WO2018216087A1 - Particle beam treatment apparatus - Google Patents

Particle beam treatment apparatus Download PDF

Info

Publication number
WO2018216087A1
WO2018216087A1 PCT/JP2017/019118 JP2017019118W WO2018216087A1 WO 2018216087 A1 WO2018216087 A1 WO 2018216087A1 JP 2017019118 W JP2017019118 W JP 2017019118W WO 2018216087 A1 WO2018216087 A1 WO 2018216087A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
irradiation
current command
treatment
image
Prior art date
Application number
PCT/JP2017/019118
Other languages
French (fr)
Japanese (ja)
Inventor
慶 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/019118 priority Critical patent/WO2018216087A1/en
Priority to TW107110077A priority patent/TW201900236A/en
Publication of WO2018216087A1 publication Critical patent/WO2018216087A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam treatment apparatus for performing treatment by irradiating an affected area such as a tumor with a particle beam.
  • Particle beam therapy uses a device such as an accelerator to accelerate charged particles such as protons or carbon ions to several hundred mega-electron volts, and irradiates the patient with beam-shaped charged particles (particle beams) to treat tumors inside the body.
  • This is a method of treating cancer by giving a dose to the patient.
  • an object including a human body
  • the three-dimensional dose distribution in the object has a characteristic that has a maximum dose peak at one point. This maximum dose peak is called the Bragg peak.
  • the irradiation field irradiated with the particle beam is formed by irradiating the particle beam while controlling the position of the Bragg peak.
  • particle beam therapy using particle beams can irradiate the cancer affected area more intensively than conventional radiotherapy such as X-rays and gamma rays, that is, pinpointing according to the shape of the affected area.
  • conventional radiotherapy such as X-rays and gamma rays, that is, pinpointing according to the shape of the affected area.
  • the second stage when performing patient positioning using a reference image such as a DRR (Digital Reconstructed Radiograph) image generated from a CT image for treatment planning, and an image diagnostic device such as an X-ray TV device or CT device
  • a reference image such as a DRR (Digital Reconstructed Radiograph) image generated from a CT image for treatment planning
  • an image diagnostic device such as an X-ray TV device or CT device
  • the patient's affected part is precisely positioned by translating and rotating the position of the treatment table while confirming the position of the bone and the affected part, using a collation image that is a DR (Digital Radiograph) image taken in (1).
  • DR Digital Radiograph
  • Patent Document 1 describes a radiation therapy system in which an X-ray imaging apparatus and a therapeutic radiation apparatus are installed on a rotating device surrounding a bed that supports a patient.
  • the radiotherapy system of Patent Document 1 is positioned roughly on the bed using markings on the body surface, etc., and then the bed is determined from the amount of misalignment between the target (affected part) of the cone beam CT image and the target of the image at the time of treatment planning It moves to precisely position the patient's target.
  • Patent Document 2 in a gantry-type particle beam therapy system, a patient's affected area is identified from X-ray images taken from two directions, and the patient's affected area is precisely positioned by moving the treatment table. It is described that.
  • the current position of the affected area is confirmed by taking an image (position confirmation process), and the affected area is aligned by translating and rotating the treatment table (position adjustment).
  • the position confirmation step is performed again after the movement, and the position confirmation step and the position adjustment step are repeated a plurality of times until the position of the affected part is matched.
  • the positioning method of the affected part disclosed in Patent Documents 1 and 2 has a problem that X-ray exposure of the patient increases by performing image capturing every time the position of the affected part is finely adjusted.
  • the positioning method of the affected part disclosed in Patent Documents 1 and 2 has a problem that the work time for positioning becomes long by repeating the fine adjustment work, and the treatment throughput decreases.
  • This invention solves the said subject, and aims at providing the particle beam treatment apparatus which can shorten the operation time which positions an affected part, and can improve the throughput of particle beam treatment.
  • a particle beam therapy system includes a beam generator that generates a charged particle beam and accelerates it to a predetermined energy by an accelerator, a beam transport system that transports a charged particle beam accelerated by the beam generator, and a beam transport system.
  • a charged particle beam transported by the X-ray scanning magnet and the Y-direction scanning magnet are scanned in the X and Y directions perpendicular to the beam axis of the charged particle beam and irradiated to the patient, and mounted on the treatment table.
  • An X-ray imaging apparatus pair having two X-ray imaging apparatuses for imaging a placed patient from orthogonal directions, and a current command generation system that generates current commands for the X-direction scanning magnet and the Y-direction scanning magnet Yes.
  • the current command generation system is designed based on a treatment plan and a movement amount for correcting a positional deviation between a reference image serving as a reference of an irradiation region planned in a patient treatment plan and a collation image photographed by an X-ray imaging device pair. Based on the coordinates of the irradiated region, a current command for scanning the charged particle beam in the irradiation region planned in the treatment plan is generated.
  • the particle beam therapy system of the present invention scans a charged particle beam in a planned irradiation region based on a movement amount for correcting a positional deviation between a reference image and a collation image and coordinates of the irradiation region planned in a treatment plan. Since the current command generation system for generating the current command is provided, the work time for positioning the affected part can be shortened, and the throughput of the particle beam therapy can be improved.
  • FIG. 1 is a schematic configuration diagram of a particle beam therapy system according to Embodiment 1 of the present invention. It is a figure which shows the structure of the particle beam irradiation apparatus of FIG. It is a figure which shows arrangement
  • FIG. FIG. 1 is a diagram showing a configuration of a current command generation system of a particle beam therapy system according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram showing a configuration of an irradiation spot coordinate generation unit in FIG.
  • FIG. 3 is a schematic configuration diagram of the particle beam therapy apparatus according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram illustrating a configuration of the particle beam irradiation apparatus of FIG.
  • FIG. 5 is a diagram showing the arrangement of the X-ray imaging apparatus according to the first embodiment of the present invention
  • FIG. 6 is a diagram showing the arrangement of the X-ray imaging apparatus viewed from the upper side of FIG. 5, and FIG.
  • FIG. 8 is a diagram for explaining parameters of the treatment table according to the first embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a conventional irradiation method, and
  • FIG. 10 is a diagram illustrating an irradiation method according to Embodiment 1 of the present invention.
  • a coordinate system based on the treatment room is used.
  • the coordinate system based on the treatment room is a coordinate system based on the treatment room defined in the international standard IEC 61217 of IEC (International Electrotechnical Commission) or a coordinate system based on this.
  • the patient 45 is fixed to a treatment table 65 including a top plate 66 and a driving device 67 that drives the top plate 66, and the treatment table 65 is installed on the turntable 68.
  • the Z axis is set in a direction passing through the turntable center 69 of the turntable 68 and the isocenter If of the particle beam therapy system.
  • the coordinate system with reference to the treatment room is Z with the isocenter If of the particle beam therapy system as the origin and the vertical upper direction as the + direction, Y with the head direction of the patient 45 in FIG. 8 as the + direction, and these Z and Y And X, which forms a right hand system. Further, ⁇ , ⁇ , ⁇ are defined with the clockwise rotation with respect to the + direction of each X, Y, Z as the + direction.
  • the isocenter If is a reference when a charged particle beam (particle beam) is irradiated.
  • the isocenter If is an intersection of the gantry rotation axis and the beam axis of the charged particle beam 31 (see FIG. 4) when the particle beam irradiation device 58 is mounted on the rotating gantry 82 (see FIG. 18). It is a standard. When the particle beam irradiation device 58 is not mounted on the rotating gantry 82, the isocenter If is on the beam axis and is a reference of the irradiation target determined within the adjustable range of the treatment table 65.
  • the irradiation area 70b before positioning of the patient fixed to the treatment table 65 is translated and matched with the irradiation area 70a planned in the treatment plan.
  • the top plate 66 of the treatment table 65 was moved while being rotated. After the irradiation area 70b of the patient 45 was aligned with the planned irradiation area 70a, the charged particle beam was irradiated to the position of the irradiation spot 71 along the irradiation path 72a planned in the treatment plan.
  • the translation of the top plate 66 in the translation direction is a movement in the X direction and the Y direction.
  • the movement of the top plate 66 in the rotational direction is movement in the ⁇ direction, ⁇ direction, and ⁇ direction.
  • the patient 45 fixed to the top plate 66 of the treatment table 65 is first moved to the treatment position, and the irradiation region 70b of the patient before positioning and the treatment.
  • the amount of positional deviation from the irradiation area 70a planned in the plan is calculated. This positional deviation amount is based on the irradiation area 70a.
  • each of the irradiation spots 71 in the planned irradiation area 70 a is irradiated with a charged particle beam at a position moved to the irradiation area 70 b of the patient 45 as in the movement direction 74.
  • the irradiation spot 71 is omitted.
  • the treatment position is the position of the treatment table 65 designated in the treatment plan or the position of the treatment table 65 determined by rehearsal.
  • the planned current command to the scanning magnet power source 37 for exciting the X-direction scanning magnet 32 and the Y-direction scanning magnet 33 for scanning the charged particle beam 31 is applied to the irradiation region 70a.
  • the charged particle beam 31 is scanned and irradiated on the basis of the current command converted by the reference positional deviation amount. Since the displacement amount is used for moving the irradiation region, it can also be referred to as a movement amount.
  • the particle beam therapy apparatus cannot scan the charged particle beam 31 in the ⁇ direction and the ⁇ direction, and the adjustment in the Z direction is complicated. Adjusts by driving the driving device 67 of the treatment table 65. In this manner, by irradiating the charged particle beam 31 to the position moved to the irradiation region 70b of the patient 45, the patient 45 fixed to the treatment table 65 is moved in detail in the X direction, the Y direction, and the ⁇ direction from the treatment position. Irradiation planned in the treatment plan is performed by irradiating the charged particle beam 31 to the position of the irradiation spot 71 along the irradiation route 72b converted from the irradiation route 72a planned in the treatment plan without moving by positioning. Region 70a can be reproduced in the patient.
  • the particle beam therapy system 51 of the first embodiment includes a beam generation device 52, a beam transport system 59, particle beam irradiation devices 58a and 58b, a treatment table 65 (see FIG. 5) on which a patient 45 is placed, and a patient
  • the X-ray imaging apparatus pair (refer FIG. 5) which has two X-ray imaging apparatuses 62a and 62b which image
  • the current command generation system 10 includes a positioning computer 1 and a treatment control computer 20.
  • the beam generator 52 includes an ion source (not shown), a pre-stage accelerator 53, and a charged particle accelerator 54.
  • the particle beam irradiation device 58b is installed in a rotating gantry (see FIG. 18).
  • the particle beam irradiation device 58a is installed in a treatment room having no rotating gantry.
  • the role of the beam transport system 59 is in communication between the charged particle accelerator 54 and the particle beam irradiation devices 58a and 58b.
  • a part of the beam transport system 59 is installed in the rotating gantry, and the part has a plurality of deflecting electromagnets 55a, 55b, and 55c.
  • the charged particle beam 31, which is a particle beam such as a proton beam generated in the ion source, is accelerated by the pre-stage accelerator 53 and is incident on the charged particle accelerator 54 from the incident device 46.
  • the charged particle accelerator 54 is, for example, a synchrotron.
  • the charged particle beam 31 is accelerated to a predetermined energy.
  • the charged particle beam 31 emitted from the emission device 47 of the charged particle accelerator 54 is transported to the particle beam irradiation devices 58a and 58b through the beam transport system 59.
  • the particle beam irradiation devices 58 a and 58 b irradiate the affected part of the patient 45 with the charged particle beam 31.
  • the reference numeral 58 of the particle beam irradiation apparatus is used as a whole, and 58a and 58b are used in the case of distinction.
  • the particle beam irradiation apparatus 58 includes an X-direction scanning electromagnet 32 and a Y-direction scanning electromagnet 33 that scan the charged particle beam 31 in the X direction and the Y direction that are perpendicular to the charged particle beam 31, and a position monitor 34.
  • the treatment management device 38 includes a treatment control computer 20 and a treatment control device 40.
  • the dose data converter 36 includes a trigger generation unit 42, a spot counter 43, and an inter-spot counter 44.
  • the traveling direction of the charged particle beam 31 is the ⁇ Z direction.
  • the treatment control computer 20 of the treatment management device 38 is the same as the treatment control computer 20 of the current command generation system 10.
  • the X-direction scanning electromagnet 32 is a scanning electromagnet that scans the charged particle beam 31 in the X direction
  • the Y-direction scanning electromagnet 33 is a scanning electromagnet that scans the charged particle beam 31 in the Y direction.
  • the position monitor 34 detects beam information for calculating a passing position (center of gravity position) and a size of a beam through which the charged particle beam 31 scanned by the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 passes.
  • the beam data processing device 41 calculates the passing position (center of gravity position) and size of the charged particle beam 31 based on beam information composed of a plurality of analog signals detected by the position monitor 34. Further, the beam data processing device 41 generates an abnormality detection signal indicating an abnormal position or size abnormality of the charged particle beam 31 and outputs this abnormality detection signal to the treatment management device 38.
  • the dose monitor 35 detects the dose of the charged particle beam 31.
  • the treatment management device 38 irradiates the charged particle beam 31 at the affected area of the patient 45 based on the treatment plan data created by the treatment planning device 30 (see FIG. 1) and the irradiation spot coordinates Pi generated by the positioning computer 1.
  • the dose measured by the dose monitor 35 and converted into digital data by the dose data converter 36 reaches the target dose, the charged particle beam 31 is moved to the next irradiation position.
  • the scanning electromagnet power source 37 scans the X direction scanning electromagnet 32 and the Y direction based on a control command (current command Io) that is a control input to the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 output from the treatment management device 38.
  • the set current (excitation current) of the electromagnet 33 is changed.
  • the scanning irradiation method of the particle beam irradiation device 58 is a raster scanning irradiation method in which the charged particle beam 31 is not stopped when the irradiation position of the charged particle beam 31 is changed.
  • a method of moving between spot positions one after another is adopted.
  • the spot counter 43 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is stopped.
  • the spot-to-spot counter 44 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is moving.
  • the trigger generation unit 42 generates a dose expiration signal when the dose of the charged particle beam 31 at the beam irradiation position reaches the target irradiation dose.
  • the X-ray imaging apparatuses 62a and 62b for imaging the affected part of the patient 45 are arranged at positions orthogonal to each other.
  • the X-ray imaging apparatus 62a includes an X-ray tube 63a that emits X-rays and an X-ray detector 64a that detects X-rays.
  • the irradiation ports 61a and 61b shown in FIG. 5 are the tip portions of the two particle beam irradiation apparatuses 58 arranged in the treatment room.
  • FIG. 5 shows an example of a treatment room in which two irradiation ports 61 a and 61 b are arranged and the treatment table 65 is installed on the turntable 68.
  • the X-ray tube 63a is disposed inside the irradiation port 61a, and the X-ray tube 63b is disposed inside the irradiation port 61b.
  • the X-ray imaging devices 62a and 62b are placed on the beam axis through which the charged particle beam 31 not scanned by the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33 passes. Is arranged.
  • the X-ray X-ray emission axis 85a emitted from the X-ray tube 63a of the X-ray imaging apparatus 62a and the X-ray X-ray emitted from the X-ray tube 63b of the X-ray imaging apparatus 62b are used.
  • the radial axes 85b are arranged so as to be orthogonal to each other.
  • the current command generation system 10 is an X-ray image that is an alignment reference created by the treatment planning device 30 or a reference image Imr that is an X-ray image that is an alignment reference imaged during rehearsal, and a current image that is captured for alignment. Based on the collation image Imc that is an X-ray image of the patient position, a current command Io for the X-direction scanning electromagnet 32 that scans the charged particle beam 31 and the scanning electromagnet power source 37 that excites the Y-direction scanning magnet 33 is generated.
  • the X-ray image serving as the alignment reference created by the treatment planning apparatus 30 is a DRR image generated from a treatment planning CT image, for example.
  • the positioning computer 1 includes a collation image input unit 2 that inputs a collation image Imc, a reference image input unit 3 that inputs a reference image Imr, and a movement amount of an irradiation field (irradiation region) based on the collation image Imc and the reference image Imr.
  • Am that is, a movement amount calculation unit 4 that calculates a movement amount Am of the irradiation spot 71, and an irradiation spot that generates an irradiation spot coordinate Pi obtained by correcting the planned spot coordinate Pp of the treatment plan generated by the treatment planning apparatus 30 by the movement amount Am.
  • Coordinate generation unit 5 movement amount output unit 6 that outputs movement amount Am to treatment table 65, irradiation spot coordinate output unit 7 that outputs irradiation spot coordinates Pi to treatment control computer 20, and input devices such as a keyboard and a mouse 24, an operation input unit 8 for inputting an operation signal from the input device 24, a display device 25, and a display unit 9 for displaying an alignment screen or the like on the display device 25.
  • the treatment control computer 20 outputs an irradiation spot coordinate input unit 21 that inputs the irradiation spot coordinate Pi, a current command generation unit 22 that generates a current command Io from the irradiation spot coordinate Pi, and outputs the current command Io to the scanning electromagnet power source 37.
  • the treatment control computer 20 includes an input device 24 and a display device 25 as in the positioning computer 1, but only the main part is shown in FIG.
  • the irradiation spot coordinate generation unit 5 includes a planned spot coordinate input unit 11 that inputs the planned spot coordinate Pp, a movement amount input unit 12 that inputs the movement amount Am, and corrects the planned spot coordinate Pp by the movement amount Am. And a coordinate conversion unit 13 that converts the coordinates Pi.
  • the irradiation spot coordinate generation unit 5 generates a corrected irradiation spot coordinate Pi that is a coordinate for executing the irradiation of the charged particle beam 31, that is, a correction coordinate, and can also be referred to as an irradiation execution coordinate generation unit.
  • Each of the positioning computer 1 and the treatment control computer 20 includes a processor 98 and a memory 99 shown in FIG. FIG.
  • FIG. 13 is a diagram illustrating a hardware configuration for realizing the functional blocks of the positioning computer and the treatment control computer of FIG.
  • Functions of the functional blocks of the positioning computer 1 and the treatment control computer 20 are realized by the processor 98 and the memory 99.
  • the planned spot coordinate input unit 11, the movement amount input unit 12, and the coordinate conversion unit 13 are realized when the processor 98 mounted on the positioning computer 1 executes a program stored in the memory 99.
  • the irradiation spot coordinate input unit 21, the current command generation unit 22, and the current command output unit 23 of the treatment control computer 20 execute a program stored in the memory 99 by the processor 98 mounted on the treatment control computer 20. Is realized. A plurality of processors 98 and a plurality of memories 99 may cooperate to execute the above function.
  • FIG. 11 is a flowchart showing the positioning operation according to Embodiment 1 of the present invention
  • FIG. 12 is a flowchart showing details of step S004 in FIG. 14 and 15 are diagrams showing alignment screens of the positioning computer of FIG.
  • step S001 the treatment table 65 is moved to the initial position P0 (initial position arranging step).
  • the initial position P0 is a position determined as an apparatus so that the patient 45 can be easily placed on the treatment table 65.
  • the ⁇ direction is controlled by the turntable 68, and the X direction, Y direction, Z direction, ⁇ direction, and ⁇ direction are controlled by the driving device 67. Is done.
  • FIG. 16 is a diagram showing another treatment table according to the first embodiment of the present invention.
  • the position of the top plate 66 and the position of the affected part of the patient 45 are defined by six parameters of the treatment table 65.
  • the initial position P0 is expressed as (x0, y0, z0, ⁇ 0, ⁇ 0, ⁇ 0) using six parameters. ⁇ 0, ⁇ 0, and ⁇ 0 are each zero.
  • z0 is a coordinate of a position as close as possible to the floor of the treatment room or the turntable 68 so that the patient 45 can be easily placed on the top plate 66 of the treatment table 65.
  • x0 and y0 are the positions where the patient 45 is unlikely to contact the irradiation ports 61a and 61b, that is, the coordinates of the retracted position.
  • step S002 the patient 45 is placed on the treatment table 65 and fixed (patient fixing step). More specifically, the patient 45 is fixed to the top plate 66 of the treatment table 65 by a fixing portion.
  • step S003 the treatment table 65 is moved to the treatment position P1 (treatment position placement step).
  • the treatment position P1 is a treatment table position designated by the treatment plan or a treatment table position determined by rehearsal.
  • the treatment position P1 is expressed as (x1, y1, z1, ⁇ 1, ⁇ 1, ⁇ 1) using six parameters.
  • step S004 calculates the movement amount Am (movement amount calculation step). Details of the movement amount calculation step will be described with reference to the flowchart of FIG.
  • step S005 the irradiation spot coordinate generation unit 5 generates irradiation spot coordinates Pi based on the movement amount Am and the planned spot coordinates Pp (irradiation spot coordinate generation step).
  • the irradiation spot coordinate Pi generated by the irradiation spot coordinate generation unit 5 is output to the treatment control computer 20 by the irradiation spot coordinate output unit 7.
  • the irradiation spot coordinate input unit 21 of the treatment control computer 20 inputs the irradiation spot coordinate Pi and outputs the irradiation spot coordinate Pi to the current command generation unit 22.
  • the current command generation unit 22 converts the irradiation spot coordinate Pi into a current command Io using a conversion method of a conventional method. Conventional conversion methods have been established, and any conversion method may be used.
  • the current command output unit 23 outputs a current command Io to the scanning electromagnet power source 37.
  • the scanning electromagnet power source 37 is based on the control command (current command Io) that is a control input to the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 output from the treatment management device 38.
  • the setting current (excitation current) of the 32 and Y direction scanning electromagnets 33 is changed, and the charged particle beam 31 is irradiated so as to form an irradiation field based on the current command Io.
  • the particle beam therapy system 51 of the first embodiment includes the current command generation system 10, the planned spot coordinates Pp of the plurality of irradiation spots 71 along the irradiation path 72a formed in the irradiation region 70a planned in the treatment plan and An irradiation spot coordinate Pi is generated based on the movement amount Am, and the charged particle beam 31 can be irradiated along the irradiation path 72b to the position of the irradiation spot coordinate Pi.
  • the particle beam therapy system 51 according to the first embodiment plans the patient 45 fixed to the treatment table 65 from the treatment position P1 by the treatment plan without performing detailed positioning in the X, Y, and ⁇ directions.
  • the irradiation region 70a planned in the treatment plan can be reproduced in the patient.
  • step S011 the positioning computer 1 reads the reference image Imr and displays the reference image Imr on the alignment screen 75 of the display device 25 (reference image display step). More specifically, the reference image input unit 3 inputs the reference image Imr, and displays the reference image Imr on the alignment screen 75 of the display device 25 via the display unit 9.
  • step S012 the collation image Imc is imaged using the X-ray imaging devices 62a and 62b, and the collation image Imc is displayed on the alignment screen 75 of the display device 25 via the display unit 9 (collation image display step). . More specifically, the collation image input unit 2 inputs the collation image Imc, and displays the collation image Imc on the alignment screen 75 of the display device 25 via the display unit 9.
  • the alignment screen 75 shown in FIG. 14 is a screen on which the reference image display process and the collation image display process are completed.
  • the collation image Imc includes a collation image 15 a photographed from the front and a collation image 15 b photographed from the side, and these two are displayed on the alignment screen 75.
  • the collation image 15a is an image photographed by the X-ray imaging apparatus 62a of FIG. 5
  • the collation image 15b is an image photographed by the X-ray imaging apparatus 62b arranged orthogonal to the X-ray imaging apparatus 62a.
  • the reference image Imr includes a reference image 14 a generated for the front side and a reference image 14 b generated for the side surface, and these two are displayed on the alignment screen 75.
  • step S013 the positioning computer 1 operates, that is, moves the position of the collation image Imc so that the reference image Imr and the collation image Imc coincide with each other according to an instruction from the operator (collation image manipulation step).
  • the operator turns on the operation button 77b displayed on the alignment screen 75 with the mouse of the input device 24 or the like.
  • the operation button 77b is an operation button for setting the alignment screen to the superimposing mode.
  • the alignment screen in the superposition mode is the alignment screen 76 shown in FIG.
  • the matching image 15c and the matching image 15d correspond to the matching image 15a and the matching image 15b of the matching image Imc.
  • the image displayed by superimposing the reference image Imr and the collation image Imc on the display area of the reference image is an image obtained by subtracting the pixel values of the reference image Imr and the collation image Imc as an image.
  • Subtraction is a well-known technique for image processing and will not be described in detail here.
  • the superposed image of the reference image Imr and the collation image Imc that has undergone subtraction becomes an image with a lot of unevenness when the amount of deviation is large, and becomes a flat image with little unevenness when the amount of deviation is small.
  • the operator sets the operation amount Aop of the image with the mouse of the input device 24 using the operation buttons 77d, 77e, 77f, 77g, 77h, 77i, 77j, and 77k.
  • the operation input unit 8 of the positioning computer 1 inputs the operation amount Aop of the image, and the display unit 9 displays the collation image Imc that has been moved by the operation amount Aop of the image on the alignment screen 76. That is, when the operator sets the image operation amount Aop, the collation image Imc moves according to the designated image operation amount Aop.
  • the position of the verification image Imc is the position of the verification image Imc that the operator visually changes so that the positions of the bones and organs of the reference image Imr and the verification image Imc match, that is, the verification image position P3.
  • the collation image position P3 can be expressed as (x3, y3, z3, 0, 0, ⁇ 3) using six parameters. There are four parameters that can be manipulated as a collation image: the X direction, the Y direction, the Z direction, and the ⁇ direction, and the ⁇ direction and the ⁇ direction cannot be manipulated. For this reason, it is expressed as (x3, y3, z3, ⁇ 3) as appropriate using four parameters capable of operating the collation image position P3.
  • the collation image position is also denoted as P3 (x3, y3, z3, ⁇ 1) by appropriately continuing P3 and parameter notation.
  • the operation button 77d is an operation button for setting an operation amount in the + ⁇ direction
  • the operation button 77e is an operation button for setting an operation amount in the ⁇ direction.
  • the operation amount in the ⁇ direction is displayed on the numerical display 78a.
  • the operation button 77f is an operation button for setting an operation amount in the + Y direction
  • the operation button 77g is an operation button for setting an operation amount in the -Y direction.
  • the operation amount in the Y direction is displayed on the numerical value display 78b.
  • the operation button 77h is an operation button for setting an operation amount in the -X direction
  • the operation button 77i is an operation button for setting an operation amount in the + X direction.
  • the operation amount in the X direction is displayed on the numerical value display 78c.
  • the operation button 77j is an operation button for setting an operation amount in the -Z direction
  • the operation button 77k is an operation button for setting an operation amount in the + Z direction.
  • the operation amount in the Z direction is displayed on the numerical value display 78d.
  • the operation in the Z direction corresponds to enlargement or reduction of the collation image Imc.
  • the operation in + Z direction enlarges the collation image Imc, and the operation in ⁇ Z direction reduces the collation image Imc.
  • step S014 the positioning computer 1 calculates the movement amount Am from the operation amount Aop performed on the collation image Imc, and displays this movement amount Am on the alignment screen 76 (movement amount calculation step). More specifically, the movement amount calculation unit 4 calculates the movement amount Am from the operation amount Aop, and displays this movement amount Am on the movement amount display 79 of the alignment screen 76 via the display unit 9.
  • the movement amount Am can be expressed by a reciprocal parameter obtained by multiplying each parameter of the operation amount Aop by -1.
  • the manipulated variable Aop can be expressed as ( ⁇ x, ⁇ y, ⁇ z, 0, 0, ⁇ ) using six parameters.
  • the operation amount Aop is appropriately expressed as ( ⁇ x, ⁇ y, ⁇ z, ⁇ ) using four operable parameters. Further, the operation amount is also expressed as Aop ( ⁇ x, ⁇ y, ⁇ z, ⁇ ) as appropriate.
  • the movement amount Am can be expressed as ( ⁇ x, ⁇ y, ⁇ z, 0, 0, ⁇ ) using six parameters. In addition, the moving amount Am is appropriately expressed as ( ⁇ x, ⁇ y, ⁇ z, ⁇ ) using four operable parameters. Further, the amount of movement is also expressed as Am ( ⁇ x, ⁇ y, ⁇ z, ⁇ ) as appropriate.
  • the movement amount (rotation angle) is changed on the operation panel (not shown) of the treatment table 65. Therefore, the movement amount Am that moves the treatment table 65 can be expressed as ( ⁇ x, ⁇ y, ⁇ z, ⁇ , ⁇ , ⁇ ).
  • the movement amounts in the ⁇ direction and ⁇ direction are the same as the four parameters that can be operated in the collation image operation process.
  • step S015 the operator determines whether or not the movement amount Am is within an allowable range (operation continuation necessity determination step).
  • the work continuation necessity determination step when it is determined that the movement amount Am is not within the allowable range, that is, when it is determined that continuation is necessary, the process proceeds to step S016. If it is determined in the work continuation necessity determination step that the amount of movement Am is within the allowable range, that is, if it is determined that continuation is not required, the process is terminated.
  • the displacement in the ⁇ direction and ⁇ direction that cannot be operated with respect to the collation image Imc determines whether or not the operator is subjectively within the allowable range from the degree of overlap between the reference image Imr and the collation image Imc.
  • step S016 the positioning computer 1 transmits the movement amount Am ( ⁇ x, ⁇ y, ⁇ z, none, none, ⁇ ) to the treatment table 65 and the turntable 68.
  • a command is issued to the driving device so as to move the top plate 66 and the turntable 68 by each value of the movement amount Am (treatment table moving step).
  • the displacement in the ⁇ direction and ⁇ direction that cannot be operated with respect to the collation image Imc is determined by the operator subjectively determining the amount of movement (rotation angle) from the degree of overlap between the reference image Imr and the collation image Imc.
  • the amount of movement (rotation angle) is changed on the operation panel (not shown).
  • the validity of the rotation angles in the ⁇ direction and ⁇ direction is determined by the collation image Imc that is taken after shifting.
  • step S016 After the execution of step S016, the process returns to step S012, the steps S012 to S015 are executed, and the movement amount calculation step is executed until it is determined in step S015 that the movement amount Am is within the allowable range.
  • step S012 after step S016, the normal mode alignment screen 75 which is the initial setting is changed to the superposition mode alignment screen 76, and the degree of overlap between the reference image Imr and the collation image Imc is confirmed. At this time, if it is not necessary to operate the position of the collation image Imc, steps S013 and S014 are omitted, and the work continuation necessity determination step of step S015 is executed.
  • step S015 In the step of determining whether or not to continue the work in step S015, if it is determined that the movement amount Am is within the allowable range, that is, if it is determined that continuation is not possible, determination of the superimposed image of the reference image Imr and the matching image Imc at that time Can also be referred to as confirmation determination of the movement amount Am. Normally, even when the treatment table moving process of step S016 is executed, it is determined that the movement amount Am is within the allowable range in the work continuation necessity determination process of step S015 by executing the treatment table moving process once.
  • the operation button 77c is an operation button for ending the alignment screen.
  • the operation button 77a is an operation button for setting the alignment screen to the normal mode.
  • the current command generation system 10 calculates a movement amount Am that corrects a deviation between the reference image Imr and the collation image Imc, and uses the treatment plan planned spot coordinates Pp generated by the treatment planning apparatus 30 as the movement amount Am.
  • a control command (current command Io) which is a control input for changing the set current (excitation current) of the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33, is generated based on the irradiation spot coordinates Pi corrected only.
  • the particle beam therapy system 51 of the first embodiment changes the set current (excitation current) of the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33 based on this control command (current command Io) to change the charged particle beam 31. Since the affected area of the patient 45 is irradiated, the irradiation spot 71 is moved along the irradiation path 72b converted from the irradiation path 72a planned in the treatment plan without moving by detailed positioning in the X direction, the Y direction, and the ⁇ direction. The irradiation region 70a planned in the treatment plan can be reproduced in the patient 45 by irradiating the charged particle beam 31 to the position.
  • the particle beam therapy system 51 does not move the treatment table 65 by detailed positioning in the X direction, the Y direction, and the ⁇ direction, thereby reducing the work time for positioning the affected part of the patient 45. And the throughput of particle beam therapy can be improved.
  • FIG. 17 is a diagram showing another arrangement of the X-ray imaging apparatus according to Embodiment 1 of the present invention
  • FIG. 18 is a diagram showing still another arrangement of the X-ray imaging apparatus according to Embodiment 1 of the present invention. .
  • FIG. 17 is an example in which X-ray imaging apparatuses 62a and 62b are arranged at positions orthogonal to each other in a treatment room having one irradiation port
  • FIG. 18 is an X-ray imaging apparatus 62a at positions orthogonal to the rotating gantry 82. This is an example in which 62b is arranged.
  • an X-ray tube 63 a is arranged inside the ceiling 81.
  • a cylindrical rotating frame 83 on which the particle beam irradiation device 58 and the deflecting electromagnets 55a, 55b, and 55c are mounted is rotatably supported by a roller 84, and the roller 84 is rotated by a driving device (not shown). It is configured to be able to rotate 360 degrees.
  • An irradiation port 61 that is a tip portion of the particle beam irradiation apparatus 58 is disposed in a treatment space where the treatment table 65 is installed.
  • the X-ray tube 63a is disposed inside the irradiation port 61, and the X-ray tube 63b is disposed at a position orthogonal to the gantry rotation axis including the isocenter If and the X-ray radiation axis 85a of the X-ray imaging apparatus 62a. . Since the X-ray imaging apparatuses 62a and 62b are arranged in this way, the X-ray radiation axis 85b of the X-ray imaging apparatus 62b is orthogonal to the X-ray radiation axis 85a of the X-ray imaging apparatus 62a.
  • the particle beam therapy system 51 generates the charged particle beam 31 and accelerates it to a predetermined energy by the accelerator (charged particle accelerator 54), and the beam generator 52.
  • a beam transport system 59 that transports the accelerated charged particle beam 31, and the charged particle beam 31 transported by the beam transport system 59 is perpendicular to the beam axis of the charged particle beam 31 by the X-direction scanning magnet 32 and the Y-direction scanning magnet 33.
  • a particle beam irradiation device 58 that scans in the X and Y directions and irradiates the patient 45, and two X-ray imaging devices 62a and 62b that image the patient 45 placed on the treatment table 65 from a direction orthogonal to each other.
  • a pair of X-ray imaging devices and a current command generation system 10 that generates a current command Io for the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33. That.
  • the current command generation system 10 according to the first embodiment corrects misalignment between the reference image Imr serving as the reference of the irradiation region 70a planned in the treatment plan for the patient 45 and the collation image Imc taken by the X-ray imaging apparatus pair.
  • Current command Io for scanning the charged particle beam 31 in the irradiation area 70a planned in the treatment plan based on the movement amount Am to be performed and the coordinates (planning spot coordinates Pp) of the irradiation area 70a planned in the treatment plan. It is characterized by generating.
  • the particle beam therapy system 51 does not move by detailed positioning in the X direction, the Y direction, and the ⁇ direction, so that the work time for positioning the affected part of the patient 45 can be shortened.
  • the throughput of particle beam therapy can be improved.
  • the scanning irradiation method of the particle beam irradiation apparatus 58 has been described as the raster scanning irradiation method in which the beam irradiation positions move one after another between the spot positions as in the spot scanning irradiation method. However, the scanning is performed without stopping.
  • the present invention can also be applied to a scanning irradiation method or a spot scanning irradiation method.
  • the charged particle beam 31 may be irradiated along the irradiation path 72b obtained by correcting the irradiation path 72a planned in the treatment plan with the movement amount Am.
  • the present invention can be combined with each other within the scope of the present invention, and each embodiment can be appropriately modified or omitted.
  • X-ray imaging device 65 ... Treatment table, 68 ... Turntable, 70a, 70b ... Irradiation area, 71 ... Irradiation spot 75, 76 ... alignment screen, 77a, 77b, 77c, 77d, 77e, 77f, 77g, 77h, 77i, 77j, 77k ... operation buttons, 78a, 78b, 7 c, 78d ... numeric display, Am ... movement amount, Aop ... operation amount, Io ... current command, Imc ... collation image, Imr ... reference image, Pi ... irradiation spot position (corrected coordinates), Pp ... Planning spot position

Abstract

The purpose of the present invention is to shorten an operation time for determining the position of an affected part and achieve the improvement in throughput of particle beam treatment. A particle beam treatment apparatus (51) of the present invention is provided with: a pair of X-ray imaging apparatuses which includes two X-ray imaging apparatuses (62a, 62b) that image a patient (45) placed on a treatment table (65) from a direction perpendicular to the patient (45); and a current command generation system (10) which generates current commands (Io) of an X-directional scanning electromagnet (32) and a Y-directional scanning electromagnet (33). The present invention is characterized in that the current command generation system (10) generates the current commands (Io) for scanning an irradiation region (70a), which is planned in a treatment plan, with a charged particle beam (31), on the basis of coordinates (planned spot coordinates (Pp)) of the irradiation region (70a) planned in the treatment plan and a movement amount (Am) which corrects a displacement between a reference image (Imr), which is a reference of the irradiation region (70a) planned in the treatment plan for the patient (45), and a collation image (Imc) imaged by the pair of X-ray imaging apparatuses.

Description

粒子線治療装置Particle beam therapy system
 本発明は、粒子線を腫瘍など患部に照射して治療を行う粒子線治療装置に関するものである。 The present invention relates to a particle beam treatment apparatus for performing treatment by irradiating an affected area such as a tumor with a particle beam.
 近年、がん治療を目的とした放射線治療装置では、陽子や重イオン等の粒子線を用いたがん治療装置(特に、粒子線治療装置と呼ばれる)の開発や建設が進められている。粒子線治療は、加速器等の機器を用いて陽子または炭素イオンなどの荷電粒子を数百メガ電子ボルト程度まで加速し、ビーム状の荷電粒子(粒子線)を患者に照射することで体内の腫瘍に線量を付与し、がんを治療する方法である。一般的に、加速器で加速された粒子線を物体(人体含む)に照射した場合、物体内での三次元線量分布はある一点で線量最大ピークを持つという特性がある。この線量最大ピークをブラッグピーク(Bragg Peak)と呼ぶ。粒子線が照射される照射野は、ブラッグピークの位置を制御して粒子線が照射することで形成される。周知のとおり、粒子線を用いた粒子線治療はX線、ガンマ線等の従来の放射線治療に比べて、がん患部に集中的に照射することができ、すなわち、患部の形状に合わせてピンポイントで粒子線を照射することができ、正常細胞に影響を与えずに治療することが可能である。 In recent years, development and construction of cancer treatment devices (particularly referred to as particle beam treatment devices) using particle beams such as protons and heavy ions have been promoted in radiotherapy devices intended for cancer treatment. Particle beam therapy uses a device such as an accelerator to accelerate charged particles such as protons or carbon ions to several hundred mega-electron volts, and irradiates the patient with beam-shaped charged particles (particle beams) to treat tumors inside the body. This is a method of treating cancer by giving a dose to the patient. In general, when an object (including a human body) is irradiated with a particle beam accelerated by an accelerator, the three-dimensional dose distribution in the object has a characteristic that has a maximum dose peak at one point. This maximum dose peak is called the Bragg peak. The irradiation field irradiated with the particle beam is formed by irradiating the particle beam while controlling the position of the Bragg peak. As is well known, particle beam therapy using particle beams can irradiate the cancer affected area more intensively than conventional radiotherapy such as X-rays and gamma rays, that is, pinpointing according to the shape of the affected area. Can be irradiated with a particle beam and can be treated without affecting normal cells.
 粒子線治療では、粒子線をがんなどの患部に高精度に照射することが重要である。その為、患者は粒子線治療時には治療室(照射室)の駆動式治療台に対して位置がずれないように、固定具等を用いて固定される。がんなどの患部を放射線照射範囲に精度よく位置決めする為に、二段階の位置決めを行う。第一段階として、レーザポインタなどを利用した患者の粗据付けなどのセッティングを行い、治療計画用CT(Computed Tomography)撮影時の治療台の位置に移動させる荒い位置決めを行う。その後、第二段階として、治療計画用CT画像から生成したDRR(Digital  Reconstructed Radiograph)画像等である基準画像と、X線TV装置、CT装置等の画像診断装置を使用して患者位置決めを行うときに撮影したDR(Digital  Radiograph)画像である照合画像を使用し、骨及び患部の位置を確認しながら、治療台の位置を並進及び回転させて患者の患部の精密な位置決めを行っている。 In particle beam therapy, it is important to irradiate the affected area such as cancer with high accuracy. For this reason, the patient is fixed using a fixture or the like so that the position does not shift with respect to the driving treatment table in the treatment room (irradiation room) during the particle beam treatment. In order to accurately position the affected area such as cancer in the radiation irradiation range, two-stage positioning is performed. As a first step, rough positioning is performed by moving the patient to the position of the treatment table during CT (Computed Tomography) imaging for treatment planning by performing settings such as rough installation of the patient using a laser pointer or the like. After that, as the second stage, when performing patient positioning using a reference image such as a DRR (Digital Reconstructed Radiograph) image generated from a CT image for treatment planning, and an image diagnostic device such as an X-ray TV device or CT device The patient's affected part is precisely positioned by translating and rotating the position of the treatment table while confirming the position of the bone and the affected part, using a collation image that is a DR (Digital Radiograph) image taken in (1).
 特許文献1には、患者を支持するベッドを取り囲む回転装置に、X線撮影装置、治療放射線装置が設置された放射線治療システムが記載されている。特許文献1の放射線治療システムは、体表のマーキング等を用いてベッドに荒く位置決めされた後に、コーンビームCT画像の標的(患部)と治療計画時の画像の標的との位置ずれ量からベッドを移動して患者の標的の精密な位置決めを行っている。また、特許文献2には、ガントリ型の粒子線治療装置において、2方向から撮像されたX線画像から患者の患部位置を特定し、治療台を移動させて患者の患部の精密な位置決めを行っていることが記載されている。 Patent Document 1 describes a radiation therapy system in which an X-ray imaging apparatus and a therapeutic radiation apparatus are installed on a rotating device surrounding a bed that supports a patient. The radiotherapy system of Patent Document 1 is positioned roughly on the bed using markings on the body surface, etc., and then the bed is determined from the amount of misalignment between the target (affected part) of the cone beam CT image and the target of the image at the time of treatment planning It moves to precisely position the patient's target. In Patent Document 2, in a gantry-type particle beam therapy system, a patient's affected area is identified from X-ray images taken from two directions, and the patient's affected area is precisely positioned by moving the treatment table. It is described that.
特開2015-29793号公報(0024段~0036段、0044段、図1A、図2)Japanese Patent Laying-Open No. 2015-29793 (0024 to 0036, 0044, FIGS. 1A and 2) 国際公開WO2013/065139A1(0023段、図5)International Publication WO2013 / 065139A1 (Step 0023, FIG. 5)
 特許文献1、2に開示された患部の位置決め方法では、画像撮影を行って患部の現在位置を確認し(位置確認工程)、治療台を並進及び回転させて患部の位置合わせを行い(位置調整工程)、移動後に再度位置確認工程を行い、患部の位置が合うまで位置確認工程及び位置調整工程を複数回繰り返す。このため、特許文献1、2に開示された患部の位置決め方法は、患部の位置の微調整のたびに画像撮影を行うことで、患者のX線被爆が増えるという問題があった。更に、特許文献1、2に開示された患部の位置決め方法は、微調整作業を繰り返すことで位置決めを行う作業時間が長くなり、治療のスループットが低下するという問題があった。 In the method for positioning the affected area disclosed in Patent Documents 1 and 2, the current position of the affected area is confirmed by taking an image (position confirmation process), and the affected area is aligned by translating and rotating the treatment table (position adjustment). Step), the position confirmation step is performed again after the movement, and the position confirmation step and the position adjustment step are repeated a plurality of times until the position of the affected part is matched. For this reason, the positioning method of the affected part disclosed in Patent Documents 1 and 2 has a problem that X-ray exposure of the patient increases by performing image capturing every time the position of the affected part is finely adjusted. Further, the positioning method of the affected part disclosed in Patent Documents 1 and 2 has a problem that the work time for positioning becomes long by repeating the fine adjustment work, and the treatment throughput decreases.
 本発明は上記課題を解決するものであり、患部の位置決めを行う作業時間を短縮でき、粒子線治療のスループットを向上できる粒子線治療装置を提供することを目的とする。 This invention solves the said subject, and aims at providing the particle beam treatment apparatus which can shorten the operation time which positions an affected part, and can improve the throughput of particle beam treatment.
 本発明の粒子線治療装置は、荷電粒子ビームを発生させ、加速器により所定のエネルギーまで加速するビーム発生装置と、ビーム発生装置により加速された荷電粒子ビームを輸送するビーム輸送系と、ビーム輸送系で輸送された荷電粒子ビームをX方向走査電磁石及びY方向走査電磁石により荷電粒子ビームのビーム軸に垂直なX方向及びY方向に走査して患者に照射する粒子線照射装置と、治療台に載置された患者を直交する方向から撮影する2つのX線撮影装置を有するX線撮影装置対と、X方向走査電磁石及びY方向走査電磁石の電流指令を生成する電流指令生成システムと、を備えている。電流指令生成システムは、患者の治療計画で計画された照射領域の基準となる基準画像とX線撮影装置対により撮影された照合画像との位置ずれを修正する移動量と、治療計画で計画された照射領域の座標と、に基づいて、治療計画で計画された照射領域に荷電粒子ビームを走査する電流指令を生成することを特徴とする。 A particle beam therapy system according to the present invention includes a beam generator that generates a charged particle beam and accelerates it to a predetermined energy by an accelerator, a beam transport system that transports a charged particle beam accelerated by the beam generator, and a beam transport system. A charged particle beam transported by the X-ray scanning magnet and the Y-direction scanning magnet are scanned in the X and Y directions perpendicular to the beam axis of the charged particle beam and irradiated to the patient, and mounted on the treatment table. An X-ray imaging apparatus pair having two X-ray imaging apparatuses for imaging a placed patient from orthogonal directions, and a current command generation system that generates current commands for the X-direction scanning magnet and the Y-direction scanning magnet Yes. The current command generation system is designed based on a treatment plan and a movement amount for correcting a positional deviation between a reference image serving as a reference of an irradiation region planned in a patient treatment plan and a collation image photographed by an X-ray imaging device pair. Based on the coordinates of the irradiated region, a current command for scanning the charged particle beam in the irradiation region planned in the treatment plan is generated.
 本発明の粒子線治療装置は、基準画像と照合画像との位置ずれを修正する移動量及び治療計画で計画された照射領域の座標に基づいて、計画された照射領域に荷電粒子ビームを走査する電流指令を生成する電流指令生成システムを備えるので、患部の位置決めを行う作業時間を短縮でき、粒子線治療のスループットを向上できる。 The particle beam therapy system of the present invention scans a charged particle beam in a planned irradiation region based on a movement amount for correcting a positional deviation between a reference image and a collation image and coordinates of the irradiation region planned in a treatment plan. Since the current command generation system for generating the current command is provided, the work time for positioning the affected part can be shortened, and the throughput of the particle beam therapy can be improved.
本発明の実施の形態1による粒子線治療装置の電流指令生成システムの構成を示す図である。It is a figure which shows the structure of the electric current command generation system of the particle beam therapy apparatus by Embodiment 1 of this invention. 図1の照射スポット座標生成部の構成を示す図である。It is a figure which shows the structure of the irradiation spot coordinate production | generation part of FIG. 本発明の実施の形態1による粒子線治療装置の概略構成図である。1 is a schematic configuration diagram of a particle beam therapy system according to Embodiment 1 of the present invention. 図3の粒子線照射装置の構成を示す図である。It is a figure which shows the structure of the particle beam irradiation apparatus of FIG. 本発明の実施の形態1によるX線撮影装置の配置を示す図である。It is a figure which shows arrangement | positioning of the X-ray imaging apparatus by Embodiment 1 of this invention. 図5の上側から見たX線撮影装置の配置を示す図である。It is a figure which shows arrangement | positioning of the X-ray imaging apparatus seen from the upper side of FIG. 図5の右側から見たX線撮影装置の配置を示す図である。It is a figure which shows arrangement | positioning of the X-ray imaging apparatus seen from the right side of FIG. 本発明の実施の形態1による治療台のパラメータを説明する図である。It is a figure explaining the parameter of the treatment table by Embodiment 1 of this invention. 従来の照射方法を説明する図である。It is a figure explaining the conventional irradiation method. 本発明の実施の形態1による照射方法を説明する図である。It is a figure explaining the irradiation method by Embodiment 1 of this invention. 本発明の実施の形態1による位置決め作業を示すフロー図である。It is a flowchart which shows the positioning operation | work by Embodiment 1 of this invention. 図11のステップS004の詳細を示すフロー図である。It is a flowchart which shows the detail of step S004 of FIG. 図1の位置決め計算機及び治療制御計算機の機能ブロックを実現するハードウェア構成を示す図である。It is a figure which shows the hardware constitutions which implement | achieve the functional block of the positioning computer and treatment control computer of FIG. 図1の位置決め計算機の位置合わせ画面を示す図である。It is a figure which shows the position alignment screen of the positioning computer of FIG. 図1の位置決め計算機の位置合わせ画面を示す図である。It is a figure which shows the position alignment screen of the positioning computer of FIG. 本発明の実施の形態1による他の治療台を示す図である。It is a figure which shows the other treatment table by Embodiment 1 of this invention. 本発明の実施の形態1によるX線撮影装置の他の配置を示す図である。It is a figure which shows other arrangement | positioning of the X-ray imaging apparatus by Embodiment 1 of this invention. 本発明の実施の形態1によるX線撮影装置の更に他の配置を示す図である。It is a figure which shows other arrangement | positioning of the X-ray imaging apparatus by Embodiment 1 of this invention.
実施の形態1.
 図1は本発明の実施の形態1による粒子線治療装置の電流指令生成システムの構成を示す図であり、図2は図1の照射スポット座標生成部の構成を示す図である。図3は本発明の実施の形態1による粒子線治療装置の概略構成図であり、図4は図3の粒子線照射装置の構成を示す図である。図5は本発明の実施の形態1によるX線撮影装置の配置を示す図であり、図6は図5の上側から見たX線撮影装置の配置を示す図であり、図7は図5の右側から見たX線撮影装置の配置を示す図である。図8は本発明の実施の形態1による治療台のパラメータを説明する図である。図9は従来の照射方法を説明する図であり、図10は本発明の実施の形態1による照射方法を説明する図である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a current command generation system of a particle beam therapy system according to Embodiment 1 of the present invention, and FIG. 2 is a diagram showing a configuration of an irradiation spot coordinate generation unit in FIG. FIG. 3 is a schematic configuration diagram of the particle beam therapy apparatus according to Embodiment 1 of the present invention, and FIG. 4 is a diagram illustrating a configuration of the particle beam irradiation apparatus of FIG. FIG. 5 is a diagram showing the arrangement of the X-ray imaging apparatus according to the first embodiment of the present invention, FIG. 6 is a diagram showing the arrangement of the X-ray imaging apparatus viewed from the upper side of FIG. 5, and FIG. It is a figure which shows arrangement | positioning of the X-ray imaging apparatus seen from the right side. FIG. 8 is a diagram for explaining parameters of the treatment table according to the first embodiment of the present invention. FIG. 9 is a diagram illustrating a conventional irradiation method, and FIG. 10 is a diagram illustrating an irradiation method according to Embodiment 1 of the present invention.
 まず、図8、図9、図10を用いて、従来の患者位置決め及び照射方法と、本発明の実施の形態1による患者位置決め及び照射方法の違いを説明する。本発明では、治療室を基準とする座標系を用いる。治療室を基準とする座標系は、IEC(International  Electrotechnical  Commission)の国際的な標準規格IEC 61217に規定された治療室を基準とする座標系(Fixed  reference system)か、これに準ずる座標系である。図8では、患者45が天板66と天板66を駆動する駆動装置67を備えた治療台65に固定されており、治療台65がターンテーブル68に設置されている状態を示した。Z軸はターンテーブル68のターンテーブル中心69と粒子線治療装置のアイソセンタIfを通過する方向に設定されている。治療室を基準とする座標系は、粒子線治療装置のアイソセンタIfを原点とし、鉛直上方を+方向としたZ、図8の患者45の頭部方向を+方向としたY、これらZ、Yと右手系(right  hand  system)を成すXで規定される。また、各X、Y、Zの+方向に対する時計回転方向の回転を、その方向を+方向としてψ、φ、θが規定される。アイソセンタIfは、荷電粒子ビーム(粒子線)を照射する際の基準である。アイソセンタIfは、回転ガントリ82(図18参照)に粒子線照射装置58が搭載された場合にはガントリ回転軸と荷電粒子ビーム31(図4参照)のビーム軸との交点であり、照射目標の基準である。また、粒子線照射装置58が回転ガントリ82に搭載されない場合には、アイソセンタIfはビーム軸上であって、治療台65の調整可能範囲内に決められた照射目標の基準である。 First, the difference between the conventional patient positioning and irradiation method and the patient positioning and irradiation method according to Embodiment 1 of the present invention will be described with reference to FIG. 8, FIG. 9, and FIG. In the present invention, a coordinate system based on the treatment room is used. The coordinate system based on the treatment room is a coordinate system based on the treatment room defined in the international standard IEC 61217 of IEC (International Electrotechnical Commission) or a coordinate system based on this. . In FIG. 8, the patient 45 is fixed to a treatment table 65 including a top plate 66 and a driving device 67 that drives the top plate 66, and the treatment table 65 is installed on the turntable 68. The Z axis is set in a direction passing through the turntable center 69 of the turntable 68 and the isocenter If of the particle beam therapy system. The coordinate system with reference to the treatment room is Z with the isocenter If of the particle beam therapy system as the origin and the vertical upper direction as the + direction, Y with the head direction of the patient 45 in FIG. 8 as the + direction, and these Z and Y And X, which forms a right hand system. Further, ψ, φ, θ are defined with the clockwise rotation with respect to the + direction of each X, Y, Z as the + direction. The isocenter If is a reference when a charged particle beam (particle beam) is irradiated. The isocenter If is an intersection of the gantry rotation axis and the beam axis of the charged particle beam 31 (see FIG. 4) when the particle beam irradiation device 58 is mounted on the rotating gantry 82 (see FIG. 18). It is a standard. When the particle beam irradiation device 58 is not mounted on the rotating gantry 82, the isocenter If is on the beam axis and is a reference of the irradiation target determined within the adjustable range of the treatment table 65.
 従来の患者位置決め及び照射方法は、図9の移動方向73のように、治療台65に固定された患者の位置決め前の照射領域70bを治療計画で計画された照射領域70aに合うように並進及び回転させながら治療台65の天板66を移動させていた。患者45の照射領域70bが計画された照射領域70aに合った後に、治療計画で計画された照射経路72aに沿って照射スポット71の位置に荷電粒子ビームを照射していた。天板66の並進方向の移動は、X方向、Y方向の移動である。天板66の回転方向の移動は、ψ方向、φ方向、θ方向の移動である。 In the conventional patient positioning and irradiation method, as shown in the movement direction 73 of FIG. 9, the irradiation area 70b before positioning of the patient fixed to the treatment table 65 is translated and matched with the irradiation area 70a planned in the treatment plan. The top plate 66 of the treatment table 65 was moved while being rotated. After the irradiation area 70b of the patient 45 was aligned with the planned irradiation area 70a, the charged particle beam was irradiated to the position of the irradiation spot 71 along the irradiation path 72a planned in the treatment plan. The translation of the top plate 66 in the translation direction is a movement in the X direction and the Y direction. The movement of the top plate 66 in the rotational direction is movement in the ψ direction, φ direction, and θ direction.
 これに対して、実施の形態1による患者位置決め及び照射方法は、まず治療台65の天板66に固定された患者45を治療位置に移動させた、位置決め前の患者の照射領域70bと、治療計画で計画された照射領域70aとの位置ずれ量を計算する。この位置ずれ量は照射領域70aを基準にしている。その後、計画された照射領域70aの照射スポット71のそれぞれを、移動方向74のように患者45の照射領域70bへ移動した位置に荷電粒子ビームを照射する。なお、図10において、照射スポット71は省略している。ここで、治療位置は治療計画で指定された治療台65の位置又はリハーサルで決定された治療台65の位置である。実施の形態1による患者位置決め及び照射方法は、荷電粒子ビーム31を走査するX方向走査電磁石32及びY方向走査電磁石33を励磁する走査電磁石電源37への計画された電流指令を、照射領域70aを基準にした位置ずれ量分だけ変換した電流指令に基づいて、荷電粒子ビーム31を走査して照射する。位置ずれ量は照射領域の移動に用いるので、移動量ということもできる。なお、粒子線治療装置は、一般的に荷電粒子ビーム31をφ方向、ψ方向に走査することはできず、Z方向の調整も複雑になるので、φ方向、ψ方向、Z方向の位置ずれは治療台65の駆動装置67を駆動して調整する。このように、患者45の照射領域70bへ移動した位置に荷電粒子ビーム31を照射することで、治療台65に固定された患者45を治療位置から、X方向、Y方向、θ方向の詳細な位置決めによる移動を行うことなく、治療計画で計画された照射経路72aが変換された照射経路72bに沿って照射スポット71の位置に荷電粒子ビーム31を照射することで、治療計画で計画された照射領域70aを患者において再現することができる。 On the other hand, in the patient positioning and irradiation method according to the first embodiment, the patient 45 fixed to the top plate 66 of the treatment table 65 is first moved to the treatment position, and the irradiation region 70b of the patient before positioning and the treatment. The amount of positional deviation from the irradiation area 70a planned in the plan is calculated. This positional deviation amount is based on the irradiation area 70a. Thereafter, each of the irradiation spots 71 in the planned irradiation area 70 a is irradiated with a charged particle beam at a position moved to the irradiation area 70 b of the patient 45 as in the movement direction 74. In FIG. 10, the irradiation spot 71 is omitted. Here, the treatment position is the position of the treatment table 65 designated in the treatment plan or the position of the treatment table 65 determined by rehearsal. In the patient positioning and irradiation method according to the first embodiment, the planned current command to the scanning magnet power source 37 for exciting the X-direction scanning magnet 32 and the Y-direction scanning magnet 33 for scanning the charged particle beam 31 is applied to the irradiation region 70a. The charged particle beam 31 is scanned and irradiated on the basis of the current command converted by the reference positional deviation amount. Since the displacement amount is used for moving the irradiation region, it can also be referred to as a movement amount. In general, the particle beam therapy apparatus cannot scan the charged particle beam 31 in the φ direction and the ψ direction, and the adjustment in the Z direction is complicated. Adjusts by driving the driving device 67 of the treatment table 65. In this manner, by irradiating the charged particle beam 31 to the position moved to the irradiation region 70b of the patient 45, the patient 45 fixed to the treatment table 65 is moved in detail in the X direction, the Y direction, and the θ direction from the treatment position. Irradiation planned in the treatment plan is performed by irradiating the charged particle beam 31 to the position of the irradiation spot 71 along the irradiation route 72b converted from the irradiation route 72a planned in the treatment plan without moving by positioning. Region 70a can be reproduced in the patient.
 実施の形態1による患者位置決め及び照射方法を詳しく説明する。実施の形態1の粒子線治療装置51は、ビーム発生装置52と、ビーム輸送系59と、粒子線照射装置58a、58bと、患者45を載置する治療台65(図5参照)と、患者45を直交する方向から撮影する2つのX線撮影装置62a、62bを有するX線撮影装置対(図5参照)と、電流指令生成システム10(図1参照)とを備える。電流指令生成システム10は、位置決め計算機1と治療制御計算機20とを備える。ビーム発生装置52は、イオン源(図示せず)と、前段加速器53と、荷電粒子加速器54とを有する。粒子線照射装置58bは回転ガントリ(図18参照)に設置される。粒子線照射装置58aは回転ガントリを有しない治療室に設置される。ビーム輸送系59の役割は荷電粒子加速器54と粒子線照射装置58a、58bの連絡にある。ビーム輸送系59の一部は回転ガントリに設置され、その部分には複数の偏向電磁石55a、55b、55cを有する。 The patient positioning and irradiation method according to the first embodiment will be described in detail. The particle beam therapy system 51 of the first embodiment includes a beam generation device 52, a beam transport system 59, particle beam irradiation devices 58a and 58b, a treatment table 65 (see FIG. 5) on which a patient 45 is placed, and a patient The X-ray imaging apparatus pair (refer FIG. 5) which has two X-ray imaging apparatuses 62a and 62b which image | photograph 45 from the orthogonal direction is provided, and the electric current command generation system 10 (refer FIG. 1). The current command generation system 10 includes a positioning computer 1 and a treatment control computer 20. The beam generator 52 includes an ion source (not shown), a pre-stage accelerator 53, and a charged particle accelerator 54. The particle beam irradiation device 58b is installed in a rotating gantry (see FIG. 18). The particle beam irradiation device 58a is installed in a treatment room having no rotating gantry. The role of the beam transport system 59 is in communication between the charged particle accelerator 54 and the particle beam irradiation devices 58a and 58b. A part of the beam transport system 59 is installed in the rotating gantry, and the part has a plurality of deflecting electromagnets 55a, 55b, and 55c.
 イオン源で発生した陽子線等の粒子線である荷電粒子ビーム31は、前段加速器53で加速され、入射装置46から荷電粒子加速器54に入射される。荷電粒子加速器54は、例えばシンクロトロンである。荷電粒子ビーム31は、所定のエネルギーまで加速される。荷電粒子加速器54の出射装置47から出射された荷電粒子ビーム31は、ビーム輸送系59を経て粒子線照射装置58a、58bに輸送される。粒子線照射装置58a、58bは荷電粒子ビーム31を患者45の患部に照射する。粒子線照射装置の符号は、総括的に58を用い、区別して説明する場合に58a、58bを用いる。 The charged particle beam 31, which is a particle beam such as a proton beam generated in the ion source, is accelerated by the pre-stage accelerator 53 and is incident on the charged particle accelerator 54 from the incident device 46. The charged particle accelerator 54 is, for example, a synchrotron. The charged particle beam 31 is accelerated to a predetermined energy. The charged particle beam 31 emitted from the emission device 47 of the charged particle accelerator 54 is transported to the particle beam irradiation devices 58a and 58b through the beam transport system 59. The particle beam irradiation devices 58 a and 58 b irradiate the affected part of the patient 45 with the charged particle beam 31. The reference numeral 58 of the particle beam irradiation apparatus is used as a whole, and 58a and 58b are used in the case of distinction.
 ビーム発生装置52で発生され、所定のエネルギーまで加速された荷電粒子ビーム31は、ビーム輸送系59を経由し、粒子線照射装置58へと導かれる。図4において、粒子線照射装置58は、荷電粒子ビーム31に垂直な方向であるX方向及びY方向に荷電粒子ビーム31を走査するX方向走査電磁石32及びY方向走査電磁石33と、位置モニタ34と、線量モニタ35と、線量データ変換器36と、ビームデータ処理装置41と、走査電磁石電源37と、粒子線照射装置58を制御する治療管理装置38とを備える。治療管理装置38は、治療制御計算機20と治療制御装置40とを備える。線量データ変換器36は、トリガ生成部42と、スポットカウンタ43と、スポット間カウンタ44とを備える。なお、図4において荷電粒子ビーム31の進行方向は-Z方向である。治療管理装置38の治療制御計算機20は、電流指令生成システム10の治療制御計算機20と同一である。 The charged particle beam 31 generated by the beam generator 52 and accelerated to a predetermined energy is guided to the particle beam irradiation device 58 via the beam transport system 59. In FIG. 4, the particle beam irradiation apparatus 58 includes an X-direction scanning electromagnet 32 and a Y-direction scanning electromagnet 33 that scan the charged particle beam 31 in the X direction and the Y direction that are perpendicular to the charged particle beam 31, and a position monitor 34. A dose monitor 35, a dose data converter 36, a beam data processing device 41, a scanning electromagnet power source 37, and a treatment management device 38 that controls the particle beam irradiation device 58. The treatment management device 38 includes a treatment control computer 20 and a treatment control device 40. The dose data converter 36 includes a trigger generation unit 42, a spot counter 43, and an inter-spot counter 44. In FIG. 4, the traveling direction of the charged particle beam 31 is the −Z direction. The treatment control computer 20 of the treatment management device 38 is the same as the treatment control computer 20 of the current command generation system 10.
 X方向走査電磁石32は荷電粒子ビーム31をX方向に走査する走査電磁石であり、Y方向走査電磁石33は荷電粒子ビーム31をY方向に走査する走査電磁石である。位置モニタ34は、X方向走査電磁石32及びY方向走査電磁石33で走査された荷電粒子ビーム31が通過するビームにおける通過位置(重心位置)やサイズを演算するためのビーム情報を検出する。ビームデータ処理装置41は、位置モニタ34が検出した複数のアナログ信号からなるビーム情報に基づいて荷電粒子ビーム31の通過位置(重心位置)やサイズを演算する。また、ビームデータ処理装置41は、荷電粒子ビーム31の位置異常やサイズ異常を示す異常検出信号を生成し、この異常検出信号を治療管理装置38に出力する。 The X-direction scanning electromagnet 32 is a scanning electromagnet that scans the charged particle beam 31 in the X direction, and the Y-direction scanning electromagnet 33 is a scanning electromagnet that scans the charged particle beam 31 in the Y direction. The position monitor 34 detects beam information for calculating a passing position (center of gravity position) and a size of a beam through which the charged particle beam 31 scanned by the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 passes. The beam data processing device 41 calculates the passing position (center of gravity position) and size of the charged particle beam 31 based on beam information composed of a plurality of analog signals detected by the position monitor 34. Further, the beam data processing device 41 generates an abnormality detection signal indicating an abnormal position or size abnormality of the charged particle beam 31 and outputs this abnormality detection signal to the treatment management device 38.
 線量モニタ35は、荷電粒子ビーム31の線量を検出する。治療管理装置38は、治療計画装置30(図1参照)で作成された治療計画データ及び位置決め計算機1により生成された照射スポット座標Piに基づいて、患者45の患部における荷電粒子ビーム31の照射位置を制御し、線量モニタ35で測定され、線量データ変換器36でデジタルデータに変換された線量が目標線量に達すると荷電粒子ビーム31を次の照射位置へ移動する。走査電磁石電源37は、治療管理装置38から出力されたX方向走査電磁石32及びY方向走査電磁石33への制御入力である制御指令(電流指令Io)に基づいてX方向走査電磁石32及びY方向走査電磁石33の設定電流(励磁電流)を変化させる。 The dose monitor 35 detects the dose of the charged particle beam 31. The treatment management device 38 irradiates the charged particle beam 31 at the affected area of the patient 45 based on the treatment plan data created by the treatment planning device 30 (see FIG. 1) and the irradiation spot coordinates Pi generated by the positioning computer 1. When the dose measured by the dose monitor 35 and converted into digital data by the dose data converter 36 reaches the target dose, the charged particle beam 31 is moved to the next irradiation position. The scanning electromagnet power source 37 scans the X direction scanning electromagnet 32 and the Y direction based on a control command (current command Io) that is a control input to the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 output from the treatment management device 38. The set current (excitation current) of the electromagnet 33 is changed.
 ここでは、粒子線照射装置58のスキャニング照射方式を、荷電粒子ビーム31の照射位置を変えるときに荷電粒子ビーム31を停止させないラスタースキャニング照射方式であり、スポットスキャニング照射方式のようにビーム照射位置がスポット位置間を次々と移動していく方式とする。スポットカウンタ43は、荷電粒子ビーム31のビーム照射位置が停留している間の照射線量を計測するものである。スポット間カウンタ44は、荷電粒子ビーム31のビーム照射位置が移動している間の照射線量を計測するものである。トリガ生成部42は、ビーム照射位置における荷電粒子ビーム31の線量が目標照射線量に達した場合に、線量満了信号を生成するものである。 Here, the scanning irradiation method of the particle beam irradiation device 58 is a raster scanning irradiation method in which the charged particle beam 31 is not stopped when the irradiation position of the charged particle beam 31 is changed. A method of moving between spot positions one after another is adopted. The spot counter 43 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is stopped. The spot-to-spot counter 44 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is moving. The trigger generation unit 42 generates a dose expiration signal when the dose of the charged particle beam 31 at the beam irradiation position reaches the target irradiation dose.
 患者45の患部を撮影するX線撮影装置62a、62bは、互いに直交する位置に配置される。X線撮影装置62aはX線を放射するX線管63aとX線を検出するX線検出器64aを備える。図5に示した照射ポート61a、61bは、治療室に配置された2つの粒子線照射装置58の先端部分である。図5では、2つの照射ポート61a、61bが配置され、治療台65がターンテーブル68に設置された治療室の例を示した。X線管63aは照射ポート61aの内部に配置されており、X線管63bは照射ポート61bの内部に配置されている。X線撮影装置62a、62bによりX線画像を撮影する際には、X方向走査電磁石32及びY方向走査電磁石33により走査されない荷電粒子ビーム31が通過するビーム軸上にX線撮影装置62a、62bが配置されている。X線画像を撮影する際には、X線撮影装置62aのX線管63aが放射するX線のX線放射軸85aとX線撮影装置62bのX線管63bが放射するX線のX線放射軸85bが互いに直交するように配置されている。荷電粒子ビーム31を照射するときのように、X線画像の撮影をしない場合は、X線撮影装置62a、62bは、荷電粒子ビーム31が照射されない位置に退避される。 The X-ray imaging apparatuses 62a and 62b for imaging the affected part of the patient 45 are arranged at positions orthogonal to each other. The X-ray imaging apparatus 62a includes an X-ray tube 63a that emits X-rays and an X-ray detector 64a that detects X-rays. The irradiation ports 61a and 61b shown in FIG. 5 are the tip portions of the two particle beam irradiation apparatuses 58 arranged in the treatment room. FIG. 5 shows an example of a treatment room in which two irradiation ports 61 a and 61 b are arranged and the treatment table 65 is installed on the turntable 68. The X-ray tube 63a is disposed inside the irradiation port 61a, and the X-ray tube 63b is disposed inside the irradiation port 61b. When X-ray images are taken by the X-ray imaging devices 62a and 62b, the X-ray imaging devices 62a and 62b are placed on the beam axis through which the charged particle beam 31 not scanned by the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33 passes. Is arranged. When taking an X-ray image, the X-ray X-ray emission axis 85a emitted from the X-ray tube 63a of the X-ray imaging apparatus 62a and the X-ray X-ray emitted from the X-ray tube 63b of the X-ray imaging apparatus 62b are used. The radial axes 85b are arranged so as to be orthogonal to each other. When the X-ray image is not taken as in the case where the charged particle beam 31 is irradiated, the X-ray imaging apparatuses 62a and 62b are retracted to a position where the charged particle beam 31 is not irradiated.
 電流指令生成システム10を説明する。電流指令生成システム10は、治療計画装置30で作成した位置合わせ基準となるX線画像又はリハーサルで撮影した位置合わせ基準となるX線画像である基準画像Imrと、位置合わせのために撮影する現在の患者位置のX線画像である照合画像Imcとに基づいて、荷電粒子ビーム31を走査するX方向走査電磁石32及びY方向走査電磁石33を励磁する走査電磁石電源37の電流指令Ioを生成する。治療計画装置30で作成した位置合わせ基準となるX線画像は、例えば治療計画用CT画像から生成したDRR画像である。位置決め計算機1は、照合画像Imcを入力する照合画像入力部2と、基準画像Imrを入力する基準画像入力部3と、照合画像Imc及び基準画像Imrに基づいて照射野(照射領域)の移動量Am、すなわち照射スポット71の移動量Amを計算する移動量計算部4と、治療計画装置30が生成した治療計画の計画スポット座標Ppを移動量Amだけ修正した照射スポット座標Piを生成する照射スポット座標生成部5と、移動量Amを治療台65に出力する移動量出力部6と、照射スポット座標Piを治療制御計算機20に出力する照射スポット座標出力部7と、キーボード、マウス等の入力器24と、入力器24による操作信号を入力する操作入力部8と、表示装置25と、表示装置25に位置合わせ画面等を表示する表示部9とを備える。治療制御計算機20は、照射スポット座標Piを入力する照射スポット座標入力部21と、照射スポット座標Piから電流指令Ioを生成する電流指令生成部22と、電流指令Ioを走査電磁石電源37に出力する電流指令出力部23とを備える。なお、治療制御計算機20は、位置決め計算機1と同様に入力器24、表示装置25も備えるが、図1では要部のみを示した。 The current command generation system 10 will be described. The current command generation system 10 is an X-ray image that is an alignment reference created by the treatment planning device 30 or a reference image Imr that is an X-ray image that is an alignment reference imaged during rehearsal, and a current image that is captured for alignment. Based on the collation image Imc that is an X-ray image of the patient position, a current command Io for the X-direction scanning electromagnet 32 that scans the charged particle beam 31 and the scanning electromagnet power source 37 that excites the Y-direction scanning magnet 33 is generated. The X-ray image serving as the alignment reference created by the treatment planning apparatus 30 is a DRR image generated from a treatment planning CT image, for example. The positioning computer 1 includes a collation image input unit 2 that inputs a collation image Imc, a reference image input unit 3 that inputs a reference image Imr, and a movement amount of an irradiation field (irradiation region) based on the collation image Imc and the reference image Imr. Am, that is, a movement amount calculation unit 4 that calculates a movement amount Am of the irradiation spot 71, and an irradiation spot that generates an irradiation spot coordinate Pi obtained by correcting the planned spot coordinate Pp of the treatment plan generated by the treatment planning apparatus 30 by the movement amount Am. Coordinate generation unit 5, movement amount output unit 6 that outputs movement amount Am to treatment table 65, irradiation spot coordinate output unit 7 that outputs irradiation spot coordinates Pi to treatment control computer 20, and input devices such as a keyboard and a mouse 24, an operation input unit 8 for inputting an operation signal from the input device 24, a display device 25, and a display unit 9 for displaying an alignment screen or the like on the display device 25. Obtain. The treatment control computer 20 outputs an irradiation spot coordinate input unit 21 that inputs the irradiation spot coordinate Pi, a current command generation unit 22 that generates a current command Io from the irradiation spot coordinate Pi, and outputs the current command Io to the scanning electromagnet power source 37. A current command output unit 23. The treatment control computer 20 includes an input device 24 and a display device 25 as in the positioning computer 1, but only the main part is shown in FIG.
 照射スポット座標生成部5は、計画スポット座標Ppを入力する計画スポット座標入力部11と、移動量Amを入力する移動量入力部12と、計画スポット座標Ppを移動量Amだけ修正して照射スポット座標Piに変換する座標変換部13とを備える。照射スポット座標生成部5は、荷電粒子ビーム31の照射を実行する座標である修正された照射スポット座標Pi、すなわち修正座標を生成するので、照射実行座標生成部ということもできる。位置決め計算機1及び治療制御計算機20のそれぞれは、図13に示すプロセッサ98、メモリ99を備えている。図13は、図1の位置決め計算機及び治療制御計算機の機能ブロックを実現するハードウェア構成を示す図である。位置決め計算機1及び治療制御計算機20の各機能ブロックは、プロセッサ98、メモリ99により機能が実現される。位置決め計算機1の照合画像入力部2、基準画像入力部3、移動量計算部4、照射スポット座標生成部5、移動量出力部6、照射スポット座標出力部7、操作入力部8、表示部9、計画スポット座標入力部11、移動量入力部12、座標変換部13は、位置決め計算機1に搭載されたプロセッサ98がメモリ99に記憶されたプログラムを実行することにより、実現される。同様に、治療制御計算機20の照射スポット座標入力部21、電流指令生成部22、電流指令出力部23は、治療制御計算機20に搭載されたプロセッサ98がメモリ99に記憶されたプログラムを実行することにより、実現される。なお、複数のプロセッサ98および複数のメモリ99が連携して上記機能を実行してもよい。 The irradiation spot coordinate generation unit 5 includes a planned spot coordinate input unit 11 that inputs the planned spot coordinate Pp, a movement amount input unit 12 that inputs the movement amount Am, and corrects the planned spot coordinate Pp by the movement amount Am. And a coordinate conversion unit 13 that converts the coordinates Pi. The irradiation spot coordinate generation unit 5 generates a corrected irradiation spot coordinate Pi that is a coordinate for executing the irradiation of the charged particle beam 31, that is, a correction coordinate, and can also be referred to as an irradiation execution coordinate generation unit. Each of the positioning computer 1 and the treatment control computer 20 includes a processor 98 and a memory 99 shown in FIG. FIG. 13 is a diagram illustrating a hardware configuration for realizing the functional blocks of the positioning computer and the treatment control computer of FIG. Functions of the functional blocks of the positioning computer 1 and the treatment control computer 20 are realized by the processor 98 and the memory 99. Collation image input unit 2, reference image input unit 3, movement amount calculation unit 4, irradiation spot coordinate generation unit 5, movement amount output unit 6, irradiation spot coordinate output unit 7, operation input unit 8, display unit 9 of positioning computer 1 The planned spot coordinate input unit 11, the movement amount input unit 12, and the coordinate conversion unit 13 are realized when the processor 98 mounted on the positioning computer 1 executes a program stored in the memory 99. Similarly, the irradiation spot coordinate input unit 21, the current command generation unit 22, and the current command output unit 23 of the treatment control computer 20 execute a program stored in the memory 99 by the processor 98 mounted on the treatment control computer 20. Is realized. A plurality of processors 98 and a plurality of memories 99 may cooperate to execute the above function.
 電流指令生成システム10の動作を説明する。図11は本発明の実施の形態1による位置決め作業を示すフロー図であり、図12は図11のステップS004の詳細を示すフロー図である。図14及び図15は図1の位置決め計算機の位置合わせ画面を示す図である。ステップS001にて、治療台65を初期位置P0に移動させる(初期位置配置工程)。初期位置P0は、患者45を治療台65に載せやすいように、装置として定められた位置である。治療台65がターンテーブル68に搭載されている場合には、θ方向はターンテーブル68で制御され、X方向、Y方向、Z方向、ψ方向、φ方向の5方向は、駆動装置67で制御される。図16のように、治療台65がターンテーブル68の無い床80に設置されている場合は、駆動装置67はX方向、Y方向、Z方向、ψ方向、φ方向、θ方向の6方向を制御する。図16は、本発明の実施の形態1による他の治療台を示す図である。天板66の位置及び患者45の患部の位置は、治療台65の6つのパラメータで定義される。初期位置P0は、6つのパラメータを用いて(x0、y0、z0、ψ0、φ0、θ0)と表記する。ψ0、φ0、θ0はそれぞれゼロである。z0は、患者45を治療台65の天板66に載せやすいように、なるべく治療室の床又はターンテーブル68に近い位置の座標である。x0、y0は、照射ポート61a、61bに患者45が接触しにくい位置、すなわち退避位置の座標である。 The operation of the current command generation system 10 will be described. FIG. 11 is a flowchart showing the positioning operation according to Embodiment 1 of the present invention, and FIG. 12 is a flowchart showing details of step S004 in FIG. 14 and 15 are diagrams showing alignment screens of the positioning computer of FIG. In step S001, the treatment table 65 is moved to the initial position P0 (initial position arranging step). The initial position P0 is a position determined as an apparatus so that the patient 45 can be easily placed on the treatment table 65. When the treatment table 65 is mounted on the turntable 68, the θ direction is controlled by the turntable 68, and the X direction, Y direction, Z direction, ψ direction, and φ direction are controlled by the driving device 67. Is done. As shown in FIG. 16, when the treatment table 65 is installed on the floor 80 without the turntable 68, the driving device 67 has six directions of X direction, Y direction, Z direction, ψ direction, φ direction, and θ direction. Control. FIG. 16 is a diagram showing another treatment table according to the first embodiment of the present invention. The position of the top plate 66 and the position of the affected part of the patient 45 are defined by six parameters of the treatment table 65. The initial position P0 is expressed as (x0, y0, z0, ψ0, φ0, θ0) using six parameters. ψ0, φ0, and θ0 are each zero. z0 is a coordinate of a position as close as possible to the floor of the treatment room or the turntable 68 so that the patient 45 can be easily placed on the top plate 66 of the treatment table 65. x0 and y0 are the positions where the patient 45 is unlikely to contact the irradiation ports 61a and 61b, that is, the coordinates of the retracted position.
 ステップS002にて、患者45を治療台65に載置し固定する(患者固定工程)。より具体的には、患者45を治療台65の天板66に固定部で固定する。ステップS003にて、治療台65を治療位置P1に移動させる(治療位置配置工程)。治療位置P1は、治療計画で指定された治療台位置又はリハーサルにより決定された治療台位置である。治療位置P1は、6つのパラメータを用いて(x1、y1、z1、ψ1、φ1、θ1)と表記する。ステップS004にて、移動量計算部4は移動量Amを計算する(移動量計算工程)。移動量計算工程の詳細は、図12のフロー図で説明する。ステップS005にて、照射スポット座標生成部5は、移動量Am及び計画スポット座標Ppに基づいて照射スポット座標Piを生成する(照射スポット座標生成工程)。 In step S002, the patient 45 is placed on the treatment table 65 and fixed (patient fixing step). More specifically, the patient 45 is fixed to the top plate 66 of the treatment table 65 by a fixing portion. In step S003, the treatment table 65 is moved to the treatment position P1 (treatment position placement step). The treatment position P1 is a treatment table position designated by the treatment plan or a treatment table position determined by rehearsal. The treatment position P1 is expressed as (x1, y1, z1, ψ1, φ1, θ1) using six parameters. In step S004, the movement amount calculation unit 4 calculates the movement amount Am (movement amount calculation step). Details of the movement amount calculation step will be described with reference to the flowchart of FIG. In step S005, the irradiation spot coordinate generation unit 5 generates irradiation spot coordinates Pi based on the movement amount Am and the planned spot coordinates Pp (irradiation spot coordinate generation step).
 照射スポット座標生成部5により生成された照射スポット座標Piは、照射スポット座標出力部7により治療制御計算機20に出力される。治療制御計算機20の照射スポット座標入力部21は、照射スポット座標Piを入力し、照射スポット座標Piを電流指令生成部22に出力する。電流指令生成部22は、従来方法の変換方式を用いて照射スポット座標Piを電流指令Ioに変換する。従来方法の変換方式は、確立されており、いずれの変換方式でも構わない。電流指令出力部23は、走査電磁石電源37に電流指令Ioを出力する。前述したように、走査電磁石電源37は、治療管理装置38から出力されたX方向走査電磁石32及びY方向走査電磁石33への制御入力である制御指令(電流指令Io)に基づいてX方向走査電磁石32及びY方向走査電磁石33の設定電流(励磁電流)を変化させ、荷電粒子ビーム31を電流指令Ioに基づいた照射野を形成するように照射する。 The irradiation spot coordinate Pi generated by the irradiation spot coordinate generation unit 5 is output to the treatment control computer 20 by the irradiation spot coordinate output unit 7. The irradiation spot coordinate input unit 21 of the treatment control computer 20 inputs the irradiation spot coordinate Pi and outputs the irradiation spot coordinate Pi to the current command generation unit 22. The current command generation unit 22 converts the irradiation spot coordinate Pi into a current command Io using a conversion method of a conventional method. Conventional conversion methods have been established, and any conversion method may be used. The current command output unit 23 outputs a current command Io to the scanning electromagnet power source 37. As described above, the scanning electromagnet power source 37 is based on the control command (current command Io) that is a control input to the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 output from the treatment management device 38. The setting current (excitation current) of the 32 and Y direction scanning electromagnets 33 is changed, and the charged particle beam 31 is irradiated so as to form an irradiation field based on the current command Io.
 実施の形態1の粒子線治療装置51は、電流指令生成システム10を備えるので、治療計画で計画された照射領域70aに形成する照射経路72aに沿った複数の照射スポット71の計画スポット座標Ppと移動量Amとに基づいて照射スポット座標Piを生成し、この照射スポット座標Piの位置に荷電粒子ビーム31を照射経路72bに沿って照射することができる。実施の形態1の粒子線治療装置51は、治療台65に固定された患者45を治療位置P1から、X方向、Y方向、θ方向の詳細な位置決めによる移動を行うことなく、治療計画で計画された照射経路72aが変換された照射経路72bに沿って照射スポット71の位置に荷電粒子ビーム31を照射することで、治療計画で計画された照射領域70aを患者において再現することができる。 Since the particle beam therapy system 51 of the first embodiment includes the current command generation system 10, the planned spot coordinates Pp of the plurality of irradiation spots 71 along the irradiation path 72a formed in the irradiation region 70a planned in the treatment plan and An irradiation spot coordinate Pi is generated based on the movement amount Am, and the charged particle beam 31 can be irradiated along the irradiation path 72b to the position of the irradiation spot coordinate Pi. The particle beam therapy system 51 according to the first embodiment plans the patient 45 fixed to the treatment table 65 from the treatment position P1 by the treatment plan without performing detailed positioning in the X, Y, and θ directions. By irradiating the charged particle beam 31 to the position of the irradiation spot 71 along the irradiation path 72b converted from the irradiation path 72a, the irradiation region 70a planned in the treatment plan can be reproduced in the patient.
 移動量計算工程を、図12を用いて説明する。ステップS011にて、位置決め計算機1は、基準画像Imrを読み込み、表示装置25の位置合わせ画面75に基準画像Imrを表示する(基準画像表示工程)。より具体的には、基準画像入力部3が基準画像Imrを入力し、表示部9を介して基準画像Imrを表示装置25の位置合わせ画面75に表示する。ステップS012にて、X線撮影装置62a、62bを用いて照合画像Imcを撮影し、表示装置25の位置合わせ画面75に照合画像Imcを、表示部9を介して表示する(照合画像表示工程)。より具体的には、照合画像入力部2が照合画像Imcを入力し、表示部9を介して照合画像Imcを表示装置25の位置合わせ画面75に表示する。 The movement amount calculation process will be described with reference to FIG. In step S011, the positioning computer 1 reads the reference image Imr and displays the reference image Imr on the alignment screen 75 of the display device 25 (reference image display step). More specifically, the reference image input unit 3 inputs the reference image Imr, and displays the reference image Imr on the alignment screen 75 of the display device 25 via the display unit 9. In step S012, the collation image Imc is imaged using the X-ray imaging devices 62a and 62b, and the collation image Imc is displayed on the alignment screen 75 of the display device 25 via the display unit 9 (collation image display step). . More specifically, the collation image input unit 2 inputs the collation image Imc, and displays the collation image Imc on the alignment screen 75 of the display device 25 via the display unit 9.
 図14に示した位置合わせ画面75は、基準画像表示工程及び照合画像表示工程が終了した画面である。照合画像Imcは、正面から撮影した照合画像15aと、側面から撮影した照合画像15bとがあり、この2つが位置合わせ画面75に表示されている。例えば、照合画像15aは図5のX線撮影装置62aで撮影された画像であり、照合画像15bはX線撮影装置62aと直交して配置されたX線撮影装置62bで撮影された画像である。基準画像Imrは、正面用に生成した基準画像14aと、側面用に生成した基準画像14bとがあり、この2つが位置合わせ画面75に表示されている。 The alignment screen 75 shown in FIG. 14 is a screen on which the reference image display process and the collation image display process are completed. The collation image Imc includes a collation image 15 a photographed from the front and a collation image 15 b photographed from the side, and these two are displayed on the alignment screen 75. For example, the collation image 15a is an image photographed by the X-ray imaging apparatus 62a of FIG. 5, and the collation image 15b is an image photographed by the X-ray imaging apparatus 62b arranged orthogonal to the X-ray imaging apparatus 62a. . The reference image Imr includes a reference image 14 a generated for the front side and a reference image 14 b generated for the side surface, and these two are displayed on the alignment screen 75.
 ステップS013にて、位置決め計算機1は、操作者の指示により、基準画像Imrと照合画像Imcが一致するように、照合画像Imcの位置を操作する、すなわち移動させる(照合画像操作工程)。まず、操作者が位置合わせ画面75に表示された操作ボタン77bを入力器24のマウス等によりオンする。操作ボタン77bは、位置合わせ画面を重畳モードにする操作ボタンである。重畳モードの場合の位置合わせ画面が、図15に示した位置合わせ画面76である。照合画像15c及び照合画像15dが、照合画像Imcの照合画像15a及び照合画像15bに対応する。基準画像の表示エリアに基準画像Imrと照合画像Imcを重ね合わせて表示する画像は、基準画像Imrと照合画像Imcの画素値のサブトラクションを行った結果を画像として表示したものである。サブトラクションは画像処理として公知技術であり、ここでは詳しい説明を行わない。サブトラクションを行った、基準画像Imrと照合画像Imcの重畳画像は、ずれ量が多いと凹凸が多い画像になり、ずれ量が少ないと凹凸が少ない平坦な画像になる。 In step S013, the positioning computer 1 operates, that is, moves the position of the collation image Imc so that the reference image Imr and the collation image Imc coincide with each other according to an instruction from the operator (collation image manipulation step). First, the operator turns on the operation button 77b displayed on the alignment screen 75 with the mouse of the input device 24 or the like. The operation button 77b is an operation button for setting the alignment screen to the superimposing mode. The alignment screen in the superposition mode is the alignment screen 76 shown in FIG. The matching image 15c and the matching image 15d correspond to the matching image 15a and the matching image 15b of the matching image Imc. The image displayed by superimposing the reference image Imr and the collation image Imc on the display area of the reference image is an image obtained by subtracting the pixel values of the reference image Imr and the collation image Imc as an image. Subtraction is a well-known technique for image processing and will not be described in detail here. The superposed image of the reference image Imr and the collation image Imc that has undergone subtraction becomes an image with a lot of unevenness when the amount of deviation is large, and becomes a flat image with little unevenness when the amount of deviation is small.
 図15に示した位置合わせ画面76において、操作ボタン77d、77e、77f、77g、77h、77i、77j、77kを操作者が入力器24のマウス等により画像の操作量Aopを設定する。位置決め計算機1の操作入力部8は、画像の操作量Aopを入力し、表示部9が画像の操作量Aopだけ移動された照合画像Imcを位置合わせ画面76に表示する。すなわち、操作者が画像の操作量Aopを設定すると、照合画像Imcが指定された画像の操作量Aopに応じて移動する。照合画像Imcの位置は、基準画像Imrと照合画像Imcの骨や臓器の位置が合うように、操作者が目視で変更する照合画像Imcの位置、すなわち照合画像位置P3である。照合画像位置P3は、6つのパラメータを用いて(x3、y3、z3、0、0、θ3)と表記できる。照合画像として操作可能なパラメータは、X方向、Y方向、Z方向、θ方向の4つのパラメータであり、ψ方向、φ方向は操作できない。このため、適宜、照合画像位置P3を操作可能な4つのパラメータを用いて、(x3、y3、z3、θ3)と表記する。また、適宜、P3とパラメータ表記を連続させて、照合画像位置をP3(x3、y3、z3、θ1)とも表記する。 On the alignment screen 76 shown in FIG. 15, the operator sets the operation amount Aop of the image with the mouse of the input device 24 using the operation buttons 77d, 77e, 77f, 77g, 77h, 77i, 77j, and 77k. The operation input unit 8 of the positioning computer 1 inputs the operation amount Aop of the image, and the display unit 9 displays the collation image Imc that has been moved by the operation amount Aop of the image on the alignment screen 76. That is, when the operator sets the image operation amount Aop, the collation image Imc moves according to the designated image operation amount Aop. The position of the verification image Imc is the position of the verification image Imc that the operator visually changes so that the positions of the bones and organs of the reference image Imr and the verification image Imc match, that is, the verification image position P3. The collation image position P3 can be expressed as (x3, y3, z3, 0, 0, θ3) using six parameters. There are four parameters that can be manipulated as a collation image: the X direction, the Y direction, the Z direction, and the θ direction, and the ψ direction and the φ direction cannot be manipulated. For this reason, it is expressed as (x3, y3, z3, θ3) as appropriate using four parameters capable of operating the collation image position P3. In addition, the collation image position is also denoted as P3 (x3, y3, z3, θ1) by appropriately continuing P3 and parameter notation.
 操作ボタン77dは+θ方向の操作量を設定する操作ボタンであり、操作ボタン77eは-θ方向の操作量を設定する操作ボタンである。θ方向の操作量は数値表示78aに表示される。操作ボタン77fは+Y方向の操作量を設定する操作ボタンであり、操作ボタン77gは-Y方向の操作量を設定する操作ボタンである。Y方向の操作量は数値表示78bに表示される。操作ボタン77hは-X方向の操作量を設定する操作ボタンであり、操作ボタン77iは+X方向の操作量を設定する操作ボタンである。X方向の操作量は数値表示78cに表示される。操作ボタン77jは-Z方向の操作量を設定する操作ボタンであり、操作ボタン77kは+Z方向の操作量を設定する操作ボタンである。Z方向の操作量は数値表示78dに表示される。Z方向の操作は、照合画像Imcの拡大、縮小に相当する。+Z方向の操作は照合画像Imcが拡大し、-Z方向の操作は照合画像Imcが縮小する。 The operation button 77d is an operation button for setting an operation amount in the + θ direction, and the operation button 77e is an operation button for setting an operation amount in the −θ direction. The operation amount in the θ direction is displayed on the numerical display 78a. The operation button 77f is an operation button for setting an operation amount in the + Y direction, and the operation button 77g is an operation button for setting an operation amount in the -Y direction. The operation amount in the Y direction is displayed on the numerical value display 78b. The operation button 77h is an operation button for setting an operation amount in the -X direction, and the operation button 77i is an operation button for setting an operation amount in the + X direction. The operation amount in the X direction is displayed on the numerical value display 78c. The operation button 77j is an operation button for setting an operation amount in the -Z direction, and the operation button 77k is an operation button for setting an operation amount in the + Z direction. The operation amount in the Z direction is displayed on the numerical value display 78d. The operation in the Z direction corresponds to enlargement or reduction of the collation image Imc. The operation in + Z direction enlarges the collation image Imc, and the operation in −Z direction reduces the collation image Imc.
 ステップS014にて、位置決め計算機1は、照合画像Imcに行われた操作量Aopから移動量Amを計算し、この移動量Amを位置合わせ画面76に表示する(移動量計算工程)。より具体的には、移動量計算部4が操作量Aopから移動量Amを計算し、この移動量Amを、表示部9を介して位置合わせ画面76の移動量表示79に表示する。移動量Amは、操作量Aopの各パラメータに-1を掛けた逆数のパラメータで表記できる。操作量Aopは、6つのパラメータを用いて(Δx、Δy、Δz、0、0、Δθ)と表記できる。また、適宜、操作量Aopを、操作可能な4つのパラメータを用いて、(Δx、Δy、Δz、Δθ)と表記する。また、適宜、操作量をAop(Δx、Δy、Δz、Δθ)とも表記する。移動量Amは、6つのパラメータを用いて(-Δx、-Δy、-Δz、0、0、-Δθ)と表記できる。また、適宜、移動量Amを、操作可能な4つのパラメータを用いて、(-Δx、-Δy、-Δz、-Δθ)と表記する。また、適宜、移動量をAm(-Δx、-Δy、-Δz、-Δθ)とも表記する。なお、照合画像操作工程で操作できないψ方向、φ方向の位置ずれの修正には、治療台65の操作パネル(図示せず)で移動量(回転角度)を変更する。したがって、治療台65を移動する移動量Amは、(-Δx、-Δy、-Δz、-Δψ、-Δφ、-Δθ)と表記できる。なお、ψ方向、φ方向の移動量は、照合画像操作工程で操作可能な4つのパラメータと同じ符号にした。 In step S014, the positioning computer 1 calculates the movement amount Am from the operation amount Aop performed on the collation image Imc, and displays this movement amount Am on the alignment screen 76 (movement amount calculation step). More specifically, the movement amount calculation unit 4 calculates the movement amount Am from the operation amount Aop, and displays this movement amount Am on the movement amount display 79 of the alignment screen 76 via the display unit 9. The movement amount Am can be expressed by a reciprocal parameter obtained by multiplying each parameter of the operation amount Aop by -1. The manipulated variable Aop can be expressed as (Δx, Δy, Δz, 0, 0, Δθ) using six parameters. In addition, the operation amount Aop is appropriately expressed as (Δx, Δy, Δz, Δθ) using four operable parameters. Further, the operation amount is also expressed as Aop (Δx, Δy, Δz, Δθ) as appropriate. The movement amount Am can be expressed as (−Δx, −Δy, −Δz, 0, 0, −Δθ) using six parameters. In addition, the moving amount Am is appropriately expressed as (−Δx, −Δy, −Δz, −Δθ) using four operable parameters. Further, the amount of movement is also expressed as Am (−Δx, −Δy, −Δz, −Δθ) as appropriate. In order to correct misalignment in the ψ direction and φ direction that cannot be operated in the verification image operation process, the movement amount (rotation angle) is changed on the operation panel (not shown) of the treatment table 65. Therefore, the movement amount Am that moves the treatment table 65 can be expressed as (−Δx, −Δy, −Δz, −Δψ, −Δφ, −Δθ). The movement amounts in the ψ direction and φ direction are the same as the four parameters that can be operated in the collation image operation process.
 ステップS015にて、操作者は移動量Amが許容範囲内かどうかを判定する(作業継続要否判定工程)。作業継続要否判定工程において、移動量Amが許容範囲内にないと判定した場合、すなわち継続要と判定した場合は、ステップS016に進む。作業継続要否判定工程において、移動量Amが許容範囲内にあると判定した場合、すなわち継続否と判定した場合は、終了する。また、照合画像Imcに対して操作ができないψ方向、φ方向の位置ずれは、基準画像Imrと照合画像Imcの重なり度合いから操作者が主観で許容範囲内にあるかどうかを判定する。 In step S015, the operator determines whether or not the movement amount Am is within an allowable range (operation continuation necessity determination step). In the work continuation necessity determination step, when it is determined that the movement amount Am is not within the allowable range, that is, when it is determined that continuation is necessary, the process proceeds to step S016. If it is determined in the work continuation necessity determination step that the amount of movement Am is within the allowable range, that is, if it is determined that continuation is not required, the process is terminated. In addition, the displacement in the ψ direction and φ direction that cannot be operated with respect to the collation image Imc determines whether or not the operator is subjectively within the allowable range from the degree of overlap between the reference image Imr and the collation image Imc.
 ステップS016にて、位置決め計算機1は、移動量Am(-Δx、-Δy、-Δz、なし、なし、-Δθ)を治療台65及びターンテーブル68に送信し、治療台65及びターンテーブル68の駆動装置に移動量Amの各値分だけ天板66及びターンテーブル68を移動するように指令を出す(治療台移動工程)。また、照合画像Imcに対して操作ができないψ方向、φ方向の位置ずれは、基準画像Imrと照合画像Imcの重なり度合いから操作者が主観で移動量(回転角度)を決定し、治療台65の操作パネル(図示せず)で移動量(回転角度)を変更する。ψ方向、φ方向の回転角度の妥当性はずらした後に撮影する照合画像Imcで判断する。 In step S016, the positioning computer 1 transmits the movement amount Am (−Δx, −Δy, −Δz, none, none, −Δθ) to the treatment table 65 and the turntable 68. A command is issued to the driving device so as to move the top plate 66 and the turntable 68 by each value of the movement amount Am (treatment table moving step). Further, the displacement in the ψ direction and φ direction that cannot be operated with respect to the collation image Imc is determined by the operator subjectively determining the amount of movement (rotation angle) from the degree of overlap between the reference image Imr and the collation image Imc. The amount of movement (rotation angle) is changed on the operation panel (not shown). The validity of the rotation angles in the ψ direction and φ direction is determined by the collation image Imc that is taken after shifting.
 ステップS016の実行後に、ステップS012に戻り、ステップS012~ステップS015の工程を実行し、ステップS015で移動量Amが許容範囲内にあると判定されるまで、移動量計算工程を実行する。ステップS016の後のステップS012で、初期設定である通常モードの位置合わせ画面75を、重畳モードの位置合わせ画面76に変えて、基準画像Imrと照合画像Imcの重なり度合いを確認する。こことき、照合画像Imcの位置を操作する必要がない場合は、ステップS013、ステップS014を省略して、ステップS015の作業継続要否判定工程を実行することになる。ステップS015の作業継続要否判定工程において、移動量Amが許容範囲内にあると判定した場合、すなわち継続否と判定した場合は、そのときの基準画像Imrと照合画像Imcとの重畳画像の判定は移動量Amの確認判定ということもできる。通常、ステップS016の治療台移動工程を実行する場合でも、治療台移動工程を1回実行することで、ステップS015の作業継続要否判定工程において、移動量Amが許容範囲内にあると判定される。 After the execution of step S016, the process returns to step S012, the steps S012 to S015 are executed, and the movement amount calculation step is executed until it is determined in step S015 that the movement amount Am is within the allowable range. In step S012 after step S016, the normal mode alignment screen 75 which is the initial setting is changed to the superposition mode alignment screen 76, and the degree of overlap between the reference image Imr and the collation image Imc is confirmed. At this time, if it is not necessary to operate the position of the collation image Imc, steps S013 and S014 are omitted, and the work continuation necessity determination step of step S015 is executed. In the step of determining whether or not to continue the work in step S015, if it is determined that the movement amount Am is within the allowable range, that is, if it is determined that continuation is not possible, determination of the superimposed image of the reference image Imr and the matching image Imc at that time Can also be referred to as confirmation determination of the movement amount Am. Normally, even when the treatment table moving process of step S016 is executed, it is determined that the movement amount Am is within the allowable range in the work continuation necessity determination process of step S015 by executing the treatment table moving process once. The
 位置合わせ画面75、76において、まだ説明していない操作ボタンがある。操作ボタン77cは位置合わせ画面を終了する操作ボタンであり、操作者が入力器24のマウス等によりオンすると位置合わせ画面は終了する。操作ボタン77aは位置合わせ画面を通常モードにする操作ボタンである。位置合わせ画面76において、操作ボタン77aを操作者が入力器24のマウス等によりオンすると、図14に示した通常モードの位置合わせ画面75が表示装置25に表示される。 There are operation buttons that have not yet been explained on the alignment screens 75 and 76. The operation button 77c is an operation button for ending the alignment screen. When the operator turns on with the mouse of the input device 24, the alignment screen is ended. The operation button 77a is an operation button for setting the alignment screen to the normal mode. When the operator turns on the operation button 77 a with the mouse of the input device 24 on the alignment screen 76, the normal mode alignment screen 75 shown in FIG. 14 is displayed on the display device 25.
 実施の形態1の電流指令生成システム10は、基準画像Imrと照合画像Imcとのずれを修正する移動量Amを計算し、治療計画装置30が生成した治療計画の計画スポット座標Ppを移動量Amだけ修正した照射スポット座標Piに基づいて、X方向走査電磁石32及びY方向走査電磁石33の設定電流(励磁電流)を変化させる制御入力である制御指令(電流指令Io)を生成する。実施の形態1の粒子線治療装置51は、この制御指令(電流指令Io)に基づいてX方向走査電磁石32及びY方向走査電磁石33の設定電流(励磁電流)を変化させて荷電粒子ビーム31を患者45の患部に照射するので、X方向、Y方向、θ方向の詳細な位置決めによる移動を行うことなく、治療計画で計画された照射経路72aが変換された照射経路72bに沿って照射スポット71の位置に荷電粒子ビーム31を照射することで、治療計画で計画された照射領域70aを患者45において再現することができる。したがって、実施の形態1の粒子線治療装置51は、X方向、Y方向、θ方向の詳細な位置決めによる治療台65の移動を行うことがないので患者45の患部の位置決めを行う作業時間を短縮でき、粒子線治療のスループットを向上できる。 The current command generation system 10 according to the first embodiment calculates a movement amount Am that corrects a deviation between the reference image Imr and the collation image Imc, and uses the treatment plan planned spot coordinates Pp generated by the treatment planning apparatus 30 as the movement amount Am. A control command (current command Io), which is a control input for changing the set current (excitation current) of the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33, is generated based on the irradiation spot coordinates Pi corrected only. The particle beam therapy system 51 of the first embodiment changes the set current (excitation current) of the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33 based on this control command (current command Io) to change the charged particle beam 31. Since the affected area of the patient 45 is irradiated, the irradiation spot 71 is moved along the irradiation path 72b converted from the irradiation path 72a planned in the treatment plan without moving by detailed positioning in the X direction, the Y direction, and the θ direction. The irradiation region 70a planned in the treatment plan can be reproduced in the patient 45 by irradiating the charged particle beam 31 to the position. Therefore, the particle beam therapy system 51 according to the first embodiment does not move the treatment table 65 by detailed positioning in the X direction, the Y direction, and the θ direction, thereby reducing the work time for positioning the affected part of the patient 45. And the throughput of particle beam therapy can be improved.
 今まで、2つの照射ポート61a、61bが配置された治療室におけるX線撮影装置62a、62bの例を説明したが、1つの照射ポートがある治療室又は回転ガントリにX線撮影装置62a、62bが設置されてもよい。図17は本発明の実施の形態1によるX線撮影装置の他の配置を示す図であり、図18は本発明の実施の形態1によるX線撮影装置の更に他の配置を示す図である。図17は1つの照射ポートがある治療室に互いに直交する位置にX線撮影装置62a、62bが配置された例であり、図18は回転ガントリ82に互いに直交する位置にX線撮影装置62a、62bが配置された例である。図17では、Z方向に照射ポートがないので、天井81の内部にX線管63aが配置されている。 The example of the X-ray imaging apparatuses 62a and 62b in the treatment room in which the two irradiation ports 61a and 61b are arranged has been described so far. However, the X-ray imaging apparatuses 62a and 62b are provided in the treatment room or the rotating gantry having one irradiation port. May be installed. FIG. 17 is a diagram showing another arrangement of the X-ray imaging apparatus according to Embodiment 1 of the present invention, and FIG. 18 is a diagram showing still another arrangement of the X-ray imaging apparatus according to Embodiment 1 of the present invention. . FIG. 17 is an example in which X-ray imaging apparatuses 62a and 62b are arranged at positions orthogonal to each other in a treatment room having one irradiation port, and FIG. 18 is an X-ray imaging apparatus 62a at positions orthogonal to the rotating gantry 82. This is an example in which 62b is arranged. In FIG. 17, since there is no irradiation port in the Z direction, an X-ray tube 63 a is arranged inside the ceiling 81.
 回転ガントリ82は、粒子線照射装置58及び偏向電磁石55a、55b、55cが搭載された円筒状の回転フレーム83がローラ84によって回転可能に支持され、ローラ84を図示しない駆動装置によって回転させることで、360度回転できるように構成されている。粒子線照射装置58の先端部分である照射ポート61が、治療台65が設置された治療スペースに配置されている。X線管63aは照射ポート61の内部に配置されており、X線管63bはアイソセンタIfを包含するガントリ回転軸及びX線撮影装置62aのX線放射軸85aに直交する位置に配置されている。このようにX線撮影装置62a、62bが配置されているので、X線撮影装置62bのX線放射軸85bはX線撮影装置62aのX線放射軸85aに直交している。 In the rotating gantry 82, a cylindrical rotating frame 83 on which the particle beam irradiation device 58 and the deflecting electromagnets 55a, 55b, and 55c are mounted is rotatably supported by a roller 84, and the roller 84 is rotated by a driving device (not shown). It is configured to be able to rotate 360 degrees. An irradiation port 61 that is a tip portion of the particle beam irradiation apparatus 58 is disposed in a treatment space where the treatment table 65 is installed. The X-ray tube 63a is disposed inside the irradiation port 61, and the X-ray tube 63b is disposed at a position orthogonal to the gantry rotation axis including the isocenter If and the X-ray radiation axis 85a of the X-ray imaging apparatus 62a. . Since the X-ray imaging apparatuses 62a and 62b are arranged in this way, the X-ray radiation axis 85b of the X-ray imaging apparatus 62b is orthogonal to the X-ray radiation axis 85a of the X-ray imaging apparatus 62a.
 以上のように、実施の形態1の粒子線治療装置51は、荷電粒子ビーム31を発生させ、加速器(荷電粒子加速器54)により所定のエネルギーまで加速するビーム発生装置52と、ビーム発生装置52により加速された荷電粒子ビーム31を輸送するビーム輸送系59と、ビーム輸送系59で輸送された荷電粒子ビーム31をX方向走査電磁石32及びY方向走査電磁石33により荷電粒子ビーム31のビーム軸に垂直なX方向及びY方向に走査して患者45に照射する粒子線照射装置58と、治療台65に載置された患者45を直交する方向から撮影する2つのX線撮影装置62a、62bを有するX線撮影装置対と、X方向走査電磁石32及びY方向走査電磁石33の電流指令Ioを生成する電流指令生成システム10と、を備えている。実施の形態1の電流指令生成システム10は、患者45の治療計画で計画された照射領域70aの基準となる基準画像ImrとX線撮影装置対により撮影された照合画像Imcとの位置ずれを修正する移動量Amと、治療計画で計画された照射領域70aの座標(計画スポット座標Pp)と、に基づいて、治療計画で計画された照射領域70aに荷電粒子ビーム31を走査する電流指令Ioを生成することを特徴とする。実施の形態1の粒子線治療装置51は、この特徴により、X方向、Y方向、θ方向の詳細な位置決めによる移動を行うことがないので患者45の患部の位置決めを行う作業時間を短縮でき、粒子線治療のスループットを向上できる。 As described above, the particle beam therapy system 51 according to Embodiment 1 generates the charged particle beam 31 and accelerates it to a predetermined energy by the accelerator (charged particle accelerator 54), and the beam generator 52. A beam transport system 59 that transports the accelerated charged particle beam 31, and the charged particle beam 31 transported by the beam transport system 59 is perpendicular to the beam axis of the charged particle beam 31 by the X-direction scanning magnet 32 and the Y-direction scanning magnet 33. A particle beam irradiation device 58 that scans in the X and Y directions and irradiates the patient 45, and two X-ray imaging devices 62a and 62b that image the patient 45 placed on the treatment table 65 from a direction orthogonal to each other. A pair of X-ray imaging devices, and a current command generation system 10 that generates a current command Io for the X-direction scanning electromagnet 32 and the Y-direction scanning electromagnet 33. That. The current command generation system 10 according to the first embodiment corrects misalignment between the reference image Imr serving as the reference of the irradiation region 70a planned in the treatment plan for the patient 45 and the collation image Imc taken by the X-ray imaging apparatus pair. Current command Io for scanning the charged particle beam 31 in the irradiation area 70a planned in the treatment plan based on the movement amount Am to be performed and the coordinates (planning spot coordinates Pp) of the irradiation area 70a planned in the treatment plan. It is characterized by generating. With this feature, the particle beam therapy system 51 according to the first embodiment does not move by detailed positioning in the X direction, the Y direction, and the θ direction, so that the work time for positioning the affected part of the patient 45 can be shortened. The throughput of particle beam therapy can be improved.
 なお、粒子線照射装置58のスキャニング照射方式は、スポットスキャニング照射方式のようにビーム照射位置がスポット位置間を次々と移動していくラスタースキャニング照射方式で説明したが、停留せずに走査するラスタースキャニング照射方式又はスポットスキャニング照射方式にも適用できる。停留せずに走査するラスタースキャニング照射方式の場合は、治療計画で計画された照射経路72aを移動量Amで修正した照射経路72bに沿って荷電粒子ビーム31を照射すればよい。また、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 The scanning irradiation method of the particle beam irradiation apparatus 58 has been described as the raster scanning irradiation method in which the beam irradiation positions move one after another between the spot positions as in the spot scanning irradiation method. However, the scanning is performed without stopping. The present invention can also be applied to a scanning irradiation method or a spot scanning irradiation method. In the case of the raster scanning irradiation method in which scanning is performed without stopping, the charged particle beam 31 may be irradiated along the irradiation path 72b obtained by correcting the irradiation path 72a planned in the treatment plan with the movement amount Am. Further, the present invention can be combined with each other within the scope of the present invention, and each embodiment can be appropriately modified or omitted.
 4…移動量計算部、5…照射スポット座標生成部(照射実行座標生成部)、9…表示部、10…電流指令生成システム、14a、14b…基準画像、15a、15b、15c、15d…照合画像、25…表示装置、31…荷電粒子ビーム、32…X方向走査電磁石、33…Y方向走査電磁石、45…患者、51…粒子線治療装置、52…ビーム発生装置、54…荷電粒子加速器(加速器)、58、58a、58b…粒子線照射装置、59…ビーム輸送系、62a、62b…X線撮影装置、65…治療台、68…ターンテーブル、70a、70b…照射領域、71…照射スポット、75、76…位置合わせ画面、77a、77b、77c、77d、77e、77f、77g、77h、77i、77j、77k…操作ボタン、78a、78b、78c、78d…数値表示、Am…移動量、Aop…操作量、Io…電流指令、Imc…照合画像、Imr…基準画像、Pi…照射スポット座標(修正座標)、Pp…計画スポット座標
                                                                                
DESCRIPTION OF SYMBOLS 4 ... Movement amount calculation part, 5 ... Irradiation spot coordinate generation part (irradiation execution coordinate generation part), 9 ... Display part, 10 ... Current command generation system, 14a, 14b ... Reference | standard image, 15a, 15b, 15c, 15d ... Collation Image, 25 ... Display device, 31 ... Charged particle beam, 32 ... X direction scanning electromagnet, 33 ... Y direction scanning electromagnet, 45 ... Patient, 51 ... Particle beam therapy device, 52 ... Beam generator, 54 ... Charged particle accelerator ( Accelerator), 58, 58a, 58b ... Particle beam irradiation device, 59 ... Beam transport system, 62a, 62b ... X-ray imaging device, 65 ... Treatment table, 68 ... Turntable, 70a, 70b ... Irradiation area, 71 ... Irradiation spot 75, 76 ... alignment screen, 77a, 77b, 77c, 77d, 77e, 77f, 77g, 77h, 77i, 77j, 77k ... operation buttons, 78a, 78b, 7 c, 78d ... numeric display, Am ... movement amount, Aop ... operation amount, Io ... current command, Imc ... collation image, Imr ... reference image, Pi ... irradiation spot position (corrected coordinates), Pp ... Planning spot position

Claims (9)

  1.  荷電粒子ビームを発生させ、加速器により所定のエネルギーまで加速するビーム発生装置と、前記ビーム発生装置により加速された荷電粒子ビームを輸送するビーム輸送系と、前記ビーム輸送系で輸送された荷電粒子ビームをX方向走査電磁石及びY方向走査電磁石により前記荷電粒子ビームのビーム軸に垂直なX方向及びY方向に走査して患者に照射する粒子線照射装置と、治療台に載置された前記患者を直交する方向から撮影する2つのX線撮影装置を有するX線撮影装置対と、前記X方向走査電磁石及び前記Y方向走査電磁石の電流指令を生成する電流指令生成システムと、を備え、
    前記電流指令生成システムは、
    前記患者の治療計画で計画された照射領域の基準となる基準画像と前記X線撮影装置対により撮影された照合画像との位置ずれを修正する移動量と、
    前記治療計画で計画された前記照射領域の座標と、
    に基づいて、前記治療計画で計画された前記照射領域に前記荷電粒子ビームを走査する前記電流指令を生成することを特徴とする粒子線治療装置。
    Beam generator for generating charged particle beam and accelerating to predetermined energy by accelerator, beam transport system for transporting charged particle beam accelerated by said beam generator, and charged particle beam transported by said beam transport system A particle beam irradiation apparatus for irradiating a patient by scanning in the X direction and the Y direction perpendicular to the beam axis of the charged particle beam by an X direction scanning magnet and a Y direction scanning magnet, and the patient placed on a treatment table. An X-ray imaging apparatus pair having two X-ray imaging apparatuses for imaging from orthogonal directions, and a current command generation system that generates current commands for the X-direction scanning electromagnet and the Y-direction scanning electromagnet,
    The current command generation system includes:
    A movement amount for correcting a positional deviation between a reference image serving as a reference of an irradiation region planned in the patient treatment plan and a collation image photographed by the X-ray imaging apparatus pair;
    The coordinates of the irradiation area planned in the treatment plan;
    And generating the current command for scanning the charged particle beam in the irradiation region planned in the treatment plan.
  2.  前記電流指令生成システムは、
    前記移動量を計算する移動量計算部と、前記照射領域の座標を前記移動量の分だけ修正した修正座標を生成する照射実行座標生成部と、前記修正座標に基づいて前記電流指令を生成する電流指令生成部とを備えたことを特徴とする請求項1記載の粒子線治療装置。
    The current command generation system includes:
    A movement amount calculation unit that calculates the movement amount, an irradiation execution coordinate generation unit that generates correction coordinates obtained by correcting the coordinates of the irradiation region by the movement amount, and the current command based on the correction coordinates. The particle beam therapy system according to claim 1, further comprising a current command generation unit.
  3.  前記電流指令生成システムは、表示装置に前記基準画像と前記照合画像とを重ねて表示する表示部を備え、
    前記移動量計算部は、前記照合画像の初期位置から変更された変更位置へ移動した操作量の-1倍を前記移動量として生成することを特徴とする請求項2記載の粒子線治療装置。
    The current command generation system includes a display unit that displays the reference image and the collation image on the display device,
    3. The particle beam therapy system according to claim 2, wherein the movement amount calculation unit generates −1 times as much the operation amount moved from the initial position of the collation image to the changed position as the movement amount.
  4.  前記表示部は、
    前記基準画像と前記照合画像とが重ねて表示された位置合わせ画面に、
    前記照合画像を移動方向毎に移動させる複数の操作ボタンと、前記操作ボタンが操作されることにより前記照合画像が移動した操作量の数値と、を表示することを特徴とする請求項3記載の粒子線治療装置。
    The display unit
    On the alignment screen on which the reference image and the collation image are displayed in an overlapping manner,
    4. A plurality of operation buttons for moving the collation image for each movement direction, and a numerical value of an operation amount to which the collation image is moved by operating the operation button are displayed. Particle beam therapy device.
  5.  前記表示部は、
    前記操作ボタンが操作される度に、前記照合画像を前記操作量だけ移動させ、かつ当該操作量の数値を表示することを特徴とする請求項4記載の粒子線治療装置。
    The display unit
    5. The particle beam therapy system according to claim 4, wherein each time the operation button is operated, the collation image is moved by the operation amount and a numerical value of the operation amount is displayed.
  6.  前記電流指令生成システムは、前記荷電粒子ビームが照射される、前記照射領域における照射経路の座標を前記照射領域の座標として、前記電流指令を生成することを特徴とする請求項1から5のいずれか1項に記載の粒子線治療装置。 6. The current command generation system generates the current command with the coordinates of the irradiation path in the irradiation region irradiated with the charged particle beam as the coordinates of the irradiation region. The particle beam therapy apparatus according to claim 1.
  7.  前記電流指令生成システムは、前記荷電粒子ビームが照射される、前記照射領域における照射スポットの座標を前記照射領域の座標として、前記電流指令を生成することを特徴とする請求項1から5のいずれか1項に記載の粒子線治療装置。 6. The current command generation system generates the current command by using the coordinates of an irradiation spot irradiated with the charged particle beam as coordinates of the irradiation region. The particle beam therapy apparatus according to claim 1.
  8.  前記電流指令生成システムは、前記移動量が許容範囲にないと判定された場合に、前記移動量を前記治療台に出力して前記治療台を移動させることを特徴とする請求項1から7のいずれか1項に記載の粒子線治療装置。 The current command generation system outputs the movement amount to the treatment table and moves the treatment table when it is determined that the movement amount is not within an allowable range. The particle beam therapy apparatus of any one of Claims.
  9.  前記治療台は、当該治療台を前記荷電粒子ビームの前記ビーム軸に対して回転させるターンテーブルに設置され、
    前記患者が前記治療台に載置された後に、前記治療台は、前記照合画像を撮影する位置における前記ビーム軸回りの回転角度を、前記ターンテーブルにより設定されることを特徴とする請求項1から8のいずれか1項に記載の粒子線治療装置。
    The treatment table is installed on a turntable that rotates the treatment table with respect to the beam axis of the charged particle beam,
    The rotation angle about the beam axis in the position where the treatment table captures the verification image is set by the turntable after the patient is placed on the treatment table. The particle beam therapy apparatus according to any one of 1 to 8.
PCT/JP2017/019118 2017-05-23 2017-05-23 Particle beam treatment apparatus WO2018216087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/019118 WO2018216087A1 (en) 2017-05-23 2017-05-23 Particle beam treatment apparatus
TW107110077A TW201900236A (en) 2017-05-23 2018-03-23 Particle beam therapy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019118 WO2018216087A1 (en) 2017-05-23 2017-05-23 Particle beam treatment apparatus

Publications (1)

Publication Number Publication Date
WO2018216087A1 true WO2018216087A1 (en) 2018-11-29

Family

ID=64395363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019118 WO2018216087A1 (en) 2017-05-23 2017-05-23 Particle beam treatment apparatus

Country Status (2)

Country Link
TW (1) TW201900236A (en)
WO (1) WO2018216087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262043A (en) * 2021-04-30 2021-08-17 苏州科医世凯半导体技术有限责任公司 Surface tissue light treatment equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061438A (en) * 2005-08-31 2007-03-15 Hitachi Ltd Positioning system and positioning method of radiotherapy apparatus
US20130237822A1 (en) * 2012-03-07 2013-09-12 Patrick Gross Combined radiotherapy ultrasound device
JP2015029793A (en) * 2013-08-05 2015-02-16 株式会社日立製作所 Radiotherapy system
JP2015510781A (en) * 2012-03-05 2015-04-13 ゲーエスイー ヘルムホルッツェントゥルム フュア シュヴェリオネンフォルシュンク ゲーエムベーハー Method and apparatus for irradiating a target volume
JP2016209012A (en) * 2015-04-28 2016-12-15 株式会社東芝 Corpuscular beam treatment system, and management system and method for corpuscular beam treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061438A (en) * 2005-08-31 2007-03-15 Hitachi Ltd Positioning system and positioning method of radiotherapy apparatus
JP2015510781A (en) * 2012-03-05 2015-04-13 ゲーエスイー ヘルムホルッツェントゥルム フュア シュヴェリオネンフォルシュンク ゲーエムベーハー Method and apparatus for irradiating a target volume
US20130237822A1 (en) * 2012-03-07 2013-09-12 Patrick Gross Combined radiotherapy ultrasound device
JP2015029793A (en) * 2013-08-05 2015-02-16 株式会社日立製作所 Radiotherapy system
JP2016209012A (en) * 2015-04-28 2016-12-15 株式会社東芝 Corpuscular beam treatment system, and management system and method for corpuscular beam treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262043A (en) * 2021-04-30 2021-08-17 苏州科医世凯半导体技术有限责任公司 Surface tissue light treatment equipment
CN113262043B (en) * 2021-04-30 2023-05-26 苏州科医世凯半导体技术有限责任公司 Surface tissue light treatment equipment

Also Published As

Publication number Publication date
TW201900236A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
JP7090451B2 (en) Charged particle beam therapy device
KR100695377B1 (en) Apparatus for positioning bed, method thereof and particle beam therapy system
US7834334B2 (en) Particle therapy system
US8772742B2 (en) Radiation therapy system and method for adapting an irradiation field
JP6565120B2 (en) Neutron capture therapy system and treatment planning system for neutron capture therapy
US9999787B1 (en) Beam limiting device for intensity modulated proton therapy
WO2013140856A1 (en) Charged particle irradiation system and irradiation planning device
JP2017213184A (en) Radiography apparatus and particle beam treatment apparatus
JP4425879B2 (en) Bed positioning apparatus, positioning method therefor, and particle beam therapy apparatus
CN112312966A (en) Compensating for target rotation using a collimation system
WO2019077936A1 (en) Radiation therapy apparatus
WO2014045716A1 (en) Particle beam irradiation system and treatment planning apparatus
WO2018216087A1 (en) Particle beam treatment apparatus
JP6744123B2 (en) Moving object tracking device and radiation irradiation system
WO2020137234A1 (en) Particle therapy system, dose distribution evaluation system, and method for operating particle therapy system
JP3859683B2 (en) Bed positioning apparatus, positioning method therefor, and particle beam therapy apparatus
US11717250B2 (en) X-ray CT device
WO2023243144A1 (en) Radiation therapy system and method for controlling same
WO2024034239A1 (en) Charged particle beam irradiation system
JP2022083625A (en) Charged particle beam treatment device
JP6727644B2 (en) Moving object tracking device and radiation irradiation system
JP2019150254A (en) Charged particle beam treatment device and operation method of the charged particle beam treatment device
WO2023089145A1 (en) A radiotherapy apparatus and method for delivering radiation to a subject
JP2004167000A (en) Radiotherapy instrument
JP2008302129A (en) Radiation therapy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP