610 / Em: 510 in the cell which made MR-mTOR and mAG1-FKBP12 express, and the cell in which MR-mTOR and AG-FKBP12 were made to express. MR-BAK及びAG-MCL1を発現させた生細胞(図中、左側の(A))と、MR-BAK及びmAG1-MCL1を発現させた生細胞(図中、右側の(B))とにおける、FRET現象のシグナル(各グラフ縦軸)と、A-1210477の濃度(各グラフ横軸)との関係を示す、グラフである。Among living cells expressing MR-BAK and AG-MCL1 ((A) on the left side in the figure) and living cells expressing MR-BAK and mAG1-MCL1 ((B) on the right side in the figure) 3 is a graph showing the relationship between the signal of the FRET phenomenon (in each graph vertical axis) and the concentration of A-1210477 (in each graph horizontal axis). MR-BAK及びAG-MCL1を発現させ固定化した細胞(図中、左側の(A))と、MR-BAK及びmAG1-MCL1を発現させ固定化した細胞(図中、右側の(B))とにおける、FRET現象のシグナル(各グラフ縦軸)と、A-1210477の濃度(各グラフ横軸)との関係を示す、グラフである。Cells expressing and immobilized MR-BAK and AG-MCL1 (in the figure (A) on the left) and cells expressing and immobilized MR-BAK and mAG1-MCL1 (in the figure (B) on the right) And a graph showing the relationship between the signal of the FRET phenomenon (in each graph vertical axis) and the concentration of A-1210477 (in each graph horizontal axis). MR-mTOR及びAG-FKBP12を発現させた生細胞(図中、左側の(A))と、MR-mTOR及びmAG1-FKBP12を発現させた生細胞(図中、右側の(B))とにおける、FRET現象のシグナル(各グラフ縦軸)と、Rapamycinの濃度(各グラフ横軸)との関係を示す、グラフである。Among living cells expressing MR-mTOR and AG-FKBP12 (in the figure, left (A)) and living cells expressing MR-mTOR and mAG1-FKBP12 (in the figure, right (B)) 3 is a graph showing the relationship between the signal of FRET phenomenon (in each graph vertical axis) and the concentration of Rapamycin (in each graph horizontal axis). MR-mTOR及びAG-FKBP12を発現させ固定化した細胞(図中、左側の(A))と、MR-mTOR及びmAG1-FKBP12を発現させ固定化した細胞(図中、右側の(B))とにおける、FRET現象のシグナル(各グラフ縦軸)と、Rapamycinの濃度(各グラフ横軸)との関係を示す、グラフである。Cells expressing and immobilized MR-mTOR and AG-FKBP12 (left (A) in the figure) and cells expressing and immobilized MR-mTOR and mAG1-FKBP12 (right (B) in the figure) And a graph showing the relationship between the signal of the FRET phenomenon (in each graph vertical axis) and the concentration of Rapamycin (in each graph horizontal axis). MR-BAK及びAG-MCL1を発現させた細胞における、A-1210477の濃度と、「視野中の蛍光輝点におけるAGの蛍光強度の総和/視野中のAGを発現している総細胞数」(図中、左側)及び「視野中の蛍光輝点におけるMRの蛍光強度の総和/視野中のMRを発現している総細胞数」(図中、右側)との関係を示す、グラフである。In the cells expressing MR-BAK and AG-MCL1, the concentration of A-1210477 and “sum of fluorescence intensities of AG at fluorescent spots in the field / total number of cells expressing AG in the field” In the figure, it is a graph showing the relationship with “the total of the fluorescence intensity of MR at the fluorescent light spot in the field of view / the total number of MR expressing cells in the field of view” (right side in the figure). MR-BAX及びAG-MCL1を発現させた細胞における、A-1210477の濃度と、「視野中の蛍光輝点におけるAGの蛍光強度の総和/視野中のAGを発現している総細胞数」(図中、左側)及び「視野中の蛍光輝点におけるMRの蛍光強度の総和/視野中のMRを発現している総細胞数」(図中、右側)との関係を示す、グラフである。In the cells expressing MR-BAX and AG-MCL1, the concentration of A-1210477 and “sum of fluorescence intensities of AG at fluorescent spots in the field / total number of cells expressing AG in the field” In the figure, it is a graph showing the relationship with “the total of the fluorescence intensity of MR at the fluorescent light spot in the field of view / the total number of MR expressing cells in the field of view” (right side in the figure). Rapamycin添加前と添加10分後において、mTOR-DsRed2及びAG-FKBP12を発現させた細胞における、FRET現象の効率を示すRatio画像(上段)と、FRET現象のシグナルを示すグラフ(下段)とを示す。なお、「mTOR-DsRed2」は、mTORのC末に4量体蛍光タンパク質DsRed2を融合させてなるタンパク質を表す。The ratio image (upper stage) which shows the efficiency of the FRET phenomenon in the cell which made mTOR-DsRed2 and AG-FKBP12 express before the rapamycin addition addition 10 minutes after addition is shown, and the graph which shows the signal of the FRET phenomenon (lower stage) . "MTOR-DsRed2" represents a protein obtained by fusing the tetrameric fluorescent protein DsRed2 to the C-terminus of mTOR. Rapamycin添加前と添加10分後において、FKBP12-AG及びmTOR-COR5を発現させた細胞における、FRET現象の効率を示すRatio画像(上段)と、FRET現象のシグナルを示すグラフ(下段)とを示す。なお、「mTOR-COR5」は、mTORのC末に4量体蛍光タンパク質COR5を融合させてなるタンパク質を表す。A ratio image (upper row) showing the efficiency of the FRET phenomenon and a graph (lower row) showing the signal of the FRET phenomenon in cells expressing FKBP12-AG and mTOR-COR5 before and 10 minutes after addition of rapamycin . "MTOR-COR5" represents a protein obtained by fusing the tetrameric fluorescent protein COR5 to the C-terminus of mTOR. Rapamycin添加前と添加10分後において、MR-FKBP12及びmTOR-KikGR1を発現させた細胞における、FRET現象の効率を示すRatio画像(上段)と、FRET現象のシグナルを示すグラフ(下段)とを示す。なお、「MR-FKBP12」は、FKBP12のN末に4量体蛍光タンパク質MRを融合させてなるタンパク質を表し、「mTOR-KikGR1」は、mTORのC末に4量体蛍光タンパク質KikGR1を融合させてなるタンパク質を表す。The ratio image (upper stage) which shows the efficiency of the FRET phenomenon in the cell which made MR-FKBP12 and mTOR-KikGR1 express before and 10 minutes after addition of rapamycin shows the graph which shows the signal of the FRET phenomenon (lower stage) . "MR-FKBP12" represents a protein obtained by fusing the tetrameric fluorescent protein MR to the N-terminus of FKBP12, and "mTOR-KikGR1" fuses the tetrameric fluorescent protein KikGR1 to the C-terminal of mTOR Represents a protein that Rapamycin添加前と添加10分後において、FKBP12-DsRed2及びmTOR-KikGR1を発現させた細胞における、FRET現象の効率を示すRatio画像(上段)と、FRET現象のシグナルを示すグラフ(下段)とを示す。A ratio image (upper part) showing the efficiency of FRET phenomenon and a graph (lower part) showing signals of FRET phenomenon in cells expressing FKBP12-DsRed2 and mTOR-KikGR1 before and 10 minutes after addition of rapamycin are shown. . Rapamycin添加前と添加10分後において、FKBP12-COR5及びmTOR-KikGR1を発現させた細胞における、FRET現象の効率を示すRatio画像(上段)と、FRET現象のシグナルを示すグラフ(下段)とを示す。The ratio image (upper part) which shows the efficiency of the FRET phenomenon in the cell which made FKBP12-COR5 and mTOR-KikGR1 express before the rapamycin addition 10 minutes after addition is shown, and the graph which shows the signal of the FRET phenomenon (lower) . Nutlin-3添加前と添加10分後において、Mmj-p53及びMR-MDM2を発現させた細胞における、FRET現象の効率を示すRatio画像(上段)と、FRET現象のシグナルを示すグラフ(下段)とを示す。なお、「Mmj-p53」は、p53のN末に4量体蛍光タンパク質Momiji(Mmj)を融合させてなるタンパク質を表し、「MR-MDM2」は、MDM2のN末に4量体蛍光タンパク質MRを融合させてなるタンパク質を表す。Ratio image (upper row) showing the efficiency of FRET phenomenon and the graph (lower row) showing the signal of FRET phenomenon in cells expressing Mmj-p53 and MR-MDM2 before and 10 minutes after addition of Nutlin-3 Indicates "Mmj-p53" represents a protein obtained by fusing the tetrameric fluorescent protein Momiji (Mmj) to the N-terminal of p53, and "MR-MDM2" represents the tetrameric fluorescent protein MR at the N-terminal of MDM2. Represents a protein formed by fusing Rapamycin添加30分後において、AG-FKBP12及びmTOR-mKO1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、AG由来の蛍光を検出して観察した結果を示し、右側は、mKO1由来の蛍光を検出して観察した結果を示す。なお、「mTOR-mKO1」は、mTORのC末に単量体蛍光タンパク質mKO1を融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made AG-FKBP12 and mTOR-mKO1 express 30 minutes after Rapamycin addition. The left side shows the result of detection and observation of fluorescence from AG, and the right side shows the result of detection and observation of fluorescence from mKO1. “MTOR-mKO1” represents a protein obtained by fusing the monomeric fluorescent protein mKO1 to the C-terminus of mTOR. Rapamycin添加30分後において、AG-FKBP12及びmTOR-mKO2を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、AG由来の蛍光を検出して観察した結果を示し、右側は、mKO2由来の蛍光を検出して観察した結果を示す。なお、「mTOR-mKO2」は、mTORのC末に単量体蛍光タンパク質mKO2を融合させてなるタンパク質を表す。It is a fluorescence-micrograph which shows the result of having observed the cell which made AG-FKBP12 and mTOR-mKO2 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from AG, and the right side shows the results of detection and observation of fluorescence from mKO2. "MTOR-mKO2" represents a protein obtained by fusing the monomeric fluorescent protein mKO2 to the C-terminus of mTOR. Rapamycin添加30分後において、AG-FKBP12及びmTOR-KO1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、AG由来の蛍光を検出して観察した結果を示し、右側は、KO1由来の蛍光を検出して観察した結果を示す。なお、「mTOR-KO1」は、mTORのC末に2量体蛍光タンパク質KO1を融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made AG-FKBP12 and mTOR-KO1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from AG, and the right side shows the results of detection and observation of fluorescence from KO1. “MTOR-KO1” represents a protein obtained by fusing the dimeric fluorescent protein KO1 to the C-terminus of mTOR. Rapamycin添加30分後において、AG-FKBP12及びmTOR-mKeimaを発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、AG由来の蛍光を検出して観察した結果を示し、右側は、mKeima由来の蛍光を検出して観察した結果を示す。なお、「mTOR-mKeima」は、mTORのC末に単量体蛍光タンパク質mKeimaを融合させてなるタンパク質を表す。It is a fluorescence-micrograph which shows the result of having observed the cell which made AG-FKBP12 and mTOR-mKeima express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from AG, and the right side shows the results of detection and observation of fluorescence from mKeima. "MTOR-mKeima" represents a protein obtained by fusing the monomeric fluorescent protein mKeima to the C-terminus of mTOR. Rapamycin添加30分後において、AG-FKBP12及びmTOR-dKeimaを発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、AG由来の蛍光を検出して観察した結果を示し、右側は、dKeima由来の蛍光を検出して観察した結果を示す。なお、「mTOR-dKeima」は、mTORのC末に2量体蛍光タンパク質dKeimaを融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made AG-FKBP12 and mTOR-dKeima express 30 minutes after Rapamycin addition. The left side shows the result of detection and observation of fluorescence from AG, and the right side shows the result of detection and observation of fluorescence from dKeima. "MTOR-dKeima" represents a protein obtained by fusing the dimeric fluorescent protein dKeima to the C-terminus of mTOR. Rapamycin添加30分後において、mAG1-FKBP12及びmTOR-mKO1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、mAG1由来の蛍光を検出して観察した結果を示し、右側は、mKO1由来の蛍光を検出して観察した結果を示す。It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-mKO1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from mKO1. Rapamycin添加30分後において、mAG1-FKBP12及びmTOR-mKO2を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、mAG1由来の蛍光を検出して観察した結果を示し、右側は、mKO2由来の蛍光を検出して観察した結果を示す。It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-mKO2 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from mKO2. Rapamycin添加30分後において、mAG1-FKBP12及びmTOR-KO1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、mAG1由来の蛍光を検出して観察した結果を示し、右側は、KO1由来の蛍光を検出して観察した結果を示す。It is a fluorescence-micrograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-KO1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from KO1. Rapamycin添加30分後において、mAG1-FKBP12及びmTOR-mKeimaを発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、mAG1由来の蛍光を検出して観察した結果を示し、右側は、mKeima由来の蛍光を検出して観察した結果を示す。It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-mKeima express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from mKeima. Rapamycin添加30分後において、mAG1-FKBP12及びmTOR-dKeimaを発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、mAG1由来の蛍光を検出して観察した結果を示し、右側は、dKeima由来の蛍光を検出して観察した結果を示す。It is a fluorescence-microscope photograph which shows the result of having observed the cell which made mAG1-FKBP12 and mTOR-dKeima express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of fluorescence from mAG1 and the right side shows the results of detection and observation of fluorescence from dKeima. Rapamycin添加30分後において、MR-FKBP12及びmTOR-dAG(AB)を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、MR由来の蛍光を検出して観察した結果を示し、右側は、dAG(AB)由来の蛍光を検出して観察した結果を示す。なお、「mTOR-dAG(AB)」は、mTORのC末に2量体蛍光タンパク質dAG(AB)を融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-dAG (AB) express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of dAG (AB) -derived fluorescence. “MTOR-dAG (AB)” represents a protein obtained by fusing the dimeric fluorescent protein dAG (AB) to the C-terminus of mTOR. Rapamycin添加30分後において、MR-FKBP12及びmTOR-dAG(AC)を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、MR由来の蛍光を検出して観察した結果を示し、右側は、dAG(AC)由来の蛍光を検出して観察した結果を示す。なお、「mTOR-dAG(AC)」は、mTORのC末に2量体蛍光タンパク質dAG(AC)を融合させてなるタンパク質を表す。It is a fluorescence-microscope photograph which shows the result of having observed the cell which made MR-FKBP12 and mTOR-dAG (AC) express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of dAG (AC) -derived fluorescence. “MTOR-dAG (AC)” represents a protein obtained by fusing the dimeric fluorescent protein dAG (AC) to the C-terminus of mTOR. Rapamycin添加30分後において、MR-FKBP12及びmTOR-mUkG1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、MR由来の蛍光を検出して観察した結果を示し、右側は、mUkG1由来の蛍光を検出して観察した結果を示す。なお、「mTOR-mUkG1」は、mTORのC末に単量体蛍光タンパク質mUkG1を融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-mUkG1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of mUkG1-derived fluorescence. “MTOR-mUkG1” represents a protein obtained by fusing the monomeric fluorescent protein mUkG1 to the C-terminus of mTOR. Rapamycin添加30分後において、MR-FKBP12及びmTOR-mMiCy1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、MR由来の蛍光を検出して観察した結果を示し、右側は、mMiCy1由来の蛍光を検出して観察した結果を示す。なお、「mTOR-mMiCy1」は、mTORのC末に単量体蛍光タンパク質mMiCy1を融合させてなるタンパク質を表す。It is a fluorescence-micrograph which shows the result of having observed the cell which made MR-FKBP12 and mTOR-mMiCy1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of mMiCy1-derived fluorescence. “MTOR-mMiCy1” represents a protein obtained by fusing the monomeric fluorescent protein mMiCy1 to the C-terminus of mTOR. Rapamycin添加30分後において、MR-FKBP12及びmTOR-MiCy1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、MR由来の蛍光を検出して観察した結果を示し、右側は、MiCy1由来の蛍光を検出して観察した結果を示す。なお、「mTOR-MiCy1」は、mTORのC末に2量体蛍光タンパク質MiCy1を融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-MiCy1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of MiCy1-derived fluorescence. "MTOR-MiCy1" represents a protein obtained by fusing the dimeric fluorescent protein MiCy1 to the C-terminus of mTOR. Rapamycin添加30分後において、MR-FKBP12及びmTOR-KCy1を発現させた細胞を、観察した結果を示す、蛍光顕微鏡写真である。左側は、MR由来の蛍光を検出して観察した結果を示し、右側は、KCy1由来の蛍光を検出して観察した結果を示す。なお、「mTOR-KCy1」は、mTORのC末に2量体蛍光タンパク質KCy1を融合させてなるタンパク質を表す。It is a fluorescence microscope picture which shows the result of having observed the cell which made MR-FKBP12 and mTOR-KCy1 express 30 minutes after Rapamycin addition. The left side shows the results of detection and observation of MR-derived fluorescence, and the right side shows the results of detection and observation of KCy1-derived fluorescence. “MTOR-KCy1” represents a protein obtained by fusing the dimeric fluorescent protein KCy1 to the C-terminus of mTOR.
 以下、本発明をその好適な実施形態に即して詳細に説明する。また、下記各項目において説明する事項に関しては、当然のことながら特に断りがない限り、本発明全体を通し、他の項目等においても同様に解釈される。 Hereinafter, the present invention will be described in detail in line with its preferred embodiments. Further, with regard to the matters described in the following items, the same applies to other items etc. throughout the present invention, as a matter of course, unless otherwise specified.
 <タンパク質間相互作用を判定するための方法>
 本発明のタンパク質間相互作用を判定するための方法は、
 第1のタンパク質と第2のタンパク質との相互作用を判定するための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とは異なるタンパク質であり、かつ下記工程(1)~(3)を含む
(1) 第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる又は細胞に導入する工程
(2) 前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点を検出する工程
(3) 前記蛍光輝点の検出により、第1のタンパク質と第2のタンパク質との相互作用を判定する工程
を含む方法である。
<Method for Determining Protein-Protein Interaction>
The method for determining protein-protein interaction of the present invention comprises
A method for determining the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins, and the following steps: (1) A first fusion protein containing a first protein and a first four-mer fluorescent protein, and a second fusion protein containing a second protein and a second four-mer fluorescent protein (1) to (3) 2. Expressing or introducing the fusion protein of 2 into a cell (2): detecting a fluorescent luminescent spot produced by the association of the first fusion protein with the second fusion protein in the cell (3) It is a method including the step of determining the interaction between the first protein and the second protein by detecting the fluorescent spots.
 本発明において「タンパク質」とは2個以上のアミノ酸がペプチド結合により結合した分子及びその修飾体を意味する。したがって、完全長のタンパク質のみならず、いわゆるオリゴペプチドやポリペプチドをも含む概念である。タンパク質の修飾としては、例えば、リン酸化、グリコシル化、パルミトイル化、プレニル化(例えば、ゲラニルゲラニル化)、メチル化、アセチル化、ユビキチン化、SUMO化、ヒドロキシル化、アミド化が挙げられる。 In the present invention, "protein" means a molecule in which two or more amino acids are linked by peptide bond, and a modified form thereof. Therefore, the concept includes not only full-length proteins but also so-called oligopeptides and polypeptides. Protein modifications include, for example, phosphorylation, glycosylation, palmitoylation, prenylation (eg, geranylgeranylation), methylation, acetylation, ubiquitination, SUMOylation, hydroxylation, amidification.
 本発明にかかる「第1のタンパク質」及び「第2のタンパク質」としては、相互作用を検出したい所望のタンパク質を用いることができる。また、第1のタンパク質と第2のタンパク質とは異なっていてもよく、同一であってもよい。 As the "first protein" and the "second protein" according to the present invention, desired proteins for which an interaction is desired to be detected can be used. Also, the first protein and the second protein may be different or identical.
 本発明にかかる「第1のタンパク質と第2のタンパク質との相互作用」には、直接的な相互作用のみならず、第1のタンパク質と第2のタンパク質との間に他の分子(タンパク質、核酸、糖、脂質、低分子化合物等)を介して複合体を形成するような、間接的な相互作用も含まれる。 The “interaction between the first protein and the second protein” according to the present invention includes not only direct interaction but also another molecule (protein, etc.) between the first protein and the second protein. Also included are indirect interactions such as complex formation via nucleic acids, sugars, lipids, low molecular weight compounds etc.).
 本発明にかかる「4量体蛍光タンパク質」は、蛍光を発することができ、かつ細胞内においてホモ4量体を形成することができるタンパク質であればよく、例えば、下記表1~4に示す蛍光タンパク質が挙げられる。 The “tetrameric fluorescent protein” according to the present invention may be a protein capable of emitting fluorescence and capable of forming a homotetramer in cells, for example, the fluorescence shown in Tables 1 to 4 below. Protein is mentioned.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表1~4においては、各蛍光タンパク質の、励起波長及び蛍光波長、並びに典型的な配列(配列番号によって特定される配列)も併せて示す。 In Tables 1 to 4, the excitation wavelength and fluorescence wavelength of each fluorescent protein, and a typical sequence (sequence specified by SEQ ID NO) are also shown together.
 また、これら蛍光タンパク質のアミノ酸配列は、自然界において(すなわち、非人工的に)変異し得る。また、人為的に変異を導入することもできる。そのため、表1~4に示した典型的なアミノ酸配列からなる蛍光タンパク質に限らず、このような変異体も、蛍光を発することができ、かつ、細胞内にてホモ4量体を形成することができる限り、本発明において用いることができる。 Also, the amino acid sequences of these fluorescent proteins can be mutated in nature (ie, non-artificially). Also, mutations can be artificially introduced. Therefore, not only fluorescent proteins consisting of typical amino acid sequences shown in Tables 1 to 4 but also such mutants can emit fluorescence and form homotetramers in cells. As long as it can, it can be used in the present invention.
 かかる変異体としては、例えば、表1~4に示した典型的なアミノ酸配列と90%以上(例えば、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上)の相同性を有するアミノ酸配列からなる4量体蛍光タンパク質が挙げられる。 Such variants include, for example, the typical amino acid sequences shown in Tables 1 to 4 and 90% or more (eg, 91% or more, 92% or more, 93% or more, 94% or more, 94% or more, 95% or more, 96% or more And tetramer fluorescent proteins consisting of amino acid sequences having homology of 97% or more, 98% or more, 99% or more).
 配列の相同性は、BLASTP(アミノ酸レベル)のプログラム(Altschul et al.J.Mol.Biol.,215:403-410,1990)を利用して決定することができる。BLASTPによってアミノ酸配列を解析する方法の具体的な手法は公知であり、当業者であれば、例えば、当該プログラムのデフォルトパラメーターを用いて解析を行なうことができる。 Sequence homology can be determined using the BLASTP (amino acid level) program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The specific procedure of the method of analyzing an amino acid sequence by BLASTP is known, and those skilled in the art can analyze, for example, using the default parameters of the program.
 本発明において、「第1の4量体蛍光タンパク質」及び「第2の4量体蛍光タンパク質」は、異なるタンパク質である。ここで「異なる」とは、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とが互いに会合することがなく、多量体を形成することができない関係を意味する。 In the present invention, the "first tetrameric fluorescent protein" and the "second tetrameric fluorescent protein" are different proteins. Here, “different” means a relationship in which the first tetrameric fluorescent protein and the second tetrameric fluorescent protein do not associate with each other and can not form a multimer.
 また、本発明においては、後述のとおり、タンパク質間相互作用の判定を、蛍光輝点の形成を介したFRET現象の検出によって行なうことができる。かかる観点から、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方がドナー蛍光タンパク質であり、他方がアクセプター蛍光タンパク質であることが好ましい。 Further, in the present invention, as described later, the protein-protein interaction can be determined by detecting the FRET phenomenon through the formation of a fluorescent bright spot. From such a viewpoint, it is preferable that one of the first tetrameric fluorescent protein and the second tetrameric fluorescent protein is a donor fluorescent protein and the other is an acceptor fluorescent protein.
 「ドナー蛍光タンパク質」及び「アクセプター蛍光タンパク質」は、FRET現象を生じさせるために、前者の蛍光スペクトルと後者の励起スペクトルとが重なり合う関係にあればよく、当業者であれば、例えば、表1~4に示すような、各蛍光タンパク質の励起波長及び蛍光波長に基づき、これらタンパク質の組み合わせを選択することができる。 The “donor fluorescent protein” and the “acceptor fluorescent protein” may be in the overlapping relationship between the former fluorescence spectrum and the latter excitation spectrum in order to cause the FRET phenomenon. A combination of these proteins can be selected based on the excitation wavelength and fluorescence wavelength of each fluorescent protein as shown in 4.
 本発明にかかる「第1の融合タンパク質」又は「第2の融合タンパク質」においては、第1又は第2の4量体蛍光タンパク質は、第1又は第2のタンパク質のN末側、C末側のいずれに融合させてもよい。さらに、直接的に第1又は第2のタンパク質に融合させてもよく、スペーサータンパク質を介して間接的に融合させてもよい。また、本発明にかかる「第1の融合タンパク質」又は「第2の融合タンパク質」には、他の機能性タンパク質が融合されていてもよい。この場合、他の機能性タンパク質は、融合タンパク質のN末側、C末側のどちらか一方若しくは両側、又は第1若しくは第2の4量体蛍光タンパク質と第1若しくは第2のタンパク質との間に、直接的に又は間接的に融合させることができる。他の機能性タンパク質としては特に制限はなく、本発明にかかる融合タンパク質に付与したい機能に応じて適宜選択される。例えば、融合タンパク質の精製を容易にする目的で用いる機能性タンパク質としては、Myc-タグ(tag)タンパク質、His-タグタンパク質、ヘマグルチン(HA)-タグタンパク質、FLAG-タグタンパク質(登録商標、Sigma-Aldrich社)、グルタチオン-S-トランスフェラーゼ(GST)タンパク質が挙げられる。 In the "first fusion protein" or the "second fusion protein" according to the present invention, the first or second 4-mer fluorescent protein is the N-terminal side or the C-terminal side of the first or second protein. It may be fused to any of Furthermore, it may be fused directly to the first or second protein, or indirectly through the spacer protein. In addition, another functional protein may be fused to the “first fusion protein” or the “second fusion protein” according to the present invention. In this case, the other functional protein is either the N-terminal side or C-terminal side or both sides of the fusion protein, or between the first or second tetrameric fluorescent protein and the first or second protein. Directly or indirectly. There is no restriction | limiting in particular as another functional protein, According to the function to give to the fusion protein concerning this invention, it selects suitably. For example, functional proteins used to facilitate the purification of the fusion protein include Myc-tag (tag) protein, His-tag protein, hemagglutin (HA) -tag protein, FLAG-tag protein (registered trademark, Sigma-) Aldrich), glutathione-S-transferase (GST) protein.
 本発明にかかる「細胞」としては特に制限はなく、真核細胞であってもよく、原核細胞であってもよく、例えば、動物細胞(HEK293細胞、HeLaS3細胞、U2OS細胞等)、昆虫細胞(Sf9細胞等)、植物細胞、酵母、大腸菌が挙げられる。また、かかる細胞は、生体外で培養した状態(例えば、培地中又は培地上にて生育している細胞)であってもよく、生体内に存在する状態(例えば、第1の融合タンパク質をコードするDNAと第2の融合タンパク質をコードするDNAとが導入されているトランスジェニック動物内の細胞)であってもよい。また、本発明にかかる融合タンパク質は、通常同一の細胞に導入又は発現させることになるが、異なる細胞であってもよい。そして、このような場合、サイトカインと受容体との相互作用、受容体間の相互作用等の、異なる細胞間のタンパク質間相互作用も判定することが可能となる。 The "cell" according to the present invention is not particularly limited, and may be a eukaryotic cell or a prokaryotic cell, for example, animal cells (HEK 293 cells, HeLa S3 cells, U2OS cells, etc.), insect cells (eg, insect cells). Sf9 cells, etc.), plant cells, yeast, and E. coli. In addition, such cells may be in the state of being cultured ex vivo (for example, cells grown in or on the medium), and are in the state of being present in vivo (for example, encoding the first fusion protein) And the DNA encoding the second fusion protein may be introduced into cells of a transgenic animal). Moreover, although the fusion protein concerning this invention will be normally introduce | transduced or expressed to the same cell, it may be a different cell. And, in such a case, it is possible to determine protein-protein interactions between different cells, such as interactions between cytokines and receptors, interactions between receptors, etc.
 また、後述の実施例において示すとおり、本発明によれば、固定化された細胞であっても、タンパク質間相互作用を検出できる。本発明において「固定化」とは、細胞内の構造の全体又は一部において通常生じる動的な変化を停止させることを意味する。また、固定化の方法としては、特に制限はないが、例えば、タンパク質凝固剤、タンパク質架橋剤によって、細胞を処理する方法が挙げられる。さらに、かかる薬剤としても特に制限はないが、例えば、パラホルムアルデヒド、ホルムアルデヒド(ホルマリン)、グルタルアルデヒド、アルコール(エタノール、メタノール)、ホルマリンアルコール、ピクリン酸、Bouin、Zenker、Hely、オスミウム、カルノアが挙げられる。 Further, as shown in the examples described later, according to the present invention, even between immobilized cells, protein-protein interactions can be detected. In the present invention, "immobilization" means to stop the dynamic change that usually occurs in all or part of the structure in cells. Further, the method of immobilization is not particularly limited, and examples thereof include a method of treating cells with a protein coagulant or a protein crosslinker. Furthermore, such a drug is not particularly limited, but examples thereof include paraformaldehyde, formaldehyde (formalin), glutaraldehyde, alcohol (ethanol, methanol), formalin alcohol, picric acid, Bouin, Zenker, Hely, osmium, carnoir .
 本発明にかかる融合タンパク質の前記細胞内における発現は、目的に応じて、一過性の発現であってもよく、恒常的な発現であってもよい。融合タンパク質の細胞における発現は、後述の本発明にかかるベクターを前記細胞に導入することにより行うことができる。細胞にベクターを導入する公知の手法としては、動物細胞に対しては、リポフェクション法、電気穿孔法、リン酸カルシウム法、DEAE-デキストラン法、ウィルス(アデノウイルス、レンチウイルス、アデノ随伴ウイルス等)を利用した方法が挙げられる。また、昆虫細胞に対しては、バキュロウィルスを利用した方法が挙げられる。さらに、植物細胞に対しては、アグロバクテリウム法、電気穿孔法、パーティクルガン法等が挙げられる。また、酵母に対しては、酢酸リチウム法、電気穿孔法、スフェロプラスト法が挙げられる。さらに、大腸菌に対しては、熱ショック法(例えば、塩化カルシウム法、塩化ルビジウム法)、電気穿孔法等が挙げられる。 The expression of the fusion protein of the present invention in the cell may be transient expression or constant expression depending on the purpose. Expression of the fusion protein in cells can be performed by introducing the vector according to the present invention described later into the cells. As a known method for introducing a vector into cells, for animal cells, lipofection, electroporation, calcium phosphate method, DEAE-dextran method, viruses (adenovirus, lentivirus, adeno-associated virus, etc.) were used. The method is mentioned. For insect cells, a method using baculovirus is mentioned. Further, for plant cells, the Agrobacterium method, the electroporation method, the particle gun method and the like can be mentioned. For yeast, the lithium acetate method, electroporation method and spheroplast method can be mentioned. Furthermore, for E. coli, a heat shock method (for example, calcium chloride method, rubidium chloride method), electroporation method and the like can be mentioned.
 また、本発明において、融合タンパク質の前記細胞内への導入は、当業者であれば細胞の種類に合わせて適宜公知の手法を選択して行うことができる。タンパク質を細胞に導入する公知の手法としては、例えば、タンパク質導入試薬を用いる方法、電気穿孔法、マイクロインジェクション法が挙げられる。 Further, in the present invention, the fusion protein can be introduced into the cells according to the type of cells by those skilled in the art. Examples of known techniques for introducing proteins into cells include methods using protein transfer reagents, electroporation, and microinjection.
 本発明において検出する「蛍光輝点」は、第1の融合タンパク質と第2の融合タンパク質との会合によって生じるものであり、典型的には、拡散状態で存在している第1又は第2の蛍光タンパク質の蛍光強度よりも高い蛍光強度を有する、0.2~50μm(通常、0.2~10μm)の領域であり、好ましくは、第1及び第2の蛍光タンパク質の蛍光強度が各々拡散状態で存在しているよりも共に高い蛍光強度を有する、0.2~50μm(通常、0.2~10μm)の領域である。 The “fluorescent spot” to be detected in the present invention is caused by the association of the first fusion protein and the second fusion protein, and typically, the first or second existing in the diffusion state The region of 0.2 to 50 μm (usually 0.2 to 10 μm) having a fluorescence intensity higher than the fluorescence intensity of the fluorescent protein, preferably, the fluorescence intensities of the first and second fluorescent proteins are each in a diffusion state In the region of 0.2 to 50 μm (usually 0.2 to 10 μm), which both have higher fluorescence intensity than present.
 「蛍光輝点の検出」は、例えば、後述の実施例において示すように、市販の蛍光検出装置を用いて行うことができる。かかる蛍光装置としては、例えば、蛍光顕微鏡、蛍光スキャナ、CCDカメラタイプイメージャー、IN Cell Analyzer(GEヘルスケア社製)等のイメージングサイトメーター、マイクロタイタープレートリーダー(蛍光プレートリーダー)、フローサイトメータ等の検出装置を用いることができる。 The “detection of a fluorescent bright spot” can be performed using, for example, a commercially available fluorescence detection device as shown in the examples below. As such a fluorescence device, for example, a fluorescence microscope, a fluorescence scanner, a CCD camera type imager, an imaging cytometer such as IN Cell Analyzer (manufactured by GE Healthcare), a microtiter plate reader (a fluorescence plate reader), a flow cytometer, etc. A detection device of
 また、得られた画像を画像解析プログラム(例えば、後述のicyスポット検出プログラム)により処理することによっても、蛍光輝点を検出することができる。なお、かかる蛍光輝点の検出において、検出する蛍光輝点の特性(蛍光輝点が発する蛍光の波長、強度等)、並びに用いる装置及びプログラム等に合わせて、フィルター、検出器、各種パラメーター等の選択、設定は、当業者であれば適宜行うことができる。 The fluorescent bright spot can also be detected by processing the obtained image with an image analysis program (for example, the icy spot detection program described later). In the detection of such fluorescent luminescent spots, filters, detectors, various parameters, etc. are adjusted according to the characteristics of the fluorescent luminescent spots to be detected (wavelength of fluorescence emitted from the fluorescent luminescent spots, intensity etc.) Selection and setting can be appropriately performed by those skilled in the art.
 例えば、スポット検出解析プログム Icy(J.-C.Olivo-Marin「Extraction of spots in biological images using multiscale products」 Pattern recognition,vol.35-9,1989~1996ページ,2002年、http://icy.bioimageanalysis.org 参照)における、設定値 Spot Detectorプラグイン(Scale1,Scale2,Scale3 全てにチェックを入れ、感度(Sensitivity)を全て100に設定した際の条件)にて検出可能な「解析プログラムで算出された単位当たりの蛍光強度値」が、バックグランド(例えば、陰性対照となる細胞における同蛍光強度値)の少なくとも2.0倍以上、より好ましくは2.5倍以上、さらにより好ましくは5.0倍以上、特に好ましくは10倍以上であれば、蛍光輝点を検出できたと判定できる。 For example, the spot detection analysis program Icy (J.-C. Olivo-Marin "Extraction of spots in biological images using multiscale products" Pattern recognition, vol. 35-9, pp. 1989-1996, 2002, http: // icy. Set value Spot Detector plug-in (scale1, scale2, scale3 all checked in bioimageanalysis. org) (the condition when all sensitivity is set to 100) "Detectable by analysis program" “Fluorescence intensity value per unit” represents the background (eg, negative control Detection point at least 2.0 times or more, more preferably 2.5 times or more, still more preferably 5.0 times or more, and particularly preferably 10 times or more of the same fluorescence intensity value) It can be determined that it was possible.
 また、後述の実施例において示すとおり、本発明において、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方をドナー蛍光タンパク質とし、他方をアクセプター蛍光タンパク質とした場合に、これら蛍光タンパク質によって形成される蛍光輝点を介して発生する、FRET現象を効率よく検出することが可能となる。したがって、本発明において、タンパク質間相互作用の判定は、「蛍光輝点の形成を介したFRET現象の検出」によって行うこともできる。 Further, as shown in the examples described later, in the present invention, when one of the first tetrameric fluorescent protein and the second tetrameric fluorescent protein is a donor fluorescent protein and the other is an acceptor fluorescent protein It becomes possible to efficiently detect the FRET phenomenon generated via the fluorescent luminescent spots formed by these fluorescent proteins. Therefore, in the present invention, the determination of protein-protein interaction can also be performed by “detection of FRET phenomenon through formation of a fluorescent bright spot”.
 なお、本発明において検出される「FRET現象」は、光励起されたドナー蛍光タンパク質から、励起されていないアクセプター蛍光タンパク質へ、ドナー蛍光放出を経ずに、励起エネルギーが遷移、移動し,ドナーからの蛍光強度が減少し、アクセプター蛍光タンパク質からの蛍光強度が増加する現象(所謂、通常の「蛍光共鳴エネルギー移動(FRET)」)であってもよく、また、ドナー蛍光タンパク質から一旦蛍光が発せられたことにより、アクセプター蛍光タンパク質が励起し、アクセプター蛍光タンパク質からの蛍光強度が増加する現象(再吸収、偽FRET)であってもよいが、本発明においては、その双方を区別することなく、検出することが望ましい(再吸収、偽FRETについては、講義と実習 生細胞蛍光イメージング 阪大・北大 顕微鏡コースブック Practical Course: Fluorescence Microscopy of Living Cells (127ページ)2007年10月25日 初版1刷発行発行者 南条光章 発行所 共立出版株式会社 参照)。 In the present invention, the “FRET phenomenon” detected in the present invention is that the excitation energy is transferred and transferred from the photoexcited donor fluorescent protein to the non-excited acceptor fluorescent protein without donor fluorescence emission, from the donor. It may be a phenomenon in which the fluorescence intensity decreases and the fluorescence intensity from the acceptor fluorescent protein increases (so-called ordinary “fluorescence resonance energy transfer (FRET)”), and fluorescence is once emitted from the donor fluorescent protein It may be a phenomenon (reabsorption, false FRET) in which the acceptor fluorescent protein is excited and the fluorescence intensity from the acceptor fluorescent protein is increased, but in the present invention, both are detected without discrimination. (Re-absorption, pseudo-FRET, lecture and training live cell fluorescence imaging G Osaka University / Hokkaido University Microscope Course Book Practical Course: Fluorescence Microscopy of Living Cells (Page 127) October 25, 2007 First edition issued 1st publisher issued by Mitsujo Nanjo Publication office (refer to Kyoritsu Publishing Co., Ltd.).
 FRET現象の検出は常法により行うことができ、例えば、上述の蛍光検出装置を用いて行うことができる。さらにバックグラウンンドの影響を除くため、時間分解蛍光検出機能がついた装置を用いて行なうこともできる。 The detection of the FRET phenomenon can be performed by a conventional method, and can be performed, for example, using the above-mentioned fluorescence detection device. Furthermore, in order to remove the influence of background, it can also be performed using a device equipped with a time-resolved fluorescence detection function.
 そして、本発明の方法においては、細胞において前記蛍光輝点又は該蛍光輝点の形成を介したFRET現象が検出されれば、第1のタンパク質と第2のタンパク質とは相互作用していると判定することができ、前記蛍光輝点が検出されなければ、第1のタンパク質と第2のタンパク質とは相互作用していないと判定することができる。 And, in the method of the present invention, if the fluorescent luminescent spot or the FRET phenomenon through the formation of the fluorescent luminescent spot is detected in the cell, it is considered that the first protein and the second protein interact with each other. It can be determined that if the fluorescent spot is not detected, it can be determined that the first protein and the second protein do not interact.
 <タンパク質間相互作用の時間情報等を得るための方法>
 本発明の方法は、本発明にかかる蛍光輝点の存在又は非存在を指標として、タンパク質間相互作用の発生のみならず、タンパク質間相互作用の消失を検出することができる。また、かかるタンパク質間相互作用の発生等を経時的に追跡することもできる。さらに、PB1、SAM等といった会合誘導タンパク質の局在、シグナル等に影響を受けることなく、本発明においては細胞内の任意の領域においてタンパク質間相互作用を検出することもできる。
<Method for obtaining time information etc. of protein-protein interaction>
The method of the present invention can detect not only the occurrence of protein-protein interaction but also the disappearance of protein-protein interaction by using the presence or absence of the fluorescent luminescent spot according to the present invention as an indicator. In addition, the occurrence of such protein-protein interaction can also be traced over time. Furthermore, in the present invention, protein-protein interactions can also be detected in any region of the cell without being affected by the localization, signals and the like of association-inducing proteins such as PB1 and SAM.
 したがって、本発明は、本発明にかかる蛍光輝点又は該蛍光輝点の形成を介したFRET現象を検出することによって、タンパク質間相互作用の発生若しくは消失、該相互作用の発生若しくは消失するまでの時間、又は該相互作用の持続時間を検出する方法を提供することができる。 Therefore, according to the present invention, by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot, generation or disappearance of protein-protein interaction, generation or disappearance of the interaction is achieved. Methods can be provided to detect time, or duration of the interaction.
 このような「タンパク質間相互作用の発生若しくは消失」の検出に関して、本発明においては、タンパク質間相互作用が生じる細胞内の領域をも特定することもできる。 With regard to the detection of such “occurrence or loss of protein-protein interaction”, in the present invention, the intracellular region in which the protein-protein interaction takes place can also be identified.
 また、本発明によれば、かかる「タンパク質間相互作用の発生若しくは消失」の検出を通して、当該タンパク質間相互作用が関与するシグナル伝達の発生及び消失、該シグナル伝達の発生若しくは消失するまでの時間並びに該シグナル伝達の持続時間を検出することができ、さらに該シグナル伝達が生じている細胞内の領域をも特定することもできる。 Further, according to the present invention, through detection of such "generation or loss of protein-protein interaction", generation and loss of signal transduction involving the protein-protein interaction, time until generation or loss of signal transduction and The duration of the signaling can be detected, as well as the region within the cell in which the signaling occurs can also be identified.
 また、第1のタンパク質と第2のタンパク質との相互作用が特定の刺激に応答して発生又は消失するものであっても、本発明において検出することができる。したがって、本発明は、本発明にかかる蛍光輝点又は該蛍光輝点の形成を介したFRET現象を検出することによって、特定の刺激に応答するタンパク質間相互作用の発生若しくは消失、該相互作用の発生若しくは消失するまでの時間、又は該相互作用の持続時間を検出する方法も提供することができる。 In addition, even if the interaction between the first protein and the second protein occurs or disappears in response to a particular stimulus, it can be detected in the present invention. Therefore, the present invention relates to the generation or disappearance of protein-protein interaction in response to a specific stimulus by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot. Methods can also be provided to detect the time to development or disappearance, or the duration of the interaction.
 本発明にかかる「特定の刺激」とは、タンパク質間相互作用を直接的に又は間接的に誘導又は阻害できる刺激であればよく、また細胞内で生じる内在性因子による刺激(例えば、細胞内カルシウムイオン濃度の増減、酵素の活性化又は不活性化)であってよく、細胞に与えられる外部からの刺激(例えば、受容体に対するリガンド(アゴニスト又はアンタゴニスト)の細胞への投与)であってもよい。 The “specific stimulation” according to the present invention may be a stimulation capable of inducing or inhibiting protein-protein interaction directly or indirectly, and stimulation by an endogenous factor generated in a cell (eg, intracellular calcium) It may be an increase or decrease of ion concentration, activation or inactivation of an enzyme, or an external stimulus given to cells (for example, administration of a ligand for a receptor (agonist or antagonist) to cells) .
 また、かかる本発明の方法においては、本発明にかかる蛍光輝点又は該蛍光輝点の形成を介したFRET現象を検出することによって、特定の刺激の発生若しくは消失、該刺激の発生若しくは消失するまでの時間、又は該刺激の持続時間を検出することもできる。 In addition, in such a method of the present invention, generation or disappearance of a specific stimulus, generation or disappearance of the stimulus is detected by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot. The time up to, or the duration of the stimulation can also be detected.
 さらに、本発明の方法においては、特定の刺激の程度(例えば、特定の刺激が薬剤である場合には、その濃度)に応じたタンパク質間相互作用の増減も検出することができる。従って、特定の刺激が薬剤である場合には、タンパク質間相互作用に対する、その薬剤の50%効果濃度(EC50)及び50%阻害濃度(IC50)を、本発明によって決定することができる。 Furthermore, in the method of the present invention, it is also possible to detect an increase or decrease in protein-protein interaction depending on the degree of a particular stimulus (for example, if the particular stimulus is a drug, its concentration). Thus, if the particular stimulus is a drug, a 50% effective concentration (EC50) and a 50% inhibitory concentration (IC50) of the drug to protein-protein interactions can be determined according to the present invention.
 また、本発明の方法においては、同一の細胞において、多種類のタンパク質間相互作用、特定の刺激に各々依存的な多種類のタンパク質間相互作用、ひいてはこれらタンパク質間相互作用が関与するシグナル伝達を、判別し、検出することができる。 Furthermore, in the method of the present invention, in the same cell, many types of protein-protein interactions, many types of protein-protein interactions depending on specific stimuli, and thus signal transduction involving these protein-protein interactions , Can be determined and detected.
 <特定のタンパク質と相互作用するタンパク質のスクリーニング方法>
 本発明においては、任意のタンパク質間相互作用を検出することができる。したがって、本発明は、特定のタンパク質と相互作用するタンパク質をスクリーニングするための方法であって、第1のタンパク質及び第2のタンパク質のいずれか一方を該特定のタンパク質とし、他方を被検タンパク質とすることにより、本発明にかかる蛍光輝点又は該蛍光輝点の形成を介したFRET現象の検出により、該特定のタンパク質と相互作用するタンパク質を選択する方法を提供することができる。
<Method of screening for proteins that interact with specific proteins>
In the present invention, any protein-protein interaction can be detected. Therefore, the present invention provides a method for screening a protein that interacts with a specific protein, wherein one of the first protein and the second protein is the specific protein, and the other is the test protein. By doing this, it is possible to provide a method of selecting a protein that interacts with the specific protein by detecting the fluorescent luminescent spot according to the present invention or the FRET phenomenon through the formation of the fluorescent luminescent spot.
 本発明にかかる「被検タンパク質」としては特に制限はない。網羅的に効率良く特定のタンパク質と相互作用するタンパク質を選択できるという観点から、cDNAライブラリーがコードするタンパク質群を好適に用いることができる。 The "test protein" according to the present invention is not particularly limited. From the viewpoint of being able to select proteins that interact with a specific protein efficiently in a comprehensive manner, a protein group encoded by a cDNA library can be suitably used.
 <タンパク質間相互作用に関与するアミノ酸残基の同定方法>
 本発明において、蛍光輝点の蛍光強度とタンパク質間相互作用の強弱とは相関するものである。したがって、本発明によれば、タンパク質間相互作用に関与する第1のタンパク質中のアミノ酸残基又は第2のタンパク質中のアミノ酸残基を同定するための方法であって、該第1のタンパク質及び該第2のタンパク質のいずれかに変異が導入されたタンパク質を用い、前記蛍光輝点の強度及び/又は該蛍光輝点の形成を介したFRET現象の強度が、変異が導入されていないタンパク質を用いた場合と比較して減弱した場合は、該変異が導入されたアミノ酸残基を前記相互作用に関与すると判定する方法を提供することができる。
<Method of identifying amino acid residues involved in protein-protein interaction>
In the present invention, the fluorescence intensity of the fluorescent spot and the strength of the protein-protein interaction are correlated. Therefore, according to the present invention, there is provided a method for identifying an amino acid residue in a first protein involved in protein-protein interaction or an amino acid residue in a second protein, said first protein and Using a protein in which a mutation has been introduced into any of the second proteins, the intensity of the fluorescent spot and / or the intensity of the FRET phenomenon through the formation of the fluorescent spot, the protein in which the mutation has not been introduced When attenuated as compared to the case of use, it can provide a method of determining that the amino acid residue into which the mutation has been introduced is involved in the interaction.
 本発明にかかる「蛍光輝点の強度」には、一蛍光輝点の蛍光強度のみならず、一定領域内(例えば、一細胞内、蛍光顕微鏡観察における一視野内、一蛍光画像内、プレートリーダーでの検出における一ウェル内)に存在する蛍光輝点の総蛍光強度も含まれる。 The “intensity of fluorescent luminescent spot” according to the present invention includes not only the fluorescent intensity of one fluorescent luminescent spot but also a certain area (eg, in one cell, in one field of view in fluorescence microscope observation, in one fluorescence image, plate reader Also included is the total fluorescence intensity of the fluorescent spot present in one well in the detection at
 また、本発明において、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方をドナー蛍光タンパク質とし、他方をアクセプター蛍光タンパク質とした場合には、「蛍光輝点の形成を介したFRET現象の強度」を指標として前記判定を行うことができる。この場合、蛍光輝点の蛍光強度を指標とする判定の結果を、FRET現象の強度を指標とする判定を行なうことにより、確認することができる。また同様に、FRET現象の強度を指標とする判定の結果を、蛍光輝点の蛍光強度を指標とする判定を行なうことにより、確認することもできる。 In the present invention, when either one of the first tetrameric fluorescent protein and the second tetrameric fluorescent protein is a donor fluorescent protein and the other is an acceptor fluorescent protein, The above determination can be performed using “the intensity of the FRET phenomenon through“ as an index. In this case, the result of the determination using the fluorescence intensity of the fluorescent light spot as an indicator can be confirmed by performing the determination using the intensity of the FRET phenomenon as an indicator. Similarly, the result of the determination using the intensity of the FRET phenomenon as an indicator can be confirmed by performing the determination using the fluorescence intensity of the fluorescent luminescent spot as an indicator.
 「FRET現象の強度」としては、特に制限はなく、FRET現象が起こることによって生じる、ドナー蛍光タンパク質の蛍光強度の減少の程度、アクセプター蛍光タンパク質の蛍光強度の増加の程度、ドナー蛍光タンパク質の蛍光寿命の減少の程度が挙げられ、より具体的には、FRET現象の効率、FRET現象のシグナルが挙げられる。 The “intensity of FRET phenomenon” is not particularly limited, and the degree of decrease in fluorescence intensity of donor fluorescent protein, the degree of increase in fluorescence intensity of acceptor fluorescent protein, the fluorescence lifetime of donor fluorescent protein caused by occurrence of FRET phenomenon And more specifically, the efficiency of the FRET phenomenon and the signal of the FRET phenomenon.
 「FRET現象の効率」として、通常、E=1-(F’/F)によって算出される値を用いることができる。ここで、Fは、アクセプター蛍光タンパク質非存在下のドナー蛍光タンパク質の蛍光強度を示し、F’は、アクセプター蛍光タンパク質存在下のドナー蛍光タンパク質の蛍光強度を示す。 As “the efficiency of the FRET phenomenon”, a value usually calculated by E = 1− (F D ′ / F D ) can be used. Here, F D indicates the fluorescence intensity of the donor fluorescent protein in the absence of the acceptor fluorescent protein, and F D ′ indicates the fluorescence intensity of the donor fluorescent protein in the presence of the acceptor fluorescent protein.
 「FRET現象の効率」として、後述の実施例において示すとおり、アクセプターフォトブリーチング法を用いた場合には、E=((Donorpost-Backpost)-(Donorpre-Backpre))/(Donorpost-Backpost)によって算出される値を用いることができる。ここで、Donorpostはアクセプター蛍光タンパク質褪色後のドナー蛍光タンパク質の蛍光強度、Backpostは前記褪色後のバックグラウンドの蛍光強度、Donorpreは前記褪色前のドナー蛍光タンパク質の蛍光強度、Backpreは前記褪色前のバックグラウンドの蛍光強度を示す。 In the case of using the acceptor photobleaching method as “the efficiency of the FRET phenomenon”, as shown in the examples below, E = ((Donorpost-Backpost)-(Donorpre-Backpre)) / (Donorpost-Backpost) The value calculated by can be used. Here, Donorpost is the fluorescence intensity of the donor fluorescent protein after fading the acceptor fluorescent protein, Backpost is the fluorescence intensity of the background after the fading, Donorpre is the fluorescence intensity of the donor fluorescent protein before the fading, and Backpre is the back of the fading before It shows the fluorescence intensity of the ground.
 「FRET現象のシグナル」は、後述の実施例に示すように、ドナー蛍光タンパク質の蛍光強度に対するアクセプター蛍光タンパク質の蛍光強度の比率として表すことができる。 The “signal of the FRET phenomenon” can be expressed as the ratio of the fluorescence intensity of the acceptor fluorescent protein to the fluorescence intensity of the donor fluorescent protein, as shown in the examples below.
 なお、本発明にかかる「ドナー蛍光タンパク質の蛍光強度」及び「アクセプター蛍光タンパク質の蛍光強度」には各々、一蛍光輝点におけるドナー蛍光タンパク質の蛍光強度及びアクセプター蛍光タンパク質の蛍光強度のみならず、一定領域内(例えば、一細胞内、蛍光顕微鏡観察における一視野間又は一蛍光画像内、プレートリーダーでの検出における一ウェル内)あたりのドナー蛍光タンパク質の総蛍光強度及びアクセプター蛍光タンパク質の総蛍光強度も含まれる。 The “fluorescent intensity of the donor fluorescent protein” and the “fluorescent intensity of the acceptor fluorescent protein” according to the present invention are not only the fluorescent intensity of the donor fluorescent protein at one fluorescent bright spot and the fluorescent intensity of the acceptor fluorescent protein but also constant. The total fluorescence intensity of the donor fluorescent protein and the total fluorescence intensity of the acceptor fluorescent protein per region (for example, in one cell, in one field in fluorescence microscopy, in a fluorescence image, in one well for detection with a plate reader) included.
 「第1のタンパク質等に変異が導入されたタンパク質」の調製は、当業者であれば適宜公知の手法を選択して行うことができる。かかる公知の手法としては、部位特異的変異誘発(site-directed mutagenesis)法が挙げられる。 The “protein in which a mutation is introduced into the first protein or the like” can be prepared by those skilled in the art by appropriately selecting known methods. Such known techniques include site-directed mutagenesis.
 <タンパク質間相互作用を調節する物質のスクリーニング方法>
 本発明の方法において、蛍光輝点の強度を指標として、タンパク質間相互作用の強弱を把握することができる。したがって、本発明によれば、(1)被検化合物の存在下で、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び及2の4量体蛍光タンパク質を含む第2の融合タンパク質とを細胞内に発現させる若しくは細胞に導入する工程、又は、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させた若しくは細胞に導入した後、該細胞を被検化合物の存在下におく工程と、(2)前記細胞内において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点を検出する工程と、(3)前記蛍光輝点の強度が前記被検化合物の非存在下において生じる蛍光輝点の強度より増大する場合は、前記被検化合物を前記相互作用の誘導物質として選択し、前記蛍光輝点の強度が前記被検化合物の非存在下において生じる蛍光輝点の強度より減弱する場合は、前記被検化合物を前記相互作用の抑制物質として選択する工程と、を含む方法を提供することができる。
<Method of screening for substance that regulates protein-protein interaction>
In the method of the present invention, the strength of the protein-protein interaction can be grasped by using the intensity of the fluorescent spot as an index. Therefore, according to the present invention, (1) a first fusion protein comprising a first protein and a first tetrameric fluorescent protein in the presence of a test compound, a second protein and a second protein A step of expressing the second fusion protein containing the monomeric fluorescent protein intracellularly or introducing it into the cell, or a first fusion protein comprising the first protein and the first tetrameric fluorescent protein, (B) placing the cell in the presence of a test compound after intracellularly expressing the second fusion protein containing the two proteins and the second tetrameric fluorescent protein or introducing the same into the cell; 2) detecting a fluorescent luminescent spot generated by association of the first fusion protein and the second fusion protein in the cell, and (3) the intensity of the fluorescent luminescent spot is an odor in the absence of the test compound. When the intensity of the fluorescent luminescent spot is increased, the test compound is selected as an inducer of the interaction, and the intensity of the fluorescent luminescent spot is higher than the intensity of the fluorescent luminescent spot produced in the absence of the test compound. In the case of attenuating, selecting the test compound as an inhibitor of the interaction can be provided.
 また、本発明においては、上述のとおり、蛍光輝点の強度のみならず、蛍光輝点の形成を介したFRET現象を指標としても、タンパク質間相互作用を判定することができる。したがって、本発明によれば、(1)被検化合物存在下で、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを細胞内に発現させる若しくは細胞に導入する工程、又は、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させた若しくは細胞に導入した後、該細胞を被検化合物の存在下におく工程と、(2)前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点の形成を介したFRET現象を検出する工程と、(3)前記FRET現象の強度が前記被検化合物の非存在下において生じるFRET現象の強度より増大する場合は、前記被検化合物を前記相互作用の誘導物質として選択し、前記FRET現象の強度が前記被検化合物の非存在下において生じるFRET現象の強度より減弱する場合は、前記被検化合物を前記相互作用の抑制物質として選択する工程と、を含む方法も提供することができる。 Further, in the present invention, as described above, protein-protein interaction can be determined not only with the intensity of the fluorescent bright spot but also with the FRET phenomenon through the formation of the fluorescent bright spot as an index. Therefore, according to the present invention, (1) in the presence of a test compound, a first fusion protein comprising a first protein and a first tetrameric fluorescent protein, a second protein and a second fourth amount A step of expressing the second fusion protein containing the somatic fluorescent protein intracellularly or introducing it into the cell, or a first fusion protein comprising the first protein and the first tetrameric fluorescent protein, and Placing the cell in the presence of a test compound after intracellularly expressing or introducing into the cell a second fusion protein comprising the B.) Detecting the FRET phenomenon through formation of a fluorescent bright spot caused by the association of the first fusion protein and the second fusion protein in the cell, and (3) the intensity of the FRET phenomenon When the intensity of the FRET phenomenon which occurs in the absence of the test compound is increased, the test compound is selected as an inducer of the interaction, and the intensity of the FRET phenomenon occurs in the absence of the test compound. And a step of selecting the test compound as an inhibitor of the interaction, in the case of attenuating due to the strength of the phenomenon.
 本発明のスクリーニング方法において使用する被検化合物としては特に制限はなく、例えば、遺伝子ライブラリーの発現産物、合成低分子化合物ライブラリー、ペプチドライブラリー、抗体、細菌放出物質、細胞(微生物、植物細胞、動物細胞)の抽出液及び培養上清、精製又は部分精製ポリペプチド、海洋生物、植物又は動物由来の抽出物、土壌、ランダムファージペプチドディスプレイライブラリーが挙げられる。 The test compound used in the screening method of the present invention is not particularly limited, and examples thereof include expression products of gene libraries, synthetic low molecular weight compound libraries, peptide libraries, antibodies, bacterial substances, cells (microbes, plant cells , Extracts of animal cells) and culture supernatants, purified or partially purified polypeptides, extracts from marine organisms, plants or animals, soil, random phage peptide display libraries.
 また、被検化合物存在下の状態とは、例えば、被検化合物の培地への添加等による被検化合物と本発明にかかる細胞とが接触している状態や、被検化合物が本発明にかかる細胞内に導入された状態が挙げられる。 Further, the state in the presence of the test compound means, for example, the state in which the test compound is in contact with the cell according to the present invention by addition of the test compound to the culture medium, etc. It includes the state of being introduced into cells.
 <本発明の方法に用いられるためのキット>
 本発明は、上記方法に用いられるためのキットを提供することができる。本発明のキットは、下記(a)~(k)からなる群から選択される少なくとも一の物質及び使用説明書を含むキットである。
<Kit for Use in the Method of the Present Invention>
The present invention can provide a kit to be used in the above method. The kit of the present invention is a kit comprising at least one substance selected from the group consisting of the following (a) to (k) and instructions for use.
 (a)第1の4量体蛍光タンパク質をコードするDNAと、第1の4量体蛍光タンパク質と融合して発現されるように、任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位とを含むベクター
 (b)第2の4量体蛍光タンパク質をコードするDNAと、第2の4量体蛍光タンパク質と融合して発現されるように、任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位とを含むベクター
 (c)第1の融合タンパク質をコードするベクター
 (d)第2の融合タンパク質をコードするベクター
 (e)(a)又は(c)に記載のベクター及び(b)又は(d)に記載のベクターを含むベクターセット
 (f)第1の融合タンパク質をコードするベクターを保持する形質転換細胞
 (g)第2の融合タンパク質をコードするベクターを保持する形質転換細胞
 (h)第1の融合タンパク質をコードするベクターと第2の融合タンパク質をコードするベクターとを保持する形質転換細胞
 (i)第1の融合タンパク質
 (j)第2の融合タンパク質
 (k)第1の融合タンパク質及び第2の融合タンパク質を含むタンパク質セット。
(A) a cloning site which allows insertion of DNA encoding any protein so as to be expressed fused to the first tetrameric fluorescent protein and the first tetrameric fluorescent protein And (b) a DNA encoding a second tetrameric fluorescent protein, and an insertion of a DNA encoding any protein so as to be expressed by fusing with a second tetrameric fluorescent protein (C) a vector encoding the first fusion protein (d) a vector encoding the second fusion protein (e) The vector according to (a) or (c) and (b) Or (d) a vector set comprising the vector according to (d) (f) a transformed cell carrying a vector encoding the first fusion protein (g) a second fusion protein (H) A transformed cell containing a vector encoding a first fusion protein and a vector encoding a second fusion protein (i) A first fusion protein (j) Second fusion protein (k) A set of proteins comprising a first fusion protein and a second fusion protein.
 本発明にかかるベクターとしては、本発明にかかる細胞において、挿入されたDNAを発現(転写及び翻訳)するのに必要な制御配列を含むものであればよい。かかる制御配列としては、プロモーター、エンハンサー、サイレンサー、ターミネーター、ポリAテール、リボソーム結合配列(シャイン・ダルガノ(SD)配列)が挙げられる。さらに、本発明にかかるベクターにおいては、選択マーカー(薬剤耐性遺伝子等)、レポーター遺伝子(ルシフェラーゼ遺伝子、β-ガラクトシダーゼ遺伝子、クロラムフェニコールアセチルトランスフェラーゼ(CAT)遺伝子等)を含んでいてもよい。また、このような本発明にかかるベクターの態様としては、例えば、プラスミドベクター、エピソーマルベクター、ウィルスベクターが挙げられる。 The vector of the present invention may be any vector as long as it contains the control sequences necessary for expressing (transcription and translation) the inserted DNA in the cell of the present invention. Such control sequences include promoters, enhancers, silencers, terminators, poly A tails, ribosome binding sequences (Shine-Dalgano (SD) sequences). Furthermore, the vector according to the present invention may contain a selection marker (drug resistance gene etc.) and a reporter gene (luciferase gene, β-galactosidase gene, chloramphenicol acetyltransferase (CAT) gene etc.). In addition, examples of such a vector according to the present invention include a plasmid vector, an episomal vector, and a virus vector.
 本発明にかかるベクターにおいてコードされるタンパク質は前述の通り、第1の4量体、第2の4量体蛍光タンパク質、及びこれらタンパク質との融合タンパク質であるが、かかるタンパク質をコードするDNAの発現の効率をより向上させるという観点から、当該タンパク質を発現させる細胞の種に合わせてコドンを最適化したDNA(例えば、コドンがヒト化されたDNA)が、本発明にかかるベクターには、挿入されていてもよい。 As described above, the proteins encoded in the vector according to the present invention are the first tetramer, the second tetramer fluorescent protein, and a fusion protein with these proteins, and the expression of the DNA encoding such a protein In order to further improve the efficiency of the DNA, a DNA (for example, a DNA in which a codon is humanized) whose codon is optimized according to the species of the cell in which the protein is expressed is inserted into the vector according to the present invention. It may be
 「任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位」としては、例えば、1又は複数の制限酵素認識部位を含むマルチクローニング部位、TAクローニング部位、GATEWAY(登録商標)クローニング部位が挙げられる。 Examples of the "cloning site that allows insertion of DNA encoding any protein" include a multicloning site including one or more restriction enzyme recognition sites, a TA cloning site, and a GATEWAY (registered trademark) cloning site. .
 本発明にかかるベクターの標品においては、緩衝液、安定剤、保存剤、防腐剤等の他の成分が添加してあってもよい。 In the preparation of the vector according to the present invention, other components such as a buffer, a stabilizer, a preservative, a preservative and the like may be added.
 本発明にかかる形質転換細胞は、前述の通り、本発明にかかるベクターを細胞に導入することにより調製することができる。また、本発明にかかる形質転換細胞の標品には、当該細胞の保存、培養に必要な培地、安定剤、保存剤、防腐剤等の他の成分が添加又は付属してあってもよい。 The transformed cell of the present invention can be prepared by introducing the vector of the present invention into cells as described above. In addition, other components such as a medium necessary for storage and culture of the cells, stabilizers, preservatives, preservatives and the like may be added or attached to the preparation of transformed cells according to the present invention.
 本発明にかかる「使用説明書」は、前記ベクターや形質転換細胞を本発明の方法に利用するための説明書である。説明書は、例えば、本発明の方法の実験手法や実験条件、及び本発明の標品に関する情報(例えば、ベクターの塩基配列やクローニングサイト等が示されているベクターマップ等の情報、形質転換細胞の由来、性質、当該細胞の培養条件等の情報)を含むことができる。 The "instructions" according to the present invention are instructions for using the vector or transformed cell in the method of the present invention. Instructions are, for example, the experimental method and conditions of the method of the present invention, and information on the preparation of the present invention (for example, information such as the vector map in which the nucleotide sequence of the vector, cloning site etc. are shown, transformed cells Information, such as the origin, nature, culture conditions of the cells, and the like.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1) タンパク質間相互作用の検出1
 本発明者らは、従前、所望のタンパク質(第1のタンパク質と第2のタンパク質)に多量化能を有するタンパク質(会合誘導タンパク質と多量化能を有する蛍光タンパク質)を各々融合させて細胞内に発現させた場合に、これら融合タンパク質の会合によって生じる蛍光輝点を検出することにより、前記所望のタンパク質間の相互作用を検出できることを、見出している(特許文献1)。
(Example 1) Detection of protein-protein interaction 1
The present inventors previously fused desired proteins (a first protein and a second protein) with proteins having multimerization ability (association-inducing protein and fluorescent protein having multimerization ability), respectively, in cells. It has been found that, when expressed, the interaction between the desired proteins can be detected by detecting fluorescent luminescent spots produced by the association of these fusion proteins (Patent Document 1).
 しかしながら、かかるタンパク質間相互作用の検出方法において、前記所望のタンパク質の各々に、前記多量化能を有するタンパク質として同一の4量体蛍光タンパク質を融合させて細胞内に発現させた場合には、蛍光輝点は形成されず、これらタンパク質間の相互作用を検出できないということも、本発明者らは見出している(非特許文献1)。 However, in such a method for detecting protein-protein interaction, when the same tetrameric fluorescent protein is fused to each of the desired proteins as the protein having the multimerization ability, the fluorescence is expressed in cells, The present inventors have also found that no bright spots are formed and the interaction between these proteins can not be detected (Non-patent Document 1).
 そこで、かかる多量化能を有するタンパク質を利用したタンパク質間相互作用の検出方法において、前記所望のタンパク質の双方に蛍光タンパク質を融合させて発現させた場合でも、これらタンパク質間の相互作用を検出できる条件につき、以下に示す方法にて、スクリーニングを試みた。 Therefore, in the method for detecting protein-protein interaction using a protein having multimerization ability, conditions capable of detecting the interaction between these proteins, even when fluorescent proteins are fused and expressed on both of the desired proteins. The screening was attempted by the method described below.
 なお、このスクリーニングにおいて検出対象としたのは、p53タンパク質とMDM2タンパク質との相互作用である。また、該相互作用の阻害剤として知られているナトリン-3(Nutlin-3)も、このスクリーニングにおいて後述のとおり用いた(Vassilev LT ら、Science、2004年2月6日、303号、5659巻、844~848ページ 参照)。 The target of detection in this screening is the interaction between p53 protein and MDM2 protein. In addition, Natrin-3 (Nutlin-3), which is known as an inhibitor of the interaction, was also used as described later in this screening (Vassilev LT et al., Science, Feb. 6, 2004, No. 303, No. 5659, 2004). , Pp. 844-848).
 また、検出対象に融合させて発現させる蛍光タンパク質としては、4量体蛍光タンパク質(Azami-Green(AG)、Momiji(Mmj))、2量体蛍光タンパク質(EGFP)、単量体蛍光タンパク質(mAG1、mEGFP)を評価対象とし、後述のとおり適宜組み合わせて用いた。 Further, as fluorescent proteins to be fused and expressed to be detected, tetrameric fluorescent proteins (Azami-Green (AG), Momiji (Mmj)), dimeric fluorescent proteins (EGFP), monomeric fluorescent proteins (mAG1) , MEGFP) were used as evaluation targets, and were used in combination as appropriate as described later.
 <pmAG1-p53の調製>
 タンパク質間相互作用解析用キット Fluoppi:Ash-hAG[p53-MDM2](株式会社医学生物学研究所製、コード番号:AM-8201M)に含まれるプラスミドベクター pAsh-p53を、制限酵素BamHI及びNotIにて処理することによって、p53をコードする領域を切り出した。次いで、同じ制限酵素の組合せにて処理したphmAG1-MCL(株式会社医学生物学研究所製、コード番号:AM-V0039M)に挿入することによって、mAG1をN末に融合させたp53(mAG1-p53)を発現させるためのプラスミドベクター(pmAG1-p53)を作製した。
<Preparation of pmAG1-p53>
A plasmid vector pAsh-p53 contained in a kit for protein-protein interaction analysis Fluoppi: Ash-hAG [p53-MDM2] (manufactured by Medical Biology Research Institute, code number: AM-8201M), with restriction enzymes BamHI and NotI By processing, the region encoding p53 was cut out. Next, p53 (mAG1-p53) in which mAG1 was fused to N-terminal by inserting into phmAG1-MCL (Medical Biology Research Institute, code number: AM-V0039M) treated with the same combination of restriction enzymes The plasmid vector (pmAG1-p53) for expressing was prepared.
 <pAG-MDM2の調製>
 AGをN末に融合させたMDM2(AG-MDM2)を発現させるためのプラスミドベクター(pAG-MDM2)は、前記キットに含まれているものを使用した。
<Preparation of pAG-MDM2>
As a plasmid vector (pAG-MDM2) for expressing MDM2 (AG-MDM2) in which AG was fused to the N-terminal, the one contained in the kit was used.
 <pAG-p53の調製>
 pAG-MDM2を制限酵素NheI及びAgeIにて処理することによって、AGをコードする領域を切り出した。次いで、同じ制限酵素の組合せにて処理してp53をコードする領域を除いたpmAG1-p53に挿入することによって、AGをN末に融合させたp53(AG-p53)を発現させるためのプラスミドベクター(pAG-p53)を作製した。
<Preparation of pAG-p53>
The region encoding AG was excised by treating pAG-MDM2 with restriction enzymes NheI and AgeI. Then, a plasmid vector for expressing p53 (AG-p53) in which AG is fused to N-terminal by inserting pAGM1-p53 excluding the region encoding p53 by treating with the same restriction enzyme combination and removing p53-encoding region (PAG-p53) was produced.
 <pMmj-MDM2の調製>
 pAG-MDM2を、制限酵素NheI及びAgeIにて処理することによって、AGをコードする領域を切断除去した。また、Mmjをコードし、その末端にNheI及びAgeIの認識配列を各々備えたDNA(NheI-Mmj-AgeI、配列番号:44)を人工合成により調製した。次いで、そのDNAを同じ制限酵素の組合せにて処理した後、前記AGをコードする領域を除去したプラスミドベクターに挿入することにより、MmjをN末に融合させたMDM2(Mmj-MDM2)を発現させるためのプラスミドベクター(pMmj-MDM2)を作製した。
<Preparation of pMmj-MDM2>
The region encoding AG was cleaved off by treating pAG-MDM2 with restriction enzymes NheI and AgeI. Also, DNA (NheI-Mmj-AgeI, SEQ ID NO: 44) encoding Mmj and having recognition sequences for NheI and AgeI at its ends was prepared by artificial synthesis. Then, the DNA is treated with the same restriction enzyme combination, and then inserted into a plasmid vector from which the region encoding AG is removed to express MDM2 (Mmj-MDM2) fused to Mmj at the N-terminus. A plasmid vector (pMmj-MDM2) was prepared.
 <pMmj-p53の調製>
 pAG-p53を、制限酵素NheI及びAgeIにて処理することによってAGをコードする領域を切断除去した後、同じ制限酵素の組合せにて処理した前記NheI-Mmj-AgeIを挿入することにより、MmjをN末に融合させたp53(Mmj-p53)を発現させるためのプラスミドベクター(pMmj-p53)を作製した。
<Preparation of pMmj-p53>
After cutting off the region encoding AG by treating pAG-p53 with restriction enzymes NheI and AgeI, Mmj can be inserted by inserting the NheI-Mmj-AgeI treated with the same combination of restriction enzymes. A plasmid vector (pMmj-p53) was constructed to express p53 (Mmj-p53) fused to the N-terminus.
 <pEGFP-p53の調製>
 pAG-p53を、制限酵素NheI及びAgeIにて処理することによって、AGをコードする領域を切断除去した。また、EGFPをコードし、その末端にNheI及びAgeIの認識配列を各々備えたDNA(NheI-EGFP-AgeI、配列番号:45)を人工合成により調製した。次いで、そのDNAを同じ制限酵素の組合せにて処理した後、前記AGをコードする領域を除去したプラスミドベクターに挿入することにより、EGFPをN末に融合させたp53(EGFP-p53)を発現させるためのプラスミドベクター(pEGFP-p53)を作製した。
<Preparation of pEGFP-p53>
The region encoding AG was cleaved off by treating pAG-p53 with restriction enzymes NheI and AgeI. In addition, DNA (NheI-EGFP-AgeI, SEQ ID NO: 45) encoding EGFP and having recognition sequences for NheI and AgeI at its ends was prepared by artificial synthesis. Then, the DNA is treated with the same restriction enzyme combination, and then inserted into a plasmid vector from which the region encoding AG is removed to express p53 (EGFP-p53) in which EGFP is fused to the N-terminus. A plasmid vector (pEGFP-p53) was prepared.
 <pmEGFP-p53の調製>
 pAG-p53を、制限酵素NheI及びAgeIにて処理することによって、AGをコードする領域を切断除去した。また、mEGFPをコードし、その末端にNheI及びAgeIの認識配列を各々備えたDNA(NheI-mEGFP-AgeI、配列番号:46)を人工合成により調製した。次いで、そのDNAを同じ制限酵素の組合せにて処理した後、前記AGをコードする領域を除去したプラスミドベクターに挿入することにより、mEGFPをN末に融合させたp53(mEGFP-p53)を発現させるためのプラスミドベクター(pmEGFP-p53)を作製した。
<Preparation of pmEGFP-p53>
The region encoding AG was cleaved off by treating pAG-p53 with restriction enzymes NheI and AgeI. In addition, DNA (NheI-mEGFP-AgeI, SEQ ID NO: 46) encoding mEGFP and having recognition sequences for NheI and AgeI at its ends was prepared by artificial synthesis. Then, the DNA is treated with the same restriction enzyme combination, and then inserted into a plasmid vector from which the region encoding AG has been removed to express p53 (mEGFP-p53) fused to mEGFP at the N-terminus A plasmid vector (pmEGFP-p53) was prepared.
 <細胞培養と遺伝子導入>
 上記のとおりにして調製したプラスミドベクターを導入するために、先ず、COS7細胞を培養液[DMEM High glucose(SIGMA ALDRICH社製)、10%FBS(EQUITECH社製)、1%ペニシリン・ストレプトマイシン(Thermo Fisher Scientific社製)]にて培養した。次に、同細胞を遺伝子導入前日に8ウェルチャンバースライド(Nunc社製)に播種し、1ウェルあたり、200μLの培養液で培養した。
<Cell culture and gene transfer>
In order to introduce the plasmid vector prepared as described above, first, COS7 cells are cultured in DMEM [DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.). Next, the same cells were seeded on an 8-well chamber slide (manufactured by Nunc) the day before gene transfer, and cultured in a culture solution of 200 μL per well.
 そして、Opti-MEM(Thermo Fisher Scientific社製)10μLに、上記プラスミドベクターを100ngずつ以下に示す(A)~(I)の組み合わせにて混合し、DNA溶液を調製した。該DNA溶液に遺伝子導入試薬(Promega社製、製品名:Fugene(登録商標) HD)を0.8μL添加して攪拌し、更に培養液90μLと混合した後、前記COS7細胞に添加し、28時間培養した。
(A)pmAG1-p53+pAG-MDM2
(B)pmEGFP-p53+pAG-MDM2
(C)pmEGFP-p53+pMmj-MDM2
(D)pEGFP-p53+pAG-MDM2
(E)pEGFP-p53+pMmj-MDM2
(F)pAG-p53+pAG-MDM2
(G)pMmj-p53+pMmj-MDM2
(H)pAG-p53+pMmj-MDM2
(I)pMmj-p53+pAG-MDM2。
Then, 100 ng of the above plasmid vector was mixed with 10 μL of Opti-MEM (manufactured by Thermo Fisher Scientific) in the combination of (A) to (I) shown below to prepare a DNA solution. 0.8 μL of a gene transfer reagent (Promega, product name: Fugene (registered trademark) HD) is added to the DNA solution and stirred, and then mixed with 90 μL of the culture solution, and then added to the COS 7 cells for 28 hours Cultured.
(A) pmAG1-p53 + pAG-MDM2
(B) pmEGFP-p53 + pAG-MDM2
(C) pmEGFP-p53 + pMmj-MDM2
(D) pEGFP-p53 + pAG-MDM2
(E) pEGFP-p53 + pMmj-MDM2
(F) pAG-p53 + pAG-MDM2
(G) pMmj-p53 + pMmj-MDM2
(H) pAG-p53 + pMmj-MDM2
(I) pMmj-p53 + pAG-MDM2.
 <細胞の観察>
 上記のとおりにして遺伝子導入処理を施したCOS7細胞は、IX-81倒立顕微鏡(オリンパス社製)、U-MNIBA3フィルター(オリンパス社製)、UPlanApox20(N.A.=0.7)(オリンパス社製)及びORCA-Flash4.0デジタルカメラ(浜松ホトニクス製)を用いて観察した(励起波長:470~495nm、蛍光観察波長:510~550nm)。得られた結果を図1A~1Cに示す。また、p53とMDM2の相互作用阻害剤 Nutlin-3を最終濃度20μMになるよう培養液に添加し、室温にて15分間静置した後の細胞も観察した。薬剤の添加前と添加15分後の画像を図1Dに示す。
<Observation of cells>
As described above, COS7 cells that have been subjected to gene transfer treatment are IX-81 inverted microscope (manufactured by Olympus), U-MNIBA3 filter (manufactured by Olympus), UPlanApox20 (NA: = 0.7) (Olympus) And an ORCA-Flash 4.0 digital camera (manufactured by Hamamatsu Photonics) (excitation wavelength: 470 to 495 nm, fluorescence observation wavelength: 510 to 550 nm). The results obtained are shown in FIGS. 1A-1C. Moreover, the interaction inhibitor p53 and MDM2 inhibitor Nutlin-3 was added to the culture solution to a final concentration of 20 μM, and cells were also allowed to stand at room temperature for 15 minutes. Images before and 15 minutes after drug addition are shown in FIG. 1D.
 図1Aに示した結果から明らかなとおり、検出対象(p53及びMDM2)の一方に、単量体蛍光タンパク質であるmAG1又はmEGFPを融合させて発現させたCOS7細胞においては、タンパク質間相互作用を示す蛍光輝点は確認されなかった。また、図には示していないが、検出対象の一方に、2量体蛍光タンパク質であるEGFPを融合させて発現させたCOS7細胞においても、タンパク質間相互作用を示す蛍光輝点は確認されなかった。さらに、検出対象の双方に、同一の4量体蛍光タンパク質であるAG又はMmjを融合させて発現させたCOS7細胞においても、非特許文献1の補足図5のdにおいて示されている結果同様に、タンパク質間相互作用を示す蛍光輝点は確認されなかった(図1B参照)。 As is clear from the results shown in FIG. 1A, in the COS7 cells in which the monomeric fluorescent proteins mAG1 or mEGFP are fused and expressed on one of the detection targets (p53 and MDM2), protein-protein interaction is exhibited. No fluorescent spots were identified. Further, although not shown in the figure, even in COS7 cells in which EGFP, which is a dimeric fluorescent protein, is fused and expressed to one of detection targets, a fluorescent bright spot indicating protein-protein interaction was not confirmed . Furthermore, in the case of COS7 cells in which the same tetrameric fluorescent protein AG or Mmj is fused and expressed to both of the detection targets, the results shown in d of Supplementary Figure 5 of Non-Patent Document 1 are also obtained. However, fluorescent spots showing protein-protein interaction were not confirmed (see FIG. 1B).
 しかしながら、図1Cに示した結果から明らかなように、検出対象に異なる4量体蛍光タンパク質を融合させて発現させたCOS7細胞においては、タンパク質間相互作用を示す明確な蛍光輝点が観察された。一方、図1Dに示すとおり、p53とMDM2とのタンパク質間相互作用の阻害剤であるNutlin-3存在下において、これらタンパク質間相互作用を示す蛍光輝点は解消されたことから、当該輝点は前記タンパク質間相互作用に依存して形成されたことが確認された。 However, as is clear from the results shown in FIG. 1C, clear fluorescent spots showing protein-protein interaction were observed in COS7 cells in which different tetrameric fluorescent proteins were fused and expressed to be detected. . On the other hand, as shown in FIG. 1D, in the presence of Nutlin-3, which is an inhibitor of the protein-protein interaction between p53 and MDM2, the fluorescent luminescent spot showing these protein-protein interactions was resolved, so It was confirmed that the protein was formed depending on the protein-protein interaction.
 以上のとおり、検出対象に異なる4量体蛍光タンパク質を融合させて細胞内に発現させた場合には、検出対象間のタンパク質間相互作用依存的に、蛍光輝点が形成されることが明らかになった。 As described above, when different tetrameric fluorescent proteins are fused to the detection target and expressed in cells, it is clear that the fluorescent bright spots are formed depending on the protein-protein interaction between the detection targets. became.
 (実施例2) タンパク質間相互作用の検出2
 以下に示すとおり、COS7細胞の代わりにHEK293細胞を用いて実施例1と同様の検討を行なった。さらに、4量体タンパク質であるMonti-Red(MR)を用いてもタンパク質間相互作用を検出できるかを検討した。
(Example 2) Detection of protein-protein interaction 2
As shown below, the same study as in Example 1 was performed using HEK293 cells instead of COS7 cells. Furthermore, it was examined whether the protein-protein interaction could be detected using the tetrameric protein Monti-Red (MR).
 <pmAG1-MDM2の調製>
 前記タンパク質間相互作用解析用キットに含まれるプラスミドベクター phAG-MDM2を、制限酵素BamHI及びNotIにて処理することによって、MDM2をコードする領域を切り出した。次いで、同じ制限酵素の組合せにて処理したphmAG1-MCLに挿入することによって、mAG1をN末に融合させたMDM2(mAG1-MDM2)を発現させるためのプラスミドベクター(pmAG1-MDM2)を作製した。
<Preparation of pmAG1-MDM2>
The region encoding MDM2 was excised by treating the plasmid vector phAG-MDM2 contained in the above-described protein-protein interaction analysis kit with restriction enzymes BamHI and NotI. Next, a plasmid vector (pmAG1-MDM2) for expressing MDM2 (mAG1-MDM2) in which mAG1 was fused to N-terminal was constructed by inserting into phmAG1-MCL treated with the same combination of restriction enzymes.
 <pMR‐MDM2の調製>
 pAG-MDM2を制限酵素BamHI及びNotIにて処理することによって、MDM2をコードする領域を切り出した。次いで、同じ制限酵素の組合せにて処理したpMonti-Red-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)に挿入することによって、MRをN末に融合させたMDM2(MR‐MDM2)を発現させるためのプラスミドベクター(pMR‐MDM2)を作製した。
<Preparation of pMR-MDM2>
The region encoding MDM2 was excised by treating pAG-MDM2 with restriction enzymes BamHI and NotI. Then, by inserting the vector into pMonti-Red-MCL (Medical Biology Research Institute, code number: AM-VS0802M) treated with the same restriction enzyme combination, MDM is fused to N-terminal MDM2 (MR 2) A plasmid vector (pMR-MDM2) for expressing -MDM2 was constructed.
 <pMR‐p53の調製>
 pAG-p53を制限酵素BamHI及びNotIにて処理することによって、p53をコードする領域を切り出した。次いで、同じ制限酵素の組合せにて処理したpMonti-Red-MCLに挿入することによって、MRをN末に融合させたp53(MR‐p53)を発現させるためのプラスミドベクター(pMR‐p53)を作製した。
<Preparation of pMR-p53>
The region encoding p53 was excised by treating pAG-p53 with restriction enzymes BamHI and NotI. Subsequently, a plasmid vector (pMR-p53) for expressing p53 (MR-p53) fused to MR at the N-terminus is prepared by inserting into pMonti-Red-MCL treated with the same restriction enzyme combination. did.
 <細胞培養と遺伝子導入>
 上記のとおりにして調製したプラスミドベクターを導入するために、先ず、HEK293細胞を培養液[DMEM High glucose(SIGMA ALDRICH社製)、10%FBS(EQUITECH社製)、1%ペニシリン・ストレプトマイシン(Thermo Fisher Scientific社製)]にて培養した。次に、同細胞を遺伝子導入前日に8ウェルチャンバースライド(Nunc社製)に播種し、1ウェルあたり、200μLの培養液で培養した。
<Cell culture and gene transfer>
In order to introduce the plasmid vector prepared as described above, first, HEK293 cells were cultured in DMEM [DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (Thermo Fisher) (Manufactured by Scientific Co.). Next, the same cells were seeded on an 8-well chamber slide (manufactured by Nunc) the day before gene transfer, and cultured in a culture solution of 200 μL per well.
 そして、Opti-MEM(Thermo Fisher Scientific社製)10μLに、上記プラスミドベクターを200ngずつ以下に示す(A)~(G)の組み合わせにて混合し、DNA溶液を調製した。該DNA溶液に遺伝子導入試薬(Fugene HD)を0.8μL添加して攪拌し、更に培養液90μLと混合した後、前記HEK293細胞に添加し、48時間培養した。
(A)pAG-p53+pAG-MDM2
(B)pAG-p53+pmAG1-MDM2
(C)pMmj-p53+pMmj-MDM2
(D)pMmj-p53+pmAG1-MDM2
(E)pMmj-p53+pAG-MDM2
(F)pMmj-p53+pMR-MDM2
(G)pMR-p53+pAG-MDM2。
Then, 200 ng of the above plasmid vector was mixed with 10 μL of Opti-MEM (manufactured by Thermo Fisher Scientific) in the combination of (A) to (G) shown below to prepare a DNA solution. 0.8 μL of a gene transfer reagent (Fugene HD) was added to the DNA solution and stirred, and then mixed with 90 μL of a culture solution, and then added to the HEK293 cells and cultured for 48 hours.
(A) pAG-p53 + pAG-MDM2
(B) pAG-p53 + pmAG1-MDM2
(C) pMmj-p53 + pMmj-MDM2
(D) pMmj-p53 + pmAG1-MDM2
(E) pMmj-p53 + pAG-MDM2
(F) pMmj-p53 + pMR-MDM2
(G) pMR-p53 + pAG-MDM2.
 <細胞の観察>
 遺伝子導入処理を施したHEK293細胞の観察は、上記COS7細胞の場合と同様にして行なった。Nutlin‐3の添加前と添加15分後の画像を図2に示す。
<Observation of cells>
Observation of HEK 293 cells subjected to gene transfer treatment was performed in the same manner as in the case of the above-mentioned COS 7 cells. Images before and 15 minutes after addition of Nutlin-3 are shown in FIG.
 図には示していないが、検出対象(p53及びMDM2)の双方に同一の4量体蛍光タンパク質(AG又はMmj)を融合させて発現させたHEK293細胞、並びに、検出対象の一方に単量体蛍光タンパク質(mAG1)を融合させて発現させたHEK293細胞においては、上述のCOS7細胞の場合同様に、タンパク質間相互作用を示す明確な蛍光輝点は観察されなかった。また、これら細胞にNutlin‐3を添加しても、変化は生じなかった。 Although not shown in the figure, HEK 293 cells in which the same tetrameric fluorescent protein (AG or Mmj) is fused and expressed to both of the detection targets (p53 and MDM2), and a monomer to one of the detection targets In HEK 293 cells fused and expressed with the fluorescent protein (mAG1), as in the case of the above-mentioned COS 7 cells, no clear fluorescent spot indicating protein-protein interaction was observed. Moreover, no change occurred when Nutlin-3 was added to these cells.
 一方、図2に示した結果から明らかなように、上述のCOS7細胞の場合同様に、検出対象に異なる4量体蛍光タンパク質を融合させて発現させたHEK293細胞においては、タンパク質間相互作用を示す明確な蛍光輝点が観察された。また、p53とMDM2とのタンパク質間相互作用の阻害剤であるNutlin-3存在下において、これらタンパク質間相互作用を示す蛍光輝点は解消されたことから、当該輝点は前記タンパク質間相互作用に依存して形成されたことが確認された(図2の下部3画像 参照)。 On the other hand, as is clear from the results shown in FIG. 2, as in the case of the above-mentioned COS7 cells, in HEK293 cells in which different tetrameric fluorescent proteins are fused and expressed to be detected, protein-protein interaction is exhibited. Clear fluorescent spots were observed. In addition, since the fluorescent luminescent spot showing the protein-protein interaction was resolved in the presence of Nutlin-3, which is an inhibitor of the protein-protein interaction between p53 and MDM2, the bright spot corresponds to the protein-protein interaction. It was confirmed that they were formed dependently (see the lower 3 images in FIG. 2).
 以上の結果から、検出対象に異なる4量体蛍光タンパク質を融合させ、細胞内において発現させた場合には、その細胞の種類を問わず、蛍光輝点の形成の有無を指標として、タンパク質間相互作用を判定できることが明らかになった。 From the above results, when different tetrameric fluorescent proteins are fused to the detection target and expressed in cells, regardless of the type of the cells, the interproteins are determined using the presence or absence of the fluorescent bright spot as an index. It became clear that the action could be determined.
 また、実施例1及び2に示した結果から、検出対象に融合させる4量体蛍光タンパク質は異なっていれば、これら蛍光タンパク質の蛍光波長(緑色領域の波長、赤色領域の波長、変換型の蛍光波長)を問わず、検出対象間の相互作用依存的に蛍光輝点が形成されることも判明した。 Also, from the results shown in Examples 1 and 2, if the tetrameric fluorescent proteins to be fused to the detection target are different, the fluorescence wavelengths of these fluorescent proteins (wavelength of green region, wavelength of red region, converted fluorescence) It was also found that fluorescent luminescent spots were formed depending on the interaction between detection targets regardless of the wavelength).
 (実施例3) FRET現象を利用したタンパク質間相互作用の判定方法への適用
 上述のとおり、本発明のタンパク質間相互作用の判定方法は、検出対象に異なる4量体蛍光タンパク質を融合させ細胞内において発現させることを特徴とする。そこで、一方の4量体蛍光タンパク質をアクセプターとし、他方の4量体蛍光タンパク質をドナーとすることにより、FRET現象(蛍光共鳴エネルギー移動、再吸収)を生じさせることができるかについて、以下に示すとおり分析した。
Example 3 Application to a Method of Determining Protein-Protein Interaction Using FRET As described above, according to the method of determining protein-protein interaction of the present invention, a different tetrameric fluorescent protein is fused to a detection target to be intracellular It is characterized in that it is expressed in Therefore, it is shown below whether the FRET phenomenon (fluorescence resonance energy transfer, reabsorption) can be caused by using one tetrameric fluorescent protein as an acceptor and the other tetrameric fluorescent protein as a donor. It analyzed as follows.
 <pp53-MRの調製>
 先ずp53の一部(p53タンパク質の1~70アミノ酸からなる領域)をコードするDNAの5’末端及び3’末端にそれぞれBamHI認識配列とNotI認識配列を付加したヌクレオチド配列を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、BamHIとNotIで切断した後、同じ制限酵素の組合せにて処理したpMonti-Red-MNL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)に挿入することにより、MRをC末に融合させたp53(p53-MR)を発現させるためのプラスミドベクター(pp53-MR)を作製した。
<Preparation of pp53-MR>
First, a nucleotide sequence was designed in which a BamHI recognition sequence and a NotI recognition sequence were added to the 5 'end and the 3' end of a DNA encoding a part of p53 (a region consisting of 1 to 70 amino acids of p53 protein). Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM- By inserting into VS0802M), a plasmid vector (pp53-MR) for expressing p53 (p53-MR) in which MR was fused to C-terminal was prepared.
 <細胞培養と遺伝子導入>
 上記実施例2に記載の方法によって、以下に示す(A)~(B)の組み合わせにてプラスミドベクターをHEK293細胞に導入した。
(A)pp53‐MR+pAG‐MDM2
(B)pMR-p53+pAG‐MDM2。
<Cell culture and gene transfer>
The plasmid vector was introduced into HEK293 cells in the combination of (A) to (B) shown below by the method described in Example 2 above.
(A) pp53-MR + pAG-MDM2
(B) pMR-p53 + pAG-MDM2.
 <細胞の観察>
 遺伝子導入処理を施したHEK293細胞のFRET現象の検出において、IX-81倒立顕微鏡(オリンパス社製)、励起フィルター440AF21(Omega社製、型番:XF1071)、ダイクロイックミラー455DRLP(Omega社製、型番:XF2034)、並びに蛍光フィルター510WB40(Omega社製、型番:XF3043)及び610ALP(Omega社製、型番:XF3094)を使用した。また、UPlanFLN 40xOil(N.A.=1.3)(オリンパス社製)、ORCA‐Flash4.0デジタルカメラ(浜松ホトニクス社製)も用いて、前記HEK293細胞を観察した。
<Observation of cells>
In detection of the FRET phenomenon of HEK293 cells subjected to gene transfer treatment, IX-81 inverted microscope (manufactured by Olympus), excitation filter 440 AF21 (manufactured by Omega, model number: XF1071), dichroic mirror 455 DRLP (manufactured by Omega, model number: XF2034) And fluorescent filters 510WB40 (manufactured by Omega, model number: XF3043) and 610ALP (manufactured by Omega, model number: XF3094). In addition, the HEK293 cells were observed using UPlan FLN 40 × Oil (NA = 1.3) (manufactured by Olympus), ORCA-Flash 4.0 digital camera (manufactured by Hamamatsu Photonics).
 <FRET現象の検出>
 440AF21を用いて励起させ、ドナー側(AG)の蛍光を510WB40(Em:510)によって、アクセプター側(MR)の蛍光を610ALP(Em:610)によって検出した。また、p53とMDM2の相互作用阻害剤としてNutlin‐3を最終濃度20μMになるよう、HEK293細胞の培養液に添加し、当該薬剤添加の前後において、10秒間隔にて画像データを取得した。また、得られた画像データは、MetaMorph ver8.9.0(モレキュラーデバイス社製)で解析し、細胞エリア全体のMR(Em:610)、AG(Em:510)の各蛍光強度を算出した。さらに、ドナー側(AG)の蛍光強度に対するアクセプター側の蛍光強度の比率(MR/AG比(Em:610/Em:510))を、FRET現象のシグナルとして算出し、Ratio画像を取得した。Nutlin‐3添加前と添加15分後のAGとMRの蛍光画像、及びMR/AGのRatio画像を、図3A及びCに示す。さらに、各蛍光強度の時間経過グラフを、図3B及びDに示す。
<Detection of FRET phenomenon>
Excitation was done with 440 AF21 and fluorescence on the donor side (AG) was detected by 510 WB 40 (Em: 510) and fluorescence on the acceptor side (MR) by 610 ALP (Em: 610). In addition, Nutlin-3 as an interaction inhibitor of p53 and MDM2 was added to the culture solution of HEK 293 cells to a final concentration of 20 μM, and image data was acquired at intervals of 10 seconds before and after the addition of the drug. Further, the obtained image data was analyzed by MetaMorph ver 8.9.0 (manufactured by Molecular Device), and the fluorescence intensities of MR (Em: 610) and AG (Em: 510) of the whole cell area were calculated. Furthermore, the ratio of the fluorescence intensity on the acceptor side to the fluorescence intensity on the donor side (AG) (MR / AG ratio (Em: 610 / Em: 510)) was calculated as a signal of the FRET phenomenon to obtain a Ratio image. The fluorescence images of AG and MR before and 15 minutes after the addition of Nutlin-3, and the ratio images of MR / AG are shown in FIGS. 3A and 3C. Furthermore, time-lapse graphs of each fluorescence intensity are shown in FIGS. 3B and 3D.
 また、遺伝子導入処理を施したHEK293細胞におけるFRET現象の効率を、アクセプターフォトブリーチング法(acceptor photo-bleaching法)によって測定した。より具体的には、前記薬剤添加前の細胞に、蛍光ミラーユニットU-MWIG3(オリンパス社製)を用いて530~550nmの励起光を5分間照射することによって、MRを褪色(bleach、ブリーチ)させ、蛍光ミラーユニットU-MNIBA3(励起波長:470~495nm、蛍光波長:510~550nm、オリンパス社製)を用いてAGの蛍光強度の変化を観察することにより、FRET現象の効率を得た。なお、530~550nm励起光照射前(Pre-bleach、褪色前)後(Post-bleach、褪色後)のAG蛍光強度画像、及びFRET現象の効率は、下記計算式を用いて求めた。
((Donorpost-Backpost)-(Donorpre-Backpre))/(Donorpost-Backpost)
 Donorpostは褪色後のAGの蛍光強度、Backpostは褪色後のバックグラウンドの蛍光強度、Donorpreは褪色前のAGの蛍光強度、Backpreは褪色前のバックグラウンドの蛍光強度を表す。このようにして得られた結果を、図3Eに示す。
In addition, the efficiency of the FRET phenomenon in HEK 293 cells subjected to gene transfer treatment was measured by acceptor photo-bleaching method. More specifically, MR is bleached (bleach, bleach) by irradiating excitation light of 530 to 550 nm for 5 minutes using fluorescence mirror unit U-MWIG3 (manufactured by Olympus) to the cells before addition of the drug. The efficiency of the FRET phenomenon was obtained by observing the change in the fluorescence intensity of AG using a fluorescent mirror unit U-MNIBA3 (excitation wavelength: 470 to 495 nm, fluorescence wavelength: 510 to 550 nm, manufactured by Olympus). The AG fluorescence intensity image before (Post-bleach) and 530-550 nm excitation light irradiation (Pre-bleach) and after (Post-bleach), and the efficiency of the FRET phenomenon were determined using the following formula.
((Donorpost-Backpost)-(Donorpre-Backpre)) / (Donorpost-Backpost)
Donorpost represents fluorescence intensity of AG after fading, Backpost represents fluorescence intensity of background after fading, Donorpre represents fluorescence intensity of AG before fading, and Backpre represents fluorescence intensity of background before fading. The results obtained in this way are shown in FIG. 3E.
 図3A~3Dに示した結果から明らかなように、p53-MR又はMR-p53とAG-MDM2とを発現する細胞において、MR/AG比は蛍光輝点を中心に高く、Nutlin‐3添加後は細胞全体に拡散しながら低下した。Nutlin-3添加後の各蛍光強度の変化として、MR(Em:610)は低下し、AG(Em:510)は上昇した。これは、タンパク質間相互作用の阻害剤(Nutlin-3)の添加により、ドナー側の蛍光強度が増加し、アクセプター側の蛍光強度が減少したこと、すなわちFRET現象のシグナルが低下したことを示している。 As apparent from the results shown in FIGS. 3A to 3D, in cells expressing p53-MR or MR-p53 and AG-MDM2, the MR / AG ratio is high centering on the fluorescent bright spot and after the addition of Nutlin-3. Decreased as it diffused throughout the cell. MR (Em: 610) decreased and AG (Em: 510) increased as a change in each fluorescence intensity after the addition of Nutlin-3. This indicates that the addition of the protein-protein interaction inhibitor (Nutlin-3) increases the fluorescence intensity on the donor side and decreases the fluorescence intensity on the acceptor side, that is, the signal of the FRET phenomenon decreases. There is.
 また、図3Eに示すとおり、p53-MRとAG-MDM2を発現する細胞において、褪色後(530~550nm励起光照射後)は、蛍光輝点におけるMRの蛍光強度が平均28%にまで低下した(N=7)。一方、AGの蛍光強度は平均128%に上昇した。また、各蛍光強度から22.1%のFRET現象の効率が算出された。 In addition, as shown in FIG. 3E, in cells expressing p53-MR and AG-MDM2, after fading (after irradiation with 530 to 550 nm excitation light), the MR fluorescence intensity at the fluorescent bright spot decreased to an average of 28% (N = 7). On the other hand, the fluorescence intensity of AG rose to 128% on average. In addition, the efficiency of the 22.1% FRET phenomenon was calculated from each fluorescence intensity.
 このように、アクセプター側(MR)を褪色させたことによって、AGの蛍光強度が上昇することが明らかとなった。さらに、22.1%のFRET現象の効率が認められたことから、検出対象に異なる4量体蛍光タンパク質(MR及びAG)を融合させ発現させることにより、蛍光輝点が形成された場合において、FRET現象が生じ得ることが明らかになった。 Thus, it was revealed that the fluorescence intensity of AG was increased by fading the acceptor side (MR). Furthermore, since the efficiency of 22.1% of the FRET phenomenon was recognized, in the case where a fluorescent bright spot is formed by fusing and expressing different tetrameric fluorescent proteins (MR and AG) to the detection target, It has become clear that the FRET phenomenon can occur.
 (実施例4) FRET現象の効率の比較
 検出対象に蛍光タンパク質を融合させて細胞内に発現させた場合において、検出対象間の相互作用依存的な蛍光輝点の形成を介することにより、発生するFRET現象の効率が向上するかについて検証した。より具体的には、以下に示すとおり、検出対象がタンパク質間相互作用した場合に、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(AG及びMR)を用いた場合と、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(mAG1及びMR)を用いた場合とにおいて、得られるFRET現象の効率を比較した。
(Example 4) Comparison of the efficiency of FRET phenomenon When a fluorescent protein is fused to a detection target and expressed in cells, it is generated through the formation of interaction-dependent fluorescent luminescent spots between the detection targets. It verified about whether the efficiency of FRET phenomenon improves. More specifically, as described below, when a combination of tetrameric fluorescent proteins (AG and MR) that forms a fluorescent luminescent spot is used when the detection target interacts with a protein, the fluorescent luminescent spot is The efficiencies of the resulting FRET phenomena were compared to those with the combination of fluorescent proteins not formed (mAG1 and MR).
 <細胞培養と遺伝子導入>
 上記実施例2に記載の方法によって、以下に示す(A)~(D)の組み合わせにてプラスミドベクターをHEK293細胞に導入した。
(A)pp53‐MR+pAG‐MDM2
(B)pp53‐MR+pmAG1‐MDM2
(C)pMR-p53+pAG‐MDM2
(D)pMR-p53+pmAG1‐MDM2。
<Cell culture and gene transfer>
The plasmid vector was introduced into HEK293 cells in the combination of (A) to (D) shown below by the method described in Example 2 above.
(A) pp53-MR + pAG-MDM2
(B) pp53-MR + pmAG1-MDM2
(C) pMR-p53 + pAG-MDM2
(D) pMR-p53 + pmAG1-MDM2.
 <細胞の観察とFRET現象の検出>
 上記実施例3に記載の方法によって、遺伝子導入処理を施したHEK293細胞の観察及びFRET現象の検出を行った。Nutlin‐3添加前と添加15分後のAGとMRの蛍光画像及びMR/AGのRatio画像を、図4A、4C、4E及び4Gに示す。さらに、各蛍光強度の時間経過グラフを、図4B、4D、4F及び4Hに示す。また、Nutlin‐3添加によるMR/AG比、MR/mAG1比、mAG1/AG比の時間経過グラフを、図4I及び4Jに示す。FRET現象のシグナル(MR/AG比とMR/mAG1比)を比較した結果を、図4Kに示す。なお、図4B、4D、4F及び4Hにて、p53‐MR及びAG‐MDM2とp53‐MR及びmAG1‐MDM2とにおいては11個の各細胞におけるMR/AG比とMR/mAG1比の各平均値をプロットし、MR-p53及びAG‐MDM2とMR-p53及びmAG1‐MDM2とにおいては8個の各細胞におけるMR/AG比とMR/mAG1比の各平均値をプロットした。また、エラーバーは標準誤差を表している。
<Cell observation and detection of FRET phenomenon>
According to the method described in Example 3 above, observation of HEK 293 cells subjected to the gene transfer treatment and detection of the FRET phenomenon were performed. The fluorescence images of AG and MR and the ratio images of MR / AG before and 15 minutes after Nutlin-3 addition are shown in FIGS. 4A, 4C, 4E and 4G. Furthermore, time-lapse graphs of each fluorescence intensity are shown in FIGS. 4B, 4D, 4F and 4H. Further, time-lapse graphs of the MR / AG ratio, the MR / mAG1 ratio, and the mAG1 / AG ratio by the addition of Nutlin-3 are shown in FIGS. 4I and 4J. The results of comparing the signals of the FRET phenomenon (MR / AG ratio and MR / mAG1 ratio) are shown in FIG. 4K. 4B, 4D, 4F and 4H, mean values of MR / AG ratio and MR / mAG1 ratio in each of 11 cells in p53-MR and AG-MDM2 and p53-MR and mAG1-MDM2 respectively. Were plotted, and in MR-p53 and AG-MDM2 and MR-p53 and mAG1-MDM2, the average values of the MR / AG ratio and the MR / mAG1 ratio in each of eight cells were plotted. Also, error bars represent standard errors.
 図4A、4B、4E及び4Fに示すとおり、図3A~3Dに示した結果同様に、p53-MR又はMR-p53とAG-MDM2とを発現する細胞において、MR/AG比は蛍光輝点を中心に高く、Nutlin‐3添加後は細胞全体に拡散しながら低下した。Nutlin-3添加後の各蛍光強度の変化としては、MR(Em:610)は低下し、AG(Em:510)は上昇し、タンパク質間相互作用の阻害によるFRET現象のシグナルの低下が認められた。 Similar to the results shown in FIGS. 3A-3D, as shown in FIGS. 4A, 4B, 4E and 4F, in cells expressing p53-MR or MR-p53 and AG-MDM2, the MR / AG ratio indicates the fluorescent spot. It was high in the center and decreased with diffusion throughout the cells after Nutlin-3 addition. MR (Em: 610) decreases and AG (Em: 510) increases as changes in fluorescence intensity after Nutlin-3 addition, and a decrease in the signal of FRET phenomenon due to the inhibition of protein-protein interaction is observed. The
 また、図4C、4D、4G及び4Hに示すとおり、p53-MR又はMR-p53とmAG1-MDM2を発現する細胞においても、MR/mAG1比はNutlin-3添加前に比して添加後は細胞全体で低下した。各蛍光強度の変化としては、MR(Em:610)は低下し、AG(Em:510)は上昇し、タンパク質間相互作用の阻害によるFRET現象のシグナルの低下が認められた。このように、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(mAG1及びMR)を用いた場合においても、FRET現象の検出によってタンパク質間相互作用を検出できることが確認された。 Furthermore, as shown in FIGS. 4C, 4D, 4G and 4H, even in cells expressing p53-MR or MR-p53 and mAG1-MDM2, the MR / mAG1 ratio is higher after addition than that of Nutlin-3. It decreased overall. As each change in fluorescence intensity, MR (Em: 610) decreased, AG (Em: 510) increased, and a decrease in the signal of the FRET phenomenon due to the inhibition of protein-protein interaction was observed. Thus, it was confirmed that the protein-protein interaction can be detected by the detection of the FRET phenomenon even when using a combination of fluorescent proteins (mAG1 and MR) that do not form a fluorescent luminescent spot.
 しかしながら、図4Iに示した結果から明らかなように、p53-MR及びAG-MDM2を発現させた細胞におけるMR/AG比と、p53-MR及びmAG1-MDM2を発現させた細胞におけるMR/mAG1比とを比較した結果、Nutlin-3添加後0秒から600秒の間では、600秒時点での差が最も高く、MR/AG比のほうが阻害剤添加後に1.2倍低下した。 However, as apparent from the results shown in FIG. 4I, the MR / AG ratio in cells expressing p53-MR and AG-MDM2 and the ratio MR / mAG1 in cells expressing p53-MR and mAG1-MDM2 As a result, the difference at 600 seconds was the highest between 0 and 600 seconds after the addition of Nutlin-3, and the MR / AG ratio decreased 1.2 times after the addition of the inhibitor.
 また、図4Jに示すとおり、MR-p53及びAG-MDM2を発現させた細胞におけるMR/AG比と、MR-p53及びmAG1-MDM2を発現させた細胞におけるMR/mAG1比とを比較した結果、Nutlin-3添加後0秒から600秒の間では、160秒時点での差が最も高く、MR/AG比のほうが1.52倍低下した。また、添加後600秒時点では1.4倍低下した。 In addition, as shown in FIG. 4J, the MR / AG ratio in cells in which MR-p53 and AG-MDM2 were expressed was compared with the MR / mAG1 ratio in cells in which MR-p53 and mAG1-MDM2 were expressed. Between 0 and 600 seconds after the addition of Nutlin-3, the difference at 160 seconds was the highest, and the MR / AG ratio dropped 1.52 times. In addition, it decreased by 1.4 times at 600 seconds after the addition.
 さらに、図4K及び4Lに示すとおり、阻害剤添加後600秒の時点(FRET現象が生じていない場合)の各比率を1として、阻害剤添加前(FRET現象が生じている場合)のMR/AG比及びMR/mAG1比を各々算出した結果、MR/AG比がMR/mAG1比と比して1.2~1.4倍高くなることが明らかになった。 Furthermore, as shown in FIGS. 4K and 4L, assuming that each ratio at a point of 600 seconds after the addition of the inhibitor (when the FRET phenomenon is not occurring) is 1, the MR / before the addition of the inhibitor (when the FRET phenomenon is occurring) As a result of respectively calculating the AG ratio and the MR / mAG1 ratio, it became clear that the MR / AG ratio becomes 1.2 to 1.4 times higher than the MR / mAG1 ratio.
 以上のとおり、検出対象がタンパク質間相互作用した場合に、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせの方が、蛍光輝点を形成できない蛍光タンパク質の組み合わせよりも、FRET現象の効率が高くなること(1.2~1.52倍に向上すること)が明らかになった。このようにFRET現象の効率が向上する理由は必ずしも定かではないが、異なる4量体蛍光タンパク質を用いることによって形成された会合体(蛍光輝点)において、これら蛍光タンパク質の凝集密度が上昇したことによるものと推察される。 As described above, when the detection target interacts with proteins, the combination of tetrameric fluorescent proteins that form fluorescent luminescent spots is more efficient in the FRET phenomenon than the combination of fluorescent proteins that can not form fluorescent luminescent spots. It became clear that it became high (it improved 1.2 to 1.52 times). The reason why the efficiency of the FRET phenomenon is thus improved is not necessarily clear, but the aggregation density of these fluorescent proteins is increased in the aggregates (fluorescent spots) formed by using different tetrameric fluorescent proteins. Is presumed to be due to
 (実施例5) 固定後の細胞におけるFRET現象の効率の比較
 上記実施例3及び4において示したとおり、検出対象に異なる4量体蛍光タンパク質を融合させ、細胞内において発現させることによって、蛍光輝点が形成された場合において、FRET現象が生じ得ることが明らかになった。
(Example 5) Comparison of efficiency of FRET phenomenon in cells after fixation As shown in Examples 3 and 4 above, by combining different tetrameric fluorescent proteins with the object to be detected and expressing them in cells, the fluorescence intensity can be enhanced. It has become clear that FRET phenomena can occur when points are formed.
 次に、前記細胞を固定化しても、検出対象間の相互作用を示す蛍光輝点が生じたまま、維持され、さらにFRET現象も検出できるかについて、以下に示すとおり検証した。また、検出対象が相互作用した場合に、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(AG及びMR)を用いた場合のみならず、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(mAG1及びMR)を用いた場合についても検証した。 Next, even if the cells were fixed, it was verified as shown below whether or not the fluorescent luminescent spots showing the interaction between the detection targets were maintained while being generated and furthermore the FRET phenomenon could also be detected. In addition to the combination of tetrameric fluorescent proteins (AG and MR) that form fluorescent spots when the detection targets interact, the combination of fluorescent proteins that do not form fluorescent spots (mAG1 and We also verified the case of using MR).
 <細胞培養と遺伝子導入>
 上記実施例2に記載の方法によって、以下に示す(A)~(D)の組み合わせにてプラスミドベクターを導入したHEK293細胞を、各2ウェルずつ調製した。
(A)pp53‐MR+pAG‐MDM2
(B)pp53‐MR+pmAG1‐MDM2
(C)pMR-p53+pAG‐MDM2
(D)pMR-p53+pmAG1‐MDM2。
<Cell culture and gene transfer>
According to the method described in Example 2 above, HEK293 cells into which the plasmid vector was introduced by the combination of (A) to (D) shown below were prepared for each two wells.
(A) pp53-MR + pAG-MDM2
(B) pp53-MR + pmAG1-MDM2
(C) pMR-p53 + pAG-MDM2
(D) pMR-p53 + pmAG1-MDM2.
 <細胞の固定>
 遺伝子導入処理を施してから48時間培養した後、(A)~(D)各2ウェルのうち1ウェルから培養液全量を除き、4%パラホルムアルデヒドを200μL添加した。室温で15分静置した後、パラホルムアルデヒド全量を除き、20mM HEPESを含むHBSSを200μL添加した。一方、残りの各1ウェルには、p53とMDM2との相互作用の阻害剤としてNutlin‐3を最終濃度20μMとなるように添加した。その15分後、培養液全量を除き、4%パラホルムアルデヒドを200μL添加した。室温で15分静置した後、パラホルムアルデヒド全量を除き、20mM HEPESを含むHBSSを200μL添加した。
<Fixation of cells>
After culturing for 48 hours after gene transfer treatment, the whole culture solution was removed from one well of each of two wells (A) to (D), and 200 μL of 4% paraformaldehyde was added. After leaving still for 15 minutes at room temperature, 200 μL of HBSS containing 20 mM HEPES was added except for the total amount of paraformaldehyde. On the other hand, to each remaining 1 well, Nutlin-3 was added to a final concentration of 20 μM as an inhibitor of the interaction between p53 and MDM2. After 15 minutes, 200 μL of 4% paraformaldehyde was added except for the whole culture solution. After leaving still for 15 minutes at room temperature, 200 μL of HBSS containing 20 mM HEPES was added except for the total amount of paraformaldehyde.
 <細胞の観察及びFRET現象の検出>
 遺伝子導入及び固定処理を施したHEK293細胞は、実施例3に記載の方法にて観察し、またFRET現象を検出した。Nutlin‐3添加又は非添加において得られたAGとMRの蛍光画像、及びMR/AGのRatio画像を図5A及び5Bに示す。各FRET現象のシグナル(Em:610/Em:510、MR/AG比、MR/mAG1比)のグラフを図5Cに示す。なお、図5Cにおいて示すデータは、それぞれ視野全体における蛍光強度比の3視野の平均値であり、エラーバーは標準誤差を表している。
<Observation of cells and detection of FRET phenomenon>
The HEK 293 cells subjected to gene transfer and fixation were observed by the method described in Example 3 and the FRET phenomenon was detected. The fluorescence images of AG and MR obtained with or without Nutlin-3 and the ratio images of MR / AG are shown in FIGS. 5A and 5B. A graph of the signal of each FRET phenomenon (Em: 610 / Em: 510, MR / AG ratio, MR / mAG1 ratio) is shown in FIG. 5C. The data shown in FIG. 5C is an average value of three fields of fluorescence intensity ratio in the whole field of view, and error bars indicate standard errors.
 図5Aの(A)及び図5Bの(C)において示すとおり、p53-MR又はMR-p53とAG-MDM2とを発現する細胞において、MR/AG比は蛍光輝点を中心に高くなった。一方、Nutlin‐3を添加した細胞においては低下しており、細胞を固定化した場合においても、図4A及びCと同様の結果が得られた。 As shown in (A) of FIG. 5A and (C) of FIG. 5B, in the cells expressing p53-MR or MR-p53 and AG-MDM2, the MR / AG ratio was increased centering on the fluorescent spot. On the other hand, it is decreased in the cells to which Nutlin-3 has been added, and the same results as in FIGS. 4A and C were obtained when the cells were immobilized.
 一方、図5Aの(B)及び図5の(D)においては、図4C、4D、4G及び4Hに示した結果とは異なり、p53-MR又はMR-p53とmAG1-MDM2とを発現する細胞においては、当該細胞を固定化することによって、Nutlin-3の添加・非添加において、MR/mAG1比に大きな差は生じられなくなった。 On the other hand, in (B) of FIG. 5A and (D) of FIG. 5, unlike the results shown in FIG. 4C, 4D, 4G and 4H, cells expressing p53-MR or MR-p53 and mAG1-MDM2 On the other hand, by immobilizing the cells, a large difference in the MR / mAG1 ratio was not generated in addition / non-addition of Nutlin-3.
 また、図5Cに示した結果から明らかなように、p53-MR又はMR-p53とAG-MDM2とを発現する細胞において、Nutlin-3を添加した場合と比較して、Nutlin-3を添加していない場合におけるFRET現象のシグナルは高値にて検出された。 Further, as apparent from the results shown in FIG. 5C, in cells expressing p53-MR or MR-p53 and AG-MDM2, Nutlin-3 was added compared to the case where Nutlin-3 was added. The signal of the FRET phenomenon in the case of not being detected was detected at high value.
 一方、p53-MR又はMR-p53とmAG1-MDM2とを発現する細胞においては、Nutlin-3の添加有無によるFRET現象のシグナルの差は認められなかった。 On the other hand, in cells expressing p53-MR or MR-p53 and mAG1-MDM2, no difference in the signal of the FRET phenomenon was observed depending on the presence or absence of Nutlin-3.
 以上のとおり、検出対象がタンパク質間相互作用した際に蛍光輝点を形成できない蛍光タンパク質の組み合わせを用いた場合には、細胞を固定化するとFRET現象を検出することができなくなる。その一方で、検出対象が相互作用した際に蛍光輝点を形成する4量体蛍光タンパク質の組み合わせを用いた場合には、固定化した細胞においてもFRET現象が維持され、検出できることが明らかになった。 As described above, when a combination of fluorescent proteins that can not form a fluorescent luminescent spot when the detection target interacts with proteins is used, the FRET phenomenon can not be detected when the cells are immobilized. On the other hand, it becomes clear that the FRET phenomenon can be maintained and detected even in the immobilized cells when using a combination of tetrameric fluorescent proteins that form fluorescent luminescent spots when the detection targets interact with each other. The
 (実施例6) タンパク質間相互作用の検出3
 上記実施例3における検出対象を、p53及びMDM2から、MAX及びMycに変更して、これらタンパク質間の相互作用も検出できるか検証した。
Example 6 Detection of Protein-Protein Interaction 3
The target of detection in Example 3 above was changed from p53 and MDM2 to MAX and Myc, and it was verified whether the interaction between these proteins could also be detected.
 <pMR-Mycの調製>
 先ず、c-MycのN末端(c-Mycタンパク質の383~454アミノ酸からなる領域)をコードするDNAの5’末端にBamHI認識配列、3’末端に停止コドンTAA及びNotI認識配列を付加したヌクレオチド配列(配列番号:47)を設計した。
<Preparation of pMR-Myc>
First, a nucleotide having a BamHI recognition sequence at the 5 'end of the DNA encoding the N-terminus of c-Myc (the region consisting of 383 to 454 amino acids of c-Myc protein) and a stop codon TAA and NotI recognition sequence at the 3' end. The sequence (SEQ ID NO: 47) was designed.
 そして、当該ヌクレオチド配列からなるDNAを人工合成し、BamHIとNotIで切断した後、同じ制限酵素の組合せにて処理したpMonti-Red-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)に挿入することにより、MRをN末に融合させたMyc(MR-Myc)を発現させるためのプラスミドベクター(pMR-Myc)を作製した。 Then, DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-Myc) for expressing Myc (MR-Myc) in which MR was fused to N-terminal was prepared.
 <pAG-Maxの調製>
 先ず、Maxの全長から、核移行シグナル(Maxタンパク質の153と154番のアミノ酸)及びDNA結合領域(Maxタンパク質の1~35アミノ酸からなる領域)を外したアミノ酸領域のN末端に4アミノ酸配列(配列番号:48)を挿入し、得られたアミノ酸配列をコードするDNAの5’末端にBamHI認識配列、3’末端に停止コドンTAA及びXhoI認識配列を付加したヌクレオチド配列(配列番号:49)を設計した。
<Preparation of pAG-Max>
First, a 4-amino acid sequence (N-terminal) of the amino acid region from which the nuclear localization signal (amino acids 153 and 154 of Max protein) and the DNA binding region (region consisting of 1-35 amino acids of Max protein) are removed from the full length of Max Nucleotide sequence (SEQ ID NO: 49) obtained by inserting SEQ ID NO: 48) and adding BamHI recognition sequence to the 5 'end of the DNA encoding the obtained amino acid sequence and stop codon TAA and XhoI recognition sequence at the 3' end Designed.
 そして、当該ヌクレオチド配列からなるDNAを人工合成し、BamHIとXhoIで切断した後、同じ制限酵素の組合せにて処理したphAG-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0801M)に挿入することにより、AGをN末に融合させたMax(AG-Max)を発現させるためのプラスミドベクター(pAG-Max)を作製した。 Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and XhoI, and treated with the same combination of restriction enzymes, phAG-MCL (Medical Biology Research Institute, Inc., code number: AM-VS0801M) A plasmid vector (pAG-Max) for expressing Max (AG-Max) in which AG was fused to N-terminal was constructed by inserting into.
 <細胞培養と遺伝子導入>
 上記のとおりにして調製したプラスミドベクターを導入するために、先ず上記実施例2に記載の方法によって、HEK293T細胞を培養した。そして、Opti-MEM(Thermo Fisher Scientific社製)10μLに、上記プラスミドベクター(pMR-MycとpAG-Max)を200ngずつ混合し、DNA溶液を調製した。また、別にOptiMEM 10μLに遺伝子導入試薬Transficient(MBL International社製)を0.2μL添加して攪拌し、Transficient溶液を調製した。そして、前記DNA溶液10μLと混合し、20分室温で反応させ、前記HEK293T細胞に添加し、すぐに300Gで遠心し、上清を実施例2に記載の培地に交換し、48時間培養した。
<Cell culture and gene transfer>
In order to introduce the plasmid vector prepared as described above, HEK293T cells were first cultured by the method described in Example 2 above. Then, 200 ng of each of the above plasmid vectors (pMR-Myc and pAG-Max) was mixed with 10 μL of Opti-MEM (manufactured by Thermo Fisher Scientific) to prepare a DNA solution. Separately, 0.2 μL of a gene transfer reagent Transficient (manufactured by MBL International) was added to 10 μL of OptiMEM, and the mixture was stirred to prepare a Transficient solution. Then, it was mixed with 10 μL of the DNA solution, reacted at room temperature for 20 minutes, added to the HEK293T cells, immediately centrifuged at 300 G, and the supernatant was replaced with the medium described in Example 2 and cultured for 48 hours.
 <細胞の観察>
 遺伝子導入処理を施したHEK293T細胞の観察は、Incell Analyzer 2200(GE社製)を用いて行ない、同じ視野のAG由来の緑色蛍光及びMR由来の赤色蛍光を検出した。得られた結果を図6Aに示す。また、蛍光顕微鏡ECLIPS TS100(NIKON社製)を用いても、前記細胞の観察を行なった。得られた結果を図6Bに示す。
<Observation of cells>
The observation of HEK293T cells subjected to the gene transfer treatment was carried out using Incell Analyzer 2200 (manufactured by GE) to detect green fluorescence from AG and red fluorescence from MR in the same field of view. The obtained results are shown in FIG. 6A. The cells were also observed using a fluorescence microscope ECLIPS TS100 (manufactured by NIKON). The obtained results are shown in FIG. 6B.
 図6Aに示した結果から明らかなように、MAXのN末にAGを融合させてなるタンパク質(AG-MAX)及びMycのN末にMRを融合させてなるタンパク質(MR-Myc)を、細胞内に発現させた場合においても、蛍光輝点が検出された。すなわち、検出対象に異なる4量体蛍光タンパク質を融合させて発現させた場合には、その検出対象の種類によらず、蛍光輝点を指標としてタンパク質間相互作用の有無を判定できることが確認できた。 As is clear from the results shown in FIG. 6A, a protein (AG-MAX) in which AG is fused to the N-terminus of MAX and a protein (MR-Myc) in which MR is fused to the N-terminus of Myc are Even when they were expressed inside, fluorescent spots were detected. That is, when different tetrameric fluorescent proteins were fused and expressed in the detection target, it was confirmed that the presence or absence of protein-protein interaction can be determined using the fluorescent bright spot as an index regardless of the type of the detection target. .
 また、AG-MAX及びMR-Mycを発現させた細胞の顕微鏡像において、その一部の領域におけるMRの蛍光を褪色させた結果、図6Bに示すとおり、アクセプター側(MR)を褪色させたことによって、AGの蛍光強度の上昇が認められた。すなわち、FRET現象が生じていることが確認された。 In addition, in the microscopic image of cells in which AG-MAX and MR-Myc were expressed, as a result of fading the fluorescence of MR in a part of the region, as shown in FIG. 6B, the acceptor side (MR) was faded. The increase of the fluorescence intensity of AG was recognized by. That is, it was confirmed that the FRET phenomenon occurred.
 (実施例7) タンパク質間相互作用の検出4
 上記実施例3における検出対象を、p53とMDM2から他のタンパク質に変更して、これらタンパク質間の相互作用を検出した。より具体的には、以下に示す方法にて、p53及びMDM2以外のタンパク質間相互作用でも蛍光輝点が形成されること、及び該蛍光輝点形成によってFRET現象の効率の上昇が起こることを確認した。さらに、当該タンパク質間相互作用について、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(AG及びMR)を用いて検出した場合と、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(mAG1及びMR)を用いて検出した場合とを比較した。
Example 7 Detection of Protein-Protein Interaction 4
The target of detection in Example 3 above was changed from p53 and MDM2 to another protein to detect the interaction between these proteins. More specifically, it is confirmed that fluorescent light spots are formed even by protein interactions other than p53 and MDM2 by the method described below, and that the formation of the fluorescent light spots causes an increase in the efficiency of the FRET phenomenon. did. Furthermore, when the protein-protein interaction is detected using a combination of tetrameric fluorescent proteins that form fluorescent spots (AG and MR) and a combination of fluorescent proteins that do not form fluorescent spots (mAG1 and MR) Were compared with those detected using
 なお、本実施例7において、対象としたタンパク質間相互作用は、MCL1とBAX又はBAKとの相互作用との相互作用である。BAX及びBAKは共にBH3ドメインを介して、MCL1と相互作用することが明らかになっている(Ku Bら、Cell Res.、2009年4月、21巻4号、627~641ページ 参照)。また、A-1210477(BH3模倣薬)はMCL1のBH3結合溝に結合し、BH3との相互作用を阻害する化合物として知られている(Xiao Yら、Mol Cancer Ther.、2015年8月、14巻8号、1837~1847ページ 参照)。 In Example 7, the target protein-protein interaction is an interaction between MCL1 and BAX or BAK. Both BAX and BAK have been shown to interact with MCL1 via the BH3 domain (see Ku B et al., Cell Res., April 2009, Vol. 21, No. 4, pages 627-641). Also, A-1210477 (BH3 mimetic) is known as a compound that binds to the BH3 binding groove of MCL1 and inhibits the interaction with BH3 (Xiao Y et al., Mol Cancer Ther., August 2015, 14 Volume 8, pages 1837 to 1847).
 <pAG-MCL1の調製>
 先ず、MCL1の一部(MCL1タンパク質の173~327アミノ酸からなる領域)をコードするヌクレオチド配列の5’末端及び3’末端にそれぞれBamHI認識配列、ストップコドンとNotI認識配列を付加したヌクレオチド配列(配列番号:50)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、BamHIとNotIで切断した後、同じ制限酵素の組合せにて処理したphAG-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0801M)に挿入することにより、AGをN末に融合させたMCL1(AG-MCL1)を発現させるためのプラスミドベクター(pAG-MCL1)を作製した。
<Preparation of pAG-MCL1>
First, a nucleotide sequence in which a BamHI recognition sequence, a stop codon and a NotI recognition sequence are added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding a part of MCL1 (region consisting of 173 to 327 amino acids of MCL1 protein) Number: 50) designed. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes, phAG-MCL (Medical Biology Research Institute Co., Ltd. code number: AM-VS0801M) A plasmid vector (pAG-MCL1) for expressing MCL1 (AG-MCL1) in which AG was fused to the N-terminus was constructed by inserting into.
 <pmAG1-MCL1の調製>
 BamHI認識配列及びNotI認識配列を付加したMCL1の一部を含むヌクレオチド配列を、同じ制限酵素の組合せにて処理したphmAG1-MCL(株式会社医学生物学研究所製、コード番号:AM-V0039M)に挿入することにより、mAG1をN末に融合させたMCL1(mAG1-MCL1)を発現させるためのプラスミドベクター(pmAG1-MCL1)を作製した。
<Preparation of pmAG1-MCL1>
A nucleotide sequence including a part of MCL1 to which a BamHI recognition sequence and a NotI recognition sequence are added is treated with phmAG1-MCL (Medical Biology Research Institute, code number: AM-V0039M) treated with the same restriction enzyme combination. By inserting, a plasmid vector (pmAG1-MCL1) for expressing MCL1 (mAG1-MCL1) in which mAG1 was fused to the N-terminal was prepared.
 <pMR-BAKの調製>
 先ず、BAKの一部(BAKタンパク質の72~87アミノ酸からなる領域)をコードするヌクレオチド配列の5’末端及び3’末端にそれぞれBamHI認識配列、ストップコドンとNotI認識配列を付加したヌクレオチド配列(配列番号:51)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、BamHIとNotIで切断した後、同じ制限酵素の組合せにて処理したpMonti-Red-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)に挿入することにより、MRをN末に融合させたBAK(MR-BAK)を発現させるためのプラスミドベクター(pMR-BAK)を作製した。
<Preparation of pMR-BAK>
First, a nucleotide sequence in which a BamHI recognition sequence, a stop codon and a NotI recognition sequence are added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding a part of BAK (region consisting of 72-87 amino acids of BAK protein) Number: 51) designed. Then, DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-BAK) for expressing BAK (MR-BAK) in which MR was fused to N-terminal was prepared.
 <pMR-BAXの作製>
 先ず、BAXの一部(BAXタンパク質の35~55アミノ酸からなる領域)をコードするヌクレオチド配列の5’末端及び3’末端にそれぞれBamHI認識配列、ストップコドンとNotI認識配列を付加したヌクレオチド配列(配列番号:52)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、BamHIとNotIで切断した後、同じ制限酵素の組合せにて処理したpMonti-Red-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)に挿入することにより、MRをN末に融合させたBAX(MR-BAX)を発現させるためのプラスミドベクター(pMR-BAX)を作製した。
<Preparation of pMR-BAX>
First, a nucleotide sequence in which a BamHI recognition sequence, a stop codon and a NotI recognition sequence are added to the 5 'end and the 3' end of the nucleotide sequence encoding a part of BAX (region consisting of 35-55 amino acids of BAX protein) Number: 52) designed. Then, DNA consisting of the nucleotide sequence is artificially synthesized, digested with BamHI and NotI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-BAX) for expressing BAX (MR-BAX) in which MR was fused to N-terminal was prepared.
 <細胞培養、遺伝子導入及び細胞の観察>
 上述の実施例2に記載の方法にて、HEK293細胞を培養し、当該細胞に、上記にて調製したプラスミドベクターを、200ngずつ以下に示す(A)~(D)の組み合わせにて導入した。
(A)pMR-BAK+pAG-MCL1
(B)pMR-BAK+pmAG1-MCL1
(C)pMR-BAX+pAG-MCL1
(D)pMR-BAX+pmAG1-MCL1
 そして、観察前に各ウェルから培養液全量を除き、20mM HEPESを含むHBSSを200μL添加し、実施例1の<細胞の観察>に記載の方法にて、遺伝子導入処理を施したHEK293細胞を観察した。
<Cell culture, gene transfer and observation of cells>
HEK293 cells were cultured by the method described in Example 2 above, and 200 ng of each of the plasmid vectors prepared above was introduced into the cells in combination of (A) to (D) shown below.
(A) pMR-BAK + pAG-MCL1
(B) pMR-BAK + pmAG1-MCL1
(C) pMR-BAX + pAG-MCL1
(D) pMR-BAX + pmAG1-MCL1
Then, before observation, the whole culture solution is removed from each well, 200 μL of HBSS containing 20 mM HEPES is added, and HEK293 cells subjected to the gene transfer treatment are observed by the method described in <Observation of cells> in Example 1. did.
 <FRET現象の検出>
 FRET現象の検出は、Nutlin‐3の代わりに、MCL1とBAKとの、又はMCL1とBAXとの相互作用阻害剤として、A-1210477を最終濃度25μMになるよう、HEK293細胞の培養液に添加した以外は、実施例3に記載の方法にて行なった。
<Detection of FRET phenomenon>
In the detection of FRET phenomenon, A-1210477 was added to a culture solution of HEK 293 cells to a final concentration of 25 μM as an inhibitor of interaction between MCL1 and BAK or MCL1 and BAX instead of Nutlin-3. Except for the above, the method described in Example 3 was performed.
 得られた結果について、MR-BAK及びAG-MCL1を発現させた細胞に関し、薬剤添加前と添加5分後のRatio画像を図7Aに示し、各蛍光強度の時間経過グラフ及びMR/AG比(Em:610/Em:510)の時間経過グラフを図7Bに示す。MR-BAK及びmAG1-MCL1を発現させた細胞に関し、薬剤添加前と添加5分後のRatio画像を図7Cに示し、各蛍光強度の時間経過グラフ及びMR/AG比の時間経過グラフを図7Dに示す。また、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(MR-BAK及びAG-MCL1)を用いてFRET現象を検出した場合と、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(MR-BAK及びmAG1-MCL1)を用いて検出した場合とを比較した結果を、図7Eに示す。また前記BAK及びMCL1同様に、BAX及びMCL1に関し、得られた結果を図7F~7Jに示す。 Regarding the obtained results, regarding the cells in which MR-BAK and AG-MCL1 were expressed, Ratio images before and 5 minutes after addition of the drug are shown in FIG. 7A, and the time course graph of each fluorescence intensity and the MR / AG ratio ( A time lapse graph of Em: 610 / Em: 510) is shown in FIG. 7B. Figure 7C shows the ratio images of MR-BAK and mAG1-MCL1 expressing cells before and after addition of the drug in Figure 7C, and the time course graph of each fluorescence intensity and the time course graph of the MR / AG ratio are shown in Figure 7D. Shown in. In addition, when the FRET phenomenon is detected using a combination of tetrameric fluorescent proteins (MR-BAK and AG-MCL1) that forms a fluorescent luminescent spot, and a combination of fluorescent proteins that do not form a fluorescent luminescent spot (MR-BAK and The result of comparison with the case of detection using mAG1-MCL1) is shown in FIG. 7E. The results obtained for BAX and MCL1 as well as BAK and MCL1 are shown in FIGS. 7F to 7J.
 図7A、7B、7F及び7Gに示すとおり、MR-BAK又はMR-BAXとAG-MCL1とを発現する細胞のMR/AG比は、蛍光輝点を中心に高く、A-1210477添加後は細胞全体に拡散しながら低下した。A-1210477添加後の各蛍光強度の変化としては、MR(Em:610)は低下し、AG(Em:510)は上昇した。このことは、当該タンパク質間相互作用阻害剤の添加によって、FRET現象のシグナルが低下したことを示している。 As shown in FIGS. 7A, 7B, 7F and 7G, the MR / AG ratio of cells expressing MR-BAK or MR-BAX and AG-MCL1 is high, centering on the fluorescent spot, and after addition of A-1210477, cells are added. It decreased while spreading throughout. As a change of each fluorescence intensity after A-1210477 addition, MR (Em: 610) decreased and AG (Em: 510) increased. This indicates that the addition of the protein-protein interaction inhibitor reduced the signal of the FRET phenomenon.
 一方、MR-BAK又はMR-BAXとmAG1-MCL1とを発現する細胞に関しても、図7C、7D、7H及び7Iに示すとおり、前記同様の傾向は見られたが、A-1210477添加有無によるFRET現象のシグナルの顕著な差は認められなかった。実際、前記MR/AG比とR/mAG1比とを比較した結果、図7E及び7Jに示すとおり、A-1210477添加後0秒から600秒の間では、600秒時点での差が最も高く、MR/AG比のほうが阻害剤添加後顕著に低下した(MR-BAK及びAG-MCL1の場合は4倍低下し、MR-BAX及びAG-MCL1の場合は2.8倍低下した)。すなわち、MR/AGの組み合わせの方が、FRETによるエネルギー移動効率が高いことを示しており、4量体蛍光タンパク質を用いて凝集密度を上昇させることで、FRET現象の効率が向上することを示唆している。 On the other hand, with regard to cells expressing MR-BAK or MR-BAX and mAG1-MCL1, as shown in FIGS. 7C, 7D, 7H and 7I, the same tendency was observed, but FRET with or without the addition of A-1210477. There was no noticeable difference in the signal of the phenomenon. In fact, as a result of comparing the MR / AG ratio with the R / m AG1 ratio, as shown in FIGS. 7E and 7J, the difference at 600 seconds is the highest between 0 and 600 seconds after the addition of A-1210477, The MR / AG ratio decreased significantly after the addition of the inhibitor (a 4-fold decrease for MR-BAK and AG-MCL1 and a 2.8-fold decrease for MR-BAX and AG-MCL1). That is, the combination of MR / AG indicates that the energy transfer efficiency by FRET is higher, suggesting that the efficiency of the FRET phenomenon is improved by increasing the aggregation density using the tetrameric fluorescent protein. doing.
 (実施例8) タンパク質間相互作用の検出5
 上記実施例7同様に、以下に示す方法にて、p53及びMDM2以外の、薬剤によって誘導されるタンパク質間相互作用でも蛍光輝点が形成されること、及び該蛍光輝点形成によってFRET現象の効率の上昇が起こることを確認した。さらに、当該タンパク質間相互作用について、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(AG及びMR)を用いて検出した場合と、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(mAG1及びMR)を用いて検出した場合とを比較した。
(Example 8) Detection of protein-protein interaction 5
Similarly to Example 7 above, a fluorescent bright spot is formed also by a drug-induced protein interaction other than p53 and MDM2 by the method described below, and the efficiency of FRET phenomenon due to the fluorescent bright spot formation. Confirmed that a rise in Furthermore, when the protein-protein interaction is detected using a combination of tetrameric fluorescent proteins that form fluorescent spots (AG and MR) and a combination of fluorescent proteins that do not form fluorescent spots (mAG1 and MR) Were compared with those detected using
 なお、本実施例8において、対象としたタンパク質間相互作用は、mTORタンパク質のFRBドメインとFKBP12タンパク質との相互作用であり、これらは、ラパマイシン(Rapamycin)の存在下において相互作用することが知られている(Chen Jら、Proc Natl Acad Sci USA.、1995年5月23日、92巻11号、4947~4951ページ 参照)。 In the present Example 8, the targeted protein-protein interaction is an interaction between the FRB domain of mTOR protein and the FKBP12 protein, and it is known that these interact in the presence of rapamycin. (See Chen J et al., Proc Natl Acad Sci USA., May 23, 1995, Vol. 92, No. 11, pp. 4947-4951).
 <pAG-FKBP12の調製>
 Fluoppi:Ash-hAG[mTOR-FKBP12](株式会社医学生物学研究所製、コード番号:AM-8202M)に含まれるプラスミドベクター pAsh-FKBP12を、NheI及びAgeIで処理し、当該プラスミドベクターからAshペプチドをコードする領域を除去した。また、phAG-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0801M)を、同じ制限酵素の組合せにて処理し、AGタンパク質をコードする領域を切り出した。そして、当該領域を前記プラスミドベクターに挿入することにより、AGをN末に融合させたFKBP12(AG-FKBP12)を発現させるためのプラスミドベクター(pAG-FKBP12)を作製した。
<Preparation of pAG-FKBP12>
Fluoppi: A plasmid vector pAsh-FKBP12 contained in Ash-hAG [mTOR-FKBP12] (Medical Biology Research Institute, code number: AM-8202M) is treated with NheI and AgeI, and the Ash peptide from the plasmid vector is processed. Removed the coding region. In addition, phAG-MCL (manufactured by Medical Biology Laboratory Co., Ltd., code number: AM-VS0801M) was treated with the same restriction enzyme combination to cut out the region encoding AG protein. Then, by inserting the region into the plasmid vector, a plasmid vector (pAG-FKBP12) for expressing FKBP12 (AG-FKBP12) in which AG was fused to the N-terminus was prepared.
 <pmAG1-FKBP12の調製>
 pAG-FKBP12を、NheI及びAgeIで処理し、当該プラスミドベクターからAGをコードする領域を除去した。また、phmAG1-MCL(株式会社医学生物学研究所製、コード番号:AM-V0039M)を、同じ制限酵素の組合せにて処理し、mAG1をコードする領域を切り出した。そして、当該領域を前記プラスミドベクターに挿入することにより、mAG1をN末に融合させたFKBP12(mAG1-FKBP12)を発現させるためのプラスミドベクター(pmAG1-FKBP12)を作製した。
<Preparation of pmAG1-FKBP12>
pAG-FKBP12 was treated with NheI and AgeI to remove the region encoding AG from the plasmid vector. In addition, phmAG1-MCL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0039M) was treated with the same restriction enzyme combination to cut out the region encoding mAG1. Then, by inserting the relevant region into the plasmid vector, a plasmid vector (pmAG1-FKBP12) for expressing FKBP12 (mAG1-FKBP12) in which mAG1 is fused to the N-terminus was prepared.
 <pMR-mTORの調製>
 先ず、mTORの一部(mTORタンパク質の2025~2114アミノ酸からなる領域)をコードするヌクレオチド配列の5’末端及び3’末端にそれぞれEcoRI認識配列とXhoI認識配列を付加したヌクレオチド配列(配列番号:53)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、EcoRIとXhoIで切断した後、同じ制限酵素の組合せにて処理したpMonti-Red-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)に挿入することにより、MRをN末に融合させたmTORの一部(MR-mTOR)を発現させるためのプラスミドベクター(pMR-mTOR)を作製した。
<Preparation of pMR-mTOR>
First, a nucleotide sequence (SEQ ID NO: 53) in which an EcoRI recognition sequence and an XhoI recognition sequence are added to the 5 'end and the 3' end of the nucleotide sequence encoding a part of mTOR (region consisting of 2025-2114 amino acids of mTOR protein). ) Designed. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with EcoRI and XhoI, and then treated with the same combination of restriction enzymes pMonti-Red-MCL (Medical Biology Research Institute, Inc. Code No. AM- By inserting into VS0802M), a plasmid vector (pMR-mTOR) for expressing a part of mTOR (MR-mTOR) in which MR was fused to N-terminal was prepared.
 <細胞培養、遺伝子導入、細胞の観察及びFRET現象の検出>
 上述の実施例7同様に、HEK293細胞を培養し、当該細胞に、上記にて調製したプラスミドベクターを、200ngずつ以下に示す(E)及び(F)の組み合わせにて導入した。
(E)pMR-mTOR+pAG-FKBP12
(F)pMR-mTOR+pmAG1-FKBP12
 また、A-1210477の代わりに、mTOR及びFKBP12の相互作用に必要なRapamycinを最終濃度1μMになるよう、HEK293細胞の培養液に添加した以外は、実施例7同様に、細胞の観察及びFRET現象の検出を行った。
<Cell culture, gene transfer, cell observation and detection of FRET phenomenon>
HEK 293 cells were cultured in the same manner as in Example 7 described above, and 200 ng of each of the plasmid vectors prepared above was introduced into the cells in the combination of (E) and (F) shown below.
(E) pMR-mTOR + pAG-FKBP12
(F) pMR-mTOR + pmAG1-FKBP12
Also, in place of A-1210477, observation of cells and FRET phenomenon are the same as in Example 7 except that Rapamycin necessary for interaction between mTOR and FKBP12 is added to the culture solution of HEK 293 cells to a final concentration of 1 μM. Detection of
 得られた結果について、MR-mTOR及びAG-FKBP12を発現させた細胞に関し、薬剤添加前と添加5分後のRatio画像を図8Aに示し、各蛍光強度の時間経過グラフ及びMR/AG比(Em:610/Em:510)の時間経過グラフを図8Bに示す。MR-mTOR及びmAG1-FKBP12を発現させた細胞に関し、薬剤添加前と添加5分後のRatio画像を図8Cに示し、各蛍光強度の時間経過グラフ及びMR/AG比の時間経過グラフを図8Dに示す。また、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(MR-mTOR及びAG-FKBP12)を用いてFRET現象を検出した場合と、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(MR-mTOR及びmAG1-FKBP12)を用いて検出した場合とを比較した結果を、図8Eに示す。 Regarding the obtained results, the ratio images of the cells expressing MR-mTOR and AG-FKBP12 before and 5 minutes after addition of the drug are shown in FIG. 8A, and the time course graph of each fluorescence intensity and the MR / AG ratio ( The time lapse graph of Em: 610 / Em: 510) is shown in FIG. 8B. Figure 8C shows the ratio images of MR-mTOR and mAG1-FKBP12-expressing cells before and 5 minutes after drug addition, and the time course graph of each fluorescence intensity and the time course graph of MR / AG ratio are shown in FIG. 8D. Shown in. In addition, when the FRET phenomenon is detected using a combination of tetrameric fluorescent proteins (MR-mTOR and AG-FKBP12) that form fluorescent luminescent spots, and a combination of fluorescent proteins that do not form fluorescent luminescent spots (MR-mTOR and The result of comparison with the case of detection using mAG1-FKBP12) is shown in FIG. 8E.
 図8A及び8Bに示すとおり、MR-mTOR及びAG-FKBP12を発現する細胞のMR/AG比は、Rapamycin添加後に形成された蛍光輝点を中心に上昇した。各蛍光強度の変化としては、MR(Em:610)は上昇し、AG(Em:510)は低下した。このことは、当該タンパク質間相互作用誘導剤の添加によって、FRET現象のシグナルが上昇したことを示している。 As shown in FIGS. 8A and 8B, the MR / AG ratio of cells expressing MR-mTOR and AG-FKBP 12 increased, centered on the fluorescent spot formed after Rapamycin addition. As each change in fluorescence intensity, MR (Em: 610) increased and AG (Em: 510) decreased. This indicates that the addition of the protein-protein interaction inducer increased the signal of the FRET phenomenon.
 一方、MR-mTOR及びmAG1-FKBP12を発現する細胞に関しては、図8C及び8Dに示すとおり、MR/mAG1比は、Rapamycin添加後、細胞全体で上昇した。各蛍光強度の変化としては、前記MR-mTOR及びAG-FKBP12同様に、FRET現象シグナルの上昇が認められた。しかしながら、タンパク質間相互作用誘導剤添加の有無によるシグナルの顕著な差は認められなかった。実際、前記MR/AG比とR/mAG1比とを比較した結果、図8Eに示すとおり、Rapamycin添加後0秒から430秒の間では、320秒時点での差が最も高く、MR/AG比のほうが誘導剤添加後に2.7倍増加した。すなわち、上述の実施例7の結果同様に、MR/AGの組み合わせの方が、FRETによるエネルギー移動効率が高いことを示しており、4量体蛍光タンパク質を用いて凝集密度を上昇させることで蛍光輝点が形成され、蛍光輝点を介することにより、FRET現象の効率が向上することを示唆している。 On the other hand, for cells expressing MR-mTOR and mAG1-FKBP12, as shown in FIGS. 8C and 8D, the MR / mAG1 ratio was increased in the whole cell after Rapamycin addition. As the change in each fluorescence intensity, an increase in FRET event signal was observed as in the case of the MR-mTOR and AG-FKBP12. However, no significant difference in the signal was observed with and without the addition of a protein-protein interaction inducer. In fact, as a result of comparing the MR / AG ratio with the R / m AG1 ratio, as shown in FIG. 8E, the difference at 320 seconds is the highest between 0 seconds and 430 seconds after the addition of rapamycin, and the MR / AG ratio Increased 2.7 times after the induction agent was added. That is, similar to the result of the above-mentioned Example 7, the MR / AG combination shows that the energy transfer efficiency by FRET is higher, and the fluorescence density is increased by using the tetrameric fluorescent protein to increase the aggregation density. A bright spot is formed, and it is suggested that the efficiency of the FRET phenomenon is improved by interposing the fluorescent bright spot.
 以上、実施例7及び8に示した結果から、実施例6に示した結果同様に、本願発明によれば対象を問わず、蛍光輝点の形成を介したFRET現象の検出を通して、タンパク質間相互作用を検出できることが確認された。また、実施例4に示した結果同様に、検出対象がタンパク質間相互作用した場合に、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせの方が、蛍光輝点を形成できない蛍光タンパク質の組み合わせよりも、FRET現象の効率が高くなること(2.7~4倍に向上すること)が確認された。 As described above, according to the results shown in Examples 7 and 8, similar to the results shown in Example 6, according to the present invention, regardless of the subject, protein-protein interaction can be achieved through the detection of the FRET phenomenon through the formation of a fluorescent bright spot. It was confirmed that the effect could be detected. Further, similarly to the results shown in Example 4, when the detection target interacts with proteins, the combination of the fluorescent proteins that can not form a fluorescent bright spot is better for the combination of tetrameric fluorescent proteins that form a fluorescent bright spot. It has been confirmed that the efficiency of the FRET phenomenon is higher (improved 2.7 to 4 times) than that.
 (実施例9) プレートリーダーを用いたFRET現象の検出
 本発明において蛍光顕微鏡で検出された蛍光輝点の形成を介したFRET現象を、プレートリーダーでも検出できることを、以下に示す方法にて確認した。また、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせ(AG及びMR)を用いて検出した場合と、蛍光輝点を形成しない蛍光タンパク質の組み合わせ(mAG1及びMR)を用いて検出した場合とを比較することで、FRET現象の効率上昇における、蛍光輝点形成による効果についても確認した。さらに、固定化した細胞においてもFRET現象が維持され、検出できることも、本実施例において確認した。
(Example 9) Detection of FRET Phenomenon Using Plate Reader It was confirmed by the method described below that in the present invention, the FRET phenomenon through formation of a fluorescent bright spot detected by a fluorescence microscope can also be detected by a plate reader. . In addition, the case of detection using a combination of tetrameric fluorescent proteins (AG and MR) forming a fluorescent bright spot, and the detection using a combination of fluorescent proteins not forming a fluorescent bright spot (mAG1 and MR) We also confirmed the effect of fluorescent spot formation on the efficiency increase of the FRET phenomenon by comparing. Furthermore, it was also confirmed in this example that the FRET phenomenon is maintained and detectable in immobilized cells.
 <細胞培養と遺伝子導入>
(A)MR-BAK+AG-MCL1
(B)MR-BAK+mAG1-MCL1
(C)MR-mTOR+AG-FKBP12
(D)MR-mTOR+mAG1-FKBP12
 上記(A)~(D)に記載のタンパク質の組み合わせを、細胞にて各々発現させるために、以下に示す方法にて、上記にて調製したプラスミドをHEK293細胞に導入した。
<Cell culture and gene transfer>
(A) MR-BAK + AG-MCL1
(B) MR-BAK + mAG1-MCL1
(C) MR-mTOR + AG-FKBP12
(D) MR-mTOR + mAG1-FKBP12
In order to express the combinations of the proteins described in (A) to (D) in cells, the plasmids prepared above were introduced into HEK293 cells by the method shown below.
 先ずHEK293細胞を、培養液[DMEM High glucose(SIGMA ALDRICH社製)、10%FBS(EQUITECH社製)、1%ペニシリン・ストレプトマイシン(Thermo Fisher Scientific社製)]にて培養した。次に、同細胞を遺伝子導入前日に6ウェルプレート(Nunc社製,#140675)に播種し、1ウェルあたり3mLの培養液で培養した。そして、Opti-MEM(Thermo Fisher Scientific社製)300μLに各プラスミド3μgずつを混合したDNA溶液を希釈し、Fugene HD(Promega社製)を20μL添加した後、攪拌した。25℃で10分静置した後、培養細胞に添加し、24時間培養した。また、バックグラウンド算出用に、遺伝子導入していない細胞を同様に培養した。細胞をトリプシン処理で回収し、96ウェルプレート(Nunc社製,#137101)24ウェルに継代した。そして、1ウェルあたり100μLの培養液で24時間培養した。 First, HEK 293 cells were cultured in a culture solution (DMEM High glucose (manufactured by SIGMA ALDRICH), 10% FBS (manufactured by EQUITECH), 1% penicillin / streptomycin (manufactured by Thermo Fisher Scientific)). Next, the same cells were seeded on a 6-well plate (manufactured by Nunc, # 140675) the day before gene transfer, and cultured in 3 mL of culture solution per well. Then, a DNA solution prepared by mixing 3 μg of each plasmid in 300 μL of Opti-MEM (manufactured by Thermo Fisher Scientific) was diluted, 20 μL of Fugene HD (manufactured by Promega) was added, and the mixture was stirred. After standing at 25 ° C. for 10 minutes, the cells were added to cultured cells and cultured for 24 hours. In addition, cells not transfected were similarly cultured for background calculation. The cells were harvested by trypsinization and passaged to 24 wells of a 96 well plate (Nunc, # 137101). Then, the cells were cultured for 24 hours in 100 μL of culture solution per well.
 <相互作用調整剤(阻害剤又は誘導剤)の添加>
 各ウェルから培養液全量を除き、20mM HEPESを含むHBSSに置換した。MCL1及びBAK間相互作用の阻害剤であるA-1210477を、最終濃度16.67μMを最大濃度とし、3倍希釈系列で8点調整した後、各濃度の阻害剤希釈液を3ウェルずつ添加し、37℃、5%COで30分静置した。
<Addition of interaction modifier (inhibitor or inducer)>
The whole culture solution was removed from each well and replaced with HBSS containing 20 mM HEPES. A-1210477, which is an inhibitor of MCL1 and BAK interaction, is adjusted to a final concentration of 16.67 μM as the maximum concentration and adjusted 8 points in 3-fold dilution series, and then 3 wells of each dilution of inhibitor are added. At 37 ° C., 5% CO 2 for 30 minutes.
 mTOR及びFKBP12間相互作用の誘導剤であるRapamycinを、最終濃度1μMを最大濃度とし、3倍希釈系列で8点調整した後、各濃度の誘導剤希釈液を3ウェルずつ添加し、37℃、5%COで30分静置した。 Prepare Rapamycin, an inducer of interaction between mTOR and FKBP, with a final concentration of 1 μM as the maximum concentration and adjust 8 points in 3-fold dilution series, then add 3 concentrations of each inducer dilution solution, 37 ° C, Let stand for 30 minutes in 5% CO 2 .
 <FRET現象の検出>
 96ウェルプレートを、マルチラベルプレートリーダー(Perkin Elmer社製、製品名:EnVision 2102 Multilabel Reader)にセットし、励起 430/8 フィルター(2100-5250、Perkin Elmer社製)、D480(特注ダイクロイックミラー)及び光学フィルター Fura2 510/10 フィルター(2100-5320、Perkin Elmer社製)を用い、ドナーの蛍光値を測定した。また、励起 430/8 フィルター、D480、Cy5 620/40 フィルター(2100-5760、Perkin Elmer社製)を用い、アクセプターの蛍光値を測定した。
<Detection of FRET phenomenon>
The 96-well plate is set in a multi-label plate reader (Perkin Elmer, product name: EnVision 2102 Multilabel Reader), excitation 430/8 filter (2100-5250, Perkin Elmer), D480 (custom-made dichroic mirror) and Optical filter The fluorescence value of the donor was measured using a Fura2 51/10 filter (2100-5320, manufactured by Perkin Elmer). Further, the fluorescence value of the acceptor was measured using an excitation 430/8 filter, D480, Cy5 620/40 filter (2100-5760, manufactured by Perkin Elmer).
 <細胞の固定>
 各ウェルから、前記阻害剤希釈液又は誘導剤希釈液 全量を除き、4%パラホルムアルデヒドを100μL添加した。室温で15分静置した後、全量を除き、20mM HEPESを含むHBSSを100μL添加した。このようにして細胞を固定した後、上記と同様の方法でFRET現象を検出した。
<Fixation of cells>
From each well, 100 μL of 4% paraformaldehyde was added excluding the whole amount of the inhibitor dilution solution or the induction solution dilution solution. After leaving still for 15 minutes at room temperature, 100 μL of HBSS containing 20 mM HEPES was added except for the whole amount. After fixing the cells in this manner, the FRET phenomenon was detected in the same manner as described above.
 <データ解析>
 遺伝子導入していない細胞を440nmで励起した時の620nm及び510nmにおける各蛍光値(Em.620及びEm.510)をバックグランドの値として差し引いた、アクセプターの蛍光値/ドナーの蛍光値([Ex.440-Em.620]/[Ex.440-Em.510])を、FRET現象のシグナルとして算出した。また、得られたシグナル値は、添加した各相互作用調整剤の最低濃度の平均値(n=3)を1として標準化した。そして、カレイダグラフ(Synergy Software社製)を用いて用量反応曲線を描き、IC50を算出した。得られた結果を、生細胞に関しては図9A及び9Cに示し、固定細胞に関しては図9B及び9Dに示す。なお、各図において、エラーバーは標準誤差を表している。
<Data analysis>
The fluorescence value of the acceptor / the fluorescence value of the donor ([Ex Extracting each fluorescence value (Em. 620 and Em. 510) at 620 nm and 510 nm when the non-transfected cells are excited at 440 nm as the background value .440-Em.620] / [Ex.440-Em.510]) was calculated as a signal of the FRET phenomenon. In addition, the obtained signal values were normalized with an average value (n = 3) of the lowest concentrations of the respective interaction modifiers added as 1. Then, a dose response curve was drawn using a Kaleidagraph (manufactured by Synergy Software) to calculate IC 50 . The results obtained are shown in FIGS. 9A and 9C for live cells and in FIGS. 9B and 9D for fixed cells. In each figure, error bars indicate standard errors.
 図9A及び9Cに示すとおり、相互作用調整剤の濃度依存的に、FRET現象のシグナルは変化し、プレートリーダーでも検出できることが確認された。さらに、用量反応曲線の最大値をFRET+、最小値をFRET-として、FRET比(FRET+/FRET-)を算出し、4量体蛍光タンパク質を用いた場合と、単量体蛍光タンパク質を用いた場合とを比較した結果、前者の方が、MCL1及びBAK間相互作用では1.6倍、mTOR及びFKBP12間相互作用では2.0倍、FRET比が高くなった。 As shown in FIGS. 9A and 9C, it was confirmed that the signal of the FRET phenomenon was changed depending on the concentration of the interaction modifier, and could be detected by the plate reader. Furthermore, when the maximum value of the dose-response curve is FRET + and the minimum value is FRET-, the FRET ratio (FRET + / FRET-) is calculated, and the case where a tetrameric fluorescent protein is used and the case where a monomeric fluorescent protein is used As a result, the FRET ratio in the former was increased 1.6 times in the interaction between MCL1 and BAK and 2.0 times in the interaction between mTOR and FKBP12.
 また図9B及び9Dに示すとおり、4量体蛍光タンパク質を用いた場合は、固定した細胞でもプレートリーダーにてFRET現象を検出できることが確認された。一方、単量体蛍光タンパク質を用いた場合においては、固定した細胞ではIC50が算出されない場合や生細胞で測定したIC50と大きく値がずれる場合があり、正確な評価ができなかった。また、前記同様に、4量体蛍光タンパク質を用いた場合と、単量体蛍光タンパク質を用いた場合とを比較した結果、前者の方が、MCL1及びBAK間相互作用では1.5倍、mTOR及びFKBP12間相互作用では1.9倍、FRET比が高くなった。 Further, as shown in FIGS. 9B and 9D, it was confirmed that the FRET phenomenon can be detected by the plate reader even in the fixed cells when tetramer fluorescent protein is used. On the other hand, in the case of using the monomeric fluorescent protein, in the fixed cells, the IC 50 may not be calculated, or the IC 50 measured in the living cells may largely deviate from the value, and an accurate evaluation could not be performed. In addition, as a result of comparing the case where the tetrameric fluorescent protein is used with the case where the monomeric fluorescent protein is used as described above, the former is 1.5 times the interaction between MCL1 and BAK, mTOR And FKBP12 interaction increased FRET ratio 1.9 times.
 以上のとおり、検出対象がタンパク質間相互作用した場合に、蛍光輝点を形成する4量体蛍光タンパク質の組み合わせの方が、蛍光輝点を形成できない蛍光タンパク質の組み合わせよりも、FRET現象の効率が高くなったため、プレートリーダーにて当該現象を検出でき、かつ、検出対象のタンパク質間相互作用の度合いを感度よく解析できることが確認された。また実施例5に示した結果同様に、検出対象が相互作用した際に蛍光輝点を形成する4量体蛍光タンパク質の組み合わせを用いた場合には、固定化した細胞においてもFRET現象が維持され、検出できることも確認された。 As described above, when the detection target interacts with proteins, the combination of tetrameric fluorescent proteins that form fluorescent luminescent spots is more efficient in the FRET phenomenon than the combination of fluorescent proteins that can not form fluorescent luminescent spots. Since it became high, it was confirmed that the said phenomenon can be detected by a plate reader, and the degree of protein-protein interaction to be detected can be analyzed with high sensitivity. Further, similarly to the results shown in Example 5, when a combination of tetrameric fluorescent proteins that form fluorescent bright spots when the detection targets interact with each other, the FRET phenomenon is maintained even in the immobilized cells. It was also confirmed that it could be detected.
 (実施例10) イメージングシステムを用いた画像解析による相互作用の検出
 本発明において形成される蛍光輝点の蛍光強度を、イメージングシステムを用い測定することによっても、タンパク質間相互作用の判定を行なうことができることを、確認した。
(Example 10) Detection of interaction by image analysis using imaging system Determination of protein-protein interaction also by measuring fluorescence intensity of a fluorescent luminescent spot formed in the present invention using an imaging system We confirmed that we could do it.
 <細胞培養と遺伝子導入>
(A)MR-BAK+AG-MCL1
(B)MR-BAX+AG-MCL1
 前記(A)及び(B)に記載のタンパク質の組み合わせを、細胞にて各々発現させるために、実施例9に記載の方法にて、HEK293細胞を培養し、上記にて調製したプラスミドを該細胞に導入した。そして、プラスミドDNA溶液及びFugene HDを添加して24時間培養後の細胞を、トリプシン処理で回収し、96ウェルプレート(Corning社製、#356640)の24ウェルに継代し、1ウェルあたり100μLの培養液で24時間培養した。
<Cell culture and gene transfer>
(A) MR-BAK + AG-MCL1
(B) MR-BAX + AG-MCL1
In order to express the combination of the proteins described in (A) and (B) in cells, respectively, HEK293 cells are cultured by the method described in Example 9, and the plasmid prepared above is used as the cells. Introduced to Then, add the plasmid DNA solution and Fugene HD, culture for 24 hours, collect the cells after trypsin treatment, pass to 24 wells of a 96 well plate (Corning # 356640), and add 100 μL per well. The cultures were cultured for 24 hours.
 <相互作用阻害剤の添加、及び細胞の固定>
 各ウェルから培養液全量を除き、HBSS/20mM HEPESに置換した。MCL1とBAK又はBAXとの相互作用の阻害剤であるA-1210477を、最終濃度16.67μMを最大濃度として3倍希釈系列で8点調整した後、各濃度の阻害剤希釈液を3ウェルずつ添加し、37℃、5%COで30分静置した。その後、培地を除き、4%パラホルムアルデヒドを100μL添加した。室温で15分静置した後、全量を除き、20mM HEPESを含むHBSSを100μL添加した。
<Addition of interaction inhibitor and fixation of cells>
The whole culture solution was removed from each well and replaced with HBSS / 20 mM HEPES. After adjusting A-1210477, which is an inhibitor of MCL1 interaction with BAK or BAX, in 8-fold dilution series with a final concentration of 16.67 μM as the maximum concentration, adjust the inhibitor dilution solution of each concentration to 3 wells The mixture was added and allowed to stand at 37 ° C., 5% CO 2 for 30 minutes. Thereafter, the medium was removed and 100 μL of 4% paraformaldehyde was added. After leaving still for 15 minutes at room temperature, 100 μL of HBSS containing 20 mM HEPES was added except for the whole amount.
 <イメージングと解析>
 イメージングシステム(ParkinElmer社製、製品名:オペレッタCLS)に、対物レンズ20xAir,NA0.4をセットし、AG(時間:100ms,パワー:10%,励起波長:460~490nm,蛍光波長:500~550nm)、MR(時間:100ms,パワー:10%,励起波長:530~560nm,蛍光波長:570~650nm)、Hoechst33342(時間:100ms,パワー:10%,励起波長:355~385nm,蛍光波長:430~500nm)に関し、各蛍光画像を1ウェルあたり49視野取得した。
<Imaging and Analysis>
Objective lens 20xAir, NA 0.4 is set in an imaging system (ParkinElmer, product name: operetta CLS), AG (time: 100 ms, power: 10%, excitation wavelength: 460 to 490 nm, fluorescence wavelength: 500 to 550 nm ), MR (time: 100 ms, power: 10%, excitation wavelength: 530 to 560 nm, fluorescence wavelength: 570 to 650 nm), Hoechst 33342 (time: 100 ms, power: 10%, excitation wavelength: 355 to 385 nm, fluorescence wavelength: 430) For each ̃500 nm), 49 fluorescence fields were acquired per well for each fluorescence image.
 得られた画像は、ソフトウェアHarmony(ParkinElmer社製)を用いて解析した。蛍光輝点は、Harmonyの解析アルゴリズムであるFind Spots Method CのRadius 2μm、Contrast 0.3以上、Uncorrected Spot to Region Intensity 0.5以上、Distance 0.9μm、Spot Peak Radius 0μmの設定で検出した。また、「視野中の蛍光輝点におけるAGの蛍光強度の総和/視野中のAGを発現している総細胞数」及び「視野中の蛍光輝点におけるMRの蛍光強度の総和/視野中のMRを発現している総細胞数」を算出した。そして、これら値を、阻害剤A-1210477 0.01μM添加時の平均値(n=3)で標準化し、グラフにプロットした。また、カレイダグラフ(Synergy Software社製)を用いて用量反応曲線を描き、IC50を算出した。MR-BAK及びAG-MCL1について解析した結果を図10Aに示し、MR-BAX及びAG-MCL1について解析した結果を図10Bに示す。 The obtained image was analyzed using software Harmony (manufactured by Parkin Elmer). The fluorescent spots were detected at a setting of Radius 2 μm, Contrast 0.3 or more, Uncorrected Spot to Region Intensity 0.5 or more, Distance 0.9 μm, and Spot Peak Radius 0 μm in Find Spots Method C, which is an analysis algorithm of Harmony. In addition, "sum of fluorescence intensities of AG at fluorescent spots in the field / total number of cells expressing AG in the field" and "sum of fluorescence intensities of MR at fluorescent spots in the field / MR in the field""Total number of cells expressing" was calculated. These values were then normalized to the mean value (n = 3) at 0.01 μM addition of inhibitor A-1210477 and plotted on a graph. In addition, a dose response curve was drawn using a Kaleidagraph (manufactured by Synergy Software) to calculate IC 50 . The analysis results for MR-BAK and AG-MCL1 are shown in FIG. 10A, and the analysis results for MR-BAX and AG-MCL1 are shown in FIG. 10B.
 図10A及び10Bに示すとおり、蛍光輝点におけるAG由来及びMR由来の蛍光強度は共に、阻害剤濃度依存的に変化した。よって、イメージングシステムを用いて得られた蛍光顕微鏡画像を解析することによっても、タンパク質間相互作用を判定できることが確認された。 As shown in FIGS. 10A and 10B, both the AG-derived and MR-derived fluorescence intensities at the fluorescent spots changed in an inhibitor concentration-dependent manner. Therefore, it was confirmed that protein-protein interaction can also be determined by analyzing a fluorescence microscope image obtained using an imaging system.
 (実施例11) AG及びMR以外の4量体蛍光タンパク質を用いた、蛍光輝点形成とFRET現象の検出
 AG及びMR以外の4量体蛍光タンパク質(DsRed2、COR5、KikGR1)を用いても、蛍光輝点形成とFRET現象の検出ができることを、以下に示す方法にて確認した。
(Example 11) Detection of fluorescent spot formation and FRET phenomenon using tetrameric fluorescent proteins other than AG and MR Even tetrameric fluorescent proteins (DsRed2, COR5, KikGR1) other than AG and MR can be used. It was confirmed by the method described below that the formation of fluorescent spots and the detection of the FRET phenomenon can be performed.
 <pmTOR-DsRed2の調製>
 DsRed2をコードするヌクレオチド配列(配列番号:27)の5’末端及び3’末端にそれぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した。また、pmTOR-AG(株式会社医学生物学研究所製、コード番号:AM-8202M)を同じ制限酵素の組合せにて処理し、該プラスミドDNAからAGをコードする領域を除去した後、前記DsRed2をコードするDNAを挿入し、DsRed2をC末に融合させたmTOR(mTOR-DsRed2)を発現させるためのプラスミドベクター(pmTOR-DsRed2)を作製した。
<Preparation of pmTOR-DsRed2>
A nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence (SEQ ID NO: 27) encoding DsRed2, respectively. Then, a DNA consisting of the nucleotide sequence was artificially synthesized and cleaved with AgeI and XbaI. Moreover, pmTOR-AG (manufactured by Medical Biology Research Institute, code number: AM-8202M) is treated with the same restriction enzyme combination to remove the region encoding AG from the plasmid DNA, and then the DsRed2 is The coding DNA was inserted, and a plasmid vector (pmTOR-DsRed2) for expressing mTOR (mTOR-DsRed2) in which DsRed2 was fused to C-terminal was prepared.
 <pmTOR-COR5の調製>
 COR5をコードするヌクレオチド配列(配列番号:23)の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した。また、pmTOR-AGを同じ制限酵素の組合せにて処理し、該プラスミドDNAからAGをコードする領域を除去した後、前記COR5をコードするDNAを挿入し、COR5をC末に融合させたmTOR(mTOR-COR5)を発現させるためのプラスミドベクター(pmTOR-COR5)を作製した。
<Preparation of pmTOR-COR5>
A nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding COR5 (SEQ ID NO: 23), respectively. Then, a DNA consisting of the nucleotide sequence was artificially synthesized and cleaved with AgeI and XbaI. Moreover, pmTOR-AG is treated with a combination of the same restriction enzymes to remove the AG coding region from the plasmid DNA, and then the DNA coding for the COR5 is inserted and mTOR (COR5 is fused to the C-terminal) A plasmid vector (pmTOR-COR5) was constructed to express mTOR-COR5).
 <pmTOR-KikGR1の調製>
 前記pmTOR-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、pmKikGR11-MNL(株式会社医学生物学研究所製、コード番号:AM-V0150M)を、同じ制限酵素の組合せにて処理し、KikGR1をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpmTOR-AGに挿入し、KikGR1をC末に融合させたmTOR(mTOR-KikGR1)を発現させるためのプラスミドベクター(pmTOR-KikGR1)を作製した。
<Preparation of pmTOR-KikGR1>
The region encoding AG was removed from the pmTOR-AG by treatment with AgeI and XbaI. In addition, pmKikGR11-MNL (manufactured by Medical Biology Laboratory Co., Ltd., code number: AM-V0150M) was treated with the combination of the same restriction enzymes to cut out the DNA encoding KikGR1. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-KikGR1) for expressing mTOR (mTOR-KikGR1) in which KikGR1 is fused to C-terminal.
 <pFKBP12-AGの調製>
 先ず、FKBP12の全長をコードするヌクレオチド配列の5’末端及び3’末端にそれぞれEcoRI認識配列とXhoI認識配列を付加したヌクレオチド配列(配列番号:54)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、EcoRIとXhoIで切断した後、同じ制限酵素の組合せにて処理したphAG-MNL(株式会社医学生物学研究所製、コード番号:AM-VS0801M)に挿入、AGをC末に融合させたFKBP12(FKBP12-AG)を発現させるためのプラスミドベクター(pFKBP12-AG)を作製した。
<Preparation of pFKBP12-AG>
First, a nucleotide sequence (SEQ ID NO: 54) was designed in which an EcoRI recognition sequence and an XhoI recognition sequence were added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding the full-length FKBP12, respectively. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, digested with EcoRI and XhoI, and treated with the same combination of restriction enzymes, phAG-MNL (Medical Biology Research Institute Co., Ltd., code number: AM-VS0801M) A plasmid vector (pFKBP12-AG) for expressing FKBP12 (FKBP12-AG) in which AG was fused to C-terminus was prepared.
 <pFKBP12-DsRed2の調製>
 前記pFKBP12-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、前記pmTOR-DsRed2を、同じ制限酵素の組合せにて処理し、DsRed2をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpFKBP12-AGに挿入し、DsRed2をC末に融合させたFKBP12(FKBP12-DsRed2)を発現させるためのプラスミドベクター(pFKBP12-DsRed2)を作製した。
<Preparation of pFKBP12-DsRed2>
The region encoding AG was removed from the pFKBP12-AG by treatment with AgeI and XbaI. Further, the pmTOR-DsRed2 was treated with the same restriction enzyme combination to cut out the DNA encoding DsRed2. Then, the DNA was inserted into the restriction enzyme-treated pFKBP12-AG to prepare a plasmid vector (pFKBP12-DsRed2) for expressing FKBP12 (FKBP12-DsRed2) in which DsRed2 is fused to C-terminal.
 <pFKBP12-COR5の調製>
 前記pFKBP12-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、前記pmTOR-COR5を、同じ制限酵素の組合せにて処理し、COR5をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpFKBP12-AGに挿入し、COR5をC末に融合させたFKBP12(FKBP12-COR5)を発現させるためのプラスミドベクター(pFKBP12-COR5)を作製した。
<Preparation of pFKBP12-COR5>
The region encoding AG was removed from the pFKBP12-AG by treatment with AgeI and XbaI. In addition, the pmTOR-COR5 was treated with the same restriction enzyme combination to cut out the DNA encoding COR5. Then, the DNA was inserted into the restriction enzyme-treated pFKBP12-AG, and a plasmid vector (pFKBP12-COR5) was constructed to express FKBP12 (FKBP12-COR5) in which COR5 was fused to C-terminal.
 <pMR-FKBP12の調製>
 実施例8にて調製したpAG-FKBP12より、AGをコードする領域をNheI及びAgeIにて処理することにより除去した。また、pMonti-Red-MCL(株式会社医学生物学研究所製、コード番号:AM-VS0802M)を、同じ制限酵素の組合せにて処理し、Monti-Red(MR)をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpAG-FKBP12に挿入し、MRをN末に融合させたFKBP12(MR-FKBP12)を発現させるためのプラスミドベクター(pMR-FKBP12)を作製した。
<Preparation of pMR-FKBP12>
From pAG-FKBP12 prepared in Example 8, the region encoding AG was removed by treatment with NheI and AgeI. Also, pMonti-Red-MCL (Medical Biology Research Institute, Inc., code number: AM-VS0802M) was treated with the same restriction enzyme combination to cut out the DNA encoding Monti-Red (MR). Then, the DNA was inserted into the restriction enzyme-treated pAG-FKBP12 to prepare a plasmid vector (pMR-FKBP12) for expressing FKBP12 (MR-FKBP12) in which MR was fused to N-terminal.
 <細胞培養と遺伝子導入>
(A)AG-FKBP12+mTOR-DsRed2
(B)FKBP12-AG+mTOR-COR5
(C)MR-FKBP12+mTOR-KikGR1
(D)FKBP12-DsRed2+mTOR-KikGR1
(E)FKBP12-COR5+mTOR-KikGR1
(F)Mmj-p53+MR-MDM2
 前記(A)~(F)に記載のタンパク質の組み合わせを、細胞にて各々発現させるために、実施例7に記載の方法にて、HEK293細胞を培養し、上記にて調製したプラスミドを該細胞に導入した。なお、(F)の調整、細胞への導入については実施例2参照。
<Cell culture and gene transfer>
(A) AG-FKBP12 + mTOR-DsRed2
(B) FKBP12-AG + mTOR-COR5
(C) MR-FKBP12 + mTOR-KikGR1
(D) FKBP12-DsRed2 + mTOR-KikGR1
(E) FKBP12-COR5 + mTOR-KikGR1
(F) Mmj-p53 + MR-MDM2
In order to express the combination of the proteins described in (A) to (F) in cells, HEK293 cells are cultured by the method described in Example 7, and the plasmid prepared above is used as the cells. Introduced to See Example 2 for the preparation of (F) and introduction into cells.
 <細胞の観察、及び細胞の固定>
 遺伝子導入を施したHEK293細胞の観察及び固定は、UPlanFLN 40xOil(N.A.=1.3)の代わりに、UPlanApo 20x(N.A.=0.7)(オリンパス社製)を用いたこと以外は、実施例3に記載の方法にて行った。
<Observation of cells and fixation of cells>
The observation and fixation of the transfected HEK 293 cells were performed using UPlanApo 20x (N.A. = 0.7) (Olympus) instead of UPlanFLN 40xOil (N.A. = 1.3) Except for the above, the method described in Example 3 was performed.
 <FRET現象の検出、及びデータ解析>
 ドナー側を、AG、KikGR1又はMmjとし、アクセプター側を、MR、DsRed2又はCOR5とした。さらに、mTOR及びFKBP12においては、その相互作用誘導剤として、Rapamycinを最終濃度1μMになるようHEK293細胞の培養液に添加し、またはp53及びMDM2においては、その相互作用阻害剤として、Nutlin-3を最終濃度20μMになるようHEK293細胞の培養液に添加し、薬剤添加前後10分の各蛍光強度の変化を測定した。そして、以上の事項以外は、実施例3に記載の方法にて行なった。
<Detection of FRET phenomenon and data analysis>
The donor side was AG, KikGR1 or Mmj, and the acceptor side was MR, DsRed2 or COR5. Furthermore, in mTOR and FKBP12, Rapamycin is added to the culture solution of HEK 293 cells to a final concentration of 1 μM as its interaction inducer, or in p53 and MDM2, Nutlin-3 is used as its interaction inhibitor. The culture solution of HEK 293 cells was added to a final concentration of 20 μM, and the change in each fluorescence intensity for 10 minutes before and after the addition of the drug was measured. And it carried out by the method of Example 3 except the above-mentioned matter.
 前記(A)~(E)に関し、Rapamycin添加前後のRatio画像とFRET現象のシグナル値に関するグラフとを、各々図11A~11Eに示す。また、前記(F)に関し、Nutlin-3添加前後のRatio画像とFRET現象のシグナル値に関するグラフとを、各々図11Fに示す。 With regard to the above (A) to (E), Ratio images before and after addition of Rapamycin and graphs relating to signal values of the FRET phenomenon are respectively shown in FIGS. 11A to 11E. Further, regarding (F), FIG. 11F shows a ratio image before and after the addition of Nutlin-3 and a graph regarding the signal value of the FRET phenomenon, respectively.
 図11A~11Eに示すとおり、Rapamycinを添加した後、FRET現象のシグナル値(MR/AG比)は、形成された蛍光輝点を中心に上昇した。すなわち、mTOR及びFKBP12が相互作用をすることによって、各4量体蛍光タンパク質間のエネルギー移動効率が上昇し、FRET現象が生じたことが確認された。 As shown in FIGS. 11A-11E, after addition of Rapamycin, the signal value of the FRET phenomenon (MR / AG ratio) rose around the formed fluorescent bright spot. That is, it was confirmed that the energy transfer efficiency between each tetrameric fluorescent protein was increased by interaction between mTOR and FKBP12, and the FRET phenomenon occurred.
 また、図11Fに示すとおり、Nutlin-3を添加する前のFRET現象のシグナル値(MR/AG比)は蛍光輝点を中心に高く、添加後は、細胞全体に拡散しながら低下した。すなわち、p53及びMDM2間の相互作用が阻害されたことによって、4量体蛍光タンパク質(Mmj及びMR)間のエネルギー移動効率が低下し、FRET現象が低減したことが確認された。 Further, as shown in FIG. 11F, the signal value (MR / AG ratio) of the FRET phenomenon before the addition of Nutlin-3 was high centering on the fluorescent bright spot, and after the addition, it decreased while diffusing to the whole cell. That is, it was confirmed that the energy transfer efficiency between the tetrameric fluorescent proteins (Mmj and MR) was reduced and the FRET phenomenon was reduced by the inhibition of the interaction between p53 and MDM2.
 以上のとおり、AG及びMR以外の4量体タンパク質を用いても、蛍光輝点は形成され、また当該形成を介したFRET現象も検出することができ、これらを指標としてタンパク質間相互作用を判定できることが、確認された。 As described above, even if tetrameric proteins other than AG and MR are used, fluorescent luminescent spots are formed, and FRET phenomenon via the formation can also be detected, and these are used as indicators to judge protein-protein interactions It has been confirmed that it can.
 (比較例) 2量体・単量体蛍光タンパク質を用いた、タンパク質間相互作用の検出
 mAG1及びmEGFP以外の、単量体蛍光タンパク質(mKO1、mUkG1、mMiCy1、mKO2、mKeima)及び2量体蛍光タンパク質(KO1、dKeima、dAG(AB)、dAG(AC)、MiCy1、KCy1)を用いても、蛍光輝点は形成されず、タンパク質間相互作用は判定できないことを、以下に示す方法にて確認した。
(Comparative example) Detection of protein-protein interaction using dimeric and monomeric fluorescent proteins Monomeric fluorescent proteins (mKO1, mUkG1, mMiCy1, mKO2, mKeima) and dimeric fluorescence other than mAG1 and mEGFP Even if the proteins (KO1, dKeima, dAG (AB), dAG (AC), MiCy1, KCy1) are used, no fluorescent spots are formed, and it is confirmed by the following method that protein-protein interaction can not be determined. did.
 <pmTOR-mKO1の調製>
 前記pmTOR-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、phmKO1-MNL(株式会社医学生物学研究所製、コード番号:AM-V0050M)を、同じ制限酵素の組合せにて処理し、mKO1をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpmTOR-AGに挿入し、mKO1をC末に融合させたmTOR(mTOR-mKO1)を発現させるためのプラスミドベクター(pmTOR-mKO1)を作製した。
<Preparation of pmTOR-mKO1>
The region encoding AG was removed from the pmTOR-AG by treatment with AgeI and XbaI. In addition, phmKO1-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0050M) was treated with the same restriction enzyme combination to cut out the DNA encoding mKO1. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mKO1) for expressing mTOR (mTOR-mKO1) in which mKO1 was fused to C-terminal.
 <pmTOR-mKO2の調製>
 前記pmTOR-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、phmKO2-MNL(株式会社医学生物学研究所製、コード番号:AM-V0140M)を、同じ制限酵素の組合せにて処理し、mKO2をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpmTOR-AGに挿入し、mKO2をC末に融合させたmTOR(mTOR-mKO2)を発現させるためのプラスミドベクター(pmTOR-mKO2)を作製した。
<Preparation of pmTOR-mKO2>
The region encoding AG was removed from the pmTOR-AG by treatment with AgeI and XbaI. Moreover, phmKO2-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0140M) was treated with the same restriction enzyme combination to cut out the DNA encoding mKO2. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mKO2) for expressing mTOR (mTOR-mKO2) in which mKO2 was fused to C-terminal.
 <pmTOR-KO1の調製>
 KO1をコードするヌクレオチド配列の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列(配列番号:55)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した後、同じ制限酵素の組合せにて処理し、AGをコードする領域を除去したpmTOR-AGに挿入することにより、KO1をC末に融合させたmTOR(mTOR-KO1)を発現させるためのプラスミドベクター(pmTOR-KO1)を作製した。
<Preparation of pmTOR-KO1>
A nucleotide sequence (SEQ ID NO: 55) was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 ′ end and the 3 ′ end of the nucleotide sequence encoding KO1, respectively. Then, DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, thereby KO1 is inserted. A plasmid vector (pmTOR-KO1) for expressing mTOR (mTOR-KO1) fused to the C end was prepared.
 <pmTOR-mKeimaの調製>
 pmTOR-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、phmKeima-Red-MNL(株式会社医学生物学研究所製、コード番号:AM-V0090M)を、同じ制限酵素の組合せにて処理し、mKeimaをコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpmTOR-AGに挿入し、mKeimaをC末に融合させたmTOR(mTOR-mKeima)を発現させるためのプラスミドベクター(pmTOR-mKeima)を作製した。
<Preparation of pmTOR-mKeima>
The region encoding AG was removed from pmTOR-AG by treatment with AgeI and XbaI. In addition, phmKeima-Red-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0090M) was treated with the same restriction enzyme combination to cut out the DNA encoding mKeima. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mKeima) for expressing mTOR (mTOR-mKeima) in which mKeima was fused to C-terminal.
 <pmTOR-dKeimaの調製>
 pmTOR-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、phdKeima-Red-MNL(株式会社医学生物学研究所製、コード番号:AM-V0100M)を、同じ制限酵素の組合せにて処理し、dKeimaをコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpmTOR-AGに挿入し、dKeimaをC末に融合させたmTOR(mTOR-dKeima)を発現させるためのプラスミドベクター(pmTOR-dKeima)を作製した。
<Preparation of pmTOR-dKeima>
The region encoding AG was removed from pmTOR-AG by treatment with AgeI and XbaI. Furthermore, phdKeima-Red-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0100M) was treated with the same restriction enzyme combination to cut out the DNA encoding dKeima. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-dKeima) for expressing mTOR (mTOR-dKeima) in which dKeima was fused to C-terminal.
 <pmTOR-dAG(AB)の調製>
 dAG(AB)をコードするヌクレオチド配列(配列番号:56)の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した後、同じ制限酵素の組合せにて処理し、AGをコードする領域を除去したpmTOR-AGに挿入することにより、dAG(AB)をC末に融合させたmTOR(mTOR-dAG(AB))を発現させるためのプラスミドベクター(pmTOR-dAG(AB))を作製した。
<Preparation of pmTOR-dAG (AB)>
A nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence (SEQ ID NO: 56) encoding dAG (AB), respectively. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, to obtain dAG ( A plasmid vector (pmTOR-dAG (AB)) was constructed to express mTOR (mTOR-dAG (AB)) in which AB) was fused to C-terminus.
 <pmTOR-dAG(AC)の調製>
 dAG(AC)をコードするヌクレオチド配列(配列番号:57)の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した後、同じ制限酵素の組合せにて処理し、AGをコードする領域を除去したpmTOR-AGに挿入することにより、dAG(AC)をC末に融合させたmTOR(mTOR-dAG(AC))を発現させるためのプラスミドベクター(pmTOR-dAG(AC))を作製した。
<Preparation of pmTOR-dAG (AC)>
A nucleotide sequence was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence (SEQ ID NO: 57) encoding dAG (AC), respectively. Then, a DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, to obtain dAG ( A plasmid vector (pmTOR-dAG (AC)) was constructed to express mTOR (mTOR-dAG (AC)) in which AC) was fused to C-terminus.
 <pmTOR-mUkG1の調製>
 mUkG1をコードするヌクレオチド配列の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列(配列番号:58)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した後、同じ制限酵素の組合せにて処理し、AGをコードする領域を除去したpmTOR-AGに挿入することにより、mUkG1をC末に融合させたmTOR(mTOR-mUkG1)を発現させるためのプラスミドベクター(pmTOR-mUkG1)を作製した。
<Preparation of pmTOR-mUkG1>
A nucleotide sequence (SEQ ID NO: 58) was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding mUkG1, respectively. Then, DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same restriction enzyme combination, and inserted into pmTOR-AG from which the region encoding AG has been removed, mUkG1 can be obtained. A plasmid vector (pmTOR-mUkG1) for expressing mTOR (mTOR-mUkG1) fused to the C end was constructed.
 <pmTOR-mMiCy1の調製>
 pmTOR-AGより、AGをコードする領域をAgeI及びXbaIにて処理することにより除去した。また、phmMiCy1-MNL(株式会社医学生物学研究所製、コード番号:AM-V0110M)を、同じ制限酵素の組合せにて処理し、mMiCy1をコードするDNAを切り出した。そして、当該DNAを、前記制限酵素処理したpmTOR-AGに挿入し、mMiCy1をC末に融合させたmTOR(mTOR-mMiCy1)を発現させるためのプラスミドベクター(pmTOR-mMiCy1)を作製した。
<Preparation of pmTOR-mMiCy1>
The region encoding AG was removed from pmTOR-AG by treatment with AgeI and XbaI. In addition, phmMiCy1-MNL (manufactured by Medical Biology Research Institute, Inc., code number: AM-V0110M) was treated with the same restriction enzyme combination to cut out the DNA encoding mMiCy1. Then, the DNA was inserted into the restriction enzyme-treated pmTOR-AG to prepare a plasmid vector (pmTOR-mMiCy1) for expressing mTOR (mTOR-mMiCy1) in which mMiCy1 was fused to C-terminal.
 <pmTOR-MiCy1の調製>
 MiCy1をコードするヌクレオチド配列の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列(配列番号:59)を設計した。そして、当該ヌクレオチド配列からなるDNAを人工合成し、AgeIとXbaIで切断した後、同じ制限酵素の組合せにて処理し、AGをコードする領域を除去したpmTOR-AGに挿入することにより、MiCy1をC末に融合させたmTOR(mTOR-MiCy1)を発現させるためのプラスミドベクター(pmTOR-MiCy1)を作製した。
<Preparation of pmTOR-MiCy1>
A nucleotide sequence (SEQ ID NO: 59) was designed in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding MiCy1, respectively. Then, DNA consisting of the nucleotide sequence is artificially synthesized, cleaved with AgeI and XbaI, treated with the same combination of restriction enzymes, and inserted into pmTOR-AG from which the region encoding AG has been removed, whereby MiCy1 is inserted. A plasmid vector (pmTOR-MiCy1) for expressing mTOR (mTOR-MiCy1) fused to the C end was prepared.
 <pmTOR-KCy1の調製>
 KCy1をコードするヌクレオチド配列の5’末端及び3’末端に、それぞれAgeI認識配列、ストップコドンとXbaI認識配列を付加したヌクレオチド配列(配列番号:60)を人工合成し、AgeIとXbaIで切断した後、同じ制限酵素の組合せにて処理し、AGをコードする領域を除去したpmTOR-AGに挿入することにより、KCy1をC末に融合させたmTOR(mTOR-KCy1)を発現させるためのプラスミドベクター(pmTOR-KCy1)を作製した。
<Preparation of pmTOR-KCy1>
A nucleotide sequence (SEQ ID NO: 60) in which an AgeI recognition sequence, a stop codon and an XbaI recognition sequence were added to the 5 'end and the 3' end of the nucleotide sequence encoding KCy1, respectively, was artificially synthesized and cleaved with AgeI and XbaI A plasmid vector for expressing mTOR (mTOR-KCy1) in which KCy1 is fused to C-terminal by treating with the same restriction enzyme combination and inserting into pmTOR-AG from which the AG coding region has been removed pmTOR-KCy1) was produced.
 <細胞培養、遺伝子導入及び相互作用誘導剤の添加>
(A)AG-FKBP12+mTOR-mKO1
(B)AG-FKBP12+mTOR-mKO2
(C)AG-FKBP12+mTOR-KO1
(D)AG-FKBP12+mTOR-mKeima
(E)AG-FKBP12+mTOR-dKeima
(F)mAG1-FKBP12+mTOR-mKO1
(G)mAG1-FKBP12+mTOR-mKO2
(H)mAG1-FKBP12+mTOR-KO1
(I)mAG1-FKBP12+mTOR-mKeima
(J)mAG1-FKBP12+mTOR-dKeima
(K)MR-FKBP12+mTOR-dAG(AB)
(L)MR-FKBP12+mTOR-dAG(AC)
(M)MR-FKBP12+mTOR-mUkG1
(N)MR-FKBP12+mTOR-mMiCy1
(O)MR-FKBP12+mTOR-MiCy1
(P)MR-FKBP12+mTOR-KCy1
 前記(A)~(P)に記載のタンパク質の組み合わせを、細胞にて各々発現させるために、実施例8に記載の方法にて、HEK293細胞を培養し、上記にて調製したプラスミドを該細胞に導入した。
<Cell culture, gene transfer and addition of interaction inducer>
(A) AG-FKBP12 + mTOR-mKO1
(B) AG-FKBP12 + mTOR-mKO2
(C) AG-FKBP12 + mTOR-KO1
(D) AG-FKBP12 + mTOR-mKeima
(E) AG-FKBP12 + mTOR-dKeima
(F) mAG1-FKBP12 + mTOR-mKO1
(G) mAG1-FKBP12 + mTOR-mKO2
(H) mAG1-FKBP12 + mTOR-KO1
(I) mAG1-FKBP12 + mTOR-mKeima
(J) mAG1-FKBP12 + mTOR-dKeima
(K) MR-FKBP12 + mTOR-dAG (AB)
(L) MR-FKBP12 + mTOR-dAG (AC)
(M) MR-FKBP12 + mTOR-mUkG1
(N) MR-FKBP12 + mTOR-mMiCy1
(O) MR-FKBP12 + mTOR-MiCy1
(P) MR-FKBP12 + mTOR-KCy1
In order to express the combination of the proteins described in (A) to (P) in cells, HEK293 cells are cultured by the method described in Example 8, and the plasmid prepared above is Introduced to
 そして、プラスミドDNA溶液及びFugene HDを添加してから48時間培養後に、各ウェルから培養液全量を除き、1μM Rapamycin及び20mM HEPESを含むHBSSを、200μLずつ添加し、37℃、5%COインキュベーター内で30分静置した。 After 48 hours of culture after addition of the plasmid DNA solution and Fugene HD, the whole culture solution is removed from each well, 200 μL each of HBSS containing 1 μM Rapamycin and 20 mM HEPES is added, 37 ° C., 5% CO 2 incubator It stood for 30 minutes inside.
 <細胞の観察>
 遺伝子導入を施したHEK293細胞は、IX-81倒立顕微鏡(オリンパス社製)を用いて観察した。フィルター及びダイクロイックミラーは、AG、mAG1、dAG(AB)、dAG(AC)、mUkG1、mMiCy1、MiCy1及びKCy1に関しては、BP460-480HQ、BA495及びDM485HQ(U-MGFPHQ、オリンパス社製)を用い、mKO1、mKO2及びKO1に関しては、BP520-540HQ、BA555-600HQ、DM545HQ(FSET-KOHQ、オリンパス社製)を用い、mKeima及びdKeimaに関しては、440AF21、610ALP、590DRLP(オリンパス社製)を用い、MRに関しては、BP530-550、BA575IF及びDM570(U-MWIG3、オリンパス社製)を用いた。対物レンズは、UPlanApo 20x(N.A.=0.7)(オリンパス社製)、カメラは、ORCA‐Flash4.0デジタルカメラ(浜松ホトニクス製)を用いた。
<Observation of cells>
The transfected HEK 293 cells were observed using an IX-81 inverted microscope (manufactured by Olympus). For filters and dichroic mirrors, for AG, mAG1, dAG (AB), dAG (AC), mUkG1, mM iCy1, MiCy1 and KCy1, use BP460-480HQ, BA495 and DM485HQ (U-MGFPHQ, manufactured by Olympus), mKO1 For mKO2 and KO1, use BP520-540HQ, BA555-600HQ, DM545HQ (FSET-KOHQ, manufactured by Olympus), and for mKeima and dKeima, use 440AF21, 610ALP, 590DRLP (manufactured by Olympus), and for MR , BP 530-550, BA 575IF, and DM 570 (U-MWIG3, manufactured by Olympus Corporation) were used. The objective lens was UPlanApo 20x (NA: = 0.7) (manufactured by Olympus), and the camera was an ORCA-Flash 4.0 digital camera (manufactured by Hamamatsu Photonics).
 <データ解析>
 得られた画像データはMetaMorph ver8.9.0(モレキュラーデバイス社)で解析し、視野全体の各蛍光画像を取得した。得られた結果を、図12A~12Pに示す。
<Data analysis>
The obtained image data was analyzed by MetaMorph ver 8.9.0 (Molecular Devices), and each fluorescence image of the whole field of view was acquired. The results obtained are shown in FIGS. 12A-12P.
 図12A~12Pに示すとおり、単量体蛍光タンパク質又は2量体蛍光タンパク質を用いた場合には、対象タンパク質間の相互作用を示す蛍光輝点は形成されなかった。したがって、対象とするタンパク質に各々異なる4量体蛍光タンパク質を融合させ、細胞内に発現させた場合において、蛍光輝点が形成され、該蛍光輝点を指標として、対象タンパク質間の相互作用を判定できることが、確認された。 As shown in FIGS. 12A to 12P, when a monomeric fluorescent protein or a dimeric fluorescent protein was used, a fluorescent bright spot indicating an interaction between target proteins was not formed. Therefore, when different tetrameric fluorescent proteins are fused to the target protein and expressed in cells, a fluorescent bright spot is formed, and the interaction between the target proteins is determined using the fluorescent bright spot as an index. It has been confirmed that it can.
 以上説明したように、本発明によれば、対象とするタンパク質の双方に蛍光タンパク質を融合させ、細胞内に発現させ又は導入した場合において、形成される蛍光輝点を指標に、対象タンパク質間の相互作用を判定することが可能となる。さらに、融合させる蛍光タンパク質は、発現させる又は導入する細胞が生来内在するものではないので、当該細胞の機能を乱すおそれが少なく、タンパク質間相互作用の判定を行なうことができる。 As described above, according to the present invention, when a fluorescent protein is fused to both of the target proteins and expressed or introduced in cells, the fluorescent bright spots formed are used as an index between the target proteins. It is possible to determine the interaction. Furthermore, since the fluorescent protein to be fused is not intrinsically inherent to the cell to be expressed or introduced, there is little risk of disturbing the function of the cell, and protein-protein interaction can be determined.
 また、対象とするタンパク質の一方にドナー4量体蛍光タンパク質を融合させ、他方にアクセプター4量体蛍光タンパク質を融合させて細胞内に発現させ又は導入した場合には、蛍光輝点が形成され、それを介して増加したFRET現象のシグナルを効率よく検出することにより、対象タンパク質間の相互作用を判定することもできる。 In addition, when the donor tetrameric fluorescent protein is fused to one of the target proteins and the acceptor tetrameric fluorescent protein is fused to the other and expressed or introduced into cells, a fluorescent luminescent spot is formed, The interaction between the target proteins can also be determined by efficiently detecting the signal of the increased FRET phenomenon via that.
 特に、本発明によれば、固定化した細胞においてもFRET現象を生じたままにさせることができ、該FRET現象又はFRET現象のシグナル検出によりタンパク質間相互作用を判定することができる。そのため、検出条件を揃えるためにサンプル(細胞)の固定化を要する、ハイスループットスクリーニング等において、本発明は好適に用いられ得る。 In particular, according to the present invention, even in immobilized cells, the FRET phenomenon can be caused to occur, and the protein-protein interaction can be determined by the signal detection of the FRET phenomenon or the FRET phenomenon. Therefore, the present invention can be suitably used in high throughput screening or the like which requires immobilization of a sample (cell) in order to make detection conditions uniform.
 なお、このように、FRET現象を検出することによって、蛍光輝点等の画像解析の工程を減らすことができる。すなわち、FRET現象の検出でなく、蛍光輝点検出の場合、蛍光輝点の領域をコンピュータ等の画像上で手動若しくは領域指定するプログラム等で指定し、その領域中の蛍光強度を測定、算出(画像解析)する必要があるが、他方FRET現象の検出の場合、画像解析の段階を経ることなく、相互作用の有無を判定できる。 In addition, the process of image analysis, such as a fluorescent luminescent spot, can be reduced by detecting a FRET phenomenon in this way. That is, in the case of detecting a fluorescent bright spot instead of detecting a FRET phenomenon, the region of the fluorescent bright spot is designated manually or by a program for designating the region on an image such as a computer, and the fluorescence intensity in that region is measured and calculated ( Although it is necessary to perform image analysis, on the other hand, in the case of detection of the FRET phenomenon, the presence or absence of interaction can be determined without passing through the stage of image analysis.
 したがって、本発明のタンパク質間相互作用の判定方法等、並びにこれらの方法に用いられるためのベクター又はキットは、生体内における様々なシグナル伝達や、様々な生体反応の制御等の解明、ひいては疾患メカニズムの解明を通した医薬品等の開発において有用である。 Therefore, the method of the present invention for determining protein-protein interactions and the like, and the vector or kit to be used in these methods are elucidating various signal transductions in the living body, control of various biological reactions, etc. It is useful in the development of medicines etc. through the elucidation of

Claims (8)

  1.  第1のタンパク質と第2のタンパク質との相互作用を判定するための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とは異なるタンパク質であり、かつ下記工程(1)~(3)を含む方法
    (1) 第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる又は細胞に導入する工程
    (2) 前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点を形成させる工程
    (3) 前記蛍光輝点の検出により、第1のタンパク質と第2のタンパク質との相互作用を判定する工程。
    A method for determining the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins, and the following steps: (1) A method comprising (1) to (3) (1) comprising a first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second protein and a second tetrameric fluorescent protein A step of causing the second fusion protein to be expressed intracellularly or introduced into the cell (2) a step of forming a fluorescent luminescent spot caused by association of the first fusion protein and the second fusion protein in the cell (3) And b.) Determining the interaction between the first protein and the second protein by detecting the fluorescent spots.
  2.  第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方がドナー蛍光タンパク質であり、他方がアクセプター蛍光タンパク質であり、工程(3)において、前記蛍光輝点の形成を介したFRET現象の検出により、第1のタンパク質と第2のタンパク質との相互作用を判定する、請求項1に記載の方法。 Either one of the first tetrameric fluorescent protein and the second tetrameric fluorescent protein is a donor fluorescent protein, and the other is an acceptor fluorescent protein, and in step (3), via the formation of the fluorescent luminescent spot The method according to claim 1, wherein the interaction between the first protein and the second protein is determined by the detection of the FRET phenomenon.
  3.  特定のタンパク質と相互作用するタンパク質をスクリーニングするための方法であって、第1のタンパク質及び第2のタンパク質のいずれか一方が該特定のタンパク質であり、他方が被検タンパク質であり、前記蛍光輝点の検出又は前記FRET現象の検出により、該特定のタンパク質と相互作用するタンパク質を選択する、請求項1又は2に記載の方法。 A method for screening a protein that interacts with a specific protein, wherein one of the first protein and the second protein is the specific protein, and the other is a test protein, The method according to claim 1 or 2, wherein a protein that interacts with the specific protein is selected by point detection or detection of the FRET phenomenon.
  4.  前記相互作用に関与する第1のタンパク質中のアミノ酸残基又は第2のタンパク質中のアミノ酸残基を同定するための方法であって、該第1のタンパク質及び該第2のタンパク質のいずれかに変異が導入されたタンパク質を用い、前記蛍光輝点又は前記FRET現象の強度が、変異が導入されていないタンパク質を用いた場合と比較して減弱した場合は、該変異が導入されたアミノ酸残基を前記相互作用に関与すると判定する、請求項1又は2に記載の方法。 A method for identifying an amino acid residue in a first protein involved in the interaction or an amino acid residue in a second protein, comprising either the first protein or the second protein When a protein into which a mutation has been introduced is used and the intensity of the fluorescent bright spot or the FRET phenomenon is attenuated as compared to the case where a protein into which a mutation is not introduced is used, the amino acid residue into which the mutation is introduced The method according to claim 1 or 2, wherein it is determined to be involved in the interaction.
  5.  第1のタンパク質と第2のタンパク質との相互作用を調節する物質をスクリーニングするための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とは異なるタンパク質であり、かつ下記工程(1)~(3)を含む方法
    (1)被検化合物の存在下で、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる若しくは細胞に導入する工程、又は、
     第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させた若しくは細胞に導入した後、該細胞を被検化合物の存在下におく工程、
    (2)前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点を検出する工程、
    (3)前記蛍光輝点の強度が、前記被検化合物の非存在下において生じる蛍光輝点の強度より増大する場合は、前記被検化合物を前記相互作用の誘導物質として選択し、前記蛍光輝点の強度が前記被検化合物の非存在下において生じる蛍光輝点の強度より減弱する場合は、前記被検化合物を前記相互作用の抑制物質として選択する工程。
    A method for screening a substance that regulates the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins. And a method comprising the following steps (1) to (3): (1) a first fusion protein comprising a first protein and a first tetrameric fluorescent protein in the presence of a test compound, and a second fusion protein A step of intracellularly expressing or introducing into the cell a second fusion protein comprising the protein and the second four-mer fluorescent protein, or
    A first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second fusion protein comprising a second protein and a second tetrameric fluorescent protein in a cell Placing the cells in the presence of a test compound after introduction into cells or cells,
    (2) detecting a fluorescent bright spot generated by association of the first fusion protein and the second fusion protein in the cell;
    (3) When the intensity of the fluorescent spot is higher than the intensity of the fluorescent spot generated in the absence of the test compound, the test compound is selected as an inducer of the interaction, and the fluorescent bright is selected. A step of selecting the test compound as an inhibitor of the interaction when the intensity of the point is attenuated more than the intensity of the fluorescent luminescent spot generated in the absence of the test compound.
  6.  第1のタンパク質と第2のタンパク質との相互作用を調節する物質をスクリーニングするための方法であって、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質とは異なるタンパク質であり、第1の4量体蛍光タンパク質と第2の4量体蛍光タンパク質のいずれか一方がドナー蛍光タンパク質であり、他方がアクセプター蛍光タンパク質であり、かつ下記工程(1)~(3)を含む方法
    (1)被検化合物の存在下で、第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させる若しくは細胞に導入する工程、又は、
     第1のタンパク質及び第1の4量体蛍光タンパク質を含む第1の融合タンパク質と、第2のタンパク質及び第2の4量体蛍光タンパク質を含む第2の融合タンパク質とを、細胞内に発現させた若しくは細胞に導入した後、該細胞を被検化合物の存在下におく工程、
    (2)前記細胞において第1の融合タンパク質と第2の融合タンパク質との会合により生じる蛍光輝点の形成を介したFRET現象を検出する工程、
    (3)前記FRET現象の強度が、前記被検化合物の非存在下において生じるFRET現象の強度より増大する場合は、前記被検化合物を前記相互作用の誘導物質として選択し、前記FRET現象の強度が、前記被検化合物の非存在下において生じるFRET現象の強度より減弱する場合は、前記被検化合物を前記相互作用の抑制物質として選択する工程。
    A method for screening a substance that regulates the interaction between a first protein and a second protein, wherein the first tetrameric fluorescent protein and the second tetrameric fluorescent protein are different proteins. And any one of the first tetrameric fluorescent protein and the second tetrameric fluorescent protein is a donor fluorescent protein, and the other is an acceptor fluorescent protein, and a method comprising the following steps (1) to (3): (1) In the presence of a test compound, a first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second fusion protein comprising a second protein and a second tetrameric fluorescent protein Or expressing the fusion protein of SEQ ID NO.
    A first fusion protein comprising a first protein and a first tetrameric fluorescent protein, and a second fusion protein comprising a second protein and a second tetrameric fluorescent protein in a cell Placing the cells in the presence of a test compound after introduction into cells or cells,
    (2) detecting a FRET phenomenon through formation of a fluorescent bright spot caused by the association of the first fusion protein and the second fusion protein in the cell;
    (3) When the strength of the FRET phenomenon is higher than the strength of the FRET phenomenon generated in the absence of the test compound, the test compound is selected as an inducer of the interaction, and the strength of the FRET phenomenon is selected. And a step of selecting the test compound as an inhibitor of the interaction, when the intensity of the FRET phenomenon which occurs in the absence of the test compound is attenuated.
  7.  前記細胞が固定化された細胞である、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the cell is an immobilized cell.
  8.  下記(a)~(k)からなる群から選択される少なくとも一の物質及び使用説明書を含む、請求項1~7のうちのいずれか一項に記載の方法に用いられるためのキット
     (a)第1の4量体蛍光タンパク質をコードするDNAと、第1の4量体蛍光タンパク質と融合して発現されるように、任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位とを含むベクター
     (b)第2の4量体蛍光タンパク質をコードするDNAと、第2の4量体蛍光タンパク質と融合して発現されるように、任意のタンパク質をコードするDNAの挿入を可能にするクローニング部位とを含むベクター
     (c)第1の融合タンパク質をコードするベクター
     (d)第2の融合タンパク質をコードするベクター
     (e)(a)又は(c)に記載のベクター及び(b)又は(d)に記載のベクターを含むベクターセット
     (f)第1の融合タンパク質をコードするベクターを保持する形質転換細胞
     (g)第2の融合タンパク質をコードするベクターを保持する形質転換細胞
     (h)第1の融合タンパク質をコードするベクターと第2の融合タンパク質をコードするベクターとを保持する形質転換細胞
     (i)第1の融合タンパク質
     (j)第2の融合タンパク質
     (k)第1の融合タンパク質及び第2の融合タンパク質を含むタンパク質セット。
    A kit for use in the method according to any one of claims 1 to 7, comprising at least one substance selected from the group consisting of the following (a) to (k) and instructions for use: 2.) A DNA encoding a first tetrameric fluorescent protein and a cloning site enabling insertion of DNA encoding any protein so as to be expressed fused to the first tetrameric fluorescent protein (B) A DNA encoding a second tetrameric fluorescent protein, and an insertion of a DNA encoding any protein so as to be expressed fused to the second tetrameric fluorescent protein A vector containing the cloning site (c) a vector encoding the first fusion protein (d) a vector encoding the second fusion protein (e) The vector according to (a) or (c) And (b) a vector set comprising the vector according to (b) or (d) (f) a transformed cell carrying a vector encoding a first fusion protein (g) a trait carrying a vector encoding a second fusion protein Transformed cell (h) Transformed cell carrying a vector encoding a first fusion protein and a vector encoding a second fusion protein (i) First fusion protein (j) Second fusion protein (k) A set of proteins comprising a first fusion protein and a second fusion protein.
PCT/JP2018/023187 2017-06-19 2018-06-19 Method using fluorescent proteins for determining interaction between proteins WO2018235787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525614A JPWO2018235787A1 (en) 2017-06-19 2018-06-19 Method for determining protein-protein interaction using fluorescent protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119719 2017-06-19
JP2017-119719 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018235787A1 true WO2018235787A1 (en) 2018-12-27

Family

ID=64737193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023187 WO2018235787A1 (en) 2017-06-19 2018-06-19 Method using fluorescent proteins for determining interaction between proteins

Country Status (2)

Country Link
JP (1) JPWO2018235787A1 (en)
WO (1) WO2018235787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380904A (en) * 2021-12-03 2022-04-22 河南省华隆生物技术有限公司 Fluorescent fusion protein for detecting CAR-T cell CAR positive expression rate and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261259A (en) * 2008-04-22 2009-11-12 Mitsui Eng & Shipbuild Co Ltd Variant fluorescent protein and highly efficient fret detection using the same
WO2013084950A1 (en) * 2011-12-05 2013-06-13 Amalgaam有限会社 Method for detecting protein-protein interaction
WO2015190529A1 (en) * 2014-06-10 2015-12-17 株式会社医学生物学研究所 Method for judging protein interaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261259A (en) * 2008-04-22 2009-11-12 Mitsui Eng & Shipbuild Co Ltd Variant fluorescent protein and highly efficient fret detection using the same
WO2013084950A1 (en) * 2011-12-05 2013-06-13 Amalgaam有限会社 Method for detecting protein-protein interaction
WO2015190529A1 (en) * 2014-06-10 2015-12-17 株式会社医学生物学研究所 Method for judging protein interaction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE, T. ET AL.: "Genetic visualization of protein interactions harnessing liquid phase transitions", SCIENTIFIC REPORTS, vol. 7, 46380, 13 April 2017 (2017-04-13), pages 1 - 13, XP055614580, DOI: 10.1038/srep46380 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380904A (en) * 2021-12-03 2022-04-22 河南省华隆生物技术有限公司 Fluorescent fusion protein for detecting CAR-T cell CAR positive expression rate and application thereof

Also Published As

Publication number Publication date
JPWO2018235787A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
Kotlikoff Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology
Pisterzi et al. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer
JP6163700B2 (en) Method for detecting protein-protein interaction
ES2191575T3 (en) A METHOD FOR WRITING SUBSTANCES AS TO ITS EFFECT ON AN INTRACELLULAR TRANSLOCATION.
Vanoosthuyse et al. Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p
CN109553687B (en) Fluorescent probe constructed based on G protein coupled receptor
JP5945225B2 (en) Cell cycle detection and visualization in living cells
EP2623514A1 (en) Linker for unimolecular fret biosensor based on principle of fluorescence resonance energy transfer
van Kuppeveld et al. Homomultimerization of the coxsackievirus 2B protein in living cells visualized by fluorescence resonance energy transfer microscopy
Lutas et al. Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission
Orthaus et al. Assembly of the inner kinetochore proteins CENP‐A and CENP‐B in living human cells
WO2018235787A1 (en) Method using fluorescent proteins for determining interaction between proteins
WO2015190529A1 (en) Method for judging protein interaction
Giagtzoglou et al. Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction
EP2436690B1 (en) Reversibly photoswitchable polypeptides
JP5954728B2 (en) Probe reagent for measuring protein degradation activity
ES2739525T3 (en) Methods to detect interactions in eukaryotic cells using microtubule structures and dynamics
US7713713B2 (en) Polypeptide having intracellular calcium ion indicator function
Zhuo et al. Interaction of human CRX and NRL in live HEK293T cells measured using fluorescence resonance energy transfer (FRET)
WO2016038750A1 (en) Split-type recombinant luciferase, and analysis method using same
Lepur et al. Bimolecular Fluorescence Complementation to Visualize Protein–Protein Interactions in Human Cells Based on Gateway Cloning Technology
Zhuo et al. Interaction of human Crx and Nrl in live cells measured using fluorescence resonance energy transfer (FRET)
Kroll et al. CeLINC, a fluorescence-based protein-protein interaction assay in C. elegans
WO2022066975A2 (en) GENETICALLY ENCODED CALCIUM INDICATORS (GECIs) AND METHODS OF MAKING AND USING
Okorocha Fluorescent protein calcium sensor for monitoring synaptic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820497

Country of ref document: EP

Kind code of ref document: A1