WO2018232851A1 - 一种基于无线地磁探测的车辆管理方法及系统 - Google Patents

一种基于无线地磁探测的车辆管理方法及系统 Download PDF

Info

Publication number
WO2018232851A1
WO2018232851A1 PCT/CN2017/096159 CN2017096159W WO2018232851A1 WO 2018232851 A1 WO2018232851 A1 WO 2018232851A1 CN 2017096159 W CN2017096159 W CN 2017096159W WO 2018232851 A1 WO2018232851 A1 WO 2018232851A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
parking space
grid
vehicle
coordinate
Prior art date
Application number
PCT/CN2017/096159
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018232851A1 publication Critical patent/WO2018232851A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors

Definitions

  • the invention belongs to the field of wireless detection vehicle management, and in particular relates to a vehicle management method and system based on wireless geomagnetic detection.
  • the technical problem to be solved by the present invention is: when the vehicle is berthed, if the connected or similar vehicles simultaneously carry out the berth, the information of the geomagnetic detection and collection vehicle will interfere, and the acquired information may be wrong or inaccurate. A chaotic phenomenon.
  • the present invention provides a vehicle management method based on wireless geomagnetic detection, the method comprising the following steps:
  • the parking space is grid-set to form a coordinate grid parking space
  • the invention has the beneficial effects that the geomagnetic detection can accurately collect information only on the host vehicle by means of grid coordinate calibration in the field of the vehicle berth, without interference from other vehicles or other geomagnetic detection. Inaccurate vehicle information is ingested, or the acquired vehicle information is inaccurate and disordered.
  • the real-time detection of the vehicle is turned on, and the second filtering removal of the information in the non-parking parking grid includes: for the first time Filter the removed information and filter it again In addition, the second stored information is filtered and removed at the same time.
  • the above further beneficial effect is that the information removed by the first filtering is repeated, and the filtering is removed again, and the second stored information filtering is also removed. This guarantees the filtering of this time, and also ensures that the last filtered information is not left. The double guarantee that the information acquired in the geomagnetic detector will not have repeated information content, and the information acquisition of the vehicle is correct.
  • the third coordinate filtering is performed on the continuous coordinate information, and the filtered information is sent to the base station, and the third filtering removal includes: removing the information of the second filtering, and performing filtering again. At the same time, the third stored information is filtered and removed.
  • the above further beneficial effect is that it can ensure that the information acquired for the first time and the second time is not erroneous, and also ensures that the information acquisition of the vehicle is correct. It makes the transmission of base station information easier in the later stage, does not cause a large amount of information redundancy, and does not put pressure on the geomagnetic detector. Also, the transmission of information to the vehicle is more concise.
  • the invention also relates to a geomagnetic detector comprising:
  • a parking space setting unit for grid setting parking spaces to form a coordinate grid parking space
  • the geomagnetic detecting unit is configured to scan the entire grid parking space, record the coordinate information of the parking space, and track the movement coordinate information of the wheel in the grid in real time when the vehicle enters the sideline of the parking space;
  • the information processing unit is configured to stop recording when the vehicle is completely stopped, and determine whether the recorded coordinate information is continuous, if not continuous, automatically delete the discontinuous information; if continuous, filter the continuous information, and filter The subsequent information is sent to the base station.
  • the invention has the beneficial effects that the geomagnetic detection can accurately collect information only on the host vehicle by means of grid coordinate calibration in the field of the vehicle berth, without interference from other vehicles or other geomagnetic detection. Inaccurate vehicle information is ingested, or the acquired vehicle information is inaccurate and disordered.
  • system also numbers the geomagnetic sounding unit to ensure accurate information transmission when transmitting information to the base station.
  • numbering the geomagnetic detectors can facilitate the search for missing information in the later stage and the problem of incomplete information being quickly solved.
  • the geomagnetic sounding unit further includes: a first information processing unit, a second information processing unit, and a third information processing unit; the first information processing unit, When the front wheel of the vehicle enters the sideline of the parking space, the real-time detection of the vehicle is turned on, and the information in the non-parking parking grid is filtered and removed for the second time;
  • the second information processing unit is configured to track coordinate information of the wheel in the grid parking space in real time according to the motion trajectory of the vehicle in the parking space;
  • the third information processing unit is configured to store coordinate information in its own storage in real time.
  • the above further beneficial effect is that the information removed by the first filtering is repeated, and the filtering is removed again, and the second stored information filtering is also removed. This guarantees the filtering of this time, and also ensures that the last filtered information is not left. The double guarantee that the information acquired in the geomagnetic detector will not have repeated information content, and the information acquisition of the vehicle is correct.
  • the invention also provides a vehicle management system based on wireless geomagnetic detection, the system comprising: a base station, a geomagnetic detector, a user terminal, and a central processing station, wherein the base station is configured to send information after receiving the information of the geomagnetic detector To the central processing station, the central processing station stores the information in time and transmits the information to the user's terminal to notify the customer of the information status of the vehicle in time.
  • FIG. 1 is a flow chart of a vehicle management method based on wireless geomagnetic detection according to the present invention
  • FIG. 2 is a schematic structural view of a geomagnetic detector of the present invention
  • FIG. 3 is a schematic diagram of a grid setup of the present invention.
  • Figure 5 is a schematic diagram of information encoding of a geomagnetic detector of the present invention.
  • FIG. 6 is a topological diagram of a vehicle berth and a base station transmission according to the present invention.
  • FIG. 7 is a schematic diagram of tracking information processing of a geomagnetic detector according to the present invention.
  • FIG. 8 is a schematic diagram of a vehicle management system based on wireless geomagnetic detection according to the present invention.
  • a vehicle management method based on wireless geomagnetic detection includes the following steps:
  • the parking space is grid-set to form a coordinate grid parking space
  • a vehicle management method based on wireless geomagnetic sounding includes the following:
  • the parking spaces are grid-set to form a coordinate grid parking space; in the embodiment of the present invention, when the vehicle is in the station, when the berth needs to be carried out, the parking space is grid-set, for example: at the present
  • the parking spaces are in a tightly connected form, using lines to separate each parking space, but the surface is separated from the vehicle. In fact, when acquiring the information of the vehicle, it is easy to connect the adjacent vehicles. The information is also recorded, which results in the acquisition of incorrect vehicle information, or the intersection of vehicles that are adjacent or close to each other.
  • This application adopts the form of grid coordinates to coordinate the planning of each parking space. For example, the parking space is grid-set, and the n ⁇ n or m ⁇ n grid matrix form will be formed according to the size of the parking space.
  • the grid is coordinately marked to form a coordinated grid parking space.
  • the grid arrangement in Figure 3 uses an mxn grid matrix.
  • a parking space When a parking space is in the range of 2 meters by 1.5 meters, this range is planned into a m ⁇ n grid matrix to form a plurality of closely connected coordinate points; when a parking space is 2 meters by 2 meters, this In the application embodiment, an m ⁇ n grid matrix is used to form a plurality of closely connected coordinate points.
  • Each coordinate point can record the trajectory of a vehicle's motion. When the vehicle's wheel traverses the coordinate point, it will leave a trace, and the geomagnetic detector will record the coordinates of the point.
  • the advantage of using grid coordinates is that it is possible to accurately ensure that the recorded information is the information of the vehicle that needs the berth, and does not erroneously record the information of the vehicle or other objects in the non-grid.
  • the solid line in FIG. 3 is the motion trajectory of the vehicle, and the recorded information captured by the geomagnetic detector is also the information of the coordinate points of the graphic frame drawn by the solid lines.
  • the geomagnetic detector in S2 scans the entire grid parking space and records the coordinate information of the parking space.
  • the geomagnetic detector scans the entire grid parking space, that is, the entire area of the parking space.
  • the mesh coordinates in the inner region and the region in which the coordinates are combined are used to acquire the information in advance, and the mesh coordinates and the regions in which the coordinates are combined are recorded and stored in the memory of the geomagnetic detector itself for storage. In order to subsequently proofread and delete the information.
  • the motion coordinate information of the wheel in the grid is recorded in real time.
  • the front wheel of the vehicle is first entered into the sideline of the parking space, at which time the geomagnetic detector is turned on, the entire parking space is recorded, and the wheel is in the parking space.
  • the movement, the grid area where the wheels slide, the geomagnetic detector will scan these places.
  • the geomagnetic detector records these real-time traces and saves the recorded information to its own memory.
  • the recording is stopped, and it is judged whether the recorded coordinate information is continuous. If it is not continuous, the discontinuous information is automatically deleted; if it is continuous, the continuous information is filtered, and the filtered information is filtered. The information is sent to the base station.
  • the tracking record is also stopped at the same time.
  • the recorded information is filtered, and the information belonging to the same area is uniformly stored in blocks, and then according to the specific information of each block.
  • the coordinate points with higher density are filtered out, and the coordinate points with higher filtering intensity in each block are uniformly extracted, and the extracted information is additionally stored. The rest of the information is automatically deleted.
  • the geomagnetic detector combines the filtered stored information, divides the combined information into a certain number of information strips, and arranges the information strips according to digital codes, as shown in FIG. 4, for example: 10 pieces of information
  • the encoding of the 10 pieces of information is combined with the digital code A of the geomagnetic detector itself into A1, A2, A3, A4, A5, A6, A7, A8, A9, A10.
  • the 10 pieces of information codes are sent to the base station in order, so that the information will not be sent incorrectly, and there will be no information redundancy.
  • the information is encoded, which greatly reduces the storage capacity of the information and reduces the processing requirements of the information.
  • a vehicle management method based on wireless geomagnetic sounding includes the following:
  • the parking spaces are grid-set to form a coordinate grid parking space; in the embodiment of the present invention, when the vehicle is in the station, when the berth needs to be carried out, the parking space is grid-set, for example: at the present
  • the parking spaces are in a tightly connected form, using lines to separate each parking space, but the surface is separated from the vehicle. In fact, when acquiring the information of the vehicle, it is easy to connect the adjacent vehicles. The information is also recorded, which results in the acquisition of incorrect vehicle information, or the intersection of vehicles that are adjacent or close to each other.
  • This application uses grid coordinates In the form of coordinate planning for each parking space, for example, the parking space is grid-set, and the grid is formed in the form of n ⁇ n or m ⁇ n grid matrix according to the size of the parking space. Mark to form a coordinated grid parking space.
  • the grid arrangement in Figure 3 uses an mxn grid matrix.
  • a parking space When a parking space is in the range of 2 meters by 1.5 meters, this range is planned into a m ⁇ n grid matrix to form a plurality of closely connected coordinate points; when a parking space is 2 meters by 2 meters, this In the application embodiment, an m ⁇ n grid matrix is used to form a plurality of closely connected coordinate points.
  • Each coordinate point can record the trajectory of a vehicle's motion. When the vehicle's wheel traverses the coordinate point, it will leave a trace, and the geomagnetic detector will record the coordinates of the point.
  • the advantage of using grid coordinates is that it is possible to accurately ensure that the recorded information is the information of the vehicle that needs the berth, and does not erroneously record the information of the vehicle or other objects in the non-grid.
  • the entire grid parking space is scanned, the coordinate information of the parking space is recorded, and the information in the non-parking parking grid is filtered and removed for the first time to prevent information in the non-grid from being applied to the vehicle.
  • the recording of information causes the vehicle information to be incorrect.
  • the geomagnetic detector of the surrounding parking When the vehicle is parked, if the vehicle next to it is also to be parked, the geomagnetic detector of the surrounding parking will also detect the vehicle, so that it is easy to obtain the wrong vehicle because the distance is relatively close.
  • the information on the adjacent vehicles is recorded, causing the geomagnetic detector of the parking space to send the information to the base station with the wrong information or the remaining information.
  • the grid is set, and the information is filtered.
  • the geomagnetic detector scans the entire grid parking space, records the coordinate information of the parking space, and the geomagnetic detector is in the non-parking grid.
  • the information is filtered out for the first time, filtering out information that does not belong to the grid coordinates of the area, and deleting the wrong information. The purpose of this is to facilitate the transmission and processing of information in the later stage, and also avoid excessive information, which will cause information redundancy.
  • the motion coordinate information of the wheel in the grid is recorded in real time.
  • the coordinate information is stored in the storage itself in real time.
  • the geomagnetic detector when the front wheel of the vehicle enters the sideline of the parking space, the geomagnetic detector turns on the real-time detection of the vehicle, and at the same time, the information in the non-parking space grid
  • the secondary filter is removed; the geomagnetic detector tracks the coordinate information of the wheel in the grid parking space in real time according to the movement track of the vehicle in the parking space; the geomagnetic detector stores the coordinate information in its own storage in real time.
  • secondary filtering is adopted.
  • the geomagnetic detector also erroneously records such information, and the secondary filtering used in the second embodiment is just like this.
  • the erroneous information situation is removed, specifically, the information that is static for a period of time in the area is deleted, and the information that does not belong to the grid coordinate area is deleted. Information that belongs to the area and that is continuously moving for a continuous period of time is recorded.
  • the geomagnetic detector stops recording, and at the same time determines whether the recorded coordinate information is continuous. If it is not continuous, the geomagnetic detector automatically deletes the discontinuous information; if continuous, the geomagnetic detector is continuous The information is filtered and the filtered information is sent to the base station.
  • S41 when the vehicle is completely stopped, stop recording, and judge whether the recorded coordinate information is continuous, if continuous, execute S43; if not, execute S42; S42, if the grid coordinates are not continuous, the discontinuous information Automatic deletion; S43, if continuous, performs continuous filtering on the continuous information, and sends the filtered information to the base station.
  • the third filtering is adopted.
  • other adjacent vehicles may perform the same action, so that the geomagnetic detector may also be adjacent to other neighbors.
  • the vehicle is recorded, or other objects are accidentally entered into the grid coordinate area of the parking space, and the geomagnetic detector also erroneously records such information, and the third filtering used in the second embodiment is also just right.
  • Such erroneous information can be removed, in particular, information that is static for a period of time in the area is deleted, and information that does not belong to the grid coordinate area is deleted. Information that belongs to the area and that is continuously moving for a continuous period of time is recorded.
  • the base station after receiving the information of the geomagnetic detector, the base station sends the information to the central processing station, and the central processing station stores the information in time, and sends the information to the mobile phone APP of the customer to notify the information state of the customer's vehicle in time.
  • the geomagnetic detector combines the filtered stored information, divides the combined information into a certain number of information strips, and arranges the information strips according to digital codes, as shown in FIG. 6, for example, 10 information strips. Then the code of the 10 pieces of information is combined with the digital code A of the geomagnetic detector itself into A1, A2, A3, A4, A5, A6, A7, A8, A9, A10. When sent to the base station, the 10 pieces of information codes are sent to the base station in order, so that the information will not be sent incorrectly, and there will be no information redundancy. After the information is filtered, the information is encoded, which greatly reduces the storage capacity of the information and reduces the processing requirements of the information.
  • the information is sent to the central processing station, and the central processing station stores the information in time, and sends the information to the customer's mobile APP or other client to notify the customer of the vehicle in time.
  • the status of the information for example: the customer's vehicle is currently stopped at the "Carpark No. 15 on the 3rd floor parking lot of the Crown Hotel, Haidian Aerospace Bridge".
  • the information in the present invention also includes: the time when the customer's vehicle enters the parking space, such as: 15:31, and the time when the vehicle is berthed for 3 minutes, and the time from the customer's parking to the present is 35 minutes, from the parking space where the customer needs to leave. There are still 35 minutes, and the cost of the customer is 150 yuan during this time.
  • the information includes the current state of the vehicle, the engine and the vehicle's vehicle oil status, and how long the customer can drive the car oil. For example, there are still 2 liters of gasoline left. If the customer is driving with the maximum horsepower, how long the customer can go, also gives the average speed of the customer, and calculates that the customer can travel at normal speed. Long distance and time.
  • a vehicle management method based on wireless geomagnetic sounding includes the following:
  • the parking spaces are grid-set to form a coordinate grid parking space; in the embodiment of the present invention, when the vehicle is in the station, when the berth needs to be carried out, the parking space is grid-set, for example: at the present
  • the parking spaces are in a tightly connected form, using lines to separate each parking space, but the surface is separated from the vehicle. In fact, when acquiring the information of the vehicle, it is easy to connect the adjacent vehicles. The information is also recorded, which results in the acquisition of incorrect vehicle information, or the intersection of vehicles that are adjacent or close to each other.
  • This application adopts the form of grid coordinates to coordinate the planning of each parking space. For example, the parking space is grid-set, and the n ⁇ n or m ⁇ n grid matrix form will be formed according to the size of the parking space.
  • the grid is coordinately marked to form a coordinated grid parking space.
  • the grid arrangement in Figure 3 uses an mxn grid matrix.
  • a parking space When a parking space is in the range of 2 meters by 1.5 meters, this range is planned into an m ⁇ n grid matrix to form a plurality of closely connected coordinate points; when a parking space is 2 meters by 2 meters, this application
  • an m ⁇ n grid matrix is used to form a plurality of Closely connected coordinate points.
  • Each coordinate point can record the trajectory of a vehicle's motion. When the vehicle's wheel traverses the coordinate point, it will leave a trace, and the geomagnetic detector will record the coordinates of the point.
  • the advantage of using grid coordinates is that it is possible to accurately ensure that the recorded information is the information of the vehicle that needs the berth, and does not erroneously record the information of the vehicle or other objects in the non-grid.
  • the solid line in FIG. 3 is the motion trajectory of the vehicle, and the recorded information captured by the geomagnetic detector is also the information of the coordinate points of the graphic frame drawn by the solid lines.
  • the geomagnetic detector in S2 scans the entire grid parking space and records the coordinate information of the parking space.
  • the geomagnetic detector scans the entire grid parking space, that is, the entire area of the parking space.
  • the mesh coordinates in the inner region and the region in which the coordinates are combined are used to acquire the information in advance, and the mesh coordinates and the regions in which the coordinates are combined are recorded and stored in the memory of the geomagnetic detector itself for storage. In order to subsequently proofread and delete the information.
  • the real-time detection of the vehicle is started, and the information in the non-parking space grid is filtered and removed for the second time, and the second filtering is removed. Including: filtering the information removed for the first time, filtering and removing again, and also filtering and removing the second stored information.
  • the information removed by the first filtering is repeated, and the filtering is removed again, and the information stored in the second time is also filtered and removed. This guarantees the filtering of this time, and also ensures that the last filtered information is not left. The double guarantee that the information acquired in the geomagnetic detector will not have repeated information content, and the information acquisition of the vehicle is correct.
  • the geomagnetic detector when the vehicle enters the sideline of the parking space, the geomagnetic detector records the motion coordinate information of the wheel in the grid in real time.
  • the recorded information is continuous coordinate points, and the continuous coordinate points form a smooth motion track.
  • the geomagnetic detector stops recording, and at the same time determines whether the recorded coordinate information is continuous. If it is not continuous, the geomagnetic detector automatically deletes the discontinuous information; if continuous, the geomagnetic detector is continuous The information is filtered and the filtered information is sent to the base station.
  • the third information is filtered for the continuous information, and the filtered information is sent to the base station, where the third filtering removal includes: information removed for the second filtering. , filtering and removing again, and also including the third stored information filtering to remove.
  • the third filtering removal includes: information removed for the second filtering. , filtering and removing again, and also including the third stored information filtering to remove.
  • Interest acquisition is correct. It makes the transmission of base station information easier in the later stage, does not cause a large amount of information redundancy, and does not put pressure on the geomagnetic detector. Also, the transmission of information to the vehicle is more concise.
  • the geomagnetic detector combines the filtered stored information, divides the combined information into a certain number of information strips, and arranges the information strips according to digital codes, as shown in FIG. 4, for example: 10 pieces of information
  • the encoding of the 10 pieces of information is combined with the digital code A of the geomagnetic detector itself into A1, A2, A3, A4, A5, A6, A7, A8, A9, A10.
  • the 10 pieces of information codes are sent to the base station in order, so that the information will not be sent incorrectly, and there will be no information redundancy.
  • the information is encoded, which greatly reduces the storage capacity of the information and reduces the processing requirements of the information.
  • the present invention also relates to a geomagnetic detector, the geomagnetic detector comprising:
  • a parking space setting unit for grid setting parking spaces to form a coordinate grid parking space
  • the geomagnetic detecting unit is configured to scan the entire grid parking space, record the coordinate information of the parking space, and track the movement coordinate information of the wheel in the grid in real time when the vehicle enters the sideline of the parking space;
  • the information processing unit is configured to stop recording when the vehicle is completely stopped, and determine whether the recorded coordinate information is continuous, if not continuous, automatically delete the discontinuous information; if continuous, filter the continuous information, and filter The subsequent information is sent to the base station.
  • the parking space setting unit in the fourth embodiment is configured to grid the parking spaces to form a coordinate grid parking space; in the embodiment of the present invention, when the vehicle enters the station, when the berth needs to be carried out, the parking space is Grid settings, such as: in the current parking spaces are closely connected form, using lines to separate each parking space, but on the surface is to separate the vehicle, in fact, in the acquisition of vehicle information At that time, it is easy to record the information of the adjacent vehicles as well, thereby causing the wrong vehicle information to be obtained, or the vehicle information adjacent to or adjacent to each other to be mis-interrupted.
  • This application adopts the form of grid coordinates to coordinate the planning of each parking space.
  • the parking space is grid-set, and the n ⁇ n or m ⁇ n grid matrix form will be formed according to the size of the parking space.
  • the grid is coordinately marked to form a coordinated grid parking space.
  • the grid arrangement in Figure 3 uses an mxn grid matrix.
  • a parking space when a parking space is in the range of 2 meters by 1.5 meters, this range is planned into a m ⁇ n grid matrix to form a plurality of closely connected coordinate points; when a parking space is 2 meters by 2 meters Scope, in the embodiment of the present application, an m ⁇ n grid matrix is used to form a plurality of closely connected coordinate points.
  • Each coordinate point can record the trajectory of a vehicle's motion. When the vehicle's wheel traverses the coordinate point, it will leave a trace, and the geomagnetic detector will record the coordinates of the point.
  • the advantage of using grid coordinates is that it is possible to accurately ensure that the recorded information is the information of the vehicle that needs the berth, and does not erroneously record the information of the vehicle or other objects in the non-grid.
  • the solid line in FIG. 3 is the motion trajectory of the vehicle, and the recorded information captured by the geomagnetic detector is also the information of the coordinate points of the graphic frame drawn by the solid lines.
  • the geomagnetic detector scans the entire grid parking space and records the coordinate information of the parking space; in the present invention, the geomagnetic detector scans the entire grid parking space, that is, the entire parking area is The grid coordinates and the situation in which the coordinates are combined are used to acquire the information in advance, and the grid coordinates and the regions in which the coordinates are combined are recorded and stored in the memory of the geomagnetic detector itself for storage. Subsequent proofreading and deletion of information.
  • the geomagnetic detector when the front wheel of the vehicle enters the first line of the parking space, the geomagnetic detector turns on the real-time detection of the vehicle, and the information in the non-parking grid is filtered and removed for the second time.
  • the secondary filtering removal includes: filtering the information removed for the first time, filtering and removing again, and also filtering and removing the information stored for the second time.
  • the geomagnetic detector When the vehicle enters the sideline of the parking space, the geomagnetic detector records the motion coordinate information of the wheel in the grid in real time.
  • the information recorded by the geomagnetic detector is a continuous coordinate point, and the continuous coordinate points form a smooth motion track.
  • the geomagnetic detector stops recording, and according to the recorded information, it is determined whether the grid coordinates in the vehicle are continuous, and if it is not continuous, the discontinuous information is automatically deleted; if it is continuous
  • the geomagnetic detector performs a third filtering of the continuous information and transmits the filtered information to the base station.
  • the third information is filtered for the continuous information, and the filtered information is sent to the base station, where the third filtering removal includes: information removed for the second filtering. , filtering and removing again, and also including the third stored information filtering to remove.
  • the third filtering removal includes: information removed for the second filtering. , filtering and removing again, and also including the third stored information filtering to remove.
  • the geomagnetic detector combines the filtered stored information, divides the combined information into a certain number of information strips, and arranges the information strips according to digital codes, as shown in FIG. 6, for example: 10 pieces of information
  • the encoding of the 10 pieces of information is combined with the digital code A of the geomagnetic detector itself into A1, A2, A3, A4, A5, A6, A7, A8, A9, A10.
  • the 10 pieces of information codes are sent to the base station in order, so that the information will not be sent incorrectly, and there will be no information redundancy.
  • the information is encoded, which greatly reduces the storage capacity of the information and reduces the processing requirements of the information.
  • the base station receiving unit in the fourth embodiment is configured to send information to the central processing station after the base station receives the information of the geomagnetic detector, and the central processing station stores the information in time and sends the information. Use the customer's mobile phone APP to notify the customer of the information status of the vehicle in a timely manner.
  • the information is sent to the central processing station, and the central processing station stores the information in time, and sends the information to the customer's mobile APP or other client to inform the customer of the information of the vehicle in time.
  • the status for example, the customer's vehicle is currently stopping at the "No. 15 parking space on the 3rd floor parking lot of the Crown Hotel in Haidian Aerospace Bridge".
  • the information in the present invention also includes: the time when the customer's vehicle enters the parking space, such as: 15:31, and the time when the vehicle is berthed for 3 minutes, and the time from the customer's parking to the present is 35 minutes, from the parking space where the customer needs to leave. There are still 35 minutes, and the cost of the customer is 150 yuan during this time.
  • the information includes the current state of the vehicle, the engine and the vehicle's vehicle oil status, and how long the customer can drive the car oil. For example, there are still 2 liters of gasoline left. If the customer is driving with the maximum horsepower, how long the customer can go, also gives the average speed of the customer, and calculates that the customer can travel at normal speed. Long distance and time.
  • the present invention also relates to a geomagnetic detector, the geomagnetic detector comprising:
  • a parking space setting unit for grid setting parking spaces to form a coordinate grid parking space
  • the geomagnetic detecting unit is configured to scan the entire grid parking space, record the coordinate information of the parking space, and track the movement coordinate information of the wheel in the grid in real time when the vehicle enters the sideline of the parking space;
  • the information processing unit is configured to stop recording when the vehicle is completely stopped, and determine whether the recorded coordinate information is continuous, if not continuous, automatically delete the discontinuous information; if continuous, filter the continuous information, and filter The subsequent information is sent to the base station.
  • the parking space setting unit in the fifth embodiment is configured to grid the parking spaces to form a coordinated grid parking space.
  • the parking space is performed.
  • Grid settings for example: in the current parking spaces are closely connected form, using lines to separate each parking space, but on the surface is to separate the vehicle, in fact, when acquiring vehicle information It is easy to record the information of the adjacent vehicles as well, thereby causing the wrong vehicle information to be obtained, or the vehicle information adjacent to or adjacent to each other to be mis-interrupted.
  • This application adopts the form of grid coordinates to coordinate the planning of each parking space.
  • the parking space is grid-set, and the n ⁇ n or m ⁇ n grid matrix form will be formed according to the size of the parking space.
  • the grid is coordinately marked to form a coordinated grid parking space.
  • the grid arrangement in Figure 3 uses an mxn grid matrix.
  • a parking space is in the range of 1.8 meters by 2.4 meters, this range is planned into an m ⁇ n grid matrix to form a plurality of closely connected coordinate points; when a parking space is 2.3 meters by 2.3 meters Scope, in the embodiment of the present application, an m ⁇ n grid matrix is used to form a plurality of closely connected coordinate points.
  • Each coordinate point can record the trajectory of a vehicle's motion. When the vehicle's wheel traverses the coordinate point, it will leave a trace, and the geomagnetic detector will record the coordinates of the point.
  • the advantage of using grid coordinates is that it is possible to accurately ensure that the recorded information is the information of the vehicle that needs the berth, and does not erroneously record the information of the vehicle or other objects in the non-grid.
  • the solid line in FIG. 3 is the motion trajectory of the vehicle, and the recorded information captured by the geomagnetic detector is also the information of the coordinate points of the graphic frame drawn by the solid lines.
  • the geomagnetic detector scans the entire grid parking space and records the coordinate information of the parking space.
  • the geomagnetic detector scans the entire grid parking space, that is, the entire parking area is
  • the grid coordinates and the conditions in the regions where the coordinates are combined are used to acquire the information in advance, and the grid coordinates and the regions in which the coordinates are combined are recorded and stored in the memory of the geomagnetic detector itself for storage. For subsequent proofreading and deletion of information.
  • the geomagnetic detector turns on the real-time detection of the vehicle, and the information in the non-parking grid is filtered and removed for the second time.
  • the secondary filtering removal includes: the information removed for the first filtering, again The filter is removed, and the second stored information is also filtered out.
  • the geomagnetic detector When the vehicle enters the sideline of the parking space, the geomagnetic detector records the motion coordinate information of the wheel in the grid in real time.
  • the recorded information is continuous coordinate points, and the continuous coordinate points form a smooth motion track.
  • the geomagnetic detector stops recording, and according to the recorded information, it is determined whether the grid coordinates in the vehicle are continuous, and if it is not continuous, the discontinuous information is automatically deleted; if it is continuous
  • the geomagnetic detector performs a third filtering of the continuous information and transmits the filtered information to the base station.
  • the third information is filtered for the continuous information, and the filtered information is sent to the base station, where the third filtering removal includes: information removed for the second filtering. , filtering and removing again, and also including the third stored information filtering to remove.
  • the third filtering removal includes: information removed for the second filtering. , filtering and removing again, and also including the third stored information filtering to remove.
  • the geomagnetic detector combines the filtered stored information, divides the combined information into a certain number of information strips, and arranges the information strips according to digital codes, as shown in FIG. 6, for example: 10 pieces of information
  • the encoding of the 10 pieces of information is combined with the digital code A of the geomagnetic detector itself into A1, A2, A3, A4, A5, A6, A7, A8, A9, A10.
  • the 10 pieces of information codes are sent to the base station in order, so that the information will not be sent incorrectly, and there will be no information redundancy.
  • the information is encoded, which greatly reduces the storage capacity of the information and reduces the processing requirements of the information.
  • the base station receiving unit in the embodiment 5 is configured to send information to the central processing station after the base station receives the information of the geomagnetic detector, and the central processing station stores the information in time and sends the information. Use the customer's mobile phone APP to notify the customer of the information status of the vehicle in a timely manner.
  • the base station After the base station receives the information of the geomagnetic detector, the information is sent to the central processing station, and the central processing station stores the information in time, and sends the information to the customer's mobile APP or other client to inform the customer of the information of the vehicle in time.
  • the status for example, the customer's vehicle is currently stopping at the "No. 15 parking space on the 3rd floor parking lot of the Crown Hotel in Haidian Aerospace Bridge".
  • the information in the present invention also includes: the customer's vehicle enters the parking space.
  • the time is, for example, 15:31, and the time when the vehicle is berthed for 3 minutes.
  • the time from the customer's parking to the present is 35 minutes, and the time for the customer to leave the parking space is 35 minutes, and the customer needs to pay during this time.
  • the fee is 150 yuan and so on.
  • the information includes the current state of the vehicle, the engine and the vehicle's vehicle oil status, and how long the customer can drive the car oil. For example, there are still 2 liters of gasoline left. If the customer is driving with the maximum horsepower, how long the customer can go, also gives the average speed of the customer, and calculates that the customer can drive at a normal speed.
  • the present invention also relates to a geomagnetic detector, the geomagnetic detector comprising:
  • a parking space setting unit for grid setting parking spaces to form a coordinate grid parking space
  • the geomagnetic detecting unit is configured to scan the entire grid parking space, record the coordinate information of the parking space, and track the movement coordinate information of the wheel in the grid in real time when the vehicle enters the sideline of the parking space;
  • the information processing unit is configured to stop recording when the vehicle is completely stopped, and determine whether the recorded coordinate information is continuous, if not continuous, automatically delete the discontinuous information; if continuous, filter the continuous information, and filter The subsequent information is sent to the base station.
  • the sixth embodiment has the functions of the above-described embodiment.
  • the geomagnetic detector further includes:
  • the first information processing unit 1001 is configured to turn on real-time detection of the vehicle when the front wheel of the vehicle enters the sideline of the parking space, and filter and remove the information in the non-parking space grid for the second time;
  • the second information processing unit 1002 is configured to track coordinate information of the wheel in the grid parking space in real time according to the motion trajectory of the vehicle in the parking space;
  • the third information processing unit 1003 is configured to store coordinate information in its own storage in real time.
  • the geomagnetic detector when the front wheel of the vehicle enters the sideline of the parking space, the geomagnetic detector opens the real-time detection of the vehicle, and at the same time, the information in the non-parking space grid is filtered and removed for the second time; the geomagnetic detector is based on the vehicle.
  • the motion track in the parking space tracks the coordinate information of the wheel in the grid parking space in real time; the geomagnetic detector stores the coordinate information in its own storage in real time.
  • This embodiment uses secondary filtration when the vehicle is in the parking space.
  • the geomagnetic detector When parking inside, there will be other adjacent vehicles performing the same action, so that the geomagnetic detector may also record other adjacent vehicles, or other objects may accidentally enter the local In the grid coordinate area of the parking space, the geomagnetic detector also erroneously records such information, and the secondary filtering used in the second embodiment can also just remove such erroneous information, specifically in the A period of time in the area is static information deletion, and information that is not in the grid coordinate area is deleted. Information that belongs to the area and that is continuously moving for a continuous period of time is recorded.
  • a vehicle management system based on wireless geomagnetic detection in the seventh embodiment includes:
  • a base station a geomagnetic detector, a user terminal, and a central processing station
  • the base station is configured to send information to the central processing station after receiving the information of the geomagnetic detecting unit, and the central processing station stores the information in time and transmits the information to the user.
  • the terminal promptly informs the customer of the information status of the vehicle.
  • the base station forwards the uplink data to the core network, and the network element in the core network performs decision processing according to the uplink data.
  • the base station can forward the uplink data to a SCADA system in the core network, and the SCADA system can perform decision processing according to the uplink data.
  • the prior art adopts centralized decision processing. Therefore, the prior art decision process needs to experience data transmission between network elements in the Internet of Things, and the delay is long, especially in the completion of decision processing. When the network element of the core network is far away from the Internet of Things terminal, the delay is larger.
  • an Internet of Things terminal can interact with a network side, such as a core network, through a base station in the access network. Specifically, the Internet of Things terminal can send uplink data to the base station, and then the base station can send the uplink data to the core network, so that the network element in the core network, for example, the data collection and monitoring system in the core network, can use the uplink. The data is processed accordingly.
  • the uplink data may be sent periodically for the IoT terminal, or may be sent after the IoT terminal is triggered by the event.
  • the system of this embodiment can be applied to various different service applications, for example, a distribution network system, a transportation system, a logistics system, a video monitoring system, or a medical system, which respectively correspond to different Internet of Things terminals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

本发明涉及一种基于无线地磁探测的车辆管理方法及系统,该方法包括如下步骤:将泊车位进行网格设置,形成坐标化的网格泊车位;对整个网格泊车位的进行扫描,记录泊车位的坐标信息;当车辆进入泊车位的边线内时,实时跟踪记录车轮的在网格内的运动坐标信息;对连续信息进行过滤,并将过滤后的信息发送给基站。还涉及一种系统,该系统包括:泊车位设置单元、地磁探测单元、信息处理单元。通过本发明在车辆泊位的领域内进行网格坐标标定的方式,可以使得地磁探测能够精确地只对本车辆进行信息采集,不会因为其他的车辆或者其他的地磁探测对本车辆造成干扰。

Description

一种基于无线地磁探测的车辆管理方法及系统 技术领域
本发明属于无线探测车辆管理领域,尤其涉及一种基于无线地磁探测的车辆管理方法及系统。
背景技术
目前现有的技术中地磁探测对车辆的信息的获取中存在着一定的技术缺陷,尤其在车辆进行泊位的时候,倘若相连或者相近的车辆同时进行泊位,此时地磁探测采集车辆的信息会进行干扰,有可能会造成获取的信息错误,或者不精确,产生混乱的现象。如何保证车辆的获取信息精确,不产生错误或者混乱的现象,是现在急需解决的技术问题。
发明内容
本发明所要解决的技术问题是:车辆进行泊位的时候,倘若相连或者相近的车辆同时进行泊位,此时地磁探测采集车辆的信息会进行干扰,有可能会造成获取的信息错误,或者不精确,产生混乱的现象。
为解决上面的技术问题,本发明提供了一种基于无线地磁探测的车辆管理方法,该方法包括如下步骤:
S1,将泊车位进行网格设置,形成坐标化的网格泊车位;
S2,对整个网格泊车位进行扫描,记录泊车位的坐标信息;
S3,当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
S4,当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
本发明的有益效果:通过在车辆泊位的领域内进行网格坐标标定的方式,可以使得地磁探测能够精确地只对本车辆进行信息采集,不会因为时其他的车辆或者其他的地磁探测的干扰,摄取错误的车辆信息,或者是获取的车辆信息不精确,发生错乱的现象。
进一步地,所述的S31中当车辆前轮进入到泊车位的边线内时,开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除包括:对第一次的过滤去除的信息,再次进行过滤去 除,同时对第二次存储的信息进行过滤去除。
上述进一步地有益效果:采用重复对第一次的过滤去除的信息,再次进行过滤去除,同时也包括第二次存储的信息过滤去除。既保证了本次的过滤的,也可以确保上次过滤的信息没有被残留下来。双重保证了地磁探测器内获取的信息不会有重复错误的信息内容,保证对车辆的信息获取都是正确的。
进一步地,若坐标连续,则对连续坐标信息进行第三次过滤,并将过滤后的信息发送给基站,该第三次过滤去除包括:对第二次的过滤去除的信息,再次进行过滤去除,同时对第三次存储的信息进行过滤去除。
上述进一步地有益效果:既能够保证第一次以及第二次获取的信息不会有错误的现象,同样也保证对车辆的信息获取都是正确的。使得后期对基站信息的发送更加容易,不会出现大量的信息冗余,也不会对地磁探测器造成压力。也是的对车辆的信息的发送更加简洁。
本发明还涉及一种地磁探测器,该地磁探测器包括:
泊车位设置单元,用于将泊车位进行网格设置,形成坐标化的网格泊车位;
地磁探测单元,用于对整个网格泊车位进行扫描,记录泊车位的坐标信息以及当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
信息处理单元,用于当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
本发明的有益效果:通过在车辆泊位的领域内进行网格坐标标定的方式,可以使得地磁探测能够精确地只对本车辆进行信息采集,不会因为时其他的车辆或者其他的地磁探测的干扰,摄取错误的车辆信息,或者是获取的车辆信息不精确,发生错乱的现象。
进一步地,该系统还对地磁探测单元进行编号,以便发送信息到基站时确保信息发送准确。
上述进一步地有益效果:对地磁探测器进行编号,可以方便后期对缺失信息的查找,快速解决的信息不全的问题。
进一步地,地磁探测单元还包括:第一信息处理单元、第二信息处理单元、第三信息处理单元;所述第一信息处理单元,其 用于当车辆前轮进入到泊车位的边线内时,开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除;
所述第二信息处理单元,其用于根据车辆在泊车位内的运动轨迹,实时跟踪车轮在网格泊车位中的坐标信息;
所述第三信息处理单元,其用于将坐标信息实时存储到自身的存储内。
上述进一步地有益效果:采用重复对第一次的过滤去除的信息,再次进行过滤去除,同时也包括第二次存储的信息过滤去除。既保证了本次的过滤的,也可以确保上次过滤的信息没有被残留下来。双重保证了地磁探测器内获取的信息不会有重复错误的信息内容,保证对车辆的信息获取都是正确的。
本发明还提供了一种基于无线地磁探测的车辆管理系统,该系统包括:基站、地磁探测器、用户终端、中心处理站,所述基站用于接收到地磁探测器的信息后,将信息发送到中心处理站,所述中心处理站将信息及时存储,并将信息发送到用户的终端,及时通知客户车辆的信息状态。
附图说明
图1为本发明的一种基于无线地磁探测的车辆管理方法流程图;
图2为本发明的一种地磁探测器的结构示意图;
图3为本发明的网格设置示意图;
图4为本发明的地磁探测器实时跟踪流程图;
图5为本发明的地磁探测器信息编码示意图;
图6为本发明的车辆泊位与基站发送的拓扑图;
图7为本发明的地磁探测器跟踪信息处理示意图;
图8为本发明的一种基于无线地磁探测的车辆管理系统的示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示的,本发明中的一种基于无线地磁探测的车辆管理方法,该方法包括如下步骤:
S1,将泊车位进行网格设置,形成坐标化的网格泊车位;
S2,对整个网格泊车位进行扫描,记录泊车位的坐标信息;
S3,当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
S4,当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
实施例1
如图1所示,本发明的一种基于无线地磁探测的车辆管理方法,该方法包括如下:
S1,将泊车位进行网格设置,形成坐标化的网格泊车位;在本发明的实施例中,在车辆进站,需要进行泊位时,对泊车位进行网格设置,比如:在目前的车位都是连接紧密的形式,采用线条将每一个的车位都分割开来,但是这样表面上是将车辆分割开了,事实上,在获取车辆的信息的时候,很容易将相邻的车辆的信息也同样记录进来了,这样就造成了,获取错误的车辆信息,或者各个彼此相邻或相近的车辆信息交叉错误。本申请采用网格坐标的形式,将每一个泊车位的都进行了坐标规划,比如将泊车位进行网格设置,按照泊车位的大小进行n×n或者m×n网格矩阵形式,将形成的网格进行坐标化标记,形成坐标化的网格泊车位。
例如附图3中的网格设置,采用的就是m×n的网格矩阵。
当一个车位是2米乘以1.5米的范围,将这个范围规划成m×n的网格矩阵,形成多个紧密来接的坐标点;当一个车位是2米乘以2米的范围,本申请实施例中就采用m×n的网格矩阵,形成多个紧密来接的坐标点。每一个坐标点就能够记录一个车辆运动的轨迹,当车辆的车轮划过该坐标点的时候,就会留下痕迹,地磁探测器就会对该点坐标进行记录。采用网格坐标的好处是,能够精确地保证记录的信息就是需要泊位的车辆的信息,不会错误地记录非网格内的车辆或者其他的物体的信息。
附图3中的实体粗线条就是车辆的运动轨迹,地磁探测器摄取的记录的信息也就是实体粗线条描绘成的图形边框的坐标点的信息。
本实施例中S2中地磁探测器对整个网格泊车位的进行扫描,记录泊车位的坐标信息;在本发明中地磁探测器对整个网格泊车位的进行扫描,就是将泊车位的整个区域内的网格坐标以及各坐标组合成的区域内的情况进行提前摄取信息,将这些网格坐标以及各坐标组合成的区域内的情况记录下来,保存到地磁探测器自身的内存器内进行保存,以便后续对信息的校对和删除。
本发明S3中当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息。
优选地,在本发明中当需要泊位的车辆进入到泊车位时,车辆的前轮是最先进入到车位的边线内的,此时地磁探测器开启,对整个车位进行记录,车轮在泊车位的运动,车轮滑过的网格区域,地磁探测器就会对这些地方进行扫描记录。车轮每滑过一个坐标点以及坐标点包围的区域,地磁探测器都会对这些实时跟踪记录,并且把记录下来的信息保存到自身的内存器内。
本发明S4中当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
优选地,当车辆运行停止后,也同时停止跟踪记录,另外,将记录到的信息进行过滤处理,将其中属于同一区域内的信息统一分块存储,再根据每一分块的信息根据特定的时间以及一定距离范围内,过滤出密集度比较高的坐标点,同时将每一分块中过滤出来密集度比较高的坐标点统一提取出来,将提取出来的信息来另外存储起来。其余地信息就自动删除掉。
此外,地磁探测器将过滤后的存储起来的信息组合,将这些组合信息分割成一定条数的信息条,并将这些信息条按照数字编码排列起来,附图4所示,例如:10条信息条,则这10条信息的编码会与该地磁探测器自身的数字编码A组合成A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。在发送给基站的时候,这10条信息编码会按照顺序发送到基站,这样信息就不会出现发送的错误,同时也不会出现信息冗余的现象。通过信息过滤后,再对信息进行编码,这样大大减少了信息的存储能力,也减少了对信息的处理要求。
实施例2
如图1所示,本发明的一种基于无线地磁探测的车辆管理方法,该方法包括如下:
S1,将泊车位进行网格设置,形成坐标化的网格泊车位;在本发明的实施例中,在车辆进站,需要进行泊位时,对泊车位进行网格设置,比如:在目前的车位都是连接紧密的形式,采用线条将每一个的车位都分割开来,但是这样表面上是将车辆分割开了,事实上,在获取车辆的信息的时候,很容易将相邻的车辆的信息也同样记录进来了,这样就造成了,获取错误的车辆信息,或者各个彼此相邻或相近的车辆信息交叉错误。本申请采用网格坐标 的形式,将每一个泊车位的都进行了坐标规划,比如将泊车位进行网格设置,按照泊车位的大小进行n×n或者m×n网格矩阵形式,将形成的网格进行坐标化标记,形成坐标化的网格泊车位。
例如附图3中的网格设置,采用的就是m×n的网格矩阵。
当一个车位是2米乘以1.5米的范围,将这个范围规划成m×n的网格矩阵,形成多个紧密来接的坐标点;当一个车位是2米乘以2米的范围,本申请实施例中就采用m×n的网格矩阵,形成多个紧密来接的坐标点。每一个坐标点就能够记录一个车辆运动的轨迹,当车辆的车轮划过该坐标点的时候,就会留下痕迹,地磁探测器就会对该点坐标进行记录。采用网格坐标的好处是,能够精确地保证记录的信息就是需要泊位的车辆的信息,不会错误地记录非网格内的车辆或者其他的物体的信息。
本实施例2中优选地,对整个网格泊车位的进行扫描,记录泊车位的坐标信息,同时对非泊车位网格内的信息第一次过滤去除,防止非网格内的信息对车辆信息的记录,造成车辆信息错误。
当车辆进行泊车的时候,若是刚好旁边的车辆也要进行泊车,那么周边的泊车的地磁探测器也会开启对车辆的探测,这样由于距离比较近,很容易获取错误的车辆,会对相邻车辆的信息情况都记录起来,导致了本车位的地磁探测器发送信息的时候,将错误的或者记录其余的信息一起发送给基站了。而本发明中采用这样的网格设置的同时,还对信息进行过滤,地磁探测器对整个网格泊车位的进行扫描,记录泊车位的坐标信息,同时地磁探测器对非泊车位网格内的信息第一次过滤去除,过滤掉不属于本区域网格坐标内的信息,将错误的信息删掉。这样做的目的有利于后期对信息的发送以及处理,同时也避免了过多的信息,会造成信息的冗余现象。
本发明S3中当车辆进入泊车位的第一道线内时,实时跟踪记录车轮的在网格内的运动坐标信息。
优选地,如图4所示,
S31,当车辆前轮进入到泊车位的边线内时,开启对车辆的实时探测,同时对非泊车位网格内的坐标信息第二次过滤去除;
S32,根据车辆在泊车位内的运动轨迹,实时跟踪车轮在网格泊车位中的坐标信息;
S33,将坐标信息实时存储自身到存储内。
在本实施例2中,当车辆前轮进入到泊车位的边线时,地磁探测器开启对车辆的实时探测,同时对非泊车位网格内的信息第 二次过滤去除;地磁探测器根据车辆在泊车位内的运动轨迹,实时跟踪车轮在网格泊车位中的坐标信息;地磁探测器将坐标信息实时存储自身的存储内。本实施例采用二次过滤,是当车辆在车位内进行停车的时候,也会有其他的相邻的车辆进行相同的动作,这样地磁探测器有可能也会对其他的相邻的车辆进行记录,或者说外部不小心有其他的物体进入到本车位的网格坐标区域内,地磁探测器也会错误地记录到这样的信息,而本实施例2中采用的二次过滤也刚好能够对这样的错误的信息情况进行去除掉,具体是在该区域内一段时间都是静止的信息删除,对不属于该网格坐标区域内的信息删除。将属于该区域,并且是连续时间内连续运动的信息进行保存记录。
本发明S4中当车辆完全停止时,地磁探测器停止记录,同时判断记录的坐标信息是否连续,若不连续,则地磁探测器将不连续的信息自动删除;若连续,则地磁探测器对连续信息进行过滤,并将过滤后的信息发送给基站。
优选地,如图5所示,
S41,当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若连续,则执行S43;若不连续,则执行S42;S42,若网格坐标不连续,则将不连续的信息自动删除;S43,若连续,则对连续信息进行第三次过滤,并将过滤后的信息发送给基站。
本实施例2中采用第三次过滤,这是当车辆在车位内完全停止的时候,也会有其他的相邻的车辆进行相同的动作,这样地磁探测器有可能也会对其他的相邻的车辆进行记录,或者说外部不小心有其他的物体进入到本车位的网格坐标区域内,地磁探测器也会错误地记录到这样的信息,而本实施例2中采用的三次过滤也刚好能够对这样的错误的信息情况进行去除掉,具体是在该区域内一段时间都是静止的信息删除,对不属于该网格坐标区域内的信息删除。将属于该区域,并且是连续时间内连续运动的信息进行保存记录。
本发明S5中基站接收到地磁探测器的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,并将信息发用到客户的手机APP,及时通知客户车辆的信息状态。
地磁探测器将过滤后的存储起来的信息组合,将这些组合信息分割成一定条数的信息条,并将这些信息条按照数字编码排列起来,如图6所示,例如:10条信息条,则这10条信息的编码会与该地磁探测器自身的数字编码A组合成A1、A2、A3、A4、A5、 A6、A7、A8、A9、A10。在发送给基站的时候,这10条信息编码会按照顺序发送到基站,这样信息就不会出现发送的错误,同时也不会出现信息冗余的现象。通过信息过滤后,再对信息进行编码,这样大大减少了信息的存储能力,也减少了对信息的处理要求。
如图6所示,在基站接收到信息后,将信息发送到中心处理站,中心处理站将信息及时存储,将这些信息发送到客户的手机APP或者其他的客户端上,及时告知客户该车辆的信息状态,比如:客户的车辆目前正停止在“海淀航天桥皇冠酒店地下3层停车场15号车位”。本发明中的信息也包括:客户的车辆进入停车位的时间比如:15点31分钟,以及车辆被泊位的时间3分钟,从客户停车到现在的时间长35分钟,距离客户需要离开的车位的时间还有35分钟,以及这段时间内客户需要交纳的费用150元等。
此外,信息中还包括了车辆目前的机动车状态,发动机如何以及车辆的汽车油状态,以及客户使用这些汽车油大概还可以驱动多长的时间。比如:还剩下2升的汽油,若是客户用最大的马力行驶,客户还可以走多长的时间,同样也给出了客户通常的平均速度,计算出客户以正常的速度行驶还可以走多长的路程以及时间。
实施例3
如图1所示,本发明的一种基于无线地磁探测的车辆管理方法,该方法包括如下:
S1,将泊车位进行网格设置,形成坐标化的网格泊车位;在本发明的实施例中,在车辆进站,需要进行泊位时,对泊车位进行网格设置,比如:在目前的车位都是连接紧密的形式,采用线条将每一个的车位都分割开来,但是这样表面上是将车辆分割开了,事实上,在获取车辆的信息的时候,很容易将相邻的车辆的信息也同样记录进来了,这样就造成了,获取错误的车辆信息,或者各个彼此相邻或相近的车辆信息交叉错误。本申请采用网格坐标的形式,将每一个泊车位的都进行了坐标规划,比如将泊车位进行网格设置,按照泊车位的大小进行n×n或者m×n网格矩阵形式,将形成的网格进行坐标化标记,形成坐标化的网格泊车位。
例如附图3中的网格设置,采用的就是m×n的网格矩阵。
当一个车位是2米乘以1.5米的范围,将这个范围规划成m×n的网格矩阵,形成多个紧密连接的坐标点;当一个车位是2米乘以2米的范围,本申请实施例中就采用m×n的网格矩阵,形成多个 紧密来接的坐标点。每一个坐标点就能够记录一个车辆运动的轨迹,当车辆的车轮划过该坐标点的时候,就会留下痕迹,地磁探测器就会对该点坐标进行记录。采用网格坐标的好处是,能够精确地保证记录的信息就是需要泊位的车辆的信息,不会错误地记录非网格内的车辆或者其他的物体的信息。
附图3中的实体粗线条就是车辆的运动轨迹,地磁探测器摄取的记录的信息也就是实体粗线条描绘成的图形边框的坐标点的信息。
本实施例中S2中地磁探测器对整个网格泊车位的进行扫描,记录泊车位的坐标信息;在本发明中地磁探测器对整个网格泊车位的进行扫描,就是将泊车位的整个区域内的网格坐标以及各坐标组合成的区域内的情况进行提前摄取信息,将这些网格坐标以及各坐标组合成的区域内的情况记录下来,保存到地磁探测器自身的内存器内进行保存,以便后续对信息的校对和删除。本实施例3中当车辆前轮进入到泊车位的第一道线内时,开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除,该第二次过滤去除包括:对第一次的过滤去除的信息,再次进行过滤去除,同时也包括第二次存储的信息过滤去除。
本实施例3中采用重复对第一次的过滤去除的信息,再次进行过滤去除,同时也包括第二次存储的信息过滤去除。既保证了本次的过滤的,也可以确保上次过滤的信息没有被残留下来。双重保证了地磁探测器内获取的信息不会有重复错误的信息内容,保证对车辆的信息获取都是正确的。
本发明S3中当车辆进入泊车位的边线内时,地磁探测器实时跟踪记录车轮在网格内的运动坐标信息。
优选地,本实施例3中,记录的信息都是连续的坐标点,并且连续的坐标点形成光滑的运动轨迹。
本发明S4中当车辆完全停止时,地磁探测器停止记录,同时判断记录的坐标信息是否连续,若不连续,则地磁探测器将不连续的信息自动删除;若连续,则地磁探测器对连续信息进行过滤,并将过滤后的信息发送给基站。
优选地,若获取的网格坐标是连续的,则对连续信息进行第三次过滤,并将过滤后的信息发送给基站,该第三次过滤去除包括:对第二次的过滤去除的信息,再次进行过滤去除,同时也包括第三次存储的信息过滤去除。这样做的,既能够保证第一次以及第二次获取的信息不会有错误的现象,同样也保证对车辆的信 息获取都是正确的。使得后期对基站信息的发送更加容易,不会出现大量的信息冗余,也不会对地磁探测器造成压力。也是的对车辆的信息的发送更加简洁。
此外,地磁探测器将过滤后的存储起来的信息组合,将这些组合信息分割成一定条数的信息条,并将这些信息条按照数字编码排列起来,附图4所示,例如:10条信息条,则这10条信息的编码会与该地磁探测器自身的数字编码A组合成A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。在发送给基站的时候,这10条信息编码会按照顺序发送到基站,这样信息就不会出现发送的错误,同时也不会出现信息冗余的现象。通过信息过滤后,再对信息进行编码,这样大大减少了信息的存储能力,也减少了对信息的处理要求。
实施例4
如图2所示,本发明还涉及一种地磁探测器,该地磁探测器包括:
泊车位设置单元,用于将泊车位进行网格设置,形成坐标化的网格泊车位;
地磁探测单元,用于对整个网格泊车位进行扫描,记录泊车位的坐标信息以及当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
信息处理单元,用于当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
本实施例4中的泊车位设置单元,其将泊车位进行网格设置,形成坐标化的网格泊车位;在本发明的实施例中,在车辆进站,需要进行泊位时,对泊车位进行网格设置,比如:在目前的车位都是连接紧密的形式,采用线条将每一个的车位都分割开来,但是这样表面上是将车辆分割开了,事实上,在获取车辆的信息的时候,很容易将相邻的车辆的信息也同样记录进来了,这样就造成了,获取错误的车辆信息,或者各个彼此相邻或相近的车辆信息交叉错误。本申请采用网格坐标的形式,将每一个泊车位的都进行了坐标规划,比如将泊车位进行网格设置,按照泊车位的大小进行n×n或者m×n网格矩阵形式,将形成的网格进行坐标化标记,形成坐标化的网格泊车位。
例如附图3中的网格设置,采用的就是m×n的网格矩阵。
具体地,当一个车位是2米乘以1.5米的范围,将这个范围规划成m×n的网格矩阵,形成多个紧密来接的坐标点;当一个车位是2米乘以2米的范围,本申请实施例中就采用m×n的网格矩阵,形成多个紧密来接的坐标点。每一个坐标点就能够记录一个车辆运动的轨迹,当车辆的车轮划过该坐标点的时候,就会留下痕迹,地磁探测器就会对该点坐标进行记录。采用网格坐标的好处是,能够精确地保证记录的信息就是需要泊位的车辆的信息,不会错误地记录非网格内的车辆或者其他的物体的信息。
附图3中的实体粗线条就是车辆的运动轨迹,地磁探测器摄取的记录的信息也就是实体粗线条描绘成的图形边框的坐标点的信息。
本实施例中地磁探测器对整个网格泊车位的进行扫描,记录泊车位的坐标信息;在本发明中地磁探测器对整个网格泊车位的进行扫描,就是将泊车位的整个区域内的网格坐标以及各坐标组合成的区域内的情况进行提前摄取信息,将这些网格坐标以及各坐标组合成的区域内的情况记录下来,保存到地磁探测器自身的内存器内进行保存,以便后续对信息的校对和删除。本实施例3中当车辆前轮进入到泊车位的第一道线内时,地磁探测器开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除,该第二次过滤去除包括:对第一次的过滤去除的信息,再次进行过滤去除,同时也包括第二次存储的信息过滤去除。
当车辆进入泊车位的边线内时,地磁探测器实时跟踪记录车轮的在网格内的运动坐标信息。
优选地,本实施例4中,地磁探测器记录的信息都是连续的坐标点,并且连续的坐标点形成光滑的运动轨迹。
本实施例4中当车辆完全停止时,地磁探测器停止记录,根据记录的信息同时判断车辆中的网格坐标是否连续,若不连续的时候,则将不连续的信息自动删除;若是属于连续的信息,则地磁探测器对连续信息进行第三次过滤,并将过滤后的信息发送给基站。
优选地,若获取的网格坐标是连续的,则对连续信息进行第三次过滤,并将过滤后的信息发送给基站,该第三次过滤去除包括:对第二次的过滤去除的信息,再次进行过滤去除,同时也包括第三次存储的信息过滤去除。这样做的,既能够保证第一次以及第二次获取的信息不会有错误的现象,同样也保证对车辆的信息获取都是正确的。使得后期对基站信息的发送更加容易,不会 出现大量的信息冗余,也不会对地磁探测器造成压力。也是的对车辆的信息的发送更加简洁。
此外,地磁探测器将过滤后的存储起来的信息组合,将这些组合信息分割成一定条数的信息条,并将这些信息条按照数字编码排列起来,附图6所示,例如:10条信息条,则这10条信息的编码会与该地磁探测器自身的数字编码A组合成A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。在发送给基站的时候,这10条信息编码会按照顺序发送到基站,这样信息就不会出现发送的错误,同时也不会出现信息冗余的现象。通过信息过滤后,再对信息进行编码,这样大大减少了信息的存储能力,也减少了对信息的处理要求。
如图6所示,本实施例4中的基站接收单元,其用于在基站接收到地磁探测器的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,并将信息发用到客户的手机APP,及时通知客户车辆的信息状态。
在基站接收到地磁探测器的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,将这些信息发送到客户的手机APP或者其他的客户端上,及时告知客户该车辆的信息状态,比如:客户的车辆目前正停止在“海淀航天桥皇冠酒店地下3层停车场15号车位”。本发明中的信息也包括:客户的车辆进入停车位的时间比如:15点31分钟,以及车辆被泊位的时间3分钟,从客户停车到现在的时间长35分钟,距离客户需要离开的车位的时间还有35分钟,以及这段时间内客户需要交纳的费用150元等。
此外,信息中还包括了车辆目前的机动车状态,发动机如何以及车辆的汽车油状态,以及客户使用这些汽车油大概还可以驱动多长的时间。比如:还剩下2升的汽油,若是客户用最大的马力行驶,客户还可以走多长的时间,同样也给出了客户通常的平均速度,计算出客户以正常的速度行驶还可以走多长的路程以及时间。
实施例5
如图2所示,本发明还涉及地磁探测器,该地磁探测器包括:
泊车位设置单元,用于将泊车位进行网格设置,形成坐标化的网格泊车位;
地磁探测单元,用于对整个网格泊车位进行扫描,记录泊车位的坐标信息以及当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
信息处理单元,用于当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
本实施例5中的泊车位设置单元,其将泊车位进行网格设置,形成坐标化的网格泊车位;在本实施例5中,在车辆进站,需要进行泊位时,对泊车位进行网格设置,比如:在目前的车位都是连接紧密的形式,采用线条将每一个的车位都分割开来,但是这样表面上是将车辆分割开了,事实上,在获取车辆的信息的时候,很容易将相邻的车辆的信息也同样记录进来了,这样就造成了,获取错误的车辆信息,或者各个彼此相邻或相近的车辆信息交叉错误。本申请采用网格坐标的形式,将每一个泊车位的都进行了坐标规划,比如将泊车位进行网格设置,按照泊车位的大小进行n×n或者m×n网格矩阵形式,将形成的网格进行坐标化标记,形成坐标化的网格泊车位。
例如附图3中的网格设置,采用的就是m×n的网格矩阵。
具体地,当一个车位是1.8米乘以2.4米的范围,将这个范围规划成m×n的网格矩阵,形成多个紧密来接的坐标点;当一个车位是2.3米乘以2.3米的范围,本申请实施例中就采用m×n的网格矩阵,形成多个紧密来接的坐标点。每一个坐标点就能够记录一个车辆运动的轨迹,当车辆的车轮划过该坐标点的时候,就会留下痕迹,地磁探测器就会对该点坐标进行记录。采用网格坐标的好处是,能够精确地保证记录的信息就是需要泊位的车辆的信息,不会错误地记录非网格内的车辆或者其他的物体的信息。
附图3中的实体粗线条就是车辆的运动轨迹,地磁探测器摄取的记录的信息也就是实体粗线条描绘成的图形边框的坐标点的信息。
本实施例5中地磁探测器对整个网格泊车位的进行扫描,记录泊车位的坐标信息;在本发明中地磁探测器对整个网格泊车位的进行扫描,就是将泊车位的整个区域内的网格坐标以及各坐标组合成的区域内的情况进行提前摄取信息,将这些网格坐标以及各坐标组合成的区域内的情况记录下来,保存到地磁探测器自身的内存器内进行保存,以便后续对信息的校对和删除。本实施例5中当车辆前轮进入到泊车位的第一道线内时,地磁探测器开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除,该第二次过滤去除包括:对第一次的过滤去除的信息,再次进行 过滤去除,同时也包括第二次存储的信息过滤去除。
当车辆进入泊车位的边线内时,地磁探测器实时跟踪记录车轮的在网格内的运动坐标信息。
优选地,本实施例5中,记录的信息都是连续的坐标点,并且连续的坐标点形成光滑的运动轨迹。
本实施例5中当车辆完全停止时,地磁探测器停止记录,根据记录的信息同时判断车辆中的网格坐标是否连续,若不连续的时候,则将不连续的信息自动删除;若是属于连续的信息,则地磁探测器对连续信息进行第三次过滤,并将过滤后的信息发送给基站。
优选地,若获取的网格坐标是连续的,则对连续信息进行第三次过滤,并将过滤后的信息发送给基站,该第三次过滤去除包括:对第二次的过滤去除的信息,再次进行过滤去除,同时也包括第三次存储的信息过滤去除。这样做的,既能够保证第一次以及第二次获取的信息不会有错误的现象,同样也保证对车辆的信息获取都是正确的。使得后期对基站信息的发送更加容易,不会出现大量的信息冗余,也不会对地磁探测器造成压力。也是的对车辆的信息的发送更加简洁。
此外,地磁探测器将过滤后的存储起来的信息组合,将这些组合信息分割成一定条数的信息条,并将这些信息条按照数字编码排列起来,附图6所示,例如:10条信息条,则这10条信息的编码会与该地磁探测器自身的数字编码A组合成A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。在发送给基站的时候,这10条信息编码会按照顺序发送到基站,这样信息就不会出现发送的错误,同时也不会出现信息冗余的现象。通过信息过滤后,再对信息进行编码,这样大大减少了信息的存储能力,也减少了对信息的处理要求。
如图6所示,本实施例5中的基站接收单元,其用于在基站接收到地磁探测器的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,并将信息发用到客户的手机APP,及时通知客户车辆的信息状态。
在基站接收到地磁探测器的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,将这些信息发送到客户的手机APP或者其他的客户端上,及时告知客户该车辆的信息状态,比如:客户的车辆目前正停止在“海淀航天桥皇冠酒店地下3层停车场15号车位”。本发明中的信息也包括:客户的车辆进入停车位的 时间比如:15点31分钟,以及车辆被泊位的时间3分钟,从客户停车到现在的时间长35分钟,距离客户需要离开的车位的时间还有35分钟,以及这段时间内客户需要交纳的费用150元等。
此外,信息中还包括了车辆目前的机动车状态,发动机如何以及车辆的汽车油状态,以及客户使用这些汽车油大概还可以驱动多长的时间。比如:还剩下2升的汽油,若是客户用最大的马力行驶,客户还可以走多长的时间,同样也给出了客户通常的平均速度,计算出客户以正常的速度行驶还可以走。
实施例6
如图2所示,本发明还涉及一种地磁探测器,该地磁探测器包括:
泊车位设置单元,用于将泊车位进行网格设置,形成坐标化的网格泊车位;
地磁探测单元,用于对整个网格泊车位进行扫描,记录泊车位的坐标信息以及当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
信息处理单元,用于当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
在本实施例6中如图7所示,本实施例6具备上述的实施例功能外,本实施6中,优选地,地磁探测器还包括:
第一信息处理单元1001、第二信息处理单元1002、第三信息处理单元1003;
所述第一信息处理单元1001,其用于当车辆前轮进入到泊车位的边线内时,开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除;
所述第二信息处理单元1002,其用于根据车辆在泊车位内的运动轨迹,实时跟踪车轮在网格泊车位中的坐标信息;
所述第三信息处理单元1003,其用于将坐标信息实时存储到自身的存储内。
本实施例6中,当车辆前轮进入到泊车位的边线时,地磁探测器开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除;地磁探测器根据车辆在泊车位内的运动轨迹,实时跟踪车轮在网格泊车位中的坐标信息;地磁探测器将坐标信息实时存储自身的存储内。本实施例采用二次过滤,是当车辆在车位 内进行停车的时候,也会有其他的相邻的车辆进行相同的动作,这样地磁探测器有可能也会对其他的相邻的车辆进行记录,或者说外部不小心有其他的物体进入到本车位的网格坐标区域内,地磁探测器也会错误地记录到这样的信息,而本实施例2中采用的二次过滤也刚好能够对这样的错误的信息情况进行去除掉,具体是在该区域内一段时间都是静止的信息删除,对不属于该网格坐标区域内的信息删除。将属于该区域,并且是连续时间内连续运动的信息进行保存记录。
实施例7
如图8所示,本实施例7中的一种基于无线地磁探测的车辆管理系统,该系统包括:
基站、地磁探测器、用户终端、中心处理站,所述基站用于接收到地磁探测单元的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,并将信息发送到用户的终端及时通知客户车辆的信息状态。
在现有技术中,基站是将上行数据转发到核心网,由核心网中的网元根据该上行数据进行决策处理。举例来说,基站可以将上行数据转发到核心网中的SCADA系统,该SCADA系统可以根据该上行数据进行决策处理。由此可以看出,现有技术采用的是集中式的决策处理,因此,现有技术的决策过程需要经历物联网中各网元间的数据传输,时延较长,尤其是在完成决策处理的核心网的网元距离物联网终端较远时,时延更大。
在采用移动通信技术的物联网中,物联网终端可以通过接入网中的基站与网络侧,例如核心网进行交互。具体来说,物联网终端可以向基站发送上行数据,然后基站即可将该上行数据发送给核心网,从而使得核心网中的网元,例如核心网中的数据采集监控系统,可以使用该上行数据进行相应的处理。该上行数据既可以为物联网终端周期性发送的,又可以是物联网终端受事件触发后发送的。
另外,需要说明的是,本实施例的仅给出了一种示例,本领域技术人员可以理解的是,该系统中可选地还包括其它网元,例如在接入网中还需要设置中继,在核心网中还可以包括其它通信设备,本实施例不作限定。本实施例的系统可以针对各种不同的业务应用,例如可以是配电网系统、交通系统、物流系统、视频监控系统或者医疗系统,其分别对应不同的物联网终端。
在本说明书中,对上述术语的示意性表述不必须针对的是相 同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于无线地磁探测的车辆管理方法,其特征在于,该方法包括如下步骤:
    S1,将泊车位进行网格设置,形成坐标化的网格泊车位;
    S2,对整个网格泊车位进行扫描,记录泊车位的坐标信息;
    S3,当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
    S4,当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
  2. 根据权利要求1所述的一种基于无线地磁探测的车辆管理方法,其特征在于,所述S1中,具体包括:将泊车位进行网格设置,按照泊车位的大小划分成网格矩阵的形式,将形成的网格矩阵进行坐标化标记,形成坐标化的网格泊车位。
  3. 根据权利要求1或2所述的一种基于无线地磁探测的车辆管理方法,其特征在于,所述S2中,具体包括:对整个网格泊车位进行扫描,记录泊车位的坐标信息,同时对非泊车位网格内的信息第一次过滤去除。
  4. 根据权利要求1或2所述的一种基于无线地磁探测的车辆管理方法,其特征在于,所述S3中,具体包括:
    S31,当车辆前轮进入到泊车位的边线内时,开启对车辆的实时探测,同时对非泊车位网格内的信息第二次过滤去除;
    S32,根据车辆在泊车位内的运动轨迹,实时跟踪车轮在网格泊车位中的坐标信息;
    S33,将坐标信息实时存储到自身的存储内。
  5. 根据权利要求1所述的一种基于无线地磁探测的车辆管理方法,其特征在于,所述的坐标信息,是指连续的坐标点信息,并且连续的坐标点形成光滑的运动轨迹。
  6. 根据权利要求1所述的一种基于无线地磁探测的车辆管理方法,其特征在于,该方法还包括:
    S5,基站接收到信息后,将信息发送到中心处理站,中心处理站将信息及时存储,并将信息发用到用户的终端及时通知客户车辆的信息状态。
  7. 一种地磁探测器,其特征在于,该系统包括:
    泊车位设置单元,用于将泊车位进行网格设置,形成坐标化的网格泊车位;
    地磁探测单元,用于对整个网格泊车位进行扫描,记录泊车位的坐标信息以及当车辆进入泊车位的边线内时,实时跟踪记录车轮在网格内的运动坐标信息;
    信息处理单元,用于当车辆完全停止时,停止记录,同时判断记录的坐标信息是否连续,若不连续,则将不连续的信息自动删除;若连续,则对连续信息进行过滤,并将过滤后的信息发送给基站。
  8. 根据权利要求7所述的一种地磁探测器,其特征在于,所述泊车位设置单元,其具体用于将泊车位进行网格设置,按照泊车位的大小划分成网格矩阵的形式,将形成的网格矩阵进行坐标化标记,形成坐标化的网格泊车位。
  9. 根据权利要求7所述的一种地磁探测器,其特征在于,所述地磁探测单元,其具体还用于对整个网格泊车位进行扫描,记录泊车位的坐标信息,同时对非泊车位网格内的信息第一次过滤去除。
  10. 一种基于无线地磁探测的车辆管理系统,其特征在于,该系统包括:基站、地磁探测器、用户终端、中心处理站,所述基站用于接收到地磁探测单元的信息后,将信息发送到中心处理站,中心处理站将信息及时存储,并将信息发送到用户的终端及时通知客户车辆的信息状态。
PCT/CN2017/096159 2017-06-23 2017-08-07 一种基于无线地磁探测的车辆管理方法及系统 WO2018232851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710488044.7A CN107180537A (zh) 2017-06-23 2017-06-23 一种基于无线地磁探测的车辆管理方法及系统
CN201710488044.7 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018232851A1 true WO2018232851A1 (zh) 2018-12-27

Family

ID=59844703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096159 WO2018232851A1 (zh) 2017-06-23 2017-08-07 一种基于无线地磁探测的车辆管理方法及系统

Country Status (2)

Country Link
CN (1) CN107180537A (zh)
WO (1) WO2018232851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112419743A (zh) * 2020-08-27 2021-02-26 宁波大榭招商国际码头有限公司 一种基于连续地磁传感器的检测矫正方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853366B (zh) * 2019-11-20 2021-04-16 浙江大华技术股份有限公司 一种检测车辆停放位置方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013018721A1 (de) * 2013-11-08 2014-06-18 Daimler Ag Verfahren zur Erkennung wenigstens einer Parklücke für einen Kraftwagen
CN105869434A (zh) * 2016-05-10 2016-08-17 深圳市万泊科技有限公司 一种基于地磁传感器的车位检测方法
CN106485756A (zh) * 2016-09-30 2017-03-08 惠州华阳通用电子有限公司 一种泊车系统摄像头标定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118303B (zh) * 2015-07-17 2018-03-27 袁丽 智能泊车监控管理系统及停车模式下车辆入位检测方法
CN105279975B (zh) * 2015-10-14 2018-01-12 浙江大学 一种基于磁场传感器的不规范停车检测方法
CN105575134B (zh) * 2016-02-15 2018-07-27 王洋 一种基于磁力的被动式停车位检测装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013018721A1 (de) * 2013-11-08 2014-06-18 Daimler Ag Verfahren zur Erkennung wenigstens einer Parklücke für einen Kraftwagen
CN105869434A (zh) * 2016-05-10 2016-08-17 深圳市万泊科技有限公司 一种基于地磁传感器的车位检测方法
CN106485756A (zh) * 2016-09-30 2017-03-08 惠州华阳通用电子有限公司 一种泊车系统摄像头标定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, DONGXU: "Design and Implementation of Intelligent Parking System Based on Geomagnetism", CHINESE MASTER'S THESES FULL-TEXT DATABASE (ENGINEERING SCIENCE AND TECHNOLOGY II, 15 August 2016 (2016-08-15), pages C034 - 479 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112419743A (zh) * 2020-08-27 2021-02-26 宁波大榭招商国际码头有限公司 一种基于连续地磁传感器的检测矫正方法

Also Published As

Publication number Publication date
CN107180537A (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
CN104361764B (zh) 一种基于视频监控的立体车库管理装置及方法
CN111522898A (zh) 地图创建方法、服务器和系统
CN108765976A (zh) 路侧平行停车信息管理系统及方法
CN103809194B (zh) 一种gps轨迹曲线的显示方法及装置
CN110986820B (zh) 轨道侵限检测方法、装置及电子设备
CN105788344A (zh) 一种停车场自动定位寻车方法
CN111209780A (zh) 车道线属性检测方法、装置、电子设备及可读存储介质
CN111788617A (zh) 用于停车区域的识别的方法和控制装置
WO2018232851A1 (zh) 一种基于无线地磁探测的车辆管理方法及系统
CN107871398A (zh) 一种通过行车记录仪进行红绿灯识别的方法和系统
CN112233056B (zh) 一种多源数据的点云融合方法、装置和存储介质
CN106971616A (zh) 一种基于云计算的车位引导系统及方法
CN105719503A (zh) 一种停车场自动定位寻车方法
CN107480653A (zh) 基于计算机视觉的客流量检测方法
EP3531101B1 (fr) Procédé et dispositif d'inspection de sous-châssis de véhicule ferroviaire
CN104369742A (zh) 一种基于图像处理的隧道表面裂缝快速智能检测车
CN105719483A (zh) 一种视频与gps相结合的车辆行驶轨迹全样本数据获取方法
CN105654575A (zh) 一种管理行车记录信息的方法、装置及设备
CN108959414B (zh) 一种基于机器学习的导航数据点提取缺失道路的方法
CN111369824B (zh) 一种基于图像识别定位的引导泊车方法及系统
CN115240094A (zh) 一种垃圾检测方法和装置
CN108088459A (zh) 一种导航方法、装置、服务器及计算机可读存储介质
CN109495837A (zh) 一种道路状况监测方法、设备及计算机可读存储介质
CN105825698A (zh) 路况ugc上报方法、发送方法、装置及系统
CN109241984B (zh) 轨道垃圾检测方法、计算机装置和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17915009

Country of ref document: EP

Kind code of ref document: A1