WO2018235649A1 - Charged particle beam therapy device and evaluation device - Google Patents

Charged particle beam therapy device and evaluation device Download PDF

Info

Publication number
WO2018235649A1
WO2018235649A1 PCT/JP2018/022208 JP2018022208W WO2018235649A1 WO 2018235649 A1 WO2018235649 A1 WO 2018235649A1 JP 2018022208 W JP2018022208 W JP 2018022208W WO 2018235649 A1 WO2018235649 A1 WO 2018235649A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
dose distribution
irradiated
irradiation
Prior art date
Application number
PCT/JP2018/022208
Other languages
French (fr)
Japanese (ja)
Inventor
昌平 水谷
徹 浅羽
健二 堀田
大海 馬場
Original Assignee
住友重機械工業株式会社
国立研究開発法人国立がん研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社, 国立研究開発法人国立がん研究センター filed Critical 住友重機械工業株式会社
Publication of WO2018235649A1 publication Critical patent/WO2018235649A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a charged particle beam therapy apparatus and an evaluation apparatus.
  • the affected area When irradiating charged particle beam such as a proton beam to the affected area of a patient by the charged particle beam therapy apparatus, the affected area is minimized while the charged area beam is appropriately irradiated to the affected area. Is required. Then, based on a treatment plan created based on a patient's CT image etc. beforehand, work called patient QA (Qualty Assurance) which confirms dose distribution of a charged particle beam is performed (for example, refer to patent documents 1).
  • patient QA Quality Assurance
  • a charged particle beam is irradiated to a homogeneous medium such as a water phantom that simulates the patient's body, and a dosimeter is used. The dose distribution is measured.
  • the above method can measure the dose distribution of the charged particle beam, it takes time and labor for setting a homogeneous medium simulating the patient's body, a dose meter for measuring the dose distribution, etc. It will be necessary. Further, as a method of measuring the dose distribution of the charged particle beam, it is conceivable to use on-line monitoring PET when irradiating the charged particle beam to the patient, but a large-scale measuring means is required. Thus, it is not easy to grasp the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapy apparatus.
  • the present invention has been made in view of the above, and it is possible to obtain information related to the dose distribution of charged particle beams actually irradiated in the charged particle beam therapy apparatus by a simpler method, and It aims at providing an evaluation device.
  • a charged particle beam treatment apparatus comprises: an irradiation unit that irradiates a charged particle beam emitted from an accelerator based on treatment plan information determined by the treatment planning apparatus; A charged particle beam is acquired based on a charged particle beam information acquiring unit that acquires information related to the charged particle beam irradiated from the irradiation unit, and information related to the charged particle beam acquired by the charged particle beam information acquiring unit. And a dose distribution calculating unit that calculates a dose distribution when the object to be irradiated is irradiated.
  • the charged particle beam information acquisition unit acquires information related to the charged particle beam irradiated from the irradiation unit based on the treatment plan information. Then, from the information on the charged particle beam to be irradiated, the dose distribution in the object to be irradiated when the charged particle beam is irradiated to the object to be irradiated can be calculated by the dose distribution calculation unit. Therefore, compared to the conventional method, the work such as setting of the irradiated object can be omitted, so that it relates to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapeutic apparatus by a simpler method. You can get information.
  • the “subject to be irradiated” includes a patient to be treated by the charged particle beam treatment apparatus and a homogeneous medium such as a water phantom simulating the patient's body.
  • the dose distribution calculation unit is a matching rate between the calculation result of the dose distribution when the object is irradiated with the charged particle beam and the dose distribution of the object calculated based on the treatment plan information. Can be calculated.
  • the dose distribution calculation unit 105 matches the calculation result of the dose distribution at the time of irradiating the charged body with the charged particle beam and the dose distribution of the irradiated body calculated based on the treatment plan information. By setting the ratio to be calculated, it becomes possible to compare the dose distribution assumed in the treatment plan information with the dose distribution when actually irradiating a charged particle beam.
  • the dose distribution calculation unit is a matching rate between the calculation result of the dose distribution when the object is irradiated with the charged particle beam and the dose distribution of the object calculated based on the treatment plan information. It can be set as the aspect which performs evaluation which concerns on the said treatment plan information based on these.
  • the dose distribution calculation unit 105 can also evaluate the treatment plan information based on the calculation result of the dose distribution, and the work relating to the evaluation of the dose distribution of the charged particle beam based on the treatment plan It is possible to save labor.
  • the charged particle beam information acquisition unit may be provided in the irradiation unit.
  • the configuration in which the charged particle beam information acquisition unit 104 is provided in the irradiation unit 103 eliminates the need for separately providing a measuring instrument or the like for acquiring information related to charged particle beams, which is simpler.
  • the work relating to the evaluation of the dose distribution of the charged particle beam based on the treatment plan can be saved.
  • the provision of the charged particle beam information acquisition unit in the irradiation unit means that a part of the function as the charged particle beam information acquisition unit is provided in the irradiation unit.
  • the dose distribution calculating unit acquires a CT image related to the irradiated object acquired after the preparation of the treatment plan information, and the CT image and the charged particle beam acquired by the charged particle beam information acquiring unit
  • the dose distribution when the charged particle beam is irradiated to the irradiation object can be calculated based on the information according to
  • the dose distribution when the charged particle beam is irradiated to the irradiated object is calculated. Even when there is a change in the inside of the irradiated body or the like after the preparation of the treatment plan information, it is possible to appropriately calculate the dose distribution when the irradiated body is irradiated with the charged particle beam.
  • the irradiation unit irradiates the charged particle beam emitted from the accelerator from a plurality of directions, and the dose distribution of the charged particle beam in the plane is uneven in one of the plurality of directions.
  • the charged particle beam information acquiring unit individually acquires information on charged particle beams irradiated from a plurality of directions in the irradiating unit, and the dose distribution calculating unit is acquired by the charged particle beam information acquiring unit. According to the information related to the charged particle beam, the dose distribution when the charged particle beam is irradiated to the irradiated object can be calculated for each irradiation direction of the irradiation unit.
  • the irradiation unit irradiates the charged particle beam from a plurality of directions, and the dose distribution of the charged particle beam in the plane is uneven in one of the plurality of directions.
  • the dose distribution calculation unit based on the information related to the charged particle beam acquired by the charged particle beam information acquisition unit, the dose distribution at the time of irradiating the charged particle beam to the irradiated object is determined for each irradiation direction of the irradiation unit.
  • the dose distribution calculation unit may calculate and display the sum of calculation results of dose distributions for each of a plurality of irradiation directions of the irradiation unit when the irradiation object is irradiated with the charged particle beam.
  • the result of the calculation of the dose distribution for each of the plurality of irradiation directions of the irradiation unit when the charged particle beam is irradiated to the irradiation object is displayed.
  • the result of the summation of the calculation results of the dose distribution for each of the plurality of irradiation directions can be easily confirmed.
  • the evaluation device acquires information related to the charged particle beam when irradiated with the charged particle beam from the irradiation unit of the charged particle beam therapy device based on the treatment plan information determined by the treatment planning device. Dose distribution calculation for calculating a dose distribution when the object to be irradiated is irradiated with the charged particle beam based on the charged particle beam information acquiring unit and the information on the charged particle beam acquired by the charged particle beam information acquiring unit Part.
  • the charged particle beam information acquisition unit acquires information related to the charged particle beam irradiated from the irradiation unit of the charged particle beam therapy apparatus based on the treatment plan information. Then, from the information on the charged particle beam to be irradiated, the dose distribution in the object to be irradiated when the charged particle beam is irradiated to the object to be irradiated can be calculated by the dose distribution calculation unit. Therefore, compared to the conventional method, the work such as setting of the irradiated object can be omitted, so that it relates to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapeutic apparatus by a simpler method. You can get information. In addition, it becomes possible to save the work related to the evaluation of the dose distribution of the charged particle beam when the charged particle beam is irradiated based on the treatment plan.
  • a charged particle beam therapy apparatus and an evaluation apparatus capable of obtaining information related to the dose distribution of charged particle beams actually irradiated in the charged particle beam therapy apparatus by a simpler method.
  • the charged particle beam therapeutic apparatus 1 is an apparatus used for cancer treatment by radiation therapy, etc., and accelerates charged particles generated by an ion source (not shown) to be used as a charged particle beam.
  • An accelerator 3 for emitting light, an irradiation unit 2 for irradiating a charged particle beam to an irradiation object, and a beam transport line 41 for transporting a charged particle beam emitted from the accelerator 3 to the irradiation unit 2 are provided.
  • the irradiation unit 2 is attached to a rotating gantry 5 provided so as to surround the treatment table 4.
  • the irradiation unit 2 is rotatable around the treatment table 4 by a rotating gantry 5.
  • FIG. 2 is a schematic configuration view of the vicinity of an irradiation unit of the charged particle beam therapy system of FIG.
  • the “Z direction” is a direction in which the base axis AX of the charged particle beam B extends, and is a depth direction of irradiation of the charged particle beam B.
  • the “base axis AX” is the irradiation axis of the charged particle beam B when not deflected by the scanning electromagnet 6 described later.
  • FIG. 2 shows that the charged particle beam B is irradiated along the base axis AX.
  • the “X direction” is one direction in a plane orthogonal to the Z direction.
  • the “Y direction” is a direction orthogonal to the X direction in a plane orthogonal to the Z direction.
  • the charged particle beam therapy apparatus 1 is an irradiation apparatus related to a scanning method.
  • the scanning method is not particularly limited, and line scanning, raster scanning, spot scanning or the like may be employed. Moreover, it is not limited to a scanning system, Other irradiation systems (for example, laminated body irradiation method) may be adopted.
  • the charged particle beam therapy system 1 includes an accelerator 3, an irradiation unit 2, a beam transport line 41, and a control unit 7.
  • the accelerator 3 is a device that accelerates charged particles and emits a charged particle beam B of preset energy.
  • the accelerator 3 include a cyclotron, a synchrotron, a synchrocyclotron, a linac and the like.
  • the energy of the charged particle beam B sent to the irradiation part 2 is employ
  • the synchrotron can easily change the energy of the charged particle beam B to be emitted, when the synchrotron is adopted as the accelerator 3, the energy adjusting unit 20 may be omitted.
  • the accelerator 3 is connected to the control unit 7, and the supplied current is controlled.
  • the charged particle beam B generated by the accelerator 3 is transported to the irradiation nozzle 9 by the beam transport line 41.
  • the beam transport line 41 connects the accelerator 3, the energy adjustment unit 20, and the irradiation unit 2, and transports the charged particle beam B emitted from the accelerator 3 to the irradiation unit 2.
  • the charged particle beam treatment apparatus 1 is disposed in the accelerator 3 and blocks the charged particle beam B emitted from the ion source to stop the emission of the charged particle beam B from the accelerator 3 (non-irradiation). It has 16 more. It is to be noted that means other than the beam chopper may be used as means for switching between irradiation and non-irradiation of charged particle beams. For example, a shutter may be provided in the beam transport line and the shutter may block the charged particle beam. Alternatively, the charged particle beam may be emitted from the accelerator 3 only when the charged particle beam is irradiated using a deflector (electrode) provided in the accelerator 3.
  • a deflector electrode
  • the irradiation unit 2 irradiates the charged particle beam B to the tumor 14 in the body of the patient 15 (irradiated body).
  • the charged particle beam B is obtained by accelerating a charged particle at high speed, and examples thereof include a proton beam, a heavy particle (heavy ion) beam, an electron beam and the like.
  • the irradiation unit 2 is a device for irradiating the tumor 14 with the charged particle beam B emitted from the accelerator 3 that accelerates charged particles generated by the ion source (not shown) and transported by the beam transport line 41. .
  • the irradiation unit 2 includes a scanning electromagnet 6, a quadrupole electromagnet 8, a profile monitor 11, a dose monitor 12, flatness monitors 13 a and 13 b, and a degrader 30.
  • the scanning electromagnet 6, the monitors 11, 12, 13 a and 13 b, the quadrupole electromagnet 8, and the degrader 30 are accommodated in the irradiation nozzle 9.
  • the quadrupole electromagnet 8, the profile monitor 11, the dose monitor 12, the flatness monitors 13a and 13b, and the degrader 30 may be omitted.
  • the scanning electromagnet 6 includes an X-direction scanning electromagnet 6 a and a Y-direction scanning electromagnet 6 b.
  • the X-direction scanning electromagnet 6a and the Y-direction scanning electromagnet 6b are each composed of a pair of electromagnets, and change the magnetic field between the pair of electromagnets according to the current supplied from the control unit Scan line B
  • the X-direction scanning electromagnet 6a scans the charged particle beam B in the X direction
  • the Y-direction scanning electromagnet 6b scans the charged particle beam B in the Y direction.
  • the scanning electromagnets 6 are disposed on the base axis AX and downstream of the charged particle beam B with respect to the accelerator 3 in this order.
  • the quadrupole electromagnet 8 includes an X-direction quadrupole electromagnet 8a and a Y-direction quadrupole electromagnet 8b.
  • the X-direction quadrupole electromagnet 8 a and the Y-direction quadrupole electromagnet 8 b squeeze and converge the charged particle beam B according to the current supplied from the control unit 7.
  • the X direction quadrupole electromagnet 8 a converges the charged particle beam B in the X direction
  • the Y direction quadrupole electromagnet 8 b converges the charged particle beam B in the Y direction.
  • the beam size of the charged particle beam B can be changed by changing the current supplied to the quadrupole electromagnet 8 to change the throttling amount (convergence amount).
  • the quadrupole electromagnet 8 is disposed on the base axis AX and between the accelerator 3 and the scanning electromagnet 6 in this order.
  • the beam size is the size of the charged particle beam B in the XY plane.
  • the beam shape is the shape of the charged particle beam B in the XY plane.
  • the profile monitor 11 detects the beam shape and position of the charged particle beam B for alignment at the time of initial setting.
  • the profile monitor 11 is disposed on the base axis AX and between the quadrupole electromagnet 8 and the scanning electromagnet 6.
  • the dose monitor 12 (charged particle beam information acquisition unit) detects the intensity of the charged particle beam B.
  • the dose monitor 12 is disposed on the base axis AX and downstream of the scanning electromagnet 6.
  • the flatness monitors 13a and 13b detect and monitor the beam shape and position of the charged particle beam B.
  • the flatness monitors 13 a and 13 b are disposed on the base axis AX and downstream of the charged particle beam B with respect to the dose monitor 12.
  • Each of the monitors 11, 12, 13a, 13b outputs the detected detection result to the control unit 7.
  • the control unit 7 has a function of managing detection results from the dose monitor 12, and thus has a part of a function as a charged particle beam information acquisition unit described later.
  • the degrader 30 reduces the energy of the passing charged particle beam B to finely adjust the energy of the charged particle beam B.
  • the degrader 30 is provided at the tip 9 a of the irradiation nozzle 9.
  • the tip 9 a of the irradiation nozzle 9 is the end on the downstream side of the charged particle beam B.
  • the control unit 7 includes, for example, a CPU, a ROM, and a RAM.
  • the control unit 7 controls the accelerator 3, the scanning electromagnet 6, and the quadrupole electromagnet 8 based on the detection results output from the monitors 11, 12, 13a, 13b.
  • the charged particle beam therapy system 1 is connected to a treatment planning system 70 (see FIG. 3) which performs a treatment plan for charged particle beam therapy.
  • the treatment planning device 70 measures the tumor 14 of the patient 15 by CT or the like before treatment, and plans the dose distribution (dose distribution of charged particle beam to be irradiated) at each position of the tumor 14.
  • the treatment planning device 70 creates treatment plan information that is a treatment plan for the tumor 14.
  • the treatment planning device 70 transmits the created treatment plan information to the control unit 7.
  • the tumor 14 When performing irradiation of charged particle beams by the scanning method, the tumor 14 is virtually divided into a plurality of layers in the Z direction, and in one layer, the charged particle beams are scanned so as to follow the scanning path defined in the treatment planning information. Irradiate. Then, after the irradiation of the charged particle beam in the one layer is completed, the charged particle beam in the next adjacent layer is irradiated.
  • the quadrupole electromagnet 8 When the charged particle beam B is irradiated by the scanning method by the charged particle beam treatment apparatus 1 shown in FIG. 2, the quadrupole electromagnet 8 is brought into an operating state (ON) so that the passing charged particle beam B converges.
  • the charged particle beam B is emitted from the accelerator 3.
  • the emitted charged particle beam B is scanned by the control of the scanning electromagnet 6 so as to follow the scanning path defined in the treatment plan information.
  • the charged particle beam B is irradiated while being scanned within the irradiation range of one layer set in the Z direction with respect to the tumor 14.
  • the charged particle beam B is irradiated to the next layer.
  • the dose distribution in the patient's body is obtained when the irradiation is performed along the treatment plan information created in the treatment planning apparatus 70. It is necessary to verify before treatment that the treatment plan information is as expected.
  • settings relating to the irradiation of the charged particle beam to the patient are determined so as to minimize the influence (side effects) on the surrounding normal tissues while maximizing the irradiation effect on the patient's tumor 14.
  • the treatment plan information is created on the assumption that the charged particle beam treatment apparatus 1 can appropriately irradiate the charged particle beam to a desired position, but the desired position is determined according to the characteristics of the charged particle beam treatment apparatus.
  • the dose distribution according to the treatment plan information can not be obtained by irradiating the charged particle beam at a position or intensity different from that of the above. Therefore, the dose distribution of the charged particle beam in the homogeneous medium at the time of irradiating the charged particle beam by the charged particle beam treatment apparatus 1 to the homogeneous medium (for example, water phantom etc.) simulating the patient in advance is measured Verify that the dose distribution is as expected in the planning information. This work is called patient QA.
  • the charged particle beam treatment apparatus 1 Since the charged particle beam treatment apparatus 1 is occupied while performing patient QA, the usage time of the charged particle beam treatment apparatus 1 for treatment of one patient increases. Therefore, the number of patients that can be treated by one charged particle beam therapy system 1 is reduced, which directly leads to a decrease in operation efficiency.
  • the charged particle beam treatment apparatus 1 instead of irradiating the charged particle beam by setting the homogeneous medium (irradiated body), the charged particle beam is irradiated without arranging the homogeneous medium. . Also, instead of measuring (measuring) the dose distribution in the homogeneous medium using a dosimeter disposed in the homogeneous medium, measurement is performed on the charged particle beam irradiated from the charged particle beam therapy system 1. Then, from the information related to the charged particle beam to be irradiated, the dose distribution in the homogeneous medium assumed to be obtained when the homogeneous particle medium is irradiated with the charged particle beam is calculated by calculation. In addition, the dose distribution obtained as a result of the calculation is compared with the dose distribution in the treatment plan information to evaluate whether the charged particle beam can be irradiated to the patient according to the treatment plan information (whether the treatment can be performed) .
  • the charged particle beam therapeutic apparatus 1 includes a communication unit 101, a control unit 102, an irradiation unit 103, a charged particle beam information acquisition unit 104, and a dose distribution calculation unit 105. .
  • the communication unit 101 has a function of communicating with the treatment planning device 70 and acquiring treatment planning information from the treatment planning device 70.
  • the acquired treatment plan information is sent to the control unit 102.
  • the control unit 102 controls the irradiation unit 103 to perform irradiation of the charged particle beam based on the treatment plan information. Also, information related to charged particle beams measured or acquired in the charged particle beam information acquisition unit 104 is acquired. The information on the charged particle beam acquired by the control unit 102 and the treatment plan information are sent to the dose distribution calculation unit 105.
  • the control unit 102 corresponds to the control unit 7 shown in FIG.
  • the irradiation unit 103 has a function of irradiating a charged particle beam at a predetermined setting based on an instruction from the control unit 7.
  • the irradiation unit 103 corresponds to the irradiation unit 2 described in FIGS. 1 and 2.
  • the charged particle beam information acquisition unit 104 has a function of acquiring information related to a charged particle beam irradiated from the charged particle beam treatment apparatus 1 to a patient.
  • the information on the charged particle beam acquired by the charged particle beam information acquisition unit 104 includes information on the intensity, the position, and the energy of the charged particle beam emitted from the irradiation nozzle 9 at a predetermined setting. .
  • the dose monitor 12 and the flatness monitors 13a and 13b in the irradiation nozzle 9 shown in FIG. 2 information on the intensity and position of the charged particle beam is acquired. Therefore, the dose monitor 12 and the flatness monitors 13a and 13b have a function as the charged particle beam information acquisition unit 104. That is, at least a part of the function of the charged particle beam information acquisition unit 104 is disposed in the irradiation nozzle 9 included in the irradiation unit 103.
  • the control unit 7 relates to information concerning the position, intensity, beam size, etc. of the charged particle beam acquired in the dose monitor 12 and the flatness monitor 13a, 13b, and energy contained in the treatment plan information. Information and may be collectively managed as "irradiation log information". Therefore, the charged particle beam information acquisition unit 104 may be configured to acquire irradiation log information including information related to charged particle beams. The irradiation log information is created by the control unit 7 by collecting information acquired in the dose monitor 12 and the flatness monitors 13a and 13b and information included in the treatment plan information. Therefore, the control unit 7 also has a part of the function as the charged particle beam information acquisition unit 104.
  • the dose distribution calculation unit 105 determines the dose in the homogeneous medium when the homogeneous particle (irradiated body) is irradiated with the charged particle beam from the information on the charged particle beam obtained by the charged particle beam information acquisition unit 104. It has a function to calculate the distribution.
  • the dose distribution when the charged particle beam is irradiated to the homogeneous medium, it is calculated what path the charged particle beam follows and which depth in the homogeneous medium is reached. It may be calculated by simulation how the intensity of the charged particle beam changes as it travels through the homogeneous medium (how much the dose of the charged particle beam reaches the predetermined position), The method is not particularly limited.
  • the dose distribution calculation unit 105 has a function of comparing the calculation result of the dose distribution based on the information on the charged particle beam obtained by the charged particle beam information acquisition unit 104 with the dose distribution based on the treatment plan information.
  • the dose distribution assumed to be obtained when the charged particle beam is irradiated based on the treatment plan information can be calculated from the treatment plan information. Therefore, the dose distribution calculation unit 105 compares the dose distribution calculated based on the treatment plan information with the dose distribution calculated from the information related to the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. Match rate is calculated. By calculating the coincidence rate in this manner, it can be verified whether the irradiation of the charged particle beam assumed by the charged particle beam treatment apparatus 1 realizes the irradiation of the charged particle beam assumed in the treatment plan information.
  • the dose distribution calculated based on the treatment plan information was compared with the dose distribution calculated from the information related to the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. It is good also as composition which performs some evaluation based on a result. For example, in the dose distribution calculation unit 105, the matching rate between the dose distribution calculated based on the treatment plan information and the dose distribution calculated from the information related to the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1.
  • the treatment plan information may be evaluated based on the above.
  • the dose distribution calculation unit 105 based on the above matching rate, it is determined whether the charged particle beam can be irradiated to the patient based on the treatment plan information (whether or not the treatment based on the treatment plan information can be performed) It may be configured to
  • the operator of the charged particle beam treatment apparatus 1 outputs the result calculated by the dose distribution calculation unit 105, the evaluation result in the case of evaluation, and the like to the outside by an output unit (not shown) or the like. The results can be confirmed.
  • the charged particle beam treatment apparatus 1 acquires information (treatment plan information) related to a treatment plan from the treatment planning apparatus 70 (S01). Based on the treatment plan information, in the charged particle beam treatment apparatus 1, first, the dose distribution in the homogeneous medium (irradiated body) when the charged particle beam is irradiated based on the treatment plan information in the dose distribution calculation unit 105. Calculation of (S02). In addition, the dose distribution at the time of irradiating a charged particle beam based on this treatment plan information may be calculated beforehand by the treatment planning apparatus 70. In that case, in the charged particle beam therapy system 1, it is only necessary to obtain the calculation result from the treatment planning system 70 and hold it in the dose distribution calculation unit 105. That is, calculation (S02) of dose distribution based on treatment plan information can be omitted.
  • treatment plan information information related to a treatment plan from the treatment planning apparatus 70
  • the irradiation unit 103 irradiates the charged particle beam under the control of the control unit 102 based on the treatment plan information. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam.
  • irradiation log information is acquired as information related to charged particle beams (S03).
  • the dose distribution calculation unit 105 calculates the dose distribution in the homogeneous medium based on the irradiation log information (information related to the charged particle beam) (S04).
  • the dose distribution calculation unit 105 compares the dose distribution calculated based on the treatment plan information with the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1, A match rate is calculated (S05).
  • the coincidence rate can be calculated using, for example, gamma analysis or the like, but is not limited to this.
  • the dose distribution calculation unit 105 may evaluate the treatment plan information itself as necessary (S06). As the evaluation here, for example, the matching rate between the dose distribution calculated based on the above-mentioned treatment plan information and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 If the value is equal to or more than a predetermined value, treatment based on the treatment plan information may be performed in the charged particle beam treatment apparatus 1 (if the matching rate is smaller than the predetermined value, the treatment based on the treatment plan information is performed.
  • the determination is not limited to this.
  • the information related to the charged particle beam irradiated from the irradiation unit 103 is acquired by the charged particle beam information acquisition unit 104. Then, from the information on the charged particle beam to be irradiated, the dose distribution calculation unit 105 calculates the dose distribution in the homogeneous medium when the homogeneous particle is irradiated with the charged particle beam. Therefore, as in the prior art, setting a homogeneous medium such as a water phantom and a dosimeter etc. for measurement of the dose distribution, as compared to the case where the dose distribution is measured by irradiating charged particle beams, And the work at the time of measurement can be omitted.
  • a homogeneous medium such as a water phantom and a dosimeter etc.
  • the charged particle beam therapeutic apparatus 1 it is possible to obtain information related to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapeutic apparatus by a simpler method, and based on the treatment plan It becomes possible to save the work concerning the evaluation of the dose distribution of the charged particle beam in the case of irradiating a line.
  • the required time for a series of operations relating to the evaluation of the dose distribution of the charged particle beam was about 1 to 2 hours, but according to the charged particle beam therapy system 1 according to the present embodiment The required time can be greatly reduced to several minutes.
  • the dose distribution calculation unit 105 calculates the dose distribution when the charged particle beam is irradiated to the irradiated body (homogeneous medium) and the calculation is based on the treatment plan information.
  • the matching rate with the dose distribution in the irradiated body (homogeneous medium) is calculated.
  • the dose distribution calculation unit 105 calculates the calculation result of the dose distribution when the charged particle beam is irradiated to the irradiated body (homogeneous medium) and the irradiated body (homogeneous medium) calculated based on the treatment plan information If the evaluation regarding the treatment plan information is performed based on the matching rate of the dose distribution, the dose distribution calculation unit 105 can also evaluate the treatment plan information, and charge based on the treatment plan It becomes possible to save the work concerning the evaluation of the dose distribution of particle beam.
  • the charged particle beam therapy system 1 a part of the charged particle beam information acquisition unit 104 that acquires information related to charged particle beams is provided in the irradiation unit 103.
  • the dose monitor 12 and the flatness monitors 13 a and 13 b in the irradiation nozzle 9 function as the charged particle beam information acquisition unit 104.
  • the configuration in which the charged particle beam information acquisition unit 104 is provided in the irradiation unit 103 eliminates the need to separately provide a measuring device or the like for acquiring information related to the charged particle beam.
  • the monitor used for controlling the irradiation unit 103 by the control unit 7 is used as the charged particle beam information acquisition unit 104 as in the charged particle beam therapy apparatus 1, information related to charged particle beams is acquired. It is possible to acquire information without providing new facilities and the like.
  • the charged particle beam therapy apparatus information related to the charged particle beam irradiated from the irradiation unit 103 is acquired by the charged particle beam information acquisition unit 104, and the charged particle beam is irradiated from the information.
  • the dose distribution in the object to be irradiated in the case of irradiating the light is calculated by the dose distribution calculation unit 105.
  • the evaluation can be performed after the charged particle beam is irradiated to the patient by the charged particle beam treatment apparatus 1 using this method.
  • the irradiation unit 103 irradiates a charged particle beam under the control of the control unit 102 based on the treatment plan information acquired from the treatment planning apparatus 70. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam.
  • irradiation log information is acquired as information related to charged particle beams.
  • the charged particle beam therapy system 1 acquires a CT image of the patient on the treatment day (day when the patient is irradiated with the charged particle beam) (S11).
  • the CT image of the patient on the treatment day can be imaged, for example, using a CT apparatus provided in an irradiation room or other room that irradiates a charged particle beam to the patient.
  • image data relating to a CT image of a patient is acquired from a device that has captured a CT image of the patient.
  • the timing of imaging of a CT image and acquisition by the charged particle beam therapy apparatus 1 may be timing prior to irradiation of a charged particle beam in the irradiation unit 103.
  • the CT image may be at least an image at the time of creation of the treatment plan, but the accuracy of the dose distribution calculation can be enhanced by using an image of a treatment day or a similar day.
  • the dose distribution calculation unit 105 calculates the dose distribution of the charged particle beam in the patient's body based on the irradiation log information (information related to the charged particle beam) (S12). At this time, the dose distribution calculation unit 105 calculates the dose distribution using the irradiation log information and the CT image (image data) of the patient on the treatment day acquired in the previous step.
  • the dose distribution calculation unit 105 the dose distribution of the charged particle beam in the patient assumed in the treatment plan information, and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 In comparison, the contents of irradiation of the charged particle beam by the charged particle beam therapy system 1 are evaluated (S13). Specifically, the matching rate of the dose distribution of the charged particle beam in the patient assumed in the treatment plan information and the dose distribution of the charged particle beam actually irradiated to the patient on the treatment day is evaluated.
  • the irradiation content of the charged particle beam can be evaluated using the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam therapy system 1.
  • the dose distribution of the charged particle beam is more accurately evaluated by calculating the dose distribution from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. Can.
  • the information of the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam therapy apparatus 1 is an evaluation in the case where a trouble or the like of the charged particle beam therapy apparatus 1 occurs. It is also useful. For example, in the case where there is some trouble in the charged particle beam treatment apparatus 1 and the charged particle beam is irradiated under the irradiation condition different from the assumed irradiation condition, the charged particle beam treatment apparatus 1 is actually irradiated. The dose distribution calculated from the charged particle beam is considered to be different from the dose distribution based on the treatment plan information.
  • the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 with the dose distribution based on the treatment plan information, the dose derived from the trouble etc. on the apparatus side It is also possible to evaluate how the distribution has changed, and to appropriately evaluate the influence on the patient.
  • the above-mentioned method is considered to be particularly useful when the irradiation of the charged particle beam is repeated a plurality of times.
  • the charged particle beam irradiation is repeated multiple times, It is also impossible to evaluate how the dose distribution in the patient's body for each irradiation cycle is.
  • the dose distribution in the patient's body in integration by irradiation of the charged particle beams a plurality of times is that of the charged particle beam specified in the treatment plan information.
  • the dose distribution can be calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1, the dose distribution in the patient's body for each irradiation cycle The calculation can be appropriately performed, and it becomes possible to accurately evaluate the dose distribution in the patient's body by integration by multiple irradiation of charged particle beams.
  • the charged particle beam therapy apparatus information related to the charged particle beam irradiated from the irradiating unit 103 is acquired by the charged particle beam information acquiring unit 104, and the information is obtained from the information.
  • the charged particle beam treatment apparatus 1 irradiates a patient with a charged particle beam by using the method of calculating the dose distribution in the irradiated body in the case of irradiating the charged particle beam to the irradiated body by the dose distribution calculation unit 105 by calculation. Before doing this, it is possible to evaluate the necessity of recalculation of the treatment plan.
  • the irradiation unit 103 irradiates a charged particle beam under the control of the control unit 102 based on the treatment plan information acquired from the treatment planning apparatus 70. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam.
  • irradiation log information is acquired as information related to charged particle beams.
  • the charged particle beam therapy system 1 acquires a CT image of the patient on the treatment day (the day when the patient is irradiated with the charged particle beam) (S21).
  • image data relating to a CT image of a patient is acquired from a device that has captured a CT image of the patient.
  • the dose distribution calculation unit 105 calculates the dose distribution of the charged particle beam in the patient's body based on the irradiation log information (information related to the charged particle beam) (S22). At this time, the dose distribution calculation unit 105 calculates the dose distribution using the irradiation log information and the CT image (image data) of the patient on the treatment day acquired in the previous step.
  • the irradiation log information used to calculate the dose distribution may be in the form of using the latest one. That is, the radiation log information of the treatment day (the day when the patient is irradiated with the charged particle beam) or a day closer thereto is used to calculate the dose distribution.
  • the dose distribution calculation unit 105 the dose distribution of the charged particle beam in the patient assumed in the treatment plan information, and the dose distribution of the charged particle beam calculated using the irradiation log information of the charged particle beam treatment apparatus 1; are compared to evaluate whether it is necessary to recalculate the treatment plan information used to treat the patient (S23). Specifically, the matching rate of the dose distribution of the charged particle beam in the patient assumed in the treatment plan information and the dose distribution of the charged particle beam when actually irradiated to the patient on the treatment day is evaluated. .
  • the radiation distribution information is calculated using the irradiation log information of the charged particle beam most recently irradiated by the charged particle beam treatment apparatus 1, thereby following the treatment plan information. Since the dose distribution in the patient's body when the patient is irradiated with the charged particle beam can be evaluated, whether to recalculate the treatment plan information as compared to the case of evaluating based on the patient's CT image It can be judged appropriately.
  • the irradiation method of the charged particle beam in the charged particle beam treatment apparatus 1 is a scanning irradiation method, and in particular, intensity modulated particle therapy (IMPT).
  • IMPT intensity modulated particle therapy
  • the dose distribution of charged particle beams from at least one direction (gate) is made uneven in the plane.
  • the dose distribution of the charged particle beam irradiated from each irradiation direction (gate) may be made uneven respectively.
  • a method of using irradiation log information in the patient QA in the charged particle beam therapy system 1 adopting such IMPT will be described.
  • SFUD Single Field Uniform Dose
  • IMPT Single Field Uniform Dose
  • the charged particle beam irradiated in each gate is uneven.
  • the treatment of the treatment is performed so that the dose distribution of the tumor part becomes uniform when the charged particle beam doses from each portal are summed up.
  • dose distribution of charged particle beam at each gate is set.
  • evaluation can not be performed in a state in which the doses of charged particle beams from each portal are summed up, and there is room for improvement.
  • the dose distribution of the charged particle beam from each portal is similar to the patient QA in SUFD, with respect to a homogeneous medium (for example, water phantom etc.) simulating the patient in advance.
  • the dose of each particle is set so that the irradiation dose of the charged particle beam to the non-tumor area is small while the dose distribution of the tumor part is made uniform.
  • the difference in irradiation dose in the region of () becomes large (the dose distribution becomes steep).
  • the dose distribution becomes slightly deviated, high-dose charged particle beams may be irradiated to the area other than the tumor. Therefore, it is originally required to perform patient QA with higher accuracy, but as described above, evaluation of what kind of dose distribution will result when combined irradiation of charged particle beams from each portal is performed could not do enough.
  • the dose distribution of the charged particle beam in each gate is calculated and the results are combined, It becomes possible to evaluate the dose distribution when the irradiation of charged particle beams from each gate is combined.
  • the charged particle beam therapeutic apparatus 1 acquires information (treatment plan information) related to a treatment plan from the treatment planning apparatus 70 (S31). Based on the treatment plan information, in the charged particle beam treatment apparatus 1, first, the dose distribution in the irradiated body (homogeneous medium) when the charged particle beam is irradiated based on the treatment plan information in the dose distribution calculation unit 105. Calculation of (S32). The calculation of the dose distribution is performed for each portal (irradiation direction). That is, the charged particle beam information acquiring unit individually acquires information on charged particle beams irradiated from a plurality of directions in the irradiating unit, and the dose distribution calculating unit 105 calculates the dose distribution for each irradiation direction.
  • the irradiation unit 103 irradiates the charged particle beam under the control of the control unit 102 based on the treatment plan information. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam. Here, irradiation log information is acquired as information related to charged particle beams (S33). Next, in the dose distribution calculation unit 105, the dose distribution in the homogeneous medium is calculated based on the irradiation log information (information related to the charged particle beam) (S34). The calculation of the dose distribution is performed for each portal (irradiation direction).
  • the dose distribution in the homogeneous medium at each gate is combined with the calculation results to calculate the total of the dose distribution when the charged particle beam is irradiated from all the gates (S35).
  • the calculation results (S34, S35) can be displayed on a monitor or the like. With such a configuration, the operator of the apparatus can quickly confirm the result, and the convenience is enhanced.
  • the treatment is performed.
  • the plan is evaluated (S36).
  • the evaluation here for example, the coincidence rate between the dose distribution calculated based on the treatment plan information and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 is It can be calculated for each analysis and evaluated for each gate.
  • the evaluation result (S36) may also be displayed on a monitor or the like.
  • the dose distribution calculation unit 105 may evaluate the treatment plan information itself as necessary.
  • the dose distribution of the charged particle beam at each gate is calculated using the irradiation log information of the charged particle beam, and the results are combined to obtain each gate. It is possible to evaluate the dose distribution in the case of combining the irradiation of the charged particle beam from. With such a configuration, not only labor saving work relating to the evaluation of dose distribution in the case of irradiating the charged particle beam based on the treatment plan but also when the irradiation of the charged particle beam from each portal is combined Assessing the dose distribution of B. can improve the accuracy of patient QA.
  • the configuration allows the user of the apparatus to display a plurality of results by combining the calculation results of the dose distribution calculation results for each of the plurality of irradiation directions of the irradiation unit when irradiating the object with the charged particle beam. It is possible to easily confirm the result of the addition of the calculation results of the dose distribution for each irradiation direction.
  • the dose distribution calculation unit 105 of the charged particle beam therapy system 1 calculates the dose distribution when the charged particle beam is irradiated to the homogeneous medium corresponding to the irradiated object and the treatment plan information.
  • the case has been described where the matching rate of the dose distribution in the homogeneous medium calculated as above is calculated, and the evaluation concerning the treatment plan information is performed based on the matching rate.
  • the dose distribution calculating unit 105 may be configured to calculate only the dose distribution when the charged particle beam is irradiated to the homogeneous medium corresponding to the irradiation target.
  • the treatment plan information is acquired, and the irradiation unit 103 performs the irradiation of the charged particle beam based on the treatment plan information under the control of the control unit 102.
  • the charged particle beam information acquisition unit 104 acquires the information related to the charged particle beam
  • the dose distribution calculation unit 105 performs the calculation based on the information.
  • the charged particle beam information acquiring unit 104 and the dose distribution calculating unit 105 may be an evaluation device independent of the charged particle beam therapy system 1. In this case, the functions (the charged particle beam information acquisition unit 104 and the dose distribution calculation unit 105) in the broken line shown in FIG. 3 become independent.
  • the information on the charged particle beam to be irradiated based on the treatment plan information is acquired by the charged particle beam information acquisition unit 104, and the dose in the homogeneous medium when the homogeneous particle is irradiated with the charged particle beam
  • the distribution is calculated by the dose distribution calculation unit 105. Therefore, as in the prior art, setting a homogeneous medium such as a water phantom and a dosimeter etc. for measurement of the dose distribution, as compared to the case where the dose distribution is measured by irradiating charged particle beams, etc.
  • the work of can be omitted. Therefore, also in this evaluation device, it is possible to save the work relating to the evaluation of the dose distribution of the charged particle beam when the charged particle beam is irradiated based on the treatment plan.
  • the evaluation device if it is possible to acquire treatment plan information and information on charged particle beams in the charged particle beam treatment device based on the treatment plan information, calculation relating to dose distribution can be performed. Therefore, the evaluation device may not have a dosimeter or the like. However, the evaluation device may be configured to additionally include a communication unit (a communication unit having a function corresponding to the communication unit 101 in FIG. 3) for acquiring the treatment plan information.
  • a communication unit a communication unit having a function corresponding to the communication unit 101 in FIG. 3
  • SYMBOLS 1 Charged particle beam treatment apparatus, 2 ... irradiation part, 3 ... accelerator, 7 ... control part, 9 ... irradiation nozzle, 15 ... patient (irradiated body), 70 ... treatment plan apparatus, 101 ... communication part, 102 ... control 103, an irradiation unit, 104, a charged particle beam information acquisition unit, 105, a dose distribution calculation unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A charged particle beam therapy device (1) comprises: an irradiation unit (103) which irradiates a charged particle beam emitted from an accelerator, on the basis of therapy plan information determined by a therapy plan device (70); a charged particle beam information acquisition unit (104) which acquires information relating to the charged particle beam irradiated from the irradiation unit (103); and a dose distribution computation unit (105) which, on the basis of the information relating to the charged particle beam due to the charged particle beam information acquisition unit (104), computes a dose distribution when a body to be irradiated is irradiated with the charged particle beam.

Description

荷電粒子線治療装置及び評価装置Charged particle beam therapeutic apparatus and evaluation apparatus
 本発明は、荷電粒子線治療装置及び評価装置に関する。 The present invention relates to a charged particle beam therapy apparatus and an evaluation apparatus.
 荷電粒子線治療装置によって陽子線等の荷電粒子線を患者の患部に照射する際には、患部に対して適切に荷電粒子線を照射しながら、患部以外の正常組織への影響が最小にすることが求められる。そこで、予め患者のCT画像等に基づいて作成された治療計画に基づいて、荷電粒子線の線量分布を確認する患者QA(Qualty Assurance)という作業が行われる(例えば、特許文献1参照)。特許文献1に記載の患者QAでは、荷電粒子線の線量分布を確認する方法としては、患者の身体を模擬した水ファントム等の均質媒質に対して荷電粒子線を照射し、線量計を用いて線量分布を計測している。 When irradiating charged particle beam such as a proton beam to the affected area of a patient by the charged particle beam therapy apparatus, the affected area is minimized while the charged area beam is appropriately irradiated to the affected area. Is required. Then, based on a treatment plan created based on a patient's CT image etc. beforehand, work called patient QA (Qualty Assurance) which confirms dose distribution of a charged particle beam is performed (for example, refer to patent documents 1). In the patient QA described in Patent Document 1, as a method of confirming the dose distribution of charged particle beams, a charged particle beam is irradiated to a homogeneous medium such as a water phantom that simulates the patient's body, and a dosimeter is used. The dose distribution is measured.
特開2003-047666号公報Japanese Patent Application Publication No. 2003-047666
 しかしながら、上記の方法では、荷電粒子線の線量分布を測定することはできるが、患者の身体を模擬した均質媒質、及び、線量分布の測定のための線量計等のセッティング等に手間や人手が必要となる。また、荷電粒子線の線量分布を実測する方法としては、患者に対して荷電粒子線を照射する際にはオンラインモニタリングPETを用いることが考えられるが、大がかりな測定手段などが必要とされる。このように、荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布を把握することは容易ではない。 However, although the above method can measure the dose distribution of the charged particle beam, it takes time and labor for setting a homogeneous medium simulating the patient's body, a dose meter for measuring the dose distribution, etc. It will be necessary. Further, as a method of measuring the dose distribution of the charged particle beam, it is conceivable to use on-line monitoring PET when irradiating the charged particle beam to the patient, but a large-scale measuring means is required. Thus, it is not easy to grasp the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapy apparatus.
 本発明は上記を鑑みてなされたものであり、より簡便な方法で荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布に係る情報を得ることが可能な荷電粒子線治療装置及び評価装置を提供することを目的とする。 The present invention has been made in view of the above, and it is possible to obtain information related to the dose distribution of charged particle beams actually irradiated in the charged particle beam therapy apparatus by a simpler method, and It aims at providing an evaluation device.
 上記目的を達成するため、本発明の一形態に係る荷電粒子線治療装置は、加速器から出射された荷電粒子線を、治療計画装置によって定められた治療計画情報に基づいて照射する照射部と、前記照射部から照射された荷電粒子線に係る情報を取得する荷電粒子線情報取得部と、前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を計算する線量分布計算部と、を有する。 In order to achieve the above object, a charged particle beam treatment apparatus according to an aspect of the present invention comprises: an irradiation unit that irradiates a charged particle beam emitted from an accelerator based on treatment plan information determined by the treatment planning apparatus; A charged particle beam is acquired based on a charged particle beam information acquiring unit that acquires information related to the charged particle beam irradiated from the irradiation unit, and information related to the charged particle beam acquired by the charged particle beam information acquiring unit. And a dose distribution calculating unit that calculates a dose distribution when the object to be irradiated is irradiated.
 上記の荷電粒子線治療装置によれば、治療計画情報に基づいて照射部から照射された荷電粒子線に係る情報が荷電粒子線情報取得部により取得される。そして、照射される荷電粒子線に係る情報から、当該荷電粒子線を被照射体に照射した場合の被照射体における線量分布を線量分布計算部において計算により求められる。したがって、従来の方法と比較して、被照射体のセッティング等の作業を省略することができることから、より簡便な方法で荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布に係る情報を得ることができる。また、治療計画に基づいて荷電粒子線を照射した場合の荷電粒子線の線量分布の評価に係る作業を省力化することが可能となる。なお、「被照射体」には、荷電粒子線治療装置による治療対象である患者、および、患者の身体を模擬した水ファントム等の均質媒質が含まれる。 According to the above charged particle beam treatment apparatus, the charged particle beam information acquisition unit acquires information related to the charged particle beam irradiated from the irradiation unit based on the treatment plan information. Then, from the information on the charged particle beam to be irradiated, the dose distribution in the object to be irradiated when the charged particle beam is irradiated to the object to be irradiated can be calculated by the dose distribution calculation unit. Therefore, compared to the conventional method, the work such as setting of the irradiated object can be omitted, so that it relates to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapeutic apparatus by a simpler method. You can get information. In addition, it becomes possible to save the work related to the evaluation of the dose distribution of the charged particle beam when the charged particle beam is irradiated based on the treatment plan. The “subject to be irradiated” includes a patient to be treated by the charged particle beam treatment apparatus and a homogeneous medium such as a water phantom simulating the patient's body.
 前記線量分布計算部は、前記荷電粒子線を被照射体に照射した際の線量分布の計算結果と、前記治療計画情報に基づいて計算された前記被照射体での線量分布と、の一致率を算出する態様とすることができる。 The dose distribution calculation unit is a matching rate between the calculation result of the dose distribution when the object is irradiated with the charged particle beam and the dose distribution of the object calculated based on the treatment plan information. Can be calculated.
 上記のように、線量分布計算部105において荷電粒子線を被照射体に照射した際の線量分布の計算結果と、治療計画情報に基づいて計算された被照射体での線量分布と、の一致率を算出する構成とすることで、治療計画情報において想定されている線量分布と、実際に荷電粒子線を照射した際の線量分布と、の比較が可能となる。 As described above, the dose distribution calculation unit 105 matches the calculation result of the dose distribution at the time of irradiating the charged body with the charged particle beam and the dose distribution of the irradiated body calculated based on the treatment plan information. By setting the ratio to be calculated, it becomes possible to compare the dose distribution assumed in the treatment plan information with the dose distribution when actually irradiating a charged particle beam.
 前記線量分布計算部は、前記荷電粒子線を被照射体に照射した際の線量分布の計算結果と、前記治療計画情報に基づいて計算された前記被照射体での線量分布と、の一致率に基づいて、前記治療計画情報に係る評価を行う態様とすることができる。 The dose distribution calculation unit is a matching rate between the calculation result of the dose distribution when the object is irradiated with the charged particle beam and the dose distribution of the object calculated based on the treatment plan information. It can be set as the aspect which performs evaluation which concerns on the said treatment plan information based on these.
 上記の構成とすることで、線量分布計算部105において、線量分布の計算結果に基づいて、治療計画情報の評価も行うことができ、治療計画に基づく荷電粒子線の線量分布の評価に係る作業を省力化することが可能となる。 With the above configuration, the dose distribution calculation unit 105 can also evaluate the treatment plan information based on the calculation result of the dose distribution, and the work relating to the evaluation of the dose distribution of the charged particle beam based on the treatment plan It is possible to save labor.
 前記荷電粒子線情報取得部は前記照射部内に設けられる態様とすることができる。 The charged particle beam information acquisition unit may be provided in the irradiation unit.
 上記のように、荷電粒子線情報取得部104が照射部103内に設けられる構成とすることで、荷電粒子線に係る情報を取得するための測定器等を別途設ける必要がなくなり、より簡便な装置構成により、治療計画に基づく荷電粒子線の線量分布の評価に係る作業を省力化できる。なお、荷電粒子線情報取得部が照射部内に設けられる、とは、荷電粒子線情報取得部としての機能の一部が照射部内に設けられることをいう。 As described above, the configuration in which the charged particle beam information acquisition unit 104 is provided in the irradiation unit 103 eliminates the need for separately providing a measuring instrument or the like for acquiring information related to charged particle beams, which is simpler. By the device configuration, the work relating to the evaluation of the dose distribution of the charged particle beam based on the treatment plan can be saved. The provision of the charged particle beam information acquisition unit in the irradiation unit means that a part of the function as the charged particle beam information acquisition unit is provided in the irradiation unit.
 前記線量分布計算部は、前記治療計画情報の作成時以降に取得された前記被照射体に係るCT画像を取得し、当該CT画像と、前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報と、に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を計算する態様とすることができる。 The dose distribution calculating unit acquires a CT image related to the irradiated object acquired after the preparation of the treatment plan information, and the CT image and the charged particle beam acquired by the charged particle beam information acquiring unit The dose distribution when the charged particle beam is irradiated to the irradiation object can be calculated based on the information according to
 上記のように、CT画像と、荷電粒子線情報取得部により取得された荷電粒子線に係る情報と、に基づいて、荷電粒子線を被照射体に照射した際の線量分布を計算することで、治療計画情報を作成した後に、被照射体の内部等に変化があった場合でも、荷電粒子線を被照射体に照射した際の線量分布を適切に計算することができる。 As described above, based on the CT image and the information related to the charged particle beam acquired by the charged particle beam information acquisition unit, the dose distribution when the charged particle beam is irradiated to the irradiated object is calculated. Even when there is a change in the inside of the irradiated body or the like after the preparation of the treatment plan information, it is possible to appropriately calculate the dose distribution when the irradiated body is irradiated with the charged particle beam.
 前記照射部は、加速器から出射された荷電粒子線を複数の方向から照射し、且つ、複数の方向のうちの一の方向において、面内での当該荷電粒子線の線量分布が不均一であり、前記荷電粒子線情報取得部は、前記照射部において複数の方向から照射される荷電粒子線に係る情報を個別に取得し、前記線量分布計算部は、前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を、前記照射部の照射方向毎に計算する態様とすることができる。 The irradiation unit irradiates the charged particle beam emitted from the accelerator from a plurality of directions, and the dose distribution of the charged particle beam in the plane is uneven in one of the plurality of directions. The charged particle beam information acquiring unit individually acquires information on charged particle beams irradiated from a plurality of directions in the irradiating unit, and the dose distribution calculating unit is acquired by the charged particle beam information acquiring unit. According to the information related to the charged particle beam, the dose distribution when the charged particle beam is irradiated to the irradiated object can be calculated for each irradiation direction of the irradiation unit.
 上記の構成を有することで、照射部が荷電粒子線を複数の方向から照射し、複数の方向のうちの一の方向において、面内での当該荷電粒子線の線量分布が不均一である場合でも、線量分布計算部において、荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、荷電粒子線を被照射体に照射した際の線量分布を、照射部の照射方向毎に計算する態様とすることで、より簡便な方法で荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布に係る情報を照射方向毎に得ることができる。 With the above configuration, the irradiation unit irradiates the charged particle beam from a plurality of directions, and the dose distribution of the charged particle beam in the plane is uneven in one of the plurality of directions. However, in the dose distribution calculation unit, based on the information related to the charged particle beam acquired by the charged particle beam information acquisition unit, the dose distribution at the time of irradiating the charged particle beam to the irradiated object is determined for each irradiation direction of the irradiation unit. By setting it as the aspect calculated to, it is possible to obtain the information related to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapy apparatus in each irradiation direction by a simpler method.
 前記線量分布計算部は、前記荷電粒子線を被照射体に照射した際の前記照射部の複数の照射方向毎の線量分布の計算結果の合算を計算し、表示する態様とすることができる。 The dose distribution calculation unit may calculate and display the sum of calculation results of dose distributions for each of a plurality of irradiation directions of the irradiation unit when the irradiation object is irradiated with the charged particle beam.
 上記の構成を有することで、荷電粒子線を被照射体に照射した際の前記照射部の複数の照射方向毎の線量分布の計算結果の合算の結果が表示されるため、装置の使用者は、複数の照射方向毎の線量分布の計算結果の合算の結果を容易に確認することができる。 By having the above configuration, the result of the calculation of the dose distribution for each of the plurality of irradiation directions of the irradiation unit when the charged particle beam is irradiated to the irradiation object is displayed. The result of the summation of the calculation results of the dose distribution for each of the plurality of irradiation directions can be easily confirmed.
 本発明の一形態に係る評価装置は、治療計画装置によって定められた治療計画情報に基づき荷電粒子線治療装置の照射部から荷電粒子線を照射した際の当該荷電粒子線に係る情報を取得する荷電粒子線情報取得部と、前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を計算する線量分布計算部と、を有する。 The evaluation device according to one aspect of the present invention acquires information related to the charged particle beam when irradiated with the charged particle beam from the irradiation unit of the charged particle beam therapy device based on the treatment plan information determined by the treatment planning device. Dose distribution calculation for calculating a dose distribution when the object to be irradiated is irradiated with the charged particle beam based on the charged particle beam information acquiring unit and the information on the charged particle beam acquired by the charged particle beam information acquiring unit Part.
 上記の評価装置によれば、治療計画情報に基づいて荷電粒子線治療装置の照射部から照射される荷電粒子線に係る情報が荷電粒子線情報取得部により取得される。そして、照射される荷電粒子線に係る情報から、当該荷電粒子線を被照射体に照射した場合の被照射体における線量分布を線量分布計算部において計算により求められる。したがって、従来の方法と比較して、被照射体のセッティング等の作業を省略することができることから、より簡便な方法で荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布に係る情報を得ることができる。また、治療計画に基づいて荷電粒子線を照射した場合の荷電粒子線の線量分布の評価に係る作業を省力化することが可能となる。 According to the above-described evaluation apparatus, the charged particle beam information acquisition unit acquires information related to the charged particle beam irradiated from the irradiation unit of the charged particle beam therapy apparatus based on the treatment plan information. Then, from the information on the charged particle beam to be irradiated, the dose distribution in the object to be irradiated when the charged particle beam is irradiated to the object to be irradiated can be calculated by the dose distribution calculation unit. Therefore, compared to the conventional method, the work such as setting of the irradiated object can be omitted, so that it relates to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapeutic apparatus by a simpler method. You can get information. In addition, it becomes possible to save the work related to the evaluation of the dose distribution of the charged particle beam when the charged particle beam is irradiated based on the treatment plan.
 本発明によれば、より簡便な方法で荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布に係る情報を得ることが可能な荷電粒子線治療装置及び評価装置が提供される。 According to the present invention, there are provided a charged particle beam therapy apparatus and an evaluation apparatus capable of obtaining information related to the dose distribution of charged particle beams actually irradiated in the charged particle beam therapy apparatus by a simpler method.
本発明の一実施形態に係る荷電粒子線治療装置の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the charged particle beam therapeutic apparatus which concerns on one Embodiment of this invention. 図1の荷電粒子線治療装置の照射部付近の概略構成図である。It is a schematic block diagram of the irradiation part vicinity of the charged particle beam therapeutic apparatus of FIG. 荷電粒子線治療装置の各機能を説明するブロック図である。It is a block diagram explaining each function of a charged particle beam therapy system. 荷電粒子線治療装置における評価方法を説明する図である。It is a figure explaining the evaluation method in charged particle beam therapy equipment. 照射ログ情報を使用した線量分布の計算の第1の活用法を示すフロー図である。It is a flow figure showing the 1st application of calculation of dose distribution using irradiation log information. 照射ログ情報を使用した線量分布の計算の第2の活用法を示すフロー図である。It is a flow figure showing the 2nd application of calculation of dose distribution using irradiation log information. 照射ログ情報を使用した線量分布の計算の示すフロー図である。It is a flow figure showing calculation of dose distribution using irradiation log information.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, with reference to the accompanying drawings, modes for carrying out the present invention will be described in detail. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
 まず、図1及び図2を参照しながら、本発明の一実施形態に係る荷電粒子線治療装置1における荷電粒子線の照射に係る機構について説明する。図1に示されるように、荷電粒子線治療装置1は、放射線療法によるがん治療等に利用される装置であり、イオン源(不図示)で生成した荷電粒子を加速して荷電粒子線として出射する加速器3と、荷電粒子線を被照射体へ照射する照射部2と、加速器3から出射された荷電粒子線を照射部2へ輸送するビーム輸送ライン41と、を備えている。照射部2は、治療台4を取り囲むように設けられた回転ガントリ5に取り付けられている。照射部2は、回転ガントリ5によって治療台4の周りに回転可能とされている。 First, with reference to FIG. 1 and FIG. 2, a mechanism relating to irradiation of charged particle beams in the charged particle beam therapy system 1 according to an embodiment of the present invention will be described. As shown in FIG. 1, the charged particle beam therapeutic apparatus 1 is an apparatus used for cancer treatment by radiation therapy, etc., and accelerates charged particles generated by an ion source (not shown) to be used as a charged particle beam. An accelerator 3 for emitting light, an irradiation unit 2 for irradiating a charged particle beam to an irradiation object, and a beam transport line 41 for transporting a charged particle beam emitted from the accelerator 3 to the irradiation unit 2 are provided. The irradiation unit 2 is attached to a rotating gantry 5 provided so as to surround the treatment table 4. The irradiation unit 2 is rotatable around the treatment table 4 by a rotating gantry 5.
 図2は、図1の荷電粒子線治療装置の照射部付近の概略構成図である。なお、以下の説明においては、「X方向」、「Y方向」、「Z方向」という語を用いて説明する。「Z方向」とは、荷電粒子線Bの基軸AXが延びる方向であり、荷電粒子線Bの照射の深さ方向である。なお、「基軸AX」とは、後述の走査電磁石6で偏向しなかった場合の荷電粒子線Bの照射軸とする。図2では、基軸AXに沿って荷電粒子線Bが照射されている様子を示している。「X方向」とは、Z方向と直交する平面内における一の方向である。「Y方向」とは、Z方向と直交する平面内においてX方向と直交する方向である。 FIG. 2 is a schematic configuration view of the vicinity of an irradiation unit of the charged particle beam therapy system of FIG. In the following description, the terms “X direction”, “Y direction”, and “Z direction” are used. The “Z direction” is a direction in which the base axis AX of the charged particle beam B extends, and is a depth direction of irradiation of the charged particle beam B. The “base axis AX” is the irradiation axis of the charged particle beam B when not deflected by the scanning electromagnet 6 described later. FIG. 2 shows that the charged particle beam B is irradiated along the base axis AX. The “X direction” is one direction in a plane orthogonal to the Z direction. The “Y direction” is a direction orthogonal to the X direction in a plane orthogonal to the Z direction.
 まず、図2を参照して、本実施形態に係る荷電粒子線治療装置1の概略構成について説明する。荷電粒子線治療装置1はスキャニング法に係る照射装置である。なお、スキャニング方式は特に限定されず、ラインスキャニング、ラスタースキャニング、スポットスキャニング等を採用してよい。また、スキャニング方式に限定されず、他の照射方式(例えば、積層原体照射法)が採用されてもよい。図2に示されるように、荷電粒子線治療装置1は、加速器3と、照射部2と、ビーム輸送ライン41と、制御部7と、を備えている。 First, the schematic configuration of the charged particle beam therapy system 1 according to the present embodiment will be described with reference to FIG. The charged particle beam therapy apparatus 1 is an irradiation apparatus related to a scanning method. The scanning method is not particularly limited, and line scanning, raster scanning, spot scanning or the like may be employed. Moreover, it is not limited to a scanning system, Other irradiation systems (for example, laminated body irradiation method) may be adopted. As shown in FIG. 2, the charged particle beam therapy system 1 includes an accelerator 3, an irradiation unit 2, a beam transport line 41, and a control unit 7.
 加速器3は、荷電粒子を加速して予め設定されたエネルギーの荷電粒子線Bを出射する装置である。加速器3として、例えば、サイクロトロン、シンクロトロン、シンクロサイクロトロン、ライナック等が挙げられる。なお、加速器3として予め定めたエネルギーの荷電粒子線Bを出射するサイクロトロンを採用する場合、エネルギー調整部20(図1参照)を採用することで、照射部2へ送られる荷電粒子線Bのエネルギーを調整(低下)させることが可能となる。なお、シンクロトロンは出射する荷電粒子線Bのエネルギーを容易に変更できるため、加速器3としてシンクロトロンを採用する場合には、エネルギー調整部20を省略してもよい。この加速器3は、制御部7に接続されており、供給される電流が制御される。加速器3で発生した荷電粒子線Bは、ビーム輸送ライン41によって照射ノズル9へ輸送される。ビーム輸送ライン41は、加速器3と、エネルギー調整部20と、照射部2と、を接続し、加速器3から出射された荷電粒子線Bを照射部2へ輸送する。 The accelerator 3 is a device that accelerates charged particles and emits a charged particle beam B of preset energy. Examples of the accelerator 3 include a cyclotron, a synchrotron, a synchrocyclotron, a linac and the like. In addition, when adopting the cyclotron which radiate | emits the charged particle beam B of predetermined energy as the accelerator 3, the energy of the charged particle beam B sent to the irradiation part 2 is employ | adopted by employ | adopting the energy adjustment part 20 (refer FIG. 1). Can be adjusted (decreased). In addition, since the synchrotron can easily change the energy of the charged particle beam B to be emitted, when the synchrotron is adopted as the accelerator 3, the energy adjusting unit 20 may be omitted. The accelerator 3 is connected to the control unit 7, and the supplied current is controlled. The charged particle beam B generated by the accelerator 3 is transported to the irradiation nozzle 9 by the beam transport line 41. The beam transport line 41 connects the accelerator 3, the energy adjustment unit 20, and the irradiation unit 2, and transports the charged particle beam B emitted from the accelerator 3 to the irradiation unit 2.
 荷電粒子線治療装置1は、加速器3内に配置され、イオン源から出た荷電粒子線Bを遮断して、加速器3からの荷電粒子線Bの出射を停止させる(非照射とする)ビームチョッパ16を更に備えている。なお、荷電粒子線の照射、非照射を切り替える手段としてビームチョッパ以外を用いても良い。例えば、ビーム輸送ライン中にシャッターを設けてシャッターで荷電粒子線を遮断してよい。あるいは、加速器3内に設けたデフレクタ(電極)を用いて荷電粒子線を照射するときのみ加速器3から荷電粒子線を出射させてよい。 The charged particle beam treatment apparatus 1 is disposed in the accelerator 3 and blocks the charged particle beam B emitted from the ion source to stop the emission of the charged particle beam B from the accelerator 3 (non-irradiation). It has 16 more. It is to be noted that means other than the beam chopper may be used as means for switching between irradiation and non-irradiation of charged particle beams. For example, a shutter may be provided in the beam transport line and the shutter may block the charged particle beam. Alternatively, the charged particle beam may be emitted from the accelerator 3 only when the charged particle beam is irradiated using a deflector (electrode) provided in the accelerator 3.
 照射部2は、患者15(被照射体)の体内の腫瘍14に対し、荷電粒子線Bを照射するものである。荷電粒子線Bとは、電荷をもった粒子を高速に加速したものであり、例えば陽子線、重粒子(重イオン)線、電子線等が挙げられる。具体的に、照射部2は、イオン源(不図示)で生成した荷電粒子を加速する加速器3から出射されてビーム輸送ライン41で輸送された荷電粒子線Bを腫瘍14へ照射する装置である。照射部2は、走査電磁石6、四極電磁石8、プロファイルモニタ11、ドーズモニタ12、フラットネスモニタ13a,13b、及びディグレーダ30を備えている。走査電磁石6、各モニタ11,12,13a,13b、四極電磁石8、及びディグレーダ30は、照射ノズル9に収容されている。なお、四極電磁石8、プロファイルモニタ11、ドーズモニタ12、フラットネスモニタ13a,13b、及びディグレーダ30は省略してもよい。 The irradiation unit 2 irradiates the charged particle beam B to the tumor 14 in the body of the patient 15 (irradiated body). The charged particle beam B is obtained by accelerating a charged particle at high speed, and examples thereof include a proton beam, a heavy particle (heavy ion) beam, an electron beam and the like. Specifically, the irradiation unit 2 is a device for irradiating the tumor 14 with the charged particle beam B emitted from the accelerator 3 that accelerates charged particles generated by the ion source (not shown) and transported by the beam transport line 41. . The irradiation unit 2 includes a scanning electromagnet 6, a quadrupole electromagnet 8, a profile monitor 11, a dose monitor 12, flatness monitors 13 a and 13 b, and a degrader 30. The scanning electromagnet 6, the monitors 11, 12, 13 a and 13 b, the quadrupole electromagnet 8, and the degrader 30 are accommodated in the irradiation nozzle 9. The quadrupole electromagnet 8, the profile monitor 11, the dose monitor 12, the flatness monitors 13a and 13b, and the degrader 30 may be omitted.
 走査電磁石6は、X方向走査電磁石6a及びY方向走査電磁石6bを含む。X方向走査電磁石6a及びY方向走査電磁石6bは、それぞれ一対の電磁石から構成され、制御部7から供給される電流に応じて一対の電磁石間の磁場を変化させ、当該電磁石間を通過する荷電粒子線Bを走査する。X方向走査電磁石6aは、X方向に荷電粒子線Bを走査し、Y方向走査電磁石6bは、Y方向に荷電粒子線Bを走査する。これらの走査電磁石6は、基軸AX上であって、加速器3よりも荷電粒子線Bの下流側にこの順で配置されている。 The scanning electromagnet 6 includes an X-direction scanning electromagnet 6 a and a Y-direction scanning electromagnet 6 b. The X-direction scanning electromagnet 6a and the Y-direction scanning electromagnet 6b are each composed of a pair of electromagnets, and change the magnetic field between the pair of electromagnets according to the current supplied from the control unit Scan line B The X-direction scanning electromagnet 6a scans the charged particle beam B in the X direction, and the Y-direction scanning electromagnet 6b scans the charged particle beam B in the Y direction. The scanning electromagnets 6 are disposed on the base axis AX and downstream of the charged particle beam B with respect to the accelerator 3 in this order.
 四極電磁石8は、X方向四極電磁石8a及びY方向四極電磁石8bを含む。X方向四極電磁石8a及びY方向四極電磁石8bは、制御部7から供給される電流に応じて荷電粒子線Bを絞って収束させる。X方向四極電磁石8aは、X方向において荷電粒子線Bを収束させ、Y方向四極電磁石8bは、Y方向において荷電粒子線Bを収束させる。四極電磁石8に供給する電流を変化させて絞り量(収束量)を変化させることにより、荷電粒子線Bのビームサイズを変化させることができる。四極電磁石8は、基軸AX上であって加速器3と走査電磁石6との間にこの順で配置されている。なお、ビームサイズとは、XY平面における荷電粒子線Bの大きさである。また、ビーム形状とは、XY平面における荷電粒子線Bの形状である。 The quadrupole electromagnet 8 includes an X-direction quadrupole electromagnet 8a and a Y-direction quadrupole electromagnet 8b. The X-direction quadrupole electromagnet 8 a and the Y-direction quadrupole electromagnet 8 b squeeze and converge the charged particle beam B according to the current supplied from the control unit 7. The X direction quadrupole electromagnet 8 a converges the charged particle beam B in the X direction, and the Y direction quadrupole electromagnet 8 b converges the charged particle beam B in the Y direction. The beam size of the charged particle beam B can be changed by changing the current supplied to the quadrupole electromagnet 8 to change the throttling amount (convergence amount). The quadrupole electromagnet 8 is disposed on the base axis AX and between the accelerator 3 and the scanning electromagnet 6 in this order. The beam size is the size of the charged particle beam B in the XY plane. The beam shape is the shape of the charged particle beam B in the XY plane.
 プロファイルモニタ11は、初期設定の際の位置合わせのために、荷電粒子線Bのビーム形状及び位置を検出する。プロファイルモニタ11は、基軸AX上であって四極電磁石8と走査電磁石6との間に配置されている。ドーズモニタ12(荷電粒子線情報取得部)は、荷電粒子線Bの強度を検出する。ドーズモニタ12は、基軸AX上であって走査電磁石6に対して下流側に配置されている。フラットネスモニタ13a,13bは、荷電粒子線Bのビーム形状及び位置を検出監視する。フラットネスモニタ13a,13bは、基軸AX上であって、ドーズモニタ12よりも荷電粒子線Bの下流側に配置されている。各モニタ11,12,13a,13bは、検出した検出結果を制御部7に出力する。制御部7は、ドーズモニタ12からの検出結果を管理する機能を有するため、後述の荷電粒子線情報取得部としての機能の一部を有する。 The profile monitor 11 detects the beam shape and position of the charged particle beam B for alignment at the time of initial setting. The profile monitor 11 is disposed on the base axis AX and between the quadrupole electromagnet 8 and the scanning electromagnet 6. The dose monitor 12 (charged particle beam information acquisition unit) detects the intensity of the charged particle beam B. The dose monitor 12 is disposed on the base axis AX and downstream of the scanning electromagnet 6. The flatness monitors 13a and 13b detect and monitor the beam shape and position of the charged particle beam B. The flatness monitors 13 a and 13 b are disposed on the base axis AX and downstream of the charged particle beam B with respect to the dose monitor 12. Each of the monitors 11, 12, 13a, 13b outputs the detected detection result to the control unit 7. The control unit 7 has a function of managing detection results from the dose monitor 12, and thus has a part of a function as a charged particle beam information acquisition unit described later.
 ディグレーダ30は、通過する荷電粒子線Bのエネルギーを低下させて当該荷電粒子線Bのエネルギーの微調整を行う。本実施形態では、ディグレーダ30は、照射ノズル9の先端部9aに設けられている。なお、照射ノズル9の先端部9aとは、荷電粒子線Bの下流側の端部である。 The degrader 30 reduces the energy of the passing charged particle beam B to finely adjust the energy of the charged particle beam B. In the present embodiment, the degrader 30 is provided at the tip 9 a of the irradiation nozzle 9. The tip 9 a of the irradiation nozzle 9 is the end on the downstream side of the charged particle beam B.
 制御部7は、例えばCPU、ROM、及びRAM等により構成されている。この制御部7は、各モニタ11,12,13a,13bから出力された検出結果に基づいて、加速器3、走査電磁石6及び四極電磁石8を制御する。 The control unit 7 includes, for example, a CPU, a ROM, and a RAM. The control unit 7 controls the accelerator 3, the scanning electromagnet 6, and the quadrupole electromagnet 8 based on the detection results output from the monitors 11, 12, 13a, 13b.
 また、荷電粒子線治療装置1は、荷電粒子線治療の治療計画を行う治療計画装置70(図3参照)と接続されている。治療計画装置70は、治療前に患者15の腫瘍14をCT等で測定し、腫瘍14の各位置における線量分布(照射すべき荷電粒子線の線量分布)を計画する。具体的には、治療計画装置70は、腫瘍14に対する治療計画である治療計画情報を作成する。治療計画装置70は、作成した治療計画情報を制御部7へ送信する。 In addition, the charged particle beam therapy system 1 is connected to a treatment planning system 70 (see FIG. 3) which performs a treatment plan for charged particle beam therapy. The treatment planning device 70 measures the tumor 14 of the patient 15 by CT or the like before treatment, and plans the dose distribution (dose distribution of charged particle beam to be irradiated) at each position of the tumor 14. Specifically, the treatment planning device 70 creates treatment plan information that is a treatment plan for the tumor 14. The treatment planning device 70 transmits the created treatment plan information to the control unit 7.
 スキャニング法による荷電粒子線の照射を行う場合、腫瘍14をZ方向に複数の層に仮想的に分割し、一の層において荷電粒子線を治療計画情報において定めた走査経路に従うように走査して照射する。そして、当該一の層における荷電粒子線の照射が完了した後に、隣接する次の層における荷電粒子線の照射を行う。 When performing irradiation of charged particle beams by the scanning method, the tumor 14 is virtually divided into a plurality of layers in the Z direction, and in one layer, the charged particle beams are scanned so as to follow the scanning path defined in the treatment planning information. Irradiate. Then, after the irradiation of the charged particle beam in the one layer is completed, the charged particle beam in the next adjacent layer is irradiated.
 図2に示す荷電粒子線治療装置1により、スキャニング法によって荷電粒子線Bの照射を行う場合、通過する荷電粒子線Bが収束するように四極電磁石8を作動状態(ON)とする。 When the charged particle beam B is irradiated by the scanning method by the charged particle beam treatment apparatus 1 shown in FIG. 2, the quadrupole electromagnet 8 is brought into an operating state (ON) so that the passing charged particle beam B converges.
 続いて、加速器3から荷電粒子線Bを出射する。出射された荷電粒子線Bは、走査電磁石6の制御により、治療計画情報において定めた走査経路に従うように走査される。これにより、荷電粒子線Bは、腫瘍14に対してZ方向に設定された一の層における照射範囲内を走査されつつ照射されることとなる。一の層に対する照射が完了したら、次の層へ荷電粒子線Bを照射する。 Subsequently, the charged particle beam B is emitted from the accelerator 3. The emitted charged particle beam B is scanned by the control of the scanning electromagnet 6 so as to follow the scanning path defined in the treatment plan information. As a result, the charged particle beam B is irradiated while being scanned within the irradiation range of one layer set in the Z direction with respect to the tumor 14. When the irradiation of one layer is completed, the charged particle beam B is irradiated to the next layer.
 ここで、荷電粒子線治療装置1を用いて患者に対して治療を行う場合、治療計画装置70において作成された治療計画情報に沿って照射を行った際に、患者の体内での線量分布が治療計画情報において想定した通りのものであるかの検証を、治療前に行う必要がある。治療計画情報は、患者の腫瘍14に対する照射効果を最大としながら、周辺の正常組織への影響(副作用)が最小となるように患者に対する荷電粒子線の照射に係る設定が決められている。治療計画情報は、荷電粒子線治療装置1が所望の位置に荷電粒子線を適切に照射ができることを想定して作成されているものであるが、荷電粒子線治療装置の特性等によって所望の位置とは異なる位置や強度で荷電粒子線を照射することで、治療計画情報通りの線量分布が得られない可能性も考えられる。そこで、事前に患者を模擬した均質媒質(例えば、水ファントム等)に対して荷電粒子線治療装置1により荷電粒子線を照射した際の均質媒質中の荷電粒子線の線量分布を測定し、治療計画情報で想定していた通りの線量分布となっているかを検証する。この作業を患者QAという。しかしながら、従来の患者QAの方法では、患者を模擬した均質媒質のセッティング(水ファントムを準備し、照射ノズル9の先端にセッティングする作業)、及び、水ファントム中に配置されて線量分布の測定に用いられる線量計のセッティング等に時間がかかる。また、線量分布を測定する際には、水ファントムの深さ方向(Z方向)におけるある位置で線量分布を測定した後、線量計を深さ方向(Z方向)に沿って次の測定位置に移動して測定することを繰り返す。そのため、従来の患者QAの方法では、所要時間が増大する(例えば、1~2時間程度かかる)という問題があった。患者QAを行っている間は、荷電粒子線治療装置1を占有することになるため、1件の患者の治療に対する荷電粒子線治療装置1の使用時間が増大する。したがって、1台の荷電粒子線治療装置1により治療できる患者の数が少なくなってしまうため稼働効率の低下にも直結する。 Here, in the case where the patient is treated using the charged particle beam treatment apparatus 1, the dose distribution in the patient's body is obtained when the irradiation is performed along the treatment plan information created in the treatment planning apparatus 70. It is necessary to verify before treatment that the treatment plan information is as expected. Regarding the treatment plan information, settings relating to the irradiation of the charged particle beam to the patient are determined so as to minimize the influence (side effects) on the surrounding normal tissues while maximizing the irradiation effect on the patient's tumor 14. The treatment plan information is created on the assumption that the charged particle beam treatment apparatus 1 can appropriately irradiate the charged particle beam to a desired position, but the desired position is determined according to the characteristics of the charged particle beam treatment apparatus. It is also possible that the dose distribution according to the treatment plan information can not be obtained by irradiating the charged particle beam at a position or intensity different from that of the above. Therefore, the dose distribution of the charged particle beam in the homogeneous medium at the time of irradiating the charged particle beam by the charged particle beam treatment apparatus 1 to the homogeneous medium (for example, water phantom etc.) simulating the patient in advance is measured Verify that the dose distribution is as expected in the planning information. This work is called patient QA. However, in the conventional method of patient QA, setting of a homogeneous medium simulating the patient (a task of preparing a water phantom and setting it at the tip of the irradiation nozzle 9), and placing it in the water phantom to measure the dose distribution It takes time to set up the dosimeter used. Also, when measuring the dose distribution, after measuring the dose distribution at a certain position in the depth direction (Z direction) of the water phantom, the dosimeter is moved to the next measurement position along the depth direction (Z direction) Repeat moving and measuring. Therefore, the conventional method of patient QA has a problem that the required time increases (for example, it takes about 1 to 2 hours). Since the charged particle beam treatment apparatus 1 is occupied while performing patient QA, the usage time of the charged particle beam treatment apparatus 1 for treatment of one patient increases. Therefore, the number of patients that can be treated by one charged particle beam therapy system 1 is reduced, which directly leads to a decrease in operation efficiency.
 そこで、本実施形態に係る荷電粒子線治療装置1では、均質媒質(被照射体)をセッティングして荷電粒子線を照射することに代えて、均質媒質を配置せずに荷電粒子線を照射する。また、均質媒質中に配置した線量計を用いて均質媒質における線量分布を測定(実測)することに代えて、荷電粒子線治療装置1から照射される荷電粒子線に係る測定を行う。そして、照射される荷電粒子線に係る情報から、当該荷電粒子線を均質媒質に照射した場合に得られると想定される均質媒質における線量分布を計算により求める。また、その計算の結果得られた線量分布を、治療計画情報における線量分布と比較して、治療計画情報通りに患者に対して荷電粒子線を照射できるか(治療を行えるか)の評価を行う。 Therefore, in the charged particle beam treatment apparatus 1 according to the present embodiment, instead of irradiating the charged particle beam by setting the homogeneous medium (irradiated body), the charged particle beam is irradiated without arranging the homogeneous medium. . Also, instead of measuring (measuring) the dose distribution in the homogeneous medium using a dosimeter disposed in the homogeneous medium, measurement is performed on the charged particle beam irradiated from the charged particle beam therapy system 1. Then, from the information related to the charged particle beam to be irradiated, the dose distribution in the homogeneous medium assumed to be obtained when the homogeneous particle medium is irradiated with the charged particle beam is calculated by calculation. In addition, the dose distribution obtained as a result of the calculation is compared with the dose distribution in the treatment plan information to evaluate whether the charged particle beam can be irradiated to the patient according to the treatment plan information (whether the treatment can be performed) .
 そのため、本実施形態に係る荷電粒子線治療装置1は、図3に示すように、通信部101、制御部102、照射部103、荷電粒子線情報取得部104、及び線量分布計算部105を有する。 Therefore, as shown in FIG. 3, the charged particle beam therapeutic apparatus 1 according to the present embodiment includes a communication unit 101, a control unit 102, an irradiation unit 103, a charged particle beam information acquisition unit 104, and a dose distribution calculation unit 105. .
 通信部101は、治療計画装置70との間で通信を行い、治療計画装置70から治療計画情報を取得する機能を有する。取得された治療計画情報は、制御部102へ送られる。 The communication unit 101 has a function of communicating with the treatment planning device 70 and acquiring treatment planning information from the treatment planning device 70. The acquired treatment plan information is sent to the control unit 102.
 制御部102は、治療計画情報に基づいて照射部103において荷電粒子線の照射を行う制御を行う。また、荷電粒子線情報取得部104において測定又は取得される荷電粒子線に係る情報を取得する。制御部102が取得した荷電粒子線に係る情報、及び、治療計画情報とは、線量分布計算部105へ送られる。なお、制御部102は、図2に示す制御部7に対応する。 The control unit 102 controls the irradiation unit 103 to perform irradiation of the charged particle beam based on the treatment plan information. Also, information related to charged particle beams measured or acquired in the charged particle beam information acquisition unit 104 is acquired. The information on the charged particle beam acquired by the control unit 102 and the treatment plan information are sent to the dose distribution calculation unit 105. The control unit 102 corresponds to the control unit 7 shown in FIG.
 照射部103は、制御部7からの指示に基づいて、所定の設定で荷電粒子線を照射する機能を有する。照射部103には、図1及び図2で説明した照射部2が対応する。 The irradiation unit 103 has a function of irradiating a charged particle beam at a predetermined setting based on an instruction from the control unit 7. The irradiation unit 103 corresponds to the irradiation unit 2 described in FIGS. 1 and 2.
 荷電粒子線情報取得部104は、荷電粒子線治療装置1から患者に対して照射される荷電粒子線に係る情報を取得する機能を有する。なお、荷電粒子線情報取得部104において取得される荷電粒子線に係る情報には、所定の設定時に照射ノズル9から出射される荷電粒子線の強度、位置、及び、エネルギーに係る情報が含まれる。本実施形態では、図2に示す照射ノズル9内のドーズモニタ12及びフラットネスモニタ13a,13bにおいて、荷電粒子線の強度及び位置に係る情報が取得される。したがって、ドーズモニタ12及びフラットネスモニタ13a,13bは、荷電粒子線情報取得部104としての機能を有することになる。すなわち、荷電粒子線情報取得部104の少なくとも一部の機能は、照射部103に含まれる照射ノズル9内に配置されていることになる。 The charged particle beam information acquisition unit 104 has a function of acquiring information related to a charged particle beam irradiated from the charged particle beam treatment apparatus 1 to a patient. The information on the charged particle beam acquired by the charged particle beam information acquisition unit 104 includes information on the intensity, the position, and the energy of the charged particle beam emitted from the irradiation nozzle 9 at a predetermined setting. . In the present embodiment, in the dose monitor 12 and the flatness monitors 13a and 13b in the irradiation nozzle 9 shown in FIG. 2, information on the intensity and position of the charged particle beam is acquired. Therefore, the dose monitor 12 and the flatness monitors 13a and 13b have a function as the charged particle beam information acquisition unit 104. That is, at least a part of the function of the charged particle beam information acquisition unit 104 is disposed in the irradiation nozzle 9 included in the irradiation unit 103.
 また、荷電粒子線に係る情報のうちエネルギーに係る情報は、治療計画情報に含まれる情報である。荷電粒子線治療装置1では、制御部7において、ドーズモニタ12及びフラットネスモニタ13a,13bにおいて取得される荷電粒子線の位置、強度、ビームサイズ等に係る情報と、治療計画情報に含まれるエネルギーに関する情報と、を「照射ログ情報」として一括管理している場合がある。したがって、荷電粒子線情報取得部104は、荷電粒子線に係る情報が含まれる照射ログ情報を取得する構成としてもよい。なお、照射ログ情報は、制御部7により、ドーズモニタ12及びフラットネスモニタ13a,13bにおいて取得される情報と、治療計画情報に含まれる情報と、を取りまとめて作成される。したがって、制御部7も荷電粒子線情報取得部104としての機能の一部を有する。 Moreover, the information which concerns on energy among the information which concerns on a charged particle beam is information contained in treatment plan information. In the charged particle beam treatment apparatus 1, the control unit 7 relates to information concerning the position, intensity, beam size, etc. of the charged particle beam acquired in the dose monitor 12 and the flatness monitor 13a, 13b, and energy contained in the treatment plan information. Information and may be collectively managed as "irradiation log information". Therefore, the charged particle beam information acquisition unit 104 may be configured to acquire irradiation log information including information related to charged particle beams. The irradiation log information is created by the control unit 7 by collecting information acquired in the dose monitor 12 and the flatness monitors 13a and 13b and information included in the treatment plan information. Therefore, the control unit 7 also has a part of the function as the charged particle beam information acquisition unit 104.
 線量分布計算部105は、荷電粒子線情報取得部104により得られた荷電粒子線に係る情報から、均質媒質(被照射体)に対して荷電粒子線を照射した場合の均質媒質中での線量分布を計算する機能を有する。線量分布の計算の際には、荷電粒子線が均質媒質に照射された際に荷電粒子線がどのような進路を辿り、均質媒質中のどの深度まで到達するかを計算することになる。荷電粒子線の強度が均質媒質中を進む際にどのように変化していくか(所定の位置に到達する荷電粒子線の線量がどの程度であるか)をシミュレーションにより計算すればよく、その計算方法は特に限定されない。 The dose distribution calculation unit 105 determines the dose in the homogeneous medium when the homogeneous particle (irradiated body) is irradiated with the charged particle beam from the information on the charged particle beam obtained by the charged particle beam information acquisition unit 104. It has a function to calculate the distribution. When calculating the dose distribution, when the charged particle beam is irradiated to the homogeneous medium, it is calculated what path the charged particle beam follows and which depth in the homogeneous medium is reached. It may be calculated by simulation how the intensity of the charged particle beam changes as it travels through the homogeneous medium (how much the dose of the charged particle beam reaches the predetermined position), The method is not particularly limited.
 また、線量分布計算部105では、荷電粒子線情報取得部104により得られた荷電粒子線に係る情報に基づく線量分布の計算結果と、治療計画情報に基づく線量分布とを比較する機能を有する。治療計画情報に基づいて荷電粒子線を照射した場合に得られると想定される線量分布は、治療計画情報から計算することができる。したがって、線量分布計算部105では、治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線に係る情報から計算される線量分布とを比較して、一致率を算出する。このように一致率を算出することで、荷電粒子線治療装置1による荷電粒子線の照射により、治療計画情報において想定された荷電粒子線の照射が実現されるかを検証することができる。 Further, the dose distribution calculation unit 105 has a function of comparing the calculation result of the dose distribution based on the information on the charged particle beam obtained by the charged particle beam information acquisition unit 104 with the dose distribution based on the treatment plan information. The dose distribution assumed to be obtained when the charged particle beam is irradiated based on the treatment plan information can be calculated from the treatment plan information. Therefore, the dose distribution calculation unit 105 compares the dose distribution calculated based on the treatment plan information with the dose distribution calculated from the information related to the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. Match rate is calculated. By calculating the coincidence rate in this manner, it can be verified whether the irradiation of the charged particle beam assumed by the charged particle beam treatment apparatus 1 realizes the irradiation of the charged particle beam assumed in the treatment plan information.
 なお、線量分布計算部105において、治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線に係る情報から計算される線量分布とを比較した結果に基づいて何らかの評価を行う構成としてもよい。例えば、線量分布計算部105において、治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線に係る情報から計算される線量分布との一致率に基づいて、治療計画情報を評価する構成としてもよい。また、線量分布計算部105において、上記の一致率に基づいて、治療計画情報に基づいて患者に対して荷電粒子線を照射できるか(当該治療計画情報に基づいた治療を行えるか)等を判定する構成としてもよい。 In the dose distribution calculation unit 105, the dose distribution calculated based on the treatment plan information was compared with the dose distribution calculated from the information related to the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. It is good also as composition which performs some evaluation based on a result. For example, in the dose distribution calculation unit 105, the matching rate between the dose distribution calculated based on the treatment plan information and the dose distribution calculated from the information related to the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. The treatment plan information may be evaluated based on the above. In addition, in the dose distribution calculation unit 105, based on the above matching rate, it is determined whether the charged particle beam can be irradiated to the patient based on the treatment plan information (whether or not the treatment based on the treatment plan information can be performed) It may be configured to
 線量分布計算部105により計算された結果や、評価を行った場合の評価結果等は、出力部(図示せず)等により外部に出力されることで、荷電粒子線治療装置1の操作者がその結果を確認することができる。 The operator of the charged particle beam treatment apparatus 1 outputs the result calculated by the dose distribution calculation unit 105, the evaluation result in the case of evaluation, and the like to the outside by an output unit (not shown) or the like. The results can be confirmed.
 次に、上記の荷電粒子線治療装置1における線量分布の評価(患者QA)の具体的な手順について、図4を参照しながら説明する。 Next, a specific procedure of evaluation of the dose distribution (patient QA) in the above-described charged particle beam therapy system 1 will be described with reference to FIG.
 まず、荷電粒子線治療装置1は、通信部101において、治療計画装置70からの治療計画に係る情報(治療計画情報)を取得する(S01)。この治療計画情報に基づいて、荷電粒子線治療装置1では、まず、線量分布計算部105において、治療計画情報に基づいて荷電粒子線を照射した場合の均質媒質(被照射体)中における線量分布の計算を行う(S02)。なお、この治療計画情報に基づいて荷電粒子線を照射した場合の線量分布は、予め治療計画装置70において計算されている場合もある。その場合には、荷電粒子線治療装置1においては、その計算結果を治療計画装置70から取得し、線量分布計算部105において保持するのみでよい。すなわち、治療計画情報に基づく線量分布の計算(S02)は省略することができる。 First, in the communication unit 101, the charged particle beam treatment apparatus 1 acquires information (treatment plan information) related to a treatment plan from the treatment planning apparatus 70 (S01). Based on the treatment plan information, in the charged particle beam treatment apparatus 1, first, the dose distribution in the homogeneous medium (irradiated body) when the charged particle beam is irradiated based on the treatment plan information in the dose distribution calculation unit 105. Calculation of (S02). In addition, the dose distribution at the time of irradiating a charged particle beam based on this treatment plan information may be calculated beforehand by the treatment planning apparatus 70. In that case, in the charged particle beam therapy system 1, it is only necessary to obtain the calculation result from the treatment planning system 70 and hold it in the dose distribution calculation unit 105. That is, calculation (S02) of dose distribution based on treatment plan information can be omitted.
 また、荷電粒子線治療装置1では、治療計画情報に基づいて、制御部102の制御により、照射部103において荷電粒子線を照射する。そして、荷電粒子線治療装置1の荷電粒子線情報取得部104において、照射部103において荷電粒子線を照射した際の荷電粒子線に係る情報を取得する。ここでは、荷電粒子線に係る情報として、照射ログ情報を取得する(S03)。次に、線量分布計算部105において、照射ログ情報(荷電粒子線に係る情報)に基づいて、均質媒質中での線量分布を計算する(S04)。 Further, in the charged particle beam treatment apparatus 1, the irradiation unit 103 irradiates the charged particle beam under the control of the control unit 102 based on the treatment plan information. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam. Here, irradiation log information is acquired as information related to charged particle beams (S03). Next, the dose distribution calculation unit 105 calculates the dose distribution in the homogeneous medium based on the irradiation log information (information related to the charged particle beam) (S04).
 治療計画情報に基づいた均質媒質中での線量分布の計算(S02)と、照射ログ情報の取得(S03)及びこの情報に基づく均質媒質中での線量分布の計算(S04)と、は互いに独立して行われる。したがって、どちらを先に行ってもよい。 Calculation of dose distribution in homogeneous medium based on treatment plan information (S02), acquisition of radiation log information (S03) and calculation of dose distribution in homogeneous medium based on this information (S04) are independent of each other To be done. Therefore, which one may go first.
 その後、線量分布計算部105において、治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線から計算される線量分布と、を比較して、一致率を算出する(S05)。一致率は、例えばガンマ解析等を用いて算出することができるが、これに限定されるものではない。 Thereafter, the dose distribution calculation unit 105 compares the dose distribution calculated based on the treatment plan information with the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1, A match rate is calculated (S05). The coincidence rate can be calculated using, for example, gamma analysis or the like, but is not limited to this.
 さらに、線量分布計算部105において、必要に応じて、治療計画情報自体の評価を行ってもよい(S06)。ここでの評価としては、例えば、上記の治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線から計算される線量分布と、の一致率が所定の値以上である場合には、荷電粒子線治療装置1において治療計画情報に基づく治療を行ってもよい(一致率が所定の値よりも小さい場合には治療計画情報に基づく治療を行わない)等の判定が考えられるがこれに限定されるものではない。 Furthermore, the dose distribution calculation unit 105 may evaluate the treatment plan information itself as necessary (S06). As the evaluation here, for example, the matching rate between the dose distribution calculated based on the above-mentioned treatment plan information and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 If the value is equal to or more than a predetermined value, treatment based on the treatment plan information may be performed in the charged particle beam treatment apparatus 1 (if the matching rate is smaller than the predetermined value, the treatment based on the treatment plan information is performed. However, the determination is not limited to this.
 以上により、荷電粒子線治療装置1における線量分布の評価(患者QA)に係る一連の処理が終了する。 Thus, a series of processes related to the evaluation of the dose distribution (patient QA) in the charged particle beam therapy system 1 is completed.
 このように、本実施形態に係る荷電粒子線治療装置1によれば、照射部103から照射される荷電粒子線に係る情報が荷電粒子線情報取得部104により取得される。そして、照射される荷電粒子線に係る情報から、当該荷電粒子線を均質媒質に照射した場合の均質媒質における線量分布を線量分布計算部105において計算により求める。したがって、従来のように、水ファントム等の均質媒質及び線量分布の計測のための線量計等をセッティングして、荷電粒子線を照射することで線量分布を測定する場合と比較して、セッティング時及び測定時の作業を省略することができる。したがって、荷電粒子線治療装置1によれば、より簡便な方法で荷電粒子線治療装置において実際に照射される荷電粒子線の線量分布に係る情報を得ることができ、治療計画に基づいて荷電粒子線を照射した場合の荷電粒子線の線量分布の評価に係る作業を省力化することが可能となる。具体的には、従来の方法では荷電粒子線の線量分布の評価に係る一連の作業の所要時間が1~2時間程度であったが、本実施形態に係る荷電粒子線治療装置1によれば所要時間を数分程度まで大幅に短縮することができる。 As described above, according to the charged particle beam therapy system 1 according to the present embodiment, the information related to the charged particle beam irradiated from the irradiation unit 103 is acquired by the charged particle beam information acquisition unit 104. Then, from the information on the charged particle beam to be irradiated, the dose distribution calculation unit 105 calculates the dose distribution in the homogeneous medium when the homogeneous particle is irradiated with the charged particle beam. Therefore, as in the prior art, setting a homogeneous medium such as a water phantom and a dosimeter etc. for measurement of the dose distribution, as compared to the case where the dose distribution is measured by irradiating charged particle beams, And the work at the time of measurement can be omitted. Therefore, according to the charged particle beam therapeutic apparatus 1, it is possible to obtain information related to the dose distribution of the charged particle beam actually irradiated in the charged particle beam therapeutic apparatus by a simpler method, and based on the treatment plan It becomes possible to save the work concerning the evaluation of the dose distribution of the charged particle beam in the case of irradiating a line. Specifically, in the conventional method, the required time for a series of operations relating to the evaluation of the dose distribution of the charged particle beam was about 1 to 2 hours, but according to the charged particle beam therapy system 1 according to the present embodiment The required time can be greatly reduced to several minutes.
 また、上記の荷電粒子線治療装置では、線量分布計算部105において、荷電粒子線を被照射体(均質媒質)に照射した際の線量分布の計算結果と、治療計画情報に基づいて計算された被照射体(均質媒質)での線量分布と、の一致率を算出する。このように線量分布計算部105において一致率を算出する構成とすることで、治療計画情報において想定されている線量分布と、実際に荷電粒子線を照射した際の線量分布と、の比較が可能となる。 In the above-described charged particle beam therapy system, the dose distribution calculation unit 105 calculates the dose distribution when the charged particle beam is irradiated to the irradiated body (homogeneous medium) and the calculation is based on the treatment plan information. The matching rate with the dose distribution in the irradiated body (homogeneous medium) is calculated. By thus calculating the matching rate in the dose distribution calculation unit 105, it is possible to compare the dose distribution assumed in the treatment plan information with the dose distribution when actually irradiating a charged particle beam. It becomes.
 さらに、線量分布計算部105において、荷電粒子線を被照射体(均質媒質)に照射した際の線量分布の計算結果と、治療計画情報に基づいて計算された被照射体(均質媒質)での線量分布と、の一致率に基づいて、前記治療計画情報に係る評価を行う構成とされている場合、線量分布計算部105において、治療計画情報の評価も行うことができ、治療計画に基づく荷電粒子線の線量分布の評価に係る作業を省力化することが可能となる。 Furthermore, in the dose distribution calculation unit 105, the calculation result of the dose distribution when the charged particle beam is irradiated to the irradiated body (homogeneous medium) and the irradiated body (homogeneous medium) calculated based on the treatment plan information If the evaluation regarding the treatment plan information is performed based on the matching rate of the dose distribution, the dose distribution calculation unit 105 can also evaluate the treatment plan information, and charge based on the treatment plan It becomes possible to save the work concerning the evaluation of the dose distribution of particle beam.
 また、荷電粒子線治療装置1においては、荷電粒子線に係る情報を取得する荷電粒子線情報取得部104は、その一部が照射部103内に設けられる。荷電粒子線治療装置1の場合には、照射ノズル9内のドーズモニタ12及びフラットネスモニタ13a,13bが荷電粒子線情報取得部104として機能する。このように、荷電粒子線情報取得部104が照射部103内に設けられる構成とすることで、荷電粒子線に係る情報を取得するための測定器等を別途設ける必要がなくなる。特に、荷電粒子線治療装置1のように、制御部7による照射部103の制御に用いられるモニタを荷電粒子線情報取得部104として利用する構成とした場合、荷電粒子線に係る情報を取得するための新たな設備等を設けることなく、情報の取得が可能となる。 Further, in the charged particle beam therapy system 1, a part of the charged particle beam information acquisition unit 104 that acquires information related to charged particle beams is provided in the irradiation unit 103. In the case of the charged particle beam therapy system 1, the dose monitor 12 and the flatness monitors 13 a and 13 b in the irradiation nozzle 9 function as the charged particle beam information acquisition unit 104. As described above, the configuration in which the charged particle beam information acquisition unit 104 is provided in the irradiation unit 103 eliminates the need to separately provide a measuring device or the like for acquiring information related to the charged particle beam. In particular, when the monitor used for controlling the irradiation unit 103 by the control unit 7 is used as the charged particle beam information acquisition unit 104 as in the charged particle beam therapy apparatus 1, information related to charged particle beams is acquired. It is possible to acquire information without providing new facilities and the like.
 次に、上記実施形態で説明した荷電粒子線治療装置1を利用した線量分布の評価(患者QA)と同様に、照射ログ情報を使用した線量分布の計算の活用法について説明する。まず、第1の活用法について、図5を参照しながら説明する。上記で説明したように、荷電粒子線治療装置では、照射部103から照射される荷電粒子線に係る情報が荷電粒子線情報取得部104により取得し、当該情報から当該荷電粒子線を被照射体に照射した場合の被照射体における線量分布を線量分布計算部105において計算により求める。この手法を利用して、荷電粒子線治療装置1により患者に対して荷電粒子線を照射した後にその評価を行うことができる。 Next, as in the case of the evaluation (patient QA) of the dose distribution using the charged particle beam treatment apparatus 1 described in the above embodiment, a method of utilizing the calculation of the dose distribution using the irradiation log information will be described. First, the first usage will be described with reference to FIG. As described above, in the charged particle beam therapy apparatus, information related to the charged particle beam irradiated from the irradiation unit 103 is acquired by the charged particle beam information acquisition unit 104, and the charged particle beam is irradiated from the information. The dose distribution in the object to be irradiated in the case of irradiating the light is calculated by the dose distribution calculation unit 105. The evaluation can be performed after the charged particle beam is irradiated to the patient by the charged particle beam treatment apparatus 1 using this method.
 前提として、荷電粒子線治療装置1では、治療計画装置70から取得した治療計画情報に基づいて、制御部102の制御により、照射部103において荷電粒子線を照射する。そして、荷電粒子線治療装置1の荷電粒子線情報取得部104において、照射部103において荷電粒子線を照射した際の荷電粒子線に係る情報を取得する。ここでは、荷電粒子線に係る情報として、照射ログ情報を取得する。これらの手順は先に説明した手順(S01、S03)と同様である。 As a premise, in the charged particle beam treatment apparatus 1, the irradiation unit 103 irradiates a charged particle beam under the control of the control unit 102 based on the treatment plan information acquired from the treatment planning apparatus 70. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam. Here, irradiation log information is acquired as information related to charged particle beams. These procedures are the same as the procedures (S01, S03) described above.
 次に、荷電粒子線治療装置1は、通信部101において、治療日(患者に対して荷電粒子線を照射する日)の患者のCT画像を取得する(S11)。治療日の患者のCT画像は、例えば、荷電粒子線を患者に対して照射する照射室またはその他の部屋に設けられたCT装置を利用して撮像することができる。荷電粒子線治療装置1では、患者のCT画像を撮像した装置から、患者のCT画像に係る画像データを取得する。なお、CT画像の撮像および荷電粒子線治療装置1での取得のタイミングは、照射部103における荷電粒子線の照射よりも前のタイミングでもよい。また、CT画像は少なくとも治療計画の作成時以降の画像であればよいが、治療日またはそれに近い日の画像とすることで、線量分布計算の精度が高められる。 Next, in the communication unit 101, the charged particle beam therapy system 1 acquires a CT image of the patient on the treatment day (day when the patient is irradiated with the charged particle beam) (S11). The CT image of the patient on the treatment day can be imaged, for example, using a CT apparatus provided in an irradiation room or other room that irradiates a charged particle beam to the patient. In the charged particle beam therapy system 1, image data relating to a CT image of a patient is acquired from a device that has captured a CT image of the patient. Note that the timing of imaging of a CT image and acquisition by the charged particle beam therapy apparatus 1 may be timing prior to irradiation of a charged particle beam in the irradiation unit 103. Further, the CT image may be at least an image at the time of creation of the treatment plan, but the accuracy of the dose distribution calculation can be enhanced by using an image of a treatment day or a similar day.
 次に、線量分布計算部105において、照射ログ情報(荷電粒子線に係る情報)に基づいて、患者体内での荷電粒子線の線量分布を計算する(S12)。このとき、線量分布計算部105では、照射ログ情報と、前段階で取得した治療日の患者のCT画像(画像データ)とを利用して、線量分布の計算が行われる。 Next, the dose distribution calculation unit 105 calculates the dose distribution of the charged particle beam in the patient's body based on the irradiation log information (information related to the charged particle beam) (S12). At this time, the dose distribution calculation unit 105 calculates the dose distribution using the irradiation log information and the CT image (image data) of the patient on the treatment day acquired in the previous step.
 その後、線量分布計算部105において、治療計画情報において想定された患者における荷電粒子線の線量分布と、荷電粒子線治療装置1により実際に照射された荷電粒子線から計算される線量分布と、を比較して、荷電粒子線治療装置1による荷電粒子線の照射内容を評価する(S13)。具体的には、治療計画情報において想定された患者における荷電粒子線の線量分布と、治療日の患者に対して実際に照射された荷電粒子線の線量分布と、の一致率等を評価する。 Thereafter, in the dose distribution calculation unit 105, the dose distribution of the charged particle beam in the patient assumed in the treatment plan information, and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 In comparison, the contents of irradiation of the charged particle beam by the charged particle beam therapy system 1 are evaluated (S13). Specifically, the matching rate of the dose distribution of the charged particle beam in the patient assumed in the treatment plan information and the dose distribution of the charged particle beam actually irradiated to the patient on the treatment day is evaluated.
 このように、荷電粒子線治療装置1により実際に照射された荷電粒子線から計算される線量分布を利用して、荷電粒子線の照射内容を評価することができる。治療計画情報に基づいて荷電粒子線治療を行った際の患者体内での線量分布をリアルタイムに計測する手段はない。そのため、従来は、治療日当日の患者のCT画像と、治療計画情報で規定された荷電粒子線の照射条件とに基づいて計算により求められていた。しかしながら、実際に患者に照射された荷電粒子線に係る情報を利用したものではないため、信用性の点で改善の余地があった。これに対して、上記のように、荷電粒子線治療装置1により実際に照射された荷電粒子線から線量分布を計算する構成とすることで、より精度良く荷電粒子線の線量分布を評価することができる。 As described above, the irradiation content of the charged particle beam can be evaluated using the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam therapy system 1. There is no means for measuring the dose distribution in the patient's body when performing charged particle beam therapy based on treatment plan information in real time. Therefore, conventionally, it has been calculated by calculation based on the CT image of the patient on the day of the treatment day and the irradiation condition of the charged particle beam specified in the treatment plan information. However, since the information related to the charged particle beam actually irradiated to the patient is not used, there is room for improvement in terms of credibility. On the other hand, as described above, the dose distribution of the charged particle beam is more accurately evaluated by calculating the dose distribution from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1. Can.
 また、上記の構成とすることで、荷電粒子線治療装置1により実際に照射された荷電粒子線から計算される線量分布の情報は、荷電粒子線治療装置1のトラブル等が発生した場合の評価にも有用である。例えば、荷電粒子線治療装置1の一部に何らかのトラブルがあり、想定した照射条件とは異なる照射条件で荷電粒子線を照射している場合には、荷電粒子線治療装置1により実際に照射された荷電粒子線から計算される線量分布は、治療計画情報に基づく線量分布とは異なる結果となると考えられる。したがって、荷電粒子線治療装置1により実際に照射された荷電粒子線から計算される線量分布と、治療計画情報に基づく線量分布と、を比較することで、装置側のトラブル等に由来して線量分布がどのように変化したかなどを評価することができる、患者に対する影響等も適切に評価をすることができる。 Further, with the above configuration, the information of the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam therapy apparatus 1 is an evaluation in the case where a trouble or the like of the charged particle beam therapy apparatus 1 occurs. It is also useful. For example, in the case where there is some trouble in the charged particle beam treatment apparatus 1 and the charged particle beam is irradiated under the irradiation condition different from the assumed irradiation condition, the charged particle beam treatment apparatus 1 is actually irradiated. The dose distribution calculated from the charged particle beam is considered to be different from the dose distribution based on the treatment plan information. Therefore, by comparing the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 with the dose distribution based on the treatment plan information, the dose derived from the trouble etc. on the apparatus side It is also possible to evaluate how the distribution has changed, and to appropriately evaluate the influence on the patient.
 さらに、上記の手法は、荷電粒子線の照射を複数回繰り返す場合に、特に有用と考えられる。上述したように、治療計画情報に基づいて荷電粒子線の照射を行った際の患者体内での線量分布をリアルタイムに計測する手段はないため、荷電粒子線の照射を複数回繰り返した場合に、照射回毎の患者体内での線量分布がどのようになっているかを評価することもできない。また、そのような状態で複数回の荷電粒子線の照射を繰り返すと、複数回の荷電粒子線の照射による積算での患者体内での線量分布は、治療計画情報で規定された荷電粒子線の照射条件に基づく線量分布の計算結果と乖離している可能性がある。これに対して、上記の手法によれば、荷電粒子線治療装置1により実際に照射された荷電粒子線から線量分布を計算することができるため、照射回毎の患者体内での線量分布をより適切に計算することができ、複数回の荷電粒子線の照射による積算での患者体内での線量分布についても精度良く評価することが可能となる。 Furthermore, the above-mentioned method is considered to be particularly useful when the irradiation of the charged particle beam is repeated a plurality of times. As described above, since there is no means for measuring the dose distribution in the patient's body in real time when the charged particle beam is irradiated based on the treatment plan information, when the charged particle beam irradiation is repeated multiple times, It is also impossible to evaluate how the dose distribution in the patient's body for each irradiation cycle is. In addition, when irradiation of charged particle beams is repeated a plurality of times in such a state, the dose distribution in the patient's body in integration by irradiation of the charged particle beams a plurality of times is that of the charged particle beam specified in the treatment plan information. It may be different from the calculation result of dose distribution based on irradiation conditions. On the other hand, according to the above-mentioned method, since the dose distribution can be calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1, the dose distribution in the patient's body for each irradiation cycle The calculation can be appropriately performed, and it becomes possible to accurately evaluate the dose distribution in the patient's body by integration by multiple irradiation of charged particle beams.
 次に、照射ログ情報を使用した線量分布の計算の第2の活用法について、図6を参照しながら説明する。第2の活用法では、上記で説明したように、荷電粒子線治療装置では、照射部103から照射される荷電粒子線に係る情報が荷電粒子線情報取得部104により取得し、当該情報から当該荷電粒子線を被照射体に照射した場合の被照射体における線量分布を線量分布計算部105において計算により求める手法を利用して、荷電粒子線治療装置1により患者に対して荷電粒子線を照射する前に治療計画の再計算の要否の評価を行うことができる。 Next, a second application of the calculation of dose distribution using the irradiation log information will be described with reference to FIG. In the second utilization method, as described above, in the charged particle beam therapy apparatus, information related to the charged particle beam irradiated from the irradiating unit 103 is acquired by the charged particle beam information acquiring unit 104, and the information is obtained from the information. The charged particle beam treatment apparatus 1 irradiates a patient with a charged particle beam by using the method of calculating the dose distribution in the irradiated body in the case of irradiating the charged particle beam to the irradiated body by the dose distribution calculation unit 105 by calculation. Before doing this, it is possible to evaluate the necessity of recalculation of the treatment plan.
 前提として、荷電粒子線治療装置1では、治療計画装置70から取得した治療計画情報に基づいて、制御部102の制御により、照射部103において荷電粒子線を照射する。そして、荷電粒子線治療装置1の荷電粒子線情報取得部104において、照射部103において荷電粒子線を照射した際の荷電粒子線に係る情報を取得する。ここでは、荷電粒子線に係る情報として、照射ログ情報を取得する。これらの手順は先に説明した手順(S01、S03)と同様である。 As a premise, in the charged particle beam treatment apparatus 1, the irradiation unit 103 irradiates a charged particle beam under the control of the control unit 102 based on the treatment plan information acquired from the treatment planning apparatus 70. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam. Here, irradiation log information is acquired as information related to charged particle beams. These procedures are the same as the procedures (S01, S03) described above.
 次に、荷電粒子線治療装置1は、通信部101において、治療日(患者に対して荷電粒子線を照射する日)の患者のCT画像を取得する(S21)。荷電粒子線治療装置1では、患者のCT画像を撮像した装置から、患者のCT画像に係る画像データを取得する。 Next, in the communication unit 101, the charged particle beam therapy system 1 acquires a CT image of the patient on the treatment day (the day when the patient is irradiated with the charged particle beam) (S21). In the charged particle beam therapy system 1, image data relating to a CT image of a patient is acquired from a device that has captured a CT image of the patient.
 次に、線量分布計算部105において、照射ログ情報(荷電粒子線に係る情報)に基づいて、患者体内での荷電粒子線の線量分布を計算する(S22)。このとき、線量分布計算部105では、照射ログ情報と、前段階で取得した治療日の患者のCT画像(画像データ)とを利用して、線量分布の計算が行われる。線量分布の計算に用いる照射ログ情報としては直近のものが使用する態様とすることができる。すなわち、治療日(患者に対して荷電粒子線を照射する日)またはそれにより近い日の照射ログ情報が線量分布の計算に用いられる。 Next, the dose distribution calculation unit 105 calculates the dose distribution of the charged particle beam in the patient's body based on the irradiation log information (information related to the charged particle beam) (S22). At this time, the dose distribution calculation unit 105 calculates the dose distribution using the irradiation log information and the CT image (image data) of the patient on the treatment day acquired in the previous step. The irradiation log information used to calculate the dose distribution may be in the form of using the latest one. That is, the radiation log information of the treatment day (the day when the patient is irradiated with the charged particle beam) or a day closer thereto is used to calculate the dose distribution.
 その後、線量分布計算部105において、治療計画情報において想定された患者における荷電粒子線の線量分布と、荷電粒子線治療装置1の照射ログ情報を用いて計算される荷電粒子線の線量分布と、を比較して、患者の治療に用いられる治療計画情報の再計算が必要かを評価する(S23)。具体的には、治療計画情報において想定された患者における荷電粒子線の線量分布と、治療日に患者に対して実際に照射した場合の荷電粒子線の線量分布と、の一致率等を評価する。 Thereafter, in the dose distribution calculation unit 105, the dose distribution of the charged particle beam in the patient assumed in the treatment plan information, and the dose distribution of the charged particle beam calculated using the irradiation log information of the charged particle beam treatment apparatus 1; Are compared to evaluate whether it is necessary to recalculate the treatment plan information used to treat the patient (S23). Specifically, the matching rate of the dose distribution of the charged particle beam in the patient assumed in the treatment plan information and the dose distribution of the charged particle beam when actually irradiated to the patient on the treatment day is evaluated. .
 このように、荷電粒子線治療装置1の実際に照射された荷電粒子線から計算される線量分布を利用して、治療計画情報の再計算が必要かどうかを評価することができる。患者の体内の組織の配置等は日によって少しずつ変化する。そのため、当日の患者のCT画像に基づいた治療計画情報の修正等は適宜実施される。しかしながら、治療計画情報の修正が必要かどうかの判断は、これまでは、当日の患者のCT画像と、治療開始前(例えば、治療計画情報作成時)の患者のCT画像との比較を行った結果に基づいて行われていた。一方で、治療計画情報の修正を行わずに荷電粒子線の照射を行った場合に、患者体内での線量分布が治療計画情報において想定したものからどの程度変化するかは評価されていないため、治療計画情報の再計算の要否の評価結果が、荷電粒子線を照射した患者体内での線量分布にどの程度影響しているかが不明であった。これに対して、上記のように、荷電粒子線治療装置1により直近に照射された荷電粒子線の照射ログ情報を利用して線量分布を計算する構成とすることで、治療計画情報に沿って患者に対して荷電粒子線を照射した場合の患者体内での線量分布を評価することができるため、患者のCT画像に基づいて評価する場合と比較して、治療計画情報の再計算を行うかどうかを適切に判断することができる。 In this way, it is possible to use the dose distribution calculated from the actually irradiated charged particle beam of the charged particle beam therapy system 1 to evaluate whether recalculation of the treatment plan information is necessary. The arrangement of tissue in the patient's body changes little by little depending on the day. Therefore, correction or the like of the treatment plan information based on the CT image of the patient on that day is appropriately performed. However, until now, a comparison was made between the CT image of the patient on that day and the CT image of the patient before the start of treatment (eg, at the time of treatment planning information creation), to determine whether correction of the treatment plan information is necessary. It was done based on the results. On the other hand, it has not been evaluated how much the dose distribution in the patient's body changes from what was assumed in the treatment plan information when the charged particle beam is irradiated without correcting the treatment plan information, It was unclear to what extent the evaluation result of the necessity of recalculation of the treatment plan information affected the dose distribution in the patient's body irradiated with the charged particle beam. On the other hand, as described above, the radiation distribution information is calculated using the irradiation log information of the charged particle beam most recently irradiated by the charged particle beam treatment apparatus 1, thereby following the treatment plan information. Since the dose distribution in the patient's body when the patient is irradiated with the charged particle beam can be evaluated, whether to recalculate the treatment plan information as compared to the case of evaluating based on the patient's CT image It can be judged appropriately.
 次に、照射ログ情報を使用した線量分布の計算の第3の活用法について、図7を参照しながら説明する。第3の活用法では、荷電粒子線治療装置1における荷電粒子線の照射方法がスキャニング照射法であり、特に、強度変調粒子線治療(Intensity Modulated Particle Therapy:IMPT)である場合を想定する。IMPTでは、各照射方向(門)から照射する荷電粒子線の線量分布のうち、少なくとも一方向(門)からの荷電粒子線の線量分布が面内で不均一とされている。また、各照射方向(門)から照射する荷電粒子線の線量分布がそれぞれ不均一とされている場合もある。第3の活用法として、このようなIMPTを採用する荷電粒子線治療装置1における患者QAにおいて、照射ログ情報を利用する方法を説明する。 Next, a third application of the dose distribution calculation using the irradiation log information will be described with reference to FIG. In the third application, it is assumed that the irradiation method of the charged particle beam in the charged particle beam treatment apparatus 1 is a scanning irradiation method, and in particular, intensity modulated particle therapy (IMPT). In IMPT, among the dose distributions of charged particle beams irradiated from each irradiation direction (gate), the dose distribution of charged particle beams from at least one direction (gate) is made uneven in the plane. Moreover, the dose distribution of the charged particle beam irradiated from each irradiation direction (gate) may be made uneven respectively. As a third application, a method of using irradiation log information in the patient QA in the charged particle beam therapy system 1 adopting such IMPT will be described.
 従来は、荷電粒子線治療装置1における荷電粒子線の照射方法として、各門から照射する荷電粒子線の線量分布がそれぞれ均一であるSFUD(Single Field Uniform Dose)が用いられている場合が多い。これに対して、IMPTでは、各門において照射する荷電粒子線が不均一となっている。このような構成とすることで、例えば、治療対象の患者体内の腫瘍に対する線量分布を均一としながら、腫瘍以外の領域に対する荷電粒子線の照射線量を減らすことができる。すなわち、腫瘍以外の領域への荷電粒子線の照射線量を抑制できるため、患者への影響を軽減できる方法である。 Conventionally, as the irradiation method of the charged particle beam in the charged particle beam therapy apparatus 1, SFUD (Single Field Uniform Dose) in which the dose distribution of the charged particle beam irradiated from each gate is uniform is often used. On the other hand, in IMPT, the charged particle beam irradiated in each gate is uneven. With such a configuration, for example, it is possible to reduce the irradiation dose of the charged particle beam to the area other than the tumor while making the dose distribution to the tumor in the patient to be treated uniform. That is, since the irradiation dose of the charged particle beam to the area other than the tumor can be suppressed, it is a method capable of reducing the influence on the patient.
 IMPTは、上述したように各門からの荷電粒子線の照射が適切に行われた場合、各門からの荷電粒子線の線量を合算すると、腫瘍部分の線量分布が均一になるように、治療計画として各門での荷電粒子線の線量分布が設定される。しかしながら、IMPTについての患者QAについては、各門からの荷電粒子線の線量を合算した状態での評価を行うことができず、改善の余地があった。具体的には、各門からの荷電粒子線の線量分布は、SUFDでの患者QAと同様に、事前に患者を模擬した均質媒質(例えば、水ファントム等)に対して荷電粒子線治療装置1により荷電粒子線を照射した際の均質媒質中の荷電粒子線の線量分布を測定することで行うことができる。しかしながら、各門からの荷電粒子線の照射を組み合わせた場合に、どのような線量分布となるかの評価を行うことは困難である。 In the IMPT, as described above, when the irradiation of charged particle beams from each portal is properly performed, the treatment of the treatment is performed so that the dose distribution of the tumor part becomes uniform when the charged particle beam doses from each portal are summed up. As a plan, dose distribution of charged particle beam at each gate is set. However, with regard to patient QA for IMPT, evaluation can not be performed in a state in which the doses of charged particle beams from each portal are summed up, and there is room for improvement. Specifically, the dose distribution of the charged particle beam from each portal is similar to the patient QA in SUFD, with respect to a homogeneous medium (for example, water phantom etc.) simulating the patient in advance. It can carry out by measuring the dose distribution of the charged particle beam in the homogeneous medium at the time of irradiation with the charged particle beam. However, it is difficult to evaluate what kind of dose distribution it will be when combining irradiation of charged particle beams from each portal.
 IMPTは、腫瘍部分の線量分布が均一としながら、腫瘍以外の領域に対する荷電粒子線の照射線量が小さくなるように各門の線量が設定されるため、治療計画上においても、腫瘍領域とそれ外の領域での照射線量の差が大きくなる(線量分布が急峻となる)。これは、換言すると、線量分布が少しずれると腫瘍以外の領域に対して高い線量の荷電粒子線が照射される可能性もある。そのため、本来は、より高い精度での患者QAを行うことが求められるが、上述したように、各門からの荷電粒子線の照射を組み合わせた場合に、どのような線量分布となるかの評価を十分に行うことができていなかった。 In IMPT, the dose of each particle is set so that the irradiation dose of the charged particle beam to the non-tumor area is small while the dose distribution of the tumor part is made uniform. The difference in irradiation dose in the region of () becomes large (the dose distribution becomes steep). In other words, if the dose distribution is slightly deviated, high-dose charged particle beams may be irradiated to the area other than the tumor. Therefore, it is originally required to perform patient QA with higher accuracy, but as described above, evaluation of what kind of dose distribution will result when combined irradiation of charged particle beams from each portal is performed Could not do enough.
 これに対して、上記実施形態で説明した荷電粒子線治療装置1による荷電粒子線の照射ログ情報を利用して、各門における荷電粒子線の線量分布を計算し、その結果を組み合わせることで、各門からの荷電粒子線の照射を組み合わせた場合の線量分布を評価することが可能となる。 On the other hand, by using the irradiation log information of the charged particle beam by the charged particle beam treatment apparatus 1 described in the above embodiment, the dose distribution of the charged particle beam in each gate is calculated and the results are combined, It becomes possible to evaluate the dose distribution when the irradiation of charged particle beams from each gate is combined.
 IMPTを行う荷電粒子線治療装置1における線量分布の評価(患者QA)の具体的な手順について、図7を参照しながら説明する。 A specific procedure of evaluation of the dose distribution (patient QA) in the charged particle beam therapy system 1 for performing IMPT will be described with reference to FIG.
 まず、荷電粒子線治療装置1は、通信部101において、治療計画装置70からの治療計画に係る情報(治療計画情報)を取得する(S31)。この治療計画情報に基づいて、荷電粒子線治療装置1では、まず、線量分布計算部105において、治療計画情報に基づいて荷電粒子線を照射した場合の被照射体(均質媒質)中における線量分布の計算を行う(S32)。この線量分布の計算は、門(照射方向)毎に行われる。すなわち、荷電粒子線情報取得部は照射部において複数の方向から照射される荷電粒子線に係る情報を個別に取得し、線量分布計算部105において、線量分布を照射方向毎に計算する。 First, in the communication unit 101, the charged particle beam therapeutic apparatus 1 acquires information (treatment plan information) related to a treatment plan from the treatment planning apparatus 70 (S31). Based on the treatment plan information, in the charged particle beam treatment apparatus 1, first, the dose distribution in the irradiated body (homogeneous medium) when the charged particle beam is irradiated based on the treatment plan information in the dose distribution calculation unit 105. Calculation of (S32). The calculation of the dose distribution is performed for each portal (irradiation direction). That is, the charged particle beam information acquiring unit individually acquires information on charged particle beams irradiated from a plurality of directions in the irradiating unit, and the dose distribution calculating unit 105 calculates the dose distribution for each irradiation direction.
 また、荷電粒子線治療装置1では、治療計画情報に基づいて、制御部102の制御により、照射部103において荷電粒子線を照射する。そして、荷電粒子線治療装置1の荷電粒子線情報取得部104において、照射部103において荷電粒子線を照射した際の荷電粒子線に係る情報を取得する。ここでは、荷電粒子線に係る情報として、照射ログ情報を取得する(S33)。次に、線量分布計算部105において、照射ログ情報(荷電粒子線に係る情報)に基づいて、均質媒質中での線量分布を計算する(S34)。この線量分布の計算は、門(照射方向)毎に行われる。さらに、各門での均質媒質中での線量分布を計算結果を組み合わせて、全門から荷電粒子線を照射した場合の線量分布の合計を計算する(S35)。この計算結果(S34,S35)は、モニタ等で表示することができる。このような構成とすることで、装置の操作者が結果を速やかに確認することができ、利便性が高められる。 Further, in the charged particle beam treatment apparatus 1, the irradiation unit 103 irradiates the charged particle beam under the control of the control unit 102 based on the treatment plan information. Then, in the charged particle beam information acquisition unit 104 of the charged particle beam therapy apparatus 1, the irradiation unit 103 acquires information related to the charged particle beam when irradiated with the charged particle beam. Here, irradiation log information is acquired as information related to charged particle beams (S33). Next, in the dose distribution calculation unit 105, the dose distribution in the homogeneous medium is calculated based on the irradiation log information (information related to the charged particle beam) (S34). The calculation of the dose distribution is performed for each portal (irradiation direction). Furthermore, the dose distribution in the homogeneous medium at each gate is combined with the calculation results to calculate the total of the dose distribution when the charged particle beam is irradiated from all the gates (S35). The calculation results (S34, S35) can be displayed on a monitor or the like. With such a configuration, the operator of the apparatus can quickly confirm the result, and the convenience is enhanced.
 治療計画情報に基づいた均質媒質中での線量分布の計算(S32)と、照射ログ情報の取得(S33)、この情報に基づく均質媒質中での線量分布の計算(S34)および線量分布の合計の算出(S35)と、は互いに独立して行われる。したがって、どちらを先に行ってもよい。 Calculation of dose distribution in homogeneous medium based on treatment plan information (S32), acquisition of irradiation log information (S33), calculation of dose distribution in homogeneous medium based on this information (S34) and total dose distribution The calculation of (S35) is performed independently of each other. Therefore, which one may go first.
 その後、線量分布計算部105において、治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線から計算される線量分布と、に基づいて、治療計画の評価を行う(S36)。ここでの評価としては、例えば、治療計画情報に基づいて計算された線量分布と、荷電粒子線治療装置1により実際に照射される荷電粒子線から計算される線量分布と、の一致率をガンマ解析毎に算出し、門毎に評価することができる。また、全門から荷電粒子線を照射した場合の線量分布の合計の算出の結果(S35)得られた線量分布が、治療計画において想定していた腫瘍に対する線量分布と一致するかなどの評価を行うことができる。なお、評価結果(S36)についても、モニタ等で表示する構成としてもよい。また、線量分布計算部105において、必要に応じて、治療計画情報自体の評価を行ってもよい。 Thereafter, based on the dose distribution calculated based on the treatment plan information and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 in the dose distribution calculation unit 105, the treatment is performed. The plan is evaluated (S36). As the evaluation here, for example, the coincidence rate between the dose distribution calculated based on the treatment plan information and the dose distribution calculated from the charged particle beam actually irradiated by the charged particle beam treatment apparatus 1 is It can be calculated for each analysis and evaluated for each gate. In addition, it is evaluated whether the obtained dose distribution matches the dose distribution for the tumor assumed in the treatment plan, etc. as a result of calculation of the total dose distribution (S35) when the charged particle beam is irradiated from all fields. It can be carried out. The evaluation result (S36) may also be displayed on a monitor or the like. In addition, the dose distribution calculation unit 105 may evaluate the treatment plan information itself as necessary.
 以上により、IMPTを使用する荷電粒子線治療装置1における線量分布の評価(患者QA)に係る一連の処理が終了する。 Thus, a series of processes related to the evaluation of the dose distribution (patient QA) in the charged particle beam therapy system 1 using IMPT is completed.
 このように、IMPTを使用する荷電粒子線治療装置1において、荷電粒子線の照射ログ情報を利用して、各門における荷電粒子線の線量分布を計算し、その結果を組み合わせることで、各門からの荷電粒子線の照射を組み合わせた場合の線量分布を評価することが可能となる。このような構成とすることで、治療計画に基づいて荷電粒子線を照射した場合の線量分布の評価に係る作業を省力化するだけではなく、各門からの荷電粒子線の照射を組み合わせた場合の線量分布を評価することが患者QAの精度が高められる。 Thus, in the charged particle beam therapy system 1 using IMPT, the dose distribution of the charged particle beam at each gate is calculated using the irradiation log information of the charged particle beam, and the results are combined to obtain each gate. It is possible to evaluate the dose distribution in the case of combining the irradiation of the charged particle beam from. With such a configuration, not only labor saving work relating to the evaluation of dose distribution in the case of irradiating the charged particle beam based on the treatment plan but also when the irradiation of the charged particle beam from each portal is combined Assessing the dose distribution of B. can improve the accuracy of patient QA.
 特に、荷電粒子線を被照射体に照射した際の前記照射部の複数の照射方向毎の線量分布の計算結果の合算の結果が表示する構成とすることで、装置の使用者は、複数の照射方向毎の線量分布の計算結果の合算の結果を容易に確認することができる。 In particular, the configuration allows the user of the apparatus to display a plurality of results by combining the calculation results of the dose distribution calculation results for each of the plurality of irradiation directions of the irradiation unit when irradiating the object with the charged particle beam. It is possible to easily confirm the result of the addition of the calculation results of the dose distribution for each irradiation direction.
 以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に限定されず、種々の変更を行うことができる。例えば、上記の荷電粒子線治療装置1における各部の構造は適宜変更することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be made. For example, the structure of each part in the above-described charged particle beam therapy system 1 can be appropriately changed.
 また、上記実施形態では、荷電粒子線治療装置1の線量分布計算部105において、荷電粒子線を被照射体に対応する均質媒質に照射した際の線量分布の計算結果と、治療計画情報に基づいて計算された均質媒質での線量分布と、の一致率を計算すると共に、当該一致率に基づいて、治療計画情報に係る評価を行う場合について説明した。しかしながら、線量分布計算部105は、荷電粒子線を被照射体に対応する均質媒質に照射した際の線量分布の計算のみを行う構成としてもよい。 In the above embodiment, the dose distribution calculation unit 105 of the charged particle beam therapy system 1 calculates the dose distribution when the charged particle beam is irradiated to the homogeneous medium corresponding to the irradiated object and the treatment plan information. The case has been described where the matching rate of the dose distribution in the homogeneous medium calculated as above is calculated, and the evaluation concerning the treatment plan information is performed based on the matching rate. However, the dose distribution calculating unit 105 may be configured to calculate only the dose distribution when the charged particle beam is irradiated to the homogeneous medium corresponding to the irradiation target.
 また、上記実施形態では、荷電粒子線治療装置1において、治療計画情報を取得して、制御部102による制御によって、照射部103が治療計画情報に基づいた荷電粒子線の照射を行う。そして、荷電粒子線情報取得部104において、この荷電粒子線に係る情報を取得し、その情報に基づいて線量分布計算部105において計算を行う場合について説明した。しかしながら、荷電粒子線情報取得部104及び線量分布計算部105を荷電粒子線治療装置1とは独立させた評価装置としてもよい。この場合、図3に示す破線部の機能(荷電粒子線情報取得部104、線量分布計算部105)が独立することとなる。この場合であっても、治療計画情報に基づいて照射される荷電粒子線に係る情報が荷電粒子線情報取得部104により取得され、当該荷電粒子線を均質媒質に照射した場合の均質媒質における線量分布を線量分布計算部105において計算により求める。したがって、従来のように、水ファントム等の均質媒質及び線量分布の計測のための線量計等をセッティングして、荷電粒子線を照射することで線量分布を測定する場合と比較して、セッティング等の作業を省略することができる。したがって、この評価装置においても、治療計画に基づいて荷電粒子線を照射した場合の荷電粒子線の線量分布の評価に係る作業を省力化することが可能となる。 Further, in the above embodiment, in the charged particle beam treatment apparatus 1, the treatment plan information is acquired, and the irradiation unit 103 performs the irradiation of the charged particle beam based on the treatment plan information under the control of the control unit 102. Then, the case has been described where the charged particle beam information acquisition unit 104 acquires the information related to the charged particle beam, and the dose distribution calculation unit 105 performs the calculation based on the information. However, the charged particle beam information acquiring unit 104 and the dose distribution calculating unit 105 may be an evaluation device independent of the charged particle beam therapy system 1. In this case, the functions (the charged particle beam information acquisition unit 104 and the dose distribution calculation unit 105) in the broken line shown in FIG. 3 become independent. Even in this case, the information on the charged particle beam to be irradiated based on the treatment plan information is acquired by the charged particle beam information acquisition unit 104, and the dose in the homogeneous medium when the homogeneous particle is irradiated with the charged particle beam The distribution is calculated by the dose distribution calculation unit 105. Therefore, as in the prior art, setting a homogeneous medium such as a water phantom and a dosimeter etc. for measurement of the dose distribution, as compared to the case where the dose distribution is measured by irradiating charged particle beams, etc. The work of can be omitted. Therefore, also in this evaluation device, it is possible to save the work relating to the evaluation of the dose distribution of the charged particle beam when the charged particle beam is irradiated based on the treatment plan.
 なお、評価装置では、治療計画情報と、当該治療計画情報に基づく荷電粒子線治療装置における荷電粒子線に係る情報を取得できれば、線量分布に係る計算を行うことができる。したがって、評価装置は線量計等を有していなくてもよい。ただし、評価装置は、治療計画情報を取得するための通信部(図3の通信部101に対応する機能を有する通信部)を別途有している態様とすることができる。 In the evaluation device, if it is possible to acquire treatment plan information and information on charged particle beams in the charged particle beam treatment device based on the treatment plan information, calculation relating to dose distribution can be performed. Therefore, the evaluation device may not have a dosimeter or the like. However, the evaluation device may be configured to additionally include a communication unit (a communication unit having a function corresponding to the communication unit 101 in FIG. 3) for acquiring the treatment plan information.
 1…荷電粒子線治療装置、2…照射部、3…加速器、7…制御部、9…照射ノズル、15…患者(被照射体)、70…治療計画装置、101…通信部、102…制御部、103…照射部、104…荷電粒子線情報取得部、105…線量分布計算部。 DESCRIPTION OF SYMBOLS 1 ... Charged particle beam treatment apparatus, 2 ... irradiation part, 3 ... accelerator, 7 ... control part, 9 ... irradiation nozzle, 15 ... patient (irradiated body), 70 ... treatment plan apparatus, 101 ... communication part, 102 ... control 103, an irradiation unit, 104, a charged particle beam information acquisition unit, 105, a dose distribution calculation unit.

Claims (8)

  1.  加速器から出射された荷電粒子線を、治療計画装置によって定められた治療計画情報に基づいて照射する照射部と、
     前記照射部から照射される荷電粒子線に係る情報を取得する荷電粒子線情報取得部と、
     前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を計算する線量分布計算部と、
     を有する、荷電粒子線治療装置。
    An irradiation unit which irradiates the charged particle beam emitted from the accelerator based on the treatment plan information determined by the treatment planning device;
    A charged particle beam information acquisition unit that acquires information related to a charged particle beam irradiated from the irradiation unit;
    A dose distribution calculation unit that calculates a dose distribution when the charged particle beam is irradiated to the irradiation target based on the information related to the charged particle beam acquired by the charged particle beam information acquisition unit;
    A charged particle beam therapy apparatus comprising:
  2.  前記線量分布計算部は、前記荷電粒子線を被照射体に照射した際の線量分布の計算結果と、前記治療計画情報に基づいて計算された前記被照射体での線量分布と、の一致率を算出する、請求項1に記載の荷電粒子線治療装置。 The dose distribution calculation unit is a matching rate between the calculation result of the dose distribution when the object is irradiated with the charged particle beam and the dose distribution of the object calculated based on the treatment plan information. The charged particle beam therapy system according to claim 1, wherein
  3.  前記線量分布計算部は、前記荷電粒子線を被照射体に照射した際の線量分布の計算結果と、前記治療計画情報に基づいて計算された前記被照射体での線量分布と、の一致率に基づいて、前記治療計画情報に係る評価を行う、請求項2に記載の荷電粒子線治療装置。 The dose distribution calculation unit is a matching rate between the calculation result of the dose distribution when the object is irradiated with the charged particle beam and the dose distribution of the object calculated based on the treatment plan information. The charged particle beam therapy system according to claim 2, wherein the evaluation relating to the treatment plan information is performed on the basis of.
  4.  前記荷電粒子線情報取得部は前記照射部内に設けられる、請求項1~3のいずれか一項に記載の荷電粒子線治療装置。 The charged particle beam therapy system according to any one of claims 1 to 3, wherein the charged particle beam information acquisition unit is provided in the irradiation unit.
  5.  前記線量分布計算部は、前記治療計画情報の作成時以降に取得された前記被照射体に係るCT画像を取得し、当該CT画像と、前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報と、に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を計算する、請求項1~4のいずれか一項に記載の荷電粒子線治療装置。 The dose distribution calculating unit acquires a CT image related to the irradiated object acquired after the preparation of the treatment plan information, and the CT image and the charged particle beam acquired by the charged particle beam information acquiring unit 5. The charged particle beam therapy system according to any one of claims 1 to 4, wherein a dose distribution when the charged particle beam is irradiated to the irradiation object is calculated based on the information according to and.
  6.  前記照射部は、加速器から出射された荷電粒子線を複数の方向から照射し、且つ、複数の方向のうちの一の方向において、面内での当該荷電粒子線の線量分布が不均一であり、
     前記荷電粒子線情報取得部は、前記照射部において複数の方向から照射される荷電粒子線に係る情報を個別に取得し、
     前記線量分布計算部は、前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を、前記照射部の照射方向毎に計算する、請求項1~4のいずれか一項に記載の荷電粒子線治療装置。
    The irradiation unit irradiates the charged particle beam emitted from the accelerator from a plurality of directions, and the dose distribution of the charged particle beam in the plane is uneven in one of the plurality of directions. ,
    The charged particle beam information acquisition unit individually acquires information related to charged particle beams irradiated from a plurality of directions in the irradiation unit,
    The dose distribution calculation unit irradiates the irradiation unit with the dose distribution when the charged particle beam is irradiated to the irradiation target based on the information related to the charged particle beam acquired by the charged particle beam information acquisition unit. The charged particle beam therapy system according to any one of claims 1 to 4, which is calculated for each direction.
  7.  前記線量分布計算部は、前記荷電粒子線を被照射体に照射した際の前記照射部の複数の照射方向毎の線量分布の計算結果の合算を計算し表示する、請求項6に記載の荷電粒子線治療装置。 The charged amount according to claim 6, wherein the dose distribution calculating unit calculates and displays the sum of calculation results of dose distributions for each of a plurality of irradiation directions of the irradiation unit when the charged particle beam is irradiated to the irradiation object. Particle therapy equipment.
  8.  治療計画装置によって定められた治療計画情報に基づき荷電粒子線治療装置の照射部から荷電粒子線を照射した際の当該荷電粒子線に係る情報を取得する荷電粒子線情報取得部と、
     前記荷電粒子線情報取得部により取得された荷電粒子線に係る情報に基づいて、前記荷電粒子線を被照射体に照射した際の線量分布を計算する線量分布計算部と、
     を有する、荷電粒子線治療装置の評価装置。
    A charged particle beam information acquisition unit that acquires information related to the charged particle beam when the charged particle beam is irradiated from the irradiation unit of the charged particle beam treatment apparatus based on the treatment plan information determined by the treatment planning apparatus;
    A dose distribution calculation unit that calculates a dose distribution when the charged particle beam is irradiated to the irradiation target based on the information related to the charged particle beam acquired by the charged particle beam information acquisition unit;
    An evaluation apparatus for a charged particle beam therapy apparatus, comprising:
PCT/JP2018/022208 2017-06-19 2018-06-11 Charged particle beam therapy device and evaluation device WO2018235649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119599A JP2020137532A (en) 2017-06-19 2017-06-19 Charged particle beam medical treatment device and evaluation device
JP2017-119599 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018235649A1 true WO2018235649A1 (en) 2018-12-27

Family

ID=64737619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022208 WO2018235649A1 (en) 2017-06-19 2018-06-11 Charged particle beam therapy device and evaluation device

Country Status (2)

Country Link
JP (1) JP2020137532A (en)
WO (1) WO2018235649A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519643A (en) * 2008-05-06 2011-07-14 イオン・ビーム・アプリケーションズ・エス・アー Device and method for 3D dose tracking in radiation therapy
WO2017002231A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Dose distribution calculation apparatus, particle radiotherapy apparatus, and dose distribution calculation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519643A (en) * 2008-05-06 2011-07-14 イオン・ビーム・アプリケーションズ・エス・アー Device and method for 3D dose tracking in radiation therapy
WO2017002231A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Dose distribution calculation apparatus, particle radiotherapy apparatus, and dose distribution calculation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUSA, KEN ET AL.: "7. Quality Assurance for Particle Beam Therapy", RADIOISOTOPES, vol. 64, no. 6, 2015, pages 400 - 405 *
ZHU, X. RONALD ET AL.: "Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy", CANCERS, vol. 7, no. 2, 2015, pages 631 - 647, XP055568058 *

Also Published As

Publication number Publication date
JP2020137532A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US7920675B2 (en) Producing a radiation treatment plan
JP5722559B2 (en) Treatment planning device
EP2313155B1 (en) Device and method for particle therapy monitoring and verification
US9492684B2 (en) Particle therapy system
US9873004B2 (en) Systems for efficient daily constancy check of proton therapy systems
JP6692115B2 (en) Beam position monitoring device and charged particle beam irradiation system
US20060076515A1 (en) Particle beam irradiation apparatus and particle beam irradiation method
US11938342B2 (en) Time optimized radiation treatment
WO2013140856A1 (en) Charged particle irradiation system and irradiation planning device
JP2017209372A (en) Charged particle beam therapy apparatus
CN108815720A (en) Tumour radiotherapy system based on proton imaging precise positioning technology
Broggi et al. Results of a two-year quality control program for a helical tomotherapy unit
JP2008272139A (en) Charged particle beam irradiation system and charged particle beam emission method
WO2018235649A1 (en) Charged particle beam therapy device and evaluation device
CN107427694B (en) Charged particle beam therapy device
US11491349B2 (en) Patient irradiation treatment plan verification system and method
JP7082366B2 (en) Radiation therapy device, bed positioning device, and bed positioning method
WO2010006736A1 (en) Irradiation system for ion beam scanning of moving targets
JP6063982B2 (en) Particle beam therapy system
JP6968761B2 (en) How to verify radiation therapy system and treatment plan data
US10381195B2 (en) Charged particle beam treatment apparatus
WO2018216087A1 (en) Particle beam treatment apparatus
JP6815231B2 (en) Charged particle beam therapy device
JP6063983B2 (en) Particle beam therapy system
Masgrau Optimization of field matching in external photon beam radiation therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP