WO2018233229A1 - 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置 - Google Patents

具有三枝节耦合及双枝节匹配微带线结构的信号发射装置 Download PDF

Info

Publication number
WO2018233229A1
WO2018233229A1 PCT/CN2017/114059 CN2017114059W WO2018233229A1 WO 2018233229 A1 WO2018233229 A1 WO 2018233229A1 CN 2017114059 W CN2017114059 W CN 2017114059W WO 2018233229 A1 WO2018233229 A1 WO 2018233229A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
microstrip
signal
signal transmission
double
Prior art date
Application number
PCT/CN2017/114059
Other languages
English (en)
French (fr)
Inventor
曲美君
邓力
李书芳
张贯京
葛新科
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018233229A1 publication Critical patent/WO2018233229A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters

Definitions

  • the present invention relates to the field of microwave communication technologies, and in particular, to a signal transmitting apparatus having a three-joint coupling and a dual-branch matching microstrip line structure.
  • a signal transmitting device transmits a signal
  • the filter acts as a very important component of the RF front-end, which filters out out-of-band noise and improves the sensitivity of the circuitry.
  • a microstrip filter is a device used to separate microwave signals of different frequencies. Its main function is to suppress unwanted signals so that they cannot pass through the filter and only pass the desired signal. In microwave circuit systems, the performance of the filter has a large impact on the performance of the circuit system.
  • the relative bandwidth of the filter and the high selectivity to the passband signal are important influence indicators, while the relative bandwidth of the existing filter and the high selectivity to the passband signal are relatively poor, resulting in affecting the entire communication system. Performance. Therefore, there is a need for a signal transmitting device having high broadband out-of-band rejection performance.
  • An object of the present invention is to provide a signal transmitting apparatus having a three-joint coupling and a dual-branch matching microstrip line structure, which aims to solve the problem that the relative bandwidth of the signal transmitting apparatus in the prior art is low and the band-pass signal selectivity is relatively high. Poor technical issues.
  • the present invention provides a signal transmitting apparatus having a three-joint coupling and a dual-branch matching microstrip line structure, the signal transmitting apparatus including a filter, a voltage controlled oscillator, an amplifier, and a transmitting antenna.
  • An output end of the voltage controlled oscillator is connected to an input end of the amplifier
  • the filter includes two signal transmission ends disposed on a surface of the dielectric board, and an output end of the amplifier and one of the filters Signal transmitting ends are connected, and another output end of the filter is connected to the transmitting antenna, wherein
  • the filter further includes two first microstrip lines, two second microstrip lines, two third microstrip lines, two fourth microstrip lines, and two roots disposed on the surface of the dielectric plate. a five microstrip line, two sixth microstrip lines, two seventh microstrip lines, and two signal transmission ends, the broadband band pass filter being bilaterally symmetric about a first central axis, the broadband band pass filter The second central axis is vertically symmetrical, the first central axis is a line connecting the midpoints of the upper and lower horizontal frames of the broadband band pass filter, and the second central axis is the left and right of the broadband band pass filter a line connecting the midpoints of two vertical borders;
  • Each of the two sixth microstrip lines and the two seventh microstrip lines are parallel to the second central axis;
  • each of the first microstrip lines is connected to one signal output end, and the other end of each of the first microstrip lines and one end of a second microstrip line and one end of a third microstrip line Connecting, each fourth microstrip line is disposed in a gap formed between a second microstrip line and a third microstrip line, one end of each fourth microstrip line and a fifth microstrip line One end of the fifth microstrip line is connected to one end of the other fifth microstrip line, and one end of each sixth microstrip line is vertically connected to the connection position of the two fifth microstrip lines, each with The other end of the sixth microstrip line is connected to one end of a seventh microstrip line; and
  • each of the second microstrip lines forms a three-joint coupling structure with a third microstrip line and a fourth microstrip line, and each of the sixth microstrip line and the seventh microstrip line forms a double branch Match the load on the road.
  • the signal transmitting apparatus having a three-joint coupling and a double-branch-matching microstrip line structure includes two double-branch joint matching ramp loads and two three-branch coupling structures.
  • the two signal transmission ends are respectively used for inputting signals and outputting signals, wherein one signal transmission end serves as a signal input end and the other signal transmission end serves as a signal output end.
  • the first microstrip line, the second microstrip line, the third microstrip line, the fourth microstrip line, the fifth microstrip line, the sixth microstrip line, and the seventh microstrip line is a metal copper piece with a strip structure.
  • the length of the first microstrip line is 10 mm and the width is 1.66 mm
  • the lengths of the second microstrip line and the third microstrip line are both 14.5 mm and the width is 0.21 mm.
  • the length of the fourth microstrip line is 14.5 mm
  • the width is 0.12 mm
  • the shortest distance between the fourth microstrip line and the second microstrip line is 0.18 mm.
  • the shortest distance between the fourth microstrip line and the third microstrip line is 0.18 mm
  • the length of the fifth microstrip line is 11.5 mm
  • the width is 2.88 mm
  • the length of the seventh microstrip line is 10.8 mm and the width is 2.78 mm
  • the length of the signal transmission end is 10 mm and the width is 1.66 mm.
  • the impedance of each of the first microstrip lines is 50 ⁇ , and each of the two, three, and four microstrip lines together form a three-branch coupling structure, and the odd-mode impedance of each three-section coupling structure is 10 ⁇ .
  • the model impedance is 8 ⁇ , the electrical length is 90 degrees, the impedance of each fifth microstrip line is 11 ⁇ , the impedance of each sixth microstrip line is 10 ⁇ , and the impedance of each seventh microstrip line is 12 ⁇ . .
  • the signal transmitting device having the three-joint coupling and the double-branched matching microstrip line structure is further provided with a power source, a first voltage regulating module and a first voltage stabilizing module, wherein the first voltage regulating module and The first voltage stabilizing module and the voltage controlled oscillator are connected, and the power source is electrically connected to the first voltage regulating module and the first voltage stabilizing module.
  • the signal transmitting device having the three-joint coupling and the double-branched matching microstrip line structure is further provided with a power source, a second voltage regulating module and a second voltage stabilizing module, wherein the second voltage regulating module and The second voltage stabilizing module and the amplifier are connected, and the power source is electrically connected to the second voltage regulating module and the second voltage stabilizing module
  • the signal transmitting device with the three-branch coupling and the double-branch matching microstrip line structure of the present invention is designed to be two double-branched matching crotch load and two three-branch coupling structures.
  • the relative bandwidth is large and the passband signal has high selectivity, and less noise is introduced to avoid interference to the RF front end, so that the transmitted signal is clearer and less noise.
  • FIG. 1 is a schematic view showing the structure of a signal transmitting device having a three-joint coupling and a double-branched matching microstrip line structure according to the present invention.
  • FIG. 2 is a voltage control device in a signal transmitting device having a three-joint coupling and a double-branched matching microstrip line structure according to the present invention; A schematic structural view of a preferred embodiment of an oscillator.
  • FIG. 3 is a schematic structural view of a preferred embodiment of an amplifier in a signal transmitting device having a three-joint coupling and a double-branched matching microstrip line structure according to the present invention.
  • FIG. 4 is a schematic structural view of a preferred embodiment of a filter in a signal transmitting apparatus having a three-joint coupling and a double-branch-matching microstrip line structure according to the present invention.
  • FIG. 5 is a circuit schematic diagram of a preferred embodiment of a filter in a signal transmitting apparatus having a three-joint coupling and a double-branch-matching microstrip line structure according to the present invention.
  • FIG. 6 is a schematic diagram of S-parameter results of a signal transmitting device having a three-joint coupling and a double-branched matching microstrip line structure simulated by an electromagnetic simulation software according to the present invention.
  • FIG. 1 is a schematic structural view of a signal transmitting apparatus having a three-joint coupling and a double-branched matching microstrip line structure according to the present invention.
  • the signal transmitting apparatus 1 having the three-branch coupling and the double-branch matching microstrip line structure of the present invention includes a filter 10, a voltage controlled oscillator 20, an amplifier 30, and a transmitting antenna 40, and the voltage controlled oscillation
  • An output of the amplifier 20 is coupled to an input of the amplifier 30, an output of the amplifier 30 is coupled to an input of the filter 10, and an output of the filter 10 is coupled to an input of the transmit antenna .
  • the signal transmitting device 1 having a three-joint coupling and a double-branched matching microstrip line structure is used to generate a signal
  • the transmitting antenna 40 is an Yagi transmitting antenna, and the transmitting antenna 40 has a transmitting frequency of between 340 and 570 MHz.
  • FIG. 2 is a schematic structural view of a preferred embodiment of a voltage controlled oscillator in a signal transmitting apparatus having a three-joint coupling and a double-branch-matching microstrip line structure according to the present invention.
  • the signal transmitting device 1 having a three-branch coupling and a double-branch matching microstrip line structure further includes a power source 204, a first voltage regulating module 202, and a first voltage stabilizing module 203.
  • the first voltage regulation module 202 is connected to the first voltage stabilization module 203 and the voltage controlled oscillator 20 .
  • the power source 204 is electrically connected to the first voltage regulating module 202 and the first voltage stabilizing module 203.
  • the power source 204 is used to provide power to the voltage controlled oscillator 20.
  • the voltage regulation module 202 is configured to control the voltage controlled oscillator 20 to generate signals of different frequencies by voltage regulation.
  • the first voltage stabilizing module 203 is configured to adjust and regulate the voltage of the power source 204 to prevent voltage fluctuations of the power source 204 from affecting the first voltage regulating module 202.
  • the first voltage adjustment module 202 can be, but is not limited to, a potentiometer or a sliding varistor.
  • the first voltage stabilizing module 203 is a voltage regulator. It should be noted that the connecting wire between the power source 204 and the voltage controlled oscillator 20 in FIG. 2 does not form a cross path with the connecting wire between the first voltage regulating module 202 and the first voltage stabilizing module 203, but only It is convenient for the display of Fig. 2. In other embodiments, the first voltage regulation module 202 and the first voltage stabilization module 203 may be omitted.
  • FIG. 3 is a schematic structural view of a preferred embodiment of an amplifier in a signal transmitting apparatus having a three-joint coupling and a double-branch-matching microstrip line structure according to the present invention.
  • the signal transmitting device 1 having a three-joint coupling and a double-branched matching microstrip line structure further includes a second voltage regulating module 302 and a second voltage stabilizing module 303.
  • the second voltage regulating module 302 is connected to the second voltage stabilizing module 303 and the amplifier 30.
  • the power source 204 is electrically connected to the second voltage regulating module 302 and the second voltage stabilizing module 303.
  • the power source 204 is used to provide power to the amplifier 30.
  • the second voltage regulation module 302 is configured to control the amplifier 30 to generate signals of different frequencies by voltage regulation.
  • the second voltage stabilizing module 303 is configured to regulate and regulate the voltage of the power source 204 to prevent voltage fluctuations of the power source 204 from affecting the second voltage regulating module 302.
  • the second voltage adjustment module 302 can be, but is not limited to, a potentiometer or a sliding varistor.
  • the second voltage stabilizing module 303 is a voltage regulator. It should be noted that the connecting wire between the power source 04 and the amplifier 30 in FIG. 3 does not form a cross path with the connecting wire between the second voltage regulating module 302 and the second voltage stabilizing module 30 3, but only for The display of Figure 3 is convenient. In other embodiments, the second voltage regulation module 302 and the second voltage regulation module 303 may be omitted.
  • the signal transmitting device 1 generates a signal through the voltage controlled oscillator 20, and amplifies the RF power of the signal through the amplifier 30, for example, amplifies the power signal of 6 dBm to an adjustable power.
  • the signal (maximum 60 W) is filtered by the filter 10 and then transmitted through the transmitting antenna 40 into the air.
  • FIG. 4 is a schematic structural view of a preferred embodiment of a filter in a signal transmitting apparatus having a three-joint coupling and a double-branched matching microstrip line structure according to the present invention
  • FIG. 5 is a three-section of the present invention.
  • the filter 10 includes two first microstrip lines 101, two second microstrip lines 102, two third microstrip lines 103, and two disposed on the surface of the dielectric plate 100.
  • the filter 10 is bilaterally symmetrical about a first central axis (ab line in FIG. 1) and is vertically symmetrical about a second central axis (the cd line in FIG. 1), the first central axis being the a line connecting the midpoints of the upper and lower horizontal borders of the filter 10 (ie, line ab in FIG. 4), and the second central axis is a line connecting the midpoints of the left and right longitudinal frames of the filter 10 ( That is, the line cd) in Fig. 4, the first central axis and the second central axis are perpendicular to each other.
  • the strip line 105 and the two signal transmitting ends P1 are both parallel to the upper and lower horizontal borders
  • the two sixth microstrip lines 106 and the two seventh microstrip lines 107 are both opposite to the left and right sides of the filter 10.
  • the vertical borders are parallel.
  • first central axis and the second central axis are not components of metal in the filter 10, but are convenient for the user to use the filter 10 for production or design.
  • first microstrip lines 101, two second microstrip lines 102, two third microstrip lines 103, two fourth microstrip lines 104, two fifth microstrip lines 105, two The sixth microstrip line 106, the two seventh microstrip lines 10 7 and the two signal transmission ends P1) are bilaterally symmetrical about the first central axis and are vertically symmetrical about the second central axis.
  • the central axis does not participate in any operation such as signal filtering.
  • the first central axis and the second central axis are for the convenience of describing the left and right and upper and lower symmetrical structures of the filter 10.
  • the output end of the amplifier 30 is connected to a signal transmitting end P of the filter 10, and the other signal transmitting end P of the filter 10 is connected to the input end of the transmitting antenna 40.
  • each of the first microstrip lines 101 is connected to one signal output terminal P1, and the other end of each of the first microstrip lines 101 and one end of a second microstrip line 102 and a third micro One end of the strip line 103 is connected, wherein a gap is disposed between the second microstrip line 102 and the third microstrip line 103, and each of the fourth microstrip lines 104 is disposed on a second microstrip line 102 and a first In the gap formed between the three microstrip lines 103, one end of the fourth microstrip line 104 is connected to one end of a fifth microstrip line 105, and the other end of the fifth microstrip line 105 is connected to the other fifth.
  • each of the sixth microstrip lines 106 is vertically connected to the two fifth microstrip lines 105.
  • the connection position is connected to the other end of the sixth microstrip line 106 to one end of a seventh microstrip line 107.
  • Each of the second microstrip lines 102 and the third microstrip line 103 and the fourth microstrip line 104 form a three-node coupling structure 1200
  • each of the sixth microstrip lines 106 and a seventh microstrip Line 107 forms a double branch matching ramp load 1000.
  • the filter 10 includes two double-branched matching circuit loads 1000 and two three-node coupling structures 1200.
  • the dielectric plate 100 is a PCB board, and the specific plate type is Roger RO4350B, wherein the relative dielectric constant is 3.66 and the plate thickness is 0.762 mm.
  • the seventh microstrip line 107 and the signal transmission end P1 are metal copper sheets of a strip structure.
  • the filter of the present invention can achieve a good matching effect of the filter 10 of the present invention in the operating frequency band by changing the length and width of the microstrip line with respect to the conventional band pass filter.
  • the operating frequency band of the filter 10 is in the range of 1.99 GHz to 4.72 GHz
  • the first microstrip line 101 and the second microstrip line disposed on the surface of the dielectric board 100 are illustrated by specific embodiments. 102.
  • the thickness of the metal copper plate disposed on the PCB board is generally um level, so the present invention does not The first microstrip line 101, the second microstrip line 102, the third microstrip line 103, the fourth microstrip line 104, the fifth microstrip line 105, the sixth microstrip line 106, the seventh microstrip line 107, and
  • the thickness of the metal strip of the length and width of the signal transmitting end P1 is limited and does not affect the characteristics of the filter of the present invention.
  • two signal transmission terminals P1 are respectively used for signal input and signal output, wherein one signal transmission terminal P1 serves as a signal input terminal and the other signal transmission terminal P1 serves as a signal output terminal.
  • the signal input end may be the signal transmission end P1 on the left side of FIG. 1 or the signal transmission end PI on the right side; the signal output end may be the signal transmission end P1 on the left side in FIG. 1 or the signal transmission on the right side.
  • End Pl For example, if the signal transmission terminal P1 on the left side of FIG. 1 is used as the signal input terminal, the signal transmission terminal P1 on the right side of FIG. 1 serves as a signal output terminal, and the signal enters from the signal transmission terminal P1 on the left side, and is output from the signal transmission terminal P1 on the right side. . If the signal transmission terminal P1 on the left side of FIG. 1 is used as the signal output terminal, the signal transmission terminal P1 on the right side of FIG. 1 serves as a signal input terminal, and the signal enters from the signal transmission terminal P1 on the right side and is output from the signal transmission terminal P1 on the left side.
  • the impedance of each of the first microstrip lines is 50 ⁇
  • each of the two, three, and four microstrip lines together form a three-joint coupling structure, and the odd model of each three-joint coupling structure
  • the impedance is 10 ⁇
  • the even mode impedance is 8 ⁇
  • the electrical length is 90 degrees
  • the impedance of each fifth microstrip line is 11 ⁇
  • the impedance of each sixth microstrip line is 10 ⁇
  • the impedance of each seventh microstrip line It is 12 ⁇ .
  • the filter of the present invention can be realized in a specific working frequency band by designing two double-branched matching circuit load 1000 and two three-node coupling structures 1200, so that the original microstrip line has filtering performance,
  • the passband signal is highly selective, introducing less noise and avoiding interference to the RF front end.
  • FIG. 6 is a schematic diagram of S-parameter results of the filter of the present invention simulated by electromagnetic simulation software.
  • the filter 10 has an operating band of 1.99 GHz to 4.72 GHz (the frequency range corresponding to the IS 111 curve ordinate -10 dB in FIG. 6), which has 81.37 ⁇ 3 ⁇ 4[(4.72-1.99).
  • the relative bandwidth of /(0.5*(4.72+1.99))]] that is, the structure using the present invention has a wider relative bandwidth.
  • the reflection coefficient ie IS11I in Figure 6
  • the frequency in the operating band is 6.5 GHz
  • the transmission coefficient (ie IS21I in Figure 6) is - 95dB, as can be seen from Figure 6.
  • the passband signal of the filter 10 has high selectivity. It can be seen that the filter of the present invention has high selectivity to the passband signal and a wider relative bandwidth, introducing less noise and avoiding interference to the RF front end.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention, and the equivalent structure or equivalent process transformations made by the description of the present invention and the contents of the drawings may be directly or indirectly applied to other related The technical field is equally included in the scope of patent protection of the present invention.
  • the signal transmitting device with the three-joint coupling and the double-branched matching microstrip line structure of the present invention is designed to be two double-branched matching ⁇ load and two three-joint coupling structures.
  • the relative bandwidth is large and the passband signal has high selectivity, and less noise is introduced to avoid interference to the RF front end, so that the transmitted signal is clearer and less noise.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种具有三枝节耦合及双枝节匹配微带线结构的信号发射装置,所述信号发射装置包括滤波器、压控振荡器、放大器及发射天线,所述压控振荡器的输出端与所述放大器的输入端连接,所述滤波器包括设置于介质板表面的两个信号传输端,所述放大器的输出端与所述滤波器的一个信号传输端连接,所述滤波器的另外一个输出端与所述发射天线连接。本发明信号发射装置能够实现相对带宽大且对通带信号具有高选择性,引入更少噪声,避免对射频前端造成干扰。

Description

具有三枝节耦合及双枝节匹配微带线结构的信号发射装置
技术领域
[0001] 本发明涉及微波通信技术领域, 尤其涉及一种具有三枝节耦合及双枝节匹配微 带线结构的信号发射装置。
背景技术
[0002] 信号发射装置在发射信号吋, 为了确保信号传输不受干扰, 通常需要通过滤波 器对信号进行过滤。 具体地说, 滤波器作为射频前端的一种很重要器件, 可以 滤除带外噪声, 提高电路系统的灵敏度。 微带滤波器是用来分离不同频率微波 信号的一种器件。 它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。 在微波电路系统中, 滤波器的性能对电路系统的性能指 标有很大的影响。 一般而言, 滤波器的相对带宽及对通带信号具有高选择性是 重要影响指标, 而现有的滤波器的相对带宽且对通带信号具有高选择性相对较 差, 导致影响整个通信系统的性能。 因此, 需要一种具有高宽带带外抑制性能 的信号发射装置。
技术问题
[0003] 本发明的目的在于提供一种具有三枝节耦合及双枝节匹配微带线结构的信号发 射装置, 旨在解决现有技术中的信号发射装置的相对带宽低且带通信号选择性 较差的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种具有三枝节耦合及双枝节匹配微带线结构 的信号发射装置, 所述信号发射装置包括滤波器、 压控振荡器、 放大器及发射 天线, 所述压控振荡器的输出端与所述放大器的输入端连接, 所述滤波器包括 设置于介质板表面的两个信号传输端, 所述放大器的输出端与所述滤波器的一 个信号传输端连接, 所述滤波器的另外一个输出端与所述发射天线连接, 其中
[0005] 所述滤波器还包括设置在介质板表面的两根第一微带线、 两根第二微带线、 两 根第三微带线、 两根第四微带线、 两根第五微带线、 两根第六微带线、 两根第 七微带线及两个信号传输端, 所述宽带带通滤波器关于第一中心轴线左右对称 , 所述宽带带通滤波器关于第二中心轴线上下对称, 所述第一中心轴线为所述 宽带带通滤波器的上下两条横向边框的中点的连线, 所述第二中心轴线为所述 宽带带通滤波器的左右两条纵向边框的中点的连线;
[0006] 所述两根第一微带线、 两根第二微带线、 两根第三微带线、 两根第四微带线、 两根第五微带线及两个信号传输端均与所述第一中心轴线平行, 所述两根第六 微带线及两根第七微带线均与所述第二中心轴线平行;
[0007] 每根第一微带线的一端与一根信号输出端连接, 每根第一微带线的另一端与一 根第二微带线的一端及一根第三微带线的一端连接, 每根第四微带线设置于一 根第二微带线及一根第三微带线之间形成的空隙中, 每根第四微带线的一端与 一根第五微带线的一端连接, 该第五微带线的另一端与另一根第五微带线的一 端连接, 每根第六微带线一端垂直连接于两根第五微带线的连接位置, 每跟第 六微带线的另一端与一根第七微带线的一端连接; 及
[0008] 每根第二微带线与一根第三微带线及一根第四微带线形成三枝节耦合结构, 每 根第六微带线及一根第七微带线形成双枝节匹配幵路负载。
[0009] 优选的, 所述具有三枝节耦合及双枝节匹配微带线结构的信号发射装置包括两 个双枝节匹配幵路负载及两个三枝节耦合结构。
[0010] 优选的, 所述两个信号传输端分别用于信号的输入和信号的输出, 其中, 一个 信号传输端作为信号输入端, 另外一个信号传输端作为信号输出端。
[0011] 优选的, 所述第一微带线、 第二微带线、 第三微带线、 第四微带线、 第五微带 线、 第六微带线、 第七微带线及信号传输端均为条形结构的金属铜片。
[0012] 优选的, 所述第一微带线的长度为 10mm、 宽度为 1.66mm, 所述第二微带线及 第三微带线的长度均为 14.5mm、 宽度均为 0.21mm, 所述第四微带线的长度为 14. 5mm、 宽度为 0.12mm, 所述第四微带线至第二微带线之间的最短距离为 0.18mm , 第四微带线至第三微带线之间的最短距离为 0.18mm, 所述第五微带线的长度 为 11.5mm、 宽度为 2.88mm, 第六微带线的长度为 L4=12.9mm、 宽度为 0.38mm, 第七微带线的长度为 10.8mm、 宽度为 2.78mm, 所述信号传输端的长度为 10mm 、 宽度为 1.66mm。
[0013] 优选的, 每个第一微带线的阻抗为 50 Ω, 每个二、 三、 四微带线共同构成一个 三枝节耦合结构, 每个三枝节耦合结构的奇模特性阻抗为 10Ω、 偶模特性阻抗为 8Ω、 电长度为 90度, 每个第五微带线的阻抗为 11Ω, 每个第六微带线的阻抗为 1 0Ω, 每个第七微带线的阻抗为 12Ω。
[0014] 优选的, 所述具有三枝节耦合及双枝节匹配微带线结构的信号发射装置上还设 置有电源、 第一电压调节模块及第一稳压模块, 所述第一电压调节模块与第一 稳压模块及压控振荡器连接, 所述电源与第一电压调节模块及第一稳压模块电 连接。
[0015] 优选的, 所述具有三枝节耦合及双枝节匹配微带线结构的信号发射装置上还设 置有电源、 第二电压调节模块及第二稳压模块, 所述第二电压调节模块与第二 稳压模块及放大器连接, 所述电源与第二电压调节模块及第二稳压模块电连接
发明的有益效果
有益效果
[0016] 相较于现有技术, 本发明所述具有三枝节耦合及双枝节匹配微带线结构的信号 发射装置通过设计成两个双枝节匹配幵路负载和两个三枝节耦合结构, 可以在 原本的微带线具有滤波性能的基础上, 实现相对带宽大且对通带信号具有高选 择性, 引入更少噪声, 避免对射频前端造成干扰, 使得发射的信号更清晰, 噪 声更少。
对附图的简要说明
附图说明
[0017] 图 1是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发射装置的结构 示意图。
[0018] 图 2是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发射装置中压控 振荡器的优选实施例的结构示意图。
[0019] 图 3是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发射装置中放大 器的优选实施例的结构示意图。
[0020] 图 4是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发射装置中滤波 器优选实施例的结构示意图。
[0021] 图 5是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发射装置中滤波 器优选实施例的电路原理图。
[0022] 图 6是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发射装置通过电 磁仿真软件仿真的 S参数结果示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0023] 下面结合具体实施例对本发明做进一步的详细说明, 以下实施例是对本发明的 解释, 本发明并不局限于以下实施例。
[0024] 参考图 1所示, 图 1是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发 射装置的结构示意图。 在本实施例中, 本发明所述具有三枝节耦合及双枝节匹 配微带线结构的信号发射装置 1包括滤波器 10、 压控振荡器 20、 放大器 30及发射 天线 40, 所述压控振荡器 20的输出端与所述放大器 30的输入端连接, 所述放大 器 30的输出端与所述滤波器 10的输入端连接, 所述滤波器 10的输出端与所述发 射天线的输入端连接。
[0025] 所述具有三枝节耦合及双枝节匹配微带线结构的信号发射装置 1用于产生信号
(例如, 通信信号) 并通过发射天线 40发射至空中。 在本实施例中, 所述发射 天线 40为八木发射天线, 其中发射天线 40的发射频率均在 340至 570MHz之间。
[0026] 参考图 2所示, 图 2是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发 射装置中压控振荡器的优选实施例的结构示意图。
[0027] 所述具有三枝节耦合及双枝节匹配微带线结构的信号发射装置 1还设置电源 204 、 第一电压调节模块 202及第一稳压模块 203。 所述第一电压调节模块 202与第一 稳压模块 203及压控振荡器 20连接。 所述电源 204与第一电压调节模块 202及第一 稳压模块 203电连接。 所述电源 204用于为压控振荡器 20提供电能。 所述第一电 压调节模块 202用于通过电压调节以控制压控振荡器 20产生不同频率的信号。 所 述第一稳压模块 203用于将电源 204的电压调节并稳压以防止电源 204的电压波动 而影响所述第一电压调节模块 202。 在本实施例中, 所述第一电压调节模块 202 可以是, 但不限于, 电位器或滑动变阻器。 所述第一稳压模块 203为稳压器。 需 要说明的是, 图 2中电源 204与压控振荡器 20之间的连接导线并不会和第一电压 调节模块 202与第一稳压模块 203之间的连接导线形成十字的通路, 而只是为了 图 2的显示便利。 在其它实施例中, 所述第一电压调节模块 202与第一稳压模块 2 03可以省略。
[0028] 参考图 3所示, 图 3是本发明具有三枝节耦合及双枝节匹配微带线结构的信号发 射装置中放大器的优选实施例的结构示意图。
[0029] 所述具有三枝节耦合及双枝节匹配微带线结构的信号发射装置 1还第二电压调 节模块 302及第二稳压模块 303。 所述第二电压调节模块 302与第二稳压模块 303 及放大器 30连接。 所述电源 204与第二电压调节模块 302及第二稳压模块 303电连 接。 所述电源 204用于为放大器 30提供电能。 所述第二电压调节模块 302用于通 过电压调节以控制放大器 30产生不同频率的信号。 所述第二稳压模块 303用于将 电源 204的电压调节并稳压以防止电源 204的电压波动而影响所述第二电压调节 模块 302。 在本实施例中, 所述第二电压调节模块 302可以是, 但不限于, 电位 器或滑动变阻器。 所述第二稳压模块 303为稳压器。 需要说明的是, 图 3中电源 2 04与放大器 30之间的连接导线并不会和第二电压调节模块 302与第二稳压模块 30 3之间的连接导线形成十字的通路, 而只是为了图 3的显示便利。 在其它实施例 中, 所述第二电压调节模块 302与第二稳压模块 303可以省略。
[0030] 在本实施例中, 所述信号发射装置 1通过压控振荡器 20产生一个信号, 通过放 大器 30将所述信号的射频功率放大, 例如, 将 6dBm的功率信号放大到可调节的 功率信号 (最大为 60W) , 并通过滤波器 10对发大的信号进行过滤, 之后通过发 射天线 40发射至空气中。
[0031] 参考图 4至 5所示, 图 4是本发明具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置中滤波器优选实施例的结构示意图; 图 5是本发明具有三枝节耦合及 双枝节匹配微带线结构的信号发射装置中滤波器优选实施例的电路原理图。 [0032] 在本实施例中, 所述滤波器 10包括设置在介质板 100表面的两根第一微带线 101 、 两根第二微带线 102、 两根第三微带线 103、 两根第四微带线 104、 两根第五微 带线 105、 两根第六微带线 106、 两根第七微带线 107及两个信号传输端 Pl。
[0033] 所述滤波器 10关于第一中心轴线 (图 1中的 ab线) 左右对称, 并关于第二中心 轴线 (图 1中的 cd线) 上下对称, 所述第一中心轴线为所述滤波器 10的上下两条 横向边框的中点的连线 (即图 4中的线 a-b) , 所述第二中心轴线为所述滤波器 10 的左右两条纵向边框的中点的连线 (即图 4中的线 c-d) , 第一中心轴线与第二中 心轴线相互垂直。
[0034] 进一步地, 所述两根第一微带线 101、 两根第二微带线 102、 两根第三微带线 10 3、 两根第四微带线 104、 两根第五微带线 105及两个信号传输端 P1均与所述上下 两条横向边框平行, 所述两根第六微带线 106及两根第七微带线 107均与所述滤 波器 10的左右两条竖直边框平行。
[0035] 需要说明的是, 所述第一中心轴线及第二中心轴线在所述滤波器 10并不是金属 构成的部件, 而是为了生产或设计的吋候, 方便用户将所述滤波器 10上的元件
(例如, 两根第一微带线 101、 两根第二微带线 102、 两根第三微带线 103、 两根 第四微带线 104、 两根第五微带线 105、 两根第六微带线 106、 两根第七微带线 10 7及两个信号传输端 P1) 关于第一中心轴线左右对称并关于第二中心轴线上下对 称。 当所述滤波器 10工作吋, 所述中心轴线并不会参与信号过滤等任何操作。 在本实施例中, 所述第一中心轴线及第二中心轴线是为了方便描述滤波器 10的 左右及上下对称结构。 其中, 所述放大器 30的输出端与所述滤波器 10的一个信 号传输端 P连接, 所述滤波器 10的另外一个信号传输端 P与所述发射天线 40的输 入端连接。
[0036] 每根第一微带线 101的一端与一根信号输出端 P1连接, 每根第一微带线 101的另 一端与一根第二微带线 102的一端及一根第三微带线 103的一端连接, 其中, 第 二微带线 102及第三微带线 103之间设置有空隙, 每根第四微带线 104设置于一根 第二微带线 102及一根第三微带线 103之间形成的空隙中, 该第四微带线 104的一 端与一根第五微带线 105的一端连接, 该第五微带线 105的另一端与另一根第五 微带线 105的一端连接, 每根第六微带线 106—端垂直连接于两根第五微带线 105 的连接位置, 每跟第六微带线 106的另一端与一根第七微带线 107的一端连接。 其中, 每根第二微带线 102与一根第三微带线 103及一根第四微带线 104形成三枝 节耦合结构 1200, 每根第六微带线 106及一根第七微带线 107形成双枝节匹配幵 路负载 1000。 从图 1及图 2可以看出, 所述滤波器 10包括两个双枝节匹配幵路负 载 1000及两个三枝节耦合结构 1200。
[0037] 所述介质板 100为一种 PCB板, 具体的板材类型为 Roger RO4350B , 其中相对介 电常数为 3.66, 板厚为 0.762mm。
[0038] 在本实施例中, 第一微带线 101、 第二微带线 102、 第三微带线 103、 第四微带 线 104、 第五微带线 105、 第六微带线 106、 第七微带线 107及信号传输端 P1均为 条形结构的金属铜片。 本发明所述滤波器相对于现有带通滤波器, 通过改变微 带线的长度和宽度, 可以使本发明所述滤波器 10在工作频段内达到很好的匹配 效果。
[0039] 本实施例中, 所述滤波器 10的工作频带在 1.99GHz-4.72GHz内, 通过具体的实 施例来说明设置在介质板 100表面的第一微带线 101、 第二微带线 102、 第三微带 线 103、 第四微带线 104、 第五微带线 105、 第六微带线 106、 第七微带线 107及信 号传输端 P1的长度和宽度。
[0040] 具体而言, 如图 4所示:
[0041] 第一微带线 101的长度为 L=10mm, 第一微带线 101的宽度为 W=1.66mm。
[0042] 第二微带线 102及第三微带线 103的长度相同, 均为 Ll=14.5mm, 第二微带线 10
2及第三微带线的宽度相同, 均为 Wl=0.21mm。
[0043] 第四微带线 104的长度为 Ll=14.5mm, 第四微带线的宽度为 W2=0.12mm, 第四 微带线 104至第二微带线 102之间的最短距离为 Sl=0.18mm, 第四微带线 104至第 三微带线 103之间的最短距离为 Sl=0.18mm。
[0044] 第五微带线 105的长度为 L3=11.5mm, 第五微带线 105的宽度为 W3=2.88mm。
[0045] 第六微带线 106的长度为 L4=12.9mm, 第六微带线 106的宽度为 W4=0.38mm。
[0046] 第七微带线 107的长度为 L5=10.8mm, 第七微带线 107的宽度为 W5=2.78mm。
[0047] 信号传输端 PI的长度为 L0=10mm, 信号传输端 PI的宽度为 W0=1.66mm。
[0048] 需要说明的是, 设置在 PCB板上的金属铜片厚度一般为 um级, 因此本发明并不 对第一微带线 101、 第二微带线 102、 第三微带线 103、 第四微带线 104、 第五微 带线 105、 第六微带线 106、 第七微带线 107及信号传输端 P1的长度和宽度的金属 铜片厚度加以限制, 并不影响本发明所述滤波器的特性。 此外, 两个信号传输 端 P1分别用于信号的输入和信号的输出, 其中, 一个信号传输端 P1作为信号输 入端, 另外一个信号传输端 P1作为信号输出端。 进一步地, 信号输入端可以是 图 1中左边的信号传输端 Pl, 也可以是右边的信号传输端 PI ; 信号输出端可以是 图 1中左边的信号传输端 Pl, 也可以是右边的信号传输端 Pl。 例如, 若图 1中左 边的信号传输端 P1作为信号输入端, 则图 1中右边的信号传输端 P1作为信号输出 端, 信号从左边的信号传输端 P1进入, 从右边的信号传输端 P1输出。 若图 1中左 边的信号传输端 P1作为信号输出端, 则图 1中右边的信号传输端 P1作为信号输入 端, 信号从右边的信号传输端 P1进入, 从左边的信号传输端 P1输出。
[0049] 在本实施例中, 每个第一微带线的阻抗为 50 Ω, 每个二、 三、 四微带线共同构 成一个三枝节耦合结构, 每个三枝节耦合结构的奇模特性阻抗为 10Ω、 偶模特性 阻抗为 8Ω、 电长度为 90度, 每个第五微带线的阻抗为 11Ω, 每个第六微带线的 阻抗为 10Ω, 每个第七微带线的阻抗为 12Ω。
[0050] 本发明所述的滤波器通过设计成两个双枝节匹配幵路负载 1000和两个三枝节耦 合结构 1200, 可以实现在特定工作频带内, 使得原本的微带线具有滤波性能, 对通带信号具有高选择性, 引入更少噪声, 避免对射频前端造成干扰。
[0051] 参考图 6所示, 图 6是本发明滤波器通过电磁仿真软件仿真的 S参数结果示意图
[0052] 从图 6可以看出, 所述滤波器 10在工作频带 1.99GHz-4.72GHz (图 6中 IS 111曲线 纵坐标 -10dB对应的频率范围) , 有 81.37<¾[ (4.72-1.99) /(0.5*(4.72+1.99))]的相 对带宽, 也就是说, 采用本发明的结构会有更宽的相对带宽。 同吋, 在工作频 带的频率为 1.28GHz吋, 反射系数 (即图 6中的 IS11I) 可以达到 -67dB, 在工作频 带的频率为 6.5GHz吋, 传输系数 (即图 6中的 IS21I) 为 -95dB, 从图 6中可以看出
, 所述滤波器 10的通带信号具有高选择性。 由此可知, 本发明的滤波器能够对 通带信号具有高选择性, 及更宽的相对带宽, 引入更少噪声, 避免对射频前端 造成干扰。 [0053] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0054] 相较于现有技术, 本发明所述具有三枝节耦合及双枝节匹配微带线结构的信号 发射装置通过设计成两个双枝节匹配幵路负载和两个三枝节耦合结构, 可以在 原本的微带线具有滤波性能的基础上, 实现相对带宽大且对通带信号具有高选 择性, 引入更少噪声, 避免对射频前端造成干扰, 使得发射的信号更清晰, 噪 声更少。

Claims

权利要求书
[权利要求 1] 一种具有三枝节耦合及双枝节匹配微带线结构的信号发射装置, 其特 征在于, 所述信号发射装置包括滤波器、 压控振荡器、 放大器及发射 天线, 所述压控振荡器的输出端与所述放大器的输入端连接, 所述滤 波器包括设置于介质板表面的两个信号传输端, 所述放大器的输出端 与所述滤波器的一个信号传输端连接, 所述滤波器的另外一个输出端 与所述发射天线连接, 其中: 所述滤波器还包括设置在介质板表面的 两根第一微带线、 两根第二微带线、 两根第三微带线、 两根第四微带 线、 两根第五微带线、 两根第六微带线及两根第七微带线, 所述宽带 带通滤波器关于第一中心轴线左右对称, 所述宽带带通滤波器关于第 二中心轴线上下对称, 所述第一中心轴线为所述宽带带通滤波器的上 下两条横向边框的中点的连线, 所述第二中心轴线为所述宽带带通滤 波器的左右两条纵向边框的中点的连线; 所述两根第一微带线、 两根 第二微带线、 两根第三微带线、 两根第四微带线、 两根第五微带线及 两个信号传输端均与所述第一中心轴线平行, 所述两根第六微带线及 两根第七微带线均与所述第二中心轴线平行; 每根第一微带线的一端 与一根信号输出端连接, 每根第一微带线的另一端与一根第二微带线 的一端及一根第三微带线的一端连接, 每根第四微带线设置于一根第 二微带线及一根第三微带线之间形成的空隙中, 每根第四微带线的一 端与一根第五微带线的一端连接, 该第五微带线的另一端与另一根第 五微带线的一端连接, 每根第六微带线一端垂直连接于两根第五微带 线的连接位置, 每跟第六微带线的另一端与一根第七微带线的一端连 接; 及每根第二微带线与一根第三微带线及一根第四微带线形成三枝 节耦合结构, 每根第六微带线及一根第七微带线形成双枝节匹配幵路 负载。
[权利要求 2] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 所述具有三枝节耦合及双枝节匹配微带线 结构的信号发射装置包括两个双枝节匹配幵路负载及两个三枝节耦合 结构。
[权利要求 3] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 所述两个信号传输端分别用于信号的输入 和信号的输出, 其中, 一个信号传输端作为信号输入端, 另外一个信 号传输端作为信号输出端。
[权利要求 4] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 所述第一微带线、 第二微带线、 第三微带 线、 第四微带线、 第五微带线、 第六微带线、 第七微带线及信号传输 端均为条形结构的金属铜片。
[权利要求 5] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 所述第一微带线的长度为 10mm、 宽度为 1 .66mm, 所述第二微带线及第三微带线的长度均为 14.5mm、 宽度均 为 0.21mm, 所述第四微带线的长度为 14.5mm、 宽度为 0.12mm, 所述 第四微带线至第二微带线之间的最短距离为 0.18mm, 第四微带线至 第三微带线之间的最短距离为 0.18mm, 所述第五微带线的长度为 11.5 mm、 宽度为 2.88mm, 第六微带线的长度为 L4=12.9mm、 宽度为 0.38 mm, 第七微带线的长度为 10.8mm、 宽度为 2.78mm, 所述信号传输 端的长度为 10mm、 宽度为 1.66mm。
[权利要求 6] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 每个第一微带线的阻抗为 50 Ω, 每个二、 三、 四微带线共同构成一个三枝节耦合结构, 每个三枝节耦合结构的 奇模特性阻抗为 10Ω、 偶模特性阻抗为 8Ω、 电长度为 90度, 每个第五 微带线的阻抗为 11Ω, 每个第六微带线的阻抗为 10Ω, 每个第七微带 线的阻抗为 12Ω。
[权利要求 7] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 所述具有三枝节耦合及双枝节匹配微带线 结构的信号发射装置上还设置有电源、 第一电压调节模块及第一稳压 模块, 所述第一电压调节模块与第一稳压模块及压控振荡器连接, 所 述电源与第一电压调节模块及第一稳压模块电连接。
[权利要求 8] 根据权利要求 1所述的具有三枝节耦合及双枝节匹配微带线结构的信 号发射装置, 其特征在于, 所述具有三枝节耦合及双枝节匹配微带线 结构的信号发射装置上还设置有电源、 第二电压调节模块及第二稳压 模块, 所述第二电压调节模块与第二稳压模块及放大器连接, 所述电 源与第二电压调节模块及第二稳压模块电连接。
PCT/CN2017/114059 2017-06-23 2017-11-30 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置 WO2018233229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710488023.5A CN107395223A (zh) 2017-06-23 2017-06-23 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置
CN201710488023.5 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018233229A1 true WO2018233229A1 (zh) 2018-12-27

Family

ID=60332698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114059 WO2018233229A1 (zh) 2017-06-23 2017-11-30 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置

Country Status (2)

Country Link
CN (1) CN107395223A (zh)
WO (1) WO2018233229A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395223A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置
CN107394321A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 加载三枝节耦合微带线的宽带带通滤波器
CN207038672U (zh) * 2017-06-23 2018-02-23 深圳市景程信息科技有限公司 具有扩大相对带宽的宽带带通滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187599A (zh) * 2013-03-09 2013-07-03 西安电子科技大学 一种带隙可调微带超宽带滤波器
WO2016031185A1 (ja) * 2014-08-26 2016-03-03 日本電気株式会社 ノード装置及びノード装置の制御方法
CN106785261A (zh) * 2017-01-09 2017-05-31 华东交通大学 一种窄带陷波可调的带通滤波器
CN106848506A (zh) * 2017-01-11 2017-06-13 电子科技大学 微带滤波器设计方法
CN107395223A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694899B (zh) * 2009-10-16 2012-11-07 电子科技大学 一种具有扇形开路结构的微带带通滤波器
CN101950827A (zh) * 2010-09-06 2011-01-19 华东交通大学 一种枝节加载式超宽带微波滤波器
CN102544652B (zh) * 2012-01-18 2015-03-11 华南理工大学 一种具有高选择性和超高阻带抑制效果的超宽带滤波器
CN104733813B (zh) * 2015-03-16 2017-06-06 华南理工大学 一种频率和带宽均可重构的宽带带通滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187599A (zh) * 2013-03-09 2013-07-03 西安电子科技大学 一种带隙可调微带超宽带滤波器
WO2016031185A1 (ja) * 2014-08-26 2016-03-03 日本電気株式会社 ノード装置及びノード装置の制御方法
CN106785261A (zh) * 2017-01-09 2017-05-31 华东交通大学 一种窄带陷波可调的带通滤波器
CN106848506A (zh) * 2017-01-11 2017-06-13 电子科技大学 微带滤波器设计方法
CN107395223A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置

Also Published As

Publication number Publication date
CN107395223A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2018233227A1 (zh) 加载三枝节耦合微带线的宽带带通滤波器
US20110273242A1 (en) Directional coupler and wireless communication apparatus comprising thereof
WO2018233229A1 (zh) 具有三枝节耦合及双枝节匹配微带线结构的信号发射装置
CN105720339B (zh) 一种双频可调带通滤波器
CN102509822B (zh) 双通带微带滤波器
CN103825564A (zh) 一种具有带通滤波响应的高效率宽带功率放大器
WO2018188292A1 (zh) 具有宽带带外抑制的宽带带通滤波器
WO2018233228A1 (zh) 具有加载三枝节耦合微带线结构的信号发射装置
CN201528031U (zh) L型耦合结构双模微带带通滤波器
WO2018171184A1 (zh) 基于四模缺陷地式谐振器的三通带滤波器
WO2018188293A1 (zh) 具有宽带带外抑制的信号发射装置
CN108493533A (zh) 一种具有稳定宽阻带的可调滤波器
CN106450604B (zh) 一种传输零点可调的平面双模巴伦带通滤波器
CN101635383A (zh) 具有增强耦合和谐波抑制特性的微带双模滤波器
CN203760606U (zh) 一种微带双通带滤波器
JP6635358B2 (ja) 高周波増幅器
US20090231063A1 (en) Low-pass filter
CN109638398A (zh) 具有宽阻带和高选择性的紧凑型带通滤波器
CN209607892U (zh) 一种枝节加载结构的具有陷波特性的宽带滤波器
CN101867349A (zh) 射频功率放大器
KR101474607B1 (ko) 오픈 스터브를 이용한 마이크로스트립 대역저지 필터
US20090237183A1 (en) Low-pass filter
US7576628B2 (en) Low-pass filter
CN206834309U (zh) 一种平面双频可调的带通‑带阻滤波器
WO2018188294A1 (zh) 基于双枝节匹配开路负载及耦合结构的信号发射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914704

Country of ref document: EP

Kind code of ref document: A1