WO2018233452A1 - 用于涡扇发动机的风扇叶片 - Google Patents

用于涡扇发动机的风扇叶片 Download PDF

Info

Publication number
WO2018233452A1
WO2018233452A1 PCT/CN2018/088629 CN2018088629W WO2018233452A1 WO 2018233452 A1 WO2018233452 A1 WO 2018233452A1 CN 2018088629 W CN2018088629 W CN 2018088629W WO 2018233452 A1 WO2018233452 A1 WO 2018233452A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
turbofan engine
blade
honeycomb structure
engine according
Prior art date
Application number
PCT/CN2018/088629
Other languages
English (en)
French (fr)
Inventor
李京菁
Original Assignee
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发商用航空发动机有限责任公司 filed Critical 中国航发商用航空发动机有限责任公司
Publication of WO2018233452A1 publication Critical patent/WO2018233452A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction

Definitions

  • the present invention relates to the field of engines, and more particularly to a fan blade for a turbofan engine.
  • fan blades are used at the forefront of turbofan engines and are an important component of turbofan engines, which act as bleed air and generate thrust by high-speed rotation. Therefore, the fan blades are subjected to high centrifugal loads and aerodynamic loads during operation.
  • metal material fan blades are widely used in turbofan engines, but in order to meet higher thrust-to-weight ratio and fatigue resistance, metal material fan blades have been gradually replaced.
  • Advanced composite materials offer advantages such as higher specific strength and specific modulus, performance design and ease of integral molding.
  • laminate composites have been successfully used in fan blades, and their weight reduction effect is obvious.
  • the ply composite is not the optimal fan blade structure. Compared with the honeycomb material, its out-of-plane compressive strength is lower, the specific gravity is higher, and the molding process is more demanding in the thicker region of the blade.
  • the laminated composite fan blade has relatively low extrusion performance.
  • the technical problem to be solved by the present invention is to overcome the defects of low fan bearing performance and high molding process requirements in the prior art, and to provide a fan blade for a turbofan engine.
  • a fan blade for a turbofan engine characterized in that the sandwich layer of the thickness region of the fan blade adopts an aramid honeycomb structure, so that the layup on the fan blade is continuously laid.
  • a portion of the fan blade and the blade body are made of a honeycomb structure of an aramid fiber resin-based composite material.
  • the chamber opening of the fan blade is directed in an out-of-plane direction.
  • the surface of the honeycomb structure is covered with a satin cloth.
  • the outermost layer of the fan blade is covered with a satin cloth.
  • the satin fabric is an aramid fiber satin cloth.
  • the aramid fiber satin fabric is an inner profile.
  • the inner profile is unidirectionally laid with a carbon fiber resin base in the order of layup.
  • the profile of the satin cloth is the mid-plane of the blade.
  • the fan blade of the invention is applied to the fan blade of the turbofan engine to solve the layering phenomenon of the laminated composite fan blade in the forming process, reduce the possible internal defects, and can reduce the blade weight and improve the pressure resistance of the blade while ensuring the blade stiffness. And the molding process is easy to implement.
  • FIG. 1 is a schematic view showing the structure of a fan blade for a turbofan engine of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a fan blade for a turbofan engine of the present invention.
  • Figure 3 is a schematic illustration of the honeycomb structure of a fan blade for a turbofan engine of the present invention.
  • FIG. 1 is a schematic view showing the structure of a fan blade for a turbofan engine of the present invention.
  • 2 is a schematic cross-sectional view of a fan blade for a turbofan engine of the present invention.
  • Figure 3 is a schematic illustration of the honeycomb structure of a fan blade for a turbofan engine of the present invention.
  • the present invention discloses a fan blade 10 for a turbofan engine.
  • the sandwich layer of the thickness region of the fan blade 10 is made of an aramid honeycomb structure 11, so that the layup on the fan blade 10 is continuous. layout.
  • the honeycomb structure of the aramid fiber resin-based composite material is employed in the nipple 12 of the fan blade 10 and the partial region 13 of the blade body (the thickness variation of the region is relatively large).
  • the chamber opening of the fan blade 10 is directed in an out-of-plane direction.
  • a satin cloth 20 is laid on the surface of the honeycomb structure 11.
  • the upper and lower cover structures of the honeycomb structure 11 are aramid fiber resin-based satin cloth.
  • the outermost layer of the fan blade 10 is also covered with a satin cloth 20.
  • the satin cloth 20 described herein is an aramid fiber satin cloth.
  • the aramid fiber satin fabric is used as the inner profile 21.
  • the carbon fiber resin 30 base is unidirectionally laid on the inner surface 21 in the order of layup. In the region where the honeycomb structure 11 is not present on the fan blade 10, the profile of the satin cloth 20 is the blade mid-surface 22.
  • the laminate composite material can be designed according to the bearing condition of the component to achieve the purpose of carrying the layer structure, and the honeycomb structure composite material has high out-of-plane compression performance, stable structural form and light specific gravity. .
  • the fan blade of the present invention for a turbofan engine combines the advantages of both to create a new structural form of composite fan blade through a honeycomb hybrid structure.
  • the aramid honeycomb structure is adopted in the sandwich layer of the blade thickness region, so that the layup layer can be continuously laid in other regions, and the single-layer composite material is prevented from being layered in the thickness-changing region to achieve the purpose of variable thickness, thereby avoiding the loss.
  • the layer causes the creation of internal defects of the laminated composite fan blade.
  • the honeycomb structure of the fan blade head portion optimizes the anti-extrusion capability of the steamed head and increases the life of the fan blade.
  • the surface of the honeycomb structure and the outermost layer of the fan blades are covered with satin fabric to enhance the shear strength of the composite fan blades.
  • the fan blade of the present invention for a turbofan engine can effectively improve the out-of-plane extrusion strength of the composite fan blade and improve the fatigue life of the composite fan blade blade.
  • this structural form can greatly reduce the weight of the fan blades and thereby increase the thrust-to-weight ratio of the turbofan engine.
  • This structural form also solves the phenomenon of layering of the laminated composite fan blade in the variable thickness region, and avoids internal defects that may occur due to layer loss.
  • the shear strength of the fan blades is also enhanced by the surface satin cloth.
  • the fan blade of the present invention is applied to the fan blade of the turbofan engine to solve the layering phenomenon of the laminated composite fan blade during the forming process, reduce the possible internal defects, and can reduce the blade weight and increase the blade weight while ensuring the blade stiffness.
  • the pressure resistance and the molding process are easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Laminated Bodies (AREA)

Abstract

一种用于涡扇发动机的风扇叶片,风扇叶片(10)的厚度区夹心层采用芳纶蜂窝结构(11),使得风扇叶片(10)上的铺层为连续铺设。该风扇叶片解决了铺层复合材料风扇叶片在成型过程中的丢层现象,降低可能的内部缺陷,保证叶片刚度的同时降低叶片重量,提高叶片的抗压性能,成型工艺容易实现。

Description

用于涡扇发动机的风扇叶片 技术领域
本发明涉及发动机领域,特别涉及一种用于涡扇发动机的风扇叶片。
背景技术
在发动机领域中,风扇叶片被用于涡扇发动机的最前端,是涡扇发动机的重要部件,其通过高速旋转起到引气及产生推力的作用。因此,风扇叶片在工作状态时需要承受很高的离心载荷和气动载荷。
目前,金属材料风扇叶片被广泛应用于涡扇发动机上,但为了满足更高的推重比及抗疲劳性能,金属材料风扇叶片已被渐渐取代。
20世纪60年代,先进的复合材料成为了一种崛起的新材料,其具有强大的生命力,已经与铝合金、钛合金、合金钢一起成为航空航天的四大结构材料。先进复合材料具有比强度和比模量高、性能可设计和易于整体成型等优势。
铺层复合材料作为一种最常见的先进复合材料已在风扇叶片中成功使用,其减重效果明显。然而,铺层复合材料并不是最优的风扇叶片结构形式,相对蜂窝材料而言其面外压缩强度较低,比重量较高,且在叶型较厚区域成型工艺方面要求较高。
由此可见,现有技术中金属风扇叶片重量过大,疲劳寿命相对较低。铺层复合材料风扇叶片面外挤压性能相对较低。
基于上述现状,本领域技术人员亟待提出一种新型的风扇叶片,以克服上述问题。
发明内容
本发明要解决的技术问题是为了克服现有技术中风扇叶片承载性能较低且成型工艺要求高等缺陷,提供一种用于涡扇发动机的风扇叶片。
本发明是通过下述技术方案来解决上述技术问题的:
一种用于涡扇发动机的风扇叶片,其特点在于,所述风扇叶片的厚度区夹心层采用芳纶蜂窝结构,使得所述风扇叶片上的铺层为连续铺设。
根据本发明的一个实施例,所述风扇叶片的榫头和叶身的部分区域采用芳纶纤维树脂基复合材料的蜂窝结构。
根据本发明的一个实施例,所述风扇叶片的室口指向面外方向。
根据本发明的一个实施例,所述蜂窝结构的表面铺设有缎纹布。
根据本发明的一个实施例,所述风扇叶片的最外层铺设有缎纹布。
根据本发明的一个实施例,所述缎纹布为芳纶纤维缎纹布。
根据本发明的一个实施例,所述芳纶纤维缎纹布为内型面。
根据本发明的一个实施例,所述内型面上按铺层顺序单向地铺设有碳纤维树脂基。
根据本发明的一个实施例,在所述风扇叶片上不存在蜂窝结构的区域内,所述缎纹布的型面为叶片中面。
本发明的积极进步效果在于:
本发明用于涡扇发动机的风扇叶片解决铺层复合材料风扇叶片在成型过程中的丢层现象,降低可能的内部缺陷,能够在保证叶片刚度的同时降低叶片重量,提高叶片的抗压性能,且成型工艺容易实现。
附图概述
本发明上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变的更加明显,在附图中相同的附图标记始终表示相同的特征,其中:
图1为本发明用于涡扇发动机的风扇叶片的结构示意图。
图2为本发明用于涡扇发动机的风扇叶片的剖切面示意图。
图3为本发明用于涡扇发动机的风扇叶片中蜂窝结构的示意图。
本发明的较佳实施方式
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明。
现在将详细参考附图描述本发明的实施例。现在将详细参考本发明的优选实施例,其示例在附图中示出。在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。
此外,尽管本发明中所使用的术语是从公知公用的术语中选择的,但是本发明说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本发明。
图1为本发明用于涡扇发动机的风扇叶片的结构示意图。图2为本发明用于涡扇发动机的风扇叶片的剖切面示意图。图3为本发明用于涡扇发动机的风扇叶片中蜂窝结构的示意图。
如图1至图3所示,本发明公开了一种用于涡扇发动机的风扇叶片10,风扇叶片10的厚度区夹心层采用芳纶蜂窝结构11,使得风扇叶片10上的铺层为连续铺设。
优选地,在风扇叶片10的榫头12和叶身的部分区域13(该区域厚度变化相对较大)采用芳纶纤维树脂基复合材料的蜂窝结构。风扇叶片10的室口指向面外方向。
进一步地,在蜂窝结构11的表面铺设有缎纹布20,例如蜂窝结构11的上下盖板结构为芳纶纤维树脂基缎纹布。风扇叶片10的最外层也铺设有缎纹布20。
这里所述的缎纹布20为芳纶纤维缎纹布。所述芳纶纤维缎纹布作为内型面21。内型面21上按铺层顺序单向地铺设有碳纤维树脂30基。在风扇叶片10上不存在蜂窝结构11的区域内,缎纹布20的型面为叶片中面22。
根据上述结构描述,铺层复合材料可以根据构件自身的承载情况对铺层结构进行设计来达到其承载的目的,而蜂窝结构复合材料的面外压缩性能较高,结构形式稳定,且比重较轻。
本发明用于涡扇发动机的风扇叶片将两者的优势相结合,通过一种蜂窝混杂结构建立一种新结构形式的复合材料风扇叶片。在叶片厚度区夹心层采用芳纶蜂窝结构,使铺层在其它区域可以连续的铺设,避免单一铺层复合材料在变厚度区域以丢层的方式进行铺设以达到变厚度的目的,避免因丢层而造成铺层复合材料风扇叶片的内部缺陷的产生。
同时通过风扇叶片榫头部分的蜂窝结构优化榫头的抗挤压能力,增加风扇叶片的寿命。除此之外,蜂窝结构表面及风扇叶片最外层均铺设了缎纹布以增强复 材风扇叶片的剪切强度。
本发明用于涡扇发动机的风扇叶片通过这种蜂窝混杂结构可以有效的提高复合材料风扇叶片的面外挤压强度,提高复合材料风扇叶片榫头的疲劳寿命。同时,这种结构形式还可以大大的减轻风扇叶片的重量从而提高涡扇发动机的推重比。这种结构形式还解决了铺层复合材料风扇叶片在变厚度区域的丢层现象,避免了因丢层而造成的内部可能出现的缺陷。通过表面缎纹布还增强了风扇叶片的剪切强度。
综上所述,本发明用于涡扇发动机的风扇叶片解决铺层复合材料风扇叶片在成型过程中的丢层现象,降低可能的内部缺陷,能够在保证叶片刚度的同时降低叶片重量,提高叶片的抗压性能,且成型工艺容易实现。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (9)

  1. 一种用于涡扇发动机的风扇叶片,其特征在于,所述风扇叶片的厚度区夹心层采用芳纶蜂窝结构,使得所述风扇叶片上的铺层为连续铺设。
  2. 如权利要求1所述的用于涡扇发动机的风扇叶片,其特征在于,所述风扇叶片的榫头和叶身的部分区域采用芳纶纤维树脂基复合材料的蜂窝结构。
  3. 如权利要求2所述的用于涡扇发动机的风扇叶片,其特征在于,所述风扇叶片的室口指向面外方向。
  4. 如权利要求1所述的用于涡扇发动机的风扇叶片,其特征在于,所述蜂窝结构的表面铺设有缎纹布。
  5. 如权利要求4所述的用于涡扇发动机的风扇叶片,其特征在于,所述风扇叶片的最外层铺设有缎纹布。
  6. 如权利要求5所述的用于涡扇发动机的风扇叶片,其特征在于,所述缎纹布为芳纶纤维缎纹布。
  7. 如权利要求6所述的用于涡扇发动机的风扇叶片,其特征在于,所述芳纶纤维缎纹布为内型面。
  8. 如权利要求7所述的用于涡扇发动机的风扇叶片,其特征在于,所述内型面上按铺层顺序单向地铺设有碳纤维树脂基。
  9. 如权利要求5-8任意一项所述的用于涡扇发动机的风扇叶片,其特征在于,在所述风扇叶片上不存在蜂窝结构的区域内,所述缎纹布的型面为叶片中面。
PCT/CN2018/088629 2017-06-21 2018-05-28 用于涡扇发动机的风扇叶片 WO2018233452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710475002.XA CN109099003B (zh) 2017-06-21 2017-06-21 用于涡扇发动机的风扇叶片
CN201710475002.X 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233452A1 true WO2018233452A1 (zh) 2018-12-27

Family

ID=64735479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088629 WO2018233452A1 (zh) 2017-06-21 2018-05-28 用于涡扇发动机的风扇叶片

Country Status (2)

Country Link
CN (1) CN109099003B (zh)
WO (1) WO2018233452A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230850A (en) * 1991-05-16 1993-07-27 Lewis Raymond O Fan blade reinforcement using bonded hollow spheres
CN101666290A (zh) * 2009-10-14 2010-03-10 黄争鸣 风力机叶片结构及其加工成型方法和用途
CN101871555A (zh) * 2009-04-21 2010-10-27 无锡百沐得科技有限公司 竹绕玻纤拉挤竹玻璃钢复合工程材料及制品的成型方法
WO2011009433A1 (de) * 2009-07-21 2011-01-27 Mtu Aero Engines Gmbh Einlaufbelag zur anordnung an einem gasturbinenbauteil
CN106555776A (zh) * 2015-09-25 2017-04-05 中航商用航空发动机有限责任公司 涡轮风扇发动机及其风扇叶片

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121287B2 (en) * 2012-09-12 2015-09-01 United Technologies Corporation Hollow fan blade with honeycomb filler
GB201414495D0 (en) * 2014-08-15 2014-10-01 Rolls Royce Plc Blade
CN204239323U (zh) * 2014-11-20 2015-04-01 中航商用航空发动机有限责任公司 涡轮发动机风扇叶片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230850A (en) * 1991-05-16 1993-07-27 Lewis Raymond O Fan blade reinforcement using bonded hollow spheres
CN101871555A (zh) * 2009-04-21 2010-10-27 无锡百沐得科技有限公司 竹绕玻纤拉挤竹玻璃钢复合工程材料及制品的成型方法
WO2011009433A1 (de) * 2009-07-21 2011-01-27 Mtu Aero Engines Gmbh Einlaufbelag zur anordnung an einem gasturbinenbauteil
CN101666290A (zh) * 2009-10-14 2010-03-10 黄争鸣 风力机叶片结构及其加工成型方法和用途
CN106555776A (zh) * 2015-09-25 2017-04-05 中航商用航空发动机有限责任公司 涡轮风扇发动机及其风扇叶片

Also Published As

Publication number Publication date
CN109099003B (zh) 2020-04-10
CN109099003A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
CN109278372B (zh) 轻质抗冲击密度梯度复合材料、风扇包容机匣及其制备方法和应用
US5141400A (en) Wide chord fan blade
US6607358B2 (en) Multi-component hybrid turbine blade
CN104791297B (zh) 一种采用碳纤维复合材料制备离心式通风机叶轮的方法
US8419374B2 (en) Gas turbine engine composite blade
JP5974111B2 (ja) ガスタービンファン用の複合収納ケースおよびその製造方法
US8083489B2 (en) Hybrid structure fan blade
US9309772B2 (en) Hybrid turbine blade including multiple insert sections
US20130251939A1 (en) Process for producing ceramic composite components
US20130156592A1 (en) Fan blade with composite core and wavy wall trailing edge cladding
JP6001923B2 (ja) ポリマー複合材料およびその製法
US20130255277A1 (en) Gas turbine engine nose cone
JP6179961B2 (ja) 一方向性テープの翼形部桁を有する複合材ブレード
US20160186774A1 (en) Process of producing a thermoplastic-fiber composite and fan blades formed therefrom
US20120257983A1 (en) Component having an erosion resistant layer
CN110239126B (zh) 用于航空发动机风扇叶片的制造方法
CN205955776U (zh) 一种树脂基复合材料风扇静子叶片结构
WO2018233452A1 (zh) 用于涡扇发动机的风扇叶片
CN206694076U (zh) 一种蜂窝夹心复合材料叶片
CN106584701B (zh) 缝纫体增强复合材料舵机护板成型方法
CN206170762U (zh) 螺旋桨和机身
CN108000902A (zh) 一种金属构件和复合材料缝合并整体成型的方法
CN206050057U (zh) 一种钛合金螺旋桨
CN117823234A (zh) 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构
US20190093488A1 (en) Aerofoil component and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18820730

Country of ref document: EP

Kind code of ref document: A1