WO2018233354A1 - 车架随行式盾构隧道壁后注浆检测装备 - Google Patents

车架随行式盾构隧道壁后注浆检测装备 Download PDF

Info

Publication number
WO2018233354A1
WO2018233354A1 PCT/CN2018/082763 CN2018082763W WO2018233354A1 WO 2018233354 A1 WO2018233354 A1 WO 2018233354A1 CN 2018082763 W CN2018082763 W CN 2018082763W WO 2018233354 A1 WO2018233354 A1 WO 2018233354A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
shield
frame
radar
bracket
Prior art date
Application number
PCT/CN2018/082763
Other languages
English (en)
French (fr)
Inventor
谢雄耀
周彪
周云祥
覃晖
陈逸凡
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to EP18821101.5A priority Critical patent/EP3470622A4/en
Publication of WO2018233354A1 publication Critical patent/WO2018233354A1/zh
Priority to US16/410,625 priority patent/US11181633B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/105Transport or application of concrete specially adapted for the lining of tunnels or galleries ; Backfilling the space between main building element and the surrounding rock, e.g. with concrete
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing

Definitions

  • the invention belongs to the field of post-grouting grouting and cavity detection in the construction period of a shield tunnel, and particularly relates to a post-grouting detection equipment for a frame-driven shield tunnel wall.
  • the grouting pattern is not easy to control, and the gap estimation and grouting parameter setting of the shield tail building have no experience to follow.
  • the quality control of tunnel construction itself is difficult, and it is easy to cause correction gap. If it is not properly controlled, it will cause surface settlement during the construction phase, and excessive deformation of existing tunnels and bridges. In the operation stage, it will cause leakage or leakage of tunnels, or longitudinal distortion of internal structures (such as subway tracks), affecting the normal operation of the tunnel, safety of the tunnel structure, safety and comfort of subway train operations.
  • the amount of simultaneous grouting is generally determined by experience by hand.
  • the shape and filling degree of the grout in the rear part of the segment cannot be effectively determined, so that the grouting operation cannot be guided in real time and effectively. Therefore, special research is needed on the mechanics and diffusion characteristics of the slurry, the prediction and detection of the actual injection volume of the grouting, and the real-time detection of the actual grouting effect.
  • the domestic grouting quality inspection of the shield wall is mainly carried out by manual on-site measurement and recording after the tunnel construction is completed. Subsequent processing is carried out indoors. At this time, surface subsidence has often occurred for a long time, and the disease caused by grouting defects has caused significant economic losses. At this time, the detection is relatively small. In addition, manual detection is subject to site conditions and the detection stability is poor. It is urgent to develop real-time automatic detection of post-grout grouting equipment.
  • the object of the present invention is to provide a post-grouting inspection equipment for a frame-type shield tunnel wall.
  • the device for detecting post-grouting of the frame-type shield tunnel wall comprises the ground penetrating radar 1, the servo controller 2, the driving motor and the speed reducer 3, the transmission mechanism 4, the radar collecting box 5, the bracket 6, and the assembling type a track 7, a pulley 9 and a conveyor belt 10, the assembled rail 7 is an arch structure, and the ground penetrating radar 1 is mounted above the assembled rail 7 via a bracket 6, and the ground penetrating radar 1 can be assembled along the frame by the bracket 6.
  • the track is moved at a constant speed and the isochronous time is detected; the transmission mechanism 4 and the driving motor and the speed reducer 3 are fixed on one side of the assembled rail 7, the transmission mechanism 4 is connected to the driving motor and the speed reducer 3, and the servo controller 2 is fixed to On the side of the assembled rail 7, the servo controller 2 is connected to the driving motor and the speed reducer, and a plurality of pulleys 9 are fixed under the assembled rail 7, the one end of the transmission belt 10 is connected to the bracket 6, and the other end is bypassed on the side of the assembled rail 7 Through the transmission mechanism 4, through a plurality of pulleys 9 in sequence, after the transmission belt 10 reaches the bottom of the other side of the assembled rail 7, after bypassing the other side of the assembled rail 7, the bracket 6 is connected, so that the transmission belt constitutes a closed of a loop, the radar collection box 5 is fixed on the bracket 6, the radar collection box 5 and the ground penetrating radar 1 are connected by a coaxial cable; the shielded track 7 is provided
  • the radar antenna is mounted with a detection frequency between 300 and 900 MHz to improve the detection effect of the post-wall grout.
  • the range of motion of the ground penetrating radar 1 can meet the detection requirement of 15°-360°, and the motion mode includes constant speed and equal time difference pause, and each shield advances a ring.
  • the ground penetrating radar 1 performs shield grouting detection along the hoop direction.
  • the radar collection box 5 is connected to the operation room computer through a network cable, and the operation room computer is provided with a visualization radar image analysis software to realize a layered visual display of the grout.
  • the assembled track is formed by sequentially connecting a plurality of assembled track segments.
  • test equipment is installed in front of the first frame of the shield machine, and follows the shield machine to achieve post-wall grouting.
  • the present invention designs the curved orbit and the ground penetrating radar performs circumferential detection along the orbit. Compared with manual detection, the detection stability and the positioning effect of the radar wave are improved.
  • the self-developed visualization software can synchronously display the shape of the grout after the end of the test, and shorten the internal processing time of the past manual detection.
  • FIG. 1 is a structural diagram of a post-grouting detection equipment structure of a frame-assisted shield tunnel wall developed by the present invention.
  • Figure 2 is a diagram of the assembled track segment.
  • Figure 3 shows the real-time processing of the radar signal obtained by the signal processing module, integrated DEWOW, DC removal, air removal layer, background removal and filtering, AGC/ACC and inter-channel equalization.
  • Figure 4 is a visual representation of the post-wall grouting obtained by on-site inspection. Among them: (a) is the development of the slice grout and the layer thickness of the layer, and (b) is the grouting filling factor diagram (the percentage in the figure is the ratio of the actual thickness of the grout to the design value), (c) Visualize the map for post-grouting distribution.
  • Figure 5 is a technical implementation path diagram.
  • the number is: 1 is ground penetrating radar, 2 is servo controller, 3 is drive motor and reducer, 4 is transmission mechanism, 5 is radar acquisition box, 6 is bracket, 7 is assembled track, 8 is shield machine Assembly interface, 9 is a pulley, 10 is a conveyor belt.
  • Embodiment 1 as shown in FIG. 1, the device includes a ground penetrating radar 1, a servo controller 2, a driving motor and a speed reducer 3, a transmission mechanism 4, a radar collecting box 5, a bracket 6, a mounted rail 7, and a pulley 9 and conveyor belt 10.
  • the ground penetrating radar 1 is connected to the conveyor belt 10 via a support plate, and the conveyor belt is moved in a circular direction under the traction of the drive motor and the speed reducer 3 and the transmission mechanism 4, and the motion mode is controlled by the servo controller 2.
  • the ground penetrating radar 1 acquires the radar signal and transmits it to the radar collecting box 5 through the coaxial cable, and transmits it to the control room computer through the network cable for data analysis.
  • FIG. 2 is a diagram of the assembled track segment of the present invention.
  • the number of stages required for assembling the track segments is calculated according to the actual detection angle requirement, and the assembled track segments are sequentially connected by a plurality of assembled track segments.
  • the present invention first determines the circumferential direction of detection according to the detection requirement and the shield operation space, and the angle is controlled between 20-360 degrees. According to the actual detection angle requirement and the length of the assembly segment as shown in Fig. 2, the required number of segments is calculated, and the on-site assembly is performed to form the overall equipment as shown in Fig. 1. After the assembly is completed, the shield machine assembly interface 8 is mounted on the frame of the shield machine to form an overall equipment.
  • the equipment After the equipment is integrated, it can follow the shield to advance, and the loop detection is performed for each loop piece.
  • the radar data is collected by the radar collection box 5, and transmitted back to the operation room computer through the network cable in real time, through the signal processing shown in FIG. Module, integrated DEWOW, DC removal, air removal layer, background removal and filtering, AGC/ACC and inter-channel equalization, etc., real-time processing of radar signals and forming a visualization of the grouting layer as shown in Figure 4, where (a) (d) is the grouting filling factor diagram (the percentage in the figure is the ratio of the actual thickness of the grout to the design value, and (c) is the post-wall grouting distribution. Visualize the map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种车架随行式盾构隧道壁后注浆检测装置,包含车架随行式自动传送装置、空气耦合探地雷达(1)及壁后注浆体智能化处理分析软件。车架随行式自动传送装置主要包括轨道(7)、传送带(10)、传动机构(4)、伺服控制器(2)、驱动电机及减速器(3)。检测装置安装在盾构机首节车架上,随着盾构推进对盾构注浆体进行环向检测及注浆体分层可视化展示。检测装置通过软硬件集成,在盾构施工过程中实现了对壁后注浆层的实时可视化检测。

Description

车架随行式盾构隧道壁后注浆检测装备 技术领域
本发明属于盾构隧道施工期壁后注浆及空洞检测领域,具体涉及一种车架随行式盾构隧道壁后注浆检测装备。
背景技术
近年来,随着国家加强对基础建设设施的投入,我国交通建设失业取得了迅猛的发展,公路隧道特别是长大隧道的建设与研究也都取得了飞速的发展,目前我国已经成为世界上隧道工程数量最多、最复杂、发展最快的国家。基于盾构施工中“保头护尾勤注浆”的原则,通过研发雷达检测设备实现对盾构壁后注浆厚度检测。控制周边变形,对确保施工及周边环境安全具有重要意义。目前盾构隧道同步注浆是控制地层变形及保护现有隧道、桥梁及周边环境的重要措施,然而注浆形态不易控制,盾尾建筑空隙估算和注浆参数设定并无经验可循。同时在曲线穿越过程中,隧道施工本身质量控制难度大,容易引起纠偏空隙。如果控制不当,在施工阶段将导致地表沉降,既有隧道和桥梁产生过大变形。在运营阶段,其将引发隧道渗水漏泥或结构局部破坏,或内部结构(如地铁轨道)发生纵向扭曲变形,影响隧道的正常运营,对隧道结构安全、地铁列车运营的安全性及舒适性都有一定潜在的威胁。进而又影响到周围及地表各类构筑物的运营,造成巨大的经济损失,甚至引起严重的社会不良影响。传统上,同步注浆量一般由人工凭经验决定,注浆体在管片后部形态及充填程度无法有效确定,从而无法实时、有效的指导注浆作业。因而需就浆液力学和扩散特性,注浆实际注入量预测和检测,以及实际注浆效果实时检测等方面进行专项研究。
目前国内对盾构壁后注浆质量检测主要是在隧道建设完成后进行人工的现场测量和记录。再于室内进行后续处理。这时往往地表沉降已经发生了很久,注浆缺陷造成的病害已经产生了重大的经济损失,此时进行检测意义相对较小。另外人工检测易受现场条件制约,检测稳定性较差。亟待开发实时化自动检测壁后注浆装备。
发明内容
本发明的目的在于提出一种车架随行式盾构隧道壁后注浆检测装备。
本发明提出的车架随行式盾构隧道壁后注浆检测装置,包括探地雷达1、伺服控制器2、驱动电机及减速器3、传动机构4、雷达采集箱5、支架6、拼装式轨道7、带轮9和传送带10,所述拼装式轨道7为拱形结构,探地雷达1通过支架6搭载于拼装式轨道7上方,所述探地雷达1通过支架6能沿着拼装式轨道匀速移动及等间隔时间停顿式检测;拼装式轨道7一侧上固定有传动机构4和驱动电机及减速器3,所述传动机构4连接驱动电机及减速器3,伺服控制器2固定于拼装式轨道7的侧面,伺服控制器2连接驱动电机及减速器,拼装式轨道7下方固定有若干个带轮9,传动带10一端连接支架6,另一端绕过拼装式轨道7一侧上方,穿过传动机构4,依次穿过若干个带轮9,传动带10到达拼装式轨道7另一侧底部后,绕过拼装式轨道7另一侧上方,连接支架6,这样传动带就构成了一个闭合的回路,雷达采集箱5固定在支架6上,雷达采集箱5与探地雷达1通过同轴电缆连接;所述拼装式轨道7下方设置有若干盾构机装配接口8;车架随行式盾构隧道壁后注浆检测装置通过盾构机装配接口8搭载在盾构机车架上;在伺服控制器2的控制下,通过驱动电机及减速器3驱动,带动传动机构,传动机构带动传动带10及带轮9,传动带10通过带动支架8,从而带动探地雷达1沿圆周进行运动。
本发明中,搭载雷达天线检测频率在300-900MHz之间,以提高壁后注浆体的检测效果。
本发明中,根据盾构机前方净空及操作要求,所述探地雷达1的运动范围可满足15°-360°的检测需求,运动模式包括匀速及等时间差停顿,盾构每推进一环,探地雷达1沿环向进行盾构注浆体检测。
本发明中,所述雷达采集箱5通过网线连接操作室电脑,所述操作室电脑上设有可视化雷达图像解析软件解析实现注浆体分层可视化展示。
本发明中,所述拼装式轨道由若干个拼装式轨道节段依次连接而成。
本发明的有益效果在于:
(1)满足盾构隧道壁后注浆实时检测需求,提高壁后注浆施工水平: 检测装备搭载在盾构机第一节车架前方,跟随盾构机前行,实现对壁后注浆浆液的实时自动化检测,通过注浆参数调整及补注浆辅助壁后注浆施工,提高壁后注浆施工水平。
(2)提升壁后注浆检测质量:本发明通过设计弧形轨道,探地雷达沿轨道进行环向检测,相较于人工检测,提高了检测稳定性和雷达波的定位效果。
(3)安全便捷性:检测人员可通过增加拼装节段数量调整断面检测范围,整个检测过程自动化进行,具有安全便捷的特点。
(4)图像处理实时化程度高:自主开发的可视化软件可在检测结束后同步显示注浆体形态,缩短了过往人工检测的内业处理时间。
附图说明
图1为本发明研发的车架随行式盾构隧道壁后注浆检测装备结构图示。
图2为拼装式轨道节段图。
图3为所示信号处理模块,综合DEWOW、去直流、去除空气层、背景去除及滤波、AGC/ACC及道间均衡等方法得到的对雷达信号进行实时处理图。
图4为现场检测所获得的壁后注浆可视化展示图。其中:(a)为管片注浆体及土层分层厚度展开图,(b)为注浆充盈系数图(图中百分比为注浆体实际检测厚度与设计值的比值),(c)为壁后注浆分布可视化展示图。
图5为技术实施路径图。
图中标号:1为探地雷达,2为伺服控制器,3为驱动电机及减速器,4为传动机构,5为雷达采集箱,6为支架,7为拼装式轨道,8为盾构机装配接口,9为带轮,10为传送带。
具体实施方式
下面通过实施例结合附图进一步说明本发明。
实施例1;如图1所示,所述装置包括探地雷达1、伺服控制器2、驱动电机及减速器3、传动机构4、雷达采集箱5、支架6、拼装式轨道7、带轮9和传送带10。其中探地雷达1通过支座板与传送带10连接,传送带在驱动电机及减速器3及传动机构4牵引下沿圆周运动,运动模式由伺 服控制器2控制。探地雷达1获取雷达信号通过同轴电缆传送至雷达采集箱5,并通过网线传送至控制室电脑进行数据分析。
图2为本发明的拼装式轨道节段图,根据实际检测角度要求,计算拼装式轨道节段所需的阶段个数,由若干个拼装式轨道节段依次连接而成拼装式轨道7。
参见图5,本发明首先根据检测需求及盾构操作空间,确定环向检测角度,角度控制在20-360°之间。根据实际检测角度要求及如图2所示装配节段长度,计算所需的节段个数,并进行现场装配形成如图1所示整体装备。装配完成后通过盾构机装配接口8搭载在盾构机车架上,形成整体装备。
装备集成后可跟随盾构推进,对每环管片进行环向检测,检测过程中通过雷达采集箱5采集雷达数据,并实时通过网线回传到操作室电脑,通过如图3所示信号处理模块,综合DEWOW、去直流、去除空气层、背景去除及滤波、AGC/ACC及道间均衡等方法,对雷达信号进行实时处理并形成如图4所示注浆层可视化图,其中(a)为管片注浆体及土层分层厚度展开图,(b)为注浆充盈系数图(图中百分比为注浆体实际检测厚度与设计值的比值,(c)为壁后注浆分布可视化展示图。

Claims (5)

  1. 车架随行式盾构隧道壁后注浆检测装置,包括探地雷达(1)、伺服控制器(2)、驱动电机及减速器(3)、传动机构(4)、雷达采集箱(5)、支架(6)、拼装式轨道(7)、带轮(9)和传送带(10),其特征在于:所述拼装式轨道(7)为拱形结构,探地雷达(1)通过支架(6)搭载于拼装式轨道(7)上方,所述探地雷达(1)通过支架(6)能沿着拼装式轨道来回移动;拼装式轨道(7)一侧上固定有传动机构(4)和驱动电机及减速器(3),所述传动机构(4)连接驱动电机及减速器(3),伺服控制器(2)固定于拼装式轨道(7)的侧面,伺服控制器(2)连接驱动电机及减速器,拼装式轨道(7)下方固定有若干个带轮(9),传动带(10)一端连接支架(6),另一端绕过拼装式轨道(7)一侧上方,穿过传动机构(4),依次穿过若干个带轮(9),传动带(10)到达拼装式轨道(7)另一侧底部后,绕过拼装式轨道(7)另一侧上方,连接支架(6),这样传动带就构成了一个闭合的回路,雷达采集箱(5)固定于支架(6)上,雷达采集箱与探地雷达通过光纤连接;所述拼装式轨道(7)下方设置有若干盾构机装配接口(8);车架随行式盾构隧道壁后注浆检测装置通过盾构机装配接口(8)搭载在盾构机车架上;在伺服控制器(2)的控制下,通过驱动电机及减速器(3)驱动,带动传动机构,传动机构带动传动带(10)及带轮(9),传动带(10)通过带动支架(6),从而带动探地雷达(1)沿圆周进行运动。
  2. 根据权利要求1所述的车架随行式盾构隧道壁后注浆检测装置,其特征在于:探地雷达(1)天线检测频率为300-900MHz。
  3. 根据权利要求1所述的车架随行式盾构隧道壁后注浆检测装置,其特征在于:根据盾构机前方净空及操作要求,所述探地雷达(1)的运动范围可满足15°-360°的检测需求,运动模式包括匀速及等时间差停顿,盾构每推进一环,探地雷达(1)沿环向进行盾构注浆体检测。
  4. 根据权利要求1所述的车架随行式盾构隧道壁后注浆检测装置,其特征在于:所述雷达采集箱(5)通过网线连接操作室电脑,所述操作室电脑上设有可视化雷达图像解析软件解析实现注浆体分层可视化展示。
  5. 根据权利要求1所述的车架随行式盾构隧道壁后注浆检测装置,其特征在于:所述拼装式轨道由若干个拼装式轨道节段依次连接而成。
PCT/CN2018/082763 2017-06-21 2018-04-12 车架随行式盾构隧道壁后注浆检测装备 WO2018233354A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18821101.5A EP3470622A4 (en) 2017-06-21 2018-04-12 VEHICLE CHASSIS DISPLACEMENT TYPE POST-JOINING WINDOW PROTECTION TUNNEL DETECTION APPARATUS
US16/410,625 US11181633B2 (en) 2017-06-21 2019-05-13 Loaded-to-frame detection equipment and method for backfill grouting of shield tunnel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710472728.8A CN107120120B (zh) 2017-06-21 2017-06-21 车架随行式盾构隧道壁后注浆检测装备
CN201710472728.8 2017-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/410,625 Continuation US11181633B2 (en) 2017-06-21 2019-05-13 Loaded-to-frame detection equipment and method for backfill grouting of shield tunnel

Publications (1)

Publication Number Publication Date
WO2018233354A1 true WO2018233354A1 (zh) 2018-12-27

Family

ID=59720124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082763 WO2018233354A1 (zh) 2017-06-21 2018-04-12 车架随行式盾构隧道壁后注浆检测装备

Country Status (4)

Country Link
US (1) US11181633B2 (zh)
EP (1) EP3470622A4 (zh)
CN (1) CN107120120B (zh)
WO (1) WO2018233354A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490878A (zh) * 2018-12-29 2019-03-19 安徽省城建设计研究总院股份有限公司 一种隧道专用探地雷达检测装置
CN109799327A (zh) * 2019-03-08 2019-05-24 西南交通大学 一种可视化的盾构隧道施工注浆效果检测试验装置和方法
CN114019134A (zh) * 2021-08-23 2022-02-08 长安大学 一种组合式盾构隧道壁后注浆模拟装置及试验方法
CN114414438A (zh) * 2022-01-24 2022-04-29 中国矿业大学 一种基于质子磁力仪检测注浆扩散范围的识别方法
CN114934787A (zh) * 2022-06-08 2022-08-23 京昆高速铁路西昆有限公司 可视化隧道二衬拱部纵向灌注饱满装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120120B (zh) * 2017-06-21 2019-10-01 同济大学 车架随行式盾构隧道壁后注浆检测装备
CN108087022B (zh) * 2017-12-08 2024-04-26 中国电子科技集团公司第五十一研究所 盾构隧道检测装置
CN108286433B (zh) * 2018-02-09 2020-12-04 安徽恒诺机电科技有限公司 一种盾构隧道检测机构及其使用方法
CN108643921A (zh) * 2018-04-18 2018-10-12 同济大学 盾构施工质量机载式双自由度检测方法及检测平台
CN108918670A (zh) * 2018-06-07 2018-11-30 南宁中铁广发轨道装备有限公司 一种盾构隧道施工用注浆实时检测平台
CN110542886B (zh) * 2019-09-06 2023-01-24 上海市基础工程集团有限公司 用于盾构隧道壁后注浆检测的探地雷达专用机具
CN111125961A (zh) * 2019-12-27 2020-05-08 中国水利水电第七工程局有限公司 一种地铁隧道施工对桥梁沉降变形的精细化分步控制方法
CN111650584B (zh) * 2020-05-14 2023-09-15 中国科学院武汉岩土力学研究所 一种盾构隧道壁后注浆加固效果检测方法及设备
CN112253177A (zh) * 2020-07-26 2021-01-22 江西基业良工桩机制造有限公司 一种隧道衬砌设备
CN112611332A (zh) * 2020-09-28 2021-04-06 同济大学 盾构壁后注浆环向双自由度检测控制装置
CN112523780B (zh) * 2020-12-01 2022-11-29 中铁十二局集团有限公司 软岩隧道衬砌拱顶防脱空主动监测施工工法
CN112780307B (zh) * 2021-01-06 2023-01-24 中铁十六局集团有限公司 一种隧道拱顶带模注浆装置及其施工方法
CN113177270B (zh) * 2021-03-17 2022-02-15 北京交通大学 一种盾构姿态引起的地层变形实时计算方法
CN113295579B (zh) * 2021-03-19 2023-05-05 无锡地铁集团有限公司 一种盾构壁后同步注浆浆液扩散可视化的试验装置及方法
CN113279783B (zh) * 2021-05-28 2022-04-01 苏州中车建设工程有限公司 隧道施工盾构用壁后注浆设备
CN113323692B (zh) * 2021-06-22 2023-11-03 中铁五局集团第一工程有限责任公司 一种斜井支洞灌浆平台
CN113482633A (zh) * 2021-08-12 2021-10-08 中铁十二局集团有限公司 一种富水粉砂地层盾构穿越既有地铁车站的施工方法
CN113944473B (zh) * 2021-09-26 2023-05-02 中铁四局集团有限公司 一种增加运营地铁车站桩基延性的回旋喷涂施工方法
CN114047290B (zh) * 2021-10-26 2024-06-18 中国铁道科学研究院集团有限公司基础设施检测研究所 一种便携式隧道衬砌检测装置
CN113914876B (zh) * 2021-11-08 2024-04-12 郑州地铁集团有限公司 一种小盾构隧道回填装置
CN114135297B (zh) * 2021-11-30 2023-01-13 山东大学 一种凿岩台车集成搭载的岩体结构探测系统及方法
CN114370278B (zh) * 2021-12-02 2023-06-30 山东大学 一种用于盾构隧道管片及壁后注浆效果检测的装置及方法
CN114370282B (zh) * 2021-12-07 2023-09-05 山东大学 基于弹性波法的盾构隧道壁后同步注浆体三维检测装备
CN114217088B (zh) * 2021-12-25 2024-03-26 中铁工程装备集团有限公司 一种盾构机管片外部注浆自动协同检测方法
CN115198791B (zh) * 2022-05-20 2024-02-02 中交隧道工程局有限公司 大直径盾构隧道下部结构件安装用的底部灌浆工艺
CN114876514A (zh) * 2022-05-25 2022-08-09 中煤科工集团重庆研究院有限公司 一种基于喷浆机器人的控制方法
CN115824813B (zh) * 2023-02-23 2023-05-09 叙镇铁路有限责任公司 一种测试隧道开挖引起围岩塑性区范围的试验装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274796A (ja) * 1988-09-09 1990-03-14 Oomotogumi:Kk 場所打ちコンクリートによるシールドトンネルの覆工方法
CN103123252A (zh) * 2012-02-10 2013-05-29 南京大学 盾构隧道管片壁后同步注浆多参量实时监测方法与系统
KR101281242B1 (ko) * 2012-08-31 2013-07-02 (주)동아컨설턴트 암반 내의 연약대 그라우팅 공법
CN103573269A (zh) * 2013-11-13 2014-02-12 上海建科工程咨询有限公司 盾构隧道注浆层性能检测方法
CN104989423A (zh) * 2015-06-11 2015-10-21 同济大学 可视化单圆盾构同步注浆浆液扩散模式研究平台及其应用
CN105545325A (zh) * 2015-12-29 2016-05-04 上海隧道工程有限公司 类矩形盾构同步注浆可视化模拟试验系统及方法
CN107120120A (zh) * 2017-06-21 2017-09-01 同济大学 车架随行式盾构隧道壁后注浆检测装备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445516C (zh) * 2006-12-14 2008-12-24 同济大学 基于探地雷达的盾构隧道沉降控制方法
JP5324528B2 (ja) * 2010-06-24 2013-10-23 日本国土開発株式会社 コンクリート充填検知装置及びコンクリート充填装置
CN101943003B (zh) * 2010-08-16 2012-07-11 上海地铁盾构设备工程有限公司 基于探地雷达的盾构施工系统
CN203050719U (zh) * 2013-02-05 2013-07-10 北京首尔工程技术有限公司 隧道拱脚环向高压喷射加固施工设备
CN103713335B (zh) * 2014-01-07 2015-04-22 山东大学 隧道掘进机搭载的综合超前地质探测系统
CN206223984U (zh) * 2016-08-16 2017-06-06 中铁十六局集团北京轨道交通工程建设有限公司 一种自动检测盾构隧道衬砌施工质量的机械装置
CN106199597B (zh) * 2016-08-16 2023-05-30 上海交通大学 自动检测盾构隧道衬砌施工质量的机械装置及检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274796A (ja) * 1988-09-09 1990-03-14 Oomotogumi:Kk 場所打ちコンクリートによるシールドトンネルの覆工方法
CN103123252A (zh) * 2012-02-10 2013-05-29 南京大学 盾构隧道管片壁后同步注浆多参量实时监测方法与系统
KR101281242B1 (ko) * 2012-08-31 2013-07-02 (주)동아컨설턴트 암반 내의 연약대 그라우팅 공법
CN103573269A (zh) * 2013-11-13 2014-02-12 上海建科工程咨询有限公司 盾构隧道注浆层性能检测方法
CN104989423A (zh) * 2015-06-11 2015-10-21 同济大学 可视化单圆盾构同步注浆浆液扩散模式研究平台及其应用
CN105545325A (zh) * 2015-12-29 2016-05-04 上海隧道工程有限公司 类矩形盾构同步注浆可视化模拟试验系统及方法
CN107120120A (zh) * 2017-06-21 2017-09-01 同济大学 车架随行式盾构隧道壁后注浆检测装备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470622A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490878A (zh) * 2018-12-29 2019-03-19 安徽省城建设计研究总院股份有限公司 一种隧道专用探地雷达检测装置
CN109490878B (zh) * 2018-12-29 2024-04-26 安徽省城建设计研究总院股份有限公司 一种隧道专用探地雷达检测装置
CN109799327A (zh) * 2019-03-08 2019-05-24 西南交通大学 一种可视化的盾构隧道施工注浆效果检测试验装置和方法
CN114019134A (zh) * 2021-08-23 2022-02-08 长安大学 一种组合式盾构隧道壁后注浆模拟装置及试验方法
CN114414438A (zh) * 2022-01-24 2022-04-29 中国矿业大学 一种基于质子磁力仪检测注浆扩散范围的识别方法
CN114414438B (zh) * 2022-01-24 2024-01-26 中国矿业大学 一种基于质子磁力仪检测注浆扩散范围的识别方法
CN114934787A (zh) * 2022-06-08 2022-08-23 京昆高速铁路西昆有限公司 可视化隧道二衬拱部纵向灌注饱满装置

Also Published As

Publication number Publication date
CN107120120B (zh) 2019-10-01
CN107120120A (zh) 2017-09-01
EP3470622A4 (en) 2019-09-04
US20190330984A1 (en) 2019-10-31
US11181633B2 (en) 2021-11-23
EP3470622A1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
WO2018233354A1 (zh) 车架随行式盾构隧道壁后注浆检测装备
CN108828589B (zh) 地铁盾构隧道衬砌质量高精度快速车载检测方法与装置
CN104076089B (zh) 环形锻件自动超声波c扫描检测系统
CN103529122B (zh) 一种多功能双通道焊缝超声波检测扫查器
CN105946878A (zh) 一种地铁双轨钢轨探伤车
CN209260556U (zh) 一种智能化大箱梁表观缺陷检测装置
CN107642036A (zh) 桥梁快速可视化检测装置及其系统和方法
CN205524254U (zh) 一种地铁双轨钢轨探伤车
CN108613791B (zh) 一种入射激波三维结构测量装置及测量方法
CN109468947A (zh) 一种智能化大箱梁表观缺陷检测装置及方法
CN208872301U (zh) 一种单轨式地铁隧道安全巡检机器人
CN106770657A (zh) 用于地铁隧道道床脱空的检测方法
CN113466337A (zh) 基于激光冲击方法的隧道衬砌结构内部脱空病害检测装备及检测方法
CN216144742U (zh) 基于激光冲击方法的隧道衬砌结构内部脱空病害检测装备及小车
CN207798696U (zh) 一种光纤裂缝监测传感器的监测位置调节装置
CN106680301A (zh) 用于汽车辐射成像检测系统的装置及辐射成像检测系统
CN209387872U (zh) 一种视觉与雷达隧道病害快速检测装置
CN104898706A (zh) 一种隧道内可移动式动态监控云台
CN112761653A (zh) 一种泥水-土压双模可切换式盾构掘进模拟试验装置
CN109001027A (zh) 一种图像相关的车载作用下采动岩土体变形试验模型装置
CN112033986B (zh) 一种tbm渣片射线背散射实时扫描成像装置及方法
CN108333193B (zh) 一种管道培训试件射线数字化无损检测装置
CN207295453U (zh) 一种桥梁快速可视化检测装置及其系统
CN106382914B (zh) 一种基于psd传感器隧道拱顶沉降的自动化监测装置及其监测方法
CN103021255A (zh) 一种用于测试雷达的模拟实验装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018821101

Country of ref document: EP

Effective date: 20190111

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE