WO2018235626A1 - Waveguide converter - Google Patents

Waveguide converter Download PDF

Info

Publication number
WO2018235626A1
WO2018235626A1 PCT/JP2018/021965 JP2018021965W WO2018235626A1 WO 2018235626 A1 WO2018235626 A1 WO 2018235626A1 JP 2018021965 W JP2018021965 W JP 2018021965W WO 2018235626 A1 WO2018235626 A1 WO 2018235626A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
waveguide
substrate
opening
transmission line
Prior art date
Application number
PCT/JP2018/021965
Other languages
French (fr)
Japanese (ja)
Inventor
片山 光亮
藤島 実
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Publication of WO2018235626A1 publication Critical patent/WO2018235626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to waveguide transducers.
  • waveguide converters have been developed which convert high frequency signals between a transmission line on a dielectric substrate and a waveguide.
  • a back short is used to improve signal characteristics (e.g., Patent Document 1).
  • the waveguide converter (1) includes a waveguide (2), a back short (3) terminating the waveguide (2), and a waveguide (3) A first dielectric substrate (4) interposed between 2) and the back short (3) is provided.
  • the waveguide (2) is connected to one surface of the first dielectric substrate (4).
  • the back short (3) which consists of a metal block is attached to the position which opposes the waveguide (2) of the other surface.
  • the waveguide converter with the back short (3) becomes large.
  • the present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a waveguide converter which is compact and yet has good signal characteristics.
  • a waveguide converter is A substrate having at least three conductor layers; A metal housing having a waveguide which is electromagnetically coupled to a transmission line which is part of the first conductor layer and transmits a high frequency signal and which is erected on the first conductor layer located on the surface layer of the substrate; A back short portion terminating the waveguide;
  • the substrate is A second conductor layer adjacent to the first conductor layer via a dielectric layer, and a third conductor layer having an end portion terminating the waveguide in the back short portion.
  • the transmission line is Coplanar line, You may do it.
  • the back short section is The shield via is disposed at an outer peripheral portion of the back short portion and electrically connects a ground pattern of the first conductor layer and a ground pattern of the third conductor layer. You may do it.
  • the transmission line is An antenna unit disposed inside the waveguide; You may do it.
  • the metal housing is A line opening through which the transmission line is inserted between the inside of the waveguide and the outside of the waveguide; You may do it.
  • the waveguide converter according to the second aspect of the present invention is The first conductor layer located on the surface layer, the second conductor layer adjacent to the first conductor layer via the dielectric layer, and the side opposite to the side on which the first conductor layer of the second conductor layer is stacked A substrate having a third conductor layer stacked via a dielectric layer; And a metal housing erected on the first conductor layer of the substrate and provided with a waveguide.
  • At least a portion of the first conductor layer is a transmission line electromagnetically coupled to the waveguide;
  • a first opening is formed in a region corresponding to the insertion region of the waveguide,
  • a second opening is formed in a region corresponding to the first opening,
  • a shield via electrically connecting a ground pattern of the first conductor layer and a ground pattern of the third conductor layer is disposed on an outer peripheral portion of the first opening and the second opening. The region of the third conductor layer corresponding to the first opening and the second opening terminates the waveguide.
  • the signal characteristics can be improved while being compact.
  • FIG. 7 is a cross-sectional plan view of the substrate showing the arrangement of shielding vias and ground vias.
  • A) is a cross-sectional side view of a substrate and an integrated circuit cut along the line AA 'in FIG.
  • FIG. 2C is a cross-sectional side view of the metal housing and FIG. 2C is a cross-sectional side view of the substrate and the metal housing cut along the line CC ′ in FIG.
  • It is a graph which shows the example of S parameter of the waveguide converter which concerns on embodiment. It is a cross section side view of the back short part concerning a modification. It is a cross-sectional side view of the back short part which concerns on another modification.
  • a waveguide converter according to an embodiment of the present invention will be described by way of an example of a waveguide converter that converts a high frequency signal of 300 GHz band.
  • the waveguide converter 1 which concerns on this Embodiment is provided with the board
  • the waveguide converter 1 is a converter for converting a high frequency signal between the transmission line 11 on the substrate 10 and a waveguide (not shown) detachably mounted on the top of the metal housing 20.
  • the substrate 10 is a multilayer substrate including three conductor layers and three dielectric layers.
  • the substrate 10 includes a transmission line 11, a back short portion 12, and a via 15, which will be described later with reference to FIGS. 3, 6 (A) to (C) and the like.
  • the type of the substrate 10 is not particularly limited, and examples thereof include a fluorine resin substrate and a glass epoxy substrate that are generally used as high frequency circuit substrates.
  • the substrate 10 is FR4 (Flame Retardant Type 4).
  • the substrate 10 is a multilayer substrate formed by alternately laminating dielectric layers of an insulator and conductor layers of a metal. As shown in FIG. 3, the substrate 10 according to the present embodiment includes three conductor layers L1 to L3.
  • the conductor layers L1 to L3 are made of copper and have a thickness of 15 ⁇ m.
  • the distance between the conductor layers, ie, the thickness of the dielectric layers 31, 32 is about 50 ⁇ m.
  • the total thickness of the substrate 10 is about 165 ⁇ m.
  • the dielectric constant ⁇ r of the dielectric layers 31 to 33 is 3.26, and the dielectric loss tangent tan ⁇ is 0.0076.
  • the substrate 10 is manufactured by laminating the dielectric layers 31 to 33 and the conductor layers L1 to L3 as described above. Specifically, conductor layer L3 to be the third conductor layer is stacked on one surface of dielectric layer 33 which is a dielectric. As shown in FIG. 4C, almost the entire surface of the conductor layer L3 is a ground pattern. A part of the ground pattern functions as an end portion 13 of the back short portion 12 described later.
  • Dielectric layer 32 is stacked on conductor layer L3. Further, on the dielectric layer 32, the conductor layer L2 to be the second conductor layer located in the inner layer is stacked. As shown in FIG. 4B, the conductor layer L2 is almost entirely a ground pattern, like the conductor layer L3, but in that the opening O2 for forming the back short portion 12 is formed. It differs from the conductor layer L3.
  • the opening O2 and the outer shape are formed (patterned) by etching after the conductor layer L2 is stacked on the entire surface. Further, after patterning by etching, as shown in FIG. 3, vias 15 are formed in the dielectric layer 32 between the conductor layers L2 to L3. The via 15 is formed, for example, by copper plating a hole formed by a drill. The vias 15 are formed in the hatched area of FIG. 4 (C).
  • the via 15 is composed of a shield via 15a disposed adjacent to the periphery of the opening O2 and a ground via 15b excluding them.
  • the shield via 15a strengthens the ground and shields a high frequency signal transmitted from the opening O2 to the dielectric layer 32 to prevent leakage.
  • the ground via 15b connects the ground pattern of the conductor layer L2 and the ground pattern of the conductor layer L3 to strengthen the ground.
  • Dielectric layer 31 is stacked on conductor layer L2. Further, on the dielectric layer 31, the conductor layer L1 to be the first conductor layer located in the surface layer is stacked.
  • the conductor layer L1 includes a transmission line 11 and a ground pattern, as shown in FIG. 4 (A).
  • the transmission line 11 connects the input / output terminal of the integrated circuit 40 to the waveguide.
  • the ground pattern is formed along the transmission line 11 across the clearance portion, and occupies most of the portion up to the outer shape of the conductor layer L1.
  • an opening O1 having a shape (approximately the same size as the opening O2) corresponding to the opening O2 is formed.
  • the transmission line 11, the ground pattern, and the opening O1 of the conductor layer L1 are formed (patterned) by etching after the conductor layer L1 is stacked.
  • a via 15 is formed between the conductor layers L1 and L2.
  • the vias 15 between the conductor layers L1 and L2 are formed by copper plating holes formed by drilling in the same manner as the vias 15 between the conductor layers L2 and L3.
  • the vias 15 between the conductor layers L1 and L2 are formed in the hatched region in FIG. 4 (B).
  • the vias 15 between the conductor layers L1 and L2 are from the shield vias 15a disposed adjacent to the periphery of the opening O1 and the ground vias 15b excluding them.
  • the shield via 15a strengthens the ground and shields a high frequency signal transmitted from the opening O1 to the dielectric layer 31 to prevent leakage.
  • the ground via 15b connects the ground pattern of the conductor layer L1 and the ground pattern of the conductor layer L2 to strengthen the ground.
  • the vias 15 including the shielding vias 15a and the ground vias 15b may be through vias directly connecting the conductor layers L1 to L3. Further, the via 15 is not formed in the dielectric layer 31 in the lower part of the transmission line 11 between the conductor layers L1 and L2.
  • the transmission line 11 is formed in the conductor layer L1 which is a surface layer of one surface of the substrate 10, as shown in FIG. 4 (A). Ground portions are disposed on both sides of the main body portion 11 c of the transmission line 11 with the clearance portion interposed therebetween, to constitute a coplanar line.
  • the line width L of the main body portion 11c of the transmission line 11 and the width S of the clearance portion are set to 20 ⁇ m.
  • the characteristic impedance of the transmission line 11 can be adjusted by, for example, increasing or decreasing the thickness of the dielectric layer 31. Also, by increasing or decreasing the thickness of the dielectric layer 32, the characteristics of the back short portion 12 described later can be adjusted.
  • the conductor layer L2 is disposed adjacent to the conductor layer L1 via the dielectric layer 31.
  • the distance between the conductor layers L1 and L2 can be shortened to adjust the impedance of the transmission line 11, and the line width of the main portion 11c of the transmission line 11 can be reduced. Further, by shortening the distance between the conductor layers L1 and L2, it is possible to reduce the electromagnetic wave of the high frequency signal leaking from the back short portion 12 to the outside through the dielectric layer 31 under the transmission line 11.
  • One end of the transmission line 11 is a pad 11 a, and is electrically connected to a signal terminal that inputs or outputs a high frequency signal to the integrated circuit 40.
  • the other end of the transmission line 11 is an antenna unit 11 b disposed inside the opening O 1, and converts a high frequency signal.
  • the conductor layer L1 also includes pads (not shown) connected to terminals other than the signal terminals of the integrated circuit 40, that is, power terminals, ground terminals and the like.
  • the pad connected to the ground terminal is connected to the ground pattern of the conductor layer L1.
  • the back short portion 12 of the substrate 10 is provided with a shielding via 15a disposed at the outer peripheral portion and the terminal portion 13 of the conductor layer L3 as shown by a dashed dotted line in FIG. Area. More specifically, the back short portion 12 is a rectangular-shaped end portion 13 of the conductor layer L3 corresponding to the above-described shielding via 15a, the opening O1 of the conductor layer L1, and the opening O1 of the conductor layer L1. And a prismatic region filled with a dielectric.
  • the high frequency signal radiated from the antenna portion 11 b to the back short portion 12 is reflected by the end portion 13 in the back short portion 12 and is radiated into the waveguide 20 a of the metal housing 20 described later through the opening O1. . More specifically, the signal from the antenna portion 11b to the waveguide 20a and the signal reflected from the antenna portion 11b to the back short portion 12 and reflected by the terminal portion 13 of the conductor layer L3 are superimposed in the waveguide 20a. Be done.
  • the depth of the back short portion 12 that is, the distance between the conductor layers L1 to L3 is set to 1 ⁇ 4 of the effective wavelength of the high frequency signal to be converted. Therefore, the high frequency signal radiated from the antenna unit 11 b to the back shorting unit 12 is reflected by the termination unit 13 after advancing by 1 ⁇ 4 wavelength. Then, the reflected high frequency signal is further advanced by 1 ⁇ 4 wavelength and reaches the antenna unit 11 b. Therefore, the high frequency signal reflected by the back short portion 12 travels by a half wavelength. Thereby, the phase of the electric field of the reflected high frequency signal becomes the same as the phase of the high frequency signal radiated to the waveguide side. Therefore, the high frequency signal radiated to the waveguide through the waveguide 20 a is enhanced by the high frequency signal reflected by the back short 12.
  • each terminal of the integrated circuit 40 is connected to the pad of the conductor layer L1 as shown in FIG. There is.
  • FIG. 6 (B) in the BB 'cross section of FIG. 2 (A), that is, the cross section of the portion where the main portion 11c of the transmission line 11 connects the inside and the outside of the metal housing 20. Since the lower part of 11 is a ground pattern, the vias 15 connecting these are not formed between the conductor layers L1 and L2.
  • vias 15 connecting these are formed between the conductor layers L2 to L3 which are all ground patterns. Thereby, the leakage of the high frequency signal radiated to the back short portion 12 to the outside is suppressed by the shield via 15a between the conductor layers L2 to L3.
  • the integrated circuit 40 is a circuit component that inputs and outputs high frequency signals.
  • the integrated circuit 40 includes a signal terminal for inputting and outputting a high frequency signal, a power supply terminal for driving the integrated circuit 40, and a ground terminal.
  • the signal terminal of the integrated circuit 40 is connected to a pad 11 a formed at the end of the transmission line 11.
  • the power supply terminal is connected to a pad (not shown) connected to a power supply line formed on the conductor layer L1.
  • the ground terminal is connected to a pad (not shown) formed in the ground pattern of the conductor layer L1.
  • the connection method between the integrated circuit 40 and the substrate 10 is not particularly limited, but the flip chip connection as in this embodiment reduces the loss of the transmitted signal.
  • the metal housing 20 is a metal member in which the waveguide 20a which is a through-hole is formed, as shown to FIG. 1, 2 (A), 2 (B).
  • the metal housing 20 is attached on the conductor layer L1 of the substrate 10.
  • the material of the metal housing 20 is, for example, an aluminum alloy.
  • One end of the waveguide 20 a formed in the metal housing 20 is connected to the opening O 1 of the substrate 10.
  • the other end of the waveguide 20a is connected to a waveguide not shown.
  • the high frequency signal output from the integrated circuit is transmitted to the antenna unit 11 b through the transmission line 11.
  • the high frequency signal converted by the antenna unit 11 b is radiated to the waveguide via the waveguide 20 a electromagnetically coupled to the transmission line 11.
  • the high frequency signal input from the waveguide to the waveguide converter 1 is converted by the antenna unit 11 b through the waveguide 20 a.
  • the converted high frequency signal is input to the integrated circuit 40 through the transmission line 11.
  • the metal housing 20 is provided with a line opening 20b for avoiding the transmission line 11, as shown in FIGS. 2 (A) and 2 (B).
  • the width of the line opening 20 b is set wider than the line width of the main body 11 c of the transmission line 11. Thereby, the contact between the metal housing 20 and the transmission line 11 is prevented.
  • the height of the line opening 20b is preferably set low.
  • the height of the line opening 20b according to the present embodiment is set to 40 ⁇ m.
  • the metal housing 20 is provided with the notch part 20c, as shown to FIG. 2 (B).
  • the notch 20 c is formed to avoid the integrated circuit 40.
  • the lower surface of the notch 20c faces the upper surface of the integrated circuit 40 at a constant interval. Further, the lower surface of the notch 20 c overlaps a part of the upper surface of the integrated circuit 40.
  • the presence of the metal housing 20 on the top of the integrated circuit 40 can prevent the integrated circuit 40 from coming off the substrate 10 and dropping off when the waveguide converter 1 is impacted.
  • the waveguide converter 1 is configured as described above, and the high frequency signal output from the integrated circuit 40 is a waveguide of the metal housing 20 via the transmission line 11 which is a coplanar line.
  • the radiation is emitted into the waveguide 20 connected to the metal housing 20.
  • the high frequency signal input to the waveguide 20 a in the metal housing 20 through the waveguide is converted by the antenna unit 11 b. Then, the converted high frequency signal is input to the integrated circuit 40 through the transmission line 11.
  • FIG. 7 is a graph showing an example of S-parameters of the waveguide converter 1 according to the present embodiment. As shown in FIG. 7, S-parameters S11 and S22 indicating reflection loss are less than ⁇ 10 dB around 300 GHz. The S-parameters S21 and S12 indicating the insertion loss are -0.5 dB or more at around 300 GHz. Therefore, it can be seen that good characteristics with small loss are exhibited.
  • the waveguide converter 1 according to the present embodiment since the back short portion 12 terminated in the substrate 10 is formed, another component for back short is connected to the outside of the substrate. Therefore, the signal conversion characteristic can be improved while being compact. Further, in the waveguide converter 1 according to the present embodiment, since the high frequency signal is transmitted using the transmission line 11 which is a coplanar line, it is possible to reduce the loss of the transmitted high frequency signal.
  • the number of conductor layers was set to three layers, it is not restricted to this.
  • the number of stacked layers may be increased to form four or more conductor layers.
  • the back short part 12 of the depth suitable for the frequency characteristic of the high frequency signal to convert can be formed.
  • the conductor layer L2 which is the second conductor layer and the conductor layer L4 which is the third conductor layer so that the depth of the back short portion 12 is 1 ⁇ 4 of the effective wavelength of the high frequency signal.
  • the number of layers can be adjusted to adjust the distance between the conductor layers L1 to L4.
  • the signal without changing the distance between the conductor layers L1 and L2 and keeping the impedance of the transmission line 11 constant, the signal can be strengthened according to the wavelength of the high frequency signal to be converted, and the characteristics can be improved.
  • terminus part 13 of the back short part 12 presupposed that it is formed in the conductor layer L3 which is an inner layer of the board
  • the termination portion 13 may be formed on the surface layer on the surface opposite to the conductor layer L1 on which the transmission line 11 is formed, that is, the conductor layer L3 of FIG.
  • the number of layers of the substrate 10 can be reduced and the thickness of the substrate 10 can be reduced, so that the waveguide converter 1 can be further miniaturized.
  • the present invention is suitable for a waveguide converter that converts a high frequency signal of 300 GHz or more between a transmission line and a waveguide.

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The waveguide converter is provided with: a substrate (10) having at least three conductor layers; a metal housing (20) vertically arranged on the conductor layer (L1) disposed on the surface layer of the substrate (10), and having a wave-guide path (20a) electromagnetically coupled with transmission lines (11a), (11b), (11c) that constitute a part of the conductor layer (L1) and transmit a high-frequency signal; and a backshort section (12) for terminating the wave-guide path (20a). In addition, the substrate (10) is provided with: the conductor layer (L2) adjoining the conductor layer (L1) via a dielectric layer (31); and the conductor layer (L3) having a termination part (13) for terminating the wave-guide path (20a) inside the backshort section (12).

Description

導波管変換器Waveguide converter
 本発明は、導波管変換器に関する。 The present invention relates to waveguide transducers.
 従来、誘電体基板上の伝送線路と導波管との間で高周波信号を変換する導波管変換器が開発されている。このような導波管変換器では、信号特性を改善するために、バックショートが用いられる(例えば、特許文献1)。特許文献1の図1に示されるように、導波管変換器(1)は、導波管(2)と、導波管(2)を終端するバックショート(3)と、導波管(2)とバックショート(3)との間に介在している第1誘電体基板(4)とを備えている。 Heretofore, waveguide converters have been developed which convert high frequency signals between a transmission line on a dielectric substrate and a waveguide. In such waveguide converters, a back short is used to improve signal characteristics (e.g., Patent Document 1). As shown in FIG. 1 of Patent Document 1, the waveguide converter (1) includes a waveguide (2), a back short (3) terminating the waveguide (2), and a waveguide (3) A first dielectric substrate (4) interposed between 2) and the back short (3) is provided.
特開2017-5421号公報JP, 2017-5421, A
 特許文献1の導波管変換器(1)では、第1誘電体基板(4)の一方の表面に導波管(2)が接続される。そして、他方の表面の導波管(2)に対向する位置に金属ブロックからなるバックショート(3)が取り付けられる。したがって、バックショート(3)を備える導波管変換器は大型となる。 In the waveguide converter (1) of Patent Document 1, the waveguide (2) is connected to one surface of the first dielectric substrate (4). And the back short (3) which consists of a metal block is attached to the position which opposes the waveguide (2) of the other surface. Thus, the waveguide converter with the back short (3) becomes large.
 本発明は、上述の事情に鑑みてなされたものであり、小型でありながら、信号特性のよい導波管変換器を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a waveguide converter which is compact and yet has good signal characteristics.
 上記目的を達成するために、この発明の第1の観点に係る導波管変換器は、
 少なくとも3層の導体層を有する基板と、
 前記基板の表層に位置する第1導体層上に立設され、前記第1導体層の一部であり高周波信号を伝送する伝送線路と電磁的に結合された導波路を有するメタルハウジングと、
 前記導波路を終端するバックショート部と、を備え、
 前記基板は、
 誘電体層を介して前記第1導体層と隣り合う第2導体層と、前記バックショート部内で前記導波路を終端する終端部を有する第3導体層とを備える。
In order to achieve the above object, a waveguide converter according to a first aspect of the present invention is
A substrate having at least three conductor layers;
A metal housing having a waveguide which is electromagnetically coupled to a transmission line which is part of the first conductor layer and transmits a high frequency signal and which is erected on the first conductor layer located on the surface layer of the substrate;
A back short portion terminating the waveguide;
The substrate is
A second conductor layer adjacent to the first conductor layer via a dielectric layer, and a third conductor layer having an end portion terminating the waveguide in the back short portion.
 また、前記伝送線路は、
 コプレーナ線路である、
 こととしてもよい。
Also, the transmission line is
Coplanar line,
You may do it.
 また、前記バックショート部は、
 前記バックショート部の外周部に配置され、前記第1導体層のグランドパターンと前記第3導体層のグランドパターンとを電気的に接続した遮蔽ビアを備える、
 こととしてもよい。
Also, the back short section is
The shield via is disposed at an outer peripheral portion of the back short portion and electrically connects a ground pattern of the first conductor layer and a ground pattern of the third conductor layer.
You may do it.
 また、前記伝送線路は、
 前記導波路の内部に配置されたアンテナ部を備える、
 こととしてもよい。
Also, the transmission line is
An antenna unit disposed inside the waveguide;
You may do it.
 また、前記メタルハウジングは、
 前記導波路の内部と前記導波路の外部との間で、前記伝送線路を挿通させる線路開口部を備える、
 こととしてもよい。
Also, the metal housing is
A line opening through which the transmission line is inserted between the inside of the waveguide and the outside of the waveguide;
You may do it.
 この発明の第2の観点に係る導波管変換器は、
 表層に位置する第1導体層と、誘電体層を介して前記第1導体層と隣り合う第2導体層と、前記第2導体層の前記第1導体層が積層された側と反対側に誘電体層を介して積層された第3導体層とを有する基板と、
 前記基板の前記第1導体層上に立設され、導波路が形成されたメタルハウジングと、を備え、
 前記第1導体層の少なくとも一部は、前記導波路と電磁的に結合される伝送線路であり、
 前記第1導体層には、前記導波路の挿通領域に対応する領域に第1開口部が形成されており、
 前記第2導体層には、前記第1開口部に対応する領域に第2開口部が形成されており、
 前記第1開口部及び前記第2開口部の外周部には、前記第1導体層のグランドパターンと前記第3導体層のグランドパターンとを電気的に接続する遮蔽ビアが配置され、
 前記第3導体層のうち、前記第1開口部と前記第2開口部に対応する領域は、前記導波路を終端する。
The waveguide converter according to the second aspect of the present invention is
The first conductor layer located on the surface layer, the second conductor layer adjacent to the first conductor layer via the dielectric layer, and the side opposite to the side on which the first conductor layer of the second conductor layer is stacked A substrate having a third conductor layer stacked via a dielectric layer;
And a metal housing erected on the first conductor layer of the substrate and provided with a waveguide.
At least a portion of the first conductor layer is a transmission line electromagnetically coupled to the waveguide;
In the first conductor layer, a first opening is formed in a region corresponding to the insertion region of the waveguide,
In the second conductor layer, a second opening is formed in a region corresponding to the first opening,
A shield via electrically connecting a ground pattern of the first conductor layer and a ground pattern of the third conductor layer is disposed on an outer peripheral portion of the first opening and the second opening.
The region of the third conductor layer corresponding to the first opening and the second opening terminates the waveguide.
 本発明の導波管変換器によれば、基板内で終端されるバックショート部を備えるので、小型でありながら、信号特性を向上させることができる。 According to the waveguide converter of the present invention, since the back short portion terminated in the substrate is provided, the signal characteristics can be improved while being compact.
実施の形態に係る導波管変換器の斜視図である。It is a perspective view of a waveguide converter concerning an embodiment. (A)は、導波管変換器の平面図であり、(B)は、導波管変換器の正面図である。(A) is a top view of a waveguide converter, (B) is a front view of a waveguide converter. 基板の層構成を示す断面側面図である。It is a cross-sectional side view which shows the laminated constitution of a board | substrate. (A)は、導体層L1の形状を示す平面図であり、(B)は、導体層L2の形状を示す平面図であり、(C)は、導体層L3の形状を示す平面図である。(A) is a plan view showing the shape of the conductor layer L1, (B) is a plan view showing the shape of the conductor layer L2, and (C) is a plan view showing the shape of the conductor layer L3. . 遮蔽ビア及び接地ビアの配置を示す基板の断面平面図である。FIG. 7 is a cross-sectional plan view of the substrate showing the arrangement of shielding vias and ground vias. (A)は、図2(A)のA-A’線で切断した基板及び集積回路の断面側面図であり、(B)は、図2(A)のB-B’線で切断した基板及びメタルハウジングの断面側面図であり、(C)は、図2(A)のC-C’線で切断した基板及びメタルハウジングの断面側面図である。(A) is a cross-sectional side view of a substrate and an integrated circuit cut along the line AA 'in FIG. 2 (A), and (B) is a substrate cut along the line BB' in FIG. 2 (A) FIG. 2C is a cross-sectional side view of the metal housing and FIG. 2C is a cross-sectional side view of the substrate and the metal housing cut along the line CC ′ in FIG. 実施の形態に係る導波管変換器のSパラメータの例を示すグラフである。It is a graph which shows the example of S parameter of the waveguide converter which concerns on embodiment. 変形例に係るバックショート部の断面側面図である。It is a cross section side view of the back short part concerning a modification. 別の変形例に係るバックショート部の断面側面図である。It is a cross-sectional side view of the back short part which concerns on another modification.
 以下、図を参照しつつ、本発明の実施の形態に係る導波管変換器について、300GHz帯の高周波信号を変換する導波管変換器を例として説明する。 Hereinafter, with reference to the drawings, a waveguide converter according to an embodiment of the present invention will be described by way of an example of a waveguide converter that converts a high frequency signal of 300 GHz band.
 本実施の形態に係る導波管変換器1は、図1、2(A)、2(B)に示すように、基板10と、基板10上に固定されるメタルハウジング20とを備える。導波管変換器1は、基板10上の伝送線路11と、メタルハウジング20の上部に脱着可能に取り付けられる不図示の導波管との間で高周波信号を変換する変換器である。 The waveguide converter 1 which concerns on this Embodiment is provided with the board | substrate 10 and the metal housing 20 fixed on the board | substrate 10, as shown to FIG. 1, 2 (A), 2 (B). The waveguide converter 1 is a converter for converting a high frequency signal between the transmission line 11 on the substrate 10 and a waveguide (not shown) detachably mounted on the top of the metal housing 20.
 基板10は、3層の導体層と3層の誘電体層とを備える多層基板である。また、基板10は、図3、6(A)~(C)等を参照しつつ後述する、伝送線路11、バックショート部12、ビア15を備える。基板10の種類は特に制限されず、例えば、高周波回路基板として一般的に用いられるフッ素樹脂基板、ガラスエポキシ基板等である。本実施の形態では、基板10はFR4(Flame Retardant Type 4)である。 The substrate 10 is a multilayer substrate including three conductor layers and three dielectric layers. In addition, the substrate 10 includes a transmission line 11, a back short portion 12, and a via 15, which will be described later with reference to FIGS. 3, 6 (A) to (C) and the like. The type of the substrate 10 is not particularly limited, and examples thereof include a fluorine resin substrate and a glass epoxy substrate that are generally used as high frequency circuit substrates. In the present embodiment, the substrate 10 is FR4 (Flame Retardant Type 4).
 基板10は、絶縁体の誘電体層と金属の導体層とを交互に積層して形成された多層基板である。本実施の形態に係る基板10は、図3に示すように、3つの導体層L1~L3を備える。導体層L1~L3は銅製であり、厚みは15μmである。各導体層間の距離、すなわち、誘電体層31、32の厚みは、約50μmである。基板10の全体の厚みは、約165μmである。また、誘電体層31~33の誘電率εは3.26、誘電正接tanδは0.0076である。 The substrate 10 is a multilayer substrate formed by alternately laminating dielectric layers of an insulator and conductor layers of a metal. As shown in FIG. 3, the substrate 10 according to the present embodiment includes three conductor layers L1 to L3. The conductor layers L1 to L3 are made of copper and have a thickness of 15 μm. The distance between the conductor layers, ie, the thickness of the dielectric layers 31, 32 is about 50 μm. The total thickness of the substrate 10 is about 165 μm. The dielectric constant ε r of the dielectric layers 31 to 33 is 3.26, and the dielectric loss tangent tan δ is 0.0076.
 基板10は、上述のように誘電体層31~33と導体層L1~L3とを積層して作製される。具体的には、誘電体である誘電体層33の一方の面上に、第3導体層となる導体層L3が積層される。導体層L3は、図4(C)に示すように、ほぼ全面がグランドパターンである。グランドパターンの一部は、後述するバックショート部12の終端部13として機能する。 The substrate 10 is manufactured by laminating the dielectric layers 31 to 33 and the conductor layers L1 to L3 as described above. Specifically, conductor layer L3 to be the third conductor layer is stacked on one surface of dielectric layer 33 which is a dielectric. As shown in FIG. 4C, almost the entire surface of the conductor layer L3 is a ground pattern. A part of the ground pattern functions as an end portion 13 of the back short portion 12 described later.
 再度、図3を参照する。導体層L3上に誘電体層32が積層される。また、誘電体層32上に、内層に位置する第2導体層となる導体層L2が積層される。図4(B)に示すように、導体層L2は、導体層L3と同様に、ほぼ全体がグランドパターンであるが、バックショート部12を構成するための開口部O2が形成されている点で導体層L3と異なる。 Refer again to FIG. Dielectric layer 32 is stacked on conductor layer L3. Further, on the dielectric layer 32, the conductor layer L2 to be the second conductor layer located in the inner layer is stacked. As shown in FIG. 4B, the conductor layer L2 is almost entirely a ground pattern, like the conductor layer L3, but in that the opening O2 for forming the back short portion 12 is formed. It differs from the conductor layer L3.
 開口部O2及び外形形状は、導体層L2が全面に積層された後に、エッチングされることにより形成(パターニング)される。また、エッチングによるパターニング後、図3に示すように、導体層L2-L3間の誘電体層32に、ビア15が形成される。ビア15は、例えば、ドリルによって形成された孔部を銅めっきして形成される。ビア15は、図4(C)のハッチング領域に形成される。 The opening O2 and the outer shape are formed (patterned) by etching after the conductor layer L2 is stacked on the entire surface. Further, after patterning by etching, as shown in FIG. 3, vias 15 are formed in the dielectric layer 32 between the conductor layers L2 to L3. The via 15 is formed, for example, by copper plating a hole formed by a drill. The vias 15 are formed in the hatched area of FIG. 4 (C).
 図5に示すように、ビア15は、開口部O2の周囲に隣接して配置される遮蔽ビア15aと、それらを除く接地ビア15bから構成される。遮蔽ビア15aは、グランドを強化するとともに、開口部O2から誘電体層32に伝送された高周波信号を遮蔽して、漏洩を防止する。接地ビア15bは、導体層L2のグランドパターンと導体層L3のグランドパターンとを接続して、グランドを強化している。 As shown in FIG. 5, the via 15 is composed of a shield via 15a disposed adjacent to the periphery of the opening O2 and a ground via 15b excluding them. The shield via 15a strengthens the ground and shields a high frequency signal transmitted from the opening O2 to the dielectric layer 32 to prevent leakage. The ground via 15b connects the ground pattern of the conductor layer L2 and the ground pattern of the conductor layer L3 to strengthen the ground.
 再度、図3を参照する。導体層L2上に誘電体層31が積層される。また、誘電体層31上に、表層に位置する第1導体層となる導体層L1が積層される。導体層L1は、図4(A)に示すように、伝送線路11と、グランドパターンとを備える。伝送線路11は、集積回路40の入出力端子と導波路とを接続する。グランドパターンは、伝送線路11に沿ってクリアランス部を挟んで形成され、導体層L1の外形までの大部分を占める。また、導体層L1には、開口部O2に対応する形状(開口部O2とほぼ同じ大きさ)の開口部O1が形成されている。 Refer again to FIG. Dielectric layer 31 is stacked on conductor layer L2. Further, on the dielectric layer 31, the conductor layer L1 to be the first conductor layer located in the surface layer is stacked. The conductor layer L1 includes a transmission line 11 and a ground pattern, as shown in FIG. 4 (A). The transmission line 11 connects the input / output terminal of the integrated circuit 40 to the waveguide. The ground pattern is formed along the transmission line 11 across the clearance portion, and occupies most of the portion up to the outer shape of the conductor layer L1. In the conductor layer L1, an opening O1 having a shape (approximately the same size as the opening O2) corresponding to the opening O2 is formed.
 導体層L1の伝送線路11、グランドパターン、開口部O1は、導体層L1が積層された後に、エッチングされることにより形成(パターニング)される。また、エッチングによるパターニング後に、導体層L1-L2間にビア15が形成される。導体層L1-L2間のビア15は、導体層L2-L3間のビア15と同様に、ドリルによって形成された孔部を銅めっきして形成される。導体層L1-L2間のビア15は、図4(B)のハッチング領域に形成される。 The transmission line 11, the ground pattern, and the opening O1 of the conductor layer L1 are formed (patterned) by etching after the conductor layer L1 is stacked. In addition, after patterning by etching, a via 15 is formed between the conductor layers L1 and L2. The vias 15 between the conductor layers L1 and L2 are formed by copper plating holes formed by drilling in the same manner as the vias 15 between the conductor layers L2 and L3. The vias 15 between the conductor layers L1 and L2 are formed in the hatched region in FIG. 4 (B).
 上述した導体層L2-L3間のビア15と同様に、導体層L1-L2間のビア15は、開口部O1の周囲に隣接して配置された遮蔽ビア15aと、それらを除く接地ビア15bから構成される。遮蔽ビア15aは、グランドを強化するとともに、開口部O1から誘電体層31に伝送された高周波信号を遮蔽して、漏洩を防止する。接地ビア15bは、導体層L1のグランドパターンと導体層L2のグランドパターンとを接続して、グランドを強化している。また、遮蔽ビア15a、接地ビア15bを含むビア15は、導体層L1-L3間を直接接続する貫通ビアであってもよい。また、導体層L1-L2間では、伝送線路11の下部の誘電体層31に、ビア15は形成されていない。 Similar to the vias 15 between the conductor layers L2 to L3 described above, the vias 15 between the conductor layers L1 and L2 are from the shield vias 15a disposed adjacent to the periphery of the opening O1 and the ground vias 15b excluding them. Configured The shield via 15a strengthens the ground and shields a high frequency signal transmitted from the opening O1 to the dielectric layer 31 to prevent leakage. The ground via 15b connects the ground pattern of the conductor layer L1 and the ground pattern of the conductor layer L2 to strengthen the ground. The vias 15 including the shielding vias 15a and the ground vias 15b may be through vias directly connecting the conductor layers L1 to L3. Further, the via 15 is not formed in the dielectric layer 31 in the lower part of the transmission line 11 between the conductor layers L1 and L2.
 伝送線路11は、図4(A)に示すように、基板10の一方の面の表層である導体層L1に形成される。伝送線路11の本体部11cの両側は、クリアランス部を挟んでグランド部が配置され、コプレーナ線路を構成している。本実施の形態では、伝送線路11の本体部11cの線幅Lとクリアランス部の幅Sはそれぞれ20μmに設定されている。 The transmission line 11 is formed in the conductor layer L1 which is a surface layer of one surface of the substrate 10, as shown in FIG. 4 (A). Ground portions are disposed on both sides of the main body portion 11 c of the transmission line 11 with the clearance portion interposed therebetween, to constitute a coplanar line. In the present embodiment, the line width L of the main body portion 11c of the transmission line 11 and the width S of the clearance portion are set to 20 μm.
 また、誘電体層31、32の厚みは、各導体層間の距離であるため、例えば、誘電体層31の厚みを増減させることにより、伝送線路11の特性インピーダンスを調整することができる。また、誘電体層32の厚みを増減させることにより、後述するバックショート部12の特性を調整することができる。 Moreover, since the thickness of the dielectric layers 31 and 32 is the distance between the conductor layers, the characteristic impedance of the transmission line 11 can be adjusted by, for example, increasing or decreasing the thickness of the dielectric layer 31. Also, by increasing or decreasing the thickness of the dielectric layer 32, the characteristics of the back short portion 12 described later can be adjusted.
 本実施の形態では、導体層L2が誘電体層31を介して導体層L1と隣り合うように配置されている。これにより、導体層L1-L2間の距離を短くして伝送線路11のインピーダンスを調整し、伝送線路11の本体部11cの線幅を小さくすることが可能となっている。また、導体層L1-L2間の距離を短くすることにより、バックショート部12から伝送線路11下部の誘電体層31を通じて外部に漏洩する高周波信号の電磁波を減少させることができる。 In the present embodiment, the conductor layer L2 is disposed adjacent to the conductor layer L1 via the dielectric layer 31. Thus, the distance between the conductor layers L1 and L2 can be shortened to adjust the impedance of the transmission line 11, and the line width of the main portion 11c of the transmission line 11 can be reduced. Further, by shortening the distance between the conductor layers L1 and L2, it is possible to reduce the electromagnetic wave of the high frequency signal leaking from the back short portion 12 to the outside through the dielectric layer 31 under the transmission line 11.
 伝送線路11の一方の端部は、パッド11aとなっており、集積回路40に高周波信号を入力または出力する信号端子と電気的に接続される。伝送線路11の他方の端部は、開口部O1の内部に配置されるアンテナ部11bとなっており、高周波信号の変換を行う。 One end of the transmission line 11 is a pad 11 a, and is electrically connected to a signal terminal that inputs or outputs a high frequency signal to the integrated circuit 40. The other end of the transmission line 11 is an antenna unit 11 b disposed inside the opening O 1, and converts a high frequency signal.
 また、導体層L1は、集積回路40の信号端子以外の各端子、すなわち電源端子、グランド端子等に接続するパッド(不図示)を備える。グランド端子に接続するパッドは、導体層L1のグランドパターンに接続している。 The conductor layer L1 also includes pads (not shown) connected to terminals other than the signal terminals of the integrated circuit 40, that is, power terminals, ground terminals and the like. The pad connected to the ground terminal is connected to the ground pattern of the conductor layer L1.
 基板10のバックショート部12は、図6(C)に一点鎖線で示すように、外周部に配置された遮蔽ビア15aと導体層L3の終端部13とを備え、内部が誘電体で満たされた領域である。より具体的には、バックショート部12は、上述した遮蔽ビア15aと、導体層L1の開口部O1と、導体層L1の開口部O1に対応する導体層L3の平面視矩形状の終端部13とで囲まれ、内部が誘電体で満たされた角柱状の領域である。 The back short portion 12 of the substrate 10 is provided with a shielding via 15a disposed at the outer peripheral portion and the terminal portion 13 of the conductor layer L3 as shown by a dashed dotted line in FIG. Area. More specifically, the back short portion 12 is a rectangular-shaped end portion 13 of the conductor layer L3 corresponding to the above-described shielding via 15a, the opening O1 of the conductor layer L1, and the opening O1 of the conductor layer L1. And a prismatic region filled with a dielectric.
 アンテナ部11bからバックショート部12へと放射された高周波信号は、バックショート部12内の終端部13で反射され、開口部O1を通じて、後述するメタルハウジング20の導波路20a内へと放射される。より詳細には、アンテナ部11bから導波路20aへと向かう信号と、アンテナ部11bからバックショート部12へと向かい導体層L3の終端部13で反射された信号とが、導波路20a内で重ね合わされる。 The high frequency signal radiated from the antenna portion 11 b to the back short portion 12 is reflected by the end portion 13 in the back short portion 12 and is radiated into the waveguide 20 a of the metal housing 20 described later through the opening O1. . More specifically, the signal from the antenna portion 11b to the waveguide 20a and the signal reflected from the antenna portion 11b to the back short portion 12 and reflected by the terminal portion 13 of the conductor layer L3 are superimposed in the waveguide 20a. Be done.
 本実施の形態に係るバックショート部12の深さ、すなわち導体層L1-L3間の距離は、変換される高周波信号の実効波長の1/4に設定されている。したがって、アンテナ部11bからバックショート部12へと放射された高周波信号は、1/4波長分進んだ後、終端部13で反射される。そして、反射された高周波信号は、さらに1/4波長分進んでアンテナ部11bに到達する。したがって、バックショート部12で反射された高周波信号は半波長分進む。これにより、反射された高周波信号の電界の位相は、導波管側へ放射された高周波信号の位相と同じになる。したがって、導波路20aを通じて導波管へと放射される高周波信号は、バックショート部12で反射された高周波信号によって強められる。 The depth of the back short portion 12 according to the present embodiment, that is, the distance between the conductor layers L1 to L3 is set to 1⁄4 of the effective wavelength of the high frequency signal to be converted. Therefore, the high frequency signal radiated from the antenna unit 11 b to the back shorting unit 12 is reflected by the termination unit 13 after advancing by 1⁄4 wavelength. Then, the reflected high frequency signal is further advanced by 1⁄4 wavelength and reaches the antenna unit 11 b. Therefore, the high frequency signal reflected by the back short portion 12 travels by a half wavelength. Thereby, the phase of the electric field of the reflected high frequency signal becomes the same as the phase of the high frequency signal radiated to the waveguide side. Therefore, the high frequency signal radiated to the waveguide through the waveguide 20 a is enhanced by the high frequency signal reflected by the back short 12.
 図2(A)のA-A’断面、すなわち集積回路40の信号端子部分の断面では、図6(A)に示すように、集積回路40の各端子が導体層L1のパッドに接続している。また、図2(A)のB-B’断面、すなわち伝送線路11の本体部11cがメタルハウジング20の内部と外部とをつなぐ部分の断面では、図6(B)に示すように、伝送線路11の下部は、グランドパターンであるため、導体層L1-L2間にこれらを接続するビア15は形成されていない。 In the AA 'cross section of FIG. 2A, that is, the cross section of the signal terminal portion of the integrated circuit 40, each terminal of the integrated circuit 40 is connected to the pad of the conductor layer L1 as shown in FIG. There is. Further, as shown in FIG. 6 (B), in the BB 'cross section of FIG. 2 (A), that is, the cross section of the portion where the main portion 11c of the transmission line 11 connects the inside and the outside of the metal housing 20. Since the lower part of 11 is a ground pattern, the vias 15 connecting these are not formed between the conductor layers L1 and L2.
 一方、いずれもグランドパターンである導体層L2-L3間では、これらを接続するビア15が形成されている。これにより、バックショート部12に放射された高周波信号の外部への漏洩は、導体層L2-L3間の遮蔽ビア15aによって抑制される。 On the other hand, vias 15 connecting these are formed between the conductor layers L2 to L3 which are all ground patterns. Thereby, the leakage of the high frequency signal radiated to the back short portion 12 to the outside is suppressed by the shield via 15a between the conductor layers L2 to L3.
 集積回路40は、高周波信号を入出力する回路部品である。集積回路40は、高周波信号を入出力する信号端子、集積回路40を駆動する電源端子、グランド端子を備える。集積回路40の信号端子は、伝送線路11の端部に形成されたパッド11aに接続している。電源端子は、導体層L1上に形成された電源ラインに接続されたパッド(不図示)に接続している。また、グランド端子は、導体層L1のグランドパターンに形成されたパッド(不図示)に接続している。集積回路40と基板10との接続方法は、特に限定されないが、本実施の形態のように、フリップチップ接続であることにより、伝送される信号の損失が低減される。 The integrated circuit 40 is a circuit component that inputs and outputs high frequency signals. The integrated circuit 40 includes a signal terminal for inputting and outputting a high frequency signal, a power supply terminal for driving the integrated circuit 40, and a ground terminal. The signal terminal of the integrated circuit 40 is connected to a pad 11 a formed at the end of the transmission line 11. The power supply terminal is connected to a pad (not shown) connected to a power supply line formed on the conductor layer L1. The ground terminal is connected to a pad (not shown) formed in the ground pattern of the conductor layer L1. The connection method between the integrated circuit 40 and the substrate 10 is not particularly limited, but the flip chip connection as in this embodiment reduces the loss of the transmitted signal.
 メタルハウジング20は、図1、2(A)、2(B)に示すように、貫通孔である導波路20aが形成された金属部材である。メタルハウジング20は、基板10の導体層L1上に取り付けられる。メタルハウジング20の材質は、例えばアルミニウム合金である。メタルハウジング20に形成された導波路20aの一方の端部は、基板10の開口部O1に接続している。また、導波路20aの他方の端部は、図示しない導波管に接続している。これにより、集積回路から出力された高周波信号は、伝送線路11を通じてアンテナ部11bに伝送される。そして、アンテナ部11bで変換された高周波信号は、伝送線路11と電磁的に結合された導波路20aを介して、導波管に放射される。また、導波管から導波管変換器1に入力された高周波信号は、導波路20aを通じてアンテナ部11bで変換される。そして、変換された高周波信号は、伝送線路11を通じて集積回路40に入力される。 The metal housing 20 is a metal member in which the waveguide 20a which is a through-hole is formed, as shown to FIG. 1, 2 (A), 2 (B). The metal housing 20 is attached on the conductor layer L1 of the substrate 10. The material of the metal housing 20 is, for example, an aluminum alloy. One end of the waveguide 20 a formed in the metal housing 20 is connected to the opening O 1 of the substrate 10. The other end of the waveguide 20a is connected to a waveguide not shown. Thus, the high frequency signal output from the integrated circuit is transmitted to the antenna unit 11 b through the transmission line 11. Then, the high frequency signal converted by the antenna unit 11 b is radiated to the waveguide via the waveguide 20 a electromagnetically coupled to the transmission line 11. The high frequency signal input from the waveguide to the waveguide converter 1 is converted by the antenna unit 11 b through the waveguide 20 a. Then, the converted high frequency signal is input to the integrated circuit 40 through the transmission line 11.
 メタルハウジング20は、図2(A)、2(B)に示すように、伝送線路11を避けるための線路開口部20bを備える。線路開口部20bの幅は、伝送線路11の本体部11cの線幅よりも広く設定されている。これにより、メタルハウジング20と伝送線路11との接触が防止される。また、線路開口部20bの高さは、低く設定されることが好ましい。本実施の形態に係る線路開口部20bの高さは、40μmに設定されている。これにより、線路開口部20bの開口面積は小さくなり、アンテナ部11bから放射された電磁波が線路開口部20bを介してメタルハウジング20の外部に漏れることを抑制できる。 The metal housing 20 is provided with a line opening 20b for avoiding the transmission line 11, as shown in FIGS. 2 (A) and 2 (B). The width of the line opening 20 b is set wider than the line width of the main body 11 c of the transmission line 11. Thereby, the contact between the metal housing 20 and the transmission line 11 is prevented. Further, the height of the line opening 20b is preferably set low. The height of the line opening 20b according to the present embodiment is set to 40 μm. Thus, the opening area of the line opening 20b is reduced, and the electromagnetic wave radiated from the antenna portion 11b can be prevented from leaking to the outside of the metal housing 20 through the line opening 20b.
 また、メタルハウジング20は、図2(B)に示すように、切り欠き部20cを備える。切り欠き部20cは、集積回路40を避けるように形成されている。切り欠き部20cの下面は、一定の間隔をあけて、集積回路40の上面に対向している。また、切り欠き部20cの下面は、集積回路40の上面の一部と重なっている。このように、集積回路40の上部にメタルハウジング20が存在することにより、導波管変換器1に衝撃が加えられた場合に、集積回路40が基板10から外れ、脱落することを防止できる。 Moreover, the metal housing 20 is provided with the notch part 20c, as shown to FIG. 2 (B). The notch 20 c is formed to avoid the integrated circuit 40. The lower surface of the notch 20c faces the upper surface of the integrated circuit 40 at a constant interval. Further, the lower surface of the notch 20 c overlaps a part of the upper surface of the integrated circuit 40. Thus, the presence of the metal housing 20 on the top of the integrated circuit 40 can prevent the integrated circuit 40 from coming off the substrate 10 and dropping off when the waveguide converter 1 is impacted.
 本実施の形態に係る導波管変換器1は、上述のように構成されており、集積回路40から出力された高周波信号は、コプレーナ線路である伝送線路11を介してメタルハウジング20の導波路20a内に放射され、メタルハウジング20に接続された導波管に出力される。また、導波管を通じてメタルハウジング20内の導波路20aに入力された高周波信号は、アンテナ部11bで変換される。そして、変換された高周波信号は、伝送線路11を通じて集積回路40に入力される。 The waveguide converter 1 according to the present embodiment is configured as described above, and the high frequency signal output from the integrated circuit 40 is a waveguide of the metal housing 20 via the transmission line 11 which is a coplanar line. The radiation is emitted into the waveguide 20 connected to the metal housing 20. Also, the high frequency signal input to the waveguide 20 a in the metal housing 20 through the waveguide is converted by the antenna unit 11 b. Then, the converted high frequency signal is input to the integrated circuit 40 through the transmission line 11.
 図7は、本実施の形態に係る導波管変換器1のSパラメータの例を示すグラフである。図7に示されるように、反射損失を示すSパラメータS11、S22は、300GHz付近で-10dB未満となっている。また、挿入損失を示すSパラメータS21、S12は、300GHz付近で-0.5dB以上となっている。したがって、損失の小さい良好な特性を示していることがわかる。 FIG. 7 is a graph showing an example of S-parameters of the waveguide converter 1 according to the present embodiment. As shown in FIG. 7, S-parameters S11 and S22 indicating reflection loss are less than −10 dB around 300 GHz. The S-parameters S21 and S12 indicating the insertion loss are -0.5 dB or more at around 300 GHz. Therefore, it can be seen that good characteristics with small loss are exhibited.
 以上説明したように、本実施の形態に係る導波管変換器1では、基板10内で終端されるバックショート部12が形成されているので、基板外部にバックショート用の別部品を接続することなく、小型でありながら、信号変換特性を向上させることができる。また、本実施の形態に係る導波管変換器1では、コプレーナ線路である伝送線路11を用いて高周波信号を伝送しているので、伝送される高周波信号の損失を低減することができる。 As described above, in the waveguide converter 1 according to the present embodiment, since the back short portion 12 terminated in the substrate 10 is formed, another component for back short is connected to the outside of the substrate. Therefore, the signal conversion characteristic can be improved while being compact. Further, in the waveguide converter 1 according to the present embodiment, since the high frequency signal is transmitted using the transmission line 11 which is a coplanar line, it is possible to reduce the loss of the transmitted high frequency signal.
 また、本実施の形態に係る導波管変換器1では、導体層の数を3層としたが、これに限られない。例えば、図8に示すように、積層数を増やして導体層を4層以上としてもよい。これにより、変換する高周波信号の周波数特性に適した深さのバックショート部12を形成することができる。具体的には、バックショート部12の深さが高周波信号の実効波長の1/4となるように、第2導体層である導体層L2と第3導体層である導体層L4との間の層数を調整して、導体層L1-L4の距離を調整できる。これにより、導体層L1-L2間の距離を変更せず、伝送線路11のインピーダンスを一定としながら、変換される高周波信号の波長に合わせて信号を強化し、特性を向上させることができる。 Moreover, in the waveguide converter 1 which concerns on this Embodiment, although the number of conductor layers was set to three layers, it is not restricted to this. For example, as shown in FIG. 8, the number of stacked layers may be increased to form four or more conductor layers. Thereby, the back short part 12 of the depth suitable for the frequency characteristic of the high frequency signal to convert can be formed. Specifically, between the conductor layer L2 which is the second conductor layer and the conductor layer L4 which is the third conductor layer so that the depth of the back short portion 12 is 1⁄4 of the effective wavelength of the high frequency signal. The number of layers can be adjusted to adjust the distance between the conductor layers L1 to L4. As a result, without changing the distance between the conductor layers L1 and L2 and keeping the impedance of the transmission line 11 constant, the signal can be strengthened according to the wavelength of the high frequency signal to be converted, and the characteristics can be improved.
 上記実施の形態に係る導波管変換器1では、バックショート部12の終端部13は、基板10の内層である導体層L3に形成されることとしたが、これに限られない。例えば、伝送線路11が形成される導体層L1と反対面の表層、すなわち、図9の導体層L3に終端部13が形成されてもよい。これにより、基板10の層数を少なくし、基板10の厚みを小さくすることができるので、導波管変換器1をより小型化できる。 In the waveguide converter 1 which concerns on the said embodiment, although the termination | terminus part 13 of the back short part 12 presupposed that it is formed in the conductor layer L3 which is an inner layer of the board | substrate 10, it is not restricted to this. For example, the termination portion 13 may be formed on the surface layer on the surface opposite to the conductor layer L1 on which the transmission line 11 is formed, that is, the conductor layer L3 of FIG. Thereby, the number of layers of the substrate 10 can be reduced and the thickness of the substrate 10 can be reduced, so that the waveguide converter 1 can be further miniaturized.
 なお、本発明は、本発明の範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。 It is to be noted that the present invention is capable of various embodiments and modifications without departing from the scope of the present invention. In addition, the embodiment described above is for describing the present invention, and does not limit the scope of the present invention.
 本出願は、2017年6月21日に出願された日本国特許出願2017-121113号に基づく。本明細書中に、日本国特許出願2017-121113号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2017-121113 filed on June 21, 2017. The specification, claims and entire drawings of Japanese Patent Application No. 2017-121113 are incorporated herein by reference.
 本発明は、300GHz以上の高周波信号を伝送線路と導波管との間で変換する導波管変換器に好適である。 The present invention is suitable for a waveguide converter that converts a high frequency signal of 300 GHz or more between a transmission line and a waveguide.
1 導波管変換器、10 基板、11 伝送線路、11a パッド、11b アンテナ部、11c 本体部、12 バックショート部、13 終端部、15 ビア、15a 遮蔽ビア、15b 接地ビア、20 メタルハウジング、20a 導波路、20b 線路開口部、20c 切り欠き部、31,32,33 誘電体層、40 集積回路、L1,L2,L3,L4 導体層、O1,O2,O3 開口部 Reference Signs List 1 waveguide converter, 10 substrate, 11 transmission line, 11a pad, 11b antenna unit, 11c main body unit, 12 back short circuit unit, 13 termination unit, 15 via, 15a shield via, 15b ground via, 20 metal housing, 20a Waveguide, 20b line opening, 20c notch, 31, 32, 33 dielectric layer, 40 integrated circuit, L1, L2, L3, L4 conductor layer, O1, O2, O3 opening

Claims (6)

  1.  少なくとも3層の導体層を有する基板と、
     前記基板の表層に位置する第1導体層上に立設され、前記第1導体層の一部であり高周波信号を伝送する伝送線路と電磁的に結合された導波路を有するメタルハウジングと、
     前記導波路を終端するバックショート部と、を備え、
     前記基板は、
     誘電体層を介して前記第1導体層と隣り合う第2導体層と、前記バックショート部内で前記導波路を終端する終端部を有する第3導体層とを備える、
     導波管変換器。
    A substrate having at least three conductor layers;
    A metal housing having a waveguide which is electromagnetically coupled to a transmission line which is part of the first conductor layer and transmits a high frequency signal and which is erected on the first conductor layer located on the surface layer of the substrate;
    A back short portion terminating the waveguide;
    The substrate is
    A second conductor layer adjacent to the first conductor layer via a dielectric layer, and a third conductor layer having a termination portion terminating the waveguide in the back short portion;
    Waveguide converter.
  2.  前記伝送線路は、
     コプレーナ線路である、
     請求項1に記載の導波管変換器。
    The transmission line is
    Coplanar line,
    A waveguide converter according to claim 1.
  3.  前記バックショート部は、
     前記バックショート部の外周部に配置され、前記第1導体層のグランドパターンと前記第3導体層のグランドパターンとを電気的に接続した遮蔽ビアを備える、
     請求項1又は2に記載の導波管変換器。
    The back short section is
    The shield via is disposed at an outer peripheral portion of the back short portion and electrically connects a ground pattern of the first conductor layer and a ground pattern of the third conductor layer.
    A waveguide converter according to claim 1 or 2.
  4.  前記伝送線路は、
     前記導波路の内部に配置されたアンテナ部を備える、
     請求項1乃至3のいずれか一項に記載の導波管変換器。
    The transmission line is
    An antenna unit disposed inside the waveguide;
    The waveguide converter according to any one of claims 1 to 3.
  5.  前記メタルハウジングは、
     前記導波路の内部と前記導波路の外部との間で、前記伝送線路を挿通させる線路開口部を備える、
     請求項1乃至4のいずれか一項に記載の導波管変換器。
    The metal housing is
    A line opening through which the transmission line is inserted between the inside of the waveguide and the outside of the waveguide;
    A waveguide converter according to any one of the preceding claims.
  6.  表層に位置する第1導体層と、誘電体層を介して前記第1導体層と隣り合う第2導体層と、前記第2導体層の前記第1導体層が積層された側と反対側に誘電体層を介して積層された第3導体層とを有する基板と、
     前記基板の前記第1導体層上に立設され、導波路が形成されたメタルハウジングと、を備え、
     前記第1導体層の少なくとも一部は、前記導波路と電磁的に結合される伝送線路であり、
     前記第1導体層には、前記導波路の挿通領域に対応する領域に第1開口部が形成されており、
     前記第2導体層には、前記第1開口部に対応する領域に第2開口部が形成されており、
     前記第1開口部及び前記第2開口部の外周部には、前記第1導体層のグランドパターンと前記第3導体層のグランドパターンとを電気的に接続する遮蔽ビアが配置され、
     前記第3導体層のうち、前記第1開口部と前記第2開口部に対応する領域は、前記導波路を終端する、
     導波管変換器。
    The first conductor layer located on the surface layer, the second conductor layer adjacent to the first conductor layer via the dielectric layer, and the side opposite to the side on which the first conductor layer of the second conductor layer is stacked A substrate having a third conductor layer stacked via a dielectric layer;
    And a metal housing erected on the first conductor layer of the substrate and provided with a waveguide.
    At least a portion of the first conductor layer is a transmission line electromagnetically coupled to the waveguide;
    In the first conductor layer, a first opening is formed in a region corresponding to the insertion region of the waveguide,
    In the second conductor layer, a second opening is formed in a region corresponding to the first opening,
    A shield via electrically connecting a ground pattern of the first conductor layer and a ground pattern of the third conductor layer is disposed on an outer peripheral portion of the first opening and the second opening.
    In the third conductor layer, a region corresponding to the first opening and the second opening terminates the waveguide.
    Waveguide converter.
PCT/JP2018/021965 2017-06-21 2018-06-08 Waveguide converter WO2018235626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-121113 2017-06-21
JP2017121113 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018235626A1 true WO2018235626A1 (en) 2018-12-27

Family

ID=64735944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021965 WO2018235626A1 (en) 2017-06-21 2018-06-08 Waveguide converter

Country Status (1)

Country Link
WO (1) WO2018235626A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266196A1 (en) * 2007-04-27 2008-10-30 Shawn Shi Waveguide to microstrip line coupling apparatus
JP2011109431A (en) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp Waveguide-microstrip line converter and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266196A1 (en) * 2007-04-27 2008-10-30 Shawn Shi Waveguide to microstrip line coupling apparatus
JP2011109431A (en) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp Waveguide-microstrip line converter and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7504710B2 (en) Multilayer dielectric substrate and semiconductor package
JP5431433B2 (en) High frequency line-waveguide converter
US8922425B2 (en) Waveguide structure, high frequency module including waveguide structure, and radar apparatus
US9577340B2 (en) Waveguide adapter plate to facilitate accurate alignment of sectioned waveguide channel in microwave antenna assembly
US9515385B2 (en) Coplanar waveguide implementing launcher and waveguide channel section in IC package substrate
JP5094871B2 (en) High frequency module and wiring board
JP2001320208A (en) High frequency circuit, module and communication equipment using the same
US9419341B2 (en) RF system-in-package with quasi-coaxial coplanar waveguide transition
JP5566169B2 (en) Antenna device
US8222976B2 (en) Multilayer dielectric substrate and semiconductor package
JP6200613B1 (en) Diplexer and transmission / reception system
CN111433971A (en) High frequency transmission line
JP2004153415A (en) High frequency line-waveguide converter
JP2009171488A (en) Waveguide connecting structure, waveguide connecting plate, and waveguide converter
JP5720667B2 (en) Waveguide / planar line converter
WO2018235626A1 (en) Waveguide converter
JP2011172173A (en) Millimeter wave circuit module and millimeter wave transceiver employing the same
JP2020145603A (en) Waveguide transducer
JP4439423B2 (en) antenna
JP2010098609A (en) Waveguide-microstrip line converter and method of manufacturing the same
JP5237171B2 (en) Differential wiring body
JP2021193767A (en) Input/output device to hollow waveguide and hollow waveguide with input/output device
JP2007235234A (en) Aperture antenna
JP2003347809A (en) High-frequency line to waveguide converter
JP2005269028A (en) Directional coupler and information communication terminal employing it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP