WO2018233290A1 - 一种终端无线充电接收装置、发射装置与无线充电系统 - Google Patents

一种终端无线充电接收装置、发射装置与无线充电系统 Download PDF

Info

Publication number
WO2018233290A1
WO2018233290A1 PCT/CN2018/074186 CN2018074186W WO2018233290A1 WO 2018233290 A1 WO2018233290 A1 WO 2018233290A1 CN 2018074186 W CN2018074186 W CN 2018074186W WO 2018233290 A1 WO2018233290 A1 WO 2018233290A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
mobile terminal
wireless charging
back shell
metal back
Prior art date
Application number
PCT/CN2018/074186
Other languages
English (en)
French (fr)
Inventor
杨松楠
胡小情
蔡兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22192761.9A priority Critical patent/EP4160870A1/en
Priority to EP18820428.3A priority patent/EP3633823B1/en
Publication of WO2018233290A1 publication Critical patent/WO2018233290A1/zh
Priority to US16/721,310 priority patent/US11355964B2/en
Priority to US17/727,355 priority patent/US11870272B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/08Magnetic elements

Definitions

  • Embodiments of the present invention relate to the field of wireless charging, and more particularly, to a mobile terminal wireless charging receiving device or transmitting device, or a wireless charging system.
  • the mobile terminal is widely used for handheld mobile devices.
  • the rear shell of the mobile terminal is undoubtedly the longest part of contact with our palm.
  • the advantages of the metal back shell are: texture, feel, and easy to form in one piece; metal material takes care of wear resistance. Sex and anti-dropping, only when the impact of a large force impact will only produce deformation, and will not be as easy to break as glass.
  • a metal backshell mobile terminal including a wireless charging system such as a smart phone
  • the metal back shell has a certain influence on the signal of the smart phone.
  • the high-frequency magnetic field cannot penetrate the metal back shell, so it is necessary to open the hole or the seam to break the back cover, which reduces the support strength and beauty of the metal back shell.
  • the aperture that the smartphone can accept in the back cover opening is too small for the traditional coil design, and the wireless charging transmitting coil is insufficiently coupled with the wireless charging receiving coil installed in the smart phone, resulting in low power transmission efficiency.
  • the metal back shell generates eddy currents under the magnetic field generated by the wireless charging transmitting coil (as shown in FIG. 1), resulting in rapid heating of the metal back shell, resulting in Energy loss and severely affect the user's experience.
  • Embodiments of the present invention provide a mobile terminal wireless charging receiving device, a transmitting device, and a wireless charging system.
  • the two coils are disposed in a same plane and connected in series by setting two coils in which electromagnetic induction occurs.
  • the winding directions of the two coils are opposite, so that the magnetic field generated by the two coils is opposite in direction, and the metal back shell eddy current problem of the mobile terminal including the wireless charging system, such as a smart phone, is solved, and the metal back shell is achieved.
  • the effect of heat and energy loss of the metal body can be reduced without opening or slitting.
  • an embodiment of the present invention provides a mobile terminal wireless charging receiving apparatus, where the wireless charging receiving apparatus is configured to be disposed inside a mobile terminal and adjacent to a metal back shell of the mobile terminal, and is characterized in that An interconnected coil, the two coils being in the same plane and connected in series, and the winding directions of the two coils are opposite, such that the magnetic fluxes generated by the two coils on the metal back shell are opposite.
  • the two coils are in the same plane and connected in series, and the winding directions of the two coils are opposite, so that the magnetic fields generated by the two coils are opposite in direction Therefore, the magnetic flux generated on the metal back shell cancels each other, thereby weakening or eliminating the eddy current of the metal back shell, so that the metal back shell temperature is lowered without opening the metal back shell and the effect of reducing energy loss is achieved. And to ensure the mechanical support of the metal body.
  • the scheme can adopt a wireless charging coil of a butterfly structure or a figure eight structure.
  • the magnetic flux generated by the two coils on the metal back shell is the same, such that the total magnetic flux passing through the metal back shell is zero.
  • the magnetic fields generated by the two coils are opposite in direction and equal in size, so that the magnetic flux generated on the metal back shell cancels each other, thereby eliminating the eddy current generated by the two coils on the metal back shell, so the metal back shell
  • the metal backshell temperature is lowered without opening the seam and the effect of reducing the energy loss is achieved, and the mechanical support of the metal body is ensured.
  • the plane of the two coils is parallel to the metal back shell.
  • an embodiment of the present invention provides a mobile terminal, including a wireless charging receiving device, where the wireless charging receiving device is disposed inside the mobile terminal and is adjacent to a metal back shell of the mobile terminal, where The wireless charging receiving device includes two interconnected coils, the two coils are in the same plane and connected in series, and the winding directions of the two coils are opposite, so that the two coils are on the metal back shell The resulting magnetic flux is in the opposite direction.
  • the mobile terminal further includes a dual camera, one of the two coils surrounds one of the dual cameras, and the other coil Surround another camera in the dual camera.
  • the mobile terminal further includes a dual camera, the two coils respectively surrounding one of the two cameras.
  • the mobile terminal further includes at least two of a flash, a fingerprint recognition device, and a camera.
  • One of the two coils surrounds the flash on the metal back shell, the fingerprint recognition device, and one of the three devices of the camera, and the other coil surrounds the flash, the fingerprint recognition device, and the remaining two of the camera One, so that the two coils are electromagnetically induced by the magnetic field entering the mobile terminal through the flash lamp, or the fingerprint recognition device, or the camera.
  • the plane of the two coils is parallel to the metal back shell, and the two coils respectively surround the One of a flashlight on the metal back shell, a fingerprint recognition device, and a small distance between the three components of the camera to cause the two coils to generate a magnetic field with a wireless charging transmitter that charges the mobile terminal Electromagnetic induction occurs.
  • the two coils are provided with a flashing light or a fingerprint recognition device on the metal back shell of the mobile terminal, or The total amount of magnetic flux generated outside the camera is zero to eliminate the vortex of the magnetic field generated by the wireless charging transmitter when it penetrates the metal back shell.
  • the two coils are the same coil.
  • the electromagnetic signal is no longer shielded by the metal back shell, and the electromagnetic induction efficiency is high.
  • the two coils By arranging the two coils to be the same coil, the process can be simplified, and the total amount of magnetic flux can be easily realized under the action of a magnetic field.
  • the two coils may also be coils of different shapes or windings, and only the magnetic flux generated by the two may be the same.
  • the scheme can adopt a wireless charging coil of a butterfly structure or a figure eight structure.
  • an embodiment of the present invention provides a wireless charging and transmitting apparatus for a mobile terminal, including a transmitting coil, where the transmitting coil includes two interconnected coils, and the two coils are in the same plane and connected in series, and The winding directions of the two coils are opposite.
  • the transmitting coil includes two interconnected coils, and the two coils are in the same plane and connected in series, and The winding directions of the two coils are opposite.
  • the magnetic fields generated by the two coils are opposite in direction, so that the mobile terminal wireless charging transmitting device is In the case where the mobile terminal is charged, the magnetic flux passing through the metal back shell of the mobile terminal is reversed.
  • the magnetic flux generated by the two coils is the same on the metal back shell.
  • the two coils are the same coil.
  • an embodiment of the present invention provides a wireless charging system for a mobile terminal, including a receiving device and a transmitting device, where the transmitting device is disposed on a wireless charger, and the receiving device is disposed inside the mobile terminal. ;
  • the receiving device and the transmitting device each comprise two interconnected coils, the two interconnected coils are in the same plane and connected in series, and the winding directions of the two interconnected coils are opposite;
  • the magnetic fields generated by the two coils are opposite in direction such that the magnetic fields generated by the two interconnected coils of the receiving device are behind the mobile terminal metal
  • the magnetic fluxes on the casing are opposite in direction and cause the magnetic fields generated by the two interconnected coils of the launching device to be opposite in direction of the magnetic flux on the metal rear casing of the mobile terminal.
  • the magnetic flux generated by the two interconnected coils on the metal back shell is the same.
  • the two mutually connected coils of the receiving device and the two transmitting devices Electromagnetic induction occurs between the connected coils.
  • the mobile terminal further includes a flash, a fingerprint recognition device, and a camera At least two of the devices, one of the two coils surrounding a flash on the metal back shell, a fingerprint recognition device, and one of three devices of the camera, the other coil surrounding the flash, fingerprint recognition device And one of the remaining two of the cameras, so that the two coils are electromagnetically induced by the magnetic field entering the mobile terminal through the flash lamp, or the fingerprint recognition device, or the camera.
  • the plane of the two coils is parallel to the metal back shell And the two coils respectively surround one of a flash on the metal back shell, or a fingerprint recognition device, or a small distance between the three cameras, so that the two coils are for the movement
  • the magnetic field generated by the wireless charging transmitter of the terminal charging generates electromagnetic induction.
  • the mobile terminal further includes a dual camera, the mobile terminal Also included is a dual camera, one of the two coils surrounding one of the dual cameras and the other coil surrounding the other of the dual cameras.
  • the two coils are in the same plane and connected in series, and the winding directions of the two coils are opposite, so that the The opposite magnetic field generated by the two coils solves the metal back shell eddy current problem of the mobile terminal including the wireless charging system, and the metal back shell can reduce the heat and energy loss of the metal body without opening or slitting. Effect.
  • the magnetic fields generated by the two coils are opposite in direction and equal in magnitude, so that the magnetic fluxes generated on the metal back shell cancel each other, thereby eliminating eddy currents generated by the two coils on the metal back shell.
  • FIG. 1 is a schematic diagram of a magnetic circuit of a wireless charging system for a mobile terminal provided by the prior art.
  • FIG. 2 is a schematic diagram of a wireless charging and receiving device for a mobile terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a magnetic circuit for receiving a coil by wireless charging in a wireless charging receiving device of a mobile terminal according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wireless charging coil of a mobile terminal according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a mobile terminal provided with the wireless charging coil according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a wireless charging and transmitting apparatus for a mobile terminal according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a magnetic circuit of a wireless charging transmitting apparatus for a mobile terminal according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a wireless charging system for a mobile terminal according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a magnetic circuit of a wireless charging system for a mobile terminal according to another embodiment of the present invention.
  • FIG. 10a is a schematic structural diagram of a wireless charging coil and a mobile terminal camera according to another embodiment of the present invention
  • FIG. 10b is a schematic structural diagram of a single charging coil disposed on a camera of the mobile terminal.
  • FIG. 11 is a schematic diagram of wireless charging efficiency of a mobile terminal according to an embodiment of the present invention.
  • the reference numerals in the above drawings are as follows: 1: coil in the prior art receiving device; 2: coil in the prior art transmitting device; 3: metal back shell; 4: metal back shell opening; 5: magnetic field line;
  • the invention relates to a coil in a wireless charging receiving device; 7: a structure of a coil 6 in a transmitting device or a coil 10 in a receiving device in the embodiment of the invention, the structure is composed of a coil 701 and a coil 702; 701: a coil 1 in the embodiment of the invention 702: coil 2 in the embodiment of the invention; 801: camera one; 802: camera two; 9: mobile phone with dual camera and integrated wireless charging coil; 10: coil in wireless charging transmitting device in the embodiment of the invention.
  • the embodiments of the present invention may be applied to various charging scenarios, and the mobile terminal is not limited to a smart phone, a tablet computer, and a wearable device, and is not limited to various mobile terminal devices such as an electric car. limited.
  • a mobile terminal wireless charging receiving device may include a wireless charging receiving coil 21, a rectifying circuit 22, a voltage regulator 23, and a controller 24.
  • the wireless charging receiving coil 21 generates electric energy in a magnetic field generated by the wireless charging transmitting device, and is regulated by the rectifier circuit 22 and the voltage regulator 23 under the action of the controller 24 to finally output a voltage to the load.
  • the receiving device is disposed inside the mobile terminal device, such as inside a mobile phone.
  • FIG. 3 a schematic diagram of a magnetic circuit of a wireless charging receiving coil in a wireless charging receiving device of a mobile terminal according to an embodiment of the present invention, the wireless charging receiving device being disposed inside the mobile terminal and being close to the mobile
  • the metal back shell 3 of the terminal includes a wireless charging coil 6 in the embodiment of the present invention formed by two interconnected coils, and the two interconnected coils included in the coil 6 are 701 and 702, respectively, and the coil 701 And 702 are in the same plane and are connected in series, and the winding directions of the two coils 701 and 702 are opposite, so that the magnetic fluxes generated by the two coils 701 and 702 on the metal back shell 3 are opposite.
  • the two coils 701 and 702 are in the same plane and connected in series, and the winding directions of the two coils 701 and 702 are opposite to each other.
  • the magnetic fields generated by the two coils 701 and 702 are opposite in direction, so that the magnetic flux generated on the metal back shell cancels each other, thereby weakening or eliminating the eddy current of the metal back shell 3, so that the metal back shell is reduced without slitting.
  • the metal back shell 3 has a temperature and achieves the effect of reducing energy loss, and ensures the mechanical support of the metal body.
  • the magnetic flux generated by the two coils 701 and 702 on the metal back shell 3 is the same so that the total magnetic flux passing through the metal back shell 3 is zero.
  • the magnetic fields generated by the two coils 701 and 702 are opposite in direction and equal in magnitude, so that the magnetic fluxes generated on the metal back shell 3 cancel each other, thereby eliminating the occurrence of the two coils 701 and 702 on the metal back shell 3.
  • the eddy current reduces the temperature of the metal back shell 3 without breaking the metal back shell 3 and achieves the effect of reducing energy loss, and ensures the mechanical support of the metal body.
  • the planes of the two coils 701 and 702 are parallel to the metal back shell 3.
  • the two coils 701 and 702 are correspondingly disposed at positions parallel to the flashing light on the metal back shell 3, or the fingerprint recognition device, or the position of the camera, so that the two coils 701 and 702 pass the flash Or the fingerprint recognition device or the magnetic field lines entering the mobile terminal at the camera are electromagnetically induced.
  • the coil is disposed at the flash, or the fingerprint recognition device, or the camera, and the opening is not required to be additionally opened in other places of the metal back shell 3, thereby reducing the number of openings.
  • the two coils 701 and 702 are disposed at a camera on the metal rear case 3 of the mobile terminal, and the camera is a dual camera, and has a camera 801 and a camera 2 A 802 dual camera and a mobile phone 9 incorporating a wireless charging coil 7, one of the two coils surrounding one of the dual cameras and the other coil surrounding the other of the dual cameras.
  • the two coils 701 and 702 are parallel to the plane of the dual camera.
  • each of the two coils 701 and 702 is respectively disposed at a camera, so that the two coils 701 and 702 and the coil on the wireless charger are electromagnetically induced.
  • the two coils 701 and 702 are electromagnetically induced by the flash lamp, or the fingerprint recognition device, or the position of the camera, with a magnetic field generated by the wireless charging transmitting device of the mobile terminal. At the flash lamp, or the fingerprint recognition device, or the position of the camera, the electromagnetic signal is no longer shielded by the metal back shell 3, and the electromagnetic induction efficiency is high.
  • the two coils 701 and 702 are electromagnetically induced by a magnetic field generated by the wireless charging transmitting device of the mobile terminal at a position where the dual camera is located.
  • the two coils 701 and 702 are provided with a flash lamp, or a fingerprint recognition device on the metal rear case 3 of the mobile terminal, or a total amount of magnetic flux generated at a place other than the camera.
  • the present application can adopt a wireless charging coil of a butterfly structure or a figure eight structure.
  • the butterfly-like structure or the figure-eight structure is represented by a structure in which two separate loop coils intersect, and each of the loop coils may have various shapes such as a circle, an ellipse or a rectangle, or an ellipse, in which a separate loop coil is used.
  • the shape is not limited.
  • the two coils 701 and 702 are arranged as the same coil. By setting the two coils 701 and 702 to the same coil, the process can be simplified, and the total amount of magnetic flux can be easily realized under the action of a magnetic field.
  • the two coils 701 and 702 may also be coils of different shapes or windings, and only the magnetic flux generated by the two may be the same.
  • the two coils 701 and 702 are in the same plane and connected in series, and the winding directions of the two coils 701 and 702 are opposite,
  • the structure in which the magnetic fields generated by the two coils 701 and 702 are opposite to each other solves the eddy current problem of the metal back shell 3 of the mobile terminal including the wireless charging system, such as a smart phone, and the metal back shell 3 can be opened without seams or seams. Reduce the heat and energy loss of the metal body.
  • the magnetic fields generated by the two coils 701 and 702 are opposite in direction and equal in magnitude, so that the magnetic fluxes generated on the metal back shell 3 cancel each other, thereby eliminating the two coils 701 and 702 in the metal back shell.
  • a wireless charging coil adopting a butterfly-like structure or a figure-eight structure in some embodiments of the present invention is divided into two parts: a coil 1 portion and a coil 2 portion are cross-connected, and are generated by a coil 1 current.
  • the magnetic flux is equal in magnitude and opposite in direction to the magnetic flux generated by the current generated by the coil 2, and when the magnetic flux acts on the metal back shell 3 of the terminal charging device, the total magnetic flux is zero on the metal back shell 3.
  • the transmission coil and the receiving coil structure of the solution are the same, and can be used for a mobile terminal wireless charging receiving device, a transmitting device and a wireless charging system.
  • the shape of the wireless charging coil is a coil connected to each other, the two coils 701 and 702 are in the same plane and connected in series, and the winding directions of the two coils 701 and 702 are opposite, so that the two The magnetic fields generated by the coils 701 and 702 are opposite in direction, so that the magnetic fluxes generated on the metal back shell 3 cancel each other, thereby weakening or eliminating the eddy current of the metal back shell 3, so that the metal is lowered on the metal back shell 3 without slitting.
  • the rear case 3 has a temperature and achieves the effect of reducing energy loss, and ensures the mechanical support of the metal body.
  • the scheme can adopt a wireless charging coil of a butterfly-like structure or a figure-eight structure, and of course, two square coils can be connected to form a wireless charging coil, and the structure of a specific single coil is not limited, and only two coils 701 are required.
  • the magnetic flux generated by the current of 702 is equal in magnitude and opposite in direction.
  • the process can be simplified, and the total amount of magnetic flux can be easily realized under the action of a magnetic field.
  • the two coils 701 and 702 may also be coils of different shapes or windings, and only the magnetic flux generated by the two may be the same.
  • the application scenario of the wireless charging coil may be a wireless charging receiving device of a mobile terminal, or a transmitting device or a wireless charging system. Specifically, the planes of the two coils 701 and 702 are parallel to the metal back shell 3.
  • the coil is disposed at the flash, or the fingerprint recognition device, or the camera, and the opening is not required to be additionally opened in other places of the metal back shell 3, thereby reducing the number of openings.
  • the two coils 701 and 702 are disposed at a camera on the metal rear case 3 of the mobile terminal, and in the case where the camera is a dual camera, the two coils 701 and 702 are respectively disposed corresponding to the two One of the cameras is located, and the two coils 701 and 702 are parallel to the plane of the dual camera.
  • each of the two coils 701 and 702 is respectively disposed at a camera, which facilitates electromagnetic induction of the coils on the wireless charger by the two coils 701 and 702.
  • the electromagnetic signal is no longer shielded by the metal back shell 3, and the electromagnetic induction efficiency is high.
  • the effect of applying the wireless charging coil includes that two coils 701 and 702 in which electromagnetic induction occurs are disposed as interconnected coils, the two coils 701 and 702 are in the same plane and connected in series, and the two coils
  • the winding directions of 701 and 702 are opposite to each other, so that the magnetic fields generated by the two coils 701 and 702 are opposite in direction, and the eddy current problem of the metal back shell 3 of the mobile terminal including the wireless charging system, such as a smart phone, is solved, and the metal is reached.
  • the rear case 3 can reduce the heat and energy loss of the metal body without opening or slitting.
  • the magnetic fields generated by the two coils 701 and 702 are opposite in direction and equal in magnitude, so that the magnetic fluxes generated on the metal back shell 3 cancel each other, thereby eliminating the two coils 701 and 702 in the metal back shell.
  • FIG. 5 is a schematic structural diagram of a mobile terminal provided with the wireless charging coil according to another embodiment of the invention.
  • the mobile terminal includes a wireless charging receiving device, and the wireless charging receiving device is disposed inside the mobile terminal and is adjacent to the metal back shell 3 of the mobile terminal, and the wireless charging receiving device includes two interconnected coils.
  • the mobile terminal further includes a dual camera, one of the two coils surrounds one of the dual cameras, and the other coil surrounds the other of the dual cameras.
  • the dual cameras 801 and 802 are provided, that is, the coil 701 corresponds to the surrounding camera 801, and the coil 702 corresponds to the surrounding camera 802, so that the two coils 701 and 702 are wireless.
  • the coil on the charger is electromagnetically induced. At the position of the camera, the electromagnetic signal is no longer shielded by the metal back shell 3, and the electromagnetic induction efficiency is high.
  • the two coils 701 and 702 are electromagnetically induced by a magnetic field generated by the wireless charging transmitting device of the mobile terminal at a position where the dual camera is located. The total amount of magnetic flux generated outside the camera is zero.
  • the two coils 701 and 702 can be the same coil.
  • the plane of the two coils is parallel to the metal back shell, and the two coils are provided with a flash lamp, or a fingerprint recognition device, or a magnetic flux generated outside the camera on the metal rear casing of the mobile terminal. The amount is zero to eliminate the vortex of the magnetic field generated by the wireless charging transmitter when it penetrates the metal back shell.
  • the mobile terminal further includes at least two of a flash, a fingerprint recognition device, and a camera, and one of the two coils surrounds a flash on the metal back shell, a fingerprint recognition device, And one of the three devices of the camera, the other coil surrounding the flash, the fingerprint recognition device, and one of the remaining two of the camera, such that the two coils pass the flash, or the fingerprint recognition device, or the camera Electromagnetic induction occurs under the action of a magnetic field entering the mobile terminal.
  • the plane of the two coils is parallel to the metal back shell, and the two coils respectively surround the flashing light on the metal back shell, the fingerprint recognition device, and the distance between the three components of the camera.
  • One of the two causes electromagnetic induction of the magnetic field generated by the two coils with a wireless charging transmitter that charges the mobile terminal.
  • a mobile terminal wireless charging transmitting apparatus in some embodiments of the present invention may include an AC/DC power converter 61, a driver 62, a transmitting coil 63, a sensor 64, and a controller 65.
  • the AC/DC power converter 61 converts utility power to direct current.
  • the transmitting coil 63 is configured to electromagnetically induce a coil in the wireless charging receiving device to cause the coil in the wireless charging receiving device to generate electric energy in a magnetic field generated by the transmitting device transmitting coil 63, as shown in FIG.
  • a schematic diagram of a magnetic circuit of a wireless charging transmitting device of a mobile terminal in some embodiments of the present invention wherein the transmitting coil 10 includes two interconnected coils, the two coils are in the same plane and connected in series, and the two coils The winding directions are opposite. In the case where current flows through the two coils connected in series, the magnetic fields generated by the two coils are opposite in direction, so that the mobile terminal wireless charging transmitting device charges the mobile terminal. In the case where the magnetic fluxes passing through the metal back shell 3 of the mobile terminal are opposite in direction, the magnetic flux generated by the two coils on the metal back shell 3 is the same.
  • the two coils may be the same coil to simplify the process, and it is simple and easy to ensure that the magnetic fields generated by the two coils are opposite in direction and equal in magnitude, so that the magnetic flux generated on the metal back shell 3 cancels each other. .
  • the two coils generated by the coils on the transmitting device generate magnetic fields in opposite directions and of equal magnitude, so that the magnetic fluxes generated on the metal back shell 3 cancel each other out.
  • the eddy current problem of the metal back shell 3 of the mobile terminal including the wireless charging system, such as a smart phone, is solved, and the metal back shell 3 can reduce the heat and energy loss of the metal body without opening or slitting.
  • a mobile terminal wireless charging system includes a receiving device and a transmitting device, and the transmitting device may include an AC/DC power converter 61, a driver 62, a transmitting coil 63, and a sensor 64. And controller 65.
  • the AC/DC power converter 61 converts utility power to direct current.
  • the receiving device may include a wireless charging receiving coil 21, a rectifying circuit 22, a voltage regulator 23, and a controller 24.
  • the transmitting coil 63 and the wireless charging receiving coil 21 are electromagnetically induced, and the wireless charging receiving coil 21 generates electric energy in a magnetic field generated by the wireless charging transmitting device transmitting coil 63, and passes through the rectifier circuit under the action of the controller 24. 22 and the adjustment of the voltage regulator 23, the final output voltage to the load.
  • the receiving device is disposed inside the mobile terminal device, such as inside a mobile phone.
  • the transmitting device is disposed on a wireless charger, and the receiving device is disposed inside the mobile terminal;
  • FIG. 9 a schematic diagram of a magnetic circuit of a wireless charging system of a mobile terminal according to some embodiments of the present invention, wherein the receiving device and the transmitting device respectively include a wireless charging receiving device coil 6 and a wireless charging transmitting device coil 10,
  • the wireless charging receiving device coil 6 and the wireless charging transmitting device coil 10 each include two interconnected coils 701 and 702, the two coils 701 and 702 are in the same plane and connected in series, and the two coils 701 and The winding direction of 702 is reversed; electromagnetic induction is generated between the two coils of the receiving device coil 6 and the two coils of the transmitting device coil 10.
  • the magnetic fields generated by the two coils 701 and 702 are opposite in direction, so that the magnetic fields generated by the two coils of the receiving device coil 6 are in the same place.
  • the magnetic flux on the metal back shell 3 of the mobile terminal is opposite in direction, and the magnetic flux generated by the two coils of the transmitting device coil 10 is opposite in direction of the magnetic flux on the metal rear casing 3 of the mobile terminal, and the two coils are generated.
  • the magnetic flux of the magnetic field on the metal back shell 3 is the same.
  • the mobile terminal further includes at least two of a flash, a fingerprint recognition device, and a camera, and one of the two coils of the receiving device coil 6 surrounds the flash on the metal back shell, One of the three components of the fingerprint recognition device and the camera, the other coil surrounds the flash, the fingerprint recognition device, and one of the remaining two of the camera, so that the two coils are recognized by the flash or fingerprint Electromagnetic induction occurs under the action of the magnetic field of the device or the camera entering the mobile terminal.
  • the plane of the two coils is parallel to the metal back shell 3, and the two coils respectively surround the flashing light on the metal back shell, the fingerprint recognition device, and the distance between the three components of the camera are small.
  • One of the two causes electromagnetic induction of the magnetic field generated by the two coils with the wireless charging transmitter that charges the mobile terminal.
  • the coils 701 and 702 are respectively disposed on the receiving device and the transmitting device, and the two coils in which electromagnetic induction occurs are disposed as interconnected coils, the two coils being in the same plane and Connecting in series, and the winding directions of the two coils are opposite, so that the magnetic field generated by the two coils is opposite in direction, solving the eddy current problem of the metal back shell 3 of the mobile terminal including the wireless charging system, such as a smart phone.
  • the metal back shell 3 can be achieved without the need for opening or slitting to reduce the heat and energy loss of the metal body.
  • the magnetic fluxes generated on the metal back shell 3 cancel each other, thereby eliminating the eddy current generated by the two coils on the metal back shell 3.
  • the two coils generated by the coils on the receiving device generate magnetic fields in opposite directions and of equal magnitude, and the magnetic fluxes generated by the coils on the receiving device on the metal back shell 3 cancel each other, and the two coils on the transmitting device generate two The magnetic fields generated by the coils are opposite in direction and equal in magnitude, so that the magnetic fluxes generated on the metal back shell 3 cancel each other out.
  • the two coils 701 and 702 of the coil 6 are disposed at the camera on the metal rear case 3 of the mobile terminal, and the camera is the case of the dual cameras 801 and 802
  • one of the two coils surrounds one of the dual cameras, and the other coil surrounds the other of the dual cameras. That is, the coil 701 corresponds to the camera 801, the coil 702 corresponds to the camera 802, and the two coils are parallel to the plane of the dual camera, so that the two coils and the coil on the wireless charger are electromagnetically induced.
  • FIG. 10a is a schematic structural diagram of a wireless charging coil and a mobile terminal camera according to another embodiment of the present invention
  • FIG. 10b is a schematic structural diagram of a conventional single wireless charging coil disposed on a mobile terminal camera.
  • the outer straight line represents the coil 7, including the coil 701 and the coil 702, and in Fig. 7b, the coil 1 is included.
  • the number of turns of the coil is 2 turns in this figure.
  • the middle circle represents the cameras 801 and 802 on the mobile terminal device.
  • the charging efficiency analysis was performed.
  • FIG. 11 is a schematic diagram of wireless charging efficiency of the mobile terminal provided in some embodiments of the present invention.
  • the abscissa identifies the ohmic value of the wireless charging load and the ordinate identifies the charging efficiency value.
  • the wireless charging coil is cross-connected between the two coils 701 and 702 such that the current directions of the two coils 701 and 702 are opposite, resulting in zero total flux on the metal backshell 3.
  • a high-frequency (6.78MHz) coil the coupling between the coils is enhanced, and the coil quality factor is increased.
  • the coil quality factor is the energy stored in the coil and the energy lost per cycle.
  • a quality indicator of the ratio ultimately improves the transmission efficiency of the wireless charging system.
  • simulation verification is adopted, such as the butterfly-like structure or the 8-shaped structure coil of the present scheme (as shown in FIG. 7a) and the conventional single Spiral spiral coil (as shown in FIG. 7b), the number of turns in the coil is 2, and the thickness of the coil is 0.1 mm.
  • the width is 0.8 mm
  • the line spacing is 0.2 mm
  • the magnetic material thickness is 0.2 mm
  • the magnetic permeability is 130.
  • the corresponding parameters are as shown in the following table.
  • the upper slit of the metal back shell 3 has a length of 15 mm and a width of 0.1 mm so that a magnetic field penetrates the metal back shell 3 through the slit.
  • the following table shows the parameters of the coupling coefficient, emission value, and receiving value of the transmitting coil and receiving coil.
  • the power transmission efficiency of the entire wireless charging system is calculated as shown in FIG. It can be seen that the wireless charging system using a butterfly-like structure or a figure-eight structure coil has a transmission efficiency of more than 90% in the case of charging of 5 ohms (ie, mobile terminal) ohms, which is significantly superior to the conventional technology.
  • Wireless charging system for a single Spiral spiral coil is significantly superior to the conventional technology.
  • the charging terminal has the metal back shell 3
  • the charging effect of the present invention is maximized.
  • the back cover of the present invention is not particularly limited to the metal back shell 3, and the rear cover of the mobile terminal may also be glass, plastic, etc. material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种移动终端无线充电接收装置,所述无线充电接收装置用于设置于所述移动终端内部且贴近于所述移动终端的金属后壳(3),包括两个相互连接的线圈(701、702),所述两个线圈(701、702)处于同一平面且串联连接,且所述两个线圈(701、702)的绕线方向相反,以使所述两个线圈(701、702)在金属后壳(3)上产生的磁通方向相反,解决了包含无线充电系统的移动终端如智能手机的金属后盖涡流问题,达到了金属后盖无需开孔或缝即可降低金属机身热度及能量损耗的效果。

Description

一种终端无线充电接收装置、发射装置与无线充电系统
本申请要求于2017年6月20日提交中国专利局、申请号为201710471936.6、申请名称为“一种终端无线充电接收装置、发射装置与无线充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无线充电领域,并且更具体地,涉及一种移动终端无线充电接收装置或发射装置,或无线充电系统。
背景技术
移动终端为手持移动设备被广泛使用,移动终端后壳无疑是与我们的手掌接触时间最长的部分,金属后壳的优点有:质感、手感好,更容易一体成型;金属材质兼顾了耐磨性和抗摔性,遇到较大力量冲击时只会产生形变,而不会像玻璃一样容易碎裂。然而,对于包含无线充电系统的金属后壳移动终端而言,例如智能手机,需要在智能手机中安装无线充电接收线圈,用于接收无线充电器上无线充电发射线圈所产生的电磁波,从而为智能手机充电。但是,金属后壳对智能手机信号会有一定影响,高频的磁场无法穿透金属后壳,因此需要专门开孔或开缝破坏后盖,降低了且降低了金属后壳的支撑强度和美观度,而且智能手机可接受的在后盖开孔的孔径对于传统的线圈设计来说太小,无线充电发射线圈与智能手机中安装无线充电接收线圈耦合不足,导致功率传输效率低。同时,对于耦合式无线充电的工作频率(100-200kHz)而言,金属后壳在无线充电发射线圈所产生的磁场作用下产生涡流(如图1所示),导致金属后壳快速发热,造成能量损耗且严重影响用户的体验。
发明内容
本发明实施例提供一种移动终端无线充电接收装置、发射装置与无线充电系统,通过将发生电磁感应的两个线圈设置为相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈产生的磁场方向相反的结构,解决了包含无线充电系统的移动终端如智能手机的金属后壳涡流问题,达到了金属后壳无需开孔或缝即可降低金属机身热度及能量损耗的效果。
第一方面,本发明实施例提供了一种移动终端无线充电接收装置,所述无线充电接收装置用于设置于移动终端内部且贴近于所述移动终端的金属后壳,其特征在于,包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈在金属后壳上产生的磁通方向相反。
通过将所述两个线圈设置为相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈产生的磁场方向相反,从而在金属后壳上产生的磁通相互抵消,进而减弱或消除金属后壳涡流,所以在金属后壳上不用开缝的 情况下降低了金属后壳温度且达到了减少能量损耗的效果,而且保证了金属机身的机械支撑度。本方案可以采用蝴蝶状结构或8字形结构的无线充电线圈。
结合第一方面,在第一方面的第一种可能的实现方式中,所述两个线圈产生的磁场的在金属后壳上的磁通量相同,以使通过所述金属后壳上的总磁通量为零。
使所述两个线圈产生的磁场方向相反且大小相等,从而在金属后壳上产生的磁通相互抵消,进而消除了所述两个线圈在金属后壳上产生的涡流,所以在金属后壳上不用开缝的情况下降低了金属后壳温度且达到了减少能量损耗的效果,而且保证了金属机身的机械支撑度。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述两个线圈所在平面平行于与所述金属后壳。
第二方面,本发明实施例提供了一种移动终端,包括无线充电接收装置,所述无线充电接收装置设置于所述移动终端内部且贴近于所述移动终端的金属后壳,其特征在于,所述无线充电接收装置包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈在金属后壳上产生的磁通方向相反。
结合第二方面,在第二方面的第一种可能的实现方式中,所述移动终端还包括双摄像头,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。
结合第二方面,在第二方面的第二种可能的实现方式中,所述移动终端还包括双摄像头,所述两个线圈分别环绕所述两个摄像头中的其中一个。
结合第二方面第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述移动终端还包括闪光灯、指纹识别装置、与摄像头三个器件中的至少两个,所述两个线圈中的一个线圈环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件中的一个,另一个线圈环绕所述闪光灯、指纹识别装置、与摄像头剩余两个中的一个,以使所述两个线圈在通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁场的作用下发生电磁感应。
结合第二方面第二种可能的实现方式,在第二方面的第四种可能的实现方式中,所述两个线圈所在平面与所述金属后壳平行,且所述两个线圈分别环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件间距离较小的两者中的一个,以使所述两个线圈与为所述移动终端充电的无线充电发射装置产生的磁场发生电磁感应。
结合第二方面第三种可能的实现方式,在第二方面的第五种可能的实现方式中,所述两个线圈在所述移动终端金属后壳上设置有闪光灯、或者指纹识别装置、或者摄像头处之外的地方产生的磁通总量为零,以消除无线充电发射装置产生的磁场在穿透所述金属后壳时旋涡。
结合第二方面至第二方面的第五种可能的实现方式中,在第二方面的第六种可能的实现方式中,所述两个线圈为相同的线圈。
将线圈设置在所述闪光灯、或者指纹识别装置、或者摄像头处,可以不用在金属后壳的其他地方另外开孔,减少了开孔数量。
在所述闪光灯、或者指纹识别装置、或者摄像头位置处,电磁信号不再受到金属 后壳的屏蔽,电磁感应效率高。
将所述两个线圈设置为相同的线圈,可以简化工艺,在磁场作用下简单易行的实现磁通总量为零。所述两个线圈也可以为形状或绕数不同的线圈,只需通过二者产生的磁通量相同即可。本方案可以采用蝴蝶状结构或8字形结构的无线充电线圈。
第三方面,本发明实施例提供了一种移动终端无线充电发射装置,包括发射线圈,其中所述发射线圈包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,在电流流过所述相互串联的两个线圈的情形下,所述两个线圈产生的磁场方向相反,以使所述移动终端无线充电发射装置为所述移动终端充电的情形下,通过所述移动终端的金属后壳的磁通方向相反。
结合第三方面,在第三方面的第一种可能的实现方式中,所述两个线圈产生的磁场的在金属后壳上的磁通量相同。
结合第三方面,在第三方面的第二种可能的实现方式中,所述两个线圈为相同的线圈。
第四方面,本发明实施例提一种移动终端无线充电系统,其特征在于,包括接收装置与发射装置,所述发射装置设置在无线充电器上,所述接收装置设置在所述移动终端内部;
其中,所述接收装置与所述发射装置均包含两个相互连接的线圈,所述两个相互连接的线圈处于同一平面且串联连接,且所述两个相互连接的线圈的绕线方向相反;
在电流流过所述相互串联的两个线圈的情形下,所述两个线圈产生的磁场方向相反,以使所述接收装置的两个相互连接的线圈产生的磁场在所述移动终端金属后壳上的磁通方向相反,且使发射装置的两个相互连接的线圈产生的磁场在所述移动终端金属后壳上的磁通方向相反。
结合第四方面,在第四方面的第一种可能的实现方式中,所述两个相互连接的线圈产生的磁场的在金属后壳上的磁通量相同。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述接收装置两个相互连接的线圈与所述发射装置的两个相互连接的线圈之间产生电磁感应。
结合第四方面至第四方面的第二种可能的实现方式中任一实现方式,在第四方面的第三种可能的实现方式中,移动终端还包括闪光灯、指纹识别装置、与摄像头三个器件中的至少两个,所述两个线圈中的一个线圈环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件中的一个,另一个线圈环绕所述闪光灯、指纹识别装置、与摄像头剩余两个中的一个,以使所述两个线圈在通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁场的作用下发生电磁感应。
结合第四方面至第四方面的第三种可能的实现方式中任一实现方式,在第四方面的第四种可能的实现方式中,所述两个线圈所在平面与所述金属后壳平行,且所述两个线圈分别环绕所述金属后壳上的闪光灯、或者指纹识别装置、或者摄像头三者间距离较小的两者中的一个,以使所述两个线圈与为所述移动终端充电的无线充电发射装置产生的磁场发生电磁感应。
结合第四方面至第四方面的第四种可能的实现方式中任一实现方式,在第四方面 的第五种可能的实现方式中,所述移动终端的还包括双摄像头,所述移动终端还包括双摄像头,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。
本发明实施例中,通过将发生电磁感应的两个线圈设置为相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈产生的磁场方向相反的结构,解决了包含无线充电系统的移动终端如智能手机的金属后壳涡流问题,达到了金属后壳无需开孔或缝即可降低金属机身热度及能量损耗的效果。特别的,使所述两个线圈产生的磁场方向相反且大小相等,从而在金属后壳上产生的磁通相互抵消,进而消除了所述两个线圈在金属后壳上产生的涡流。
附图说明
图1是现有技术提供的一种移动终端无线充电系统的磁路示意图。
图2是本发明一实施例的一种移动终端无线充电接收装置示意图;
图3是本发明一实施例的一种移动终端无线充电接收装置中通过无线充电接收线圈的磁路的示意图。
图4是本发明另一实施例一种移动终端无线充电线圈的结构示意图。
图5是本发明另一实施例设置有所述无线充电线圈的移动终端结构示意图。
图6是本发明另一实施例的一种移动终端无线充电发射装置的示意图。
图7是本发明另一实施例的一种移动终端无线充电发射装置的磁路示意图。
图8是本发明另一实施例提供的一种移动终端无线充电系统的示意图。
图9是本发明另一实施例提供的一种移动终端无线充电系统的磁路示意图。
图10a是本发明另一实施例提供的一种无线充电线圈与移动终端摄像头的结构示意图,图10b是单个充电线圈设置于移动终端摄像头的结构示意图。
图11是本发明实施例提供的一种移动终端无线充电效率示意图。
上述各附图中标号说明如下:1:现有技术接收装置中线圈;2:现有技术发射装置中线圈;3:金属后壳;4:金属后壳开孔;5:磁力线;6:本发明无线充电接收装置中线圈;7:本发明实施例中发射装置中线圈6或接收装置中线圈10的结构,所述结构由线圈701与线圈702组成;701:本发明实施例中线圈1部;702:本发明实施例中线圈2部;801:摄像头一;802:摄像头二;9:具有双摄像头且集成无线充电线圈的手机;10:本发明实施例中无线充电发射装置中线圈。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
应理解,本发明实施例的可以应用于各种充电场景中,移动终端不限于智能手机、平板电脑及可穿戴设备,也不限于电动汽车等各种移动终端设备,本发明实施例对此不作限定。
如图2所示,本发明一些实施例中一种移动终端无线充电接收装置,所述接收装置可以包括无线充电接收线圈21、整流电路22、电压调节器23和控制器24。所述无 线充电接受线圈21在无线充电发射装置所产生的磁场中产生电能,在控制器24的作用下通过整流电路22及电压调节器23的调节,最终输出电压给负载。所述接收装置设置于移动终端设备内部,如设置于一部手机内部。
如图3所示,本发明一实施例的一种移动终端无线充电接收装置中通过无线充电接收线圈的磁路示意图,所述无线充电接收装置设置于所述移动终端内部且贴近于所述移动终端的金属后壳3,包括两个相互连接的线圈所形成的本发明实施例中的无线充电线圈6,所述线圈6包括的所述两个相互连接的线圈分别为701与702,线圈701和702处于同一平面且串联连接,且所述两个线圈701与702的绕线方向相反,以使所述两个线圈701与702在金属后壳3上产生的磁通方向相反。通过将所述两个线圈701与702设置为相互连接的线圈,所述两个线圈701与702处于同一平面且串联连接,且所述两个线圈701与702的绕线方向相反,以使所述两个线圈701与702产生的磁场方向相反,从而在金属后壳上产生的磁通相互抵消,进而减弱或消除金属后壳3涡流,所以在金属后壳上不用开缝的情况下降低了金属后壳3温度且达到了减少能量损耗的效果,而且保证了金属机身的机械支撑度。
特别地,所述两个线圈701与702产生的磁场的在金属后壳3上的磁通量相同,以使通过所述金属后壳3上的总磁通量为零。使所述两个线圈701与702产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消,进而消除了所述两个线圈701与702在金属后壳3上产生的涡流,所以在金属后壳3上不用开缝的情况下降低了金属后壳3温度且达到了减少能量损耗的效果,而且保证了金属机身的机械支撑度。
所述两个线圈701与702所在平面平行于与所述金属后壳3。所述两个线圈701与702对应设置于与所述金属后壳3上的闪光灯、或者指纹识别装置、或者摄像头所在位置平行的位置,以使所述两个线圈701与702与通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁力线发生电磁感应。将线圈设置在所述闪光灯、或者指纹识别装置、或者摄像头处,可以不用在金属后壳3的其他地方另外开孔,减少了开孔数量。
特别地,如图5所示,所述两个线圈701与702设置在所述移动终端金属后壳3上的摄像头处,且所述摄像头为双摄像头的情形下,具有摄像头一801与摄像头二802双摄像头且集成无线充电线圈7的手机9,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。且所述两个线圈701与702与所述双摄像头所在平面平行。在双摄像头情况下,所述两个线圈701与702中的每一个线圈分别对应设置于一个摄像头处,利于所述两个线圈701与702与无线充电器上的线圈发生电磁感应。
所述两个线圈701与702通过所述闪光灯、或者指纹识别装置、或者摄像头位置处,与所述移动终端的无线充电发射装置产生的磁场发生电磁感应。在所述闪光灯、或者指纹识别装置、或者摄像头位置处,电磁信号不再受到金属后壳3的屏蔽,电磁感应效率高。所述两个线圈701与702通过所述双摄像头所在位置处,与所述移动终端的无线充电发射装置产生的磁场发生电磁感应。所述两个线圈701与702在所述移动终端金属后壳3上设置有闪光灯、或者指纹识别装置、或者摄像头处之外的地方产 生的磁通总量为零。
本申请可以采用蝴蝶状结构或8字形结构的无线充电线圈。蝴蝶状结构或8字形结构表现为由两个单独环形线圈相交的结构,每个所述环形线圈可以为圆形、椭圆形或者矩形、或者椭圆形等各种形状,在此对单独的环形线圈的形状不做限定。在某些场景下,将所述两个线圈701与702设置为相同的线圈。将所述两个线圈701与702设置为相同的线圈,可以简化工艺,在磁场作用下简单易行的实现磁通总量为零。所述两个线圈701与702也可以为形状或绕数不同的线圈,只需通过二者产生的磁通量相同即可。
通过将发生电磁感应的两个线圈701与702设置为相互连接的线圈,所述两个线圈701与702处于同一平面且串联连接,且所述两个线圈701与702的绕线方向相反,以使所述两个线圈701与702产生的磁场方向相反的结构,解决了包含无线充电系统的移动终端如智能手机的金属后壳3涡流问题,达到了金属后壳3无需开孔或缝即可降低金属机身热度及能量损耗的效果。特别的,使所述两个线圈701与702产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消,进而消除了所述两个线圈701与702在金属后壳3上产生的涡流。
如图4所示,为本方案一些实施例中采用蝴蝶状结构或8字形结构的无线充电线圈,分成两部分组成:线圈1部和线圈2部交叉连接,而且经过线圈1部电流所产生的磁通与经过线圈2部产生电流产生的磁通大小相等、方向相反,在所述磁通作用到终端充电设备的金属后壳3上时,在金属后壳3上产生总磁通为零。该方案的发射线圈和接收线圈结构是相同的,可以用于一种移动终端无线充电接收装置、发射装置与无线充电系统。
所述无线充电线圈的形状,为相互连接的线圈,所述两个线圈701与702处于同一平面且串联连接,且所述两个线圈701与702的绕线方向相反,以使所述两个线圈701与702产生的磁场方向相反,从而在金属后壳3上产生的磁通相互抵消,进而减弱或消除金属后壳3涡流,所以在金属后壳3上不用开缝的情况下降低了金属后壳3温度且达到了减少能量损耗的效果,而且保证了金属机身的机械支撑度。本方案可以采用蝴蝶状结构或8字形结构的无线充电线圈,当然也可以为两个方形的线圈连接起来组成无线充电线圈,对具体的单个线圈的结构不做限定,只须通过两个线圈701与702的电流产生的磁通大小相等、方向相反即可。所述两个线圈701与702为相同的线圈的情形下,可以简化工艺,在磁场作用下简单易行的实现磁通总量为零。所述两个线圈701与702也可以为形状或绕数不同的线圈,只需通过二者产生的磁通量相同即可。
所述所述无线充电线圈的应用场景,可以为移动终端无线充电接收装置、或发射装置或无线充电系统。具体地,所述两个线圈701与702所在平面平行于与所述金属后壳3。
在无线充电接收装置中,将线圈设置在所述闪光灯、或者指纹识别装置、或者摄像头处,可以不用在金属后壳3的其他地方另外开孔,减少了开孔数量。所述两个线圈701与702设置在所述移动终端金属后壳3上的摄像头处,且所述摄像头为双摄像头的情形下,所述两个线圈701与702分别对应设置于与所述两个摄像头中的其中一个所在位置,且所述两个线圈701与702与所述双摄像头所在平面平行。在双摄像头 情况下,所述两个线圈701与702中的每一个线圈分别对应设置于一个摄像头处,利于所述两个线圈701与702与无线充电器上的线圈发生电磁感应。在所述闪光灯、或者指纹识别装置、或者摄像头位置处,电磁信号不再受到金属后壳3的屏蔽,电磁感应效率高。
应用所述无线充电线圈的效果包括,通过将发生电磁感应的两个线圈701与702设置为相互连接的线圈,所述两个线圈701与702处于同一平面且串联连接,且所述两个线圈701与702的绕线方向相反,以使所述两个线圈701与702产生的磁场方向相反的结构,解决了包含无线充电系统的移动终端如智能手机的金属后壳3涡流问题,达到了金属后壳3无需开孔或缝即可降低金属机身热度及能量损耗的效果。特别的,使所述两个线圈701与702产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消,进而消除了所述两个线圈701与702在金属后壳3上产生的涡流。
如图5所示,为发明另一实施例设置有所述无线充电线圈的移动终端结构示意图。移动终端,包括无线充电接收装置,所述无线充电接收装置设置于所述移动终端内部且贴近于所述移动终端的金属后壳3,所述无线充电接收装置包括两个相互连接的线圈,可选地,所述移动终端还包括双摄像头,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。以图中所示的MATE9机型为例,在设置有双摄像头801与802的情况下,即线圈701对应环绕摄像头801,线圈702对应环绕摄像头802,使所述两个线圈701与702与无线充电器上的线圈发生电磁感应。在摄像头位置处,电磁信号不再受到金属后壳3的屏蔽,电磁感应效率高。所述两个线圈701与702通过所述双摄像头所在位置处,与所述移动终端的无线充电发射装置产生的磁场发生电磁感应。摄像头处之外的地方产生的磁通总量为零。所述两个线圈701与702可以为相同的线圈。所述两个线圈所在平面与所述金属后壳平行,所述两个线圈在所述移动终端金属后壳上设置有闪光灯、或者指纹识别装置、或者摄像头处之外的地方产生的磁通总量为零,以消除无线充电发射装置产生的磁场在穿透所述金属后壳时旋涡。
所述两个线圈701与702处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈在金属后壳3上产生的磁通方向相反。可选地,所述移动终端还包括闪光灯、指纹识别装置、与摄像头三个器件中的至少两个,所述两个线圈中的一个线圈环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件中的一个,另一个线圈环绕所述闪光灯、指纹识别装置、与摄像头剩余两个中的一个,以使所述两个线圈在通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁场的作用下发生电磁感应。
可选地,所述两个线圈所在平面与所述金属后壳平行,且所述两个线圈分别环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件间距离较小的两者中的一个,以使所述两个线圈与为所述移动终端充电的无线充电发射装置产生的磁场发生电磁感应。
如图6所示,本发明一些实施例中一种移动终端无线充电发射装置,所述发射装置可以包括AC/DC功率转换器61、驱动器62、发射线圈63、传感器64和控制器65。所述AC/DC功率转换器61将市电转换为直流电。所述发射线圈63用于与无线充电接 收装置中的线圈发生电磁感应,以使所述无线充电接收装置中的线圈在发射装置发射线圈63所产生的磁场中产生电能,如图7所示,本发明一些实施例中一种移动终端无线充电发射装置磁路示意图,其中所述发射线圈10包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,在电流流过所述相互串联的两个线圈的情形下,所述两个线圈产生的磁场方向相反,以使所述移动终端无线充电发射装置为所述移动终端充电的情形下,通过所述移动终端的金属后壳3的磁通方向相反,所述两个线圈产生的磁场的在金属后壳3上的磁通量相同。
在一些场景中,所述两个线圈可以为相同的线圈,以简化工艺,简单易行的保证两个线圈产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消。
所述发射装置上的线圈所产生的两个线圈产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消。解决了包含无线充电系统的移动终端如智能手机的金属后壳3涡流问题,达到了金属后壳3无需开孔或缝即可降低金属机身热度及能量损耗的效果。
如图8所示,本发明一些实施例中一种移动终端无线充电系统,包括接收装置与发射装置,所述发射装置可以包括AC/DC功率转换器61、驱动器62、发射线圈63、传感器64和控制器65。所述AC/DC功率转换器61将市电转换为直流电。所述接收装置可以包括无线充电接收线圈21、整流电路22、电压调节器23和控制器24。所述发射线圈63与所述无线充电接受线圈21发生电磁感应,所述无线充电接受线圈21在无线充电发射装置发射线圈63所产生的磁场中产生电能,在控制器24的作用下通过整流电路22及电压调节器23的调节,最终输出电压给负载。所述接收装置设置于移动终端设备内部,如设置于一部手机内部。所述发射装置设置在无线充电器上,所述接收装置设置在所述移动终端内部;
如图9所示,本发明一些实施例中一种移动终端无线充电系统磁路示意图,其中,所述接收装置与所述发射装置分别包括无线充电接收装置线圈6和无线充电发射装置线圈10,所述无线充电接收装置线圈6和无线充电发射装置线圈10均包含两个相互连接的线圈701与702,所述两个线圈701与702处于同一平面且串联连接,且所述两个线圈701与702的绕线方向相反;所述接收装置线圈6的两个线圈与所述发射装置线圈10的两个线圈之间产生电磁感应。
在电流流过所述相互串联的两个线圈701与702的情形下,所述两个线圈701与702产生的磁场方向相反,以使所述接收装置线圈6的两个线圈产生的磁场在所述移动终端金属后壳3上的磁通方向相反,且使发射装置线圈10的两个线圈产生的磁场在所述移动终端金属后壳3上的磁通方向相反,所述两个线圈产生的磁场的在金属后壳3上的磁通量相同。
可选地,所述移动终端还包括闪光灯、指纹识别装置、与摄像头三个中的至少两个,所述接收装置线圈6的两个线圈中的一个线圈环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件中的一个,另一个线圈环绕所述闪光灯、指纹识别装置、与摄像头剩余两个中的一个,以使所述两个线圈在通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁场的作用下发生电磁感应。可选地,所述两个线圈所在平面与所述金属后壳3平行,且所述两个线圈分别环绕所述金属后壳 上的闪光灯、指纹识别装置、与摄像头三个器件间距离较小的两者中的一个,以使所述两个线圈与为所述移动终端充电的无线充电发射装置产生的磁场发生电磁感应。
在所述无线充电系统中,通过分别在接收装置与发射装置上设置所述线圈701与702,且将发生电磁感应的两个线圈设置为相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈产生的磁场方向相反的结构,解决了包含无线充电系统的移动终端如智能手机的金属后壳3涡流问题,达到了金属后壳3无需开孔或缝即可降低金属机身热度及能量损耗的效果。
通过使所述两个线圈701与702产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消,进而消除了所述两个线圈在金属后壳3上产生的涡流。具体地,接收装置上的线圈所产生的两个线圈产生的磁场方向相反且大小相等,接收装置上的线圈在金属后壳3上产生的磁通相互抵消,发射装置上的线圈所产生的两个线圈产生的磁场方向相反且大小相等,从而在金属后壳3上产生的磁通相互抵消。
特别地,尤其在所述接收装置中线圈6的的两个线圈701与702设置在所述移动终端金属后壳3上的摄像头处的情形下,且所述摄像头为双摄像头801与802的情形下,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。即线圈701对应摄像头801,线圈702对应摄像头802,且所述两个线圈与所述双摄像头所在平面平行,以使所述两个线圈与无线充电器上的线圈发生电磁感应。
图10a是本发明另一实施例提供的一种无线充电线圈与移动终端摄像头的结构示意图,图10b是传统单个无线充电线圈设置于移动终端摄像头的结构示意图。在图10a中,外部直线框表示线圈7,包括线圈701和线圈702,在图7b中,包括线圈1。由图中可知,在此图中线圈匝数为2圈。中间圆圈表示移动终端设备上的摄像头801和802。在图10a和10b所示结构的基础上,进行充电效率分析。
对上述两种结构充电效率效率分析,对比结果如图11所示,为本发明一些实施例中提供的一种移动终端无线充电效率示意图。在此图中,横坐标标识无线充电负载的欧姆值,纵坐标标识充电效率值。本发明一些实施例中无线充电线圈为两个线圈701与702交叉连接,且使得两个线圈701与702电流方向相反,导致在金属后壳3上总磁通为零。这种相近于蝴蝶状结构或8字形结构线圈在高频(6.78MHz)情况下,线圈间耦合增强,线圈品质因子变大,其中,所述线圈品质因子为线圈所储能量同每周期损耗能量之比的一种质量指标,最终提升无线充电系统传输效率。
具体地,采用仿真验证,如本方案蝴蝶状结构或8字形结构线圈(如图7a)和传统单个Spiral螺旋线圈(如图7b)所示,在线圈匝数为2,线圈厚度0.1mm,线宽0.8mm,线间距0.2mm,磁材厚度是0.2mm,磁导率是130的情况下,相应各参数如下表所示。在传统螺旋线圈的情况下,金属后壳3的上方开缝长度15mm,宽度0.1mm,以使磁场通过所述开缝穿透金属后壳3。考虑工作频率在6.78MHz情形下,下表中可以看出发射线圈、接收线圈的耦合系数、发射值、接收值等等参数。
Figure PCTCN2018074186-appb-000001
Figure PCTCN2018074186-appb-000002
根据等效电路,计算整个无线充电系统的功率传输效率如图8所示。可以看出,采用蝴蝶状结构或8字形结构线圈的无线充电系统在为5欧姆是负载(即移动终端)欧姆的充电的情况下,传输效率超过90%,明显优于现有技术中采用传统单个Spiral螺旋线圈的无线充电系统。
应理解,对于充电终端具有金属后壳3的情形下,本发明充电效果提升最大,但本发明对后盖并未特别限定为金属后壳3,移动终端后盖也可以为玻璃、塑料等其他材料。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种移动终端无线充电接收装置,所述无线充电接收装置用于设置于移动终端内部且贴近于所述移动终端的金属后壳,其特征在于,包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈在金属后壳上产生的磁通方向相反。
  2. 根据权利要求1所述的移动终端无线充电接收装置,其特征在于,所述两个线圈产生的磁场的在金属后壳上的磁通量相同,以使通过所述金属后壳上的总磁通量为零。
  3. 根据权利要求1或2所述的移动终端无线充电接收装置,其特征在于,所述两个线圈所在平面平行于与所述金属后壳。
  4. 一种移动终端,包括无线充电接收装置,所述无线充电接收装置设置于所述移动终端内部且贴近于所述移动终端的金属后壳,其特征在于,所述无线充电接收装置包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两个线圈的绕线方向相反,以使所述两个线圈在金属后壳上产生的磁通方向相反。
  5. 根据权利要求4所述的移动终端,其特征在于,所述移动终端还包括双摄像头,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。
  6. 根据权利要求5所述的移动终端,其特征在于,所述两个线圈所在平面与所述金属后壳平行,所述两个线圈通过所述双摄像头所在位置处,与为所述移动终端充电的无线充电发射装置产生的磁场发生电磁感应,以使无线充电发射装置产生的磁场在穿透所述金属后壳时损耗最小。
  7. 根据权利要求4所述的移动终端,其特征在于,所述移动终端还包括闪光灯、指纹识别装置、与摄像头三个器件中的至少两个,所述两个线圈中的一个线圈环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件中的一个,另一个线圈环绕所述闪光灯、指纹识别装置、与摄像头剩余两个中的一个,以使所述两个线圈在通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁场的作用下发生电磁感应。
  8. 根据权利要求7所述的移动终端,其特征在于,所述两个线圈所在平面与所述金属后壳平行,且所述两个线圈分别环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件间距离较小的两者中的一个,以使所述两个线圈与为所述移动终端充电的无线充电发射装置产生的磁场发生电磁感应。
  9. 根据权利要求8所述的移动终端,其特征在于,所述两个线圈在所述移动终端金属后壳上设置有闪光灯、或者指纹识别装置、或者摄像头处之外的地方产生的磁通总量为零,以消除无线充电发射装置产生的磁场在穿透所述金属后壳时旋涡。
  10. 根据权利要求4-9任一所述的移动终端,其特征在于,所述两个线圈为相同的线圈。
  11. 一种移动终端无线充电发射装置,其特征在于,包括发射线圈,其中所述发射线圈包括两个相互连接的线圈,所述两个线圈处于同一平面且串联连接,且所述两 个线圈的绕线方向相反,在电流流过所述相互串联的两个线圈的情形下,所述两个线圈产生的磁场方向相反,以使所述移动终端无线充电发射装置为所述移动终端充电的情形下,通过所述移动终端的金属后壳的磁通方向相反。
  12. 根据权利要求11所述的移动终端无线充电接收装置,其特征在于,所述两个线圈产生的磁场的在金属后壳上的磁通量相同。
  13. 根据权利要求11或12所述的移动终端无线充电接收装置,其特征在于,所述两个线圈为相同的线圈。
  14. 一种移动终端无线充电系统,其特征在于,包括接收装置与发射装置,所述发射装置设置在无线充电器上,所述接收装置设置在移动终端内部;
    其中,所述接收装置与所述发射装置均包含两个相互连接的线圈,所述两个相互连接的线圈处于同一平面且串联连接,且所述两个相互连接的线圈的绕线方向相反;
    在电流流过所述相互串联的两个线圈的情形下,所述两个线圈产生的磁场方向相反,以使所述接收装置的两个相互连接的线圈产生的磁场在所述移动终端金属后壳上的磁通方向相反,且使发射装置的两个相互连接的线圈产生的磁场在所述移动终端金属后壳上的磁通方向相反。
  15. 根据权利要求14所述的移动终端无线充电系统,其特征在于,所述两个相互连接的线圈产生的磁场的在金属后壳上的磁通量相同。
  16. 根据权利要求14或15所述的移动终端无线充电系统,其特征在于,所述接收装置两个相互连接的线圈与所述发射装置的两个相互连接的线圈之间产生电磁感应。
  17. 根据权利要求16所述的移动终端无线充电系统,其特征在于,移动终端还包括闪光灯、指纹识别装置、与摄像头三个器件中的至少两个,所述两个线圈中的一个线圈环绕所述金属后壳上的闪光灯、指纹识别装置、与摄像头三个器件中的一个,另一个线圈环绕所述闪光灯、指纹识别装置、与摄像头剩余两个中的一个,以使所述两个线圈在通过所述闪光灯、或者指纹识别装置、或者摄像头处进入所述移动终端的磁场的作用下发生电磁感应。
  18. 根据权利要求16所述的移动终端无线充电系统,其特征在于,所述移动终端还包括双摄像头,所述两个线圈中的一个线圈环绕所述双摄像头中的一个摄像头,另一个线圈环绕所述双摄像头中的另一个摄像头。
PCT/CN2018/074186 2017-06-20 2018-01-25 一种终端无线充电接收装置、发射装置与无线充电系统 WO2018233290A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22192761.9A EP4160870A1 (en) 2017-06-20 2018-01-25 Wireless charging receiving apparatus, transmitting apparatus, and system of terminal
EP18820428.3A EP3633823B1 (en) 2017-06-20 2018-01-25 Terminal wireless charging receiving device and transmitting device, and wireless charging system
US16/721,310 US11355964B2 (en) 2017-06-20 2019-12-19 Wireless charging receiving apparatus, transmitting apparatus, and system of terminal
US17/727,355 US11870272B2 (en) 2017-06-20 2022-04-22 Wireless charging receiving apparatus, transmitting apparatus, and system of terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710471936.6A CN107370243B (zh) 2017-06-20 2017-06-20 一种终端无线充电接收装置、发射装置与无线充电系统
CN201710471936.6 2017-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/721,310 Continuation US11355964B2 (en) 2017-06-20 2019-12-19 Wireless charging receiving apparatus, transmitting apparatus, and system of terminal

Publications (1)

Publication Number Publication Date
WO2018233290A1 true WO2018233290A1 (zh) 2018-12-27

Family

ID=60305480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074186 WO2018233290A1 (zh) 2017-06-20 2018-01-25 一种终端无线充电接收装置、发射装置与无线充电系统

Country Status (4)

Country Link
US (2) US11355964B2 (zh)
EP (2) EP3633823B1 (zh)
CN (1) CN107370243B (zh)
WO (1) WO2018233290A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370243B (zh) 2017-06-20 2019-06-07 华为技术有限公司 一种终端无线充电接收装置、发射装置与无线充电系统
CN109904936A (zh) * 2017-12-08 2019-06-18 青岛众海汇智能源科技有限责任公司 一种扫地机充电系统、无线充电扫地机以及无线充电座
CN108206590B (zh) * 2018-03-23 2020-06-09 天津工业大学 一种新型的高密度无线电能传输线圈结构
CN112054603B (zh) * 2019-05-20 2023-11-07 北京小米移动软件有限公司 一种移动终端及无线充电装置
CN112087062B (zh) * 2020-09-18 2022-01-28 重庆大学 抑制拾取线圈平面金属影响的耦合机构参数设计方法
CN113608426B (zh) * 2021-08-13 2022-09-20 深圳市纳晶云科技有限公司 一种便于更换外护套的防碰撞智能手表

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119035A (zh) * 2015-09-01 2015-12-02 深圳市信维通信股份有限公司 带金属后壳的天线结构
CN105119036A (zh) * 2015-09-18 2015-12-02 深圳市信维通信股份有限公司 一种基于金属后壳的近场通信和无线充电一体化天线
CN106101339A (zh) * 2016-06-01 2016-11-09 广东欧珀移动通信有限公司 一种壳体及移动终端
CN106205986A (zh) * 2016-08-15 2016-12-07 上海交通大学 双极性无线充电线圈
US20170063128A1 (en) * 2015-08-25 2017-03-02 Motorola Mobility Llc Multiple coil structure for supporting multiple types of wireless charging and near field communications
CN107370243A (zh) * 2017-06-20 2017-11-21 华为技术有限公司 一种终端无线充电接收装置、发射装置与无线充电系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772976B2 (en) 2011-03-30 2014-07-08 Intel Corporation Reconfigurable coil techniques
KR101356623B1 (ko) * 2011-11-10 2014-02-03 주식회사 스파콘 전력전송코일 및 무선 전력전송장치
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
KR20150035512A (ko) * 2012-03-20 2015-04-06 오클랜드 유니서비시즈 리미티드 무선 전력 전송 시스템들에서의 권선 배열들
US9362776B2 (en) * 2012-11-27 2016-06-07 Qualcomm Incorporated Wireless charging systems and methods
JP5780236B2 (ja) * 2012-12-27 2015-09-16 株式会社デンソー 金属物体検知装置
JP5286445B1 (ja) * 2012-12-28 2013-09-11 株式会社日立パワーソリューションズ 電動式移動体の無線給電装置
EP3066673B1 (en) * 2013-11-08 2018-06-06 Nokia Technologies Oy Arrangement of a communication coil and an induction charging coil
US10404089B2 (en) * 2014-09-29 2019-09-03 Apple Inc. Inductive charging between electronic devices
US20160241061A1 (en) 2015-02-17 2016-08-18 Qualcomm Incorporated Clover leaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
WO2016160681A1 (en) * 2015-03-29 2016-10-06 Sanjaya Maniktala Wireless power transfer using multiple coil arrays
CN105006654A (zh) * 2015-07-08 2015-10-28 深圳市信维通信股份有限公司 带有金属后壳的8字形nfc天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170063128A1 (en) * 2015-08-25 2017-03-02 Motorola Mobility Llc Multiple coil structure for supporting multiple types of wireless charging and near field communications
CN105119035A (zh) * 2015-09-01 2015-12-02 深圳市信维通信股份有限公司 带金属后壳的天线结构
CN105119036A (zh) * 2015-09-18 2015-12-02 深圳市信维通信股份有限公司 一种基于金属后壳的近场通信和无线充电一体化天线
CN106101339A (zh) * 2016-06-01 2016-11-09 广东欧珀移动通信有限公司 一种壳体及移动终端
CN106205986A (zh) * 2016-08-15 2016-12-07 上海交通大学 双极性无线充电线圈
CN107370243A (zh) * 2017-06-20 2017-11-21 华为技术有限公司 一种终端无线充电接收装置、发射装置与无线充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633823A4

Also Published As

Publication number Publication date
EP3633823B1 (en) 2022-08-31
EP3633823A1 (en) 2020-04-08
EP3633823A4 (en) 2020-06-10
US11355964B2 (en) 2022-06-07
US11870272B2 (en) 2024-01-09
EP4160870A1 (en) 2023-04-05
CN107370243A (zh) 2017-11-21
US20200127493A1 (en) 2020-04-23
CN107370243B (zh) 2019-06-07
US20220247214A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2018233290A1 (zh) 一种终端无线充电接收装置、发射装置与无线充电系统
US9577468B2 (en) Wireless charging receiving device and wireless charging system using the same
CN108321914B (zh) 一种线圈及无线充电接收装置、与发射装置与系统
US11056918B2 (en) System for inductive wireless power transfer for portable devices
WO2013031025A1 (ja) 電力中継器
US9973023B2 (en) Inductive energy transfer coil structure
US20170256990A1 (en) Receiver Coil Arrangements for Inductive Wireless Power Transfer for Portable Devices
JP4900528B1 (ja) 非接触充電モジュール及びこれを用いた非接触充電機器
JP6610752B2 (ja) アンテナ装置および電子機器
CN105119036B (zh) 一种基于金属后壳的近场通信和无线充电一体化天线
JP6025015B2 (ja) 磁性シート、伝送コイル部品及び非接触充電装置
KR20160090420A (ko) 무선 전력 송수신 장치
CN206077082U (zh) 保护装置及其相关无线充电系统
Zhuang et al. Design and analysis of a wireless power transfer system for capsule robot using an optimised planar square spiral transmitting coil pair
KR101973143B1 (ko) 전송 거리 및 전송 효율이 개선된 무선 전력 전송 시스템 및 장치
CN107181046A (zh) 一种陶瓷无线充电天线
CN105119035B (zh) 带金属后壳的天线结构
JP4835801B1 (ja) 非接触充電モジュール及び非接触充電機器
CN204886363U (zh) 新型无线充电式移动电源
CN208722725U (zh) 一种无线电充电线圈组件
CN204905419U (zh) 一种用于金属后壳的高隔离度nfc和wpc天线
CN215344107U (zh) 无线充电接收装置、终端设备及无线充电设备
CN214850645U (zh) 一种无线充电装置及电子设备
CN207909675U (zh) 一种超薄变压器
TW201511443A (zh) 電磁諧振無線充電系統與裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018820428

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 2018820428

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 2018820428

Country of ref document: EP

Effective date: 20200102