WO2018233366A1 - 天线的设计方法、装置和天线 - Google Patents

天线的设计方法、装置和天线 Download PDF

Info

Publication number
WO2018233366A1
WO2018233366A1 PCT/CN2018/083652 CN2018083652W WO2018233366A1 WO 2018233366 A1 WO2018233366 A1 WO 2018233366A1 CN 2018083652 W CN2018083652 W CN 2018083652W WO 2018233366 A1 WO2018233366 A1 WO 2018233366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
antenna
length
interval
uncertainty
Prior art date
Application number
PCT/CN2018/083652
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
邓汉卿
Original Assignee
成都天府新区光启未来技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都天府新区光启未来技术研究院 filed Critical 成都天府新区光启未来技术研究院
Publication of WO2018233366A1 publication Critical patent/WO2018233366A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors

Definitions

  • the present invention relates to the field of communication technology applications, and in particular to a method, device and antenna for designing an antenna.
  • FIG. 1 is a schematic diagram of a space expandable mesh reflecting surface antenna
  • the space expandable mesh reflecting surface antenna is mainly composed of a light mass supporting truss, a cable net structure and a wire mesh.
  • the supporting trusses are expandable structures, and the launching stages are gathered together to reduce the occupied volume, and are launched after being launched into a predetermined track to form an external support for the cable net structure.
  • the cable net structure can be further divided into three parts, including: front cable net, back cable net and tension array (vertical cable).
  • the front and rear cable nets form a tensioning structure through a vertical tension array, and the front cable net is formed into a paraboloid shape by appropriate design and adjustment.
  • the wire mesh is carried by a front cable net of a parabolic shape to form an antenna reflecting surface, which acts as a reflection transmission for electromagnetic waves.
  • the cable net structure is an important bridge connecting the truss structure and supporting the reflective surface of the wire mesh.
  • the truss structure provides support for the formation of regular curved surfaces of the cable net structure, and in order to make the cable net structure have a certain rigidity to maintain the regular curved surface, it is necessary to apply a certain tension to each cable segment. This process is called shape finding or tension design. .
  • the cable net structure design of the mesh reflector antenna includes two parts: the cable network coordinate design and the cable tension design.
  • the cable network coordinate design includes two parts: the cable network coordinate design and the cable tension design.
  • the existing cable net design methods are ideal for the design of the cable net structure in the ideal state, and the influence of various factors on the antenna performance is considered, resulting in a decrease in antenna performance.
  • the embodiments of the present invention provide a method, a device, and an antenna for designing an antenna, so as to solve the technical problem that the performance of the antenna is degraded due to design defects existing in the design process of the cable antenna in the related art.
  • a method for designing an antenna includes: calculating, according to a pre-acquired antenna design initial value set, obtaining a force density value and each coordinate of an antenna cable network node and each antenna cable network The length of the cable segment between the nodes; determining whether the length of the cable segment meets the preset condition; if the judgment result is YES, calculating according to the force density value and the length of the cable segment, obtaining the uncertainty value of the tension and the interval force density; According to the uncertainty value of the tension and the interval force density, the position range of the cable antenna node and the accuracy of the cable mesh surface of the target antenna are obtained.
  • the target antenna is obtained according to the position interval of the cable network node and the accuracy of the cable mesh surface.
  • the pre-acquired antenna design initial value set includes: an initial configuration of the cable net, an interval of the uncertain parameter, a maximum allowable cable length, and a calculation parameter.
  • the initial form of the cable network is a connection relationship between the initial node coordinates of the cable network and the cable network topology.
  • the interval of the uncertain parameter includes: an uncertainty interval of the length of the cable loft, an uncertainty interval of the cross-sectional area, an uncertainty interval of the elastic modulus, an uncertainty interval of the thermal expansion coefficient, and a space environment.
  • the uncertainty interval of the temperature difference and the uncertainty interval of the tension measurement is a space environment.
  • the calculation parameters include: an iteration step, a convergence error, and a tension mean.
  • determining whether the length of the cable segment meets the preset condition comprises: screening a length of the cable segment between each antenna cable network node to obtain a maximum cable length; determining whether the maximum cable length is less than or equal to a maximum allowable cable length; The segment length is calculated as follows:
  • the length of the cable segment between each antenna cable node includes:
  • L(k) [L(k,1,2), L(k,1,3),...,L(k,2,3),L(k,2,4),..., L(k, N-1, N)]; wherein L(k, i, j) represents the length of the cable segment between the i-th and j-th nodes in the length of the k-th cable segment; N represents the cable net The total number of nodes; the maximum allowable cable length includes Lm; whether the maximum cable length is less than or equal to the maximum allowable cable length includes: max(L(k)) ⁇ Lm; where max(L(k)) is L(k) The maximum cable length.
  • the deformation uncertainty value and the thermal deformation uncertainty value include:
  • ⁇ F e (k) ((F(k)*(L(k)+ ⁇ L)-E*A* ⁇ L)/(E*A*(L(k)+ ⁇ L)+F(k)* ⁇ L) *(E+ ⁇ E)*(A+ ⁇ A);
  • ⁇ F t (k) (E+ ⁇ E)*(A+ ⁇ A)*( ⁇ + ⁇ )* ⁇ T; ⁇ F e (k) is the elastic deformation uncertainty value, ⁇ F t (k) is the thermal deformation uncertainty value;
  • ⁇ F z (k) F(k)+ ⁇ F e (k)+ ⁇ F t (k); ⁇ F z (k) is the uncertainty value of the tension;
  • Interval force density includes:
  • Q i (k) ⁇ F z (k)/L(k); Q i (k) is the interval force density.
  • an antenna design apparatus including: a first calculating module, configured to perform calculation according to a pre-acquired antenna design initial value set, to obtain a force density value and an antenna cable node a length of the cable segment between each coordinate and each antenna cable node; a determining module for determining whether the length of the cable segment meets a preset condition; and a second calculating module for determining the force density according to the determination result
  • the value and the length of the cable segment are calculated to obtain the uncertainty value of the tension and the interval force density.
  • the third calculation module is used to calculate the uncertainty value of the tension and the interval force density to obtain the position range of the cable antenna node of the target antenna.
  • the antenna design module is used to design the target antenna according to the position interval of the cable network node and the accuracy of the cable surface.
  • an antenna including: an antenna obtained by the above-described antenna design method.
  • a storage medium includes a stored program, wherein the device in which the storage medium is located controls the design method of the antenna described above when the program is running.
  • a processor for executing a program, wherein a program design method of the antenna is executed while the program is running.
  • the power density value and the respective coordinates of the antenna cable network node and the length of the cable segment between each antenna cable network node are obtained by calculating according to the pre-acquired antenna design initial value set; determining the cable segment length Whether the preset condition is satisfied; if the judgment result is yes, the calculation is based on the force density value and the length of the cable segment, and the uncertainty value of the tension and the interval force density are obtained; according to the uncertainty value of the tension and the interval force density Calculating, obtaining the position range of the cable antenna node of the target antenna and the accuracy of the cable mesh surface; designing according to the position interval of the cable network node and the accuracy of the cable mesh surface, the target antenna is obtained, that is, the design is not considered at the beginning of the design.
  • the influence of deterministic factors ensures that the antenna cable surface accuracy is within the acceptable range of the user, effectively reducing the influence of the uncertainty factor, thereby achieving the purpose of filling the antenna design defects, thereby achieving the technical effect of improving the antenna performance. Furthermore, the design defects caused by the design of the cable antenna in the related art are solved, resulting in antenna properties. Reduce technical problems.
  • Figure 1 is a schematic view of a space deployable mesh reflecting surface antenna
  • FIG. 2 is a schematic flow chart of a method for designing an antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for designing an antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of various parts of a cable net according to an embodiment of the present invention.
  • FIG. 5a is a schematic diagram of an initial configuration of a cable net according to an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of a cable net design result according to an embodiment of the present invention.
  • 6a is a schematic diagram of another initial form of a cable net according to an embodiment of the present invention.
  • 6b is a schematic diagram showing another design result of a cable net according to an embodiment of the present invention.
  • FIG. 7a is a schematic diagram of still another initial form of a cable net according to an embodiment of the present invention.
  • FIG. 7b is a schematic diagram showing still another design result of a cable net according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for designing an antenna according to an embodiment of the present invention.
  • an embodiment of a method of designing an antenna is provided, it being noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions, and, although The logical order is shown in the flowcharts, but in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 2 is a schematic flow chart of a method for designing an antenna according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step S202 performing calculation according to the pre-acquired antenna design initial value set, and obtaining the force density value and each coordinate of the antenna cable network node and the length of the cable segment between each antenna cable network node;
  • Step S204 determining whether the length of the cable segment meets a preset condition
  • Step S206 in the case that the determination result is YES, the calculation is based on the force density value and the length of the cable segment, and the uncertainty value of the tension and the interval force density are obtained;
  • Step S208 calculating according to the uncertainty value of the tension and the interval force density, and obtaining the position range of the cable network node of the target antenna and the accuracy of the cable mesh surface;
  • step S210 the target antenna is obtained according to the position interval of the cable network node and the accuracy of the cable surface.
  • the power density value and the respective coordinates of the antenna cable network node and the length of the cable segment between each antenna cable network node are obtained by calculating according to the pre-acquired antenna design initial value set; determining the cable segment length Whether the preset condition is satisfied; if the judgment result is yes, the calculation is based on the force density value and the length of the cable segment, and the uncertainty value of the tension and the interval force density are obtained; according to the uncertainty value of the tension and the interval force density Calculating, obtaining the position range of the cable antenna node of the target antenna and the accuracy of the cable mesh surface; designing according to the position interval of the cable network node and the accuracy of the cable mesh surface, the target antenna is obtained, that is, the design is not considered at the beginning of the design.
  • the influence of deterministic factors ensures that the antenna cable surface accuracy is within the acceptable range of the user, effectively reducing the influence of the uncertainty factor, thereby achieving the purpose of filling the antenna design defects, thereby achieving the technical effect of improving the antenna performance. Furthermore, the design defects caused by the design of the cable antenna in the related art are solved, resulting in antenna properties. Technical problems that can be reduced.
  • the pre-acquired antenna design initial value set includes: an initial configuration of the cable net, an interval of the uncertain parameter, a maximum allowable cable length, and a calculation parameter.
  • the initial form of the cable network is a connection relationship between the initial node coordinates of the cable network and the cable network topology.
  • the interval of the uncertain parameter includes: an uncertainty interval of the length of the cable loft, an uncertainty interval of the cross-sectional area, an uncertainty interval of the elastic modulus, an uncertainty interval of the thermal expansion coefficient, and a space environment.
  • the uncertainty interval of the temperature difference and the uncertainty interval of the tension measurement is a space environment.
  • the calculation parameters include: an iteration step, a convergence error, and a tension mean.
  • determining whether the length of the cable segment meets the preset condition in step S204 includes:
  • Step 2041 screening a length of a cable segment between each antenna cable network node to obtain a maximum cable length
  • Step 2042 determining whether the maximum cable length is less than or equal to the maximum allowable cable length; wherein, the length of the cable segment is calculated as follows:
  • the length of the cable segment between each antenna cable node includes:
  • L(k) [L(k,1,2), L(k,1,3),...,L(k,2,3),L(k,2,4),..., L(k, N-1, N)]; wherein L(k, i, j) represents the length of the cable segment between the i-th and j-th nodes in the length of the k-th cable segment; N represents the cable net The total number of nodes; the maximum allowable cable length includes Lm; whether the maximum cable length is less than or equal to the maximum allowable cable length includes: max(L(k)) ⁇ Lm; where max(L(k)) is L(k) The maximum cable length.
  • step S206 the force density value and the length of the cable segment are calculated, and the uncertainty value of the tension and the interval force density are obtained:
  • Step 2061 obtaining tension according to a mathematical relationship between the force density value and the length of the cable segment
  • Step 2062 calculating according to the tension, obtaining an elastic deformation uncertainty value and a thermal deformation uncertainty value
  • Step 2063 obtaining the uncertainty value of the tension according to the sum of the tension, the elastic deformation uncertainty value and the thermal deformation uncertainty value;
  • Step 2064 calculating according to the uncertainty value of the tension and the length of the cable segment, and obtaining the interval force density
  • ⁇ F e (k) ((F(k)*(L(k)+ ⁇ L)-E*A* ⁇ L)/(E*A*(L(k)+ ⁇ L)+F(k)* ⁇ L) *(E+ ⁇ E)*(A+ ⁇ A);
  • ⁇ F t (k) (E+ ⁇ E)*(A+ ⁇ A)*( ⁇ + ⁇ )* ⁇ T; ⁇ F e (k) is the elastic deformation uncertainty value, ⁇ F t (k) is the thermal deformation uncertainty value;
  • ⁇ F z (k) F(k)+ ⁇ F e (k)+ ⁇ F t (k); ⁇ F z (k) is the uncertainty value of the tension;
  • Interval force density includes:
  • Q i (k) ⁇ F z (k)/L(k); Q i (k) is the interval force density.
  • the antenna design method described in the present application can be divided into the following steps:
  • Step 1 Calculate the initial shape of the cable network, the interval of the uncertain parameter, the maximum allowable cable length, and the setting calculation parameter (that is, corresponding to the pre-acquired antenna design initial value set in step S202 in the present application, the present application
  • the pre-acquired antenna design initial value set includes: initial shape of the cable net, interval of the uncertain parameter, maximum allowable cable length, and calculation parameters);
  • the initial shape of the cable network refers to the initial node coordinates of the cable network and the connection relationship of the cable network topology.
  • the two parameter values in [] respectively represent the lower and upper limits of the interval in which the corresponding uncertainty parameter is located.
  • the maximum allowable cable length is expressed as Lm.
  • the calculation parameter settings include setting the iteration step number k to 0, giving the convergence error ⁇ , the given tension mean F0.
  • Step 2 Generate a new set of force density values
  • Step 3 Calculate the X, Y, Z coordinates of the cable network node, and the length L(k) of the cable segment;
  • the X, Y, and Z coordinates of the cable network node are calculated as follows:
  • X coordinate: X(k) -(C t *Q(k)*C) -1 *C t *Q(k)*C f *X f ;
  • Y coordinate: Y(k) -(C t *Q(k)*C) -1 *C t *Q(k)*C f *Y f ;
  • Z coordinate: Z(k) -(C t *Q(k)*C) -1 *C t *Q(k)*C f *Z f ;
  • C is the matrix of the connection relationship between the two nodes.
  • the matrix element has a value of 1 or 0. 1 indicates that there are segments connected between the two nodes, and 0 indicates that the nodes are not connected.
  • C t represents the rank of the matrix C.
  • C f represents the connection relationship matrix between the boundary nodes, and the matrix element takes the same value as C.
  • X f , Y f , and Z f represent the coordinates of the boundary nodes. (Some parts of the cable network, as shown in Figure 4)
  • the length of each cable segment is calculated as follows:
  • L(k) [L(k,1,2), L(k,1,3),...,L(k,2,3),L(k,2,4),..., L(k,N-1,N)];
  • L(k, i, j) represents the length of the cable segment between the i-th and j-th nodes in the length of the k-th cable segment.
  • N represents the total number of nodes in the cable network.
  • Step 4 Determine whether the length of the cable segment is less than or greater than the maximum allowable cable length
  • steps 2 to 4 correspond to step S202 and step S204 in the present application, and step S2041 and step S2042 in step S204.
  • Step 5 Calculate the tension uncertainty and the interval force density
  • ⁇ F e (k) ((F(k)*(L(k)+ ⁇ L)-E*A* ⁇ L)/(E*A*(L(k)+ ⁇ L)+F (k)* ⁇ L)*(E+ ⁇ E)*(A+ ⁇ A);
  • Steps 5 and 6 correspond to step S206 and step S2061 to step S2064 in step S206 of the present application.
  • Step 6 Calculate the location interval of the cable network node
  • the cable network node position interval is calculated as follows:
  • X coordinate interval: X i (k) -(C t *Q i (k)*C) -1 *C t *Q i (k)*C f *X f ;
  • Y coordinate interval: Y i (k) -(C t *Q i (k)*C) -1 *C t *Q i (k)*C f *Y f ;
  • Step 7 Calculate the accuracy of the cable surface
  • the accuracy of the cable surface is calculated as follows:
  • Step 8 Determine whether the convergence condition is met
  • the criterion for determining the convergence condition is as follows:
  • Step 9 Obtain node coordinates and cable tension.
  • the cable network node coordinates X(k), F(k), Z(k) obtained in step 3 and the cable tension F(k) obtained in step 5 are the final results of the cable net design.
  • Steps 6 to 9 are respectively calculated according to the uncertainty value of the tension and the interval force density in the above step S208 of the present application, and the cable network node position interval and the cable mesh surface precision of the target antenna are obtained.
  • the initial shape of the cable net is shown in Figure 5a, Figure 6a and Figure 7a respectively.
  • Table 1 is the uncertain parameters of the cable net structure
  • Table 2 shows the interval force density optimization results.
  • the main change in the three example cable nets is that inside the cable net, the area near the boundary is slightly inwardly recessed, and the area near the middle is slightly convex outward.
  • Such a design is not arbitrary, but is optimized by the method of the present application, and is effected by coordinated optimization of coordinates of each node inside.
  • Example 1 because the cable net is relatively simple, the cable net accuracy is 12.36% under uncertainty. In contrast, the cable network in Example 2 is more complicated, and the internal nodes of the cable network are more. Therefore, the accuracy of the cable network in the case of uncertainty is 21.33% through the design of the present application; The lifting capacity of the cable network reached 28.82%.
  • the beneficial effect of the present application is to effectively reduce the influence of various uncertain factors on the performance of the antenna during the on-orbit operation, in other words, improve the stability and reliability of the mesh-shaped reflector antenna.
  • the design method of the antenna provided by the present application can be applied to the expandable mesh-shaped reflector antenna of the designed cable net structure which can be used for the communication satellite; or, for the mechanical structure part of the expandable mesh-shaped reflector antenna. Reflective surface module; or, for space communication satellites; or, mainly for aerospace communication systems.
  • the design method of the antenna is taken as the standard, and the details are not limited.
  • FIG. 8 is a schematic structural diagram of an apparatus for designing an antenna according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the first calculating module 81 is configured to calculate, according to the pre-acquired antenna design initial value set, the force density value and each coordinate of the antenna cable network node and the cable segment length between each antenna cable network node; the determining module 82, It is used to determine whether the length of the cable segment meets the preset condition; the second calculating module 83 is configured to calculate the tension value and the interval force according to the force density value and the length of the cable segment when the determination result is YES. Density; a third calculation module 84, configured to calculate the uncertainty value of the tension and the interval force density, to obtain the cable network node position interval and the cable mesh surface accuracy of the target antenna; the antenna design module 85 is configured to The node position interval and the cable surface accuracy are designed to obtain the target antenna.
  • the power density value and the respective coordinates of the antenna cable network node and the length of the cable segment between each antenna cable network node are obtained by calculating according to the pre-acquired antenna design initial value set; determining the cable segment length Whether the preset condition is satisfied; if the judgment result is yes, the calculation is based on the force density value and the length of the cable segment, and the uncertainty value of the tension and the interval force density are obtained; according to the uncertainty value of the tension and the interval force density Calculating, obtaining the position range of the cable antenna node of the target antenna and the accuracy of the cable mesh surface; designing according to the position interval of the cable network node and the accuracy of the cable mesh surface, the target antenna is obtained, that is, the design is not considered at the beginning of the design.
  • the influence of deterministic factors ensures that the antenna cable surface accuracy is within the acceptable range of the user, effectively reducing the influence of the uncertainty factor, thereby achieving the purpose of filling the antenna design defects, thereby achieving the technical effect of improving the antenna performance. Furthermore, the design defects caused by the design of the cable antenna in the related art are solved, resulting in antenna properties. Reduce technical problems.
  • an antenna comprising: an antenna obtained by the design method of the antenna in Embodiment 1 above.
  • a storage medium includes a stored program, wherein the device in which the storage medium is located is controlled to execute the design method of the antenna in Embodiment 1 above when the program is running.
  • a processor for executing a program, wherein the design method of the antenna in Embodiment 1 above is executed when the program is running.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种天线的设计方法、装置和天线。其中,该方法包括:依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断索段长度是否满足预设条件;在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;依据索网节点位置区间和索网形面精度进行设计,得到目标天线。本发明解决了在索网天线设计过程中存在设计缺陷而引起的不确定性,导致天线性能降低的技术问题。

Description

天线的设计方法、装置和天线 技术领域
本发明涉及通信技术应用领域,具体而言,涉及一种天线的设计方法、装置和天线。
背景技术
随着通信技术的发展,天线的种类,规格也随着通信业务,或,通信任务的不同而变化,其中,以空间网状的天线在航天通信上的使用尤为广泛。
如图1所示,图1是空间可展开网状反射面天线示意图,空间可展开网状反射面天线主要由轻质量的支撑桁架、索网结构以及金属丝网三部分组成。支撑桁架为可展开结构,发射阶段收拢在一起,以减少占用体积,发射到预定轨道之后展开,对索网结构形成外部支撑。索网结构又可以分为三部分,包括:前索网、背索网和张力阵(竖向索)。前后索网通过竖向的张力阵形成张紧结构,通过适当的设计和调整,使得前索网形成抛物面形状。金属丝网由抛物面形状的前索网进行承载,形成天线反射面,对电磁波起到反射传输作用。索网结构是连接桁架结构以及支撑金属丝网反射面的重要桥梁。桁架结构为索网结构形成规则曲面提供了支撑作用,而为了使索网结构具有一定的刚度以持续保持规则曲面则需要给每个索段施加一定的张力,这个过程称为找形或者张力设计。
其中,网状反射面天线的索网结构设计包括索网集合坐标设计和索网张力设计两部分,有许多现有方法可以实现,如:纯粹索网几何坐标设计的八步法、测地线索网设计方法;纯粹索网张力设计的非线性有限元法、遗传算法、逆迭代算法、极小二范数法、动力松弛法、两步法;以及索网张力与几何坐标同时设计的力密度法等。
然而在现实生产制造中,空间可展开网状反射面天线总会存在诸多不确定性因素,如尺寸、角度、间隙等尺度误差;材料参数的误差;索网张力施加的误差;以及空间环境下的热载荷引起的误差等。上述误差最终总会转换为索网结构的不确定性,变为天线综合性能的不确定性。考虑这样一些不确定性因素的索网结构称为不确定性索网。如何在诸多不确定性因素的情况下仍能保持空间结构性能的稳健可靠,也就显得尤为重要。
但是现有的索网设计方法均为理想状态下对索网结构的设计缺乏各个因素对天线性能的影响的考虑,从而导致天线性能降低。
针对上述由于相关技术中在索网天线设计过程中存在的设计缺陷,导致天线性能降低的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种天线的设计方法、装置和天线,以解决由于相关技术中在索网天线设计过程中存在的设计缺陷,导致天线性能降低的技术问题。
根据本发明实施例的一个方面,提供了一种天线的设计方法,包括:依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断索段长度是否满足预设条件;在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;依据索网节点位置区间和索网形面精度进行设计,得到目标天线。
可选的,预先获取的天线设计初始值集合包括:索网初始形态、不确定参数的区间、最大允许索长以及计算参数。
进一步地,可选的,索网初始形态为索网的初始节点坐标与索网拓扑连接关系。
进一步地,可选的,不确定参数的区间包括:索段放样长度的不确定性区间、横截面积不确定性区间、弹性模量不确定性区间、热膨胀系数的不确定性区间、空间环境温差的不确定性区间、以及张力测量的不确定性区间。
进一步地,可选的,计算参数包括:迭代步数、收敛误差和张力均值。
可选的,判断索段长度是否满足预设条件包括:筛选每个天线索网节点之间的索段长度,得到最大索长;判断最大索长是否小于或等于最大允许索长;其中,索段长度计算如下:
Figure PCTCN2018083652-appb-000001
每个天线索网节点之间的索段长度包括:
L(k)=[L(k,1,2),L(k,1,3),...,L(k,2,3),L(k,2,4),...,L(k,N-1,N)];其中,L(k,i,j)表示第k组索段长度中,第i、j两个节点之间索段的长度;N表示索网的节点总数;最大允许索长包括Lm;判断最大索长是否小于或等于最大允许索长包括:max(L(k))≤ Lm;其中,max(L(k))为L(k)中的最大索长。
可选的,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度包括:依据力密度值和索段长度之间的数学关系,得到张力;依据张力进行计算,得到弹性变形不确定性值和热变形不确定性值;依据张力、弹性变形不确定性值和热变形不确定性值的和,得到张力的不确定性值;依据张力的不确定性值和索段长度进行计算,得到区间力密度;其中,张力包括:F(k)=Q(k)*L(k);Q(k)为力密度值,L(k)为索段长度;弹性变形不确定性值和热变形不确定性值包括:
δF e(k)=((F(k)*(L(k)+δL)-E*A*δL)/(E*A*(L(k)+δL)+F(k)*δL)*(E+δE)*(A+δA);
δF t(k)=(E+δE)*(A+δA)*(α+δα)*δT;δF e(k)为弹性变形不确定性值,δF t(k)为热变形不确定性值;
张力的不确定性值包括:
δF z(k)=F(k)+δF e(k)+δF t(k);δF z(k)为张力的不确定性值;
区间力密度包括:
Q i(k)=δF z(k)/L(k);Q i(k)为区间力密度。
根据本发明实施例的另一个方面,提供了一种天线的设计装置,包括:第一计算模块,用于依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断模块,用于判断索段长度是否满足预设条件;第二计算模块,用于在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;第三计算模块,用于依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;天线设计模块,用于依据索网节点位置区间和索网形面精度进行设计,得到目标天线。
根据本发明实施例的又一个方面,提供了一种天线,包括:通过上述天线的设计方法进行生产,得到的天线。
根据本发明实施例的再一个方面,提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述天线的设计方法。
根据本发明实施例的再一个方面,提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述天线的设计方法。
在本发明实施例中,通过依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断索段长度是否满足预设条件;在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;依据索网节点位置区间和索网形面精度进行设计,得到目标天线,即,本申请中通过在设计之初同时考虑不确定性因素的影响,从而保证天线索网形面精度在用户可接受的范围,有效降低不确定性因素的影响,进而达到了填补天线设计缺陷的目的,从而实现了提升天线性能的技术效果,进而解决了由于相关技术中在索网天线设计过程中存在的设计缺陷,导致天线性能降低的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是空间可展开网状反射面天线示意图;
图2是根据本发明实施例的天线的设计方法的流程示意图;
图3是根据本发明实施例的一种天线的设计方法的流程示意图;
图4是根据本发明实施例的索网各个部位示意图;
图5a是根据本发明实施例的一种索网初始形态的示意图;
图5b是根据本发明实施例的一种索网设计结果的示意图;
图6a是根据本发明实施例的另一种索网初始形态的示意图;
图6b是根据本发明实施例的另一种索网设计结果的示意图;
图7a是根据本发明实施例的又一种索网初始形态的示意图;
图7b是根据本发明实施例的又一种索网设计结果的示意图;
图8是根据本发明实施例的天线的设计装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例,提供了一种天线的设计方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图2是根据本发明实施例的天线的设计方法的流程示意图,如图2所示,该方法包括如下步骤:
步骤S202,依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;
步骤S204,判断索段长度是否满足预设条件;
步骤S206,在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;
步骤S208,依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;
步骤S210,依据索网节点位置区间和索网形面精度进行设计,得到目标天线。
在本发明实施例中,通过依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断索段长度是否满足预设条件;在判断结果为是的情况下,依据力密度值和索段长度进行计 算,得到张力的不确定性值和区间力密度;依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;依据索网节点位置区间和索网形面精度进行设计,得到目标天线,即,本申请中通过在设计之初同时考虑不确定性因素的影响,从而保证天线索网形面精度在用户可接受的范围,有效降低不确定性因素的影响,进而达到了填补天线设计缺陷的目的,从而实现了提升天线性能的技术效果,进而解决了由于相关技术中在索网天线设计过程中存在的设计缺陷,导致天线性能降低的技术问题。
可选的,预先获取的天线设计初始值集合包括:索网初始形态、不确定参数的区间、最大允许索长以及计算参数。
进一步地,可选的,索网初始形态为索网的初始节点坐标与索网拓扑连接关系。
进一步地,可选的,不确定参数的区间包括:索段放样长度的不确定性区间、横截面积不确定性区间、弹性模量不确定性区间、热膨胀系数的不确定性区间、空间环境温差的不确定性区间、以及张力测量的不确定性区间。
进一步地,可选的,计算参数包括:迭代步数、收敛误差和张力均值。
可选的,步骤S204中判断索段长度是否满足预设条件包括:
步骤2041,筛选每个天线索网节点之间的索段长度,得到最大索长;
步骤2042,判断最大索长是否小于或等于最大允许索长;;其中,索段长度计算如下:
Figure PCTCN2018083652-appb-000002
每个天线索网节点之间的索段长度包括:
L(k)=[L(k,1,2),L(k,1,3),...,L(k,2,3),L(k,2,4),...,L(k,N-1,N)];其中,L(k,i,j)表示第k组索段长度中,第i、j两个节点之间索段的长度;N表示索网的节点总数;最大允许索长包括Lm;判断最大索长是否小于或等于最大允许索长包括:max(L(k))≤Lm;其中,max(L(k))为L(k)中的最大索长。
可选的,步骤S206中依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度包括:
步骤2061,依据力密度值和索段长度之间的数学关系,得到张力;
步骤2062,依据张力进行计算,得到弹性变形不确定性值和热变形不确定性值;
步骤2063,依据张力、弹性变形不确定性值和热变形不确定性值的和,得到张力的不确定性值;
步骤2064,依据张力的不确定性值和索段长度进行计算,得到区间力密度;
其中,张力包括:F(k)=Q(k)*L(k);Q(k)为力密度值,L(k)为索段长度;弹性变形不确定性值和热变形不确定性值包括:
δF e(k)=((F(k)*(L(k)+δL)-E*A*δL)/(E*A*(L(k)+δL)+F(k)*δL)*(E+δE)*(A+δA);
δF t(k)=(E+δE)*(A+δA)*(α+δα)*δT;δF e(k)为弹性变形不确定性值,δF t(k)为热变形不确定性值;
张力的不确定性值包括:
δF z(k)=F(k)+δF e(k)+δF t(k);δF z(k)为张力的不确定性值;
区间力密度包括:
Q i(k)=δF z(k)/L(k);Q i(k)为区间力密度。
综上,如图3所示,本申请所述的天线的设计方法可分为以下几个步骤:
步骤1:给定索网初始形态、不确定参数的区间、最大允许索长以及设置计算参数(即,对应本申请中的步骤S202中的依据预先获取的天线设计初始值集合进行计算,本申请中预先获取的天线设计初始值集合包括:索网初始形态、不确定参数的区间、最大允许索长以及计算参数);
索网初始形态指索网的初始节点坐标与索网拓扑连接关系。不确定参数指:索段放样长度的不确定性δL=[δL d,δL u],横截面积不确定性δA=[δA d,δA u],弹性模量不确定性δE=[δE d,δE u],热膨胀系数的不确定性δα=[δαd,δαu],空间环境温差的不确定性δT=[δT d,δT u],以及张力测量的不确定性δF=[δF d,δF u]。其中,[]中的两个参数值分别表示对应不确定性参数所在区间的下限和上限。最大允许索长表示为Lm。计算参数设置包括:将迭代步数k设置为0,给定收敛误差ε,给定的张力均值F0。
步骤2:生成一组新的力密度值;
第k组力密度的值Q(k)由如下方式进行计算:
当k=0时,Q(k)=1;
当k>0时,Q(k)=F 0*L(k-1) -1。其中,L(k-1)为第k-1组索段的长度, 具体计算由步骤3给出。
步骤3:计算索网节点X、Y、Z坐标,以及索段长度L(k);
索网节点X、Y、Z坐标如下进行计算:
X坐标:X(k)=-(C t*Q(k)*C) -1*C t*Q(k)*C f*X f
Y坐标:Y(k)=-(C t*Q(k)*C) -1*C t*Q(k)*C f*Y f
Z坐标:Z(k)=-(C t*Q(k)*C) -1*C t*Q(k)*C f*Z f
其中,C表示两个节点之间的连接关系矩阵,矩阵元素取值为1或者0,1表示两个节点之间有索段相连,0表示节点没有相连。C t表示矩阵C的转秩。C f表示边界节点之间的连接关系矩阵,矩阵元素取值方式与C一致。X f、Y f、Z f表示边界节点的坐标。(索网各部分示意图,如图4所示)
每个索段长度如下进行计算:
Figure PCTCN2018083652-appb-000003
L(k)=[L(k,1,2),L(k,1,3),...,L(k,2,3),L(k,2,4),...,L(k,N-1,N)];
其中,L(k,i,j)表示第k组索段长度中,第i、j两个节点之间索段的长度。N表示索网的节点总数。
步骤4:判断索段长度是否小于或大于最大允许索长;
找出L(k)中的最大索长max(L(k)),并与最大允许索长相比较,判断准则为:max(L(k))≤Lm;
若满足,跳转步骤5;否则k=k+1,跳转步骤2。
这里步骤2至4对应本申请中步骤S202和步骤S204,以及步骤S204中的步骤S2041和步骤S2042。
步骤5:计算张力不确定性和区间力密度;
计算当前张力F(k):F(k)=Q(k)*L(k);
计算当前张力不确定性:
弹性变形不确定性:δF e(k)=((F(k)*(L(k)+δL)-E*A*δL)/(E*A*(L(k)+δL)+F(k)*δL)*(E+δE)*(A+δA);
热变形不确定性:δF t(k)=(E+δE)*(A+δA)*(α+δα)*δT;
总张力不确定性:δF z(k)=F(k)+δF e(k)+δF t(k);
计算区间力密度:Q i(k)=δF z(k)/L(k)。
这里步骤5和步骤6对应本申请上述步骤S206以及步骤S206中的步骤S2061至步骤S2064.
步骤6:计算索网节点位置区间;
索网节点位置区间如下进行计算:
X坐标区间:X i(k)=-(C t*Q i(k)*C) -1*C t*Q i(k)*C f*X f
Y坐标区间:Y i(k)=-(C t*Q i(k)*C) -1*C t*Q i(k)*C f*Y f
Z坐标区间:Z i(k)=-(C t*Q i(k)*C) -1*C t*Q i(k)*C f*Z f
步骤7:计算索网形面精度;
索网形面精度如下进行计算:
Figure PCTCN2018083652-appb-000004
步骤8:判断是否满足收敛条件;
收敛条件判断准则如下:
当k=0时,RMSi(k)<ε;
当k>0时,|(RMSi(k)-RMSi(k-1))|<ε。
若满足,跳转步骤9;否则k=k+1,跳转步骤2。
步骤9:得到节点坐标和索网张力。
步骤3得到的索网节点坐标X(k)、F(k)、Z(k)和步骤5得到的索网张力F(k)即为索网设计最终的结果。
这里步骤6至步骤9对应本申请上述步骤S208依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度。
下面结合附图仿真实例对本申请做进一步说明。
1、仿真条件:
索网的初始形态分别如图5a、图6a和图7a所示,索网的各项不确定性参数如表1所示。给定最大允许索长:Lm=1米,收敛误差:ε=0.0000001。
表1为索网结构的不确定参数
Figure PCTCN2018083652-appb-000005
2、仿真结果:
通过本申请不确定性索网的区间力密度设计方法,针对图5a、图6a和图7a所示的三种索网初始形态,分别得到图5b、图6b和图7b所示的三种优化索网。设计前后的形面精度结果如表2所示:
表2为区间力密度优化结果
Figure PCTCN2018083652-appb-000006
3、结果说明:
三个示例索网的主要变化是在索网内部,靠近边界的地方略微向内凹陷,而靠近中间的地方略微向外凸出。这样的设计并非随意,而是由本申请的方法优化而得,并且由内部每个节点坐标协调优化而得到的效果。
通过本申请,结果均有一定的提升。其中示例1中,由于索网较为简单,索网精度在不确定性情况下的提升量为12.36%。相对而言,示例2中的索网更为复杂,索网的内部节点也更多,因此通过本申请的设计,索网精度在不确定性情况下的提升量达到21.33%;示例3中的索网的提升量则达到了28.82%。
由此可见,本申请充分考虑了不确定性因素对索网的影响,并且较好地提升了索 网的形面精度。
本申请的有益效果是有效降低在轨运行过程中各种不确定性因素对天线性能的影响,换句话说,就是提高了网状反射面天线的稳定性和可靠性。
在上述技术步骤的5至8中,引入了各种不确定性的影响,并且将不确定性的影响结果反作用于步骤2力密度的生成,进一步通过步骤3和步骤5得到改善的索网设计结果,通过不断的迭代最终得到最优索网设计。
由上可知,本申请提供的天线的设计方法可以适用于设计的索网结构可用于通信卫星的可展开网状反射面天线;或,适用于属于可展开网状反射面天线中机械结构部分的反射面模块;或,用于空间通信卫星;或,主要用于航天通信系统。本申请中以实现天线的设计方法为准,具体不做限定。
实施例2
图8是根据本发明实施例的天线的设计装置的结构示意图,如图8所示,该装置包括:
第一计算模块81,用于依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断模块82,用于判断索段长度是否满足预设条件;第二计算模块83,用于在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;第三计算模块84,用于依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;天线设计模块85,用于依据索网节点位置区间和索网形面精度进行设计,得到目标天线。
在本发明实施例中,通过依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个天线索网节点之间的索段长度;判断索段长度是否满足预设条件;在判断结果为是的情况下,依据力密度值和索段长度进行计算,得到张力的不确定性值和区间力密度;依据张力的不确定性值和区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;依据索网节点位置区间和索网形面精度进行设计,得到目标天线,即,本申请中通过在设计之初同时考虑不确定性因素的影响,从而保证天线索网形面精度在用户可接受的范围,有效降低不确定性因素的影响,进而达到了填补天线设计缺陷的目的,从而实现了提升天线性能的技术效果,进而解决了由于相关技术中在索网天线设计过程中存在的设计缺陷,导致天线性能降低的技术问题。
实施例3
根据本发明实施例的又一个方面,提供了一种天线,包括:通过上述实施例1中的天线的设计方法进行生产,得到的天线。
实施例4
根据本发明实施例的再一个方面,提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述实施例1中的天线的设计方法。
实施例5
根据本发明实施例的再一个方面,提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述实施例1中的天线的设计方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所 述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种天线的设计方法,其特征在于,包括:
    依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个所述天线索网节点之间的索段长度;
    判断所述索段长度是否满足预设条件;
    在判断结果为是的情况下,依据所述力密度值和所述索段长度进行计算,得到张力的不确定性值和区间力密度;
    依据所述张力的不确定性值和所述区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;
    依据所述索网节点位置区间和所述索网形面精度进行设计,得到所述目标天线。
  2. 根据权利要求1所述的天线的设计方法,其特征在于,所述预先获取的天线设计初始值集合包括:索网初始形态、不确定参数的区间、最大允许索长以及计算参数。
  3. 根据权利要求2所述的天线的设计方法,其特征在于,所述索网初始形态为索网的初始节点坐标与索网拓扑连接关系。
  4. 根据权利要求2所述的天线的设计方法,其特征在于,所述不确定参数的区间包括:索段放样长度的不确定性区间、横截面积不确定性区间、弹性模量不确定性区间、热膨胀系数的不确定性区间、空间环境温差的不确定性区间、以及张力测量的不确定性区间。
  5. 根据权利要求2所述的天线的设计方法,其特征在于,所述计算参数包括:迭代步数、收敛误差和张力均值。
  6. 根据权利要求2所述的天线的设计方法,其特征在于,所述判断所述索段长度是否满足预设条件包括:
    筛选每个所述天线索网节点之间的索段长度,得到最大索长;
    判断所述最大索长是否小于或等于所述最大允许索长;
    其中,所述索段长度计算如下:
    Figure PCTCN2018083652-appb-100001
    每个所述天线索网节点之间的索段长度包括:
    L(k)=[L(k,1,2),L(k,1,3),…,L(k,2,3),L(k,2,4),…,L(k,N-1,N)];
    其中,所述L(k,i,j)表示第k组索段长度中,第i、j两个节点之间索段的长度;N表示索网的节点总数;
    所述最大允许索长包括Lm;判断所述最大索长是否小于或等于所述最大允许索长包括:max(L(k))≤Lm;其中,max(L(k))为L(k)中的最大索长。
  7. 根据权利要求6所述的天线的设计方法,其特征在于,所述依据所述力密度值和所述索段长度进行计算,得到张力的不确定性值和区间力密度包括:
    依据所述力密度值和所述索段长度之间的数学关系,得到张力;
    依据所述张力进行计算,得到弹性变形不确定性值和热变形不确定性值;
    依据所述张力、所述弹性变形不确定性值和所述热变形不确定性值的和,得到所述张力的不确定性值;
    依据所述张力的不确定性值和所述索段长度进行计算,得到所述区间力密度;
    其中,所述张力包括:F(k)=Q(k)*L(k);Q(k)为所述力密度值,L(k)为所述索段长度;
    所述弹性变形不确定性值和所述热变形不确定性值包括:
    δF e(k)=((F(k)*(L(k)+δL)-E*A*δL)/(E*A*(L(k)+δL)+F(k)*δL)*(E+δE)*(A+δA);
    δF t(k)=(E+δE)*(A+δA)*(α+δα)*δT;δF e(k)为所述弹性变形不确定性值,δF t(k)为所述热变形不确定性值;
    所述张力的不确定性值包括:
    δF z(k)=F(k)+δF e(k)+δF t(k);δF z(k)为所述张力的不确定性值;
    所述区间力密度包括:
    Q i(k)=δF z(k)/L(k);Q i(k)为所述区间力密度。
  8. 一种天线的设计装置,其特征在于,包括:
    第一计算模块,用于依据预先获取的天线设计初始值集合进行计算,得到力密度值以及天线索网节点的各个坐标和每个所述天线索网节点之间的索段长度;
    判断模块,用于判断所述索段长度是否满足预设条件;
    第二计算模块,用于在判断结果为是的情况下,依据所述力密度值和所述索段长度进行计算,得到张力的不确定性值和区间力密度;
    第三计算模块,用于依据所述张力的不确定性值和所述区间力密度进行计算,得到目标天线的索网节点位置区间和索网形面精度;
    天线设计模块,用于依据所述索网节点位置区间和所述索网形面精度进行设计,得到所述目标天线。
  9. 一种天线,其特征在于,包括:通过权利要求1至7中任意一项所述的天线的设计方法进行生产,得到的天线。
  10. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至7中任意一项所述的天线的设计方法。
  11. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至7中任意一项所述的天线的设计方法。
PCT/CN2018/083652 2017-06-19 2018-04-19 天线的设计方法、装置和天线 WO2018233366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710468841.9A CN109145323A (zh) 2017-06-19 2017-06-19 天线的设计方法、装置和天线
CN201710468841.9 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018233366A1 true WO2018233366A1 (zh) 2018-12-27

Family

ID=64736172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083652 WO2018233366A1 (zh) 2017-06-19 2018-04-19 天线的设计方法、装置和天线

Country Status (2)

Country Link
CN (1) CN109145323A (zh)
WO (1) WO2018233366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416434A1 (en) * 2019-11-27 2022-12-29 Airbus Defence and Space S.A. Computer assisted method for manufacturing a foldable paraboloid antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585037B (zh) * 2020-05-12 2021-04-13 西安电子科技大学 一种网状天线的索段裁剪及其组网方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761369A (zh) * 2014-01-02 2014-04-30 西安电子科技大学 一种可展开偏置抛物面天线索网结构的初始形态设计方法
CN104794262A (zh) * 2015-03-30 2015-07-22 西安电子科技大学 一种基于机电集成的星载网状天线赋形波束设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143697B (zh) * 2014-08-01 2017-02-15 西安电子科技大学 索网反射面天线静力确定性网面拓扑构型生成方法
CN104156523B (zh) * 2014-08-01 2017-03-29 西安电子科技大学 索网反射面天线的测地线索网生成方法
CN104504284B (zh) * 2015-01-04 2017-12-22 西安电子科技大学 一种基于悬链线单元的松弛索网找形方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761369A (zh) * 2014-01-02 2014-04-30 西安电子科技大学 一种可展开偏置抛物面天线索网结构的初始形态设计方法
CN104794262A (zh) * 2015-03-30 2015-07-22 西安电子科技大学 一种基于机电集成的星载网状天线赋形波束设计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RU , WENRUI ET AL.: "A Cable-Net Tension Analysis Method During Deployment for Hoop Truss Deployable Antennas", SPACE ELECTRONIC TECHNOLOGY, 25 October 2015 (2015-10-25) *
YANG, G.G. ET AL.: "Uniform-Tension Form-Finding Design for Cable-Mesh Deployable Reflectors", FIFTH ASIA INTERNATIONAL SYMPOSIUM ON MECHATRONICS (AISM 2015), 10 October 2015 (2015-10-10), XP055560899 *
YANG, GUIGENG ET AL.: "Method for Deployable Mesh Antenna Cable Network Structures' Form-Finding Design Based on Force Density", CHINESE JOURNAL OF MECHANICAL ENGINEERING, vol. 52, no. 11, 30 June 2016 (2016-06-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416434A1 (en) * 2019-11-27 2022-12-29 Airbus Defence and Space S.A. Computer assisted method for manufacturing a foldable paraboloid antenna
US11791561B2 (en) * 2019-11-27 2023-10-17 Airbus Defence and Space S.A. Computer assisted method for manufacturing a foldable paraboloid antenna

Also Published As

Publication number Publication date
CN109145323A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN107153729B (zh) 一种可展开抛物面天线前索网结构的形态设计方法
Liu et al. Layout optimization of continuum structures considering the probabilistic and fuzzy directional uncertainty of applied loads based on the cloud model
WO2018233366A1 (zh) 天线的设计方法、装置和天线
Feng et al. Shape optimization method of free-form cable-braced grid shells based on the translational surfaces technique
Yang et al. Preliminary design of paraboloidal reflectors with flat facets
US20210299962A1 (en) Systems, methods, and media for controlling support structures and build orientation in manufacturing
Zhu et al. Background Overlay Grid Size Functions.
Marchandise et al. Cardiovascular and lung mesh generation based on centerlines
Eklund et al. Information retrieval and social tagging for digital libraries using formal concept analysis
Namura et al. Kriging surrogate model with coordinate transformation based on likelihood and gradient
Jiang et al. Combined shape and topology optimization for sound barrier by using the isogeometric boundary element method
Yadav et al. A least-squares method for the design of two-reflector optical systems
Balzer Capacity-constrained Voronoi diagrams in continuous spaces
CN104715111A (zh) 一种基于机电耦合的大型赋形双反射面天线的副面补偿方法
Nagawkar et al. Single-and multipoint aerodynamic shape optimization using multifidelity models and manifold mapping
CN113470095A (zh) 室内场景重建模型的处理方法和装置
Chen et al. Automatic sizing functions for 3D unstructured mesh generation
Xiao et al. Automatic unstructured element-sizing specification algorithm for surface mesh generation
Huang et al. Reformulation for stress topology optimization of continuum structures by floating projection
Wei et al. A structured mesh boundary motion approach for simulating wind effects on bluff bodies with changing boundaries
Escobar et al. Simultaneous aligning and smoothing of surface triangulations
Marston et al. Geometric optimization of concentrating solar collectors using monte carlo simulation
Zhang et al. Design of shaped offset cable mesh reflector antennas considering structural flexible property
Caputo et al. Neural network characterization of microstrip patches for reflectarray optimization
Wang et al. Hypersonic Vehicle Aerodynamic Optimization Using Field Metamodel‐Enhanced Sequential Approximate Optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820112

Country of ref document: EP

Kind code of ref document: A1