WO2018230759A1 - Apparatus for preparing nerve conduit - Google Patents

Apparatus for preparing nerve conduit Download PDF

Info

Publication number
WO2018230759A1
WO2018230759A1 PCT/KR2017/006621 KR2017006621W WO2018230759A1 WO 2018230759 A1 WO2018230759 A1 WO 2018230759A1 KR 2017006621 W KR2017006621 W KR 2017006621W WO 2018230759 A1 WO2018230759 A1 WO 2018230759A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
neural conduit
glass fibers
porous
container
Prior art date
Application number
PCT/KR2017/006621
Other languages
French (fr)
Korean (ko)
Inventor
박기웅
정구찬
현정근
김종완
Original Assignee
주식회사리온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사리온 filed Critical 주식회사리온
Publication of WO2018230759A1 publication Critical patent/WO2018230759A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction

Definitions

  • the present invention relates to a neural conduit manufacturing apparatus, and more specifically, to form a microchannel by utilizing the space between the glass fibers and evenly pressed to minimize the deviation of each neural conduit due to the defective rate and location during manufacturing.
  • the present invention relates to a porous neural conduit manufacturing apparatus using glass fibers.
  • the nerve conduit connects both ends of the missing nerve and acts as a pathway for nerve regeneration. It fixes both ends of the cut nerve in the nerve conduit and induces nerve connections into the conduit.
  • the use of neural conduits can prevent the penetration of scar tissue that interferes with nerve regeneration, induces the direction of nerve regeneration in the right direction, and maintains nerve regeneration promoters secreted from the nerve itself in the catheter and interferes with regeneration.
  • the materials to be used have the advantage that they can be blocked from the outside.
  • the neural conduit must be biocompatible without tissue rejection, biodegradable at the time of nerve regeneration, no neural catheter removal procedure after neural regeneration, and the degradation products of the neural catheter not toxic in the body, It should have mechanical properties to maintain internal space during nerve regeneration, and have proper elasticity and tensile strength so that the terminal part of nerve conduit can be stably maintained even after movement of procedure after insertion of nerve conduit. It should be easy to prevent damage to the normal tissue around the site and to perform the procedure.
  • Materials for such neural conduits are largely natural polymers (collagen, chitosan, etc.) and synthetic polymers (silicone, polylactic acid (PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer) (polylactic acid-co-glycolic acid, PLGA), polycaprolactone, etc. are being studied.
  • the most widely used natural polymer material is collagen.
  • Collagen has been widely used as a material for neural conduits for nerve regeneration because of its excellent biocompatibility and weak antigenicity.
  • collagen has to be extracted from animals, making the manufacturing process difficult, difficult to store, and not suitable for mass production.
  • the manufacturing cost is expensive, there is a disadvantage in that it is limited in utilization in the clinical and very weak in tensile force in vivo.
  • synthetic polymer-based neural conduits such as polylactic acid and polylactic acid-glycolic acid copolymers, have been tested for biocompatibility and are made of a polymer tube without pores, so they have excellent structural stability and tensile strength, but are difficult to control physical properties. There is a disadvantage that is not easy to exchange.
  • the present inventor discloses neural conduit technology using glass fiber through Korean Patent Application No. 10-2014-0027854, but there is still a problem that it is not easy to exchange body fluids.
  • an object of the present invention is to provide a porous neural conduit manufacturing apparatus having a microporous structure together with a microchannel.
  • Another object of the present invention is to provide a porous neural conduit manufactured using the manufacturing apparatus of the present invention.
  • the present invention is (a) a container having an upper channel and a lower channel and a plurality of glass fibers are inserted; (b) polymer material injection means for injecting polymer material into the container; (c) a porous neural conduit manufacturing apparatus using glass fibers including a pressurizing means for applying a high pressure in the container, wherein the pressurizing means is (i) pressurized to be connected to the pressurizing tank to apply a high pressure to the pressurizing tank; Pump; (ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside; (iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And (iv) is connected to the pressure distribution control device, and provides a porous neural conduit manufacturing apparatus including a pressure chamber including the container and the injection means therein.
  • the distribution pressure control device may include 2 to 100 pressure control means including 1 to 100 air valves, regulators and 1 to 100 pressure release valves.
  • the lower channel has a smaller diameter than the upper channel and the vessel can be inclined at discrete angles.
  • the container may be made of a transparent material that can be visually confirmed the penetration of the polymer solution.
  • the present invention also includes the steps of (a) inserting a plurality of glass fibers into a container having upper and lower channels; (b) injecting a polymer material into the container into which the plurality of glass fibers are inserted; (c) applying a high pressure from the channel to infiltrate the polymer material between the glass fibers; (d) separating the glass fibers from the container; And (e) immersing the separated glass fibers in water to dissolve the glass fibers, wherein step (c) comprises; (i) forming a high pressure inside the pressurized tank using a pressurized pump; (ii) pressurizing the inside of the chamber by moving air in the pressurizing tank into the pressurizing chamber by using an air valve of a distribution pressurizing control device, and penetrating the polymer material between the glass fibers; And (iii) controlling the inside of the chamber to a normal pressure by using a pressure release valve after the penetration of the polymer material between the glass fibers is completed.
  • step (c) comprises; (
  • the polymer material is a collagen (collagen), gelatin (gelatin), chitosan, alginate, hyaluronic acid, dextran, silk (silk), cellulose, poly Poly 3-hydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and poly hydroxybutyrate-co-valerate (PHBV), polyorthoesters , Polyviniyalcohol (PVA), polyethylene glycol (poly (ethyleneglycol), PEG), polyurethane, polyacrylic acid, poly-N-isopropyl acrylamide (poly (N-isopropyl acrylamide) , Poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) copolymer (poly (ethyleneoxide) -poly (propyleneoxide) -poly (ethyleneoxide) copolymer, polydioxanone-b-caprolactone (poly ( diox anone-b-caprolactone)), poly-
  • the weight / volume (w / v%) of the polymer and the solvent may be 10 to 40%.
  • the solvent may be phase-separated from the water and separated from the polymer to form pores in the polymer.
  • the polymer material may be in a solution state at room temperature.
  • Porous neural conduit manufacturing method using the glass fiber cooling the neural conduit formed after the step of dissolving the glass fiber with liquid nitrogen; And cutting the cooled neural conduit to form.
  • the pressurization may be repeated a plurality of times.
  • the present invention according to the third aspect also provides a porous neural conduit manufactured by the above method.
  • the neural conduit may have a microchannel in the axial direction of the neural conduit as the glass fiber is inserted in the axial direction of the container.
  • the neural conduit may form micropores in the neural conduit as the solvent is dissolved in water.
  • TG Hydrophobic tetraglycol
  • PLGA polylactic acid-glycolic acid copolymer
  • TG tetraglycol
  • the melting point of the polymer solution is lowered by mixing the polylactic acid-glycolic acid copolymer (PLGA) and tetraglycol (TG), the polymer material is maintained at room temperature after the PLGA has been dissolved with TG once. Can be used without remelting.
  • PLGA polylactic acid-glycolic acid copolymer
  • TG tetraglycol
  • A is a glass fiber, capillary glass and capillary glass tube with glass fiber inserted
  • B is a silicone tube with 2-way valve and Luer lock syringe
  • C is a Luer lock with silicon tube with 2-way valve (Luer lock) Syringe
  • D pressurizes the inside of glass tube using syringe.
  • Figure 2 is a schematic diagram showing a method of manufacturing a porous neural conduit.
  • 3 and 4 are diagrams showing the effect of channel formation according to discontinuous (a) or continuous (b) vessel tilt.
  • Figure 9 is a photograph showing a porous neural conduit made of various diameters and lengths according to the application.
  • FIG. 10 is a view briefly showing a dispensing pressure control device according to an embodiment of the present invention.
  • the present invention (a) a container having an upper channel and a lower channel is inserted a plurality of glass fibers; (b) polymer material injection means for injecting polymer material into the container; (c) a porous neural conduit manufacturing apparatus using glass fibers including a pressurizing means for applying a high pressure in the container, wherein the pressurizing means is (i) pressurized to be connected to the pressurizing tank to apply a high pressure to the pressurizing tank; Pump; (ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside; (iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And (iv) connected to the pressure distribution control device, and relates to a porous neural conduit manufacturing apparatus including a pressure chamber including the container and the injection means therein.
  • the present invention also includes the steps of (a) inserting a plurality of glass fibers in a container having an upper and a lower channel; (b) injecting a polymer material into the container into which the plurality of glass fibers are inserted; (c) applying a high pressure from the channel to infiltrate the polymer material between the glass fibers; (d) separating the glass fibers from the container; And (e) immersing the separated glass fibers in water to dissolve the glass fibers, wherein step (c) comprises; (i) forming a high pressure inside the pressurized tank using a pressurized pump; (ii) pressurizing the inside of the chamber by moving air in the pressurizing tank into the pressurizing chamber by using an air valve of a distribution pressurizing control device, and penetrating the polymer material between the glass fibers; And (iii) controlling the inside of the chamber to a normal pressure by using a pressure release valve after the penetration of the polymer material between the glass fibers is completed.
  • step (c)
  • polymeric material is prepared by dissolving a hydrophobic polymer in a hydrophobic solvent, and in the present invention, a collagen, gelatin, chitosan, alginate, hyaluronic acid as a hydrophobic polymer.
  • the hydrophobic polymer may be a polylactic acid-co-glycolic acid (PLGA), and the hydrophobic solvent may be tetraglycol (tetraglycol, TG).
  • PLGA polylactic acid-co-glycolic acid
  • TG tetraglycol
  • the weight / volume% (w / v%) of the polymer and the solvent refers to the weight (g) of the polymer dissolved in 1L of solvent, the weight / volume% (w / v%) is 10 to 40%, more preferably 15-25%, most optimally 20%. If less than the above range, there is a problem that the porosity is greatly increased due to the use of excessive solvent, and vice versa, sufficient pore formation may be difficult.
  • the pressurizing means includes: (i) a pressurizing pump connected to the pressurizing tank to apply high pressure to the pressurizing tank; (ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside; (iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And (iv) a pressure chamber connected to the distribution pressure control device, the pressure chamber including the container and the injection means therein, wherein step (c) includes (i) a high pressure inside the pressure tank using a pressure pump.
  • the distribution pressure control device 100 includes 2 to 100 pressure control means 110 including 1 to 100 air valves 112, a regulator 111, and 1 to 100 pressure release valves 113. It is more preferable to have a constant pressure regardless of the position inside the chamber, including.
  • the pressure pump, the pressure tank, the chamber, and the distribution pressure control device are each provided with a pressure sensor and a control means, and a conduit connecting each device is provided with a valve to automatically inside the chamber. It is desirable to be adjusted to a constant pressure.
  • the glass fiber may be moved by the pressure of the pressure during the pressing, it is preferable to fix the glass fiber using a fixing means.
  • the fixing means may be any means as long as it can fix the glass fiber, but may be a wire, an elastic body or a band including a fiber, a polymer or a metal material.
  • the fixing means is more preferably fixed to the container so that the glass fiber does not leave the position when pressed.
  • the fixing means may be fixed to the container by using hooks, protrusions or protrusions installed on the container.
  • the fixing means may be fixed to the glass fibers one by one, but also can be fixed by wrapping the 2 to 1000 glass fiber bundles, it is also possible to collect and fix the 2 to 100 glass fiber bundles as described above.
  • the lower channel has a smaller diameter than the upper channel, so that the glass fibers injected into the container can remain filled without flowing in the container.
  • the container may be inclined at a discontinuous angle, and more specifically, the container may be formed of upper and lower channels inclined at a discontinuous angle, but is not limited thereto.
  • the spacing of the glass fibers to be inserted is constant, so the spacing of the microchannels formed in the space where the glass fibers are melted is also constant. That is, the porous neural conduit manufactured according to the present invention forms microchannels at regular intervals, thereby inducing neural regeneration in the same direction.
  • the container may be to form a bottleneck point by heating a central portion of the glass tube to form an upper channel and a lower channel, but is not limited thereto.
  • the polymer material may be in a solution state at room temperature.
  • Porous neural conduit manufacturing method using the glass fiber cooling the neural conduit formed after the step of melting the glass fiber with liquid nitrogen; And cutting the cooled neural conduit to form.
  • the container may be made of a transparent material in which the penetration of the polymer solution can be visually confirmed, but may be preferably made of glass, but is not limited thereto.
  • the pressing may be performed repeatedly a plurality of times, thereby producing a neural conduit of uniform density.
  • the present invention provides a porous neural conduit prepared according to the method of the present invention.
  • the neural conduit may be a microchannel formed in the axial direction of the nerve conduit as the glass fiber is inserted in the axial direction of the container. More specifically, the glass fiber is axially inserted into the upper channel of the container (glass tube), and then the polymer material (PLGA-TG solution) is injected into the container and pressure is applied to infiltrate the glass fiber and separated from the container. The glass fibers were melted by immersion in water (DW) to form microchannels made of hydrophobic polymer (PLGA) in the space where the glass fibers were melted. That is, by inserting the glass fibers in the axial direction of the container to melt the glass fibers, a neural conduit was formed in which the microchannels were formed in the axial direction in the space where the glass fibers were melted.
  • DW immersion in water
  • microchannel refers to an empty space of 10 to 20 ⁇ m size formed in the space where the glass fibers are melted.
  • the neural conduit may be micropores formed in the neural conduit as the solvent is dissolved in water. More specifically, TG reacts (dissolves) with water (DW) in the process of immersing glass fiber infiltrated with polymer material (PLGA-TG solution) in water (DW) and exits from the neural conduit to form micropores inside the microchannel. Formed. Dissolution in this specification means that TG is separated from the polymeric material.
  • microporous pores refers to the fine pores that form in the microchannels as the solvent dissolves in the DW and exits the neural conduit.
  • the neural conduit prepared according to the present invention facilitates fluid exchange by microchannels when applied in vivo.
  • the solvent exiting the neural conduit was denser than the DW (1.09 g / ml) and settled in a haze at the bottom of the DW (FIG. 7).
  • Porous neural conduit prepared according to an embodiment of the present invention can be produced in a variety of diameters and lengths, and can be freely changed in diameter and length according to the purpose and purpose of use to be useful in in vitro and in vivo studies of the nerves have.
  • Hydrophobic polymer polylactic acid-glycolic acid copolymer (mol% of lactic acid to glycolic acid, 85:15) and hydrophobic solvent tetraglycol (TG) (density: 1.09 g / ml, Sigma-Aldrich, USA ) was mixed so that the weight-to-volume (w / v) ratio was 20% (w / v) and then dissolved at 60 ° C. for 18 hours to prepare a 20% (w / v) PLGA-TG solution (polymeric material).
  • PLGA Hydrophobic polymer polylactic acid-glycolic acid copolymer
  • TG hydrophobic solvent tetraglycol
  • the central portion of the capillary tube 1.6 mm in inner diameter and 13 cm in length was heated to form a bottleneck, forming upper and lower channels that were inclined at discrete angles. At this time, the lower channel was manufactured to form a smaller diameter than the upper channel. Thereafter, water soluble glass fibers (50P 2 O 5 -20CaO-30Na 2 O in mol% (1100 ° C, 800rpm)) having a diameter of 10 to 20 ⁇ m were cut in 5 to 6 cm units to form a shaft in the upper channel of the glass tube. In the right direction (FIGS. 1A and 2A).
  • a pressure device prepared by connecting a Luer lock syringe with a 2-way valve attached to a silicon tube having an inner diameter of 0.8 mm and a length of 15 cm was inserted into an upper channel of a glass tube into which glass fibers were inserted (FIG. 1B and 1C).
  • the width of the lower channel is narrowed compared to the upper channel at a discontinuous angle, which is shown in FIG. 3. If the angle is continuous (Fig. 4), the gap between the glass fibers is gradually narrowed, there is a problem that it is difficult to maintain a constant gap between the glass fibers.
  • the spacing of the glass fibers is not constant, the nerve regeneration direction formed by the glass fibers varies depending on the channel, and thus a problem occurs that nerve regeneration in the same direction becomes difficult.
  • the glass fiber infiltrated with PLGA-TG solution was separated from the glass tube using a wire of 1.5 mm in diameter and 15 cm in diameter, and immediately immersed in 10-20 ° C. of distilled water (DW) for at least 24 hours (FIG. 2D). ), Approximately 7,000 to 8,500 (number of microchannels: 7,777 ⁇ ) of 10 to 20 ⁇ m microchannels (16.54 ⁇ 3.6 ⁇ m in diameter) consisting of PLGA in the space where all the glass fibers are dissolved and the glass fibers are melted. 716.2 pieces) (FIGS. 2E and 5). At the same time as the glass fibers were dissolved in the DW of 10 ⁇ 20 °C, PLGA was cured to form a microchannel.
  • DW distilled water
  • TG reacts with the DW (dissolves in DW) to escape from the microchannel, thereby forming micropores inside the microchannel (FIGS. 5, 6 and 7).
  • TG released from the neural conduit was denser than the DW and sunk in the lower part of the DW (Fig. 8).
  • the glass fiber and TG were removed through the DW treatment, and the porous microchannel made of PLGA, that is, the prepared neural conduit was frozen in liquid nitrogen for about 30 seconds, and cut and shaped to a size suitable for use (FIG. 9).
  • Example 1 a pressure was applied using a syringe, but a porous neural conduit was manufactured using an automatic pressure control method using a pressure chamber instead of the syringe.
  • the upper channel was connected to the pressurization chamber.
  • the valves 112 and 113 connected to each conduit were adjusted to be OFF, and then the pressure pump 200 was operated to pressurize the pressure tank 400 to prepare.
  • the chamber was pressurized to a predetermined pressure through the three pressure control means 110 connected to the distribution pressure control device 100, and after the pressurization was completed, the inside of the chamber was adjusted to the normal pressure by using each pressure release valve 113. . Thereafter, the procedure was performed in the same manner as in Example 1.
  • microstructures formed in the microchannels inside the neural catheter prepared in Example 1 by dissolving the glass fibers in water were confirmed by scanning electron microscopy (SEM) (FIGS. 5, 6 and 7).
  • FIG. 5 is a cross-sectional view of the neural conduit
  • FIG. 6 is a photograph showing an enlarged microstructure in the cross-sectional view of the neural conduit
  • FIG. 7 is a longitudinal cross-sectional view of the neural conduit, in which the microchannels inside the neural conduit are continuous from the distal to the proximal end. It was confirmed that micropores were formed in the microstructure inside the microchannel.
  • the neural conduits were manufactured by repeating the method 10 times, the size and distribution of the microchannels inside the neural conduits were not constant. On the contrary, the neural conduits were repeated 10 times by the method of Example 2.
  • the conduit was manufactured, it was confirmed that neural conduits including microchannels having a constant size and distribution can be produced. This is because it is determined that a constant pressure is not applied because the syringe is operated using a human sense when pressurized by the method of Example 1, and in Example 2 using a valve and a pressurized chamber, the microchannel having a constant size and distribution is neural. It was confirmed that it is distributed in the conduit.
  • the neural conduit prepared according to the present embodiment may be manufactured in various diameters and lengths according to the purpose and purpose of use so as to be useful for in vitro and in vivo studies of the nerve.

Abstract

The present invention relates to an apparatus for preparing a nerve conduit and, more particularly, to an apparatus for preparing a porous nerve conduit using a glass fiber, which forms a microchannel by using a space between glass fibers and is uniformly pressurized, so as to minimize the defective proportion during preparation and a difference among nerve conduits depending on the positions thereof. A nerve conduit prepared according to the present invention can be formed to have different diameters and lengths, depending on a purpose and a use such that the prepared nerve conduit can be usefully used for in vitro and in vivo research on a nerve.

Description

신경도관 제조장치Neural Conduit Manufacturing Equipment
본 발명은 신경도관 제조장치에 관한 것으로, 보다 상세하게는 유리섬유 사이의 공간을 활용하여 미세채널을 형성함과 더불어 균일하게 가압되어 제조시 불량률 및 위치에 의한 각 신경도관의 편차를 최소화 할 수 있는, 유리섬유를 이용한 다공성 신경도관 제조장치에 관한 것이다.The present invention relates to a neural conduit manufacturing apparatus, and more specifically, to form a microchannel by utilizing the space between the glass fibers and evenly pressed to minimize the deviation of each neural conduit due to the defective rate and location during manufacturing. The present invention relates to a porous neural conduit manufacturing apparatus using glass fibers.
말초 신경이 외상에 의해 손상을 입은 경우, 절단된 신경의 절단면을 서로 직접 문합하는 방법이 시행된다. 그러나 대부분의 신경을 정확하게 직접 문합하는 것은 거의 불가능 하며, 직접 문합이 불가능한 경우 그 기능의 회복을 위해서 자가 신경 이식술을 시행하고 있다. 그러나 자가 신경 이식술의 경우 손상부위의 신경 조직과 이식되어지는 신경조직의 굵기와 형태를 일치시키기 어렵다는 단점이 있고, 채취 가능한 신경에도 제한이 있으며, 이식 신경을 채취한 부위에서도 기능의 저하가 일어날 수 있다. 따라서 신경 결손 부위가 생길 경우 그것의 기능을 회복하기 위한 방법으로 신경도관이 사용되고 있다.If the peripheral nerves are injured by trauma, a method of anastomizing the cut sections of the cut nerves directly is performed. However, it is almost impossible to anatomize most nerves directly, and autologous nerve transplantation is performed to restore its function when direct anastomosis is impossible. However, in the case of autologous nerve transplantation, there is a disadvantage in that it is difficult to match the thickness and shape of the neural tissue to be implanted with the damaged area, there is a limit to the collectable nerves, and the function of the transplanted nerves may be degraded. have. Therefore, neural conduit is used as a method for restoring its function when a nerve defect occurs.
신경도관은 결손 된 신경의 양끝을 연결하고 신경 재생의 통로역할을 하는 것으로, 절단된 신경의 양쪽 끝을 신경도관 안에 고정하고 도관의 안으로 신경의 연결을 유도한다. 신경도관을 이용하게 되면 신경 재생에 방해되는 반흔 조직의 침투를 막을 수 있고, 올바른 방향으로 신경 재생의 방향을 유도할 수 있으며, 신경 자체에서 분비되는 신경 재생 촉진물질들이 도관 내에 유지시키고 재생에 방해되는 물질들은 외부로부터 차단될 수 있다는 이점을 가지고 있다.The nerve conduit connects both ends of the missing nerve and acts as a pathway for nerve regeneration. It fixes both ends of the cut nerve in the nerve conduit and induces nerve connections into the conduit. The use of neural conduits can prevent the penetration of scar tissue that interferes with nerve regeneration, induces the direction of nerve regeneration in the right direction, and maintains nerve regeneration promoters secreted from the nerve itself in the catheter and interferes with regeneration. The materials to be used have the advantage that they can be blocked from the outside.
신경도관은 조직 거부 반응이 나타나지 않는 생체적합성을 가져야 하며, 신경의 재생 시기에 맞추어 생분해되어, 신경 재생 후 신경도관 제거 시술이 필요치 않아야 하며, 신경도관의 분해산물이 체내에서 독성을 가지지 않아야 하고, 신경 재생이 일어나는 동안 내부 공간을 유지시킬 수 있는 기계적 물성을 가져야 하며, 신경도관의 삽입 후 시술 부위의 움직임에도 신경도관의 말단 부위가 안정적으로 유지될 수 있도록 적절한 신축성과 인장강도를 가져야 하고, 시술 부위 주변의 정상조직의 손상 방지 및 시술 용이성을 지녀야 한다. 이러한 신경도관의 재료로는 크게 천연고분자(콜라겐, 키토산 등)와 합성고분자(실리콘, 폴리락틱산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락틱산-글리콜산 공중합체(polylactic acid-co-glycolic acid, PLGA), 폴리카프로락톤(polycaprolactone) 등)이 연구되고 있다.The neural conduit must be biocompatible without tissue rejection, biodegradable at the time of nerve regeneration, no neural catheter removal procedure after neural regeneration, and the degradation products of the neural catheter not toxic in the body, It should have mechanical properties to maintain internal space during nerve regeneration, and have proper elasticity and tensile strength so that the terminal part of nerve conduit can be stably maintained even after movement of procedure after insertion of nerve conduit. It should be easy to prevent damage to the normal tissue around the site and to perform the procedure. Materials for such neural conduits are largely natural polymers (collagen, chitosan, etc.) and synthetic polymers (silicone, polylactic acid (PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer) (polylactic acid-co-glycolic acid, PLGA), polycaprolactone, etc. are being studied.
이 중 가장 많이 사용되는 천연고분자 재료는 콜라겐이다. 콜라겐은 뛰어난 생체적합성과 약한 항원성 때문에 신경 재생을 위한 신경도관의 재료로서 많이 사용되었다. 그러나 콜라겐은 동물로부터 추출해야 하기 때문에 제작과정이 어렵고 보관 방법이 까다로우며 대량 생산에 적합하지 않는다는 문제점이 있다. 또한, 제조단가가 비싸므로 임상에서의 활용에 제한적이고 생체 내에서 인장력이 매우 취약하다는 단점이 있다. 또한, 폴리락틱산, 폴리락틱산-글리콜산 공중합체 등 생체적합성이 검증된 합성 고분자 기반 신경도관은 공극이 없는 고분자 튜브 형태로 이루어져 있어 구조 안정성 및 인장강도는 우수하나, 물성 제어가 어렵고, 체액의 교환의 쉽게 이루어지지않는 단점이 있다.The most widely used natural polymer material is collagen. Collagen has been widely used as a material for neural conduits for nerve regeneration because of its excellent biocompatibility and weak antigenicity. However, collagen has to be extracted from animals, making the manufacturing process difficult, difficult to store, and not suitable for mass production. In addition, since the manufacturing cost is expensive, there is a disadvantage in that it is limited in utilization in the clinical and very weak in tensile force in vivo. In addition, synthetic polymer-based neural conduits, such as polylactic acid and polylactic acid-glycolic acid copolymers, have been tested for biocompatibility and are made of a polymer tube without pores, so they have excellent structural stability and tensile strength, but are difficult to control physical properties. There is a disadvantage that is not easy to exchange.
이를 해결하기 위하여 본 발명자는 대한민국 특허출원 10-2014-0027854호를 통하여 유리섬유를 이용한 신경도관 기술을 개시하고 있으나, 여전히 체액의 교환이 쉽지 않다는 문제가 있다. In order to solve this problem, the present inventor discloses neural conduit technology using glass fiber through Korean Patent Application No. 10-2014-0027854, but there is still a problem that it is not easy to exchange body fluids.
따라서, 본 발명이 해결하고자 하는 과제는 미세채널과 함께 미세기공 구조를 함께 가지는 다공성 신경도관 제조장치를 제공하는 것이다.Accordingly, an object of the present invention is to provide a porous neural conduit manufacturing apparatus having a microporous structure together with a microchannel.
본 발명의 목적은 유리섬유 사이의 공간을 활용하여 미세채널을 형성하는, 유리섬유를 이용한 다공성 신경도관의 제조장치를 제공하는 것이다.It is an object of the present invention to provide a device for producing a porous neural conduit using glass fibers, which forms a microchannel by utilizing the space between the glass fibers.
본 발명의 다른 목적은 본 발명의 제조장치를 이용하여 제조된 다공성 신경도관을 제공하는 것이다.Another object of the present invention is to provide a porous neural conduit manufactured using the manufacturing apparatus of the present invention.
상술한 문제를 해결하기 위해, 제1양태에 의한 본 발명은 (a) 상부 채널 및 하부 채널을 가지며 복수 개의 유리섬유가 삽입되는 용기; (b) 상기 용기내로 고분자 재료를 주입하는 고분자 재료 주입수단; (c) 상기 용기내부에 고압을 인가하는 가압수단을 포함하는 유리섬유를 이용한 다공성 신경도관 제조장치에 있어서, 상기 가압수단은, (i) 가압탱크에 연결되어 가압탱크 내부에 고압을 인가하는 가압펌프; (ii) 일측이 상기 가압펌프와 연결되며, 내부가 고압으로 유지되는 가압탱크; (iii) 상기 가압탱크의 타측과 챔버 내부를 연결하여 용기내부에 고압을 인가하는 분배가압제어장치; 및 (iv) 상기 분배가압제어장치와 연결되며, 내부에 상기 용기 및 주입수단을 포함하는 가압 챔버를 포함하는 다공성 신경도관 제조장치를 제공한다.In order to solve the above problems, the present invention according to the first aspect is (a) a container having an upper channel and a lower channel and a plurality of glass fibers are inserted; (b) polymer material injection means for injecting polymer material into the container; (c) a porous neural conduit manufacturing apparatus using glass fibers including a pressurizing means for applying a high pressure in the container, wherein the pressurizing means is (i) pressurized to be connected to the pressurizing tank to apply a high pressure to the pressurizing tank; Pump; (ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside; (iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And (iv) is connected to the pressure distribution control device, and provides a porous neural conduit manufacturing apparatus including a pressure chamber including the container and the injection means therein.
상기 분배 가압 제어 장치는 1~100개의 에어용 밸브, 레귤레이터 및 1~100개의 가압 해제용 밸브를 포함하는 2~100개의 가압 제어 수단을 포함할 수 있다.The distribution pressure control device may include 2 to 100 pressure control means including 1 to 100 air valves, regulators and 1 to 100 pressure release valves.
상기 하부 채널은 상부 채널보다 작은 직경을 가지며, 상기 용기는 불연속적인 각도로 경사질 수 있다.The lower channel has a smaller diameter than the upper channel and the vessel can be inclined at discrete angles.
상기 용기는 상기 고분자 용액의 침투가 육안으로 확인될 수 있는 투명 재질로 이루어질 수 있다.The container may be made of a transparent material that can be visually confirmed the penetration of the polymer solution.
또한 제2양태에 의한 본 발명은 (a) 상부 및 하부 채널을 갖는 용기 내에 복수 개의 유리섬유를 삽입하는 단계; (b) 상기 복수 개의 유리섬유가 삽입된 용기 내로 고분자 재료를 주입하는 단계; (c) 상기 채널로부터 고압을 인가하여 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계; (d) 상기 용기로부터 상기 유리섬유를 분리시키는 단계; 및 (e) 상기 분리된 유리섬유를 물에 침지시켜 상기 유리섬유를 용해하는 단계를 포함하며, 상기 (c) 단계는; (i) 가압펌프를 이용하여 가압 탱크 내부에 고압을 형성하는 단계; (ii) 분배 가압 제어 장치의 에어용 밸브를 이용하여 가압탱크 내부의 공기를 상기 가압 챔버 내부로 이동시켜 챔버 내부를 가압하며, 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계; 및 (iii) 상기 유리섬유 사이로 상기 고분자 재료의 침투가 완료된 이후 가압 해제용 밸브를 이용하여 챔버 내부를 상압으로 조절하는 단계를 포함하는 것을 특징으로 하는 상기 신경도관 제조장치를 이용한 다공성 신경도관 제조방법을 제공한다.The present invention according to the second aspect also includes the steps of (a) inserting a plurality of glass fibers into a container having upper and lower channels; (b) injecting a polymer material into the container into which the plurality of glass fibers are inserted; (c) applying a high pressure from the channel to infiltrate the polymer material between the glass fibers; (d) separating the glass fibers from the container; And (e) immersing the separated glass fibers in water to dissolve the glass fibers, wherein step (c) comprises; (i) forming a high pressure inside the pressurized tank using a pressurized pump; (ii) pressurizing the inside of the chamber by moving air in the pressurizing tank into the pressurizing chamber by using an air valve of a distribution pressurizing control device, and penetrating the polymer material between the glass fibers; And (iii) controlling the inside of the chamber to a normal pressure by using a pressure release valve after the penetration of the polymer material between the glass fibers is completed. The method of manufacturing a porous neural conduit using the neural conduit manufacturing apparatus To provide.
상기 고분자 재료는 고분자로서 콜라겐 (collagen), 젤라틴 (gelatin), 키토산 (chitosan), 알지네이트 (alginate), 히알루론산 (hyaluronic acid), 덱스트란 (dextran), 실크 (silk), 셀룰로오스 (cellulose), 폴리하이드로옥시부티르산(poly 3-hydroxybutyrate, PHB), 폴리하이드로옥시발레르산(polyhydroxyvalerate, PHV) 및 폴리하이드로옥시부티르산-발레르산의 공중합체(poly hydroxybutyrate-co-valerate, PHBV), 폴리오르토에스테르 (polyorthoesters), 폴리비닐알콜(polyviniyalcohol, PVA), 폴리에틸렌글리콜(poly(ethyleneglycol), PEG), 폴리우레탄 (polyurethane), 폴리아크릴산 (polyacrylic acid), 폴리-N-이소프로필아크릴아마이드 (poly(N-isopropyl acrylamide), 폴리 (에틸렌옥사이드)-폴리(프로필렌옥사이드)-폴리(에틸렌옥사이드)공중합체 (poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) copolymer), 폴리디옥사논-b-카프로락톤 (poly(dioxanone-b-caprolactone)), 폴리-ε-(카프로락톤) (poly(ε-caprolactone), PCL), 폴리락트산 (poly(lactic acid), PLA), 폴리-L-락티드 (Poly-L-lactide, PLLA), 폴리-D-락티드 (Poly-D-lactide, PDLA), 폴리-D,L-락티드 (Poly-D,L-lactide, PDLLA), 폴리글리콜산 (poly(glycolic acid), PGA) 또는 폴리(락트산-co-글리콜산) (poly(lactic acid-co-glycolic acid), PLGA)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합물; 및 용매로서 염화 메틸렌 (methylene chloride, dichloromethane, DCM), 1,4-다이옥산 (1,4-dioxane), 클로로포름 (chloroform), 아세톤 (acetone), 아니솔 (anisole), 에틸 아세트산 (ethyl acetate), 메틸 아세트산 (methyl acetate), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone), 헥사플루오로이소프로판올 (hexa fluoro isopropanol, HFIP), 테트라하이드로퓨란 (tetrahydrofuran, THF), 디메틸설폭사이드 (dimethylsulfoxide, DMSO), 2-피롤리돈 (2-pyrollidone), 구연산 트리에틸 (triethyl citrate), 트리플루오로아세트산 (trifluoro acetic acid, TFA), 디메틸포름아마이드 (dimethyl formamide, DMF), 유산 에틸(ethyl lactate), 프로필렌 카보네이트(propylene carbonate), 벤질 알코올(benzyl alcohol), 벤조산 벤질(benzyl benzoate), 미글리올810 (Miglyol810), 이소프로판올(isopropanol), 에탄올(ethanol), 아세토니트릴(acetonitrile) 또는 테트라글리콜(tetraglycol, TG)로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합 용매를 포함할 수 있다.The polymer material is a collagen (collagen), gelatin (gelatin), chitosan, alginate, hyaluronic acid, dextran, silk (silk), cellulose, poly Poly 3-hydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and poly hydroxybutyrate-co-valerate (PHBV), polyorthoesters , Polyviniyalcohol (PVA), polyethylene glycol (poly (ethyleneglycol), PEG), polyurethane, polyacrylic acid, poly-N-isopropyl acrylamide (poly (N-isopropyl acrylamide) , Poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) copolymer (poly (ethyleneoxide) -poly (propyleneoxide) -poly (ethyleneoxide) copolymer, polydioxanone-b-caprolactone (poly ( diox anone-b-caprolactone)), poly-ε- (caprolactone) (poly (ε-caprolactone), PCL), polylactic acid (poly (lactic acid), PLA), poly-L-lactide (Poly-L- lactide, PLLA), Poly-D-lactide (PDLA), poly-D, L-lactide (PDLLA), polyglycolic acid , One or two or more mixtures selected from the group consisting of PGA) or poly (lactic acid-co-glycolic acid), PLGA; and methylene chloride, dichloromethane, DCM), 1,4-dioxane, chloroform, acetone, anisole, ethyl acetate, methyl acetate, N- Methyl-2-pyrrolidone (N-methyl-2-pyrrolidone), hexa fluoro isopropanol (HFIP), tetrahydrofuran (THF), dimethylsulfoxide (DMSO), 2-pi Lollidon (2-pyrollidone), citric acid Triethyl citrate, trifluoro acetic acid (TFA), dimethyl formamide (DMF), ethyl lactate, propylene carbonate, benzyl alcohol, One or two or more selected from the group consisting of benzyl benzoate, miglyol 810, isopropanol, isopropanol, ethanol, acetonitrile or tetraglycol (TG) Mixed solvents.
상기 고분자와 용매의 중량/부피%(w/v%)는 10 내지 40%일 수 있다.The weight / volume (w / v%) of the polymer and the solvent may be 10 to 40%.
상기 용매는 상기 물에 침지시키는 단계에서 상기 물과 상분리되어 고분자로부터 분리됨으로써 상기 고분자에 다공이 형성될 수 있다.In the step of immersing in the water, the solvent may be phase-separated from the water and separated from the polymer to form pores in the polymer.
상기 고분자 재료는 상온에서 용액 상태일 수 있다.The polymer material may be in a solution state at room temperature.
상기 유리섬유를 이용한 다공성 신경도관 제조방법은, 상기 유리섬유를 용해하는 단계 후 형성된 신경도관을 액체질소로 냉각시키는 단계; 및 상기 냉각된 신경도관을 절단하여 성형하는 단계를 더 포함할 수 있다.Porous neural conduit manufacturing method using the glass fiber, cooling the neural conduit formed after the step of dissolving the glass fiber with liquid nitrogen; And cutting the cooled neural conduit to form.
상기 가압은 복수 회 반복하여 진행될 수 있다.The pressurization may be repeated a plurality of times.
또한 제3양태에 의한 본 발명은 상기 방법으로 제조된 다공성 신경도관을 제공한다.The present invention according to the third aspect also provides a porous neural conduit manufactured by the above method.
상기 신경도관은 유리섬유가 용기의 축방향으로 삽입됨에 따라 신경도관의 축방향으로 미세채널이 형성될 수 있다.The neural conduit may have a microchannel in the axial direction of the neural conduit as the glass fiber is inserted in the axial direction of the container.
상기 신경도관은 용매가 물에 용해됨에 따라 신경도관에 미세기공이 형성될 수 있다.The neural conduit may form micropores in the neural conduit as the solvent is dissolved in water.
본 발명에 따른 효과는 다음과 같다. Effects according to the present invention are as follows.
1. 소수성 고분자인 폴리락틱산-글리콜산 공중합체(PLGA)와 소수성 용매인 테트라글리콜(TG)의 혼합용매를 사용하여 유리섬유 사이로 침투시킨 후, 이를 물에 침지시킴으로써 소수성인 테트라글리콜(TG)을 신경도관을 구성하는 고분자로부터 물리적으로 분리시키며, 이로써 체액 교환이 가능한 미세기공을 형성할 수 있다. 1. Hydrophobic tetraglycol (TG) is penetrated through glass fiber using a mixed solvent of polylactic acid-glycolic acid copolymer (PLGA), which is a hydrophobic polymer, and tetraglycol (TG), which is a hydrophobic solvent. It is physically separated from the polymer constituting the neural conduit, thereby forming micropores capable of body fluid exchange.
2. 폴리락틱산-글리콜산 공중합체(PLGA)와 테트라글리콜(TG)의 혼합을 통하여 고분자 용액의 녹는 점이 낮아짐에 따라, PLGA를 TG로 한번 녹인 이후에는 상온에서 용액 상태를 유지하므로 고분자 재료를 다시 녹이는 과정 없이 사용할 수 있다. 2. As the melting point of the polymer solution is lowered by mixing the polylactic acid-glycolic acid copolymer (PLGA) and tetraglycol (TG), the polymer material is maintained at room temperature after the PLGA has been dissolved with TG once. Can be used without remelting.
3. 유리섬유 사이의 공간에 일정 점도를 갖는 고분자 용액을 침투시킨 후, 반복적으로 고압을 복수 회 인가함으로써 균일한 밀도의 신경도관 제조가 가능하다.3. After penetrating the polymer solution having a certain viscosity into the space between the glass fibers, it is possible to produce a neural conduit of uniform density by repeatedly applying a high pressure.
도 1은 다공성 신경도관의 제조방법을 나타낸 사진이다; A는 유리섬유, 모세 유리관 및 유리섬유가 삽입된 모세 유리관, B는 2-방향 밸브가 연결된 실리콘 튜브 및 루어락(Luer lock) 주사기, C는 2-방향 밸브가 연결된 실리콘 튜브가 결합된 루어락(Luer lock) 주사기, D는 주사기를 이용하여 유리관 내부에 압력을 가하는 모습.1 is a photograph showing a method of manufacturing a porous neural conduit; A is a glass fiber, capillary glass and capillary glass tube with glass fiber inserted, B is a silicone tube with 2-way valve and Luer lock syringe, C is a Luer lock with silicon tube with 2-way valve (Luer lock) Syringe, D pressurizes the inside of glass tube using syringe.
도 2는 다공성 신경도관의 제조방법을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a method of manufacturing a porous neural conduit.
도 3 및 도 4는 불연속(a) 또는 연속(b)적인 용기 경사에 따른 채널 형성 효과를 나타낸 도이다. 3 and 4 are diagrams showing the effect of channel formation according to discontinuous (a) or continuous (b) vessel tilt.
도 5는 다공성 신경도관의 횡단면 SEM 이미지이다; 스케일 바 = (왼쪽) 100 μm, (오른쪽) 10 μm.5 is a cross-sectional SEM image of the porous neural conduit; Scale bar = 100 μm (left) and 10 μm (right).
도 6은 다공성 신경도관의 횡단면에서 미세구조를 확대한 SEM 이미지이다; 스케일 바 = (A, C) 10 μm, (B, D) 1 μm, ▶ = 채널 내부의 미세기공.6 is an enlarged SEM image of the microstructure in the cross section of a porous neural conduit; Scale bar = (A, C) 10 μm, (B, D) 1 μm, ▶ = Micropores inside the channel.
도 7은 다공성 신경도관의 종단면 SEM 이미지이다; 스케일 바 = (A) 100 μm, (B) 10 μm, (C) 10 μm, (D) 1 μm.7 is a longitudinal cross-sectional SEM image of the porous neural conduit; Scale bar = (A) 100 μm, (B) 10 μm, (C) 10 μm, (D) 1 μm.
도 8은 다공성 신경도관에서 빠져나온 TG가 DW 아래쪽에 가라앉은 것을 나타낸 사진이다; 노란색 화살표: TG.8 is a photograph showing that the TG escaped from the porous neural conduit sinks below the DW; Yellow arrow: TG.
도 9는 용도에 따라 다양한 직경과 길이로 제작된 다공성 신경도관을 나타낸 사진이다.Figure 9 is a photograph showing a porous neural conduit made of various diameters and lengths according to the application.
도 10은 본 발명의 일 실시예에 따른 분배 가압 제어 장치를 간략히 도시한 것이다.10 is a view briefly showing a dispensing pressure control device according to an embodiment of the present invention.
본 발명은 (a) 상부 채널 및 하부 채널을 가지며 복수 개의 유리섬유가 삽입되는 용기; (b) 상기 용기내로 고분자 재료를 주입하는 고분자 재료 주입수단; (c) 상기 용기내부에 고압을 인가하는 가압수단을 포함하는 유리섬유를 이용한 다공성 신경도관 제조장치에 있어서, 상기 가압수단은, (i) 가압탱크에 연결되어 가압탱크 내부에 고압을 인가하는 가압펌프; (ii) 일측이 상기 가압펌프와 연결되며, 내부가 고압으로 유지되는 가압탱크; (iii) 상기 가압탱크의 타측과 챔버 내부를 연결하여 용기내부에 고압을 인가하는 분배가압제어장치; 및 (iv) 상기 분배가압제어장치와 연결되며, 내부에 상기 용기 및 주입수단을 포함하는 가압 챔버를 포함하는 다공성 신경도관 제조장치에 관한 것이다.The present invention (a) a container having an upper channel and a lower channel is inserted a plurality of glass fibers; (b) polymer material injection means for injecting polymer material into the container; (c) a porous neural conduit manufacturing apparatus using glass fibers including a pressurizing means for applying a high pressure in the container, wherein the pressurizing means is (i) pressurized to be connected to the pressurizing tank to apply a high pressure to the pressurizing tank; Pump; (ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside; (iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And (iv) connected to the pressure distribution control device, and relates to a porous neural conduit manufacturing apparatus including a pressure chamber including the container and the injection means therein.
또한 본 발명은 (a) 상부 및 하부 채널을 갖는 용기 내에 복수 개의 유리섬유를 삽입하는 단계; (b) 상기 복수 개의 유리섬유가 삽입된 용기 내로 고분자 재료를 주입하는 단계; (c) 상기 채널로부터 고압을 인가하여 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계; (d) 상기 용기로부터 상기 유리섬유를 분리시키는 단계; 및 (e) 상기 분리된 유리섬유를 물에 침지시켜 상기 유리섬유를 용해하는 단계를 포함하며, 상기 (c) 단계는; (i) 가압펌프를 이용하여 가압 탱크 내부에 고압을 형성하는 단계; (ii) 분배 가압 제어 장치의 에어용 밸브를 이용하여 가압탱크 내부의 공기를 상기 가압 챔버 내부로 이동시켜 챔버 내부를 가압하며, 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계; 및 (iii) 상기 유리섬유 사이로 상기 고분자 재료의 침투가 완료된 이후 가압 해제용 밸브를 이용하여 챔버 내부를 상압으로 조절하는 단계를 포함하는 것을 특징으로 하는 상기 신경도관 제조장치를 이용한 다공성 신경도관 제조방법에 관한 것이다.The present invention also includes the steps of (a) inserting a plurality of glass fibers in a container having an upper and a lower channel; (b) injecting a polymer material into the container into which the plurality of glass fibers are inserted; (c) applying a high pressure from the channel to infiltrate the polymer material between the glass fibers; (d) separating the glass fibers from the container; And (e) immersing the separated glass fibers in water to dissolve the glass fibers, wherein step (c) comprises; (i) forming a high pressure inside the pressurized tank using a pressurized pump; (ii) pressurizing the inside of the chamber by moving air in the pressurizing tank into the pressurizing chamber by using an air valve of a distribution pressurizing control device, and penetrating the polymer material between the glass fibers; And (iii) controlling the inside of the chamber to a normal pressure by using a pressure release valve after the penetration of the polymer material between the glass fibers is completed. The method of manufacturing a porous neural conduit using the neural conduit manufacturing apparatus It is about.
용어 "고분자 재료"란, 소수성 고분자를 소수성 용매에 용해시켜 제조하는 것으로, 본 발명에서는 소수성 고분자로 콜라겐 (collagen), 젤라틴 (gelatin), 키토산 (chitosan), 알지네이트 (alginate), 히알루론산 (hyaluronic acid), 덱스트란 (dextran), 실크 (silk), 셀룰로오스 (cellulose), 폴리하이드로옥시부티르산(poly 3-hydroxybutyrate, PHB), 폴리하이드로옥시발레르산(polyhydroxyvalerate, PHV) 및 폴리하이드로옥시부티르산-발레르산의 공중합체(poly hydroxybutyrate-co-valerate, PHBV), 폴리오르토에스테르 (polyorthoesters), 폴리비닐알콜(polyviniyalcohol, PVA), 폴리에틸렌글리콜(poly(ethyleneglycol), PEG), 폴리우레탄 (polyurethane), 폴리아크릴산 (polyacrylic acid), 폴리-N-이소프로필아크릴아마이드 (poly(N-isopropyl acrylamide), 폴리 (에틸렌옥사이드)-폴리(프로필렌옥사이드)-폴리(에틸렌옥사이드)공중합체 (poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) copolymer), 폴리디옥사논-b-카프로락톤 (poly(dioxanone-b-caprolactone)), 폴리-ε-(카프로락톤) (poly(ε-caprolactone), PCL), 폴리락트산 (poly(lactic acid), PLA), 폴리-L-락티드 (Poly-L-lactide, PLLA), 폴리-D-락티드 (Poly-D-lactide, PDLA), 폴리-D,L-락티드 (Poly-D,L-lactide, PDLLA), 폴리글리콜산 (poly(glycolic acid), PGA) 또는 폴리(락트산-co-글리콜산) (poly(lactic acid-co-glycolic acid), PLGA)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합물, 소수성 용매로 염화 메틸렌 (methylene chloride, dichloromethane, DCM), 1,4-다이옥산 (1,4-dioxane), 클로로포름 (chloroform), 아세톤 (acetone), 아니솔 (anisole), 에틸 아세트산 (ethyl acetate), 메틸 아세트산 (methyl acetate), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone), 헥사플루오로이소프로판올 (hexa fluoro isopropanol, HFIP), 테트라하이드로퓨란 (tetrahydrofuran, THF), 디메틸설폭사이드 (dimethylsulfoxide, DMSO), 2-피롤리돈 (2-pyrollidone), 구연산 트리에틸 (triethyl citrate), 트리플루오로아세트산 (trifluoro acetic acid, TFA), 디메틸포름아마이드 (dimethyl formamide, DMF), 유산 에틸(ethyl lactate), 프로필렌 카보네이트(propylene carbonate), 벤질 알코올(benzyl alcohol), 벤조산 벤질(benzyl benzoate), 미글리올810 (Miglyol810), 이소프로판올(isopropanol), 에탄올(ethanol), 아세토니트릴(acetonitrile) 또는 테트라글리콜(tetraglycol, TG)로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합 용매를 사용할 수 있으며, 바람직하게는 고분자로서 PLGA 및 용매로서 TG를 사용하여 제조한 PLGA-TG 용액을 의미한다.The term "polymeric material" is prepared by dissolving a hydrophobic polymer in a hydrophobic solvent, and in the present invention, a collagen, gelatin, chitosan, alginate, hyaluronic acid as a hydrophobic polymer. ), Dextran, silk, cellulose, poly 3-hydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and polyhydrooxybutyric acid-valeric acid Copolymers (poly hydroxybutyrate-co-valerate (PHBV), polyorthoesters, polyviniyalcohol (PVA), polyethylene glycol (poly (ethyleneglycol), PEG), polyurethane, polyacrylic acid), poly (N-isopropyl acrylamide), poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) copolymer (poly (ethyl eneoxide) -poly (propyleneoxide) -poly (ethyleneoxide) copolymer), polydioxanone-b-caprolactone (poly (dioxanone-b-caprolactone)), poly-ε- (caprolactone) (poly (ε-caprolactone) , PCL), poly (lactic acid, PLA), poly-L-lactide (PLLA), poly-D-lactide (PDLA), poly- D, L-lactide (PDLLA), polyglycolic acid (poly (glycolic acid), PGA) or poly (lactic acid-co-glycolic acid) (poly (lactic acid-co-glycolic acid) ), PLGA), one or more mixtures selected from the group consisting of methylene chloride (methylene chloride, dichloromethane, DCM), 1,4-dioxane (1,4-dioxane), chloroform, Acetone, anisole, ethyl acetate, methyl acetate, N-methyl-2-pyrrolidone, hexafluoroisopropanol (hexa fluoro isopropanol (HFIP), tetrahydrofuran (tetrahy drofuran (THF), dimethylsulfoxide (DMSO), 2-pyrollidone, triethyl citrate, trifluoro acetic acid (TFA), dimethylformamide formamide (DMF), ethyl lactate, propylene carbonate, benzyl alcohol, benzyl benzoate, miglyol 810 (Miglyol810), isopropanol, ethanol , One or two or more mixed solvents selected from the group consisting of acetonitrile or tetraglycol (TG) may be used. Preferably, PLGA- prepared using PLGA as a polymer and TG as a solvent. TG solution.
상기 소수성 고분자는 폴리락틱산-글리콜산 공중합체(polylactic acid-co-glycolic acid, PLGA)이고, 상기 소수성 용매는 테트라글리콜(tetraglycol, TG)일 수 있다. 본 발명에 따라 PLGA와 TG의 혼합 시 PLGA를 TG로 한번 녹인 이후에는 상온에서 용액 상태를 유지하므로 고분자 재료를 다시 녹이는 과정 없이 사용할 수 있는 장점이 있다.The hydrophobic polymer may be a polylactic acid-co-glycolic acid (PLGA), and the hydrophobic solvent may be tetraglycol (tetraglycol, TG). According to the present invention, since the PLGA is once dissolved in TG when the PLGA and TG are mixed, the solution is maintained at room temperature and thus can be used without re-melting the polymer material.
상기 고분자와 용매의 중량/부피%(w/v%)는 용매 1L에 녹는 고분자의 무게(g)을 의미하며, 중량/부피%(w/v%)는 10 내지 40%, 보다 바람직하게는 15 내지 25%, 가장 최적으로는 20%일 수 있다. 만약 상기 범위보다 적은 경우, 과도한 용매 사용으로 인하여 기공도가 크게 증가하는 문제가 있고, 그 반대인 경우 충분한 기공 형성이 어려울 수 있다. The weight / volume% (w / v%) of the polymer and the solvent refers to the weight (g) of the polymer dissolved in 1L of solvent, the weight / volume% (w / v%) is 10 to 40%, more preferably 15-25%, most optimally 20%. If less than the above range, there is a problem that the porosity is greatly increased due to the use of excessive solvent, and vice versa, sufficient pore formation may be difficult.
상기 가압수단은, (i) 가압탱크에 연결되어 가압탱크 내부에 고압을 인가하는 가압펌프; (ii) 일측이 상기 가압펌프와 연결되며, 내부가 고압으로 유지되는 가압탱크; (iii) 상기 가압탱크의 타측과 챔버 내부를 연결하여 용기내부에 고압을 인가하는 분배가압제어장치; 및 (iv) 상기 분배가압제어장치와 연결되며, 내부에 상기 용기 및 주입수단을 포함하는 가압 챔버를 포함할 수 있으며, 상기 (c) 단계는 (i) 가압펌프를 이용하여 가압 탱크 내부에 고압을 형성하는 단계; (ii) 분배 가압 제어 장치의 에어용 밸브를 이용하여 가압탱크 내부의 공기를 상기 가압 챔버 내부로 이동시켜 챔버 내부를 가압하며, 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계; 및 (iii) 상기 유리섬유 사이로 상기 고분자 재료의 침투가 완료된 이후 가압 해제용 밸브를 이용하여 챔버 내부를 상압으로 조절하는 단계를 포함할 수 있다. 기존의 가압 펌프를 이용하여 챔버 내부를 가압하는 경우, 일정한 속도로 가압하기 어려우며, 도관과 연결된 부위의 압력이 도관과 먼 부위의 압력보다 빨리 높아지므로, 다공성 신경도관에 균일하게 고분자 재료를 주입하기 어렵다. 특히 본 발명은 압력을 이용하여 유리섬유 사이로 고분자 재료를 침투시키고 있으므로, 일정한 압력이 형성되지 않는 경우 신경도관에 불량이 발생할 가능성이 매우 높아진다. 따라서 가압탱크(400)를 이용하여 일정한 속도로 가압되도록 함과 더불어, 분배 압력 제어 장치(100)를 이용하여 챔버 내부를 가압하는 것으로 챔버 전체가 일정한 압력을 가지도록 하는 것이 바람직하다. 이때 상기 분배 압력 제어 장치(100)는 1~100개의 에어용 밸브(112), 레귤레이터(111) 및 1~100개의 압력 해제용 밸브(113)를 포함하는 2~100개의 압력 제어 수단(110)을 포함하여 챔버 내부의 위치에 관계없이 일정한 압력을 가지도록 하는 것이 더욱 바람직하다. 아울러 상기 신경도관의 생산을 자동화하기 위하여 상기 가압펌프, 가압탱크, 챔버 및 분배 압력 제어 장치에는 각각 압력센서 및 제어수단을 설치하며, 각 장치를 연결하는 도관에는 밸브를 설치하여 챔버 내부가 자동적으로 일정압력으로 조절되도록 하는 것이 바람직하다.The pressurizing means includes: (i) a pressurizing pump connected to the pressurizing tank to apply high pressure to the pressurizing tank; (ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside; (iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And (iv) a pressure chamber connected to the distribution pressure control device, the pressure chamber including the container and the injection means therein, wherein step (c) includes (i) a high pressure inside the pressure tank using a pressure pump. Forming a; (ii) pressurizing the inside of the chamber by moving air in the pressurizing tank into the pressurizing chamber by using an air valve of a distribution pressurizing control device, and penetrating the polymer material between the glass fibers; And (iii) adjusting the inside of the chamber to atmospheric pressure by using a pressure release valve after the penetration of the polymer material between the glass fibers is completed. When pressurizing the inside of the chamber by using a conventional pressure pump, it is difficult to pressurize at a constant speed, and since the pressure in the portion connected to the conduit increases faster than the pressure in the region far from the conduit, the polymer material is uniformly injected into the porous neural conduit. It is difficult. In particular, since the present invention penetrates the polymer material between the glass fibers by using pressure, the possibility of a defect in the nerve conduit becomes very high when a constant pressure is not formed. Therefore, it is preferable to pressurize at a constant speed using the pressurizing tank 400 and pressurize the inside of the chamber using the distribution pressure control device 100 so that the entire chamber has a constant pressure. In this case, the distribution pressure control device 100 includes 2 to 100 pressure control means 110 including 1 to 100 air valves 112, a regulator 111, and 1 to 100 pressure release valves 113. It is more preferable to have a constant pressure regardless of the position inside the chamber, including. In addition, in order to automate the production of the neural conduit, the pressure pump, the pressure tank, the chamber, and the distribution pressure control device are each provided with a pressure sensor and a control means, and a conduit connecting each device is provided with a valve to automatically inside the chamber. It is desirable to be adjusted to a constant pressure.
또한 상기 가압시 상기 유리섬유가 가압의 압력에 의하여 움직일 수 있으므로 고정수단을 이용하여 상기 유리섬유를 고정하는 것이 바람직하다. 상기 고정수단은 상기 유리섬유를 고정할 수 있는 수단이라면 어떠한 수단을 사용하여도 무방하지만, 섬유, 고분자 또는 금속 재질을 포함하는 와이어, 탄성체 또는 밴드일 수 있다. 또한 상기 고정수단은 상기 용기에 고정되어 가압시 유리섬유가 위치를 이탈하지 않도록 하는 것이 더욱 바람직하다. 이때 상기 고정수단은 용기에 설치된 후크, 돌기 또는 돌출부를 이용하여 용기와 고정될 수 있다. 아울러 상기 고정수단은 상기 유리섬유를 하나씩 고정하는 것도 가능하지만 2~1000개의 유리섬유 다발을 감싸서 고정하는 것도 가능하며, 상기와 같은 유리섬유 다발 2~100개를 모아서 다시 고정하는 것도 가능하다.In addition, the glass fiber may be moved by the pressure of the pressure during the pressing, it is preferable to fix the glass fiber using a fixing means. The fixing means may be any means as long as it can fix the glass fiber, but may be a wire, an elastic body or a band including a fiber, a polymer or a metal material. In addition, the fixing means is more preferably fixed to the container so that the glass fiber does not leave the position when pressed. In this case, the fixing means may be fixed to the container by using hooks, protrusions or protrusions installed on the container. In addition, the fixing means may be fixed to the glass fibers one by one, but also can be fixed by wrapping the 2 to 1000 glass fiber bundles, it is also possible to collect and fix the 2 to 100 glass fiber bundles as described above.
상기 하부 채널은 상부 채널보다 작은 직경을 가지며, 이로써 용기에 주입되는 유리섬유가 용기 내에서 흘러나가지 않고 채워진 상태를 유지할 수 있다.The lower channel has a smaller diameter than the upper channel, so that the glass fibers injected into the container can remain filled without flowing in the container.
상기 용기는 불연속적인 각도로 경사진 것일 수 있으며, 보다 구체적으로, 상기 용기는 불연속적인 각도로 경사진 상부 및 하부 채널을 형성한 것일 수 있으나, 이에 한정되지 않는다. The container may be inclined at a discontinuous angle, and more specifically, the container may be formed of upper and lower channels inclined at a discontinuous angle, but is not limited thereto.
상기 불연속적인 각도로 경사진 용기 및 이의 상하부 채널에 의하여, 삽입되는 유리섬유의 간격이 일정하므로 유리섬유가 녹은 공간에 형성되는 미세채널의 간격 또한 일정하다. 즉, 본 발명에 따라 제조되는 다공성 신경도관은 일정한 간격의 미세채널을 형성하여, 동일한 방향으로의 신경 재생을 유도할 수 있다.By the container inclined at the discontinuous angle and the upper and lower channels thereof, the spacing of the glass fibers to be inserted is constant, so the spacing of the microchannels formed in the space where the glass fibers are melted is also constant. That is, the porous neural conduit manufactured according to the present invention forms microchannels at regular intervals, thereby inducing neural regeneration in the same direction.
상기 용기는 유리관의 중앙 부위를 가열하여 병목 지점을 만듦으로써 상부 채널 및 하부 채널을 형성하는 것일 수 있으나, 이에 한정되지 않는다.The container may be to form a bottleneck point by heating a central portion of the glass tube to form an upper channel and a lower channel, but is not limited thereto.
상기 고분자 재료는 상온에서 용액 상태인 것일 수 있다.The polymer material may be in a solution state at room temperature.
상기 유리섬유를 이용한 다공성 신경도관 제조방법은, 상기 유리섬유를 녹이는 단계 후 형성된 신경도관을 액체질소로 냉각시키는 단계; 및 상기 냉각된 신경도관을 절단하여 성형하는 단계를 더 포함할 수 있다.Porous neural conduit manufacturing method using the glass fiber, cooling the neural conduit formed after the step of melting the glass fiber with liquid nitrogen; And cutting the cooled neural conduit to form.
상기 용기는 상기 고분자 용액의 침투가 육안으로 확인될 수 있는 투명 재질로 이루어진 것일 수 있으며, 바람직하게는 유리로 이루어진 것일 수 있으나, 이에 한정되지 않는다.The container may be made of a transparent material in which the penetration of the polymer solution can be visually confirmed, but may be preferably made of glass, but is not limited thereto.
상기 가압은 복수 회 반복하여 진행되는 것일 수 있으며, 이에 따라 균일한 밀도의 신경도관을 제조할 수 있다. The pressing may be performed repeatedly a plurality of times, thereby producing a neural conduit of uniform density.
본 발명은 본 발명의 제조방법에 따라 제조된 다공성 신경도관을 제공한다.The present invention provides a porous neural conduit prepared according to the method of the present invention.
상기 신경도관은 유리섬유가 용기의 축방향으로 삽입됨에 따라 신경도관의 축방향으로 미세채널이 형성된 것일 수 있다. 보다 구체적으로, 유리섬유를 용기(유리관)의 상부 채널 내에 축방향으로 삽입한 후, 용기 내로 고분자 재료(PLGA-TG 용액)를 주입하고 압력을 인가하여 유리섬유 내로 침투시키고, 용기로부터 분리한 뒤 물(DW)에 침지시킴으로써 유리섬유를 모두 녹여내어, 유리섬유가 녹은 공간에 소수성 고분자(PLGA)로 이루어지는 미세채널을 형성하였다. 즉, 유리섬유를 용기의 축방향으로 삽입한 후 유리섬유를 녹임으로써, 유리섬유가 녹은 공간에 축방향으로 미세채널이 형성된 신경도관을 제조하였다.The neural conduit may be a microchannel formed in the axial direction of the nerve conduit as the glass fiber is inserted in the axial direction of the container. More specifically, the glass fiber is axially inserted into the upper channel of the container (glass tube), and then the polymer material (PLGA-TG solution) is injected into the container and pressure is applied to infiltrate the glass fiber and separated from the container. The glass fibers were melted by immersion in water (DW) to form microchannels made of hydrophobic polymer (PLGA) in the space where the glass fibers were melted. That is, by inserting the glass fibers in the axial direction of the container to melt the glass fibers, a neural conduit was formed in which the microchannels were formed in the axial direction in the space where the glass fibers were melted.
용어 "미세채널"이란, 유리섬유가 녹은 공간에 형성되는 10 ~ 20μm 크기의 빈 공간을 의미한다.The term "microchannel" refers to an empty space of 10 to 20 μm size formed in the space where the glass fibers are melted.
상기 신경도관은 용매가 물에 용해됨에 따라 신경도관에 미세기공이 형성된 것일 수 있다. 보다 구체적으로, 고분자 재료(PLGA-TG 용액)가 침투된 유리섬유를 물(DW)에 침지하는 과정에서 TG가 물(DW)과 반응(용해)하여 신경도관으로부터 빠져나오면서 미세채널 내부에 미세기공을 형성하였다. 본 명세서에서의 용해는 TG가 고분자 재료로부터 분리되는 것을 의미한다.The neural conduit may be micropores formed in the neural conduit as the solvent is dissolved in water. More specifically, TG reacts (dissolves) with water (DW) in the process of immersing glass fiber infiltrated with polymer material (PLGA-TG solution) in water (DW) and exits from the neural conduit to form micropores inside the microchannel. Formed. Dissolution in this specification means that TG is separated from the polymeric material.
용어 "미세기공"이란, 용매가 DW에 용해하여 신경도관으로부터 빠져나오면서 미세채널에 형성하는 미세한 공극을 의미한다. 본 발명에 따라 제조된 신경도관은 생체 내 적용 시 미세채널에 의해 체액 교환이 용이하다. 신경도관으로부터 빠져나온 용매는 DW보다 밀도가 높아(1.09g/ml) DW 아래쪽에 아지랑이 모양으로 가라앉았다(도 7).The term “microporous pores” refers to the fine pores that form in the microchannels as the solvent dissolves in the DW and exits the neural conduit. The neural conduit prepared according to the present invention facilitates fluid exchange by microchannels when applied in vivo. The solvent exiting the neural conduit was denser than the DW (1.09 g / ml) and settled in a haze at the bottom of the DW (FIG. 7).
본 발명의 실시예에 따라 제조된 다공성 신경도관은 다양한 직경과 길이로 제작할 수 있으며, 신경에 대한 in vitroin vivo 연구에 유용하게 사용될 수 있도록 사용 목적 및 용도에 따라 직경과 길이를 자유롭게 변경할 수 있다.Porous neural conduit prepared according to an embodiment of the present invention can be produced in a variety of diameters and lengths, and can be freely changed in diameter and length according to the purpose and purpose of use to be useful in in vitro and in vivo studies of the nerves have.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예 1> 유리섬유를 이용한 다공성 신경도관의 제조 1Example 1 Preparation of Porous Neural Conduits Using Glass Fibers
소수성 고분자인 폴리락틱산-글리콜산 공중합체(PLGA)(락틱산 대 글리콜산의 mol %, 85:15)와 소수성 용매인 테트라글리콜(TG)(밀도: 1.09g/ml, Sigma-Aldrich, 미국)을 중량 대 용량(w/v) 비율이 20%(w/v)가 되도록 혼합한 후 60℃에서 18시간 동안 녹여 20%(w/v) PLGA-TG 용액(고분자 재료)을 준비하였다. Hydrophobic polymer polylactic acid-glycolic acid copolymer (PLGA) (mol% of lactic acid to glycolic acid, 85:15) and hydrophobic solvent tetraglycol (TG) (density: 1.09 g / ml, Sigma-Aldrich, USA ) Was mixed so that the weight-to-volume (w / v) ratio was 20% (w / v) and then dissolved at 60 ° C. for 18 hours to prepare a 20% (w / v) PLGA-TG solution (polymeric material).
내경 1.6mm, 길이 13cm인 모세 유리관의 중앙 부위를 가열하여 병목 지점을 만들어, 불연속적인 각도로 경사진 상부 및 하부 채널을 형성하였다. 이때, 하부 채널은 상부 채널보다 작은 직경을 형성하도록 제작하였다. 이후, 직경이 10 ~ 20 μm인 수용성 유리섬유(50P2O5-20CaO-30Na2O in mol % (1100℃, 800rpm)) 7000 ~ 8500 가닥을 5 ~ 6cm 단위로 잘라 유리관의 상부 채널 내에 축방향으로 빽빽하게 삽입하였다(도 1A 및 도 2A). The central portion of the capillary tube 1.6 mm in inner diameter and 13 cm in length was heated to form a bottleneck, forming upper and lower channels that were inclined at discrete angles. At this time, the lower channel was manufactured to form a smaller diameter than the upper channel. Thereafter, water soluble glass fibers (50P 2 O 5 -20CaO-30Na 2 O in mol% (1100 ° C, 800rpm)) having a diameter of 10 to 20 μm were cut in 5 to 6 cm units to form a shaft in the upper channel of the glass tube. In the right direction (FIGS. 1A and 2A).
유리섬유가 삽입된 유리관의 상부 채널에, 내경 0.8mm, 길이 15cm인 실리콘 튜브에 2-방향 밸브가 부착된 루어락(Luer lock) 주사기를 연결하여 제조한 압력 장치를 끼워 준비하였다(도 1B 및 도 1C).A pressure device prepared by connecting a Luer lock syringe with a 2-way valve attached to a silicon tube having an inner diameter of 0.8 mm and a length of 15 cm was inserted into an upper channel of a glass tube into which glass fibers were inserted (FIG. 1B and 1C).
상온에서 유리관의 하부 채널이 20%(w/v) PLGA-TG 용액에 잠기도록 한 후, 주사기 내부에 PLGA-TG 용액을 주입한 다음, 유리관 내부에 반복적으로 압력을 가해 20%(w/v) PLGA-TG 용액이 유리섬유 사이의 빈틈에 완전히 침투하도록 하였다(도 1D 및 도 2C).Allow the lower channel of the glass tube to immerse in 20% (w / v) PLGA-TG solution at room temperature, inject the PLGA-TG solution into the syringe, and then repeatedly pressurize the glass tube to 20% (w / v). ) The PLGA-TG solution was allowed to fully penetrate the gaps between the glass fibers (FIGS. 1D and 2C).
본 실시예에서는 상술한 바와 같이 불연속적인 각도로 상부채널 대비 하부채널의 너비를 좁혔으며, 이를 도 3에 나타내었다. 각도가 연속적일 경우(도 4), 유리섬유 사이의 간격이 점차 좁아지게 되어 유리섬유 간에 일정한 간격을 유지하기 어려워지는 문제가 있다. 유리섬유의 간격이 일정하지 않은 경우, 유리섬유에 의하여 형성되는 신경 재생 방향이 채널에 따라 달라지므로, 동일한 방향으로의 신경 재생이 어려워지는 문제점이 발생한다.In the present embodiment, as described above, the width of the lower channel is narrowed compared to the upper channel at a discontinuous angle, which is shown in FIG. 3. If the angle is continuous (Fig. 4), the gap between the glass fibers is gradually narrowed, there is a problem that it is difficult to maintain a constant gap between the glass fibers. When the spacing of the glass fibers is not constant, the nerve regeneration direction formed by the glass fibers varies depending on the channel, and thus a problem occurs that nerve regeneration in the same direction becomes difficult.
PLGA-TG 용액이 침투된 유리섬유를 직경 1.5mm 길이 15cm의 와이어(wire)를 이용하여 유리관으로부터 분리한 즉시 10~20℃의 초순수(distilled water, DW)에 24시간 이상 완전히 침지시켜(도 2D), 유리섬유를 모두 용해하고 유리섬유가 녹은 공간에 PLGA로 이루어지는 10 ~ 20 μm 크기의 미세채널(미세채널의 직경: 16.54 ± 3.6 μm)이 약 7,000 ~ 8,500 개(미세채널의 수: 7,777 ± 716.2 개) 형성되도록 하였다(도 2E 및 도 5). 10~20℃의 DW 내에서 유리섬유가 용해되는 동시에, PLGA가 경화되어 미세채널을 형성하였다. 또한, PLGA-TG 용액이 침투된 유리섬유를 DW에 침지하는 과정에서 TG가 DW와 반응(DW에 용해)하여 미세채널로부터 빠져나오면서 미세채널 내부에 미세기공을 형성하였다(도 5, 도 6 및 도 7). 신경도관으로부터 빠져나온 TG는 DW보다 밀도가 높아 DW 아래쪽에 아지랑이 모양으로 가라앉았다(도 8).The glass fiber infiltrated with PLGA-TG solution was separated from the glass tube using a wire of 1.5 mm in diameter and 15 cm in diameter, and immediately immersed in 10-20 ° C. of distilled water (DW) for at least 24 hours (FIG. 2D). ), Approximately 7,000 to 8,500 (number of microchannels: 7,777 ±) of 10 to 20 μm microchannels (16.54 ± 3.6 μm in diameter) consisting of PLGA in the space where all the glass fibers are dissolved and the glass fibers are melted. 716.2 pieces) (FIGS. 2E and 5). At the same time as the glass fibers were dissolved in the DW of 10 ~ 20 ℃, PLGA was cured to form a microchannel. In addition, in the process of immersing the glass fiber in which the PLGA-TG solution penetrated in the DW, TG reacts with the DW (dissolves in DW) to escape from the microchannel, thereby forming micropores inside the microchannel (FIGS. 5, 6 and 7). TG released from the neural conduit was denser than the DW and sunk in the lower part of the DW (Fig. 8).
DW 처리를 통해 유리섬유와 TG가 제거되고 PLGA로 이루어지는 다공성 미세채널, 즉 제조된 신경도관을 액체 질소에 약 30초간 얼린 후 사용 목적에 맞는 크기로 절단하고 성형하였다(도 9).The glass fiber and TG were removed through the DW treatment, and the porous microchannel made of PLGA, that is, the prepared neural conduit was frozen in liquid nitrogen for about 30 seconds, and cut and shaped to a size suitable for use (FIG. 9).
<실시예 2> 유리섬유를 이용한 다공성 신경도관의 제조 2Example 2 Preparation of Porous Neural Conduit 2 Using Glass Fibers
상기 실시예 1에서는 주사기를 이용하여 압력을 인가하였지만, 상기 주사기 대신 가압챔버를 이용한 자동 압력 조절방식을 이용하여 다공성 신경도관을 제조하였다. 실시예 1과 동일한 채널을 준비한 다음, 상부 채널을 가압 챔버에 연결하였다. 각 도관에 연결된 밸브(112, 113)를 OFF가 되도록 조절한 다음, 가압펌프(200)를 작동하여 가압탱크 내부(400)를 가압하여 준비하였다. 이후 분배 압력 제어 장치(100)에 연결된 3개의 압력제어 수단(110)을 통하여 쳄버 내부를 일정 압력으로 가압하였으며, 가압이 완료된 이후 각 압력 해제 밸브(113)를 이용하여 챔버내부를 상압으로 조절하였다. 이후 절차는 실시예1과 동일하게 수행하였다.In Example 1, a pressure was applied using a syringe, but a porous neural conduit was manufactured using an automatic pressure control method using a pressure chamber instead of the syringe. After preparing the same channel as Example 1, the upper channel was connected to the pressurization chamber. The valves 112 and 113 connected to each conduit were adjusted to be OFF, and then the pressure pump 200 was operated to pressurize the pressure tank 400 to prepare. Afterwards, the chamber was pressurized to a predetermined pressure through the three pressure control means 110 connected to the distribution pressure control device 100, and after the pressurization was completed, the inside of the chamber was adjusted to the normal pressure by using each pressure release valve 113. . Thereafter, the procedure was performed in the same manner as in Example 1.
<실시예 3> 다공성 신경도관의 내부 미세구조 확인Example 3 Checking the Internal Microstructure of the Porous Neural Conduit
유리섬유를 물에 용해하여 실시예 1에서 제조한 신경도관 내부의 미세채널에 형성된 미세구조는 SEM(scanning electron microscopy)를 이용하여 확인하였다(도 5, 도 6 및 도 7). The microstructures formed in the microchannels inside the neural catheter prepared in Example 1 by dissolving the glass fibers in water were confirmed by scanning electron microscopy (SEM) (FIGS. 5, 6 and 7).
도 5는 신경도관의 횡단면이고, 도 6은 신경도관의 횡단면에서 미세구조를 확대한 사진이며, 도 7은 신경도관의 종단면으로 신경도관 내부의 미세채널이 원위부부터 근위부까지 연속되어 있는 것을 나타내며, 미세채널 내부의 미세구조에서 미세기공이 형성된 것을 확인하였다.5 is a cross-sectional view of the neural conduit, FIG. 6 is a photograph showing an enlarged microstructure in the cross-sectional view of the neural conduit, and FIG. 7 is a longitudinal cross-sectional view of the neural conduit, in which the microchannels inside the neural conduit are continuous from the distal to the proximal end. It was confirmed that micropores were formed in the microstructure inside the microchannel.
다만 실시예 1의 방법으로 10회 반복하여 신경도관을 제조한 경우, 각 신경도관 내부 미세채널의 크기와 분포가 일정하지 않은 것을 확인할 수 있었으며, 이에 반하여 실시예 2의 방법으로 10회 반복하여 신경도관을 제조한 경우 일정한 크기와 분포를 가지는 미세채널을 포함하는 신경도관이 생산 가능한 것을 확인할 수 있었다. 이는 실시예 1의 방법으로 가압하는 경우 사람의 감각을 이용하여 주사기를 조작하므로 일정한 압력이 가해지지 않는 것으로 판단되며, 밸브와 가압챔버를 이용한 실시예 2에서는 일정한 크기와 분포를 가지는 미세채널이 신경도관 내에 분포하고 있음을 확인하였다.However, when the neural conduits were manufactured by repeating the method 10 times, the size and distribution of the microchannels inside the neural conduits were not constant. On the contrary, the neural conduits were repeated 10 times by the method of Example 2. When the conduit was manufactured, it was confirmed that neural conduits including microchannels having a constant size and distribution can be produced. This is because it is determined that a constant pressure is not applied because the syringe is operated using a human sense when pressurized by the method of Example 1, and in Example 2 using a valve and a pressurized chamber, the microchannel having a constant size and distribution is neural. It was confirmed that it is distributed in the conduit.
본 실시예에 따라 제조된 신경도관은 신경에 대한 in vitroin vivo 연구에 유용하게 사용될 수 있도록 사용 목적 및 용도에 따라 다양한 직경과 길이로 제작할 수 있다.The neural conduit prepared according to the present embodiment may be manufactured in various diameters and lengths according to the purpose and purpose of use so as to be useful for in vitro and in vivo studies of the nerve.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

  1. (a) 상부 채널 및 하부 채널을 가지며 복수 개의 유리섬유가 삽입되는 용기;(a) a container having an upper channel and a lower channel, into which a plurality of glass fibers are inserted;
    (b) 상기 용기내로 고분자 재료를 주입하는 고분자 재료 주입수단;(b) polymer material injection means for injecting polymer material into the container;
    (c) 상기 용기내부에 고압을 인가하는 가압수단;(c) pressurizing means for applying high pressure in the vessel;
    을 포함하는 유리섬유를 이용한 다공성 신경도관 제조장치에 있어서,In the porous nerve conduit manufacturing apparatus using a glass fiber comprising a,
    상기 가압수단은,The pressing means,
    (i) 가압탱크에 연결되어 가압탱크 내부에 고압을 인가하는 가압펌프;(i) a pressurized pump connected to the pressurizing tank to apply high pressure to the pressurizing tank;
    (ii) 일측이 상기 가압펌프와 연결되며, 내부가 고압으로 유지되는 가압탱크;(ii) one side is connected to the pressure pump, the pressure tank is maintained at a high pressure inside;
    (iii) 상기 가압탱크의 타측과 챔버 내부를 연결하여 용기내부에 고압을 인가하는 분배가압제어장치; 및(iii) a distribution pressure control device for connecting the other side of the pressure tank to the inside of the chamber and applying high pressure to the inside of the container; And
    (iv) 상기 분배가압제어장치와 연결되며, 내부에 상기 용기 및 주입수단을 포함하는 가압 챔버;(iv) a pressurization chamber connected to said dispensing pressure control device and including said container and injection means therein;
    를 포함하는 다공성 신경도관 제조장치.Porous neural conduit manufacturing apparatus comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 분배 가압 제어 장치는 1~100개의 에어용 밸브, 레귤레이터 및 1~100개의 가압 해제용 밸브를 포함하는 2~100개의 가압 제어 수단을 포함하는 것을 특징으로 하는 다공성 신경도관의 제조장치.The dispensing pressure control device is a device for producing a porous neural conduit, characterized in that it comprises 2 to 100 pressure control means including 1 to 100 air valves, regulators and 1 to 100 pressure release valves.
  3. 제1항에 있어서, The method of claim 1,
    상기 하부 채널은 상부 채널보다 작은 직경을 가지며, 상기 용기는 불연속적인 각도로 경사진 것을 특징으로 하는 유리섬유를 이용한 다공성 신경도관 제조장치.The lower channel has a smaller diameter than the upper channel, the container is a porous neural conduit manufacturing apparatus using a glass fiber, characterized in that inclined at a discontinuous angle.
  4. 제1항에 있어서, The method of claim 1,
    상기 용기는 상기 고분자 용액의 침투가 육안으로 확인될 수 있는 투명 재질로 이루어진 것을 특징으로 하는 유리섬유를 이용한 다공성 신경도관 제조장치.The container is a porous neural conduit manufacturing apparatus using a glass fiber, characterized in that made of a transparent material that can be visually confirmed the penetration of the polymer solution.
  5. (a) 상부 및 하부 채널을 갖는 용기 내에 복수 개의 유리섬유를 삽입하는 단계;(a) inserting a plurality of glass fibers into a container having upper and lower channels;
    (b) 상기 복수 개의 유리섬유가 삽입된 용기 내로 고분자 재료를 주입하는 단계;(b) injecting a polymer material into the container into which the plurality of glass fibers are inserted;
    (c) 상기 채널로부터 고압을 인가하여 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계;(c) applying a high pressure from the channel to infiltrate the polymer material between the glass fibers;
    (d) 상기 용기로부터 상기 유리섬유를 분리시키는 단계; 및 (d) separating the glass fibers from the container; And
    (e) 상기 분리된 유리섬유를 물에 침지시켜 상기 유리섬유를 용해하는 단계;(e) immersing the separated glass fibers in water to dissolve the glass fibers;
    를 포함하며, Including;
    상기 (c) 단계는;Step (c) is;
    (i) 가압펌프를 이용하여 가압 탱크 내부에 고압을 형성하는 단계;(i) forming a high pressure inside the pressurized tank using a pressurized pump;
    (ii) 분배 가압 제어 장치의 에어용 밸브를 이용하여 가압탱크 내부의 공기를 상기 가압 챔버 내부로 이동시켜 챔버 내부를 가압하며, 상기 유리섬유 사이로 상기 고분자 재료를 침투시키는 단계; 및(ii) pressurizing the inside of the chamber by moving air in the pressurizing tank into the pressurizing chamber by using an air valve of a distribution pressurizing control device, and penetrating the polymer material between the glass fibers; And
    (iii) 상기 유리섬유 사이로 상기 고분자 재료의 침투가 완료된 이후 가압 해제용 밸브를 이용하여 챔버 내부를 상압으로 조절하는 단계;(iii) adjusting the inside of the chamber to atmospheric pressure using a pressure release valve after the penetration of the polymer material between the glass fibers is completed;
    를 포함하는 것을 특징으로 하는 제1항 내지 제4항 중 어느 한 항의 신경도관 제조장치를 이용한 다공성 신경도관 제조방법.Porous neural conduit manufacturing method using the neural conduit manufacturing apparatus of any one of claims 1 to 4, characterized in that it comprises a.
  6. 제5항에 있어서,The method of claim 5,
    상기 고분자 재료는 The polymer material is
    고분자로서 콜라겐 (collagen), 젤라틴 (gelatin), 키토산 (chitosan), 알지네이트 (alginate), 히알루론산 (hyaluronic acid), 덱스트란 (dextran), 실크 (silk), 셀룰로오스 (cellulose), 폴리하이드로옥시부티르산(poly 3-hydroxybutyrate, PHB), 폴리하이드로옥시발레르산(polyhydroxyvalerate, PHV) 및 폴리하이드로옥시부티르산-발레르산의 공중합체(poly hydroxybutyrate-co-valerate, PHBV), 폴리오르토에스테르 (polyorthoesters), 폴리비닐알콜(polyviniyalcohol, PVA), 폴리에틸렌글리콜(poly(ethyleneglycol), PEG), 폴리우레탄 (polyurethane), 폴리아크릴산 (polyacrylic acid), 폴리-N-이소프로필아크릴아마이드 (poly(N-isopropyl acrylamide), 폴리 (에틸렌옥사이드)-폴리(프로필렌옥사이드)-폴리(에틸렌옥사이드)공중합체 (poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) copolymer), 폴리디옥사논-b-카프로락톤 (poly(dioxanone-b-caprolactone)), 폴리-ε-(카프로락톤) (poly(ε-caprolactone), PCL), 폴리락트산 (poly(lactic acid), PLA), 폴리-L-락티드 (Poly-L-lactide, PLLA), 폴리-D-락티드 (Poly-D-lactide, PDLA), 폴리-D,L-락티드 (Poly-D,L-lactide, PDLLA), 폴리글리콜산 (poly(glycolic acid), PGA) 또는 폴리(락트산-co-글리콜산) (poly(lactic acid-co-glycolic acid), PLGA)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합물; 및 As a polymer, collagen, gelatin, chitosan, alginate, hyaluronic acid, dextran, silk, cellulose, polyhydrooxybutyric acid poly 3-hydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and copolymer of polyhydrooxybutyrate-valeric acid (PHBV), polyorthoesters, polyvinyl alcohol (polyviniyalcohol, PVA), polyethylene (poly (ethyleneglycol), PEG), polyurethane, polyacrylic acid, poly-N-isopropyl acrylamide, poly (ethylene Oxide) -poly (propylene oxide) -poly (ethylene oxide) copolymer (poly (ethyleneoxide) -poly (propyleneoxide) -poly (ethyleneoxide) copolymer, polydioxanone-b-caprolactone (poly (dioxanone-b- caprolactone)), Paul Li-ε- (caprolactone) (poly (ε-caprolactone), PCL), poly (lactic acid, PLA), poly-L-lactide (PLLA), poly-D Poly-D-lactide (PDLA), Poly-D, L-lactide (PDLLA), polyglycolic acid (PGA) or poly (lactic acid- co-glycolic acid) (poly (lactic acid-co-glycolic acid), PLGA) one or two or more mixtures selected from the group consisting of; and
    용매로서 염화 메틸렌 (methylene chloride, dichloromethane, DCM), 1,4-다이옥산 (1,4-dioxane), 클로로포름 (chloroform), 아세톤 (acetone), 아니솔 (anisole), 에틸 아세트산 (ethyl acetate), 메틸 아세트산 (methyl acetate), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone), 헥사플루오로이소프로판올 (hexa fluoro isopropanol, HFIP), 테트라하이드로퓨란 (tetrahydrofuran, THF), 디메틸설폭사이드 (dimethylsulfoxide, DMSO), 2-피롤리돈 (2-pyrollidone), 구연산 트리에틸 (triethyl citrate), 트리플루오로아세트산 (trifluoro acetic acid, TFA), 디메틸포름아마이드 (dimethyl formamide, DMF), 유산 에틸(ethyl lactate), 프로필렌 카보네이트(propylene carbonate), 벤질 알코올(benzyl alcohol), 벤조산 벤질(benzyl benzoate), 미글리올810 (Miglyol810), 이소프로판올(isopropanol), 에탄올(ethanol), 아세토니트릴(acetonitrile) 또는 테트라글리콜(tetraglycol, TG)로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합 용매;Methylene chloride, dichloromethane, DCM, 1,4-dioxane, chloroform, acetone, anisole, ethyl acetate, methyl Acetic acid (methyl acetate), N-methyl-2-pyrrolidone, hexa fluoro isopropanol (HFIP), tetrahydrofuran (THF), dimethyl sulfoxide ( dimethylsulfoxide (DMSO), 2-pyrollidone, triethyl citrate, trifluoro acetic acid (TFA), dimethyl formamide (DMF), ethyl lactate lactate, propylene carbonate, benzyl alcohol, benzyl benzoate, benzyl benzoate, miglyol810, isopropanol, ethanol, acetonitrile or tetraglycol (tetraglycol, TG) One or two or more mixed solvents selected from;
    을 포함하는 것을 특징으로 하는 다공성 신경도관의 제조방법.Method for producing a porous neural conduit comprising a.
  7. 제6항에 있어서,The method of claim 6,
    상기 고분자와 용매의 중량/부피%(w/v%)는 10 내지 40%인 것을 특징으로 하는 다공성 신경도관 제조방법.Weight / volume% (w / v%) of the polymer and the solvent is a porous neural conduit manufacturing method, characterized in that 10 to 40%.
  8. 제6항에 있어서,The method of claim 6,
    상기 용매는 상기 물에 침지시키는 단계에서 상기 물과 상분리되어 고분자로부터 분리됨으로써 상기 고분자에 다공이 형성되는 것을 특징으로 하는 다공성 신경도관의 제조방법.The solvent is a method of manufacturing a porous neural conduit, characterized in that the pores are formed in the polymer by being separated from the polymer by phase separation from the water in the step of immersing in the water.
  9. 제5항에 있어서, The method of claim 5,
    상기 고분자 재료는 상온에서 용액 상태인 것을 특징으로 하는 유리섬유를 이용한 다공성 신경도관 제조방법.The polymer material is a porous neural conduit manufacturing method using a glass fiber, characterized in that the solution state at room temperature.
  10. 제5항에 있어서, The method of claim 5,
    상기 유리섬유를 이용한 다공성 신경도관 제조방법은, Porous neural conduit manufacturing method using the glass fiber,
    상기 유리섬유를 용해하는 단계 후 형성된 신경도관을 액체질소로 냉각시키는 단계; 및 Cooling the neural conduit formed after dissolving the glass fibers with liquid nitrogen; And
    상기 냉각된 신경도관을 절단하여 성형하는 단계를 더 포함하는 것을 특징으로 하는 유리섬유를 이용한 다공성 신경도관 제조방법.Porous neural conduit manufacturing method using a glass fiber, characterized in that it further comprises the step of forming the cooled neural conduit.
  11. 제5항에 있어서, The method of claim 5,
    상기 가압은 복수 회 반복하여 진행되는 것을 특징으로 하는 유리섬유를 이용한 다공성 신경도관 제조방법.The pressurization is a porous neural conduit manufacturing method using a glass fiber, characterized in that the process is repeated a plurality of times.
  12. 제5항에 따른 방법에 의하여 제조된 다공성 신경도관. Porous neural conduit prepared by the method according to claim 5.
  13. 제12항에 있어서, The method of claim 12,
    상기 신경도관은 유리섬유가 용기의 축방향으로 삽입됨에 따라 신경도관의 축방향으로 미세채널이 형성된 것을 특징으로 하는 다공성 신경도관. The neural conduit is a porous neural conduit, characterized in that the microchannel is formed in the axial direction of the nerve conduit as the glass fiber is inserted in the axial direction of the container.
  14. 제12항에 있어서, The method of claim 12,
    상기 신경도관은 용매가 물에 용해됨에 따라 신경도관에 미세기공이 형성된 것을 특징으로 하는 다공성 신경도관.The neural conduit is a porous neural conduit characterized in that the fine pores are formed in the neural conduit as the solvent is dissolved in water.
PCT/KR2017/006621 2017-06-12 2017-06-23 Apparatus for preparing nerve conduit WO2018230759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170073225A KR101931545B1 (en) 2017-06-12 2017-06-12 Manufacturing Device of Nerve Conduits
KR10-2017-0073225 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230759A1 true WO2018230759A1 (en) 2018-12-20

Family

ID=64660475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006621 WO2018230759A1 (en) 2017-06-12 2017-06-23 Apparatus for preparing nerve conduit

Country Status (2)

Country Link
KR (1) KR101931545B1 (en)
WO (1) WO2018230759A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673498B1 (en) * 2005-10-25 2007-01-24 한국과학기술연구원 Preparation method of biodegradable dual pore polymer scaffolds for tissue engineering
US7172096B2 (en) * 2004-11-15 2007-02-06 Advanced Technology Materials, Inc. Liquid dispensing system
US20110281358A1 (en) * 2010-05-17 2011-11-17 Pall Corporation System For Seeding Cells Onto Three Dimensional Scaffolds
KR20120127372A (en) * 2012-10-08 2012-11-21 단국대학교 산학협력단 A method of preparing nanofibrous-structured biopolymer using phase separaton
US8691973B2 (en) * 2006-03-28 2014-04-08 Korea Institute Of Radiological & Medical Sciences Method of producing chitosan scaffold having high tensile strength and chitosan scaffold produced using the method
KR20150105826A (en) * 2014-03-10 2015-09-18 단국대학교 천안캠퍼스 산학협력단 Biodegradable nerve conduit having channels of microstructure and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172096B2 (en) * 2004-11-15 2007-02-06 Advanced Technology Materials, Inc. Liquid dispensing system
KR100673498B1 (en) * 2005-10-25 2007-01-24 한국과학기술연구원 Preparation method of biodegradable dual pore polymer scaffolds for tissue engineering
US8691973B2 (en) * 2006-03-28 2014-04-08 Korea Institute Of Radiological & Medical Sciences Method of producing chitosan scaffold having high tensile strength and chitosan scaffold produced using the method
US20110281358A1 (en) * 2010-05-17 2011-11-17 Pall Corporation System For Seeding Cells Onto Three Dimensional Scaffolds
KR20120127372A (en) * 2012-10-08 2012-11-21 단국대학교 산학협력단 A method of preparing nanofibrous-structured biopolymer using phase separaton
KR20150105826A (en) * 2014-03-10 2015-09-18 단국대학교 천안캠퍼스 산학협력단 Biodegradable nerve conduit having channels of microstructure and manufacturing method of the same

Also Published As

Publication number Publication date
KR101931545B1 (en) 2019-03-20
KR20180135287A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
Wen et al. Fabrication and characterization of permeable degradable poly (DL-lactide-co-glycolide)(PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels
US20200384159A1 (en) Electrospinning with sacrificial template for patterning fibrous constructs
US6969480B2 (en) Method of producing structures using centrifugal forces
Yu et al. Development of biomimetic thermoplastic polyurethane/fibroin small‐diameter vascular grafts via a novel electrospinning approach
Liu et al. Controllable structure, properties, and degradation of the electrospun PLGA/PLA‐blended nanofibrous scaffolds
CA2947141C (en) Three-dimensional resorbable implants for tissue reinforcement and hernia repair
KR20090004027A (en) Method for the preparation of tube-type porous biodegradable scaffold having a double-layered structure for vascular graft
JP2004243125A (en) Implantable medical device seeded with mammalian cell and method of treatment
WO2018199384A1 (en) Nerve conduit manufacturing apparatus
WO2018230759A1 (en) Apparatus for preparing nerve conduit
WO2017204418A1 (en) Microneedle patch containing bleomycin for verruca treatment and method for manufacturing same
WO2012134024A1 (en) Method for manufacturing artificial blood vessel using stem cell and tube-shaped porous scaffold having double membrane structure, and artificial blood vessel manufactured thereby
WO2009125196A1 (en) Neural circuits and stereotactic apparatus
WO2016123207A1 (en) Composite fibers and matrices thereof
US20240082458A1 (en) Tubular material, preparation method therefor and use thereof
US20180126038A1 (en) Preparing method of nerve conduits
KR102041231B1 (en) Preparing method of nerve conduits
US10758646B2 (en) Preparing method of nerve conduits including cells
KR101952946B1 (en) Preparing method of nerve conduits including cells
CN117618657A (en) Superporous hydrogel filled nerve conduit and preparation method thereof
Demir et al. Effect of Different Porosity Ratio on Mechanical Properties of Polycaprolactone and Polylactic Acid Scaffolds
CN117679561A (en) Degradable porous nerve repair catheter and preparation method thereof
CN116328029A (en) Micro-channel photocrosslinking hydrogel tissue engineering scaffold formed based on electrostatic spinning and preparation method and application thereof
CN117731840A (en) Fiber-based directional diversion nerve conduit and preparation method and application thereof
Liu Preparation of biodegradable polymeric scaffolds with porosity gradients and interconnected structures using a sub critical carbon dioxide foaming process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913428

Country of ref document: EP

Kind code of ref document: A1