WO2019077936A1 - Radiation therapy apparatus - Google Patents

Radiation therapy apparatus Download PDF

Info

Publication number
WO2019077936A1
WO2019077936A1 PCT/JP2018/034976 JP2018034976W WO2019077936A1 WO 2019077936 A1 WO2019077936 A1 WO 2019077936A1 JP 2018034976 W JP2018034976 W JP 2018034976W WO 2019077936 A1 WO2019077936 A1 WO 2019077936A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
image
irradiation
radiation
marker
Prior art date
Application number
PCT/JP2018/034976
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 藤井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019077936A1 publication Critical patent/WO2019077936A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a radiotherapy apparatus for irradiating a diseased part with radiation such as particle beam such as proton beam or carbon beam or X-ray.
  • the X-ray imaging apparatus performs X-ray imaging by irradiating X-rays to the subject from a plurality of directions while rotating, and recognizes the three-dimensional position of the target in the subject from the X-ray image acquired by the X-ray imaging apparatus Select an image from the target recognition device to be detected and the X-ray image acquired by the X-ray imaging device, and the position of the target recognized by the target recognition device satisfies the treatment radiation irradiation condition for moving body tracking treatment
  • a radiation treatment system comprising: a CT imaging device for generating a cone-beam CT image.
  • a treatment method of irradiating the affected part of a patient such as cancer with radiation such as proton beam there is known a treatment method of irradiating the affected part of a patient such as cancer with radiation such as proton beam.
  • a radiation treatment apparatus used for this treatment method is provided with a beam generator comprising an accelerator and a beam transport system, an irradiation field forming device, and a positioning device comprising an X-ray fluoroscope and a patient bed.
  • the particle beam accelerated by the accelerator passes through the beam transport system to the radiation field forming device, is monitored by the radiation field forming device, and is shaped to fit the patient's affected area.
  • a particle beam such as a proton beam or a carbon beam has a characteristic of releasing most of the energy immediately before stopping, and the resulting shape of the dose distribution is called a Bragg peak.
  • the particle beam treatment apparatus utilizes this characteristic and selects the energy of the particle beam to stop the particle beam at the irradiation target and release most of the energy to the affected area.
  • an irradiation reference point called an isocenter is designated, and the cone beam CT image and the planned CT image coincide.
  • the target is focused on irradiating the proton beam, so the marker placed in the vicinity of the target such as the affected part only irradiates the proton beam when coming to the planned position There is a way.
  • the fluoroscope In taking a cone-beam CT image, the fluoroscope rotates around the patient at a speed of about 1 rpm. Since reconstruction of a CT image requires an X-ray image from a direction of 180 degrees or more, an imaging time of 30 seconds or more is required.
  • Patent Document 1 In particular, in imaging of moving organs by respiration etc., since the target moves during imaging, in Patent Document 1, an X-ray image is acquired while measuring the position of the target or marker, and the target or marker is at the planned position. A method is disclosed for creating CT images using only x-ray images.
  • the cone beam CT image acquired as described above is used to determine the installation position of the patient by displaying it in comparison with the planned CT image.
  • cone beam CT images can be used to confirm both the position of the marker and the position of the target.
  • the comparison and confirmation of the position of the marker and target in the planned CT image and the position of the marker and target in the cone beam CT are conventionally performed by superimposing and displaying the cone beam CT image and the planned CT image. Had visually confirmed the difference.
  • the present invention is a treatment that uses markers, in which the structure in the patient's body immediately before treatment can be confirmed more efficiently than in the past, and radiation that can shorten the time required to place the patient in a planned position Provide a therapeutic device.
  • the present invention includes a plurality of means for solving the above problems, and an example thereof is a radiotherapy apparatus for irradiating a target with radiation, and a treatment plan CT image captured at the time of preparation of a treatment plan.
  • a radiotherapy apparatus for irradiating a target with radiation
  • a treatment plan CT image captured at the time of preparation of a treatment plan.
  • a display device for displaying a positional relationship between a target and a marker in the treatment plan CT image calculated by the calculation device and the CT image immediately before the irradiation.
  • the amount of operation of the operator in the confirmation of the positions of the marker and the target can be reduced as compared with the conventional case, so the structure in the patient's body immediately before the treatment can be efficiently confirmed as compared with the conventional.
  • the time required to place the patient in the planned position can be reduced.
  • a particle beam treatment apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS.
  • a particle beam therapy system using particle beams such as proton beam and carbon beam as one type of radiation therapy system is described as an example, but the present invention is also applied to an X-ray therapy system using X-rays. The same effect can be obtained.
  • FIG. 1 is a view schematically showing the entire configuration of a particle beam therapy system.
  • a particle beam therapy system 1 for irradiating a particle beam to a target 47 includes a charged particle beam generator 11, a high energy beam transport system 20, a rotator 21, a central controller 312, a memory 313, and an irradiation control system. 314, a display device 315, a positioning control system 316, an irradiation field forming device (irradiation device) 40, a bed 50, a fluoroscopic device 51, and a treatment planning device 501.
  • the charged particle beam generator 11 comprises an ion source 12, a pre-stage accelerator 13 and a particle beam accelerator 14.
  • a synchrotron-type particle beam accelerator is assumed as the particle beam accelerator 14, but various other particle beam accelerators such as a cyclotron can be used as the particle beam accelerator 14.
  • the synchrotron type particle beam accelerating device 14 has a deflection electromagnet 15, an accelerating device 16, a high frequency applying device 17 for extraction, an extraction deflector 18 and a quadrupole electromagnet (shown in FIG. Omission).
  • FIG. 1 A process until a particle beam is generated from a charged particle beam generator 11 using a synchrotron-type particle beam accelerator 14 and emitted toward a patient will be described using FIG.
  • the particles supplied from the ion source 12 are accelerated by the pre-stage accelerator 13 and sent to the beam accelerator synchrotron.
  • the particle beam circulating in the synchrotron is accelerated by applying a high frequency from a high frequency accelerating cavity (not shown) provided in the accelerating device 16 in synchronization with a cycle of passing through the accelerating device 16. In this way, the particle beam is accelerated until it reaches a predetermined energy.
  • the particle beam is accelerated to a predetermined energy (for example, 70 to 250 MeV)
  • a predetermined energy for example, 70 to 250 MeV
  • the high frequency application installed in the high frequency application unit 17
  • the high frequency power from the high frequency power source 19 is applied to the particle beam circulating in the synchrotron from the electrode, and the particle beam is emitted from the synchrotron.
  • the high energy beam transport system 20 communicates the synchrotron with the irradiation field forming apparatus 40, and the extracted particle beam is installed in the rotating apparatus 21 via the high energy beam transport system 20. It is led up to 40.
  • the rotation device 21 is for irradiating a beam from any direction of the patient 30, and is mounted on a tubular structure called a gantry, and the bed 50 on which the patient 30 is placed by rotating the entire device. Can rotate in any direction around the.
  • the irradiation field forming device 40 is a device for shaping the shape of the particle beam to be finally irradiated to the patient 30, and the structure differs depending on the irradiation method.
  • the scatterer method and the scanning method are representative irradiation methods, and the present invention is effective for both irradiation methods.
  • the present embodiment will be described using a scanning method.
  • a thin beam transported from the high energy beam transport system 20 is directly irradiated to a target, and this can be three-dimensionally scanned to finally form a high dose area only on the target.
  • the fluoroscope 51 and the bed 50 are connected to the display 315 and the central control 312 via a positioning control system 316.
  • the X-ray fluoroscope 51 is composed of two X-ray generators and two X-ray detectors, and can capture X-ray fluoroscopic images seen through the inside of the patient 30 from two orthogonal directions.
  • the X-ray fluoroscopic image is an X-ray imaging of the marker 61 and the target 47 (see FIG. 2) from a plurality of directions in order to detect the position of the marker 61 (see FIG. 2) in the patient 30. It is used for positioning before line irradiation and measurement of the target position during particle beam irradiation.
  • the positioning control system 316 is a system that executes processing for determining the position of the bed 50 at the time of particle beam irradiation from the X-ray fluoroscopic image captured by the X-ray fluoroscope 51, and includes a recognition device 316A and a calculation device 316B. Is equipped.
  • the recognition device 316A recognizes the three-dimensional position of the target 47 in the patient 30 from the X-ray image acquired by the fluoroscope 51.
  • the calculation device 316 B is imaged by the three-dimensional imaging device 700 at the time of creation of the treatment plan, and the position of the marker 61 in the treatment plan CT image stored in the data server 600 and the marker in the CT image just before irradiation of particle beam. The positional relationship with the position of 61 is calculated. In addition, the calculation device 316B calculates a positional relationship between the position of the target 47 in the treatment plan CT image and the position of the target 47 in the CT image immediately before the irradiation. At this time, the positional relationship of the center of gravity of the target 47 is calculated with reference to the position of the marker 61.
  • the calculating device 316B calculates the amount of movement of the bed 50 on which the patient 30 having the target 47 is placed, based on the calculated positional relationship.
  • the calculation device 316B performs image reconstruction from the X-ray image acquired by the X-ray fluoroscope 51, and uses a cone beam CT image as a CT image just before irradiation. Generate At this time, the calculating device 316B is configured to keep the position of the target 47 recognized by the recognizing device 316A out of the predetermined range from the X-ray image acquired by the X-ray fluoroscope 51 (irradiation permission region, therapeutic particle beam for moving object tracking treatment Image reconstruction is performed from the X-ray image captured when the irradiation conditions are satisfied.
  • the calculation device 316B matches the positions of the marker 61 in the treatment plan CT image and the CT image immediately before irradiation, and the irradiation direction of the target 47 and the normal organ in each of the treatment plan CT image and the CT image immediately before irradiation Determine the water equivalent thickness and its difference up to the front and / or back side boundary.
  • the display device 315 displays the positional relationship between the target 47 and the marker 61 in the treatment plan CT image calculated by the calculation device 316 B of the positioning control system 316 and the CT image just before irradiation.
  • this display device 315 when the water equivalent thickness to the front side and / or the back side boundary of the irradiation direction of the target 47 or the normal organ and the difference thereof are calculated by the calculation device 316B, the water equivalent thickness and the difference It is possible to display
  • FIG. 2 is a view showing the arrangement of an irradiation field forming apparatus 40 corresponding to the scanning method.
  • the irradiation field forming apparatus 40 includes two scanning electromagnets 41 and 42, a dose monitor 43, and a beam position monitor 44 from the upstream side.
  • the dose monitor 43 measures the amount of particle beam that has passed through the monitor.
  • the beam position monitor 44 can measure the position where the particle beam has passed. The information from the dose monitor 43 and the beam position monitor 44 enables the irradiation control system 314 to manage that the planned amount of the beam is irradiated at the planned position.
  • the traveling direction of the thin particle beam transported from the charged particle beam generator 11 through the high energy beam transport system 20 is deflected by the scanning electromagnets 41 and 42.
  • the scanning electromagnets 41 and 42 are provided so that magnetic lines of force are generated in a direction perpendicular to the beam traveling direction.
  • the scanning electromagnet 41 deflects the beam in the scanning direction 45
  • the beam deflects the beam in a direction perpendicular to the scanning direction 45.
  • the irradiation control system 314 executes control to irradiate the particle beam to the target 47 when the position of the target 47 in the patient 30 is present in the irradiation permission area, so-called moving object tracking control.
  • the irradiation control system 314 can change the irradiation permission area from the positional relationship between the marker 61 and the target 47.
  • the irradiation control system 314 also controls the amount of current supplied to the scanning electromagnets 41 and 42 via the scanning electromagnet magnetic field strength control unit 49.
  • the scanning electromagnets 41 and 42 are supplied with current from the scanning electromagnet power supply 48, and the magnetic field corresponding to the amount of current is excited, whereby the amount of deflection of the beam can be freely set.
  • the relationship between the amount of deflection of the particle beam and the amount of current is previously stored as a table in the memory 313 in the central control unit 312, and is referred to.
  • a specified amount of beam is irradiated while the irradiation position is kept at a certain point. This point is called a spot.
  • the beam irradiation is temporarily stopped, and then the current amount of the scanning electromagnet is changed so that the irradiation can be performed to the next position.
  • the amount of current is changed, and after moving to the next irradiation position, the beam is irradiated again.
  • the method of moving the irradiation position continuously changes the irradiation position while irradiating the beam. That is, while continuously changing the amount of excitation of the electromagnet, the beam is moved while passing through the entire irradiation field.
  • the change of the irradiation amount for each irradiation position is realized by modulating the scanning speed and / or the amount of current of the beam.
  • FIG. 3 shows an example of irradiating a cubic target 47.
  • the particle beam is stopped at a certain position in the traveling direction, and the energy is adjusted so that the stopping depth of the beam is within or near the target 47 in order to apply most of the energy to the stopping position.
  • a beam of energy stopping near the surface 82 illuminated with the same energy is selected.
  • Discrete beam irradiation positions (spots) are arranged at spot intervals 83 on this surface. Irradiating a specified amount with one spot moves to the next spot.
  • the spot 84 is illuminated with a beam that passes through the trajectory 85 of the beam that illuminates the spot 84.
  • the energy of the beam irradiated to the patient 30 is changed.
  • One way to change the energy is to change the setting of the particle beam accelerator, ie, the synchrotron in this example.
  • the particles are accelerated to the energy set in the synchrotron, but changing this setting allows the energy incident on the patient 30 to be changed.
  • the energy extracted from the synchrotron changes, the energy when passing through the high energy beam transport system 20 also changes, and the setting change of the high energy beam transport system 20 also becomes necessary.
  • energy is mainly applied to a region corresponding to the surface 82 irradiated with the same energy.
  • the situation as shown in FIG. 4 is obtained.
  • a beam of energy lower than the energy used in FIG. 3 is irradiated. Therefore, the beam stops at a shallower position.
  • This surface is represented by a surface 91 irradiated with the same energy.
  • a spot 92 which is one of the spots corresponding to this beam of energy, is illuminated with the beam passing through the trajectory 93 of the beam illuminating the spot 92.
  • the particle beam therapy system 1 irradiates the particle beam toward the target 47 and forms a dose distribution.
  • the treatment planning device 501 determines information such as the energy for each spot, the irradiation position, and the irradiation amount.
  • two X-ray detectors 53 are disposed at the tip of the irradiation apparatus.
  • two X-ray generators 52 are disposed in the rotating device. The X-rays from the X-ray generator 52 can be viewed in two orthogonal directions in the patient's body. The X-rays in the two directions do not have to be orthogonal.
  • a cone beam CT image can be taken before particle beam irradiation, and near the target 47 during particle beam irradiation It is possible to measure the position of the marker 61 placed in the
  • FIG. 6 shows the flow of calculation contents of the treatment planning device 501.
  • Three-dimensional X-ray CT images are most commonly used as planned CT images for treatment planning.
  • a three-dimensional X-ray CT image is generated by reconstructing three-dimensional data from fluoroscopic images acquired from a plurality of directions of a patient by a three-dimensional imaging apparatus 700 such as a CT apparatus.
  • the captured planned CT image is stored in the data server 600.
  • the treatment planning device 501 uses this planned CT image.
  • the treatment planning apparatus 501 when the treatment planning apparatus 501 first recognizes that the planning of the treatment plan has been started (step S101), the technician (or doctor) who is the operator of the treatment planning apparatus 501 is an input device such as a mouse.
  • the target planned CT data is read from the data server 600 using
  • the treatment planning device 501 copies the CT image from the data server 600 onto the memory by the operation of the input device (step S102).
  • the operator confirms the planned CT image displayed on the display device 315 and inputs the input device.
  • the slice of the planned CT image that is, the region to be designated as the target 47 for each two-dimensional CT image is input (step S103).
  • the target 47 to be input is a region determined to be irradiated with a sufficient amount of radiation because a tumor cell is present or may be present. This is called target 47. If there is another area requiring evaluation and control, such as when there is a normal tissue in the vicinity of the target 47 for which the irradiation dose should be minimized, the operator designates the regions such as those normal tissues as well.
  • the treatment planning apparatus 501 may automatically specify the area based on the area drawing data drawn in the past.
  • the operator can correct and designate the drawing automatically drawn by the treatment planning apparatus 501 based on the area drawing data.
  • it may be performed on images of different modalities represented by MRI.
  • the operator sets necessary irradiation parameters to create a treatment plan including information on the position and energy of the beam to be irradiated to the registered target 47 (step S104).
  • the operator first sets the irradiation direction.
  • beam irradiation can be performed from any direction of the patient by selecting the angle between the rotating device 21 and the bed 50.
  • a plurality of irradiation directions can be set for one target 47.
  • the center of gravity of the target 47 is positioned so as to coincide with the isocenter (the rotation center position of the rotation device 21) at the time of irradiation.
  • the operator should determine include the dose value (prescription dose) to be irradiated and the number of times of irradiation in the area registered in step S103.
  • the prescribed dose includes the dose to be irradiated to the target 47 and the maximum dose allowed for normal tissue.
  • the treatment planning device 501 automatically calculates according to the instruction of the operator (step S105). In the following, details of contents related to dose calculation performed by the treatment planning device 501 will be described.
  • the treatment planning device 501 determines the beam irradiation position.
  • discrete spot positions are calculated.
  • the irradiation position is set to cover the target 47.
  • the irradiation direction the angle between the rotating device 21 and the bed 50
  • the treatment planning device 501 starts optimization calculation of the irradiation dose.
  • the dose to each spot is determined to approach the target prescribed dose set in step S104.
  • a method using an objective function that numerically represents a deviation from a target dose with the irradiation amount for each spot as a parameter is widely adopted. Since the objective function is defined so that the dose distribution has a smaller value as the target dose is met, the optimal irradiation can be obtained by iteratively calculating the dose that minimizes the target function. Calculate the quantity.
  • the irradiation order of a plurality of spots is also determined at this stage.
  • a zigzag route is set as shown by the scan route 86 in FIG. 3, but it is also possible to rearrange the irradiation order according to a standard in consideration of the scan time and the scan direction.
  • the treatment planning device 501 calculates a dose distribution using the spot position and the spot irradiation amount finally obtained by the arithmetic processing unit.
  • the calculated dose distribution result is displayed on the display unit 315 (step S106).
  • step S107 The operator confirms the dose distribution displayed on the display device 315. If the dose distribution does not meet the target dose distribution, the operator returns to step S104 and changes settings such as adding a dose constraint to a new region. Then, steps S104 to S107 are repeated until a target dose distribution is obtained (step S107).
  • step S107 When the target dose distribution is obtained in step S107, the operation is completed (step S108).
  • FIG. 7 shows a flow chart for explaining the flow of irradiating particle beams by the particle beam therapy system.
  • the patient 30 enters the treatment room (step S201).
  • the patient 30 lies on the bed 50 and performs the positioning that is the feature of the present invention (step S202).
  • the central control device 312 reads the information determined by the treatment planning device 501. Information necessary for positioning is sent from central controller 312 to positioning control system 316. The detailed flow of positioning will be described later with reference to FIG.
  • the central control unit 312 sets the angle of the rotating device that emits the particle beam (step S203).
  • information such as the energy for each spot and the dose required for irradiation is transmitted from the central control unit 312 to the irradiation control system 314.
  • the central control unit 312 controls the charged particle beam generator 11, the high energy beam transport system 20 and the irradiation field forming unit 40 together with the irradiation control system 314 to irradiate particle beams toward the patient (step S204).
  • the position of the marker 61 placed in the vicinity of the target 47 is continuously measured.
  • X-ray fluoroscopic images in two directions are used.
  • the measurement position of the marker 61 is a point where two straight lines connecting the X-ray generating position of the two X-ray fluoroscopes 51 and the position of the marker 61 captured on the X-ray fluoroscopic image intersect or the closest point I assume.
  • the particle beam is directed to the target 47 only when the measurement position of the marker 61 is within the irradiation permission area.
  • the irradiation permission area is set as, for example, an area of ⁇ 2 mm with respect to the planned position of the marker 61.
  • the planned position of the marker 61 is the position of the marker 61 in the planned CT image.
  • step S105 the gantry is rotated to irradiate the particle beam.
  • the central control unit 312 determines whether or not the irradiation from all planned irradiation directions has been completed (step S205), and when it is determined that the irradiation has been completed, the process proceeds to step S206, and the patient 30 The patient gets off the bed 50 and exits the treatment room (step S206). On the other hand, if it is determined that the process has not been completed, the process returns to step S203 to complete the irradiation from all the irradiation directions.
  • FIG. 8 is a flow diagram for explaining the flow of positioning in the particle beam therapy system of this embodiment.
  • the patient 30 lies on the bed 50, and the same posture as when capturing the reference CT image is reproduced (step S301).
  • the support tool is used to reproduce the positions of both arms and the angle at which the knee is bent.
  • the bed 50 is moved to an approximate position such that the position of the target 47 coincides with the isocenter.
  • fluoroscopic images in two directions are acquired using the two fluoroscopic devices 51 (step S302).
  • the acquired X-ray fluoroscopic image and the projection image obtained by calculation from the planned CT image are compared, and the bed 50 is moved so that the position of the patient is set at the planned position.
  • X-ray imaging is continuously performed by the two X-ray fluoroscopes 51 to confirm that the marker 61 in the vicinity of the target 47 is in the vicinity of the planned position (step S303).
  • the particle beam is irradiated when the marker 61 is in an area of ⁇ 2 mm around the planned position, the area is called an irradiation permitted area.
  • the time for the marker 61 to pass through the irradiation permission area is sufficiently long.
  • a cone beam CT image is captured using two X-ray fluoroscopes 51 (step S304).
  • the gantry In order to acquire cone-beam CT images, the gantry is rotated while acquiring x-ray fluoroscopic images in two directions. The gantry needs to be rotated by at least 90 degrees, and the larger the rotation angle, the better the cone-beam CT image can be acquired.
  • a fluoroscopic image records what was acquired from two directions as a pair.
  • the recognition device 316A recognizes the position where the marker 61 is shown in each of the two images by template matching or the like.
  • a position at which the two straight lines connecting the position at which the X-ray generator 52 generates X-rays and the position on the image where the marker 61 is imaged intersects or approaches the position is taken as the position of the marker 61.
  • the position of the marker 61 can be recorded for each X-ray fluoroscopic image recorded in pairs.
  • the recognition device 316A extracts only the X-ray fluoroscopic image in which the position of the marker 61 is in the irradiation permission area, and the calculation device 316B reconstructs a cone beam CT image from the extracted X-ray fluoroscopic image.
  • the information of the target 47 or organ designated on the planned CT is transcribed on the acquired cone beam CT image by the calculation device 316B (step S305).
  • an operator can designate a target 47 and an organ on a cone beam CT image on the screen, but a technique called non-rigid registration can also be used.
  • non-rigid registration a strain vector from planned CT to cone beam CT is calculated, and the target 47 on planned CT and the organ are distorted according to the strain vector. And organs are designated.
  • the calculation device 316B calculates the coordinates of the marker 61 and the barycentric coordinates of the target 47 on the planned CT and the cone beam CT respectively, and calculates the vector to the target barycentric coordinates starting from the coordinates of the marker 61 (Step S306).
  • step S 307 the components of x, y, z of the vector calculated by the calculation device 316 B are divided into the planned CT and the cone beam CT and displayed on the operation screen.
  • step S307 the vector calculated in step S306 is displayed on the display screen 315A of the display device 315.
  • An example of this display screen 315A is shown in FIG.
  • FIG. 9 is a diagram showing an example of a display screen of vectors.
  • the calculated barycentric coordinates of the target 47 are displayed in the area 315A1 described as the current value, and X, Y, and Z are displayed.
  • a planned value of barycentric coordinates of the target 47 at the time of planning on the planned CT is displayed.
  • the differences for each axis are displayed in the third row area 315A3.
  • the operator determines that the positioning is completed after confirming that the values displayed in the regions 315A1, 315A2, and 315A3 of the display screen 315A as shown in FIG. 9 are within the allowable range and that there is no problem.
  • the central controller 312 is instructed to start the irradiation of the line. In response to the input of this instruction, as shown in step S204 of FIG. 7, the central control unit 312 starts the irradiation of the particle beam.
  • the bed 50 is moved again in step S302, and the positioning process is performed again.
  • step S306 does not have to be the barycentric coordinates, and may be, for example, the midpoint of each of the three axes of the target 47 or the like.
  • the information of the target 47 used in step S306 does not have to be a point.
  • step S307 after matching the position of the marker 61 on the cone beam CT image or the planned CT image, the entire shape of the target 47 can be overlapped and drawn to highlight the difference.
  • the display screen 315B will be described with reference to FIGS. 10 and 11.
  • FIG. 10 shows an example of overlapping and displaying the target 47 in the planned CT and cone beam image.
  • FIG. 11 shows an example of a screen when highlighting a difference.
  • step S306 the calculation device 316B matches the three-dimensional position of the marker 61 in the treatment plan CT image and the CT image immediately before irradiation, and the target 47 corresponding to each of the treatment plan CT image and the CT immediately before irradiation Calculate the three-dimensional coordinate position of the shape of.
  • the display device 315 displays the marker 61 and the target contour 62 immediately before or during treatment on the cone beam CT image. Also, the target contour 60 on the planned CT image is displayed with the relative position between the position of the marker 61 and the target contour being transferred so that the position of the marker 61 matches the position of the marker 61 of the cone beam CT image Be done.
  • the non-overlapping difference 64 between the target contour 62 in the cone beam CT and the target contour 60 in the plan CT is highlighted as a filled portion in FIG.
  • the shapes of normal organs other than the target 47 are also displayed repeatedly, and the difference is displayed, so that it can be confirmed that the normal organ is at the same position as that at the time of planning.
  • a plurality of threshold values are provided in advance for the difference between the values of the planned CT image and the cone beam CT image, and when the calculated difference exceeds the threshold, as shown in FIG. It can be displayed that the difference is large.
  • a portion where the difference is below the threshold is displayed as the difference 64A, and a portion above the threshold is displayed as the difference 64B, and a warning display 65 is displayed. It is preferable to use different characters and colors for each threshold.
  • step S307 when matched with the position of the marker 61, a cone beam CT image and a plan for the water equivalent thickness up to the front or back boundary of the target 47 or normal organ seen from the irradiation direction It is also possible to display the difference of CT images. In particle beam, the amount of change in water equivalent thickness is particularly important.
  • FIG. 12 shows an example of irradiating a particle beam toward the target 47 from the front side of the drawing.
  • FIG. 12 is a diagram showing an example of a display screen for displaying the water equivalent thickness.
  • step S306 the calculation device 316B converts the difference between the target contour in cone beam CT and the target contour in planned CT into water equivalent in the direction of particle beam irradiation. Then, in step S307, of the converted water equivalents, if the difference is large, it is painted in a dark color and displayed as area 315D1, and if the difference is small, it is painted in a light color and area 315D2 It displays on display screen 315D like this. Also, if there is no difference, do not paint. This is calculated for both the near side (shallow side) and the far side (deep side) with respect to the irradiation direction, and the respective are switched and displayed.
  • the calculation device 316B calculates, for example, the movement amount of the bed 50 such that the target 47 matches, and the bed 50 is calculated based on that value. You can also move the When the bed 50 is moved, if the position of the irradiation permission area and the position of the marker 61 are separated, the position of the irradiation permission area can also be moved according to the movement amount of the bed 50.
  • step S304 the recognition device 316A divides the locus of the marker 61 into a plurality of areas using the locus of the marker 61 obtained when acquiring a cone beam CT image, and the calculation apparatus 316B divides the locus of the marker 61.
  • a cone beam CT image can be reconstructed for each region.
  • the calculation device 316 B calculates the relationship between the marker 61 and the target 47 for each divided area by calculating the position of the target 47 based on the marker 61 in step S 307 using the image divided for each of the plurality of areas. Is possible. According to this, it is possible to display the position of the divided area where the relationship between the marker 61 and the target 47 is closest to that at the time of planning based on the calculated result. Also, the movement amount of the bed 50 can be calculated so that the center of the divided area overlaps the center of the irradiation permission area, and the bed can be moved.
  • the positional relationship between the position of the marker 61 in the treatment plan CT image captured at the time of preparation of the treatment plan and the position of the marker 61 in the CT image just before irradiation of particle beam is captured at the time of preparation of the treatment plan and the position of the marker 61 in the CT image just before irradiation of particle beam.
  • a display device 315 for displaying the positional relationship between the target 47 and the marker 61 in the immediately preceding CT image.
  • the calculation device 316B calculates the positional relationship of the center of gravity of the target 47 based on the marker 61, it can be more accurately determined whether or not the position of the target 47 at the time of planning and immediately before irradiation match. It is possible to more accurately match the position of the target 47 with the planned time.
  • the positions of the marker 61 in the treatment plan CT image and the CT image immediately before the irradiation are matched, and the shapes of the target 47 corresponding to each of the treatment plan CT image and the CT image just before the irradiation are displayed Therefore, if there is a region of the target 47 which does not match the planned time, the deviation can be easily confirmed, and the time required for making the position of the target 47 equal to the planned time can be further shortened. Can.
  • the difference in the shape of the target 47 is compared with a predetermined threshold, and when it is determined that the difference exceeds the threshold, the difference during the threshold is highlighted to display the treatment plan. Deviations in the positional relationship of the target 47 immediately before and after the treatment can be more clearly grasped.
  • the calculation device 316B matches the positions of the marker 61 in the treatment plan CT image and the CT image immediately before irradiation, and the near side of the irradiation direction of the target 47 and the normal organ in each of the treatment plan CT image and the CT image immediately before irradiation
  • the water equivalent thickness up to the boundary on the back side and its difference are obtained, and the display device 315 irradiates the particle beam as radiation by displaying the difference between the water equivalent thickness of the treatment plan CT image and the CT image just before irradiation. It is possible to easily grasp the deviation immediately before the irradiation with respect to the treatment plan of the water equivalent thickness, which is an important index in the case.
  • whether or not the position of the marker 61 and the position of the target 47 coincide with the planned time can also be determined according to the deviation of the water equivalent thickness. For example, even if the position of the target 47 slightly deviates from the planned time, if it is determined that the water equivalent thickness is the same, it can be determined that the position of the target 47 is equivalent to the planned time. Therefore, it is possible to provide more information for determining whether or not the position of the target 47 matches the planned time, and the preparation time for irradiating the target 47 can be further shortened.
  • the calculating device 316B calculates the movement amount of the bed 50 on which the patient 30 having the target 47 is placed based on the positional relationship between the marker 61 and the target 47, thereby making the position of the target 47 equal to the planned time. And the preparation time for irradiating the target 47 can be further shortened.
  • the X-ray fluoroscope 51 for imaging the marker 61 and the target 47 from a plurality of directions by X-rays is further provided, and the calculation device 316 B performs image reconstruction from the X-ray image acquired by the X-ray fluoroscope 51
  • the calculation device 316 B performs image reconstruction from the X-ray image acquired by the X-ray fluoroscope 51
  • the computer further includes a recognition device 316A that recognizes the three-dimensional position of the target 47 in the patient 30 from the X-ray image acquired by the X-ray fluoroscope 51, and the calculation device 316B detects the X-ray image acquired by the X-ray fluoroscope 51
  • the cone that reflects the internal structure at the timing of particle beam irradiation by performing image reconstruction from the image in which the position of the target 47 recognized by the recognition device 316A satisfies the treatment particle beam irradiation condition of the motion tracking treatment from among them.
  • Beam CT images can be acquired.
  • a treatment particle beam for the target 47 is further provided by further comprising an irradiation control system 314 that controls the target 47 to irradiate the particle beam when the position of the target 47 in the patient 30 fills the irradiation permission region of the motion tracking treatment.
  • the irradiation accuracy of can be further improved.
  • the irradiation control system 314 can set the irradiation permission area according to the position of the target 47 immediately before irradiation by changing the irradiation permission area based on the positional relationship between the marker 61 and the target 47.
  • the irradiation accuracy of the therapeutic particle beam to the target 47 can be further improved.
  • the position to be the irradiation permission area is selected, and the selected position is used as the reference marker 61 position during planning, the marker 61 and the target Compare the positional relationship of 47.
  • the moving amount of the bed 50 is calculated so that the selected position matches the irradiation permission area, and the bed 50 can be moved based on the calculated result. .
  • the size of the irradiation permission area does not have to match the size of the area of the marker 61 for reconstructing a cone beam CT image. It is effective to appropriately adjust the area of the marker 61 for reconstructing a cone beam CT image from the magnitude of movement of the marker 61 and the image quality of the required cone beam CT image.

Abstract

A particle beam therapy apparatus 1 is provided with: a calculation unit 316B which calculates the positional relation between the position of a marker 61 in a therapeutic planning CT image captured when preparing a therapeutic plan and the position of the marker 61 in a CT image captured immediately prior to irradiation with particle beams, and the positional relation between the position of a target 47 in the therapeutic planning CT image and the position of the target 47 in the CT image captured immediately prior to irradiation; and a display device 315 which displays the respective positional relations, as calculated by the calculation device 316B, of the target 47 and the marker 61 in the therapeutic planning CT image and the CT image captured immediately prior to irradiation. This configuration provides a radiation therapy apparatus that enables, in a therapy employing a marker, more efficient determination, as compared to conventional methods, of the structure inside the body of a patient immediately prior to treatment, and that is capable of reducing the time required to place a patient in a planned position.

Description

放射線治療装置Radiation therapy equipment
 本発明は、陽子線や炭素線等の粒子線またはX線等の放射線を患部に照射する放射線治療装置に関する。 The present invention relates to a radiotherapy apparatus for irradiating a diseased part with radiation such as particle beam such as proton beam or carbon beam or X-ray.
 放射線治療の患者位置決めにおいて必要とされる、治療放射線照射状態での標的や放射線通過領域、及び危険臓器の位置関係を把握可能な画像を取得することができる放射線治療システムの一例として、特許文献1には、回転しながら複数の方向から被検体にX線を照射しX線撮影するX線撮影装置と、X線撮影装置によって取得したX線画像から被検体内の標的の3次元位置を認識する標的認識装置と、X線撮影装置によって取得したX線画像の中から、標的認識装置によって認識した標的の位置が動体追跡治療の治療放射線照射条件を満たす画像を選択して画像再構成を行い、コーンビームCT画像を生成するCT画像生成装置と、を備える放射線治療システムが記載されている。 As an example of a radiotherapy system capable of acquiring an image capable of grasping a positional relationship between a target and a radiation passing area in a therapeutic radiation irradiation state and a dangerous organ, which is required in patient positioning of radiotherapy, The X-ray imaging apparatus performs X-ray imaging by irradiating X-rays to the subject from a plurality of directions while rotating, and recognizes the three-dimensional position of the target in the subject from the X-ray image acquired by the X-ray imaging apparatus Select an image from the target recognition device to be detected and the X-ray image acquired by the X-ray imaging device, and the position of the target recognized by the target recognition device satisfies the treatment radiation irradiation condition for moving body tracking treatment A radiation treatment system is described, comprising: a CT imaging device for generating a cone-beam CT image.
特開2015-29793号公報JP, 2015-29793, A
 癌などの患者の患部に陽子線などの放射線を照射する治療方法が知られている。この治療方法に用いる放射線治療装置は、例えば陽子線の場合、加速器及びビーム輸送系からなるビーム発生装置、照射野形成装置、及びX線透視装置と患者ベッドからなる位置決め装置を備えている。 There is known a treatment method of irradiating the affected part of a patient such as cancer with radiation such as proton beam. In the case of a proton beam, for example, a radiation treatment apparatus used for this treatment method is provided with a beam generator comprising an accelerator and a beam transport system, an irradiation field forming device, and a positioning device comprising an X-ray fluoroscope and a patient bed.
 加速器で加速された粒子線は、ビーム輸送系を経て照射野形成装置に達し、この照射野形成装置によってモニタされ、かつ患者の患部の形に合うよう整形される。 The particle beam accelerated by the accelerator passes through the beam transport system to the radiation field forming device, is monitored by the radiation field forming device, and is shaped to fit the patient's affected area.
 陽子線や炭素線等の粒子線は、停止する直前にエネルギーの大部分を放出する特性を有しており、その結果得られる線量分布の形はブラッグピークと呼ばれている。粒子線治療装置は、この特性を利用し、粒子線のエネルギーを選択することで粒子線を照射目標で停止させてエネルギーの大部分を患部に放出する。 A particle beam such as a proton beam or a carbon beam has a characteristic of releasing most of the energy immediately before stopping, and the resulting shape of the dose distribution is called a Bragg peak. The particle beam treatment apparatus utilizes this characteristic and selects the energy of the particle beam to stop the particle beam at the irradiation target and release most of the energy to the affected area.
 放射線治療装置を用いて、患者の患部に向けて陽子線を照射し、患部に合致した形状の線量分布を形成するためには、患者を計画通りの位置に設置することが重要である。 In order to irradiate a proton beam toward the affected area of a patient using a radiation treatment apparatus and form a dose distribution conforming to the affected area, it is important to place the patient at a planned position.
 患者の位置を計画した位置に精度良く設置するため、治療直前の標的と標的周囲の位置や形状を確認する方法として、上述の特許文献1に記載されたようなコーンビームCT装置により3次元X線CT画像(以下、コーンビームCT画像と記載)を取得する方法がある。 As a method of confirming the position and shape of the target immediately before the treatment and the surroundings of the target in order to accurately set the position of the patient at the planned position, three-dimensional X-ray by cone beam CT apparatus as described in Patent Document 1 mentioned above. There is a method of acquiring a line CT image (hereinafter referred to as a cone beam CT image).
 これは、計画用に取得した3次元X線CT画像(以下、計画CT画像と記載)上には、アイソセンタと呼ばれる照射の基準点が指定されており、コーンビームCT画像と計画CT画像が一致するように患者の位置を動かすことで、患者を位置精度良く設置することができるものである。 This is because on the three-dimensional X-ray CT image (hereinafter referred to as a planned CT image) acquired for planning, an irradiation reference point called an isocenter is designated, and the cone beam CT image and the planned CT image coincide. By moving the position of the patient in such a way, the patient can be positioned with high accuracy.
 放射線治療では、呼吸などで動く臓器を照射する場合に標的に集中して陽子線を照射するため、患部などの標的近傍に設置したマーカが、計画した位置に来たときのみ陽子線を照射する方法がある。 In radiation therapy, when irradiating a moving organ by respiration etc., the target is focused on irradiating the proton beam, so the marker placed in the vicinity of the target such as the affected part only irradiates the proton beam when coming to the planned position There is a way.
 コーンビームCT画像の撮影では、患者の周りを1rpm程度の速度でX線透視装置が回転する。CT画像の再構成には180度分以上の方向からのX線画像が必要となるため、撮影時間は30秒以上が必要である。 In taking a cone-beam CT image, the fluoroscope rotates around the patient at a speed of about 1 rpm. Since reconstruction of a CT image requires an X-ray image from a direction of 180 degrees or more, an imaging time of 30 seconds or more is required.
 特に、呼吸などで動く臓器の撮像では、標的が撮像中に動くため、特許文献1では、標的またはマーカの位置を計測しながらX線画像を取得し、標的またはマーカが計画位置にあるときのX線画像のみを使用してCT画像を作成する方法が開示されている。 In particular, in imaging of moving organs by respiration etc., since the target moves during imaging, in Patent Document 1, an X-ray image is acquired while measuring the position of the target or marker, and the target or marker is at the planned position. A method is disclosed for creating CT images using only x-ray images.
 以上のようにして取得したコーンビームCT画像は、計画CT画像と比較して表示することで患者の設置位置を決めるために使用されている。 The cone beam CT image acquired as described above is used to determine the installation position of the patient by displaying it in comparison with the planned CT image.
 標的近傍に設置したマーカが計画位置にきたときのみ照射する場合、コーンビームCT画像を使用することにより、マーカの位置と標的の位置の両方を確認することができる。 If the marker placed near the target illuminates only when the planned position is reached, cone beam CT images can be used to confirm both the position of the marker and the position of the target.
 ここで、計画CT画像におけるマーカと標的の位置とコーンビームCTにおけるマーカと標的の位置の比較,確認は、従来は、コーンビームCT画像と計画CT画像を重ね合わせて表示することで、操作者がその違いを目視により確認していた。 Here, the comparison and confirmation of the position of the marker and target in the planned CT image and the position of the marker and target in the cone beam CT are conventionally performed by superimposing and displaying the cone beam CT image and the planned CT image. Had visually confirmed the difference.
 本発明は、マーカを用いた治療において、治療直前の患者体内の構造を従来に比べて効率良く確認することができ、患者を計画位置に設置するのに要する時間を短縮することが可能な放射線治療装置を提供する。 The present invention is a treatment that uses markers, in which the structure in the patient's body immediately before treatment can be confirmed more efficiently than in the past, and radiation that can shorten the time required to place the patient in a planned position Provide a therapeutic device.
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、標的に対して放射線を照射する放射線治療装置であって、治療計画の作成時に撮像した治療計画CT画像の中のマーカの位置と前記放射線の照射直前CT画像の中のマーカの位置との位置関係、および前記治療計画CT画像の中の標的の位置と前記照射直前CT画像の中の標的の位置との位置関係を算出する算出装置と、前記算出装置で算出された前記治療計画CT画像と前記照射直前CT画像における標的およびマーカの位置関係を表示する表示装置と、を備えたことを特徴とする。 The present invention includes a plurality of means for solving the above problems, and an example thereof is a radiotherapy apparatus for irradiating a target with radiation, and a treatment plan CT image captured at the time of preparation of a treatment plan. The positional relationship between the position of the marker in the and the position of the marker in the CT image immediately before the irradiation of radiation, the position of the target in the treatment plan CT image, and the position of the target in the CT image immediately before the irradiation And a display device for displaying a positional relationship between a target and a marker in the treatment plan CT image calculated by the calculation device and the CT image immediately before the irradiation. .
 本発明によれば、マーカと標的の位置の確認における操作者の操作量を従来に比べて削減することができるため、治療直前の患者体内の構造を従来に比べて効率良く確認することができ、患者を計画位置に設置するのに要する時間を短縮することができる。 According to the present invention, the amount of operation of the operator in the confirmation of the positions of the marker and the target can be reduced as compared with the conventional case, so the structure in the patient's body immediately before the treatment can be efficiently confirmed as compared with the conventional. The time required to place the patient in the planned position can be reduced.
本発明の一実施例の粒子線治療装置の全体構成の概略を示す図である。It is a figure showing an outline of the whole composition of particle beam therapy equipment of one example of the present invention. 本実施例の粒子線治療装置における照射野形成装置の概略を示す図である。It is a figure showing an outline of an irradiation field formation device in a particle beam therapy system of this example. 本実施例の粒子線治療装置による粒子線照射での最大エネルギーのスポット配置を示す図である。It is a figure which shows the spot arrangement | positioning of the maximum energy by particle beam irradiation by the particle beam therapy apparatus of a present Example. 本実施例の粒子線治療装置による粒子線照射での2番目のエネルギーのスポット配置を示す図である。It is a figure which shows the spot arrangement | positioning of the 2nd energy by particle beam irradiation by the particle beam therapy apparatus of a present Example. 本実施例の粒子線治療装置における位置決めシステムの概略を示す図である。It is a figure showing an outline of a positioning system in a particle beam therapy system of this example. 本実施例の粒子線治療装置による治療計画を立案する流れを説明するフロー図である。It is a flowchart explaining the flow which draws up the treatment plan by the particle beam treatment apparatus of a present Example. 本実施例の粒子線治療装置による粒子線を照射する流れを説明するフロー図である。It is a flowchart explaining the flow which irradiates the particle beam by the particle beam therapy system of a present Example. 本実施例の粒子線治療装置における位置決めの流れを説明するフロー図である。It is a flowchart explaining the flow of positioning in the particle beam therapy system of a present Example. 本実施例の粒子線治療装置におけるベクトルの表示画面の一例を示す図である。It is a figure which shows an example of the display screen of the vector in the particle beam therapy apparatus of a present Example. 本実施例の粒子線治療装置における計画CTとコーンビーム画像での標的とを重ねて表示する表示画面の一例を示す図である。It is a figure which shows an example of the display screen which piles up and displays the plan CT and the target in a cone beam image in the particle beam therapy apparatus of a present Example. 本実施例の粒子線治療装置における計画CTとコーンビーム画像での標的との差分を強調表示する表示画面の一例を示す図である。It is a figure which shows an example of the display screen which highlights the difference with the target in planned CT and a cone beam image in the particle beam therapy apparatus of a present Example. 本実施例の粒子線治療装置における水等価厚を表示する表示画面の一例を示す図である。It is a figure which shows an example of the display screen which displays the water equivalent thickness in the particle beam therapy apparatus of a present Example.
 本発明の好適な一実施例である粒子線治療装置について、図1乃至図12を用いて説明する。 A particle beam treatment apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS.
 本実施例では、放射線治療装置の一種として陽子線や炭素線等の粒子線を用いる粒子線治療装置を例に説明するが、X線を用いるX線治療装置に対しても本発明を適用することで同様の効果が得られる。 In this embodiment, a particle beam therapy system using particle beams such as proton beam and carbon beam as one type of radiation therapy system is described as an example, but the present invention is also applied to an X-ray therapy system using X-rays. The same effect can be obtained.
 最初に、図1を用いて粒子線治療装置の全体構成について説明する。図1は粒子線治療装置の全体構成の概略を示す図である。 First, the entire configuration of the particle beam therapy system will be described with reference to FIG. FIG. 1 is a view schematically showing the entire configuration of a particle beam therapy system.
 図1において、標的47に対して粒子線を照射する粒子線治療装置1は、荷電粒子ビーム発生装置11、高エネルギービーム輸送系20、回転装置21、中央制御装置312、メモリ313、照射制御システム314、表示装置315、位置決め制御システム316、照射野形成装置(照射装置)40、ベッド50、X線透視装置51、治療計画装置501を備えている。 In FIG. 1, a particle beam therapy system 1 for irradiating a particle beam to a target 47 includes a charged particle beam generator 11, a high energy beam transport system 20, a rotator 21, a central controller 312, a memory 313, and an irradiation control system. 314, a display device 315, a positioning control system 316, an irradiation field forming device (irradiation device) 40, a bed 50, a fluoroscopic device 51, and a treatment planning device 501.
 荷電粒子ビーム発生装置11は、イオン源12、前段加速器13、粒子ビーム加速装置14から構成される。本実施例では、粒子ビーム加速装置14としてシンクロトロン型の粒子ビーム加速装置を想定しているが、粒子ビーム加速装置14としてサイクロトロン等、他の様々な粒子ビーム加速装置を用いることができる。 The charged particle beam generator 11 comprises an ion source 12, a pre-stage accelerator 13 and a particle beam accelerator 14. In the present embodiment, a synchrotron-type particle beam accelerator is assumed as the particle beam accelerator 14, but various other particle beam accelerators such as a cyclotron can be used as the particle beam accelerator 14.
 シンクロトロン型の粒子ビーム加速装置14は、図1に示すように、その周回軌道上に偏向電磁石15、加速装置16、出射用の高周波印加装置17、出射用デフレクタ18、および4極電磁石(図示省略)を備える。 As shown in FIG. 1, the synchrotron type particle beam accelerating device 14 has a deflection electromagnet 15, an accelerating device 16, a high frequency applying device 17 for extraction, an extraction deflector 18 and a quadrupole electromagnet (shown in FIG. Omission).
 図1を用いて、粒子ビームが、シンクロトロン型の粒子ビーム加速装置14を利用した荷電粒子ビーム発生装置11から発生し、患者へ向けて出射されるまでの経過を説明する。 A process until a particle beam is generated from a charged particle beam generator 11 using a synchrotron-type particle beam accelerator 14 and emitted toward a patient will be described using FIG.
 イオン源12より供給された粒子は、前段加速器13にて加速され、ビーム加速装置であるシンクロトロンへと送られる。シンクロトロン内を周回する粒子ビームは、加速装置16を通過する周期に同期させて加速装置16に設けられた高周波加速空胴(図示省略)から高周波が印加され、加速される。このようにして粒子ビームが所定のエネルギーに達するまで加速される。 The particles supplied from the ion source 12 are accelerated by the pre-stage accelerator 13 and sent to the beam accelerator synchrotron. The particle beam circulating in the synchrotron is accelerated by applying a high frequency from a high frequency accelerating cavity (not shown) provided in the accelerating device 16 in synchronization with a cycle of passing through the accelerating device 16. In this way, the particle beam is accelerated until it reaches a predetermined energy.
 所定のエネルギー(例えば70~250MeV)まで粒子ビームが加速された後、中央制御装置312より、照射制御システム314を介して出射開始信号が出力されると、高周波印加装置17に設置された高周波印加電極から高周波電源19からの高周波電力がシンクロトロン内を周回している粒子ビームに印加され、粒子ビームがシンクロトロンから出射される。 After the particle beam is accelerated to a predetermined energy (for example, 70 to 250 MeV), when the emission start signal is output from the central control unit 312 via the irradiation control system 314, the high frequency application installed in the high frequency application unit 17 The high frequency power from the high frequency power source 19 is applied to the particle beam circulating in the synchrotron from the electrode, and the particle beam is emitted from the synchrotron.
 高エネルギービーム輸送系20は、シンクロトロンと照射野形成装置40とを連絡しており、取り出された粒子ビームは、高エネルギービーム輸送系20を介して回転装置21に設置された照射野形成装置40まで導かれる。 The high energy beam transport system 20 communicates the synchrotron with the irradiation field forming apparatus 40, and the extracted particle beam is installed in the rotating apparatus 21 via the high energy beam transport system 20. It is led up to 40.
 回転装置21は、患者30の任意の方向からビームを照射するためにあって、ガントリーと呼ばれる筒状の構造物に搭載させており、装置全体が回転することで患者30の設置されたベッド50の周囲どの方向へも回転することができる。 The rotation device 21 is for irradiating a beam from any direction of the patient 30, and is mounted on a tubular structure called a gantry, and the bed 50 on which the patient 30 is placed by rotating the entire device. Can rotate in any direction around the.
 照射野形成装置40は、最終的に患者30へ照射する粒子ビームの形状を整形する装置であり、その構造は照射方式により異なる。散乱体法とスキャニング法が、代表的な照射方式であり、本発明はどちらの照射方式でも有効である。本実施例はスキャニング法を用いて説明する。 The irradiation field forming device 40 is a device for shaping the shape of the particle beam to be finally irradiated to the patient 30, and the structure differs depending on the irradiation method. The scatterer method and the scanning method are representative irradiation methods, and the present invention is effective for both irradiation methods. The present embodiment will be described using a scanning method.
 スキャニング法は、高エネルギービーム輸送系20から輸送された細いビームをそのまま標的へ照射し、これを3次元的に走査することで、最終的に標的のみに高線量領域を形成することができる。 In the scanning method, a thin beam transported from the high energy beam transport system 20 is directly irradiated to a target, and this can be three-dimensionally scanned to finally form a high dose area only on the target.
 X線透視装置51とベッド50は位置決め制御システム316を介して表示装置315と中央制御装置312と繋がっている。 The fluoroscope 51 and the bed 50 are connected to the display 315 and the central control 312 via a positioning control system 316.
 X線透視装置51は、それぞれ2台のX線発生装置とX線検出装置から構成されており、患者30の体内を透視したX線透視画像を二つの直交する方向から撮影することができる。このX線透視画像は、患者30内のマーカ61(図2参照)の位置を検出するためにマーカ61および標的47(図2参照)をX線により複数の方向から撮像するものであり、粒子線照射前の位置決めと、粒子線照射中の標的位置の計測に用いられる。 The X-ray fluoroscope 51 is composed of two X-ray generators and two X-ray detectors, and can capture X-ray fluoroscopic images seen through the inside of the patient 30 from two orthogonal directions. The X-ray fluoroscopic image is an X-ray imaging of the marker 61 and the target 47 (see FIG. 2) from a plurality of directions in order to detect the position of the marker 61 (see FIG. 2) in the patient 30. It is used for positioning before line irradiation and measurement of the target position during particle beam irradiation.
 位置決め制御システム316は、X線透視装置51によって撮像されたX線透視画像から、粒子ビーム照射時のベッド50の位置を決定するための処理を実行するシステムであり、認識装置316Aおよび算出装置316Bを備えている。 The positioning control system 316 is a system that executes processing for determining the position of the bed 50 at the time of particle beam irradiation from the X-ray fluoroscopic image captured by the X-ray fluoroscope 51, and includes a recognition device 316A and a calculation device 316B. Is equipped.
 認識装置316Aは、X線透視装置51によって取得したX線画像から患者30内の標的47の3次元位置を認識する。 The recognition device 316A recognizes the three-dimensional position of the target 47 in the patient 30 from the X-ray image acquired by the fluoroscope 51.
 算出装置316Bは、治療計画の作成時に3次元撮像装置700によって撮像され、データサーバ600に保存されている治療計画CT画像の中のマーカ61の位置と粒子線の照射直前CT画像の中のマーカ61の位置との位置関係を算出する。また、算出装置316Bは、治療計画CT画像の中の標的47の位置と照射直前CT画像の中の標的47の位置との位置関係を算出する。この際、マーカ61の位置を基準として、標的47の重心の位置関係を算出する。 The calculation device 316 B is imaged by the three-dimensional imaging device 700 at the time of creation of the treatment plan, and the position of the marker 61 in the treatment plan CT image stored in the data server 600 and the marker in the CT image just before irradiation of particle beam. The positional relationship with the position of 61 is calculated. In addition, the calculation device 316B calculates a positional relationship between the position of the target 47 in the treatment plan CT image and the position of the target 47 in the CT image immediately before the irradiation. At this time, the positional relationship of the center of gravity of the target 47 is calculated with reference to the position of the marker 61.
 算出装置316Bは、算出した位置関係に基づいて、標的47を有する患者30を載せるベッド50の移動量を算出する。 The calculating device 316B calculates the amount of movement of the bed 50 on which the patient 30 having the target 47 is placed, based on the calculated positional relationship.
 マーカ61の位置関係や標的47の位置関係を算出するために、算出装置316Bは、X線透視装置51によって取得したX線画像から画像再構成を行い、照射直前CT画像としてコーンビームCT画像を生成する。この際、算出装置316Bは、X線透視装置51によって取得したX線画像の中から、認識装置316Aによって認識した標的47の位置が所定の範囲内(照射許可領域、動体追跡治療の治療粒子線照射条件)にあるときに撮像されたX線画像から画像再構成を行う。 In order to calculate the positional relationship of the marker 61 and the positional relationship of the target 47, the calculation device 316B performs image reconstruction from the X-ray image acquired by the X-ray fluoroscope 51, and uses a cone beam CT image as a CT image just before irradiation. Generate At this time, the calculating device 316B is configured to keep the position of the target 47 recognized by the recognizing device 316A out of the predetermined range from the X-ray image acquired by the X-ray fluoroscope 51 (irradiation permission region, therapeutic particle beam for moving object tracking treatment Image reconstruction is performed from the X-ray image captured when the irradiation conditions are satisfied.
 更には、算出装置316Bは、治療計画CT画像と照射直前CT画像におけるマーカ61の位置を一致させて、その際の治療計画CT画像と照射直前CT画像のそれぞれにおける標的47や正常臓器の照射方向の手前側および/または奥側の境界までの水等価厚とその差分を求める。 Furthermore, the calculation device 316B matches the positions of the marker 61 in the treatment plan CT image and the CT image immediately before irradiation, and the irradiation direction of the target 47 and the normal organ in each of the treatment plan CT image and the CT image immediately before irradiation Determine the water equivalent thickness and its difference up to the front and / or back side boundary.
 表示装置315は、位置決め制御システム316の算出装置316Bで算出された治療計画CT画像と照射直前CT画像における標的47およびマーカ61の位置関係を表示する。この表示装置315では、算出装置316Bで標的47や正常臓器の照射方向の手前側および/または奥側の境界までの水等価厚とその差分を求めた場合には、その水等価厚とその差分を表示することが可能である。 The display device 315 displays the positional relationship between the target 47 and the marker 61 in the treatment plan CT image calculated by the calculation device 316 B of the positioning control system 316 and the CT image just before irradiation. In this display device 315, when the water equivalent thickness to the front side and / or the back side boundary of the irradiation direction of the target 47 or the normal organ and the difference thereof are calculated by the calculation device 316B, the water equivalent thickness and the difference It is possible to display
 以上の認識装置316Aおよび算出装置316Bの処理の詳細や、表示装置315で表示される表示画面の詳細は後述する。 Details of the processes of the recognition device 316A and the calculation device 316B described above and details of the display screen displayed on the display device 315 will be described later.
 図2を使って、照射野形成装置40内の機器のそれぞれの役割と機能とを簡単に述べる。図2は、スキャニング法に対応した照射野形成装置40の構成を示す図である。 The respective roles and functions of the devices in the irradiation field forming apparatus 40 will be briefly described using FIG. FIG. 2 is a view showing the arrangement of an irradiation field forming apparatus 40 corresponding to the scanning method.
 照射野形成装置40は、上流側から二つの走査電磁石41,42、線量モニタ43、ビーム位置モニタ44を備える。線量モニタ43はモニタを通過した粒子ビームの量を計測する。ビーム位置モニタ44は、粒子ビームが通過した位置を計測することができる。これら線量モニタ43およびビーム位置モニタ44からの情報により、計画通りの位置に、計画通りの量のビームが照射されていることを、照射制御システム314が管理することが可能となる。 The irradiation field forming apparatus 40 includes two scanning electromagnets 41 and 42, a dose monitor 43, and a beam position monitor 44 from the upstream side. The dose monitor 43 measures the amount of particle beam that has passed through the monitor. The beam position monitor 44 can measure the position where the particle beam has passed. The information from the dose monitor 43 and the beam position monitor 44 enables the irradiation control system 314 to manage that the planned amount of the beam is irradiated at the planned position.
 荷電粒子ビーム発生装置11から高エネルギービーム輸送系20を経て輸送された細い粒子ビームは、走査電磁石41,42によりその進行方向が偏向される。これらの走査電磁石41,42は、ビーム進行方向と垂直な方向に磁力線が生じるように設けられており、例えば図2では、走査電磁石41は走査方向45の方向にビームを偏向させ、走査電磁石42は走査方向45に垂直な方向にビームを偏向させる。これらの二つの電磁石を利用することで、ビーム進行方向と垂直な面内において任意の位置にビームを移動させることができ、標的47へのビーム照射が可能となる。 The traveling direction of the thin particle beam transported from the charged particle beam generator 11 through the high energy beam transport system 20 is deflected by the scanning electromagnets 41 and 42. The scanning electromagnets 41 and 42 are provided so that magnetic lines of force are generated in a direction perpendicular to the beam traveling direction. For example, in FIG. 2, the scanning electromagnet 41 deflects the beam in the scanning direction 45 The beam deflects the beam in a direction perpendicular to the scanning direction 45. By using these two electromagnets, the beam can be moved to any position in a plane perpendicular to the beam traveling direction, and the beam irradiation to the target 47 becomes possible.
 ここで、照射制御システム314は、患者30内の標的47の位置が照射許可領域内に存在するときに標的47に粒子線を照射する制御、いわゆる動体追跡制御を実行する。この照射制御システム314は、マーカ61と標的47との位置関係から、照射許可領域を変更することが可能である。 Here, the irradiation control system 314 executes control to irradiate the particle beam to the target 47 when the position of the target 47 in the patient 30 is present in the irradiation permission area, so-called moving object tracking control. The irradiation control system 314 can change the irradiation permission area from the positional relationship between the marker 61 and the target 47.
 また、照射制御システム314は、走査電磁石磁場強度制御装置49を介して、走査電磁石41,42に流す電流の量を制御する。走査電磁石41,42には、走査電磁石用電源48より電流が供給され、電流量に応じた磁場が励起されることでビームの偏向量を自由に設定できる。粒子ビームの偏向量と電流量との関係は、あらかじめテーブルとして中央制御装置312の中のメモリ313に保持されており、それを参照する。 The irradiation control system 314 also controls the amount of current supplied to the scanning electromagnets 41 and 42 via the scanning electromagnet magnetic field strength control unit 49. The scanning electromagnets 41 and 42 are supplied with current from the scanning electromagnet power supply 48, and the magnetic field corresponding to the amount of current is excited, whereby the amount of deflection of the beam can be freely set. The relationship between the amount of deflection of the particle beam and the amount of current is previously stored as a table in the memory 313 in the central control unit 312, and is referred to.
 スキャニング法のビームの走査方式は二通りある。一つは照射位置の移動と停止を繰り返す離散的な方式、もう一つは連続的に照射位置を変化させる方式である。 There are two beam scanning methods of the scanning method. One is a discrete method in which movement and stop of the irradiation position is repeated, and the other is a method in which the irradiation position is changed continuously.
 離散的な方式では、まず、照射位置をある点に留めたまま、規定量のビームが照射される。この点のことをスポットと呼ぶ。規定量のビームがスポットへ照射されたら、続いて、一時的にビームの照射を停止させた後、次の位置へ照射できるように走査電磁石の電流量が変更される。電流量が変更され、次の照射位置に移動後、再びビームを照射させる。 In the discrete method, first, a specified amount of beam is irradiated while the irradiation position is kept at a certain point. This point is called a spot. When the beam is irradiated to the spot by the specified amount, the beam irradiation is temporarily stopped, and then the current amount of the scanning electromagnet is changed so that the irradiation can be performed to the next position. The amount of current is changed, and after moving to the next irradiation position, the beam is irradiated again.
 照射位置を連続的に移動させる方式は、ビームを照射したまま照射位置を変化させる。すなわち、電磁石の励磁量を連続的に変化させながら、照射野内全体を通過するようにビームを照射しながら移動させる。この方法における照射位置ごとの照射量の変化は、走査速度かビームの電流量、あるいはその両方を変調させることで実現する。 The method of moving the irradiation position continuously changes the irradiation position while irradiating the beam. That is, while continuously changing the amount of excitation of the electromagnet, the beam is moved while passing through the entire irradiation field. In this method, the change of the irradiation amount for each irradiation position is realized by modulating the scanning speed and / or the amount of current of the beam.
 離散的な方式による照射の概念図を図3に示す。図3は、立方体の標的47を照射する例である。粒子ビームは、進行方向におけるある位置で停止し、その停止位置にエネルギーの大部分を付与するため、ビームの停止する深さが標的47内または標的47近傍となるようにエネルギーが調整される。図3では、同一エネルギーで照射される面82付近で停止するエネルギーのビームが選ばれている。この面上に、離散的なビーム照射位置(スポット)がスポット間隔83で配置されている。一つのスポットで規定量を照射すると、次のスポットへ移動する。スポット84は、スポット84を照射するビームの軌跡85を通るビームで照射される。標的47内に配置された同一エネルギーのスポットを順次照射し終わると、標的47内の他の深さ位置を照射するために、ビームを停止させる深さが変更される。 A conceptual view of the discrete scheme of illumination is shown in FIG. FIG. 3 shows an example of irradiating a cubic target 47. The particle beam is stopped at a certain position in the traveling direction, and the energy is adjusted so that the stopping depth of the beam is within or near the target 47 in order to apply most of the energy to the stopping position. In FIG. 3, a beam of energy stopping near the surface 82 illuminated with the same energy is selected. Discrete beam irradiation positions (spots) are arranged at spot intervals 83 on this surface. Irradiating a specified amount with one spot moves to the next spot. The spot 84 is illuminated with a beam that passes through the trajectory 85 of the beam that illuminates the spot 84. Once the same energy spots located in the target 47 have been sequentially irradiated, the depth at which the beam is stopped is changed in order to irradiate another depth position in the target 47.
 ビームの停止する深さを変化させるためには、患者30に照射するビームのエネルギーを変化させる。エネルギーを変化させる方法の一つは、粒子ビーム加速装置、すなわち本実施例においてはシンクロトロンの設定を変更することである。粒子はシンクロトロンにおいて設定されたエネルギーになるまで加速されるが、この設定値を変更することで患者30に入射するエネルギーを変更することができる。この場合、シンクロトロンから取り出されるエネルギーが変化するため、高エネルギービーム輸送系20を通過する際のエネルギーも変化し、高エネルギービーム輸送系20の設定変更も必要になる。 In order to change the stopping depth of the beam, the energy of the beam irradiated to the patient 30 is changed. One way to change the energy is to change the setting of the particle beam accelerator, ie, the synchrotron in this example. The particles are accelerated to the energy set in the synchrotron, but changing this setting allows the energy incident on the patient 30 to be changed. In this case, since the energy extracted from the synchrotron changes, the energy when passing through the high energy beam transport system 20 also changes, and the setting change of the high energy beam transport system 20 also becomes necessary.
 図3の例では、同一エネルギーで照射される面82に相当する領域に主にエネルギーを付与していた。エネルギーを変更することで、例えば図4のような状況となる。図4では、図3で使用したエネルギーよりも低いエネルギーのビームが照射される。そのため、ビームはより浅い位置で停止する。この面を同一エネルギーで照射される面91で表わす。このエネルギーのビームに対応するスポットの一つであるスポット92は、スポット92を照射するビームの軌跡93を通るビームで照射される。 In the example of FIG. 3, energy is mainly applied to a region corresponding to the surface 82 irradiated with the same energy. By changing the energy, for example, the situation as shown in FIG. 4 is obtained. In FIG. 4, a beam of energy lower than the energy used in FIG. 3 is irradiated. Therefore, the beam stops at a shallower position. This surface is represented by a surface 91 irradiated with the same energy. A spot 92, which is one of the spots corresponding to this beam of energy, is illuminated with the beam passing through the trajectory 93 of the beam illuminating the spot 92.
 このように、スポット毎のエネルギー、照射位置、照射量の情報が入力されると、粒子線治療装置1は、標的47に向けて粒子線を照射し、線量分布を形成する。このスポット毎のエネルギー、照射位置、照射量などの情報を決定するのが治療計画装置501である。 As described above, when the information of the energy for each spot, the irradiation position, and the irradiation amount is input, the particle beam therapy system 1 irradiates the particle beam toward the target 47 and forms a dose distribution. The treatment planning device 501 determines information such as the energy for each spot, the irradiation position, and the irradiation amount.
 図5に示すように照射装置の先端部には、X線検出器53が2台配置されている。また、回転装置内には、2台のX線発生器52が配置されている。X線発生器52からのX線で患者の体内を直交する二つの方向から透視可能である。なお、2方向のX線は直行している必要はない。 As shown in FIG. 5, two X-ray detectors 53 are disposed at the tip of the irradiation apparatus. In addition, two X-ray generators 52 are disposed in the rotating device. The X-rays from the X-ray generator 52 can be viewed in two orthogonal directions in the patient's body. The X-rays in the two directions do not have to be orthogonal.
 この2組のX線発生器52とX線検出器53からなるX線透視装置51を用いることで、粒子線照射前にコーンビームCT画像の撮影ができ、また粒子線照射中に標的47近傍に留置したマーカ61の位置を計測することができる。 By using the X-ray fluoroscope 51 composed of the two sets of X-ray generator 52 and X-ray detector 53, a cone beam CT image can be taken before particle beam irradiation, and near the target 47 during particle beam irradiation It is possible to measure the position of the marker 61 placed in the
 次に、操作者による治療計画立案の流れと治療計画装置501の操作の流れを、図6に沿って説明する。図6は治療計画装置501の計算内容の流れを示したものである。 Next, the flow of treatment planning by the operator and the flow of the operation of the treatment planning device 501 will be described with reference to FIG. FIG. 6 shows the flow of calculation contents of the treatment planning device 501.
 治療に先立ち、治療計画用の計画CT画像が撮像される。治療計画用の計画CT画像として最も一般的に利用されるのは3次元X線CT画像である。3次元X線CT画像は、CT装置などの3次元撮像装置700により患者の複数の方向から取得した透視画像から、3次元のデータを再構成することで生成する。撮像された計画CT画像は、データサーバ600に保存されている。治療計画装置501は、この計画CT画像を利用する。 Prior to treatment, planned CT images for treatment planning are taken. Three-dimensional X-ray CT images are most commonly used as planned CT images for treatment planning. A three-dimensional X-ray CT image is generated by reconstructing three-dimensional data from fluoroscopic images acquired from a plurality of directions of a patient by a three-dimensional imaging apparatus 700 such as a CT apparatus. The captured planned CT image is stored in the data server 600. The treatment planning device 501 uses this planned CT image.
 図6において、治療計画装置501は、まず、治療計画の立案が開始されたことを認識(ステップS101)すると、治療計画装置501の操作者である技師(または医師)は、マウス等の入力装置を用いて、データサーバ600から対象となる計画CTデータを読み込む。治療計画装置501は、入力装置の操作により、データサーバ600からCT画像をメモリ上にコピーする(ステップS102)。 In FIG. 6, when the treatment planning apparatus 501 first recognizes that the planning of the treatment plan has been started (step S101), the technician (or doctor) who is the operator of the treatment planning apparatus 501 is an input device such as a mouse. The target planned CT data is read from the data server 600 using The treatment planning device 501 copies the CT image from the data server 600 onto the memory by the operation of the input device (step S102).
 データサーバ600からメモリへの計画CT画像の読み込みが完了し、計画CT画像が表示装置315に表示されると、操作者は表示装置315に表示された計画CT画像を確認しながら、入力装置を用いて、計画CT画像のスライス、すなわち2次元CT画像ごとに標的47として指定すべき領域を入力する(ステップS103)。ここで入力すべき標的47は、腫瘍細胞が存在する、あるいは存在する可能性があるために十分な量の放射線を照射すべきと判断された領域である。これを標的47と呼ぶ。照射線量を極力抑えるべき正常組織が標的47の近傍に存在するなど、他に評価、制御を必要とする領域がある場合、操作者はそれら正常組織等の領域も同様に指定する。 When the reading of the planned CT image from the data server 600 to the memory is completed, and the planned CT image is displayed on the display device 315, the operator confirms the planned CT image displayed on the display device 315 and inputs the input device. Using the slice of the planned CT image, that is, the region to be designated as the target 47 for each two-dimensional CT image is input (step S103). The target 47 to be input here is a region determined to be irradiated with a sufficient amount of radiation because a tumor cell is present or may be present. This is called target 47. If there is another area requiring evaluation and control, such as when there is a normal tissue in the vicinity of the target 47 for which the irradiation dose should be minimized, the operator designates the regions such as those normal tissues as well.
 このステップS103での領域描画は、過去に描画した領域描画データをもとに治療計画装置501が自動で領域指定してもよい。また、領域描画データをもとに治療計画装置501が自動で描画したものを、操作者が修正して指定することもできる。他にも、MRIに代表される異なるモダリティの画像上で実行されてもよい。 In the area drawing in step S103, the treatment planning apparatus 501 may automatically specify the area based on the area drawing data drawn in the past. In addition, the operator can correct and designate the drawing automatically drawn by the treatment planning apparatus 501 based on the area drawing data. Alternatively, it may be performed on images of different modalities represented by MRI.
 次に操作者は、登録された標的47に対して照射すべきビームの位置やエネルギーの情報を含む治療計画を作成するため、必要な照射パラメータを設定する(ステップS104)。操作者は、まず、照射方向を設定する。本実施例を適用した粒子線治療装置では、回転装置21とベッド50の角度を選択することで、患者の任意の方向からビームの照射を行うことができる。照射方向は一つの標的47に対して複数設定することが可能である。ある方向からビームが照射される場合、照射時には標的47の重心位置がアイソセンタ(回転装置21の回転中心位置)に一致するように位置決めされることが想定される。 Next, the operator sets necessary irradiation parameters to create a treatment plan including information on the position and energy of the beam to be irradiated to the registered target 47 (step S104). The operator first sets the irradiation direction. In the particle beam therapy system to which the present embodiment is applied, beam irradiation can be performed from any direction of the patient by selecting the angle between the rotating device 21 and the bed 50. A plurality of irradiation directions can be set for one target 47. When the beam is irradiated from a certain direction, it is assumed that the center of gravity of the target 47 is positioned so as to coincide with the isocenter (the rotation center position of the rotation device 21) at the time of irradiation.
 他に操作者が決定すべき照射のためのパラメータとしては、ステップS103で登録した領域に照射すべき線量値(処方線量)と照射回数がある。処方線量は標的47に照射すべき線量や、正常組織に許容される最大線量が含まれる。 Other parameters for irradiation that the operator should determine include the dose value (prescription dose) to be irradiated and the number of times of irradiation in the area registered in step S103. The prescribed dose includes the dose to be irradiated to the target 47 and the maximum dose allowed for normal tissue.
 以上のパラメータが決まった後、操作者の指示に従って治療計画装置501が自動で計算を行う(ステップS105)。以下で、治療計画装置501が行う線量計算に係わる内容の詳細に関して説明する。 After the above parameters are determined, the treatment planning device 501 automatically calculates according to the instruction of the operator (step S105). In the following, details of contents related to dose calculation performed by the treatment planning device 501 will be described.
 初めに、治療計画装置501は、ビーム照射位置を決定する。本実施例で扱う前述した離散的な走査方式であれば、離散的なスポット位置を算出する。照射位置は標的47を覆うように設定される。照射方向(回転装置21とベッド50の角度)として複数の方向が指定されている場合は、各方向に関して同じ操作を行う。 First, the treatment planning device 501 determines the beam irradiation position. In the case of the above-described discrete scanning method dealt with in this embodiment, discrete spot positions are calculated. The irradiation position is set to cover the target 47. When a plurality of directions are designated as the irradiation direction (the angle between the rotating device 21 and the bed 50), the same operation is performed in each direction.
 全ての照射位置が決定されると、治療計画装置501は照射量の最適化計算を開始する。各スポットへの照射量が、ステップS104で設定された目標の処方線量に近づくように決定される。この計算では、スポットごとの照射量をパラメータとした目標線量からのずれを数値化した目的関数を用いる方法が広く採用されている。目的関数は線量分布が目標とする線量を満たすほど小さな値となるように定義されていることから、目標関数が最小となるような照射量を反復計算により探索することで、最適とされる照射量を算出する。 When all irradiation positions are determined, the treatment planning device 501 starts optimization calculation of the irradiation dose. The dose to each spot is determined to approach the target prescribed dose set in step S104. In this calculation, a method using an objective function that numerically represents a deviation from a target dose with the irradiation amount for each spot as a parameter is widely adopted. Since the objective function is defined so that the dose distribution has a smaller value as the target dose is met, the optimal irradiation can be obtained by iteratively calculating the dose that minimizes the target function. Calculate the quantity.
 反復計算が終了すると、最終的に各スポットに必要な照射量が定まる。複数あるスポットの照射順序も、この段階で定まる。通常は図3の走査経路86で示したようにジグザグな経路が設定されるが、走査時間や走査方向を考慮した基準に従って照射順序を並び替えることも可能である。 When the iterative calculation is completed, the required dose for each spot is finally determined. The irradiation order of a plurality of spots is also determined at this stage. Usually, a zigzag route is set as shown by the scan route 86 in FIG. 3, but it is also possible to rearrange the irradiation order according to a standard in consideration of the scan time and the scan direction.
 次に、治療計画装置501は演算処理装置により、最終的に得られたスポット位置とスポット照射量を用いて、線量分布を計算する。計算した線量分布の結果は、表示装置315に表示される(ステップS106)。 Next, the treatment planning device 501 calculates a dose distribution using the spot position and the spot irradiation amount finally obtained by the arithmetic processing unit. The calculated dose distribution result is displayed on the display unit 315 (step S106).
 操作者は、表示装置315に表示された線量分布を確認し、線量分布が目標通りの線量分布となっていなければ、ステップS104に戻り、新たな領域に線量の制約を加えるなどの設定を変更して、目標通りの線量分布が得られるまでステップS104からステップS107を繰り返す(ステップS107)。 The operator confirms the dose distribution displayed on the display device 315. If the dose distribution does not meet the target dose distribution, the operator returns to step S104 and changes settings such as adding a dose constraint to a new region. Then, steps S104 to S107 are repeated until a target dose distribution is obtained (step S107).
 ステップS107において目標通りの線量分布が得られた場合、操作完了となる(ステップS108)。 When the target dose distribution is obtained in step S107, the operation is completed (step S108).
 次に、図7のフロー図を用いて粒子線照射の全体フローを説明する。図7に粒子線治療装置による粒子線を照射する流れを説明するフロー図を示す。 Next, the entire flow of particle beam irradiation will be described using the flow chart of FIG. FIG. 7 shows a flow chart for explaining the flow of irradiating particle beams by the particle beam therapy system.
 図7において、最初に、患者30が治療室に入室する(ステップS201)。 In FIG. 7, first, the patient 30 enters the treatment room (step S201).
 次いで、患者30がベッド50に横になり、本発明の特徴である位置決めを実施する(ステップS202)。 Next, the patient 30 lies on the bed 50 and performs the positioning that is the feature of the present invention (step S202).
 本ステップS202では、治療計画装置501が決定した情報を中央制御装置312が読み込む。位置決めに必要な情報は、中央制御装置312から位置決め制御システム316へ送信される。位置決めの詳細なフローについては図8を用いて後述する。 In the present step S202, the central control device 312 reads the information determined by the treatment planning device 501. Information necessary for positioning is sent from central controller 312 to positioning control system 316. The detailed flow of positioning will be described later with reference to FIG.
 次いで、中央制御装置312は、粒子線を照射する回転装置の角度を設定する(ステップS203)。また、照射に必要なスポット毎のエネルギーや照射量などの情報を中央制御装置312から照射制御システム314に送信する。 Next, the central control unit 312 sets the angle of the rotating device that emits the particle beam (step S203). In addition, information such as the energy for each spot and the dose required for irradiation is transmitted from the central control unit 312 to the irradiation control system 314.
 次いで、中央制御装置312は荷電粒子ビーム発生装置11と高エネルギービーム輸送系20と照射野形成装置40を照射制御システム314と共に制御して粒子線を患者へ向けて照射する(ステップS204)。 Next, the central control unit 312 controls the charged particle beam generator 11, the high energy beam transport system 20 and the irradiation field forming unit 40 together with the irradiation control system 314 to irradiate particle beams toward the patient (step S204).
 本ステップS204における粒子線の照射中は、標的47近傍に留置したマーカ61の位置を連続的に計測する。マーカ61の計測には、2方向のX線透視画像を用いる。2台のX線透視装置51におけるX線を発生する位置と、X線透視画像上に写ったマーカ61の位置を結ぶ2本の直線が交わる点、又は最も接近する点をマーカ61の計測位置とする。 During the irradiation of the particle beam in the present step S204, the position of the marker 61 placed in the vicinity of the target 47 is continuously measured. For measurement of the marker 61, X-ray fluoroscopic images in two directions are used. The measurement position of the marker 61 is a point where two straight lines connecting the X-ray generating position of the two X-ray fluoroscopes 51 and the position of the marker 61 captured on the X-ray fluoroscopic image intersect or the closest point I assume.
 本ステップでは、そのマーカ61の計測位置が照射許可領域内にあるときのみ、粒子線を標的47に向けて照射する。照射許可領域は、マーカ61の計画位置に対して例えば±2mmの領域として設定される。マーカ61の計画位置は、計画CT画像におけるマーカ61の位置である。 In this step, the particle beam is directed to the target 47 only when the measurement position of the marker 61 is within the irradiation permission area. The irradiation permission area is set as, for example, an area of ± 2 mm with respect to the planned position of the marker 61. The planned position of the marker 61 is the position of the marker 61 in the planned CT image.
 粒子線の照射が完了すると、ステップS105において、ガントリーを回転して粒子線を照射する。 When the irradiation of the particle beam is completed, in step S105, the gantry is rotated to irradiate the particle beam.
 次いで、中央制御装置312は、計画したすべての照射方向からの照射が完了したか否かを判定し(ステップS205)、完了したと判定されたときは処理をステップS206に進めて、患者30はベッド50から降り治療室から退室する(ステップS206)。これに対し、完了していないと判定されたときは処理をステップS203に戻し、全ての照射方向からの照射を完了させる。 Next, the central control unit 312 determines whether or not the irradiation from all planned irradiation directions has been completed (step S205), and when it is determined that the irradiation has been completed, the process proceeds to step S206, and the patient 30 The patient gets off the bed 50 and exits the treatment room (step S206). On the other hand, if it is determined that the process has not been completed, the process returns to step S203 to complete the irradiation from all the irradiation directions.
 次に、図8のフロー図を用いて図7のステップS202の位置決め処理の詳細について説明する。図8は本実施例の粒子線治療装置における位置決めの流れを説明するフロー図である。 Next, the details of the positioning process in step S202 of FIG. 7 will be described using the flowchart of FIG. FIG. 8 is a flow diagram for explaining the flow of positioning in the particle beam therapy system of this embodiment.
 図8において、患者30がベッド50上で横になり、基準CT画像を撮像したときと同じ姿勢を再現される(ステップS301)。両腕の位置や膝を曲げる角度などを、サポート具を用いて再現する。標的47の位置がアイソセンタに一致するようなおおよその位置にベッド50を移動する。 In FIG. 8, the patient 30 lies on the bed 50, and the same posture as when capturing the reference CT image is reproduced (step S301). The support tool is used to reproduce the positions of both arms and the angle at which the knee is bent. The bed 50 is moved to an approximate position such that the position of the target 47 coincides with the isocenter.
 ベッド50をおおよその位置へ移動させた後、例えば患者30が息を吐いた状態で2台のX線透視装置51を用いて2つの方向のX線透視画像が取得される(ステップS302)。取得したX線透視画像と、計画CT画像から計算により得られる投影画像を比較し、患者の位置が計画位置に設置されるようにベッド50を移動させる。 After moving the bed 50 to the approximate position, for example, while the patient 30 exhales, fluoroscopic images in two directions are acquired using the two fluoroscopic devices 51 (step S302). The acquired X-ray fluoroscopic image and the projection image obtained by calculation from the planned CT image are compared, and the bed 50 is moved so that the position of the patient is set at the planned position.
 ステップS302でのベッド50の移動後、2台のX線透視装置51によってX線撮像を連続的に実行し、標的47の近傍にあるマーカ61が計画位置の近傍にあることを確認する(ステップS303)。例えば、マーカ61が計画位置を中心とした±2mmの領域にあるときに粒子線を照射することから、その領域を照射許可領域と呼ぶ。ここでは、マーカ61が照射許可領域内を通過する時間が十分に長いことを確認する。 After movement of the bed 50 in step S302, X-ray imaging is continuously performed by the two X-ray fluoroscopes 51 to confirm that the marker 61 in the vicinity of the target 47 is in the vicinity of the planned position (step S303). For example, since the particle beam is irradiated when the marker 61 is in an area of ± 2 mm around the planned position, the area is called an irradiation permitted area. Here, it is confirmed that the time for the marker 61 to pass through the irradiation permission area is sufficiently long.
 次いで、2台のX線透視装置51を用いてコーンビームCT画像を撮像する(ステップS304)。コーンビームCT画像を取得するため、二つの方向のX線透視画像を取得しながらガントリーを回転させる。ガントリーは少なくとも90度分回転させる必要があり、回転角度が多いほど高画質のコーンビームCT画像を取得することができる。 Next, a cone beam CT image is captured using two X-ray fluoroscopes 51 (step S304). In order to acquire cone-beam CT images, the gantry is rotated while acquiring x-ray fluoroscopic images in two directions. The gantry needs to be rotated by at least 90 degrees, and the larger the rotation angle, the better the cone-beam CT image can be acquired.
 X線透視画像は、二つの方向から取得したものをペアとして記録する。認識装置316Aは、二つの画像のそれぞれの中で、マーカ61が写っている位置をテンプレートマッチングなどにより認識する。X線発生器52からX線が発生する位置とマーカ61が写った画像上の位置を結ぶ2本の直線が交わる、又は最も接近する位置をマーカ61の位置とする。以上により、ペアで記録されたX線透視画像毎にマーカ61の位置を記録することができる。認識装置316Aはこのマーカ61の位置が照射許可領域内にあるX線透視画像のみを抽出し、算出装置316Bは抽出したX線透視画像からコーンビームCT画像を再構成する。 A fluoroscopic image records what was acquired from two directions as a pair. The recognition device 316A recognizes the position where the marker 61 is shown in each of the two images by template matching or the like. A position at which the two straight lines connecting the position at which the X-ray generator 52 generates X-rays and the position on the image where the marker 61 is imaged intersects or approaches the position is taken as the position of the marker 61. Thus, the position of the marker 61 can be recorded for each X-ray fluoroscopic image recorded in pairs. The recognition device 316A extracts only the X-ray fluoroscopic image in which the position of the marker 61 is in the irradiation permission area, and the calculation device 316B reconstructs a cone beam CT image from the extracted X-ray fluoroscopic image.
 次いで、算出装置316Bによって、計画CT上で指定されている標的47や臓器の情報を取得したコーンビームCT画像上に転記する(ステップS305)。この転記は、操作者が画面上でコーンビームCT画像上の標的47と臓器を指定することもできるが、非剛体レジストレーションと呼ばれる手法を用いることもできる。非剛体レジストレーションを用いた手法では、計画CTからコーンビームCTへの歪みベクトルを算出し、その歪みベクトルに合わせて計画CT上の標的47と臓器を歪めることで、コーンビームCT上の標的47と臓器が指定される。 Next, the information of the target 47 or organ designated on the planned CT is transcribed on the acquired cone beam CT image by the calculation device 316B (step S305). In this transcription, an operator can designate a target 47 and an organ on a cone beam CT image on the screen, but a technique called non-rigid registration can also be used. In the method using non-rigid registration, a strain vector from planned CT to cone beam CT is calculated, and the target 47 on planned CT and the organ are distorted according to the strain vector. And organs are designated.
 次いで、算出装置316Bによって、計画CT上とコーンビームCT上のそれぞれで、マーカ61の座標と、標的47の重心座標を算出し、マーカ61の座標を起点とした標的重心座標へのベクトルを算出する(ステップS306)。 Next, the calculation device 316B calculates the coordinates of the marker 61 and the barycentric coordinates of the target 47 on the planned CT and the cone beam CT respectively, and calculates the vector to the target barycentric coordinates starting from the coordinates of the marker 61 (Step S306).
 次いで、算出装置316Bによって、算出されたベクトルのx,y,zのそれぞれの成分を、計画CTとコーンビームCTのそれぞれに分けて操作画面上に表示する(ステップS307)。 Next, the components of x, y, z of the vector calculated by the calculation device 316 B are divided into the planned CT and the cone beam CT and displayed on the operation screen (step S 307).
 このステップS307では、ステップS306において算出したベクトルを表示装置315の表示画面315Aに表示する。この表示画面315Aの一例を図9に示す。図9はベクトルの表示画面の一例を示す図である。 In step S307, the vector calculated in step S306 is displayed on the display screen 315A of the display device 315. An example of this display screen 315A is shown in FIG. FIG. 9 is a diagram showing an example of a display screen of vectors.
 図9に示す表示画面315Aにおいて、算出された標的47の重心座標が現在値と記載されている領域315A1に表示され、X,Y,Zのそれぞれが表示される。また、その下の領域315A2には、計画CT上における計画時の標的47の重心座標の計画値が表示される。3段目の領域315A3には、軸毎の差分が表示される。 In the display screen 315A shown in FIG. 9, the calculated barycentric coordinates of the target 47 are displayed in the area 315A1 described as the current value, and X, Y, and Z are displayed. In addition, in the area 315A2 below that, a planned value of barycentric coordinates of the target 47 at the time of planning on the planned CT is displayed. The differences for each axis are displayed in the third row area 315A3.
 操作者は、図9に示すような表示画面315Aの領域315A1,315A2,315A3に表示された値が許容範囲内であり、問題ないことを確認した後には、位置決めが完了したと判断し、粒子線の照射開始を中央制御装置312に対して指示する。この指示の入力を受けて、図7のステップS204に示すように、中央制御装置312は粒子線の照射を開始する。 The operator determines that the positioning is completed after confirming that the values displayed in the regions 315A1, 315A2, and 315A3 of the display screen 315A as shown in FIG. 9 are within the allowable range and that there is no problem. The central controller 312 is instructed to start the irradiation of the line. In response to the input of this instruction, as shown in step S204 of FIG. 7, the central control unit 312 starts the irradiation of the particle beam.
 これに対し、より計画時の位置に一致させたいと判断した時は、再びステップS302でのベッド50の移動を実施し、その後の位置決め処理を再度実行する。 On the other hand, when it is determined that the user wants to more closely match the planned position, the bed 50 is moved again in step S302, and the positioning process is performed again.
 なお、ステップS306において算出するのは重心座標である必要はなく、たとえば標的47の3軸それぞれの中点などとすることができる。 Note that what is calculated in step S306 does not have to be the barycentric coordinates, and may be, for example, the midpoint of each of the three axes of the target 47 or the like.
 また、ステップS306において用いる標的47の情報は点である必要はない。 Also, the information of the target 47 used in step S306 does not have to be a point.
 また、ステップS307では、コーンビームCT画像または計画CT画像上にマーカ61の位置を一致させたうえで、標的47の形状全体を重ねて描き、差分を強調表示することができる。以下、図10および図11を用いてその表示画面315Bについて説明する。図10に計画CTとコーンビーム画像での標的47を重ねて表示する例を示す。図11に差分を強調表示する際の画面の一例を示す。 Further, in step S307, after matching the position of the marker 61 on the cone beam CT image or the planned CT image, the entire shape of the target 47 can be overlapped and drawn to highlight the difference. Hereinafter, the display screen 315B will be described with reference to FIGS. 10 and 11. FIG. 10 shows an example of overlapping and displaying the target 47 in the planned CT and cone beam image. FIG. 11 shows an example of a screen when highlighting a difference.
 そのためには、ステップS306において、算出装置316Bは、治療計画CT画像と照射直前CT画像におけるマーカ61の3次元位置を一致させて、治療計画CT画像と照射直前CT画像のそれぞれに対応する標的47の形状の3次元座標位置を演算する。 To that end, in step S306, the calculation device 316B matches the three-dimensional position of the marker 61 in the treatment plan CT image and the CT image immediately before irradiation, and the target 47 corresponding to each of the treatment plan CT image and the CT immediately before irradiation Calculate the three-dimensional coordinate position of the shape of.
 図10に示すように、算出装置316Bによる演算処理の結果、表示装置315では、コーンビームCT画像上に治療直前または治療時のマーカ61と標的輪郭62が表示される。また、計画CT画像上の標的輪郭60が、マーカ61の位置がコーンビームCT画像のマーカ61の位置に一致するように、マーカ61の位置と標的輪郭の相対関係を保って転記した状態で表示される。 As shown in FIG. 10, as a result of arithmetic processing by the calculation device 316B, the display device 315 displays the marker 61 and the target contour 62 immediately before or during treatment on the cone beam CT image. Also, the target contour 60 on the planned CT image is displayed with the relative position between the position of the marker 61 and the target contour being transferred so that the position of the marker 61 matches the position of the marker 61 of the cone beam CT image Be done.
 さらに、表示画面315Bでは、コーンビームCTでの標的輪郭62と計画CTでの標的輪郭60の重なり合わない差分64が、図10の中で塗潰された部分として強調表示される。 Furthermore, on the display screen 315B, the non-overlapping difference 64 between the target contour 62 in the cone beam CT and the target contour 60 in the plan CT is highlighted as a filled portion in FIG.
 また、標的47以外の正常臓器の形状についても重ねて表示させて、その差分を表示することで、正常臓器が計画時と同じ位置にあることを確認することができる。 In addition, the shapes of normal organs other than the target 47 are also displayed repeatedly, and the difference is displayed, so that it can be confirmed that the normal organ is at the same position as that at the time of planning.
 更に、計画CT画像とコーンビームCT画像の値の差分について予め複数の閾値を設けておき、求めた差分が閾値を超える場合には、図11に示すように、操作画面上に文字と色の違いで差異が大きいことを表示することができる。例えば、表示画面315Cでは、差分が閾値を下回っている部分については差分64Aとして表示し、閾値を超えている部分については差分64Bとして表示するとともに、警告表示65を表示する。文字と色は閾値毎に異なるものを用いることが好ましい。 Furthermore, a plurality of threshold values are provided in advance for the difference between the values of the planned CT image and the cone beam CT image, and when the calculated difference exceeds the threshold, as shown in FIG. It can be displayed that the difference is large. For example, on the display screen 315C, a portion where the difference is below the threshold is displayed as the difference 64A, and a portion above the threshold is displayed as the difference 64B, and a warning display 65 is displayed. It is preferable to use different characters and colors for each threshold.
 また、ステップS307では、マーカ61の位置を基準として一致させた場合に、照射方向から見た標的47や正常臓器の手前側または奥側の境界までの水等価厚について、コーンビームCT画像と計画CT画像の差分を表示することも可能である。粒子線では特に水等価厚の変化量が重要である。 In step S307, when matched with the position of the marker 61, a cone beam CT image and a plan for the water equivalent thickness up to the front or back boundary of the target 47 or normal organ seen from the irradiation direction It is also possible to display the difference of CT images. In particle beam, the amount of change in water equivalent thickness is particularly important.
 図12に、水等価厚の差について表示する例を示す。図12は紙面手前方向から標的47に向けて粒子線を照射するときの例である。図12は水等価厚を表示する表示画面の一例を示す図である。 The example displayed about the difference of water equivalent thickness in FIG. 12 is shown. FIG. 12 shows an example of irradiating a particle beam toward the target 47 from the front side of the drawing. FIG. 12 is a diagram showing an example of a display screen for displaying the water equivalent thickness.
 そのためには、ステップS306において、算出装置316Bは、コーンビームCTでの標的輪郭と計画CTでの標的輪郭の差を、粒子線を照射する方向の水等価に換算しておく。その上で、ステップS307において、換算された水等価のうち、差が大きい場合には濃い色で塗潰して領域315D1のように表示し、差が小さい場合には薄い色で塗潰して領域315D2のように表示画面315Dに表示する。また、差がない場合には塗潰さない。これを、照射方向に対して手前側(浅い側)と奥側(深い側)の両方に対して計算し、それぞれを切り替えて表示する。 To that end, in step S306, the calculation device 316B converts the difference between the target contour in cone beam CT and the target contour in planned CT into water equivalent in the direction of particle beam irradiation. Then, in step S307, of the converted water equivalents, if the difference is large, it is painted in a dark color and displayed as area 315D1, and if the difference is small, it is painted in a light color and area 315D2 It displays on display screen 315D like this. Also, if there is no difference, do not paint. This is calculated for both the near side (shallow side) and the far side (deep side) with respect to the irradiation direction, and the respective are switched and displayed.
 また、ステップS306において標的47の位置が大きく変化したと演算される場合には、算出装置316Bは、例えば標的47が一致するようにベッド50の移動量を算出し、その値に基づいてベッド50を移動させることもできる。ベッド50を移動させた場合に、照射許可領域とマーカ61の位置が離れる場合には、照射許可領域の位置についてもベッド50の移動量に合わせて移動させることが可能である。 Further, if it is calculated in step S306 that the position of the target 47 has largely changed, the calculation device 316B calculates, for example, the movement amount of the bed 50 such that the target 47 matches, and the bed 50 is calculated based on that value. You can also move the When the bed 50 is moved, if the position of the irradiation permission area and the position of the marker 61 are separated, the position of the irradiation permission area can also be moved according to the movement amount of the bed 50.
 また、ステップS304では、コーンビームCT画像を取得する際に得られるマーカ61の軌跡を用いて、認識装置316Aは、マーカ61の軌跡を複数の領域毎に分割し、算出装置316Bは、その分割領域毎にコーンビームCT画像を再構成することができる。 In step S304, the recognition device 316A divides the locus of the marker 61 into a plurality of areas using the locus of the marker 61 obtained when acquiring a cone beam CT image, and the calculation apparatus 316B divides the locus of the marker 61. A cone beam CT image can be reconstructed for each region.
 また、算出装置316Bは、複数の領域ごとに分割した画像を用いてステップS307においてマーカ61基準の標的47の位置を計算することで、分割領域毎のマーカ61と標的47の関係を算出することが可能である。これによれば、算出した結果を基に、マーカ61と標的47の関係が計画時と最も近い分割領域の位置を表示することが可能である。また、その分割領域の中心が、照射許可領域の中心と重なるようにベッド50の移動量を算出し、ベッドを移動させることができる。 In addition, the calculation device 316 B calculates the relationship between the marker 61 and the target 47 for each divided area by calculating the position of the target 47 based on the marker 61 in step S 307 using the image divided for each of the plurality of areas. Is possible. According to this, it is possible to display the position of the divided area where the relationship between the marker 61 and the target 47 is closest to that at the time of planning based on the calculated result. Also, the movement amount of the bed 50 can be calculated so that the center of the divided area overlaps the center of the irradiation permission area, and the bed can be moved.
 次に、本実施例の効果について説明する。 Next, the effects of this embodiment will be described.
 上述した本実施例の粒子線治療装置1は、治療計画の作成時に撮像した治療計画CT画像の中のマーカ61の位置と粒子線の照射直前CT画像の中のマーカ61の位置との位置関係、および治療計画CT画像の中の標的47の位置と照射直前CT画像の中の標的47の位置との位置関係を算出する算出装置316Bと、算出装置316Bで算出された治療計画CT画像と照射直前CT画像における標的47およびマーカ61の位置関係を表示する表示装置315と、を備えている。 In the particle beam therapy system 1 of the present embodiment described above, the positional relationship between the position of the marker 61 in the treatment plan CT image captured at the time of preparation of the treatment plan and the position of the marker 61 in the CT image just before irradiation of particle beam. And a calculation device 316B for calculating the positional relationship between the position of the target 47 in the treatment plan CT image and the position of the target 47 in the CT image immediately before irradiation, the treatment plan CT image calculated by the calculation device 316B and the irradiation And a display device 315 for displaying the positional relationship between the target 47 and the marker 61 in the immediately preceding CT image.
 これによって、マーカ61の位置と標的47の位置が計画時と一致しているか否かを判断するために有意義な情報を操作者が容易に把握することができる形態で提供することができる。このため、標的47の位置を計画時と同等とするために要する時間を従来に比べて短縮することができる。特に動く標的47を照射する際の準備時間を短縮することができる。従って、標的47に対して粒子線を照射する際に、従来に比べてより精度良く短時間で粒子線を標的47に照射することが可能となる。 As a result, meaningful information can be provided in a form that allows the operator to easily grasp whether the position of the marker 61 and the position of the target 47 coincide with the planned time. For this reason, the time required to make the position of the target 47 equal to that at the time of planning can be reduced compared to the conventional case. In particular, the preparation time for irradiating the moving target 47 can be reduced. Accordingly, when irradiating the target 47 with the particle beam, it is possible to irradiate the target 47 with the particle beam in a short time with higher accuracy than in the prior art.
 また、算出装置316Bは、マーカ61を基準として、標的47の重心の位置関係を算出するため、計画時と照射直前の標的47の位置が一致しているか否かをより正確に求めることができ、標的47の位置をより正確に計画時と一致させることが可能となる。 In addition, since the calculation device 316B calculates the positional relationship of the center of gravity of the target 47 based on the marker 61, it can be more accurately determined whether or not the position of the target 47 at the time of planning and immediately before irradiation match. It is possible to more accurately match the position of the target 47 with the planned time.
 更に、位置関係の表示では、治療計画CT画像と照射直前CT画像におけるマーカ61の位置を一致させて、治療計画CT画像と照射直前CT画像のそれぞれに対応する標的47の形状を重ねて表示することで、標的47のうち、計画時と一致しない領域がある場合には容易にそのズレを確認することができ、標的47の位置を計画時と同等とするために要する時間をより短縮することができる。 Furthermore, in the display of the positional relationship, the positions of the marker 61 in the treatment plan CT image and the CT image immediately before the irradiation are matched, and the shapes of the target 47 corresponding to each of the treatment plan CT image and the CT image just before the irradiation are displayed Therefore, if there is a region of the target 47 which does not match the planned time, the deviation can be easily confirmed, and the time required for making the position of the target 47 equal to the planned time can be further shortened. Can.
 また、位置関係の表示では、標的47の形状の差分を強調表示することにより、治療計画時と治療直前での標的47の位置関係のズレをより明確に把握することができる。 Further, in the display of the positional relationship, by highlighting the difference in the shape of the target 47, it is possible to more clearly grasp the positional relationship shift between the target 47 at the time of treatment planning and immediately before the treatment.
 更に、位置関係の表示では、標的47の形状の差分を予め定めた閾値と比較し、差分が閾値を超えると判定されたときは、閾値を超えた差分を強調表示することで、治療計画時と治療直前での標的47の位置関係のズレを更に明確に把握することができる。 Furthermore, in the display of the positional relationship, the difference in the shape of the target 47 is compared with a predetermined threshold, and when it is determined that the difference exceeds the threshold, the difference during the threshold is highlighted to display the treatment plan. Deviations in the positional relationship of the target 47 immediately before and after the treatment can be more clearly grasped.
 また、強調表示では、画面上に文字を表示するとともに、色を変えて表示することによっても、治療計画時と治療直前での標的47の位置関係のズレを更に明確に把握することができる。 Further, in highlighting, displaying the characters on the screen and changing the color also makes it possible to more clearly grasp the positional relationship between the target 47 at the time of treatment planning and immediately before treatment.
 更に、算出装置316Bは、治療計画CT画像と照射直前CT画像におけるマーカ61の位置を一致させて、治療計画CT画像と照射直前CT画像のそれぞれにおける標的47や正常臓器の照射方向の手前側および/または奥側の境界までの水等価厚とその差分を求め、表示装置315では、治療計画CT画像と照射直前CT画像の水等価厚の差分を表示することで、放射線として粒子線を照射する際に重要な指標となる水等価厚の治療計画時に対する照射直前のズレについても容易に把握することができる。すなわち、マーカ61の位置と標的47の位置が計画時と一致しているか否かを水等価厚のズレに応じても判断することができる。例えば、標的47の位置が計画時と少々ずれが生じている場合であっても、水等価厚が同じであると判断される場合は標的47の位置は計画時と同等であると判断できる。このため、標的47の位置が計画時と一致しているか否かの判断材料をより多く提供することができ、標的47を照射する際の準備時間をより短縮することができる。 Furthermore, the calculation device 316B matches the positions of the marker 61 in the treatment plan CT image and the CT image immediately before irradiation, and the near side of the irradiation direction of the target 47 and the normal organ in each of the treatment plan CT image and the CT image immediately before irradiation The water equivalent thickness up to the boundary on the back side and its difference are obtained, and the display device 315 irradiates the particle beam as radiation by displaying the difference between the water equivalent thickness of the treatment plan CT image and the CT image just before irradiation. It is possible to easily grasp the deviation immediately before the irradiation with respect to the treatment plan of the water equivalent thickness, which is an important index in the case. That is, whether or not the position of the marker 61 and the position of the target 47 coincide with the planned time can also be determined according to the deviation of the water equivalent thickness. For example, even if the position of the target 47 slightly deviates from the planned time, if it is determined that the water equivalent thickness is the same, it can be determined that the position of the target 47 is equivalent to the planned time. Therefore, it is possible to provide more information for determining whether or not the position of the target 47 matches the planned time, and the preparation time for irradiating the target 47 can be further shortened.
 また、算出装置316Bは、マーカ61と標的47との位置関係に基づいて、標的47を有する患者30を載せるベッド50の移動量を算出することにより、標的47の位置を計画時と同等の位置に容易に移動させることができ、標的47を照射する際の準備時間をより短縮することができる。 In addition, the calculating device 316B calculates the movement amount of the bed 50 on which the patient 30 having the target 47 is placed based on the positional relationship between the marker 61 and the target 47, thereby making the position of the target 47 equal to the planned time. And the preparation time for irradiating the target 47 can be further shortened.
 更に、マーカ61および標的47をX線により複数の方向から撮像するX線透視装置51を更に備え、算出装置316Bは、X線透視装置51によって取得したX線画像から画像再構成を行い、照射直前CT画像としてコーンビームCT画像を生成することで、いわゆる動体追跡で利用される装置を用いてマーカ61の位置と標的47の位置が計画時と一致しているか否かを判断することができ、新たな装置を追加することなく標的47を照射する際の準備時間を短縮することが可能となる。 Furthermore, the X-ray fluoroscope 51 for imaging the marker 61 and the target 47 from a plurality of directions by X-rays is further provided, and the calculation device 316 B performs image reconstruction from the X-ray image acquired by the X-ray fluoroscope 51 By generating a cone beam CT image as an immediately preceding CT image, it can be determined whether the position of the marker 61 and the position of the target 47 match the planned time using a device used for so-called moving object tracking. It is possible to shorten the preparation time for irradiating the target 47 without adding a new device.
 また、X線透視装置51によって取得したX線画像から患者30内の標的47の3次元位置を認識する認識装置316Aを更に備え、算出装置316Bは、X線透視装置51によって取得したX線画像の中から、認識装置316Aによって認識した標的47の位置が動体追跡治療の治療粒子線照射条件を満たす画像から画像再構成を行うことにより、粒子線を照射するタイミングでの体内構造を反映したコーンビームCT画像を取得することができる。これにより、治療粒子線を照射する状態の患者30により近い状態を3次元CT画像化(可視化)することができ、放射線治療の患者位置決めにおいて必要とされる、治療放射線照射状態での標的47等の位置関係を把握可能な画像を取得することができる。その結果、治療計画通りの精密な患者位置決めが可能となる。 The computer further includes a recognition device 316A that recognizes the three-dimensional position of the target 47 in the patient 30 from the X-ray image acquired by the X-ray fluoroscope 51, and the calculation device 316B detects the X-ray image acquired by the X-ray fluoroscope 51 The cone that reflects the internal structure at the timing of particle beam irradiation by performing image reconstruction from the image in which the position of the target 47 recognized by the recognition device 316A satisfies the treatment particle beam irradiation condition of the motion tracking treatment from among them. Beam CT images can be acquired. As a result, three-dimensional CT imaging (visualization) of a state closer to the patient 30 in the state of irradiation with the treatment particle beam can be performed (target 47 in the treatment irradiation state, etc. required for patient positioning of radiation treatment) An image capable of grasping the positional relationship of As a result, precise patient positioning according to the treatment plan is possible.
 更に、患者30内の標的47の位置が動体追跡治療の照射許可領域を満たすときに標的47に粒子線を照射するよう制御する照射制御システム314を更に備えたことで、標的47に対する治療粒子線の照射精度をより向上させることができる。 Furthermore, a treatment particle beam for the target 47 is further provided by further comprising an irradiation control system 314 that controls the target 47 to irradiate the particle beam when the position of the target 47 in the patient 30 fills the irradiation permission region of the motion tracking treatment. The irradiation accuracy of can be further improved.
 また、照射制御システム314は、マーカ61と標的47との位置関係に基づいて、照射許可領域を変更することにより、照射許可領域を照射直前の標的47の位置に応じて設定することが可能となり、標的47に対する治療粒子線の照射精度をより向上させることができる。 Further, the irradiation control system 314 can set the irradiation permission area according to the position of the target 47 immediately before irradiation by changing the irradiation permission area based on the positional relationship between the marker 61 and the target 47. The irradiation accuracy of the therapeutic particle beam to the target 47 can be further improved.
 <その他> 
 なお、本発明は上記の実施例に限られず、種々の変形、応用が可能なものである。上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。
<Others>
The present invention is not limited to the above-described embodiment, and various modifications and applications are possible. The embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the configurations described.
 例えば、上述の実施例では、最初にステップS302でX線透視画像を用いてベッドを移動した後にコーンビームCT画像を撮像する例を示したが、X線透視画像の位置合わせをすることなくコーンビームCT画像を取得することもできる。 For example, in the above-described embodiment, an example in which the cone beam CT image is captured after moving the bed using the X-ray fluoroscopic image in step S302 is first shown, but the cone is obtained without aligning the fluoroscopic image. Beam CT images can also be acquired.
 この場合は、コーンビームCT画像取得時に得られるマーカ61の軌跡から、照射許可領域となるべき位置を選択し、選択した位置を基準のマーカ61の位置として、計画時のものとマーカ61と標的47の位置関係を比較する。比較した結果、標的47の位置が一致していれば、選択した位置が照射許可領域と一致するようなベッド50の移動量を算出し、算出した結果に基づいてベッド50を移動させることができる。 In this case, from the locus of the marker 61 obtained at the time of cone beam CT image acquisition, the position to be the irradiation permission area is selected, and the selected position is used as the reference marker 61 position during planning, the marker 61 and the target Compare the positional relationship of 47. As a result of comparison, if the position of the target 47 matches, the moving amount of the bed 50 is calculated so that the selected position matches the irradiation permission area, and the bed 50 can be moved based on the calculated result. .
 また、治療直前のX線CT画像を取得する手段としてコーンビームCT画像を用いる手法について述べたが、X線CT装置を治療室内に別に置き、その装置にて撮像したデータをコーンビームCT画像の代わりに用いることができる。 In addition, although a method using cone beam CT images has been described as means for acquiring an X-ray CT image immediately before treatment, an X-ray CT apparatus is separately placed in a treatment room, and data captured by the apparatus is a cone beam CT image It can be used instead.
 更に、照射許可領域の大きさと、コーンビームCT画像を再構成するためのマーカ61の領域の大きさとは一致している必要はない。コーンビームCT画像を再構成するためのマーカ61の領域は、マーカ61の動きの大きさと必要なコーンビームCT画像の画質から適宜調整することが有効である。 Furthermore, the size of the irradiation permission area does not have to match the size of the area of the marker 61 for reconstructing a cone beam CT image. It is effective to appropriately adjust the area of the marker 61 for reconstructing a cone beam CT image from the magnitude of movement of the marker 61 and the image quality of the required cone beam CT image.
1…粒子線治療装置
312…中央制御装置
314…照射制御システム(治療粒子線制御装置)
315…表示装置
315A,315B,315C,315D…表示画面
316…位置決め制御システム
316A…認識装置
316B…算出装置
40…照射野形成装置
46…患者
47…標的
51…X線透視装置
52…X線発生器
53…X線検出器
61…マーカ
62…標的輪郭
64,64A,64B…差分
65…警告表示
501…治療計画装置
700…3次元撮像装置
1 ... particle beam treatment apparatus 312 ... central control unit 314 ... irradiation control system (treatment particle beam control apparatus)
315: Display device 315A, 315B, 315C, 315D: Display screen 316: Positioning control system 316A: Recognition device 316B: Calculation device 40: Radiation field forming device 46: Patient 47: Target 51: X-ray fluoroscopy device 52: X-ray generation 53: X-ray detector 61: marker 62: target contour 64, 64A, 64B: difference 65: warning display 501: treatment planning device 700: three-dimensional imaging device

Claims (12)

  1.  標的に対して放射線を照射する放射線治療装置であって、
     治療計画の作成時に撮像した治療計画CT画像の中のマーカの位置と前記放射線の照射直前CT画像の中のマーカの位置との位置関係、および前記治療計画CT画像の中の標的の位置と前記照射直前CT画像の中の標的の位置との位置関係を算出する算出装置と、
     前記算出装置で算出された前記治療計画CT画像と前記照射直前CT画像における標的およびマーカの位置関係を表示する表示装置と、を備えた
     ことを特徴とする放射線治療装置。
    A radiation treatment apparatus for irradiating a target with radiation,
    The positional relationship between the position of the marker in the treatment plan CT image imaged at the time of creation of the treatment plan and the position of the marker in the CT image immediately before the radiation irradiation, and the position of the target in the treatment plan CT image and the above A calculation device for calculating the positional relationship with the position of the target in the CT image immediately before irradiation;
    A radiotherapy apparatus comprising: a display device for displaying the positional relationship between a target and a marker in the treatment plan CT image calculated by the calculation device and the CT image immediately before the irradiation.
  2.  請求項1に記載の放射線治療装置において、
     前記算出装置は、前記マーカを基準として、前記標的の重心の位置関係を算出する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 1,
    The radiotherapy apparatus, wherein the calculation device calculates the positional relationship of the center of gravity of the target with reference to the marker.
  3.  請求項1に記載の放射線治療装置において、
     前記位置関係の表示では、前記治療計画CT画像と前記照射直前CT画像におけるマーカの位置を一致させて、前記治療計画CT画像と前記照射直前CT画像のそれぞれに対応する前記標的の形状を重ねて表示する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 1,
    In the display of the positional relationship, the positions of the markers in the treatment plan CT image and the CT image immediately before the irradiation are matched, and the shapes of the targets corresponding to the treatment plan CT image and the CT image just before the irradiation are overlapped. A radiation treatment apparatus characterized by displaying.
  4.  請求項3に記載の放射線治療装置において、
     前記位置関係の表示では、前記標的の形状の差分を強調表示する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 3,
    In the display of the positional relationship, a difference in the shape of the target is highlighted.
  5.  請求項3に記載の放射線治療装置において、
     前記位置関係の表示では、前記標的の形状の差分を予め定めた閾値と比較し、前記差分が前記閾値を超えると判定されたときは、前記閾値を超えた差分を強調表示する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 3,
    In the display of the positional relationship, the difference in the shape of the target is compared with a predetermined threshold, and when it is determined that the difference exceeds the threshold, the difference exceeding the threshold is highlighted. Radiation therapy equipment.
  6.  請求項4または5に記載の放射線治療装置において、
     前記強調表示では、画面上に文字を表示するとともに、色を変えて表示する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 4 or 5,
    In the highlighted display, characters are displayed on the screen, and the color is changed and displayed.
  7.  請求項1に記載の放射線治療装置において、
     前記算出装置は、前記治療計画CT画像と前記照射直前CT画像におけるマーカの位置を一致させて、前記治療計画CT画像と前記照射直前CT画像のそれぞれにおける前記標的や正常臓器の照射方向の手前側および/または奥側の境界までの水等価厚とその差分を求め、
     前記表示装置では、前記治療計画CT画像と前記照射直前CT画像の前記水等価厚の差分を表示する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 1,
    The calculation device matches the positions of the markers in the treatment plan CT image and the CT image immediately before the irradiation, and the near side of the irradiation direction of the target and the normal organ in each of the treatment plan CT image and the CT image immediately before the irradiation Find the water equivalent thickness and its difference up to the boundary on the back side and / or
    The display apparatus displays a difference between the water equivalent thickness of the treatment plan CT image and the CT image immediately before the irradiation.
  8.  請求項1に記載の放射線治療装置において、
     前記算出装置は、前記マーカと前記標的との位置関係に基づいて、前記標的を有する患者を載せるベッドの移動量を算出する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 1,
    The radiotherapy apparatus, wherein the calculation device calculates a movement amount of a bed on which a patient having the target is placed, based on a positional relationship between the marker and the target.
  9.  請求項1に記載の放射線治療装置において、
     前記マーカおよび前記標的をX線により複数の方向から撮像するX線透視装置を更に備え、
     前記算出装置は、前記X線透視装置によって取得したX線画像から画像再構成を行い、前記照射直前CT画像としてコーンビームCT画像を生成する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 1,
    It further comprises a fluoroscope for imaging the marker and the target from a plurality of directions by X-rays,
    The radiotherapy apparatus, wherein the calculation device reconstructs an image from an X-ray image acquired by the X-ray fluoroscope, and generates a cone beam CT image as the CT image immediately before the irradiation.
  10.  請求項9に記載の放射線治療装置において、
     前記X線透視装置によって取得したX線画像から患者内の前記標的の3次元位置を認識する認識装置を更に備え、
     前記算出装置は、前記X線透視装置によって取得したX線画像の中から、前記認識装置によって認識した標的の位置が動体追跡治療の治療放射線照射条件を満たす画像から画像再構成を行う
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 9,
    The apparatus further comprises a recognition device that recognizes a three-dimensional position of the target in a patient from an X-ray image acquired by the fluoroscope.
    The calculation device performs image reconstruction from an image in which the position of the target recognized by the recognition device satisfies the treatment radiation irradiation condition of the motion tracking treatment from among the X-ray images acquired by the X-ray fluoroscope. Radiation therapy equipment.
  11.  請求項9に記載の放射線治療装置において、
     患者内の標的の位置が動体追跡治療の治療放射線照射条件を満たすときに前記標的に放射線を照射するよう制御する治療放射線制御装置を更に備えた
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 9,
    A radiation treatment apparatus characterized by further comprising a treatment radiation control device for performing control to irradiate the target with radiation when the position of the target in the patient satisfies the treatment radiation irradiation condition of the movement tracking treatment.
  12.  請求項11に記載の放射線治療装置において、
     前記治療放射線制御装置は、前記マーカと前記標的との位置関係に基づいて、前記治療放射線照射条件を変更する
     ことを特徴とする放射線治療装置。
    In the radiation treatment apparatus according to claim 11,
    A radiation treatment apparatus, wherein the treatment radiation control device changes the treatment radiation irradiation condition based on a positional relationship between the marker and the target.
PCT/JP2018/034976 2017-10-19 2018-09-21 Radiation therapy apparatus WO2019077936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-202369 2017-10-19
JP2017202369A JP2019072393A (en) 2017-10-19 2017-10-19 Radiation therapy equipment

Publications (1)

Publication Number Publication Date
WO2019077936A1 true WO2019077936A1 (en) 2019-04-25

Family

ID=66173343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034976 WO2019077936A1 (en) 2017-10-19 2018-09-21 Radiation therapy apparatus

Country Status (2)

Country Link
JP (1) JP2019072393A (en)
WO (1) WO2019077936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908451A (en) * 2021-10-15 2022-01-11 国宏国康(北京)健康科技发展有限公司 Proton treatment positioning position drawing system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264389B2 (en) * 2017-12-20 2023-04-25 国立研究開発法人量子科学技術研究開発機構 MEDICAL DEVICE, METHOD AND PROGRAM FOR CONTROLLING MEDICAL DEVICE
JP7350520B2 (en) * 2019-05-30 2023-09-26 キヤノンメディカルシステムズ株式会社 Medical processing equipment and radiation therapy equipment
JP7408078B2 (en) 2019-11-25 2024-01-05 株式会社日立製作所 Method for detecting structural changes in a patient's body, device for detecting structural changes in a patient's body, and computer program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246883A (en) * 2009-03-27 2010-11-04 Mitsubishi Electric Corp Patient positioning system
JP2015029793A (en) * 2013-08-05 2015-02-16 株式会社日立製作所 Radiotherapy system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246883A (en) * 2009-03-27 2010-11-04 Mitsubishi Electric Corp Patient positioning system
JP2015029793A (en) * 2013-08-05 2015-02-16 株式会社日立製作所 Radiotherapy system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908451A (en) * 2021-10-15 2022-01-11 国宏国康(北京)健康科技发展有限公司 Proton treatment positioning position drawing system and method

Also Published As

Publication number Publication date
JP2019072393A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP5722559B2 (en) Treatment planning device
CN108883303B (en) Particle beam dose evaluation system, planning device, and particle beam irradiation system
JP5338000B1 (en) Real-time 3D radiotherapy device
JP6247856B2 (en) Treatment planning device
WO2019077936A1 (en) Radiation therapy apparatus
JP2008068093A (en) Method for adapting irradiation field to target volume to be irradiated of patient in irradiation process, and radiation therapy system
JP5693388B2 (en) Image collation device, patient positioning device, and image collation method
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
JP2008022896A (en) Positioning system
JP2008043567A (en) Positioning system
JP2000140137A (en) Method and device for positioning patient of radiotherapy
JP4159227B2 (en) Patient position deviation measuring device, patient positioning device using the same, and radiotherapy device
JP2016144573A (en) Image processing apparatus and particle beam therapeutic apparatus
JP2018042831A (en) Medical image processor, care system and medical image processing program
US11904185B2 (en) Particle therapy system, dose distribution evaluation system, and method for operating particle therapy system
JP5401240B2 (en) Radiation therapy system
WO2017188079A1 (en) Tracking object recognition simulator or marker recognition simulator, moving body tracking device, and irradiation system
JP6063982B2 (en) Particle beam therapy system
JP2020138099A (en) Particle beam treatment system and management system for particle beam treatment
JP2008119380A (en) Bed positioning system and method
JP6380237B2 (en) Radioscopy equipment
JP6063983B2 (en) Particle beam therapy system
JP2019166098A (en) Radiation treatment device, bed positioning device and bed positioning method
JP2013132489A (en) Therapy planning apparatus and particle beam therapy system
WO2022224692A1 (en) Therapeutic planning device, particle-beam radiation therapy system, therapeutic plan generation method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868805

Country of ref document: EP

Kind code of ref document: A1