WO2018230731A1 - Oncogene transcription control region - Google Patents

Oncogene transcription control region Download PDF

Info

Publication number
WO2018230731A1
WO2018230731A1 PCT/JP2018/023028 JP2018023028W WO2018230731A1 WO 2018230731 A1 WO2018230731 A1 WO 2018230731A1 JP 2018023028 W JP2018023028 W JP 2018023028W WO 2018230731 A1 WO2018230731 A1 WO 2018230731A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
dna
binding
runx3
present
Prior art date
Application number
PCT/JP2018/023028
Other languages
French (fr)
Japanese (ja)
Inventor
公成 伊藤
Original Assignee
国立大学法人 長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 長崎大学 filed Critical 国立大学法人 長崎大学
Priority to JP2019525586A priority Critical patent/JP7212943B2/en
Publication of WO2018230731A1 publication Critical patent/WO2018230731A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • A61K31/787Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to an antitumor agent containing a substance that specifically recognizes the transcriptional regulatory region of the c-Myc gene and inhibits the binding of Runx3 to the sequence.
  • anticancer agents regulate body immunity, such as molecular targeting agents that target cancer-specific mutations and anti-PD-1 antibodies.
  • immunotherapeutic agents that cause the immune mechanism to attack cancer.
  • conventional anticancer drugs are susceptible to normal cells, and molecular targeting agents may be very effective depending on the target, but may not be very effective, and immunotherapeutic agents are among the patients undergoing treatment. There is a problem that effective people are limited.
  • mutations Even if mutations accumulate in a cell, in most cases, the mutation is repaired, or the cell is killed by apoptosis or immune attack, but if 3 to 10 mutations accumulate, it is said to cause cancer. Yes.
  • mutations there are mutations that occur in common factors, and there is a common molecular basis for complex malignant tumors.
  • inactivation of p53 and increased expression of c-Myc are most widely confirmed.
  • p53 is the most famous and considered “cancer suppressor gene”.
  • the main role of p53 is to check for genetic abnormalities in cells and to induce apoptosis if there are abnormalities. It is known that p53 has some kind of mutation (dysfunction, decreased expression level) in about 50% to 80% of all tumors. It is also considered to correlate with malignancy and anticancer resistance.
  • anticancer drugs have been developed for p53 and its surrounding molecules by a great number of methods, it has not been successful to date. It is technically difficult to increase normal p53, and when it exceeds a certain amount, apoptosis is induced. Therefore, when it is excessively expressed, apoptosis is also induced in normal cells (ie, “normal” Difficult to adjust to "amount”). For this reason, many anticancer agents targeting upstream and downstream of p53 are under development, but none has been successful.
  • C-Myc has a role of regulating proteins for cell proliferation.
  • c-Myc When c-Myc is knocked down, no growth preparation occurs and the cell cycle stops. Apoptosis is most easily induced at the moment of proliferation, but becomes resistant to apoptosis when the cell cycle stops. Therefore, c-Myc is also difficult to be a direct target for drug discovery.
  • the Runx family has an evolutionarily conserved Runt domain, and binds to the transcriptional regulatory region of the target gene via the domain.
  • the Runx family also has a region on the C-terminal side that interacts with various transcription factors (cofactors) to form heterodimers and controls transcription of downstream target genes (Non-patent Document 1).
  • the mammalian Runx family consists of Runx1, Runx2, and Runx3, but these abnormalities are closely associated with various diseases.
  • Runx1 is a target for chromosomal translocation in acute myeloid leukemia, and lack of one allele of Runx2 due to chromosomal instability (LOH) has been attributed to clavicular skull dysplasia.
  • LH chromosomal instability
  • Runx3 is a tumor suppressor gene for gastric cancer (Non-patent Document 2). Furthermore, it has been suggested that Runx3 binds to p53 in the nucleus and positively regulates the transcription of the target gene group of p53 (Non-patent Document 2). In addition, since a mouse in which Runx3 is knocked down is lethal and a mouse whose expression level is halved also has a short life span, it is considered that Runx3 has an essential function for survival and is not suitable as a target for anticancer agents. It seems.
  • Runx binding sequences (ACCCACA, TGCGGT) exist upstream from the transcription start site of the c-Myc gene, and endogenous Runx1 binds to these Runx binding sequences through interaction with cofactors. Have been reported to suppress the expression of the c-Myc gene (Non-patent Document 1).
  • Non-patent Document 3 discloses PI pyramide (Chb-50) that targets TGCGGT, although not used in experiments.
  • PI pyramide Chob-50
  • Runx binding sequences there are a large number of Runx binding sequences in the transcriptional regulatory region of the c-Myc gene, and it is not known which part of the Runx recognition sequence is important.
  • any mouse knocked out of Runx1, Runx2 or Runx3 is embryonic lethal, the PI pyramide targeting a large number of Runx binding sequences is expected to cause very strong side effects.
  • an object of the present invention is to identify a factor that can be a realistic target for cancer suppression from a molecular basis common to cancers, and to target an effective and safe cancer treatment or target. It is to provide a preventive measure.
  • the present inventor first paid attention to the relationship between p53 and Runx3 in osteosarcoma, and mice in which p53 was knocked out specifically for osteoblasts almost certainly became osteosarcoma. It has been found that the onset of tumors can be remarkably suppressed by knocking out to the junction.
  • the analysis of NIH database revealed that there was a positive correlation between the expression levels of Runx3 and c-Myc in human osteosarcoma, so we analyzed the molecular mechanism in osteosarcoma cells of p53 conditional knockout mice. However, it was found that Runx3 excessively induces c-Myc expression in the situation where p53 was deleted.
  • the present inventor has found that in p53 conditional knockout mice, the Runx binding sequence 5′-TGCGGT-3 ′ located in the vicinity of the transcription start point upstream of the transcription start point of the c-Myc gene. (In the present specification, unless otherwise specified, nucleotide sequences are written in the 5 ′ to 3 ′ direction, from left to right.) By simply introducing mutations to destroy the Runx binding sequence, Runx3 or c -It was found that the tumor suppressor effect is higher than that of suppressing the expression of the Myc protein itself. In addition, it was confirmed that mice having the mutation grew inferior to wild-type mice.
  • the present inventor specifically inhibits the binding of Runx3 to the Runx binding sequence located closest to the transcription start site in the transcriptional regulatory region of the c-Myc gene by some means.
  • the present invention is as follows. [1] Specifically recognizes a continuous target region of 12 nucleotides or more containing at least part of the Runx binding sequence TGCGGT in the upstream of the transcription start point of the c-Myc gene, An antitumor agent comprising a substance that inhibits binding of Runx3 to a Runx binding sequence. [2]
  • the Runx binding sequence is a nucleotide sequence from ⁇ 309 to ⁇ 304 from the transcription start point of the human c-Myc gene, or a sequence (counterpart) corresponding to the nucleotide sequence in other mammalian orthologs. 1].
  • [3] The agent according to [1] or [2], which is applied to a subject in which p53 is inactivated.
  • [4] The agent according to any one of [1] to [3], wherein the substance is an antigene for a DNA sequence in the target region.
  • the antigene is pyrrole-imidazole polyamide.
  • [6] The agent according to any one of [1] to [3], wherein the substance is a nucleic acid sequence recognition module that specifically binds to the target region.
  • the nucleic acid sequence recognition module is CRISPR-Cas, zinc finger motif, TAL effector or PPR motif.
  • nucleic acid sequence recognition module is CRISPR-dCas.
  • nucleic acid sequence recognition module is CRISPR-dCas.
  • the substance comprises a nuclease that forms a complex with the nucleic acid sequence recognition module.
  • the substance further comprises donor DNA capable of causing homologous recombination at a site cleaved by the nuclease.
  • nucleic acid sequence recognition module forms a complex with a transcription repressing factor.
  • Runx binding sequence TGCGGT nearest to the transcription start point upstream of the transcription start point of the c-Myc gene for use in inhibiting tumor formation and / or inhibiting the growth of already formed tumors A substance that specifically recognizes a target region of 12 nucleotides or more that contains at least a part of and binds Runx3 to the Runx binding sequence.
  • the tumorigenic ability of an extremely large number of types of tumor cells can be suppressed only by inhibiting a specific sequence at a specific position on the genome (binding sequence of Runx3 of c-Myc promoter; 6 bp).
  • a substance that specifically introduces a mutation into the specific sequence and a substance that specifically binds to the specific sequence and can inhibit the binding between the sequence and Runx3 brings about a revolutionary anticancer effect.
  • FIG. 1 is a diagram showing the positions of Runx binding sequences ACCACA and TGCGGT existing in the upstream region of the transcription start sites of mouse c-Myc gene and human c-Myc gene.
  • FIG. 2 shows that as a result of introducing a mutation into the Runx binding sequence TGCGGT (mR1) located closest to the transcription start site of c-Myc, the expression level of c-Myc was reduced and tumorigenicity was suppressed.
  • FIG. FIG. 3 is a graph showing that the introduction of mutations into mR1 had a greater tumorigenic effect suppressing effect than that of Runx3 knockdown or c-Myc knockdown.
  • FIG. 4-1 is a diagram showing an outline of genetic modification by homologous recombination using ES cells in the production of a genetically modified mouse in which a mutation is introduced into mR1.
  • FIG. 4-2 is a diagram showing an outline of genome editing in the production of a genetically modified mouse in which a mutation is introduced into mR1.
  • FIG. 5 shows that as a result of introducing a mutation into mR1, the tumorigenic ability was greatly suppressed. On the other hand, even if there is a deletion in a part other than the 6 bases of mR1, the tumorigenic ability does not change so much.
  • FIG. FIG. 6 is a diagram showing that tumorigenicity is suppressed as a result of introducing mutations (base deletion or insertion) into mR1.
  • FIG. 7 is a diagram showing that lymphoma formation by p53 knockout is rescued by combining systemic p53 knockout and mR1 m / m .
  • the present invention includes at least a part of a Runx binding sequence (TGCGGT; also referred to as “the cis element of the present invention”) nearest to the transcription start point upstream of the transcription start point of the c-Myc gene.
  • An antitumor agent comprising a substance that specifically recognizes a continuous target region of 12 nucleotides or more and inhibits Runx3 binding to the Runx binding sequence (hereinafter also referred to as “binding inhibitor of the present invention”)
  • binding inhibitor of the present invention hereinafter, it is also referred to as “the antitumor agent of the present invention”.
  • the term “antitumor agent” means an agent that can suppress tumor formation and / or growth of an already formed tumor, and preferably has an effect of inhibiting tumor formation and / or tumor regression. .
  • c-Myc gene examples include, for example, human c-Myc (NCBI Gene ID: 4609), mouse c-Myc (NCBI Gene ID: 17869), rat c-Myc (NCBI Gene ID: 24577) or others Orthologs thereof in mammals (eg, rabbits, sheep, pigs, cattle, cats, dogs, monkeys), or their natural allelic variants or gene polymorphisms.
  • the nucleotide sequence of the c-Myc gene is the nucleotide sequence of chromosome 8 (NCBI Reference Reference: NC_000008.11) registered in the NCBI database for humans, and the chromosome sequence of chromosome 15 for mice. It is expressed based on the nucleotide sequence (NCBI Reference Reference Sequence: NC_000081.6).
  • the transcription start point of human c-Myc gene is nucleotide G at position 127736069 in the nucleotide sequence of NC_000008.11
  • the transcription start point of mouse c-Myc gene is nucleotide C at position 61985341 in the nucleotide sequence of NC_000081.6. is there.
  • the nucleotide sequence of 3 kb upstream of the transcription start site of human c-Myc gene is SEQ ID NO: 1, and 3 kb upstream of the transcription start site of mouse c-Myc gene (from 61982341 of NC_000081.6)
  • the nucleotide sequence at position 61985340 is shown in SEQ ID NO: 2, respectively.
  • the position of the nucleotide in the transcription regulatory region upstream from the transcription start point of the c-Myc gene is represented by the distance from the nucleotide, with the nucleotide immediately before the transcription start point being -1.
  • the Runx binding sequence TGCGGT closest to the transcription start point upstream of the transcription start point of the human c-Myc gene is represented by the -309 to -304th positions (represented by SEQ ID NO: 1). In the nucleotide sequence at nucleotide numbers 2692 to 2697).
  • the Runx binding sequence TGCGGT closest to the transcription start point upstream of the transcription start point of the mouse c-Myc gene is the position ⁇ 315 to ⁇ 310 (the nucleotide number in the nucleotide sequence represented by SEQ ID NO: 2). 2686-2691).
  • the c-Myc gene of the present invention has a nucleotide sequence other than those registered in the NCBI database, for example, a natural allelic variant (allele when the registered nucleotide sequence is a wild type). Naturally, a frequency of 1% or more) or a gene polymorphism (allele frequency of less than 1%) is also included.
  • the positional relationship with the transcription start point may differ from the above definition due to the insertion or deletion of one or more nucleotides, but the position is easily specified by alignment with the reference sequence. be able to.
  • the position of the cis element of the present invention in the c-Myc gene of mammals other than humans and mice can also be specified in the same manner.
  • the cis element of the present invention is the nucleotide sequence from -309 to -304 from the transcription start point of the human c-Myc gene, or other mammalian orthologs or their natural allelic variants or gene polymorphisms.
  • the “cis element” is present on the regulatory region of a gene, is involved in the control of the transcription level of the gene, and is an important element that determines the expression level of the gene product encoded by the gene. This is a region of double-stranded DNA.
  • the cis element of the present invention is a Runx binding region that is closest to the transcription start point of the c-Myc gene, that is, a double-stranded DNA region consisting of a normal strand: TGCGGT and a reverse strand: ACCGCA. It is.
  • a region of 12 nucleotides or more that includes at least a part of the cis element TGCGGT of the present invention means all of the cis elements (TGCGGT), Includes TGCGG, TGCG, TGC, TG or T from which the nucleotide is removed from the 3 ′ side of the element, or GCGGT, CGGT, GGT, GT or T from which the nucleotide is removed from the 5 ′ side of the cis element And a region consisting of a partial nucleotide sequence containing 12 or more consecutive nucleotides in the upstream sequence of the transcription start site of the c-Myc gene. For example, when the length of the region is 20 nucleotides, taking the human c-Myc gene as an example, the region surrounded by the box in Table 1 is included in the target region of the present invention.
  • a region containing only one terminal nucleotide of the cis element is sufficient, but preferably 2 nucleotides, more preferably 3 nucleotides, still more preferably 4 nucleotides, particularly preferably 5 from the end of the cis element of the present invention.
  • the target regions of the present invention are preferably the regions (2) to (24), more preferably the regions (3) to (23), and further the regions (4) to (22).
  • regions (5) to (21) are particularly preferable, and regions (6) to (20) are most preferable.
  • the length of the target region of the present invention is not particularly limited as long as the binding inhibitor of the present invention can specifically recognize and bind to the region, but is preferably 12 nucleotides or more, more preferably 15 nucleotides or more, Preferably it is 17 nucleotides or more.
  • the upper limit of the length is not particularly limited, but is, for example, 30 nucleotides or less, preferably 25 nucleotides or less, more preferably 22 nucleotides or less. Accordingly, the range of the length of the target region includes, for example, 12 to 30 nucleotides, preferably 15 to 25 nucleotides, and more preferably 17 to 22 nucleotides.
  • the binding inhibitor of the present invention comprises the target of the present invention comprising all or part of the cis element of the present invention, which is the Runx binding sequence nearest to the transcription start site upstream of the transcription start site of the c-Myc gene.
  • the binding inhibitor of the present invention is preferably applied to a subject in which p53 is inactivated (at least binds to Runx3 and lacks the activity of suppressing the transcriptional activation of c-Myc gene by Runx3).
  • the binding inhibitor of the present invention may be any substance as long as it can block the binding of Runx3 to the cis element of the present invention by specifically recognizing and binding to the target region of the present invention,
  • a protein that can specifically bind to the target region of the present invention, a nucleic acid that specifically hybridizes with the target region of the present invention, and can form a triplex (Hoogsteen-type recognition) or an analog thereof examples include a broad sense antigene such as a substance (for example, PI polyamide) capable of specifically binding to a minor groove having a double helical structure of the target region of the present invention.
  • a component used for genome editing that can specifically destroy a cis element by introducing a mutation into the cis element of the present invention can also be included in the binding inhibitor of the present invention.
  • genome editing technology involving genome sequence modification particularly double-strand DNA breakage; modification involving DSB
  • TALEN CRISPR / Cas nucleic acid sequence recognition modules
  • Antigene triplex DNA formation type oligonucleotide (TFO)
  • TFO triplex DNA formation type oligonucleotide
  • the position of the 1'-position carbon of the base of the third nucleic acid is outward (Hoogsteen binding type) (SEQ ID NO: 13) and the opposite (reverse Hoogsteeen binding type) ) (SEQ ID NO: 14), the former being parallel orientation (the same orientation as the strand on which DNA double-stranded base pairs are formed) and the latter being anti-parallel orientation (DNA double-stranded base pairs The orientation is opposite to that of the side chain to be formed).
  • the sequence of each strand of the DNA duplex is represented by SEQ ID NO: 15 or 16.
  • the parallel oriented TFO has T (T: AT base pair) and protonated C (C) for the AT base pair and the GC base pair A and G in the DNA duplex, respectively. + : GC base pair) is bound.
  • the anti-parallel orientation TFO has T (T: AT base pair) and G (G: G: G) for AT base pair and GC base pair A and G in the DNA duplex, respectively. GC base pairs).
  • C In order for C to be protonated, it must be under acidic conditions, so its use under physiological conditions is limited, but methylcytidine that is protonated even in neutrality or a derivative that does not require protonation ( This problem can be avoided by using the example 5-methyl-6-oxocytidine).
  • a typical triplex is a DNA duplex with one homopurine (G or A) strand and the other homopyrimidine (C or T) strand, while TFO binds to the homopurine strand in the major groove. It is formed by doing.
  • TFO is limited to those that target purine-rich (pyrimidine-rich in the reverse strand) DNA duplex.
  • a 10-nucleotide AGGA C AAGGA SEQ ID NO: 4 immediately before the cis element of the present invention may be mentioned as a purine-rich sequence in the target region of the present invention.
  • an antigene is designed for 10 nucleotides AGGACAAGGA (SEQ ID NO: 4) immediately before the cis element of the present invention, and a PI polyamide capable of specifically recognizing the cis element of the present invention described later is used as an appropriate linker.
  • the specificity for the target region of the present invention can also be increased by linking via (eg, amino acid linkers such as proline, lysine, glycine, peptide linkers, etc.).
  • the nucleotide molecule constituting TFO may be natural DNA or RNA, and various chemical modifications may be performed to improve stability (chemical and / or enzyme) and specific activity (affinity with DNA). It may be an applied nucleotide molecule or a nucleic acid analogue.
  • the phosphate residue (phosphate) of each nucleotide constituting the oligonucleotide is replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, boranophosphate, etc. Modification to be mentioned.
  • Another example of the chemical modification is a modification in which the 2′-position hydroxyl group of each nucleotide sugar is substituted with another functional group.
  • a halogen atom eg, fluorine atom
  • a C 1-6 alkyl group eg, methyl group
  • a C 1-6 alkyl group eg, methyl group
  • Good amino group; -OR (R is for example CH 3 (2'-O-Me), CH 2 CH 2 OCH 3 (2'-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 and CH 2 CH 2 CN are shown).
  • nucleic acid analog examples include UNA (unlocked nucleic acid), HNA, morpholino oligo and the like.
  • the hydroxyl group of the hexopyranose part may be deoxylated.
  • the hydroxyl group of the hexopyranose part may be substituted with a fluorine atom.
  • TFO can be chemically synthesized by, for example, a method known per se described in International Publication No. 2005/021570, International Publication No. 03/068695, International Publication No. 2001/007455, or a method analogous thereto.
  • the desired modified oligonucleotide is available by consignment synthesis.
  • PI polyamide In PI polyamide, a pyrrole (Py) / imidazole (Im) pair recognizes a CG base pair, a Py / Py pair recognizes an AT or TA base pair, and an Im / Py pair recognizes a GC base pair.
  • Hp 3-hydroxypyrrole
  • the Hp / Py pair recognizes the TA base pair
  • the Py / Hp pair recognizes the AT base pair.
  • the ⁇ -aminobutyric acid moiety becomes a linker and is folded entirely to take a U-shaped conformation (hairpin type). In the U-shaped conformation, two chains containing Py and Im are arranged in parallel across the linker.
  • PI polyamide enters the minor groove of the DNA duplex and binds to any DNA duplex in a base sequence-specific manner, thereby inhibiting the binding of transcription factors to the DNA duplex.
  • the PI polyamide of the present invention comprises the target region of the present invention (ie, all of the cis elements of the present invention (TGCGGT), TGCGG, TGCG, TGC, TG or T, wherein one nucleotide is removed from the 3 ′ side of the cis element.
  • nucleotides in the upstream sequence of the transcription start point of the c-Myc gene including GCGGT, CGGT, GGT, GT or T from which 5 nucleotides have been removed from the 5 ′ side of the cis element (for example, , 12 to 30 nucleotides, preferably 15 to 25 nucleotides, more preferably 17 to 22 nucleotides), a region consisting of a partial nucleotide sequence of the c-Myc gene regulatory region). Inhibits Runx3 binding to the element and activates c-Myc gene transcription Control to.
  • PI polyamides do not have a nucleic acid structure unlike existing antisense nucleic acids and siRNAs, and therefore are not easily degraded by nucleolytic enzymes in vivo, and do not require a drug delivery system such as a vector or chaotic lipid, or an electroporation method.
  • PI polyamide can be synthesized using, for example, Fmoc peptide solid-phase synthesis technology using Py and Im derivatives having the Fmoc-protected amino group (following formula) as synthesis raw materials, but is not limited thereto.
  • X represents a carbon or nitrogen atom.
  • a suitable linker such as ⁇ -aminobutyric acid is introduced into the molecule between the paired pyrrole-imidazole chains so that the PI polyamide can form the desired hairpin structure.
  • an appropriate spacer molecule that does not contribute to the binding with a target DNA sequence such as ⁇ -alanine can be inserted into a complementary position of both pyrrole-imidazole pairs to be paired.
  • the terminal amino group is capped with an acyl group or the like, and then used as a carboxylic acid using trifluoroacetic acid (TFA) or N, N-dimethylaminopropylamine (Dp) Can be used to cut PI polyamide from the solid phase as an amine.
  • TFA trifluoroacetic acid
  • Dp N, N-dimethylaminopropylamine
  • pyrrole-imidazole polyamide derivatives can be prepared by introducing various functional groups into the molecular ends.
  • various functional groups for example, seco-CBI, chlorambucil, bleomycin, nitrogen mustard, pyrrolobenzodiazepine, duocarmycin, enediyne compounds, derivatives of these, etc. that have the ability to alkylate DNA (alkylating agents) are introduced as necessary can do.
  • the alkylating agent introduces an alkyl group at the guanine N-7 position or the adenine N-3 position of DNA, and causes an adduct formation or a cross-linking reaction between guanines or adenines.
  • Double-stranded DNA that has undergone a cross-linking reaction or double-stranded DNA that has been formed as an adduct is difficult to repair by the repair mechanism. As a result, DNA cannot be transcribed or replicated, resulting in cell growth arrest or cell death due to apoptosis. Is induced.
  • the obtained PI polyamide can be isolated and purified by a known purification method.
  • the purification method include solvent extraction, distillation, column chromatography, liquid chromatography, recrystallization, and combinations thereof.
  • Purified PI polyamide can be lyophilized by a method known per se and stored at room temperature. When used, it can be dissolved in an organic solvent such as DMSO and then diluted to an appropriate concentration with water or a water / organic solvent mixture. it can.
  • a design method and a production method of PI polyamide are described in, for example, Japanese Patent No. 3045706, Japanese Patent Application Laid-Open No. 2001-136974, and WO 03/000683.
  • PNA Peptide nucleic acid
  • the third antigene includes peptide nucleic acid (PNA).
  • PNA is a molecule having a peptide structure in the main chain and a structure similar to DNA or RNA.
  • PNA has a main chain in which N- (2-aminoethyl) glycine is bonded by an amide bond instead of sugar.
  • a purine ring or pyrimidine ring corresponding to a nucleobase is bonded to the main chain via a methylene group and a carbonyl group.
  • PNA does not have a phosphate site charge that is present in DNA or RNA
  • the PNA / DNA duplex forms a stronger bond than the DNA / DNA duplex due to a decrease in electrostatic repulsion. Therefore, PNA penetrates into a DNA duplex to form a D-loop and forms a Watson-Crick base pair with a complementary DNA strand, thereby binding a transcription factor to the DNA duplex. Can be inhibited.
  • Accurate molecular recognition is also performed when PNA strands bind to complementary DNA, and PNA / DNA duplexes containing mismatched base pairs are less likely than DNA / DNA duplexes with similar mismatches. It is known to become stable. Therefore, it is expected that the off-target effect can be further reduced by using PNA.
  • PNA is not easily recognized by nucleases and proteases in vivo, has resistance to enzymatic degradation, and can exist stably in a wider pH range.
  • the PNA of the present invention comprises the target region of the present invention (ie, all of the cis elements of the present invention (TGCGGT), TGCGG, TGCG, TGC, TG or T from which 3 nucleotides have been removed from the 3 ′ side of the cis element, Alternatively, it includes GCGGT, CGGT, GGT, GT or T from which 5 nucleotides are removed from the 5 ′ side of the cis element, and 12 or more consecutive nucleotides in the upstream sequence of the transcription start site of the c-Myc gene (for example, A cis element of the present invention by specifically binding to a region consisting of a partial nucleotide sequence of the c-Myc gene regulatory region comprising 12-30 nucleotides, preferably 15-25 nucleotides, more preferably 17-22 nucleotides) Inhibits binding of Runx3 to c-Myc gene and suppresses transcriptional activation
  • PNA can be produced using a peptide solid phase synthesis technique known per se.
  • Binding Inhibitor of the Present Invention Utilizing Genome Editing Technology
  • (a) Binding Inhibitor without Encoding Genomic Sequence The present invention also inhibits binding of Runx3 to the cis element of the present invention using genome editing technology.
  • an antitumor agent characterized by suppressing the transcriptional activation of the c-Myc gene is provided.
  • a method using an artificial nuclease in which a molecule having a sequence-independent DNA cutting ability and a molecule having a sequence recognition ability are combined is well known.
  • ZFN zinc finger nuclease
  • TAL transcriptional activator-like effector
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • CRISPR-associated nuclease Cas
  • a specific target nucleotide sequence is recognized by a protein (ZF, TAL effector, PPR) or a complex of RNA and protein (CRISPR-Cas9). Therefore, it is possible to inhibit the binding of Runx3 to the cis element of the present invention by binding to the target region of the present invention using these substances (nucleic acid sequence recognition modules) that impart sequence specificity to the artificial nuclease. it can.
  • nucleic acid sequence recognition module means a molecule or molecular complex having the ability to specifically recognize and bind to a specific nucleotide sequence (ie, target nucleotide sequence) on a DNA strand. Binding of the nucleic acid sequence recognition module to the target nucleotide sequence allows the effector linked to the module to specifically act on the targeted site of DNA.
  • the nucleic acid sequence recognition module includes a CRISPR-Cas system.
  • the CRISPR-Cas system is a complex of short CRISPR RNA (crRNA) with a target nucleotide sequence and trans-activated crRNA (tracrRNA), or a single synthetic RNA (guide RNA, gRNA that combines crRNA and tracrRNA) ) Recognizes the sequence of the target DNA, so that any sequence can be targeted simply by synthesizing an oligo DNA that can specifically hybridize with the complementary sequence of the target nucleotide sequence.
  • Nucleic acid sequence recognition module using CRISPR-Cas is provided as a complex of Cas protein and RNA molecule (guide RNA) consisting of target nucleotide sequence and tracrRNA necessary for Cas protein recruitment.
  • a nucleic acid sequence recognition module using CRISPR-Cas is provided as a complex of crRNA containing RNA having the same sequence as the target nucleotide sequence, tracrRNA, and Cas.
  • the Cas protein used in the present invention is not particularly limited as long as it belongs to the CRISPR system, but is preferably Cas9.
  • Cas9 include, but are not limited to, Cas9 (SpCas9) derived from Streptococcus pyogenes, Cas9 (StCas9) derived from Streptococcus thermophilus, and the like. SpCas9 is preferable. In consideration of use in human clinical practice, it is not preferable to generate DSB, and therefore, Cas that has inactivated DNA cleavage activity (dCas) is preferable.
  • dCas DNA cleavage activity
  • the 10th Asp residue is converted to an Ala residue
  • a D10A mutant lacking the ability to cleave the opposite strand that forms a complementary strand with the guide RNA
  • the 840th His residue is the Ala residue.
  • Double mutants of the H840A mutant lacking the ability to cleave the guide RNA and the complementary strand converted with the group can be used, but other mutant Cass can be used as well.
  • CRISPR-Cas When CRISPR-Cas is used as a nucleic acid sequence recognition module, when a complex of guide RNA and Cas is bound to the target nucleotide sequence, the cis element of the present invention is blocked by the complex, and Runx3 cannot bind
  • the target nucleotide sequence that is, CTGCGTATATCAGTCACCGC; SEQ ID NO: 12
  • CTGCGTATATCAGTCACCGC SEQ ID NO: 12
  • CGG in the cis element of the present invention is PAM
  • the reverse strand sequence of 20 nucleotides upstream ie, ATACTCACAGGACAAGGATG; SEQ ID NO: 6
  • crRNA can be designed.
  • the nucleic acid sequence recognition module includes a zinc finger motif, a TAL effector, a PPR motif, etc., as well as DNA of a protein that can specifically bind to DNA such as a restriction enzyme, transcription factor, RNA polymerase, etc.
  • DNA of a protein that can specifically bind to DNA such as a restriction enzyme, transcription factor, RNA polymerase, etc.
  • a fragment that contains a binding domain and does not have the ability to cleave DNA double strands can be used.
  • the zinc finger motif is a linkage of 3 to 6 different zinc finger units of the Cys2His2 type (one finger recognizes about 3 bases), and can recognize a target nucleotide sequence of 9 to 18 bases.
  • Zinc finger motifs are: Modular assembly method (Nat Biotechnol (2002) 20: 135-141), OPEN method (Mol Cell (2008) 31: 294-301), CoDA method (Nat Methods (2011) 8: 67-69) In addition, it can be prepared by a known method such as E. coli one-hybrid method (Nat Biotechnol (2008) 26: 695-701). Japanese Patent No. 4968498 can be referred to for details of the production of the zinc finger motif.
  • the TAL effector has a repeating structure of modules of about 34 amino acids, and the binding stability and base specificity are determined by the 12th and 13th amino acid residues (called RVD) of one module.
  • RVD 12th and 13th amino acid residues
  • the PPR motif consists of 35 amino acids, and is constructed to recognize a specific nucleotide sequence by a series of PPR motifs that recognize one nucleobase.
  • the 1st, 4th, and ii (-2) th amino acids of each motif Only recognize the target base. Since there is no dependence on the motif structure and there is no interference from the motifs on both sides, it is possible to produce a PPR protein specific to the target nucleotide sequence by linking the PPR motifs just like the TAL effector. JP, 2013-128413, A can be referred to for details of preparation of a PPR motif.
  • DNA-binding domain of these proteins is well known, so it is easy to design a fragment that contains this domain and does not have the ability to cleave DNA double strands. And can be built.
  • target region of the present invention that is, all of the cis elements of the present invention (TGCGGT), TGCGG in which one nucleotide is removed from the 3 ′ side of the cis elements.
  • TGCG, TGC, TG or T, or GCGGT, CGGT, GGT, GT or T from which the nucleotides are removed from the 5 ′ side of the cis element, and in the upstream sequence of the transcription start site of the c-Myc gene
  • a region consisting of a partial nucleotide sequence containing 12 or more consecutive nucleotides can be targeted.
  • the nuclease is sterically formed by combining an inactivated nuclease (eg, FokI) with a nucleic acid sequence recognition module such as a zinc finger motif, a TAL effector, and a PPR motif.
  • a nucleic acid sequence recognition module such as a zinc finger motif, a TAL effector, and a PPR motif.
  • the cis element of the present invention can be blocked, thereby inhibiting Runx3 binding.
  • two nucleic acid sequence recognition modules that specifically recognize a normal nucleotide sequence upstream of the cis element of the present invention and a reverse nucleotide sequence downstream of the cis element are designed, and the end of the module is designed.
  • the cis element of the present invention can be blocked by forming a complex with a nuclease inactivated at (eg, C-terminal).
  • Nucleic acid sequence recognition modules such as zinc finger motif, TAL effector and PPR motif can be provided as fusion proteins with the above nucleases, and protein binding domains such as SH3 domain, PDZ domain, GK domain, GB domain and their The binding partner may be fused to a nucleic acid sequence recognition module and a nuclease, respectively, and provided as a protein complex through the interaction between the protein binding domain and the binding partner.
  • the intein can be fused to the nucleic acid sequence recognition module and the nuclease, and both can be linked by ligation after synthesis of each protein.
  • the nucleic acid sequence recognition module of the present invention further inhibits the transcription of the c-Myc gene while blocking the binding of Runx3 to the cis element of the present invention by forming a complex with a transcription repressing factor instead of a nuclease.
  • the “transcription repressing factor” means a protein or protein domain having transcription repressing activity of a target gene.
  • the transcription repressing factor used in the present invention is not particularly limited as long as it can suppress the transcriptional activation of the c-Myc gene.
  • the protein derived therefrom is not particularly limited.
  • the contact between the nucleic acid sequence recognition module and the c-Myc gene in which the target region of the present invention is present is the target mammal (eg, human, mouse, rat, cow, dog, cat, monkey, etc., preferably human Alternatively, it is carried out by introducing a nucleic acid encoding the module (or an effector protein when used in combination with an effector such as a nuclease or a transcription repressing factor) into a mouse, more preferably a human cell. Therefore, the nucleic acid sequence recognition module, or the nucleic acid sequence recognition module and the effector, can be used as a nucleic acid encoding their fusion protein or in a form that can be complexed in the host cell after being translated into the protein.
  • a nucleic acid encoding the module or an effector protein when used in combination with an effector such as a nuclease or a transcription repressing factor
  • the nucleic acid may be DNA or RNA.
  • DNA it is preferably double-stranded DNA, and is provided in the form of an expression vector capable of expressing each constituent element under the control of a functional promoter in mammalian cells.
  • RNA it is preferably a single-stranded RNA.
  • CRISPR-Cas When CRISPR-Cas is used as a nucleic acid sequence recognition module, an expression vector encoding guide RNA and Cas protein is introduced into the cell, and the guide RNA and Cas protein are expressed in the cell, so that the guide RNA and Cas protein are expressed in the cell. Form a complex.
  • the guide RNA and Cas protein may be encoded on the same expression vector, or may be encoded on different expression vectors.
  • the DNA encoding Cas can be cloned from cells that produce Cas by methods well known in the art.
  • the obtained Cas-encoding DNA can be inserted downstream of the promoter of an expression vector for mammalian cells.
  • the DNA encoding the guide RNA is chemically designed using a DNA / RNA synthesizer by designing an oligo DNA sequence in which a target nucleotide sequence and a known tracrRNA sequence (for example, gttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtggtgctttt; Can be synthesized.
  • the nucleotide sequence is described as a DNA sequence unless otherwise specified. However, when the polynucleotide is RNA, thymine (T) is appropriately replaced with uracil (U).
  • DNA that encodes guide RNA can also be inserted into an expression vector for mammalian cells.
  • the guide RNA and Cas may be encoded on the same expression vector, or may be encoded on different expression vectors.
  • the DNA encoding Cas and the DNA encoding guide RNA are inserted downstream of separate promoters in the same expression vector.
  • the RNA encoding Cas can also be prepared by, for example, transcribing it to mRNA using an in vitro transcription system known per se using the above-described DNA encoding Cas as a template.
  • the guide RNA can also be chemically synthesized using a DNA / RNA synthesizer by designing an oligo RNA sequence in which a target nucleotide sequence and a known tracrRNA sequence are linked. In this case, various modifications for improving stability and membrane permeability can be imparted to the ribonucleotide constituting the guide RNA.
  • crRNA and tracrRNA can be synthesized separately and annealed for use.
  • DNA encoding nucleic acid sequence recognition modules such as zinc finger motifs, TAL effectors, and PPR motifs can be obtained by any of the methods described above for each module.
  • DNA encoding sequence recognition modules such as restriction enzymes, transcription factors, RNA polymerase, etc. covers the region encoding the desired part of the protein (part containing the DNA binding domain) based on the cDNA sequence information.
  • oligo DNA primers can be synthesized and cloned by amplifying by RT-PCR using total RNA or mRNA fraction prepared from cells producing the protein as a template.
  • oligo DNA primers are synthesized based on the cDNA sequence information of the effector used, and total RNA or mRNA fractions prepared from cells producing the effector. And can be cloned by amplification by RT-PCR.
  • DNA encoding FokI can be cloned from mRNA derived from Flavobacterium okeanokoites (IFO 12536) by RT-PCR by designing appropriate primers upstream and downstream of CDS based on the cDNA sequence.
  • the DNA encoding the cloned nucleic acid sequence recognition module can be digested as it is or with a restriction enzyme if desired, or an appropriate linker and / or nuclear translocation signal can be added.
  • an effector such as a nuclease or transcription repressor
  • the DNA encoding the cloned nucleic acid sequence recognition module is ligated with the DNA encoding the cloned nucleic acid sequence recognition module to encode a fusion protein.
  • DNA can be prepared.
  • a complex may be formed after the nucleic acid sequence recognition module and the effector are translated in the host cell.
  • a linker and / or a nuclear translocation signal can be linked to an appropriate position of one or both of DNAs as desired.
  • DNA encoding nucleic acid sequence recognition modules and DNA encoding effectors chemically synthesize DNA strands, or synthesize partially overlapping oligo DNA short strands using the PCR method or Gibson Assembly method.
  • PCR method or Gibson Assembly method By connecting, it is possible to construct a DNA encoding the full length.
  • the advantage of constructing full-length DNA in combination with chemical synthesis or PCR method or Gibson Assembly method is that the codon used can be designed over the entire CDS according to the host into which the DNA is introduced.
  • an increase in protein expression level can be expected by converting the DNA sequence into a codon frequently used in the host organism.
  • Data on the frequency of codon usage in the host to be used is, for example, the genetic code usage frequency database (http://www.kazusa.or.jp/codon/index.html) published on the Kazusa DNA Research Institute website. ) May be used, or references describing the frequency of codon usage in each host may be consulted.
  • the obtained data and the DNA sequence to be introduced and converting the codon used in the DNA sequence that is not frequently used in the host into a codon that encodes the same amino acid and is frequently used Good.
  • an animal virus vector such as a retrovirus, vaccinia virus, adenovirus, or the like is used.
  • Promoters include SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, etc.
  • a promoter that can function in mammalian cells is used, but is not limited thereto.
  • the expression vector may contain an enhancer, a splicing signal, a terminator, a poly A addition signal, a selection marker such as a drug resistance gene, a replication origin, and the like as desired.
  • nucleic acid sequence recognition module By introducing an expression vector encoding a nucleic acid sequence recognition module (and optionally an effector further) into target mammalian target cells (eg, cancer cells, precancerous cells inactivated p53), A nucleic acid sequence recognition module or a complex of the module and an effector is expressed and formed in the cell, and can be brought into contact with a target nucleotide sequence on the c-Myc gene.
  • target mammalian target cells eg, cancer cells, precancerous cells inactivated p53
  • DSB Binding Inhibitor with Genomic Sequence Modification
  • a wild-type enzyme having DSB activity as a nuclease
  • DSB is generated in the cis element of the present invention, and the cis element of the present invention
  • the cis element can be disrupted by deletion of one or more nucleotides or substitution of other nucleotides, or insertion of one or more nucleotides into the cis element.
  • the c-Myc gene is cleaved within the cis element of the present invention and then repaired by non-homologous end joining (NHEJ), but due to a repair error, deletion of one or more nucleotides of the cis element or Substitution for other nucleotides, or insertion of one or more nucleotides within the cis element occurs.
  • NHEJ non-homologous end joining
  • a DNA comprising a sequence homologous to each of the upstream and downstream sequences adjacent to the cis element of the present invention and having the mutation introduced into the cis element part (
  • the donor DNA is introduced into the target mammalian cell together with the DNA encoding the complex of the nucleic acid sequence recognition module and the nuclease, so that the region containing the target region of the present invention is homologous with the donor DNA.
  • a desired mutation can be introduced into the cis element of the present invention.
  • the sequence homologous to the upstream and downstream sequences adjacent to the cis element contained in the donor DNA is not particularly limited as long as it is long enough to cause homologous recombination. It may be a short sequence (see FIG. 4-2) or a long homology arm extending over several kb (see FIG. 4-1). In the latter case, the donor DNA can be provided in the form of a targeting vector into which it has been inserted. “Targeting vector into which donor DNA has been inserted” is not limited to a targeting vector into which the same sequence as the above donor DNA is inserted, but has a selection marker and / or a recombinase target sequence between or outside the donor DNA. Including.
  • the vector serving as the basic skeleton of the targeting vector is not particularly limited as long as it is capable of self-replication in a cell to be transformed (for example, E. coli).
  • a cell to be transformed for example, E. coli
  • pBluescript manufactured by Stratagene
  • pZErO1.1 Invitrogen
  • pGEM-1 Promega
  • Donor DNA can be introduced into cells in any form of double-stranded DNA (circular double-stranded DNA, linear double-stranded DNA) or single-stranded DNA.
  • an enzyme capable of genome modification without DSB as an effector can be used in combination with a nucleic acid sequence recognition module.
  • an enzyme for example, an enzyme that substitutes a different base by converting a nucleobase substituent to another substituent (eg, deaminase), catalyzes an abasic reaction, and has an intrinsic repair mechanism.
  • An enzyme that introduces a mutation into an abasic site using an error eg, DNA glycosylase, etc. can be mentioned, but is not limited thereto.
  • the nucleic acid sequence recognition module is CRISPR-Cas, as Cas
  • a mutant (nCas) in which at least one DNA cleavage ability is inactivated preferably a mutant in which both DNA cleavage ability is inactivated (nCas) dCas) is used.
  • deaminase as the effector are described in, for example, International Publication No. 2015/133554, and details of using DNA glycosylase are described in, for example, International Publication No. 2016/072399.
  • a sequence containing at least part of the target Runx binding sequence TGCGGT or ACCGCA What is necessary is just to implement the method similar to the above by making the area
  • CRISPR-Cas is used as the nucleic acid sequence recognition module, it is only necessary to design the guide RNA for each target nucleotide sequence, which is simpler than using a ZF motif or a TAL effector.
  • binding inhibitor of the present invention (a) Antitumor agent
  • the binding inhibitor of the present invention specifically recognizes and binds to the target region of the present invention, thereby binding Runx3 to the cis element of the present invention.
  • the phenomenon of p53 inactivation and c-Myc increased expression that are commonly observed in many cancers is caused by the fact that Runx3, which has been derepressed by p53, is a specific c-Myc gene. It is based on the discovery that it activates transcription of the gene by binding to the Runx binding sequence. Therefore, there is no particular limitation on the cancer with which the binding inhibitor of the present invention can exert an antitumor effect, as long as p53 is inactivated.
  • chronic lymphocytic leukemia cervical cancer, glioma , Hodgkin lymphoma, non-Hodgkin lymphoma, malignant mesothelioma, osteosarcoma, melanoma, multiple myeloma, acute lymphocytic cancer, chronic myelogenous cancer, skin cancer, thyroid cancer, pharyngeal cancer, larynx Cancer, lung cancer, esophageal cancer, stomach cancer, liver cancer, pancreatic cancer, kidney cancer, prostate cancer, small intestine cancer, colon cancer, rectal cancer, colon cancer, testicular cancer, ovarian cancer Cervical cancer, ureteral cancer, bladder cancer.
  • pancreatic cancer with high p53 mutation rate and high malignancy, and osteosarcoma, especially pediatric osteosarcoma, which has a treatment period of 1 year and is often difficult to cure.
  • Useful for. treatment of pancreatic cancer with high p53 mutation rate and high malignancy, and osteosarcoma
  • the binding inhibitor of the present invention is an antigene (eg, TFO, PI polyamide, PNA, etc.), an effective amount of the binding inhibitor alone or with a pharmaceutically acceptable carrier as a pharmaceutical composition, It can be formulated.
  • the binding inhibitor of the present invention is a nucleic acid sequence recognition module (and an effector that forms a complex with the module) used in genome editing technology, preferably the binding inhibitor is a DNA encoding the same.
  • vector of the present invention In the form of an expression vector (hereinafter also referred to as “vector of the present invention”).
  • Examples of the expression vector of the present invention include a detoxified retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, Sindbis virus, Sendai virus, SV40, immunodeficiency virus (HIV). ) And the like can be used.
  • adenovirus or an adeno-associated virus vector is used.
  • Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolide, dispersants such as surfactants, water, Although diluents, such as physiological saline, base wax, etc. are mentioned, it is not limited to them.
  • the antitumor agent of the present invention can further contain a reagent for nucleic acid introduction.
  • the nucleic acid introduction reagent include atelocollagen; liposome; nanoparticle; lipofectin, lipofectamine, DOGS (transfectam), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI) Cationic lipids such as can be used.
  • the antitumor agent of the present invention can be a pharmaceutical composition in which an antigene molecule or the vector of the present invention is encapsulated in liposomes.
  • Liposomes are fine closed vesicles having an inner phase surrounded by one or more lipid bilayers, and can usually retain a water-soluble substance in the inner phase and a fat-soluble substance in the lipid bilayer.
  • the antigene molecule and the vector of the present invention may be retained in the liposome internal phase or in the lipid bilayer.
  • the liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected, for example, in the range of 10 to 1000 nm, preferably 50 to 300 nm. In consideration of deliverability to the target tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
  • Examples of the encapsulation method of the antigene or the vector of the present invention in the liposome include a lipid film method (vortex method), a reverse phase evaporation method, a surfactant removal method, a freeze-thaw method, a remote loading method, and the like. Without limitation, any known method can be appropriately selected.
  • the antitumor agent of the present invention can be administered orally or parenterally to mammals (eg, human, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey). However, it is desirable to administer parenterally.
  • mammals eg, human, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey.
  • parenterally it is desirable to administer parenterally.
  • sustained-release preparation such as a mini-pellet preparation
  • embed it in the vicinity of the affected area or to gradually and continuously administer the affected area using an osmotic pump or the like.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
  • the content of the antigene molecule and the vector of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the whole pharmaceutical composition.
  • the dose of the antitumor agent of the present invention varies depending on the administration method, the type of cancer to be treated, the severity, and the situation (sex, age, weight, etc.) of the administration target.
  • a single dose of antigene molecule is preferably 2 nmol / kg or more and 50 nmol / kg or less, and when administered locally, 1 pmol / kg or more and 10 nmol / kg or less is desirable. It is desirable to administer such dose 1 to 10 times, more preferably 5 to 10 times.
  • the vector of the present invention when the vector of the present invention is administered as viral vector particles, it can be administered at a time, for example, in the range of about 1 ⁇ 10 3 pfu to 1 ⁇ 10 15 pfu as the virus titer.
  • the antitumor agent of the present invention is applied to cells or tissues (eg, cancer cells) collected from the administration subject. It may be an ex ⁇ ⁇ vivo preparation that is added to introduce the expression vector into the cell and return it to the body of the administration target, preferably the cancer lesion.
  • examples of the method for introducing a gene into a cell include a lipofection method, a phosphate-calcium coprecipitation method, and a direct injection method using a micro glass tube.
  • gene transfer methods to tissues include gene transfer methods using encapsulated liposomes, gene transfer methods using electrostatic liposomes, HVJ-liposome method, improved HVJ-liposome method (HVJ-AVE liposome method), receptor-mediated Examples thereof include a gene introduction method, a method of transferring an active ingredient together with a carrier (metal particles) with a particle gun, a direct introduction method of naked-DNA, and a introduction method using a positively charged polymer.
  • the antitumor agent of the present invention can be used in combination with other drugs, for example, existing anticancer drugs depending on the cancer type.
  • the binding inhibitor of the present invention and the other drug can be mixed according to a method known per se to form a mixture, but each is separately It may be formulated and administered to the same subject at the same time or with a time difference.
  • the dose of the other drug for example, the dose usually used when the drug is administered alone can be applied as it is.
  • the antitumor agent of the present invention is particularly effective because p53 is inactivated. Therefore, it is desirable to test whether the cancer patient to be administered has a p53 mutation in order to predict the therapeutic efficacy of the antitumor agent of the present invention. Therefore, the present invention also provides a medicament comprising a combination of the antitumor agent of the present invention and a reagent for assaying p53 inactivation.
  • a method for detecting a mutation in the p53 gene a method in which an exon of the p53 gene is amplified by a PCR method, and sequencing or SSCP analysis is widely used.
  • a set of primers designed to amplify a region containing each exon of the p53 gene is commercially available.
  • binding inhibitor of the present invention is a component of genome editing that involves modification of the genome sequence (eg, nucleic acid sequence recognition module, nuclease, nucleobase modifying enzyme, donor DNA), these are used.
  • a non-human animal having a mutation in the cis element of the present invention and lacking the function of the cis element can be produced.
  • non-human warm-blooded animals non-human mammals and birds
  • Mammals include, for example, laboratory animals such as mice, rats, hamsters, guinea pigs and rabbits, domestic animals such as pigs, cows, goats, horses and sheep, pets such as dogs and cats, primates such as monkeys, orangutans and chimpanzees. Is mentioned. Examples of birds include chickens.
  • the genetically modified animal of the present invention can be obtained by introducing NHEJ or homologous recombination by introducing the binding inhibitor of the present invention into, for example, a pluripotent stem cell derived from a p53 conditional knockout non-human animal (eg, ES cell, iPS cell).
  • a pluripotent stem cell derived from a p53 conditional knockout non-human animal (eg, ES cell, iPS cell).
  • a chimeric embryo or a chimeric animal is produced by a method known per se, and a progeny is obtained from the chimeric animal subjected to germline transmission.
  • genome editing technology the functions of both alleles can be deleted at once, and homozygous genetically modified animals can be easily obtained.
  • the genetically modified animal of the present invention thus obtained is useful for analyzing the molecular mechanism of transcriptional regulation of the c-Myc gene and the molecular mechanism related to the onset and progression of cancer by p53, c-Myc and Runx3. is there.
  • the present invention also provides a method for screening a substance having antitumor activity, using as an index the ability to specifically bind to a specific region in the regulatory region of the c-Myc gene, which contains the cis element of the present invention.
  • the method includes the following steps (1) to (3). (1) A step of bringing Runx3 into contact with a double-stranded DNA having a partial nucleotide sequence of 12 nucleotides or more that contains the cis element of the present invention in the presence or absence of a test substance, (2) a step of measuring the binding between the DNA and Runx3, and (3) a step of selecting a test substance that inhibits the binding between the DNA and Runx3 as a candidate for a substance having antitumor activity.
  • the double-stranded DNA used in (2) the double-stranded DNA constituting the target region of the present invention described above is preferable.
  • test substance used in the screening method of the present invention may be any known compound and novel compound, for example, using nucleic acids, carbohydrates, lipids, proteins, peptides, low molecular weight organic compounds, combinatorial chemistry techniques.
  • examples thereof include a compound library prepared, a random peptide library prepared by solid phase synthesis or a phage display method, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
  • the screening method of the present invention further comprises the following steps (1 ′) to (3 ′).
  • a step of selecting a test substance having a lower inhibitory activity on binding as a candidate for a substance having antitumor activity The double-stranded DNA used in the step (1 ′) is preferably a gene other than the c-Myc gene, preferably Includes a partial nucleotide sequence including a Runx binding sequence, which is present in a gene related to survival.
  • Runx3 protein can be prepared by a method known per se.
  • the Runx3 protein can be isolated and purified from the expression tissue of the Runx3 gene.
  • a recombinant protein by a gene recombination technique.
  • the recombinant protein may be prepared in either a cell system or a cell-free system.
  • step (2) (2 ') the degree of inhibition of the test substance against the binding is assayed by measuring the degree of binding between the double-stranded DNA and Runx3 by the test substance.
  • the binding between the double-stranded DNA and Runx3 can be performed by a method known per se, for example, by measuring the results of gel shift assay, affinity chromatography, etc. with an image analyzer, a spectrophotometer or the like.
  • step (3) a test substance that inhibits the binding between the cis element of the present invention and Runx3 is selected. Furthermore, by the step (3 ′), a Runx binding sequence other than the cis element of the present invention, for example, a gene containing a Runx binding sequence in the regulatory region other than the c-Myc gene, preferably a gene associated with survival, A test substance that does not inhibit the binding of Runx3 to the Runx binding sequence or has a weak inhibitory activity is selected.
  • test substance selected by the above screening method is administered to, for example, a p53 conditional knockout animal (for example, a mammal such as a mouse, rat, hamster, guinea pig, rabbit, dog, monkey).
  • a p53 conditional knockout animal for example, a mammal such as a mouse, rat, hamster, guinea pig, rabbit, dog, monkey.
  • the c-Myc gene expression inhibitory effect and / or antitumor effect of the substance and the degree of side effects can be confirmed.
  • FIG. 1 shows 3 kb upstream from the transcription start site as a mouse / human c-Myc promoter region.
  • the runx site (TGCGGT) present closest to the transcription start point of the c-Myc gene was noted as mR1.
  • mR1 is located in a highly conserved region with high homology in mammals, and mouse mR1 is located near -360 bp, and human mR1 is located near -310 bp.
  • Example 2 Mouse osteosarcoma cells in which mutations were introduced into the mouse mR1 sequence using the CRISPR / Cas9 system were prepared.
  • a TGG (antisense side sequence) PAM sequence located at positions of -365 to -363 was added.
  • the cells (83-1-T7 cells and 83-1-T13 cells) into which two types of homo-deficient mutations (T7 and T13-deficient mutations) were introduced by inducing the indel using the CRISPR / Cas9 system were produced.
  • EMSA Electrode-Mobility-Shift-Assay
  • probe DNA having T7 and T13 deletion mutations (T7: GTCCACC GCGGT GACTGAT (SEQ ID NO: 8), T13: CGTTCCCACC GGT GACTGAT (SEQ ID NO: 9); both were clearly reduced (5 ′ terminal biotin label) (detected by 4% polyacrylamide gel electrophoresis after 20 minutes of reaction at room temperature).
  • T13 deletion mutation completely inhibited the binding of Runx3 and Runx2 proteins.
  • the protein amount of Runx3 is not changed in 83-1-T7 cells and 83-1-T13 cells compared to control 83-1-C cells, but clearly In addition, the amount of c-Myc protein was decreased.
  • the tumorigenicity of 83-1-T7 cells and 83-1-T13 cells was examined in a tumor bearing experiment using nude mice together with 83-1-C cells. 2.5 ⁇ 10 6 mice were injected subcutaneously on the dorsal side of nude mice (BALB / c nu / nu ⁇ 6 weeks old), and the weight of the tumor formed after 30 days was measured and compared (right diagram in FIG. 2). . In mice injected with 83-1-T7 cells and mice injected with 83-1-T13 cells, the tumorigenicity was clearly suppressed as compared to mice injected with control 83-1-C cells. .
  • Example 3 83-1 cells in which Runx3 and c-Myc were knocked down using specific shRNA were prepared, and the results of cancer-bearing experiments in which their tumorigenicity was examined were obtained in [Example 2]. It compared with the result of the cancer experiment (FIG. 3). The cancer bearing experiment was carried out in the same manner as in [Example 2].
  • siRNA-specific sequences of Runx3 and c-Myc are incorporated into Clontech's pSIREN retrovirus shRNA expression vector, and HEK29 is incorporated into TEK29.
  • Retroviruses were produced by transfection. By infecting the 83-1 cell with the retrovirus, the shRNA expression system was inserted into the genome of the 83-1 cell so that the shRNA was constitutively expressed by the U6 promoter.
  • Infected cells were selected by culturing in a culture medium supplemented with 5 ⁇ g / ml of puromycin using the activity of the puromycin resistance gene encoded in the pSIREN vector, and the surviving cells were divided into 2.5 ⁇ 10 6 nude mice. Injected. The introduction of mutations into mR1 showed a higher tumorigenic effect suppressing effect than that of Runx3 knockdown or c-Myc knockdown.
  • Example 4-1 The mR1: TGCGGT upstream from the transcription start point of the c-Myc gene is replaced with the BglII sequence (AGATCT) (FIG. 4-1).
  • targeting vectors were introduced into C57BL / 6-derived ES cells (TT2) by electroporation, and neomycin (G418) was selected using the neomycin-resistant gene activity derived from the Neo cassette.
  • chimeric mice were prepared from ES cells that had undergone homologous recombination as expected, and F1 mice were obtained. Thereafter, F1 mice were crossed with CAG-FLP mice (a mouse systemically expressing yeast-derived FLP recombinase), and mice from which the Neo cassette had been removed were selected from their offspring. The activity of FLP recombinase that excises DNA in an FRT sequence-specific manner was used.
  • Genome editing was applied to fertilized eggs to produce mice that specifically mutated mR1 (FIG. 4-2).
  • a complex of crRNA and tracrRNA targeting CTGCGTATATCAGTCACCGC constitutes a guide RNA and induces Cas9 nuclease.
  • the induced Cas9 nuclease cleaves the genomic DNA into double strands at a position 5 ′ to several bases from the PAM sequence (AGG).
  • the double-stranded genomic DNA is repaired by HDR (Homology-directed repair) using a single-stranded DNA in which mR1 is replaced with a restriction enzyme BglII site (AGATCT) as a donor.
  • HDR Homology-directed repair
  • the single-stranded DNA has a homologous sequence of about 70 bases in both the 5 ′ and 3 ′ directions from the cleavage site.
  • mR1 is specifically substituted with a restriction enzyme BglII site (AGATCT).
  • Example 5-1 Mouse osteosarcoma cells in which mutations were introduced in the vicinity of the mouse mR1 sequence using the CRISPR / Cas9 system were prepared.
  • Example 5-2 Except for using not only 83-1 cells (mOS4 cl.1) but also osteosarcoma-derived cell lines that developed in OS mice (mOS3 cl.2 and 97-3 cells) as cells to be introduced with mutations [
  • Example 2 Using the CRISPR / Cas9 system, mouse osteosarcoma cells (parent cells (Parental), T7 cells, T14 cells, in which homozygous mutations having deletions or insertions were introduced into the mouse mR1 sequence) were introduced in the same manner as in Example 2.
  • T13 cells, T18 cells, T16 cells, T3 cells, A5 cells, A3 cells; however, T7 cells and T14 cells have the same homozygous mutation but derived from different clones) were prepared, and a tumor bearing experiment was performed (FIG. 6). . All cells had suppressed tumorigenicity as compared to the control parental cells.
  • C57B6 strain systemic p53 gene knockout mice (# 002101; Current Biology Vol. 4 p1-7, 1994; p53 ⁇ / ⁇ mice) were purchased from The Jackson Laboratory (USA). Since most of p53 ⁇ / ⁇ mice develop T cell lymphoma and die in about 3 to 4 months (Current Biology Vol.4 p1-7, 1994), they can be used as a T cell lymphoma onset model.
  • Systemic Runx3 gene knockout mice of C57B6 strain mice in which Exon3 of Runx3 gene was replaced with LacZ; Cell Vol.109 p113-124, 2002 were used for mating to generate p53 ⁇ / ⁇ Runx3 +/ ⁇ mice. .
  • C57B6 strain Runx3 ⁇ / ⁇ mice died immediately after birth, p53 ⁇ / ⁇ Runx3 ⁇ / ⁇ mice could not be examined.
  • the full-length Runx3 generates two types of full-length proteins due to the difference in promoters. One of them, the full-length Runx3 derived from the P1 promoter, was knocked out systemically by deleting Exon0 (Runx3 (P1) ⁇ / ⁇ mouse) ) Was produced.
  • the C57B6 strain Runx3 (P1) ⁇ / ⁇ mouse expresses the full-length Runx3 derived from the P2 promoter, and is healthy with a lifespan comparable to that of the wild type, and can be mated.
  • mice By repeating the mating, p53 ⁇ / ⁇ Runx3 (P1) ⁇ / ⁇ mice were generated.
  • p53 ⁇ / ⁇ mR1 m / m mice were generated.
  • mice survival rates were evaluated for these generated mice. The results are shown in FIG. Mice lacking mR1 systemically were healthy and mating without inferiority to the wild type, indicating that there was no concern about side effects even when mR1 was inhibited. Although p53 ⁇ / ⁇ mice developed lymphoma in the thymus and died early, p53 ⁇ / ⁇ mR1 m / m mice survived for a long time. Therefore, it was shown that tumorigenicity by p53 ⁇ / ⁇ is rescued by mR1 mutation. Moreover, surprisingly, this rescue effect was significantly higher than the effect of Runx3 +/ ⁇ and Runx3 (P1) ⁇ / ⁇ .
  • the present invention it is possible to suppress the tumorigenicity of an extremely large number of types of tumor cells only by inhibiting the binding of Runx3 to a specific region (target region of the present invention) on the c-Myc gene.
  • a substance that can specifically inhibit the binding does not affect the action of Runx3 on gene expression other than the c-Myc gene, it is very useful as a safe antitumor agent with reduced side effects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides an antitumor agent containing a substance that specifically recognizes a target region of 12 or more consecutive nucleotides including at least part of the Runx binding sequence TGCGGT nearest the transcription initiation site upstream of the transcription initiation site of a c-Myc gene and inhibits the binding of Runx3 to the Runx binding sequence.

Description

がん遺伝子の転写調節領域Oncogene transcriptional regulatory region
 本発明は、c-Myc遺伝子の転写調節領域を特異的に認識し、該配列へのRunx3の結合を阻害する物質を含有する抗腫瘍剤に関する。 The present invention relates to an antitumor agent containing a substance that specifically recognizes the transcriptional regulatory region of the c-Myc gene and inhibits the binding of Runx3 to the sequence.
 がん細胞が蓄積する遺伝子異常は多種多様で、時間経過とともに、その複雑性が増している。それに対抗しようと、多種多様な分子標的薬(抗がん剤)が開発されているが、その複雑性を克服できていない。 The genetic abnormalities accumulated in cancer cells are diverse and their complexity increases with time. A wide variety of molecular targeting drugs (anticancer drugs) have been developed to counter this, but the complexity has not been overcome.
 抗がん剤としては、細胞分裂をターゲットとする従来の抗がん剤に加えて、がん特有の変異をターゲットとする分子標的剤や抗PD-1抗体などの、体の免疫を調整して免疫機構にがんを攻撃させる免疫療法剤等が挙げられる。しかし、従来の抗がん剤は正常細胞も影響を受けやすく、分子標的剤は標的によって非常に有効なこともある一方、あまり有効でない場合もあり、免疫療法剤は、治療を受ける患者のうち、効果がある人が限定されるといった問題がある。 In addition to conventional anticancer agents that target cell division, anticancer agents regulate body immunity, such as molecular targeting agents that target cancer-specific mutations and anti-PD-1 antibodies. And immunotherapeutic agents that cause the immune mechanism to attack cancer. However, conventional anticancer drugs are susceptible to normal cells, and molecular targeting agents may be very effective depending on the target, but may not be very effective, and immunotherapeutic agents are among the patients undergoing treatment. There is a problem that effective people are limited.
 細胞において変異が蓄積しても、大抵の場合は、該変異が修復されるか、アポトーシスや免疫攻撃により該細胞が死滅するが、3~10回の変異が蓄積すると、がんになるといわれている。その変異のうちには、共通の因子に生じる変異があり、複雑な悪性腫瘍にも共通の分子基盤が存在する。例えば、ヒトのがんでは、p53の不活性化とc-Mycの発現上昇が最も広範に確認される。p53は最も有名で影響があると考えられている「がん抑制遺伝子」である。p53の主な役割は、細胞内における遺伝子異常をチェックし、異常があればアポトーシスを誘導することである。p53は、全腫瘍の50%~80%程度において何らかの変異(機能不全、発現量低下)があることが知られている。また、悪性度、抗がん耐性と相関があると考えられている。 Even if mutations accumulate in a cell, in most cases, the mutation is repaired, or the cell is killed by apoptosis or immune attack, but if 3 to 10 mutations accumulate, it is said to cause cancer. Yes. Among these mutations, there are mutations that occur in common factors, and there is a common molecular basis for complex malignant tumors. For example, in human cancer, inactivation of p53 and increased expression of c-Myc are most widely confirmed. p53 is the most famous and considered “cancer suppressor gene”. The main role of p53 is to check for genetic abnormalities in cells and to induce apoptosis if there are abnormalities. It is known that p53 has some kind of mutation (dysfunction, decreased expression level) in about 50% to 80% of all tumors. It is also considered to correlate with malignancy and anticancer resistance.
 p53及びその周辺分子について非常に多くの方法で抗がん剤開発が行われているが、現在まで成功していない。正常なp53を増加させることは技術的に困難であって、一定量以上増えた場合はアポトーシスを誘導するので、過剰に発現させると正常細胞にもアポトーシスを誘導することになる(即ち、「正常量」に調整することが難しい)。このため、p53の上流・下流をターゲットにした抗がん剤も多く開発中であるが、いずれも成功していない。 Although anticancer drugs have been developed for p53 and its surrounding molecules by a great number of methods, it has not been successful to date. It is technically difficult to increase normal p53, and when it exceeds a certain amount, apoptosis is induced. Therefore, when it is excessively expressed, apoptosis is also induced in normal cells (ie, “normal” Difficult to adjust to "amount"). For this reason, many anticancer agents targeting upstream and downstream of p53 are under development, but none has been successful.
 c-Mycは、細胞増殖のためのタンパク質を調整する役割を有する。c-Mycをノックダウンすると、増殖準備が起こらず、細胞周期が停止する。アポトーシスは、増殖する瞬間が最も誘導しやすいが、細胞周期が停止するとアポトーシスには抵抗性となる。従って、c-Mycも、創薬の直接的なターゲットとするのは困難である。 C-Myc has a role of regulating proteins for cell proliferation. When c-Myc is knocked down, no growth preparation occurs and the cell cycle stops. Apoptosis is most easily induced at the moment of proliferation, but becomes resistant to apoptosis when the cell cycle stops. Therefore, c-Myc is also difficult to be a direct target for drug discovery.
 Runxファミリーは進化的に保存されたRuntドメインを有し、該ドメインを介して標的遺伝子の転写調節領域に結合する。Runxファミリーはまた、C末端側に様々な転写因子(コファクター)と相互作用してヘテロダイマーを形成し、下流の標的遺伝子群の転写を制御する領域を有する(非特許文献1)。哺乳類のRunxファミリーはRunx1、Runx2及びRunx3から構成されるが、これらの異常は種々の疾患と密接に関連する。例えば、Runx1は急性骨髄性白血病における染色体転座の標的であり、染色体不安定性によるRunx2の片方の対立遺伝子の欠落(LOH)は、鎖骨頭蓋骨異形成の原因とされている。一方で、Runx3は胃がんのがん抑制遺伝子であることが指摘されている(非特許文献2)。さらに、Runx3は核内でp53と結合し、p53の標的遺伝子群の転写を正に制御することが示唆されている(非特許文献2)。また、Runx3をノックダウンしたマウスは致死であり、発現量を半減させたマウスも寿命が短いことから、Runx3は生存に必須の機能を有すると考えられ、抗がん剤のターゲットとしては不向きなようである。 The Runx family has an evolutionarily conserved Runt domain, and binds to the transcriptional regulatory region of the target gene via the domain. The Runx family also has a region on the C-terminal side that interacts with various transcription factors (cofactors) to form heterodimers and controls transcription of downstream target genes (Non-patent Document 1). The mammalian Runx family consists of Runx1, Runx2, and Runx3, but these abnormalities are closely associated with various diseases. For example, Runx1 is a target for chromosomal translocation in acute myeloid leukemia, and lack of one allele of Runx2 due to chromosomal instability (LOH) has been attributed to clavicular skull dysplasia. On the other hand, it has been pointed out that Runx3 is a tumor suppressor gene for gastric cancer (Non-patent Document 2). Furthermore, it has been suggested that Runx3 binds to p53 in the nucleus and positively regulates the transcription of the target gene group of p53 (Non-patent Document 2). In addition, since a mouse in which Runx3 is knocked down is lethal and a mouse whose expression level is halved also has a short life span, it is considered that Runx3 has an essential function for survival and is not suitable as a target for anticancer agents. It seems.
 c-Myc遺伝子の転写開始点より上流には、多数のRunx結合配列(ACCACA,TGCGGT)が存在し、内在性のRunx1がそれらのRunx結合配列に結合すること、コファクターとの相互作用を介してc-Myc遺伝子の発現を抑制していることが報告されている(非特許文献1)。 A large number of Runx binding sequences (ACCCACA, TGCGGT) exist upstream from the transcription start site of the c-Myc gene, and endogenous Runx1 binds to these Runx binding sequences through interaction with cofactors. Have been reported to suppress the expression of the c-Myc gene (Non-patent Document 1).
 上述のように、多くのがんで、p53の不活性化とc-Mycの発現上昇が共通して認められる。また、Runxファミリーは、p53とc-Mycの双方と相互作用し得る因子であることが示唆されている。しかしながら、これらの因子を、抗がん剤創薬の直接的なターゲットとすることは難しいと考えられている。 As described above, inactivation of p53 and increased expression of c-Myc are commonly observed in many cancers. In addition, it has been suggested that the Runx family is a factor that can interact with both p53 and c-Myc. However, it is considered difficult to make these factors direct targets for anticancer drug discovery.
 ここで、ヒト非小細胞肺がん細胞株であるA549細胞を注入したNOGマウスに対し、Runx1~3共通の認識配列であるTGTGGTを標的とするPIポリアミド(Chb-M)を投与したところ、A549細胞の増殖を抑制し、生存率を向上させたことが報告されている(非特許文献3)。また、同文献には、実験には用いられていないものの、TGCGGTを標的とするPIピリアミド(Chb-50)も開示されている。しかしながら、c-Myc遺伝子の転写調節領域には、多数のRunx結合配列が存在しており、どの部位のRunxの認識配列が重要であるかについて知られていない。また、Runx1、Runx2又はRunx3をノックアウトしたマウスはいずれも胎生致死であるため、多数のRunx結合配列を標的とする上記PIピリアミドは、非常に強い副作用を引き起こすことが予想される。 Here, when PI polyamide (Chb-M) targeting TGTGGT, which is a recognition sequence common to Runx1 to 3, was administered to NOG mice injected with A549 cells, a human non-small cell lung cancer cell line, A549 cells It has been reported that the growth rate of the plant was suppressed and the survival rate was improved (Non-patent Document 3). The same document also discloses PI pyramide (Chb-50) that targets TGCGGT, although not used in experiments. However, there are a large number of Runx binding sequences in the transcriptional regulatory region of the c-Myc gene, and it is not known which part of the Runx recognition sequence is important. In addition, since any mouse knocked out of Runx1, Runx2 or Runx3 is embryonic lethal, the PI pyramide targeting a large number of Runx binding sequences is expected to cause very strong side effects.
 従って、本発明の目的は、がんに共通する分子基盤の中からがん抑制の現実的なターゲットとなり得る因子を同定し、当該因子を標的とする、効果的で安全ながんの治療又は予防手段を提供することである。 Therefore, an object of the present invention is to identify a factor that can be a realistic target for cancer suppression from a molecular basis common to cancers, and to target an effective and safe cancer treatment or target. It is to provide a preventive measure.
 上記課題を解決すべく、本発明者はまず、骨肉種におけるp53とRunx3の関係に着目し、p53を骨芽細胞特異的にノックアウトしたマウスはほぼ確実に骨肉腫になるが、更にRunx3をヘテロ接合性にノックアウトすると、腫瘍の発症が顕著に抑えられることを見出した。一方、NIHのデータベース解析から、ヒト骨肉腫において、Runx3とc-Mycの発現量に正の相関があることが明らかとなったので、p53コンディショナルノックアウトマウスの骨肉種細胞における分子メカニズムを解析したところ、Runx3はp53が欠失した状況下で、c-Mycの発現を過剰に誘導することを見出した。p53欠失骨肉腫細胞の造腫瘍性は、c-Mycの発現を低減することで顕著に抑制されたことから、p53の不活性化による骨肉腫の発症は、RUNX3によるc-Mycの異常な発現誘導によるものであることが判明した。しかしながら、c-Myc遺伝子の転写調節領域には、多数のRunx結合配列が存在し、どこをターゲットにすればよいかは全く不明であった。また、Runx結合配列はわずか6ヌクレオチドのコンセンサス配列であり、c-Myc以外にも多くの標的遺伝子群が存在することから、オフターゲット効果が十分に低減された、c-Myc特異的な発現抑制を可能にする必要がある。 In order to solve the above problems, the present inventor first paid attention to the relationship between p53 and Runx3 in osteosarcoma, and mice in which p53 was knocked out specifically for osteoblasts almost certainly became osteosarcoma. It has been found that the onset of tumors can be remarkably suppressed by knocking out to the junction. On the other hand, the analysis of NIH database revealed that there was a positive correlation between the expression levels of Runx3 and c-Myc in human osteosarcoma, so we analyzed the molecular mechanism in osteosarcoma cells of p53 conditional knockout mice. However, it was found that Runx3 excessively induces c-Myc expression in the situation where p53 was deleted. Since the tumorigenicity of p53-deficient osteosarcoma cells was significantly suppressed by reducing the expression of c-Myc, the onset of osteosarcoma due to inactivation of p53 is caused by abnormal c-Myc due to RUNX3. It was found that this was due to expression induction. However, a large number of Runx binding sequences exist in the transcriptional regulatory region of the c-Myc gene, and it was completely unknown where to target. In addition, the Runx binding sequence is a consensus sequence of only 6 nucleotides, and since there are many target gene groups other than c-Myc, the off-target effect is sufficiently reduced and c-Myc-specific expression suppression Need to be possible.
 本発明者はさらに検討を重ねた結果、p53コンディショナルノックアウトマウスにおいて、c-Myc遺伝子の転写開始点の上流の、該転写開始点の最も近傍に位置するRunx結合配列5’-TGCGGT-3’(本明細書において、特に断らない限り、ヌクレオチド配列は5’から3’方向に、左から右に記載される。)に変異を導入して該Runx結合配列を破壊するだけで、Runx3やc-Mycのタンパク質自体の発現を抑制するよりも高い造腫瘍抑制効果を示すことを見出した。しかも、当該変異を有するマウスは、野生型マウスと遜色なく成育することが確認された。
 本発明者は、これらの知見に基づいて、c-Myc遺伝子の転写調節領域の、転写開始点の最も近傍に位置するRunx結合配列へのRunx3の結合を、何らかの手段により特異的に阻害することにより、オフターゲット効果による副作用を回避しつつ、多種多様ながんに対して顕著な抗腫瘍効果が得られるものと結論し、本発明を完成するに至った。
As a result of further studies, the present inventor has found that in p53 conditional knockout mice, the Runx binding sequence 5′-TGCGGT-3 ′ located in the vicinity of the transcription start point upstream of the transcription start point of the c-Myc gene. (In the present specification, unless otherwise specified, nucleotide sequences are written in the 5 ′ to 3 ′ direction, from left to right.) By simply introducing mutations to destroy the Runx binding sequence, Runx3 or c -It was found that the tumor suppressor effect is higher than that of suppressing the expression of the Myc protein itself. In addition, it was confirmed that mice having the mutation grew inferior to wild-type mice.
Based on these findings, the present inventor specifically inhibits the binding of Runx3 to the Runx binding sequence located closest to the transcription start site in the transcriptional regulatory region of the c-Myc gene by some means. Thus, it was concluded that a remarkable antitumor effect can be obtained against a wide variety of cancers while avoiding side effects due to the off-target effect, and the present invention was completed.
 即ち、本発明は以下のとおりである。
[1] c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTの少なくとも一部を含む、連続する12ヌクレオチド以上の標的領域を特異的に認識し、該Runx結合配列へのRunx3の結合を阻害する物質を含有する、抗腫瘍剤。
[2] 前記Runx結合配列が、ヒトc-Myc遺伝子の転写開始点から-309~-304番目のヌクレオチド配列、又は他の哺乳動物オルソログにおける該ヌクレオチド配列に対応する配列(counterpart)である、[1]に記載の剤。
[3] p53が不活性化されている対象に適用することを特徴とする、[1]又は[2]に記載の剤。
[4] 前記物質が、前記標的領域内のDNA配列に対するアンチジーンである、[1]~[3]のいずれかに記載の剤。
[5] 前記アンチジーンがピロール・イミダゾールポリアミドである、[4]に記載の剤。
[6] 前記物質が、前記標的領域に特異的に結合する核酸配列認識モジュールである、[1]~[3]のいずれかに記載の剤。
[7] 前記核酸配列認識モジュールが、CRISPR-Cas、ジンクフィンガーモチーフ、TALエフェクター又はPPRモチーフである、[6]に記載の剤。
[8] 前記核酸配列認識モジュールがCRISPR-dCasである、[6]に記載の剤。
[9] 前記物質が、前記核酸配列認識モジュールと複合体形成するヌクレアーゼとからなる、[6]又は[7]に記載の剤。
[10] 前記物質が、前記ヌクレアーゼで切断される部位で相同組換えを生じさせ得るドナーDNAをさらに含む、[9]に記載の剤。
[11] 前記核酸配列認識モジュールが、転写抑制因子と複合体を形成する、[6]~[8]のいずれかに記載の剤。
[12] 前記物質が、それをコードする1以上の発現ベクターの形態で提供される、[1]~[3]及び[6]~[11]のいずれかに記載の剤。
[13] p53の不活性化を検定するための試薬と組み合わせてなる、[1]~[12]のいずれかに記載の剤。
[14] (1)被検物質の存在下又は非存在下で、c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTを含む、連続する12ヌクレオチド以上の部分ヌクレオチド配列を有する二本鎖DNAと、Runx3とを接触させる工程、
(2)該DNAとRunx3との結合を測定する工程、及び
(3)該DNAとRunx3との結合を阻害した被検物質を、抗腫瘍活性を有する物質の候補として選択する工程
を含む、抗腫瘍活性を有する物質のスクリーニング方法。
[15] c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTの少なくとも一部を含む、連続する12ヌクレオチド以上の標的領域を特異的に認識し、該Runx結合配列へのRunx3の結合を阻害する物質の有効量を哺乳動物に対し投与することを特徴とする、該哺乳動物における腫瘍の形成の抑制及び/又は既に形成された腫瘍の増殖の抑制方法。
[16] 腫瘍の形成の抑制及び/又は既に形成された腫瘍の増殖の抑制における使用のための、c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTの少なくとも一部を含む、連続する12ヌクレオチド以上の標的領域を特異的に認識し、該Runx結合配列へのRunx3の結合を阻害する物質。
That is, the present invention is as follows.
[1] Specifically recognizes a continuous target region of 12 nucleotides or more containing at least part of the Runx binding sequence TGCGGT in the upstream of the transcription start point of the c-Myc gene, An antitumor agent comprising a substance that inhibits binding of Runx3 to a Runx binding sequence.
[2] The Runx binding sequence is a nucleotide sequence from −309 to −304 from the transcription start point of the human c-Myc gene, or a sequence (counterpart) corresponding to the nucleotide sequence in other mammalian orthologs. 1].
[3] The agent according to [1] or [2], which is applied to a subject in which p53 is inactivated.
[4] The agent according to any one of [1] to [3], wherein the substance is an antigene for a DNA sequence in the target region.
[5] The agent according to [4], wherein the antigene is pyrrole-imidazole polyamide.
[6] The agent according to any one of [1] to [3], wherein the substance is a nucleic acid sequence recognition module that specifically binds to the target region.
[7] The agent according to [6], wherein the nucleic acid sequence recognition module is CRISPR-Cas, zinc finger motif, TAL effector or PPR motif.
[8] The agent according to [6], wherein the nucleic acid sequence recognition module is CRISPR-dCas.
[9] The agent according to [6] or [7], wherein the substance comprises a nuclease that forms a complex with the nucleic acid sequence recognition module.
[10] The agent according to [9], wherein the substance further comprises donor DNA capable of causing homologous recombination at a site cleaved by the nuclease.
[11] The agent according to any one of [6] to [8], wherein the nucleic acid sequence recognition module forms a complex with a transcription repressing factor.
[12] The agent according to any one of [1] to [3] and [6] to [11], wherein the substance is provided in the form of one or more expression vectors encoding the substance.
[13] The agent according to any one of [1] to [12], which is combined with a reagent for assaying inactivation of p53.
[14] (1) 12 or more consecutive nucleotides containing the Runx binding sequence TGCGGT nearest to the transcription start point upstream of the transcription start point of the c-Myc gene in the presence or absence of the test substance A step of contacting a double-stranded DNA having a partial nucleotide sequence of Runx3 with
(2) measuring the binding between the DNA and Runx3, and (3) selecting a test substance that inhibits the binding between the DNA and Runx3 as a candidate for a substance having antitumor activity. A screening method for a substance having tumor activity.
[15] Specifically recognizing a target region of 12 nucleotides or more consecutively containing at least a part of the Runx binding sequence TGCGGT in the upstream of the transcription start point of the c-Myc gene, An effective amount of a substance that inhibits the binding of Runx3 to a Runx binding sequence is administered to a mammal, and a method for suppressing tumor formation and / or suppressing growth of an already formed tumor in the mammal .
[16] Runx binding sequence TGCGGT nearest to the transcription start point upstream of the transcription start point of the c-Myc gene for use in inhibiting tumor formation and / or inhibiting the growth of already formed tumors A substance that specifically recognizes a target region of 12 nucleotides or more that contains at least a part of and binds Runx3 to the Runx binding sequence.
 本発明によれば、ゲノム上の特定位置の特定配列(c-MycプロモーターのRunx3の結合配列;6bp)を阻害するだけで、極めて多くの種類の腫瘍細胞の造腫瘍能を抑制できる。その特定配列特異的に変異を導入する物質及びその特定配列に特異的に結合し、該配列とRunx3との結合を阻害することのできる物質は、画期的な抗がん効果をもたらす。 According to the present invention, the tumorigenic ability of an extremely large number of types of tumor cells can be suppressed only by inhibiting a specific sequence at a specific position on the genome (binding sequence of Runx3 of c-Myc promoter; 6 bp). A substance that specifically introduces a mutation into the specific sequence and a substance that specifically binds to the specific sequence and can inhibit the binding between the sequence and Runx3 brings about a revolutionary anticancer effect.
図1は、マウスc-Myc遺伝子及びヒトのc-Myc遺伝子の転写開始点の上流域に存在するRunx結合配列ACCACA及びTGCGGTの位置を示す図である。FIG. 1 is a diagram showing the positions of Runx binding sequences ACCACA and TGCGGT existing in the upstream region of the transcription start sites of mouse c-Myc gene and human c-Myc gene. 図2は、c-Mycの転写開始点に最も近い位置に存在するRunx結合配列TGCGGT(mR1)に変異を導入した結果、c-Mycの発現量が低下し、造腫瘍能が抑制されたことを示す図である。FIG. 2 shows that as a result of introducing a mutation into the Runx binding sequence TGCGGT (mR1) located closest to the transcription start site of c-Myc, the expression level of c-Myc was reduced and tumorigenicity was suppressed. FIG. 図3は、mR1への変異の導入が、Runx3のノックダウンやc-Mycのノックダウンよりも造腫瘍能抑制効果が大きかったことを示す図である。FIG. 3 is a graph showing that the introduction of mutations into mR1 had a greater tumorigenic effect suppressing effect than that of Runx3 knockdown or c-Myc knockdown. 図4-1は、mR1に変異を導入した遺伝子改変マウスの作製における、ES細胞を用いた相同組み換えによる遺伝子改変の概要を示す図である。FIG. 4-1 is a diagram showing an outline of genetic modification by homologous recombination using ES cells in the production of a genetically modified mouse in which a mutation is introduced into mR1. 図4-2は、mR1に変異を導入した遺伝子改変マウスの作製における、ゲノム編集の概要を示す図である。FIG. 4-2 is a diagram showing an outline of genome editing in the production of a genetically modified mouse in which a mutation is introduced into mR1. 図5は、mR1に変異を導入した結果、大幅に造腫瘍能が抑制されたことを示すが、一方で、mR1の6塩基以外の部分に欠損があっても造腫瘍能はそれほど変わらないことを示す図である。FIG. 5 shows that as a result of introducing a mutation into mR1, the tumorigenic ability was greatly suppressed. On the other hand, even if there is a deletion in a part other than the 6 bases of mR1, the tumorigenic ability does not change so much. FIG. 図6は、mR1に変異(塩基の欠失又は挿入)を導入した結果、造腫瘍能が抑制されたことを示す図である。FIG. 6 is a diagram showing that tumorigenicity is suppressed as a result of introducing mutations (base deletion or insertion) into mR1. 図7は、全身性のp53ノックアウトと、mR1m/mとを組み合わせることで、p53ノックアウトによるリンパ腫の形成がレスキューされることを示す図である。FIG. 7 is a diagram showing that lymphoma formation by p53 knockout is rescued by combining systemic p53 knockout and mR1 m / m .
 本発明は、c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列(TGCGGT;以下、「本発明のシスエレメント」ともいう。)の少なくとも一部を含む、連続する12ヌクレオチド以上の標的領域を特異的に認識し、該Runx結合配列へのRunx3結合を阻害する物質(以下、「本発明の結合阻害物質」ともいう。)を含有する、抗腫瘍剤(以下、「本発明の抗腫瘍剤」ともいう。)を提供する。ここで「抗腫瘍剤」とは、腫瘍の形成及び/又は既に形成された腫瘍の増殖を抑制し得る薬剤を意味し、望ましくは腫瘍の形成阻止及び/又は腫瘍の退縮作用を有する薬剤である。 The present invention includes at least a part of a Runx binding sequence (TGCGGT; also referred to as “the cis element of the present invention”) nearest to the transcription start point upstream of the transcription start point of the c-Myc gene. An antitumor agent comprising a substance that specifically recognizes a continuous target region of 12 nucleotides or more and inhibits Runx3 binding to the Runx binding sequence (hereinafter also referred to as “binding inhibitor of the present invention”) Hereinafter, it is also referred to as “the antitumor agent of the present invention”. As used herein, the term “antitumor agent” means an agent that can suppress tumor formation and / or growth of an already formed tumor, and preferably has an effect of inhibiting tumor formation and / or tumor regression. .
 c-Myc遺伝子の好ましい例としては、例えば、ヒトc-Myc(NCBI Gene ID:4609)、マウスc-Myc(NCBI Gene ID:17869)、ラットc-Myc(NCBI Gene ID:24577)又はそれら以外の哺乳動物(例、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル)におけるそのオルソログ、あるいは、それらの天然のアレル変異体又は遺伝子多型などが挙げられる。 Preferred examples of the c-Myc gene include, for example, human c-Myc (NCBI Gene ID: 4609), mouse c-Myc (NCBI Gene ID: 17869), rat c-Myc (NCBI Gene ID: 24577) or others Orthologs thereof in mammals (eg, rabbits, sheep, pigs, cattle, cats, dogs, monkeys), or their natural allelic variants or gene polymorphisms.
 本明細書において、c-Myc遺伝子のヌクレオチド配列は、ヒトの場合、NCBIデータベースに登録される第8番染色体のヌクレオチド配列(NCBI Reference Sequence: NC_000008.11)、マウスの場合、第15番染色体のヌクレオチド配列(NCBI Reference Sequence: NC_000081.6)を基準にして表現される。ヒトc-Myc遺伝子の転写開始点は、NC_000008.11のヌクレオチド配列中127736069位のヌクレオチドGであり、マウスc-Myc遺伝子の転写開始点は、NC_000081.6のヌクレオチド配列中61985341位のヌクレオチドCである。ヒトc-Myc遺伝子の転写開始点の上流3kb(NC_000008.11の127733069~127736068位)のヌクレオチド配列を配列番号1に、マウスc-Myc遺伝子の転写開始点の上流3kb(NC_000081.6の61982341~61985340位)のヌクレオチド配列を配列番号2に、それぞれ示す。c-Myc遺伝子の転写開始点より上流の転写調節領域のヌクレオチドの位置は、転写開始点の直前のヌクレオチドを-1として、該ヌクレオチドからの距離で表される。従って、本明細書において、ヒトc-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTは、-309~-304番目の位置(配列番号1で表されるヌクレオチド配列中ヌクレオチド番号2692~2697)に存在する。また、マウスc-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTは、-315~-310番目の位置(配列番号2で表されるヌクレオチド配列中ヌクレオチド番号2686~2691)に存在する。しかしながら、本発明のc-Myc遺伝子には、NCBIデータベースに登録されている以外のヌクレオチド配列を有するもの、例えば、登録されているヌクレオチド配列を野生型とした場合の、天然のアレル変異体(アレル頻度1%以上)もしくは遺伝子多型(アレル頻度1%未満)も当然包含される。それらのヌクレオチド配列においては、1以上のヌクレオチドの挿入もしくは欠失により、転写開始点との位置関係が上記の定義と異なる場合があり得るが、基準配列とのアラインメントによりその位置を容易に特定することができる。ヒト及びマウス以外の哺乳動物のc-Myc遺伝子における本発明のシスエレメントの位置も同様にして特定することができる。従って、本発明のシスエレメントは、ヒトc-Myc遺伝子の転写開始点から-309~-304番目のヌクレオチド配列、あるいは他の哺乳動物オルソログ又はそれらの天然のアレル変異体又は遺伝子多型における、該ヌクレオチド配列に対応する配列(counterpart)である。 In this specification, the nucleotide sequence of the c-Myc gene is the nucleotide sequence of chromosome 8 (NCBI Reference Reference: NC_000008.11) registered in the NCBI database for humans, and the chromosome sequence of chromosome 15 for mice. It is expressed based on the nucleotide sequence (NCBI Reference Reference Sequence: NC_000081.6). The transcription start point of human c-Myc gene is nucleotide G at position 127736069 in the nucleotide sequence of NC_000008.11, and the transcription start point of mouse c-Myc gene is nucleotide C at position 61985341 in the nucleotide sequence of NC_000081.6. is there. The nucleotide sequence of 3 kb upstream of the transcription start site of human c-Myc gene (positions 127733069 to 127736068 of NC_000008.11) is SEQ ID NO: 1, and 3 kb upstream of the transcription start site of mouse c-Myc gene (from 61982341 of NC_000081.6) The nucleotide sequence at position 61985340 is shown in SEQ ID NO: 2, respectively. The position of the nucleotide in the transcription regulatory region upstream from the transcription start point of the c-Myc gene is represented by the distance from the nucleotide, with the nucleotide immediately before the transcription start point being -1. Therefore, in the present specification, the Runx binding sequence TGCGGT closest to the transcription start point upstream of the transcription start point of the human c-Myc gene is represented by the -309 to -304th positions (represented by SEQ ID NO: 1). In the nucleotide sequence at nucleotide numbers 2692 to 2697). In addition, the Runx binding sequence TGCGGT closest to the transcription start point upstream of the transcription start point of the mouse c-Myc gene is the position −315 to −310 (the nucleotide number in the nucleotide sequence represented by SEQ ID NO: 2). 2686-2691). However, the c-Myc gene of the present invention has a nucleotide sequence other than those registered in the NCBI database, for example, a natural allelic variant (allele when the registered nucleotide sequence is a wild type). Naturally, a frequency of 1% or more) or a gene polymorphism (allele frequency of less than 1%) is also included. In these nucleotide sequences, the positional relationship with the transcription start point may differ from the above definition due to the insertion or deletion of one or more nucleotides, but the position is easily specified by alignment with the reference sequence. be able to. The position of the cis element of the present invention in the c-Myc gene of mammals other than humans and mice can also be specified in the same manner. Accordingly, the cis element of the present invention is the nucleotide sequence from -309 to -304 from the transcription start point of the human c-Myc gene, or other mammalian orthologs or their natural allelic variants or gene polymorphisms. A sequence (counterpart) corresponding to the nucleotide sequence.
 本明細書において「シスエレメント」とは、遺伝子の調節領域上に存在し、該遺伝子の転写レベルの制御に関与し、該遺伝子にコードされる遺伝子産物の発現量を決定する重要な要素となっている、二本鎖DNAの領域である。本発明のシスエレメントは、c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合領域、即ち、正鎖:TGCGGT及び逆鎖:ACCGCAからなる二本鎖DNAの領域である。 In the present specification, the “cis element” is present on the regulatory region of a gene, is involved in the control of the transcription level of the gene, and is an important element that determines the expression level of the gene product encoded by the gene. This is a region of double-stranded DNA. The cis element of the present invention is a Runx binding region that is closest to the transcription start point of the c-Myc gene, that is, a double-stranded DNA region consisting of a normal strand: TGCGGT and a reverse strand: ACCGCA. It is.
 「本発明のシスエレメントTGCGGTの少なくとも一部を含む、連続する12ヌクレオチド以上の領域」(以下、「本発明の標的領域」ともいう。)とは、該シスエレメントの全部(TGCGGT)、該シスエレメントの3’側から1ヌクレオチドずつが除かれたTGCGG、TGCG、TGC、TG又はT、あるいは該シスエレメントの5’側から1ヌクレオチドずつが除かれたGCGGT、CGGT、GGT、GT又はTを含み、かつc-Myc遺伝子の転写開始点の上流配列中の連続する12ヌクレオチド以上を含む部分ヌクレオチド配列からなる領域を意味する。例えば、該領域の長さを20ヌクレオチドとした場合、ヒトc-Myc遺伝子を例にとれば、表1のボックスで囲まれた領域が本発明の標的領域に包含される。 “A region of 12 nucleotides or more that includes at least a part of the cis element TGCGGT of the present invention” (hereinafter, also referred to as “target region of the present invention”) means all of the cis elements (TGCGGT), Includes TGCGG, TGCG, TGC, TG or T from which the nucleotide is removed from the 3 ′ side of the element, or GCGGT, CGGT, GGT, GT or T from which the nucleotide is removed from the 5 ′ side of the cis element And a region consisting of a partial nucleotide sequence containing 12 or more consecutive nucleotides in the upstream sequence of the transcription start site of the c-Myc gene. For example, when the length of the region is 20 nucleotides, taking the human c-Myc gene as an example, the region surrounded by the box in Table 1 is included in the target region of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 後述の実施例に示されるとおり、本発明のシスエレメント中の末端1ヌクレオチドが欠失するだけでも、p53ノックアウトマウスにおける造腫瘍性を半減させ得ることから、本発明の標的領域としては、本発明のシスエレメントの末端1ヌクレオチドのみを含む領域であっても十分であるが、好ましくは、本発明のシスエレメントの末端から2ヌクレオチド、より好ましくは3ヌクレオチド、さらに好ましくは4ヌクレオチド、特に好ましくは5ヌクレオチド、最も好ましくは本発明のシスエレメント全体を含む領域である。例えば、表1を例にとると、本発明の標的領域として、領域(2)~(24)が好ましく、領域(3)~(23)がより好ましく、領域(4)~(22)がさらに好ましく、領域(5)~(21)が特に好ましく、領域(6)~(20)が最も好ましい。 As shown in the examples described later, even if only one terminal nucleotide in the cis element of the present invention is deleted, the tumorigenicity in p53 knockout mice can be halved. A region containing only one terminal nucleotide of the cis element is sufficient, but preferably 2 nucleotides, more preferably 3 nucleotides, still more preferably 4 nucleotides, particularly preferably 5 from the end of the cis element of the present invention. A nucleotide, most preferably a region comprising the entire cis element of the present invention. For example, taking Table 1 as an example, the target regions of the present invention are preferably the regions (2) to (24), more preferably the regions (3) to (23), and further the regions (4) to (22). Preferably, regions (5) to (21) are particularly preferable, and regions (6) to (20) are most preferable.
 本発明の標的領域の長さは、本発明の結合阻害物質が該領域を特異的に認識して結合し得る限り、特に制限されないが、好ましくは12ヌクレオチド以上、より好ましくは15ヌクレオチド以上、さらに好ましくは17ヌクレオチド以上である。長さの上限も特に制限されないが、例えば30ヌクレオチド以下、好ましくは25ヌクレオチド以下、より好ましくは22ヌクレオチド以下である。従って、該標的領域の長さの範囲としては、例えば12~30ヌクレオチド、好ましくは15~25ヌクレオチド、より好ましくは17~22ヌクレオチドが挙げられる。 The length of the target region of the present invention is not particularly limited as long as the binding inhibitor of the present invention can specifically recognize and bind to the region, but is preferably 12 nucleotides or more, more preferably 15 nucleotides or more, Preferably it is 17 nucleotides or more. The upper limit of the length is not particularly limited, but is, for example, 30 nucleotides or less, preferably 25 nucleotides or less, more preferably 22 nucleotides or less. Accordingly, the range of the length of the target region includes, for example, 12 to 30 nucleotides, preferably 15 to 25 nucleotides, and more preferably 17 to 22 nucleotides.
 本発明の結合阻害物質は、c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列である本発明のシスエレメントの全部もしくは一部を含む、本発明の標的領域を特異的に認識して結合することにより、Runx3の本発明のシスエレメントへの結合を遮断し、該結合により引き起こされるc-Myc遺伝子の転写活性化を抑制することができる。Runx3は、p53と結合した状態では、c-Myc遺伝子の調節領域上のRunx結合配列に結合できず、c-Mycの発現を誘導できない。従って、本発明の結合阻害物質は、p53が不活性化(少なくともRunx3と結合して、Runx3によるc-Myc遺伝子の転写活性化を抑制する活性が欠損)した対象に適用されることが望ましい。 The binding inhibitor of the present invention comprises the target of the present invention comprising all or part of the cis element of the present invention, which is the Runx binding sequence nearest to the transcription start site upstream of the transcription start site of the c-Myc gene. By specifically recognizing and binding the region, it is possible to block the binding of Runx3 to the cis element of the present invention and suppress the transcriptional activation of the c-Myc gene caused by the binding. Runx3 cannot bind to the Runx binding sequence on the regulatory region of the c-Myc gene and cannot induce c-Myc expression in the state of binding to p53. Therefore, the binding inhibitor of the present invention is preferably applied to a subject in which p53 is inactivated (at least binds to Runx3 and lacks the activity of suppressing the transcriptional activation of c-Myc gene by Runx3).
 本発明の結合阻害物質は、本発明の標的領域を特異的に認識して結合することにより、Runx3の本発明のシスエレメントへの結合を遮断し得る限り、いかなるものであってもよいが、例えば、本発明の標的領域と特異的に結合し得るタンパク質、本発明の標的領域と特異的にハイブリダイズし、三重鎖(トリプレックス)を形成(Hoogsteen型認識)し得る核酸又はその類縁体、本発明の標的領域の二重らせん構造のマイナーグルーブに特異的に結合し得る物質(例、PIポリアミド)等の広義のアンチジーンが挙げられる。あるいは、本発明のシスエレメントに特異的に変異を導入して該シスエレメントを破壊し得るゲノム編集に用いられる構成要素も、本発明の結合阻害物質に包含され得る。但し、ヒト臨床への適用を考慮すれば、ゲノム配列の改変(特に二本鎖DNA切断;DSBを伴う改変)を伴うゲノム編集技術の使用は極めて制限されるので、ゲノム編集に用いられるZFN、TALEN、CRISPR/Casの核酸配列認識モジュールのみを使用するか、不活性化されたヌクレアーゼ又はさらに本発明のシスエレメントに結合するがc-Myc遺伝子の転写を活性化しない物質を組み合わせることで、DSB及び/又はゲノム配列の改変を伴わずに、Runx3の本発明のシスエレメントへの結合を阻害することが望ましい。 The binding inhibitor of the present invention may be any substance as long as it can block the binding of Runx3 to the cis element of the present invention by specifically recognizing and binding to the target region of the present invention, For example, a protein that can specifically bind to the target region of the present invention, a nucleic acid that specifically hybridizes with the target region of the present invention, and can form a triplex (Hoogsteen-type recognition) or an analog thereof, Examples include a broad sense antigene such as a substance (for example, PI polyamide) capable of specifically binding to a minor groove having a double helical structure of the target region of the present invention. Alternatively, a component used for genome editing that can specifically destroy a cis element by introducing a mutation into the cis element of the present invention can also be included in the binding inhibitor of the present invention. However, considering the application to human clinical practice, the use of genome editing technology involving genome sequence modification (particularly double-strand DNA breakage; modification involving DSB) is extremely limited. By using only TALEN, CRISPR / Cas nucleic acid sequence recognition modules, or by combining an inactivated nuclease or a substance that binds to the cis element of the present invention but does not activate transcription of the c-Myc gene. It is desirable to inhibit the binding of Runx3 to the cis elements of the present invention and / or without modification of the genomic sequence.
1.アンチジーン
(a)三重鎖DNA形成型オリゴヌクレオチド(TFO)
 典型的なアンチジーンは、DNA二重鎖に対して3本目の核酸が結合することを基盤としており、3本目核酸の塩基がプリン-ピリミジン塩基対のプリン塩基と水素結合することで、平面内に3つの塩基が連続して並ぶ構造をとることによって三重鎖形成が可能となる。下記構造式に示すように、3本目の核酸(TFO)の塩基の1’位の炭素の位置が外向きのもの(Hoogsteen結合型)(配列番号13)とその反対のもの(逆Hoogsteeen結合型)(配列番号14)の2種類があり、前者がパラレル配向性(DNA二重鎖の塩基対形成する側の鎖と同じ配向性)、後者がアンチパラレル配向性(DNA二重鎖の塩基対形成する側の鎖と逆の配向性)である。DNA二本鎖の各鎖の配列を、配列番号15又は16で表す。
1. Antigene (a) triplex DNA formation type oligonucleotide (TFO)
A typical antigene is based on the binding of a third nucleic acid to a DNA duplex, and the base of the third nucleic acid is hydrogen bonded to the purine base of the purine-pyrimidine base pair, resulting in in-plane By forming a structure in which three bases are continuously arranged, a triple chain can be formed. As shown in the following structural formula, the position of the 1'-position carbon of the base of the third nucleic acid (TFO) is outward (Hoogsteen binding type) (SEQ ID NO: 13) and the opposite (reverse Hoogsteeen binding type) ) (SEQ ID NO: 14), the former being parallel orientation (the same orientation as the strand on which DNA double-stranded base pairs are formed) and the latter being anti-parallel orientation (DNA double-stranded base pairs The orientation is opposite to that of the side chain to be formed). The sequence of each strand of the DNA duplex is represented by SEQ ID NO: 15 or 16.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 パラレル配向性TFOは、DNA二重鎖中のA-T塩基対及びG-C塩基対のAとGに対して、それぞれT(T:A-T塩基対)とプロトン化されたC(C:G-C塩基対)が結合する。一方、アンチパラレル配向性TFOは、DNA二重鎖中のA-T塩基対及びG-C塩基対のAとGに対して、それぞれT(T:A-T塩基対)とG(G:G-C塩基対)が結合する。Cがプロトン化されるためには酸性条件である必要があるため、生理的条件下での利用が制限されるが、中性でもプロトン化されるメチルシチジンや、プロトン化の必要のない誘導体(例、5-メチル-6-オキソシチジン)を用いることで、この問題は回避できる。 The parallel oriented TFO has T (T: AT base pair) and protonated C (C) for the AT base pair and the GC base pair A and G in the DNA duplex, respectively. + : GC base pair) is bound. On the other hand, the anti-parallel orientation TFO has T (T: AT base pair) and G (G: G: G) for AT base pair and GC base pair A and G in the DNA duplex, respectively. GC base pairs). In order for C to be protonated, it must be under acidic conditions, so its use under physiological conditions is limited, but methylcytidine that is protonated even in neutrality or a derivative that does not require protonation ( This problem can be avoided by using the example 5-methyl-6-oxocytidine).
 上述のように、典型的な三重鎖は、一方がホモプリン(G又はA)鎖で他方がホモピリミジン(C又はT)鎖のDNA二重鎖に対して、TFOがホモプリン鎖とメジャーグルーブにおいて結合することにより形成される。従って、TFOの利用は、プリンリッチ(逆鎖においてピリミジンリッチ)なDNA二重鎖を標的とするものに制限される。例えば、ヒトc-Myc遺伝子を例にとると、本発明の標的領域中でプリンリッチな配列として、本発明のシスエレメントの直前の10ヌクレオチドAGGAAAGGA(配列番号4)が挙げられる。即ち、10ヌクレオチド中9ヌクレオチドがプリン残基であり、下線で示したCのみがミスマッチとなる。本発明の標的領域への特異性を高めるために、本発明のシスエレメントTGCGGTの5’側のG、又はGGまでTFOの標的となるDNA二重鎖を伸ばせば、ミスマッチの数はそれぞれ2/12及び3/15となり、三重鎖の不安定さが増す。ミスマッチ部分での不安定化を抑制するために、例えば、TFOの対応するヌクレオチドから塩基を除くか、下記のように、BIG(B2,B3)と呼ばれるT-A塩基対又はC-G塩基対のみを選択的に認識する非天然分子で置換することができる。 As mentioned above, a typical triplex is a DNA duplex with one homopurine (G or A) strand and the other homopyrimidine (C or T) strand, while TFO binds to the homopurine strand in the major groove. It is formed by doing. Thus, the use of TFO is limited to those that target purine-rich (pyrimidine-rich in the reverse strand) DNA duplex. For example, taking the human c-Myc gene as an example, a 10-nucleotide AGGA C AAGGA (SEQ ID NO: 4) immediately before the cis element of the present invention may be mentioned as a purine-rich sequence in the target region of the present invention. That is, 9 nucleotides out of 10 nucleotides are purine residues, and only the underlined C is a mismatch. To increase the specificity to a target area of the present invention, if T G 5 'cis-elements TGCGGT of the present invention, or a T G C GG a TFO targeted to DNA duplexes reach out, the number of mismatches Will be 2/12 and 3/15, respectively, increasing the instability of the triplex. In order to suppress destabilization at the mismatched portion, for example, a base is removed from the corresponding nucleotide of TFO, or TA base pair or CG base pair called BIG (B2, B3) as described below. Can be substituted with a non-natural molecule that selectively recognizes only.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 あるいは、例えば、本発明のシスエレメントの直前の10ヌクレオチドAGGACAAGGA(配列番号4)に対してアンチジーンを設計し、後述する本発明のシスエレメントを特異的に認識し得るPIポリアミドを、適当なリンカー(例、プロリン、リシン、グリシン等のアミノ酸リンカーやペプチドリンカー等)を介して連結することにより、本発明の標的領域に対する特異性を高めることもできる。 Alternatively, for example, an antigene is designed for 10 nucleotides AGGACAAGGA (SEQ ID NO: 4) immediately before the cis element of the present invention, and a PI polyamide capable of specifically recognizing the cis element of the present invention described later is used as an appropriate linker. The specificity for the target region of the present invention can also be increased by linking via (eg, amino acid linkers such as proline, lysine, glycine, peptide linkers, etc.).
 TFOを構成するヌクレオチド分子は、天然型のDNA若しくはRNAでもよいし、安定性(化学的及び/又は対酵素)や比活性(DNAとの親和性)を向上させるために、種々の化学修飾が施されたヌクレオチド分子であってもよく、また、核酸類縁物質であってもよい。上記化学修飾の例として、オリゴヌクレオチドを構成する各ヌクレオチドのリン酸残基(ホスフェート)を、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネート、ボラノホスフェートなどの化学修飾リン酸残基に置換する修飾が挙げられる。
 また、上記化学修飾の別の例として、各ヌクレオチドの糖の2'位水酸基を別の官能基に置換する修飾が挙げられる。ここで、別の官能基としては、ハロゲン原子(例、フッ素原子);C1-6アルキル基(例、メチル基);C1-6アルキル基(例、メチル基)で置換されていてもよいアミノ基;-OR(Rは、例えばCH3(2'-O-Me)、CH2CH2OCH3(2'-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CNを示す)に置換する修飾が挙げられる。
 また、前記核酸類縁物質の例としては、UNA(unlocked nucleic acid)、HNA、モルフォリーノオリゴ(morpholino oligo)等が挙げられる。上記HNAは、そのヘキソピラノース部分の水酸基がデオキシ化されていてもよい。また、上記HNAは、そのヘキソピラノース部分の水酸基がフッ素原子に置換されていてもよい。
The nucleotide molecule constituting TFO may be natural DNA or RNA, and various chemical modifications may be performed to improve stability (chemical and / or enzyme) and specific activity (affinity with DNA). It may be an applied nucleotide molecule or a nucleic acid analogue. As an example of the above chemical modification, the phosphate residue (phosphate) of each nucleotide constituting the oligonucleotide is replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, boranophosphate, etc. Modification to be mentioned.
Another example of the chemical modification is a modification in which the 2′-position hydroxyl group of each nucleotide sugar is substituted with another functional group. Here, as another functional group, a halogen atom (eg, fluorine atom); a C 1-6 alkyl group (eg, methyl group); a C 1-6 alkyl group (eg, methyl group) may be substituted. Good amino group; -OR (R is for example CH 3 (2'-O-Me), CH 2 CH 2 OCH 3 (2'-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 and CH 2 CH 2 CN are shown).
Examples of the nucleic acid analog include UNA (unlocked nucleic acid), HNA, morpholino oligo and the like. In the above HNA, the hydroxyl group of the hexopyranose part may be deoxylated. In the above HNA, the hydroxyl group of the hexopyranose part may be substituted with a fluorine atom.
 TFOは、例えば、国際公開第2005/021570号、国際公開第03/068695号、国際公開第2001/007455号に記載の自体公知の手法或いはそれに準じる方法により、化学的に合成することができる。また、所望の修飾オリゴヌクレオチドが委託合成により入手可能である。 TFO can be chemically synthesized by, for example, a method known per se described in International Publication No. 2005/021570, International Publication No. 03/068695, International Publication No. 2001/007455, or a method analogous thereto. In addition, the desired modified oligonucleotide is available by consignment synthesis.
(b)ピロール・イミダゾール(PI)ポリアミド
 第2のアンチジーンとして、ピロール・イミダゾール(PI)ポリアミド及びその修飾物が挙げられる。PIポリアミドは、N-メチルピロール単位(Py)とN-メチルイミダゾール単位(Im)とγ-アミノ酪酸部分とを含むポリアミドであり、PyとImとγ-アミノ酪酸部分とは互いにアミド結合(-C(=O)-NH-)で連結される(Trauger et al, Nature, 382, 559-61 (1996); White et al, Chem. Biol., 4, 569-78 (1997);及びDervan, Bioorg. Med. Chem., 9, 2215-35 (2001))。PIポリアミドは、ピロール(Py)/イミダゾール(Im)ペアがCG塩基対を、Py/PyペアがAT又はTA塩基対を、Im/PyペアがGC塩基対を、それぞれ認識する。また、3-ヒドロキシピロール(Hp)を用いると、Hp/PyペアがTA塩基対を、Py/HpペアがAT塩基対を、それぞれ認識する。γ-アミノ酪酸部分はリンカーとなって全体が折りたたまれてU字型のコンフォメーション(ヘアピン型)をとる。U字型のコンフォメーションにおいては、リンカーを挟んでPyとImとを含む2本の鎖が並列に並ぶ。これによりPIポリアミドはDNA二重鎖のマイナーグルーブに入り込み、任意のDNA二重鎖と塩基配列特異的に結合し、それによって転写因子の該DNA二重鎖への結合を阻害することができる。
(B) Pyrrole-imidazole (PI) polyamide As the second antigene, pyrrole-imidazole (PI) polyamide and a modified product thereof may be mentioned. PI polyamide is a polyamide containing an N-methylpyrrole unit (Py), an N-methylimidazole unit (Im), and a γ-aminobutyric acid moiety, and Py, Im, and γ-aminobutyric acid moiety are mutually bonded with an amide bond (- C (= O) -NH-) (Trauger et al, Nature, 382, 559-61 (1996); White et al, Chem. Biol., 4, 569-78 (1997); and Dervan, Bioorg. Med. Chem., 9, 2215-35 (2001)). In PI polyamide, a pyrrole (Py) / imidazole (Im) pair recognizes a CG base pair, a Py / Py pair recognizes an AT or TA base pair, and an Im / Py pair recognizes a GC base pair. When 3-hydroxypyrrole (Hp) is used, the Hp / Py pair recognizes the TA base pair, and the Py / Hp pair recognizes the AT base pair. The γ-aminobutyric acid moiety becomes a linker and is folded entirely to take a U-shaped conformation (hairpin type). In the U-shaped conformation, two chains containing Py and Im are arranged in parallel across the linker. As a result, PI polyamide enters the minor groove of the DNA duplex and binds to any DNA duplex in a base sequence-specific manner, thereby inhibiting the binding of transcription factors to the DNA duplex.
 本発明のPIポリアミドは、本発明の標的領域(即ち、本発明のシスエレメントの全部(TGCGGT)、該シスエレメントの3’側から1ヌクレオチドずつが除かれたTGCGG、TGCG、TGC、TG又はT、あるいは該シスエレメントの5’側から1ヌクレオチドずつが除かれたGCGGT、CGGT、GGT、GT又はTを含み、かつc-Myc遺伝子の転写開始点の上流配列中の連続する12ヌクレオチド以上(例えば、12~30ヌクレオチド、好ましくは15~25ヌクレオチド、より好ましくは17~22ヌクレオチド)を含むc-Myc遺伝子調節領域の部分ヌクレオチド配列からなる領域)に特異的に結合することにより、本発明のシスエレメントへのRunx3の結合を阻害し、c-Myc遺伝子の転写活性化を抑制する。 The PI polyamide of the present invention comprises the target region of the present invention (ie, all of the cis elements of the present invention (TGCGGT), TGCGG, TGCG, TGC, TG or T, wherein one nucleotide is removed from the 3 ′ side of the cis element. Or 12 or more consecutive nucleotides in the upstream sequence of the transcription start point of the c-Myc gene, including GCGGT, CGGT, GGT, GT or T from which 5 nucleotides have been removed from the 5 ′ side of the cis element (for example, , 12 to 30 nucleotides, preferably 15 to 25 nucleotides, more preferably 17 to 22 nucleotides), a region consisting of a partial nucleotide sequence of the c-Myc gene regulatory region). Inhibits Runx3 binding to the element and activates c-Myc gene transcription Control to.
 PIポリアミドは、既存のアンチセンス核酸やsiRNAと異なり核酸構造を有しないため、生体内で核酸分解酵素により分解されにくく、ベクターやカオチン脂質などのドラッグデリバリーシステム、エレクトロポーション法などを必要としない。 PI polyamides do not have a nucleic acid structure unlike existing antisense nucleic acids and siRNAs, and therefore are not easily degraded by nucleolytic enzymes in vivo, and do not require a drug delivery system such as a vector or chaotic lipid, or an electroporation method.
 PIポリアミドは、例えば、Fmoc保護アミノ基を有するPy及びIm誘導体(下式)を合成原料として、Fmocペプチド固相合成技術を用いて合成することができるが、それに限定されない。 PI polyamide can be synthesized using, for example, Fmoc peptide solid-phase synthesis technology using Py and Im derivatives having the Fmoc-protected amino group (following formula) as synthesis raw materials, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Xは炭素又は窒素原子を表わす。)
 PIポリアミドが所望のヘアピン構造を形成できるように、対形成するピロール-イミダゾール両鎖の間に、例えばγ-アミノ酪酸などの適当なリンカーが分子内に導入される。また、β-アラニンなどの標的DNA配列との結合に寄与しない適当なスペーサー分子を、対形成するピロール-イミダゾール両鎖の相補的な位置に挿入することもできる。
(In the formula, X represents a carbon or nitrogen atom.)
A suitable linker such as γ-aminobutyric acid is introduced into the molecule between the paired pyrrole-imidazole chains so that the PI polyamide can form the desired hairpin structure. In addition, an appropriate spacer molecule that does not contribute to the binding with a target DNA sequence such as β-alanine can be inserted into a complementary position of both pyrrole-imidazole pairs to be paired.
 PIポリアミドの全配列のカップリングが完了すれば、末端アミノ基をアシル基などでキャッピングした後、トリフルオロ酢酸(TFA)を用いてカルボン酸として、或いはN,N-ジメチルアミノプロピルアミン(Dp)を用いてアミンとして、PIポリアミドを固相から切り出すことができる。 When the coupling of the entire sequence of PI polyamide is completed, the terminal amino group is capped with an acyl group or the like, and then used as a carboxylic acid using trifluoroacetic acid (TFA) or N, N-dimethylaminopropylamine (Dp) Can be used to cut PI polyamide from the solid phase as an amine.
 更に、種々の官能基を分子末端に導入してピロールイミダゾールポリアミドの誘導体を作成することもできる。例えば、seco-CBI、クロラムブシル、ブレオマイシン、ナイトロジェンマスタード、ピロロベンゾジアゼピン、デュオカルマイシン、エンジイン化合物、これらの誘導体等、DNAに対してアルキル化能を有する化合物(アルキル化剤)を必要に応じて導入することができる。アルキル化剤は、DNAのグアニンN-7位やアデニンN-3位にアルキル基を導入し、付加体形成やグアニン同士、アデニン同士等の架橋反応を引き起こす。架橋反応を生じた二本鎖DNAや付加体形成した二本鎖DNAは修復機構によって修復することが困難であり、結果としてDNAの転写及び複製が出来なくなり、細胞増殖の停止やアポトーシスによる細胞死が誘導される。 Furthermore, pyrrole-imidazole polyamide derivatives can be prepared by introducing various functional groups into the molecular ends. For example, seco-CBI, chlorambucil, bleomycin, nitrogen mustard, pyrrolobenzodiazepine, duocarmycin, enediyne compounds, derivatives of these, etc. that have the ability to alkylate DNA (alkylating agents) are introduced as necessary can do. The alkylating agent introduces an alkyl group at the guanine N-7 position or the adenine N-3 position of DNA, and causes an adduct formation or a cross-linking reaction between guanines or adenines. Double-stranded DNA that has undergone a cross-linking reaction or double-stranded DNA that has been formed as an adduct is difficult to repair by the repair mechanism. As a result, DNA cannot be transcribed or replicated, resulting in cell growth arrest or cell death due to apoptosis. Is induced.
 得られたPIポリアミドは、公知の精製法により単離・精製することができる。ここで、精製法としては、例えば、溶媒抽出、蒸留、カラムクロマトグラフィー、液体クロマトグラフィー、再結晶、これらの組み合わせなどが挙げられる。精製PIポリアミドは自体公知の方法で凍結乾燥して室温で保存することができ、用時、DMSO等の有機溶媒に溶解後、水若しくは水/有機溶媒混合液で適当な濃度に希釈することができる。PIポリアミドの設計方法及び製造方法は、例えば、特許第3045706号、特開2001-136974号及びWO03/000683に記載されている。 The obtained PI polyamide can be isolated and purified by a known purification method. Here, examples of the purification method include solvent extraction, distillation, column chromatography, liquid chromatography, recrystallization, and combinations thereof. Purified PI polyamide can be lyophilized by a method known per se and stored at room temperature. When used, it can be dissolved in an organic solvent such as DMSO and then diluted to an appropriate concentration with water or a water / organic solvent mixture. it can. A design method and a production method of PI polyamide are described in, for example, Japanese Patent No. 3045706, Japanese Patent Application Laid-Open No. 2001-136974, and WO 03/000683.
 20残基を超える長いPIポリアミドを合成するのは、技術面やコスト面で不利であるので、PIポリアミドを使用する際は、本発明の標的領域内のより短い領域をターゲットとし、例えば、上述のTFOと組み合わせることで、標的領域全体をカバーしてもよい。 Since synthesizing a long PI polyamide having more than 20 residues is disadvantageous in terms of technology and cost, when using PI polyamide, a shorter region within the target region of the present invention is targeted. The entire target area may be covered by combining with TFO.
(c)ペプチド核酸(PNA)
 第3のアンチジーンとして、ペプチド核酸(PNA)が挙げられる。PNAは主鎖にペプチド構造を保持した、DNAやRNAに類似の構造を有する分子である。PNAでは、糖の代わりにN-(2-アミノエチル)グリシンがアミド結合で結合したものが主鎖となっている。そして核酸塩基に相当するプリン環やピリミジン環が、メチレン基とカルボニル基を介して主鎖に結合している。
(C) Peptide nucleic acid (PNA)
The third antigene includes peptide nucleic acid (PNA). PNA is a molecule having a peptide structure in the main chain and a structure similar to DNA or RNA. PNA has a main chain in which N- (2-aminoethyl) glycine is bonded by an amide bond instead of sugar. A purine ring or pyrimidine ring corresponding to a nucleobase is bonded to the main chain via a methylene group and a carbonyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 PNAにはDNAやRNAに存在するようなリン酸部位の電荷が存在しないため、静電反発の減少によりPNA/DNAの2重鎖はDNA/DNAの2重鎖よりも強い結合を形成する。従って、PNAは、DNA二重鎖内に侵入してD-ループを形成させ、相補的なDNA鎖とワトソン-クリック塩基対を形成することで、転写因子の該DNA二重鎖への結合を阻害することができる。PNA鎖が相補的DNAに結合する際にも正確な分子認識が行われており、ミスマッチ塩基対を含むPNA/DNAの2重鎖は、同様のミスマッチを持つDNA/DNAの2重鎖より不安定になることが知られている。従って、PNAの利用により、オフターゲット効果をより低減できることが期待される。また、PNAは生体内のヌクレアーゼやプロテアーゼに認識されにくく、対酵素分解耐性を有しており、さらに広いpH範囲で安定に存在し得る。 Since PNA does not have a phosphate site charge that is present in DNA or RNA, the PNA / DNA duplex forms a stronger bond than the DNA / DNA duplex due to a decrease in electrostatic repulsion. Therefore, PNA penetrates into a DNA duplex to form a D-loop and forms a Watson-Crick base pair with a complementary DNA strand, thereby binding a transcription factor to the DNA duplex. Can be inhibited. Accurate molecular recognition is also performed when PNA strands bind to complementary DNA, and PNA / DNA duplexes containing mismatched base pairs are less likely than DNA / DNA duplexes with similar mismatches. It is known to become stable. Therefore, it is expected that the off-target effect can be further reduced by using PNA. PNA is not easily recognized by nucleases and proteases in vivo, has resistance to enzymatic degradation, and can exist stably in a wider pH range.
 本発明のPNAは、本発明の標的領域(即ち、本発明のシスエレメントの全部(TGCGGT)、該シスエレメントの3’側から1ヌクレオチドずつが除かれたTGCGG、TGCG、TGC、TG又はT、あるいは該シスエレメントの5’側から1ヌクレオチドずつが除かれたGCGGT、CGGT、GGT、GT又はTを含み、かつc-Myc遺伝子の転写開始点の上流配列中の連続する12ヌクレオチド以上(例えば、12~30ヌクレオチド、好ましくは15~25ヌクレオチド、より好ましくは17~22ヌクレオチド)を含むc-Myc遺伝子調節領域の部分ヌクレオチド配列からなる領域)に特異的に結合することにより、本発明のシスエレメントへのRunx3の結合を阻害し、c-Myc遺伝子の転写活性化を抑制する。 The PNA of the present invention comprises the target region of the present invention (ie, all of the cis elements of the present invention (TGCGGT), TGCGG, TGCG, TGC, TG or T from which 3 nucleotides have been removed from the 3 ′ side of the cis element, Alternatively, it includes GCGGT, CGGT, GGT, GT or T from which 5 nucleotides are removed from the 5 ′ side of the cis element, and 12 or more consecutive nucleotides in the upstream sequence of the transcription start site of the c-Myc gene (for example, A cis element of the present invention by specifically binding to a region consisting of a partial nucleotide sequence of the c-Myc gene regulatory region comprising 12-30 nucleotides, preferably 15-25 nucleotides, more preferably 17-22 nucleotides) Inhibits binding of Runx3 to c-Myc gene and suppresses transcriptional activation
 PNAは、PIポリアミドの場合と同様に、自体公知のペプチド固相合成技術を用いて製造することができる。 As in the case of PI polyamide, PNA can be produced using a peptide solid phase synthesis technique known per se.
2.ゲノム編集技術を利用した本発明の結合阻害物質
(a)ゲノム配列の改変を伴わない結合阻害物質
 本発明はまた、ゲノム編集技術を利用して、本発明のシスエレメントへのRunx3の結合を阻害することにより、c-Myc遺伝子の転写活性化を抑制することを特徴とする、抗腫瘍剤を提供する。
 従来のゲノム編集の手法としては、配列非依存的なDNA切断能を有する分子と配列認識能を有する分子とを組み合わせた人工ヌクレアーゼを利用する方法がよく知られている。例えば、ジンクフィンガーDNA結合ドメインと非特異的なDNA切断ドメインとを連結した、ジンクフィンガーヌクレアーゼ(ZFN)、植物病原菌キサントモナス属が有するDNA結合モジュールである転写活性化因子様(TAL)エフェクターと、DNAエンドヌクレアーゼとを連結したTALEN、あるいは、真正細菌や古細菌が持つ獲得免疫システムで機能する核酸配列CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)と、CRISPRとともに重要な働きを持つヌクレアーゼCas(CRISPR-associated)タンパク質ファミリーとを組み合わせたCRISPR-Cas9システムを利用する方法などが報告されている。さらには、35個のアミノ酸からなり1個の核酸塩基を認識するPPRモチーフの連続によって、特定のヌクレオチド配列を認識するように構成されたPPRタンパク質と、ヌクレアーゼとを連結した人工ヌクレアーゼも報告されている。
2. Binding Inhibitor of the Present Invention Utilizing Genome Editing Technology (a) Binding Inhibitor without Encoding Genomic Sequence The present invention also inhibits binding of Runx3 to the cis element of the present invention using genome editing technology. Thus, an antitumor agent characterized by suppressing the transcriptional activation of the c-Myc gene is provided.
As a conventional genome editing method, a method using an artificial nuclease in which a molecule having a sequence-independent DNA cutting ability and a molecule having a sequence recognition ability are combined is well known. For example, zinc finger nuclease (ZFN), a transcriptional activator-like (TAL) effector that is a DNA-binding module of the genus Xanthomonas phytopathogen, in which a zinc finger DNA binding domain and a non-specific DNA cleavage domain are linked, and DNA TALEN linked with endonuclease, or CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) functioning in the acquired immune system possessed by eubacteria and archaea, and nuclease Cas (CRISPR-associated) that plays an important role together with CRISPR A method using a CRISPR-Cas9 system in combination with a protein family has been reported. Furthermore, an artificial nuclease is also reported in which a PPR protein composed of 35 amino acids and recognizing a specific nucleotide sequence by a PPR motif that recognizes one nucleobase and a nuclease are linked. Yes.
 これらのゲノム編集技術においては、いずれもタンパク質(ZF、TALエフェクター、PPR)又はRNAとタンパク質との複合体(CRISPR-Cas9)により特定の標的ヌクレオチド配列を認識している。従って、人工ヌクレアーゼに配列特異性を付与するこれらの物質(核酸配列認識モジュール)を用いて、本発明の標的領域に結合させることで、本発明のシスエレメントへのRunx3の結合を阻害することができる。 In these genome editing technologies, a specific target nucleotide sequence is recognized by a protein (ZF, TAL effector, PPR) or a complex of RNA and protein (CRISPR-Cas9). Therefore, it is possible to inhibit the binding of Runx3 to the cis element of the present invention by binding to the target region of the present invention using these substances (nucleic acid sequence recognition modules) that impart sequence specificity to the artificial nuclease. it can.
 本発明において「核酸配列認識モジュール」とは、DNA鎖上の特定のヌクレオチド配列(即ち、標的ヌクレオチド配列)を特異的に認識して結合する能力を有する分子又は分子複合体を意味する。核酸配列認識モジュールが標的ヌクレオチド配列に結合することにより、該モジュールに連結されたエフェクターがDNAの標的化された部位に特異的に作用することを可能にする。 In the present invention, the “nucleic acid sequence recognition module” means a molecule or molecular complex having the ability to specifically recognize and bind to a specific nucleotide sequence (ie, target nucleotide sequence) on a DNA strand. Binding of the nucleic acid sequence recognition module to the target nucleotide sequence allows the effector linked to the module to specifically act on the targeted site of DNA.
 本発明の1つの態様において、核酸配列認識モジュールとしては、CRISPR-Casシステムが挙げられる。CRISPR-Casシステムは、標的ヌクレオチド配列を有する短鎖CRISPR RNA(crRNA)とトランス活性化型crRNA(tracrRNA)との複合体、又はcrRNAとtracrRNAとを組合せた単一の合成RNA(ガイドRNA、gRNA)により目的のDNAの配列を認識するので、標的ヌクレオチド配列の相補配列と特異的にハイブリッド形成し得るオリゴDNAを合成するだけで、任意の配列を標的化することができる。 In one embodiment of the present invention, the nucleic acid sequence recognition module includes a CRISPR-Cas system. The CRISPR-Cas system is a complex of short CRISPR RNA (crRNA) with a target nucleotide sequence and trans-activated crRNA (tracrRNA), or a single synthetic RNA (guide RNA, gRNA that combines crRNA and tracrRNA) ) Recognizes the sequence of the target DNA, so that any sequence can be targeted simply by synthesizing an oligo DNA that can specifically hybridize with the complementary sequence of the target nucleotide sequence.
 CRISPR-Casを用いた核酸配列認識モジュールは、標的ヌクレオチド配列、及びCasタンパク質のリクルートに必要なtracrRNAからなるRNA分子(ガイドRNA)とCasタンパク質との複合体として提供される。また、他の態様として、CRISPR-Casを用いた核酸配列認識モジュールは、標的ヌクレオチド配列と同一配列のRNAを含むcrRNA、及びtracrRNA、Casの複合体として提供される。 Nucleic acid sequence recognition module using CRISPR-Cas is provided as a complex of Cas protein and RNA molecule (guide RNA) consisting of target nucleotide sequence and tracrRNA necessary for Cas protein recruitment. As another embodiment, a nucleic acid sequence recognition module using CRISPR-Cas is provided as a complex of crRNA containing RNA having the same sequence as the target nucleotide sequence, tracrRNA, and Cas.
 本発明で使用されるCasタンパク質は、CRISPRシステムに属するものであれば特に制限はないが、好ましくはCas9である。Cas9としては、例えばストレプトコッカス・ピオゲネス(Streptococcus pyogenes)由来のCas9(SpCas9)、ストレプトコッカス・サーモフィラス(Streptococcus thermophilus)由来のCas9(StCas9)等が挙げられるが、それらに限定されない。好ましくはSpCas9である。ヒト臨床に利用することを考慮すれば、DSBを生じるのは好ましくないので、Casとしては、DNA切断活性を失活したもの(dCas)が好ましい。例えば、SpCas9の場合、10番目のAsp残基がAla残基に変換した、ガイドRNAと相補鎖を形成する鎖の反対鎖の切断能を欠くD10A変異体、840番目のHis残基がAla残基で変換した、ガイドRNAと相補鎖の切断能を欠くH840A変異体の二重変異体を用いることができるが、他の変異Casも同様に用いることができる。 The Cas protein used in the present invention is not particularly limited as long as it belongs to the CRISPR system, but is preferably Cas9. Examples of Cas9 include, but are not limited to, Cas9 (SpCas9) derived from Streptococcus pyogenes, Cas9 (StCas9) derived from Streptococcus thermophilus, and the like. SpCas9 is preferable. In consideration of use in human clinical practice, it is not preferable to generate DSB, and therefore, Cas that has inactivated DNA cleavage activity (dCas) is preferable. For example, in the case of SpCas9, the 10th Asp residue is converted to an Ala residue, a D10A mutant lacking the ability to cleave the opposite strand that forms a complementary strand with the guide RNA, and the 840th His residue is the Ala residue. Double mutants of the H840A mutant lacking the ability to cleave the guide RNA and the complementary strand converted with the group can be used, but other mutant Cass can be used as well.
 CRISPR-Casを核酸配列認識モジュールとして用いる場合、標的ヌクレオチド配列は、該配列にガイドRNAとCasの複合体が結合したときに、本発明のシスエレメントが該複合体によって遮断され、Runx3が結合できない状態にあれば、特に制限されないが、例えば、マウスc-Myc遺伝子の場合、後述の実施例(図4-2を参照)で使用された標的ヌクレオチド配列(即ち、CTGCGTATATCAGTCACCGC;配列番号12)が挙げられる。一方、ヒトc-Myc遺伝子の場合、例えば、本発明のシスエレメント中のCGGをPAMとして、その直前から上流側20ヌクレオチド(即ち、ATACTCACAGGACAAGGATG;配列番号6)の逆鎖配列を標的ヌクレオチド配列として、crRNAを設計することができる。 When CRISPR-Cas is used as a nucleic acid sequence recognition module, when a complex of guide RNA and Cas is bound to the target nucleotide sequence, the cis element of the present invention is blocked by the complex, and Runx3 cannot bind For example, in the case of the mouse c-Myc gene, the target nucleotide sequence (that is, CTGCGTATATCAGTCACCGC; SEQ ID NO: 12) used in Examples described later (see FIG. 4-2) can be mentioned. It is done. On the other hand, in the case of the human c-Myc gene, for example, CGG in the cis element of the present invention is PAM, and the reverse strand sequence of 20 nucleotides upstream (ie, ATACTCACAGGACAAGGATG; SEQ ID NO: 6) from immediately before is used as the target nucleotide sequence. crRNA can be designed.
 本発明の他の態様においては、核酸配列認識モジュールとしては、ジンクフィンガーモチーフ、TALエフェクター及びPPRモチーフ等の他、制限酵素、転写因子、RNAポリメラーゼ等のDNAと特異的に結合し得るタンパク質のDNA結合ドメインを含み、DNA二重鎖切断能を有しないフラグメント等が用いられ得る。 In another aspect of the present invention, the nucleic acid sequence recognition module includes a zinc finger motif, a TAL effector, a PPR motif, etc., as well as DNA of a protein that can specifically bind to DNA such as a restriction enzyme, transcription factor, RNA polymerase, etc. A fragment that contains a binding domain and does not have the ability to cleave DNA double strands can be used.
 ジンクフィンガーモチーフは、Cys2His2型の異なるジンクフィンガーユニット(1フィンガーが約3塩基を認識する)を3~6個連結させたものであり、9~18塩基の標的ヌクレオチド配列を認識することができる。ジンクフィンガーモチーフは、Modular assembly法(Nat Biotechnol (2002) 20: 135-141)、OPEN法(Mol Cell (2008) 31: 294-301)、CoDA法(Nat Methods (2011) 8: 67-69)、大腸菌one-hybrid法(Nat Biotechnol (2008) 26:695-701)等の公知の手法により作製することができる。ジンクフィンガーモチーフの作製の詳細については、特許第4968498号公報を参照することができる。 The zinc finger motif is a linkage of 3 to 6 different zinc finger units of the Cys2His2 type (one finger recognizes about 3 bases), and can recognize a target nucleotide sequence of 9 to 18 bases. Zinc finger motifs are: Modular assembly method (Nat Biotechnol (2002) 20: 135-141), OPEN method (Mol Cell (2008) 31: 294-301), CoDA method (Nat Methods (2011) 8: 67-69) In addition, it can be prepared by a known method such as E. coli one-hybrid method (Nat Biotechnol (2008) 26: 695-701). Japanese Patent No. 4968498 can be referred to for details of the production of the zinc finger motif.
 TALエフェクターは、約34アミノ酸を単位としたモジュールの繰り返し構造を有しており、1つのモジュールの12及び13番目のアミノ酸残基(RVDと呼ばれる)によって、結合安定性と塩基特異性が決定される。各モジュールは独立性が高いので、モジュールを繋ぎ合わせるだけで、標的ヌクレオチド配列に特異的なTALエフェクターを作製することが可能である。TALエフェクターは、オープンリソースを利用した作製方法(REAL法(Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15)、FLASH法(Nat Biotechnol (2012) 30: 460-465)、Golden Gate法(Nucleic Acids Res (2011) 39: e82)等)が確立されており、比較的簡便に標的ヌクレオチド配列に対するTALエフェクターを設計することができる。TALエフェクターの作製の詳細については、特表2013-513389号公報を参照することができる。 The TAL effector has a repeating structure of modules of about 34 amino acids, and the binding stability and base specificity are determined by the 12th and 13th amino acid residues (called RVD) of one module. The Since each module is highly independent, it is possible to create a TAL effector specific to the target nucleotide sequence simply by connecting the modules. TAL effectors are produced using open resources (REAL method (Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15), FLASH method (Nat Biotechnol (2012) 30: 460-465), Golden Gate method (Nucleic Acids Res 2011 (2011) 39: e82) etc. have been established, and a TAL effector for a target nucleotide sequence can be designed relatively easily. The details of the production of the TAL effector can be referred to JP-T-2013-513389.
 PPRモチーフは、35アミノ酸からなり1つの核酸塩基を認識するPPRモチーフの連続によって、特定のヌクレオチド配列を認識するように構成されており、各モチーフの1、4及びii(-2)番目のアミノ酸のみで標的塩基を認識する。モチーフ構成に依存性はなく、両脇のモチーフからの干渉はないので、TALエフェクター同様、PPRモチーフを繋ぎ合わせるだけで、標的ヌクレオチド配列に特異的なPPRタンパク質を作製することが可能である。PPRモチーフの作製の詳細については、特開2013-128413号公報を参照することができる。 The PPR motif consists of 35 amino acids, and is constructed to recognize a specific nucleotide sequence by a series of PPR motifs that recognize one nucleobase. The 1st, 4th, and ii (-2) th amino acids of each motif Only recognize the target base. Since there is no dependence on the motif structure and there is no interference from the motifs on both sides, it is possible to produce a PPR protein specific to the target nucleotide sequence by linking the PPR motifs just like the TAL effector. JP, 2013-128413, A can be referred to for details of preparation of a PPR motif.
 また、制限酵素、転写因子、RNAポリメラーゼ等のフラグメントを用いる場合、これらのタンパク質のDNA結合ドメインは周知であるので、該ドメインを含み、且つDNA二重鎖切断能を有しない断片を容易に設計し、構築することができる。 In addition, when using fragments such as restriction enzymes, transcription factors, RNA polymerase, etc., the DNA-binding domain of these proteins is well known, so it is easy to design a fragment that contains this domain and does not have the ability to cleave DNA double strands. And can be built.
 いずれの核酸配列認識モジュールを用いる場合でも、上述の「本発明の標的領域」、即ち、本発明のシスエレメントの全部(TGCGGT)、該シスエレメントの3’側から1ヌクレオチドずつが除かれたTGCGG、TGCG、TGC、TG又はT、あるいは該シスエレメントの5’側から1ヌクレオチドずつが除かれたGCGGT、CGGT、GGT、GT又はTを含み、かつc-Myc遺伝子の転写開始点の上流配列中の連続する12ヌクレオチド以上を含む部分ヌクレオチド配列からなる領域を、ターゲットとすることができる。 Even when any nucleic acid sequence recognition module is used, the above-mentioned “target region of the present invention”, that is, all of the cis elements of the present invention (TGCGGT), TGCGG in which one nucleotide is removed from the 3 ′ side of the cis elements. TGCG, TGC, TG or T, or GCGGT, CGGT, GGT, GT or T from which the nucleotides are removed from the 5 ′ side of the cis element, and in the upstream sequence of the transcription start site of the c-Myc gene A region consisting of a partial nucleotide sequence containing 12 or more consecutive nucleotides can be targeted.
 あるいは、前記CRISPR-CasのdCasの場合と同様に、ジンクフィンガーモチーフ、TALエフェクター及びPPRモチーフ等の核酸配列認識モジュールに、失活したヌクレアーゼ(例、FokI)を組み合わせることにより、該ヌクレーアーゼが立体的に本発明のシスエレメントを遮断し、それによってRunx3の結合を阻害することもできる。この場合、例えば、本発明のシスエレメントより上流の正鎖ヌクレオチド配列と、該シスエレメントより下流の逆鎖ヌクレオチド配列とを特異的に認識する2つの核酸配列認識モジュールを設計し、該モジュールの末端(例、C末端)で失活したヌクレアーゼと複合体形成するようにすることで、本発明のシスエレメントを遮断することができる。 Alternatively, as in the case of the dCas of the CRISPR-Cas, the nuclease is sterically formed by combining an inactivated nuclease (eg, FokI) with a nucleic acid sequence recognition module such as a zinc finger motif, a TAL effector, and a PPR motif. Alternatively, the cis element of the present invention can be blocked, thereby inhibiting Runx3 binding. In this case, for example, two nucleic acid sequence recognition modules that specifically recognize a normal nucleotide sequence upstream of the cis element of the present invention and a reverse nucleotide sequence downstream of the cis element are designed, and the end of the module is designed. The cis element of the present invention can be blocked by forming a complex with a nuclease inactivated at (eg, C-terminal).
 ジンクフィンガーモチーフ、TALエフェクター及びPPRモチーフ等の核酸配列認識モジュールは、上記ヌクレアーゼとの融合タンパク質として提供することもできるし、SH3ドメイン、PDZドメイン、GKドメイン、GBドメイン等のタンパク質結合ドメインとそれらの結合パートナーとを、核酸配列認識モジュールと、ヌクレアーゼとにそれぞれ融合させ、該タンパク質結合ドメインとその結合パートナーとの相互作用を介してタンパク質複合体として提供してもよい。或いは、核酸配列認識モジュールと、ヌクレアーゼとにそれぞれインテイン(intein)を融合させ、各タンパク質合成後のライゲーションにより、両者を連結することもできる。 Nucleic acid sequence recognition modules such as zinc finger motif, TAL effector and PPR motif can be provided as fusion proteins with the above nucleases, and protein binding domains such as SH3 domain, PDZ domain, GK domain, GB domain and their The binding partner may be fused to a nucleic acid sequence recognition module and a nuclease, respectively, and provided as a protein complex through the interaction between the protein binding domain and the binding partner. Alternatively, the intein can be fused to the nucleic acid sequence recognition module and the nuclease, and both can be linked by ligation after synthesis of each protein.
 本発明の核酸配列認識モジュールは、ヌクレアーゼの代わりに、転写抑制因子と複合体を形成させることにより、本発明のシスエレメントへのRunx3の結合を遮断しつつ、c-Myc遺伝子の転写をさらに抑制することもできる。本発明において、「転写抑制因子」とは、標的とする遺伝子の転写抑制活性を有するタンパク質またはタンパク質ドメインを意味する。 The nucleic acid sequence recognition module of the present invention further inhibits the transcription of the c-Myc gene while blocking the binding of Runx3 to the cis element of the present invention by forming a complex with a transcription repressing factor instead of a nuclease. You can also In the present invention, the “transcription repressing factor” means a protein or protein domain having transcription repressing activity of a target gene.
 本発明で用いる転写抑制因子としては、c-Myc遺伝子の転写活性化を抑制することができるものであれば特に制限はないが、例えば、KRAB、MBD2B、v-ErbA、SID(SIDのコンカテマー(SID4X)を含む)、MBD2、MBD3、DNMTファミリー(例:DNMT1、DNMT3A、DNMT3B)、Rb、MeCP2、ROM2及びAtHD2Aなどが挙げられ、好ましくは、KRABである。本発明の転写抑制因子としてKRABを用いる場合に、その由来とするタンパク質は特に制限されないが、例えば、KOX-1(ZNF10)、KOX8(ZNF708)、ZNF43、ZNF184、ZNF91、HPF4、HTF10、HTF34などが挙げられる。 The transcription repressing factor used in the present invention is not particularly limited as long as it can suppress the transcriptional activation of the c-Myc gene. For example, KRAB, MBD2B, v-ErbA, SID (SID concatemer ( SID4X)), MBD2, MBD3, DNMT family (eg, DNMT1, DNMT3A, DNMT3B), Rb, MeCP2, ROM2 and AtHD2A, and preferably KRAB. When KRAB is used as the transcriptional repressor of the present invention, the protein derived therefrom is not particularly limited. For example, KOX-1 (ZNF10), KOX8 (ZNF708), ZNF43, ZNF184, ZNF91, HPF4, HTF10, HTF34, etc. Is mentioned.
 上記核酸配列認識モジュールと、本発明の標的領域が存在するc-Myc遺伝子との接触は、対象である哺乳動物(例、ヒト、マウス、ラット、ウシ、イヌ、ネコ、サル等、好ましくはヒト又はマウス、より好ましくはヒト)の細胞に、該モジュール(ヌクレアーゼや転写抑制因子等のエフェクターと組み合わせて用いる場合は、さらに該エフェクタータンパク質)をコードする核酸を導入することにより実施される。
 従って、核酸配列認識モジュール、又は核酸配列認識モジュール及びエフェクターは、それらの融合タンパク質をコードする核酸として、或いは、タンパク質に翻訳後、宿主細胞内で複合体形成し得るような形態で、各構成因子をコードする核酸として調製することが好ましい。ここで核酸は、DNAであってもRNAであってもよい。DNAの場合は、好ましくは二本鎖DNAであり、哺乳動物細胞内で機能的なプロモーターの制御下に各構成因子を発現し得る発現ベクターの形態で提供される。RNAの場合は、好ましくは一本鎖RNAである。
The contact between the nucleic acid sequence recognition module and the c-Myc gene in which the target region of the present invention is present is the target mammal (eg, human, mouse, rat, cow, dog, cat, monkey, etc., preferably human Alternatively, it is carried out by introducing a nucleic acid encoding the module (or an effector protein when used in combination with an effector such as a nuclease or a transcription repressing factor) into a mouse, more preferably a human cell.
Therefore, the nucleic acid sequence recognition module, or the nucleic acid sequence recognition module and the effector, can be used as a nucleic acid encoding their fusion protein or in a form that can be complexed in the host cell after being translated into the protein. Preferably, it is prepared as a nucleic acid encoding. Here, the nucleic acid may be DNA or RNA. In the case of DNA, it is preferably double-stranded DNA, and is provided in the form of an expression vector capable of expressing each constituent element under the control of a functional promoter in mammalian cells. In the case of RNA, it is preferably a single-stranded RNA.
 CRISPR-Casを核酸配列認識モジュールとして用いる場合、ガイドRNA及びCasタンパク質をコードする発現ベクターを細胞に導入し、該ガイドRNA及びCasタンパク質を発現させることにより、細胞内でガイドRNAとCasタンパク質との複合体を形成する。ガイドRNA及びCasタンパク質は、同一の発現ベクター上にコードされていてもよいし、異なる発現ベクター上に、それぞれコードされていてもよい。 When CRISPR-Cas is used as a nucleic acid sequence recognition module, an expression vector encoding guide RNA and Cas protein is introduced into the cell, and the guide RNA and Cas protein are expressed in the cell, so that the guide RNA and Cas protein are expressed in the cell. Form a complex. The guide RNA and Cas protein may be encoded on the same expression vector, or may be encoded on different expression vectors.
 CasをコードするDNAは、当該技術分野で周知の方法により、Casを産生する細胞からクローニングすることができる。得られたCasをコードするDNAは、哺乳動物細胞用の発現ベクターのプロモーターの下流に挿入することができる。 The DNA encoding Cas can be cloned from cells that produce Cas by methods well known in the art. The obtained Cas-encoding DNA can be inserted downstream of the promoter of an expression vector for mammalian cells.
 一方、ガイドRNAをコードするDNAは、標的ヌクレオチド配列と既知のtracrRNA配列(例えば、gttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtggtgctttt; 配列番号5)とを連結したオリゴDNA配列を設計し、DNA/RNA合成機を用いて、化学的に合成することができる。なお、本明細書においてヌクレオチド配列は、別段にことわりのない限りDNAの配列として記載するが、ポリヌクレオチドがRNAである場合は、チミン(T)をウラシル(U)に適宜読み替えるものとする。 On the other hand, the DNA encoding the guide RNA is chemically designed using a DNA / RNA synthesizer by designing an oligo DNA sequence in which a target nucleotide sequence and a known tracrRNA sequence (for example, gttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtggtgctttt; Can be synthesized. In this specification, the nucleotide sequence is described as a DNA sequence unless otherwise specified. However, when the polynucleotide is RNA, thymine (T) is appropriately replaced with uracil (U).
 ガイドRNAをコードするDNAも、哺乳動物細胞用の発現ベクターに挿入することができる。ガイドRNA及びCasは、同一の発現ベクター上にコードされていてもよいし、異なる発現ベクター上に、それぞれコードされていてもよい。好適には、CasをコードするDNAとガイドRNAをコードするDNAを、同一の発現ベクター中、別個のプロモーターの下流に挿入する。 DNA that encodes guide RNA can also be inserted into an expression vector for mammalian cells. The guide RNA and Cas may be encoded on the same expression vector, or may be encoded on different expression vectors. Preferably, the DNA encoding Cas and the DNA encoding guide RNA are inserted downstream of separate promoters in the same expression vector.
 CasをコードするRNAは、例えば、上記したCasをコードするDNAを鋳型として、自体公知のインビトロ転写系にてmRNAに転写することにより調製することもできる。
 ガイドRNAは、標的ヌクレオチド配列と既知のtracrRNA配列とを連結したオリゴRNA配列を設計し、DNA/RNA合成機を用いて、化学的に合成することもできる。この場合、ガイドRNAを構成するリボヌクレオチドに、安定性や膜透過性を向上させるための種々の修飾を付与することができる。また、crRNAとtracrRNAとを別個に合成し、アニーリングして用いることもできる。
The RNA encoding Cas can also be prepared by, for example, transcribing it to mRNA using an in vitro transcription system known per se using the above-described DNA encoding Cas as a template.
The guide RNA can also be chemically synthesized using a DNA / RNA synthesizer by designing an oligo RNA sequence in which a target nucleotide sequence and a known tracrRNA sequence are linked. In this case, various modifications for improving stability and membrane permeability can be imparted to the ribonucleotide constituting the guide RNA. Alternatively, crRNA and tracrRNA can be synthesized separately and annealed for use.
 ジンクフィンガーモチーフ、TALエフェクター、PPRモチーフ等の核酸配列認識モジュールをコードするDNAは、各モジュールについて上記したいずれかの方法により取得することができる。制限酵素、転写因子、RNAポリメラーゼ等の配列認識モジュールをコードするDNAは、例えば、それらのcDNA配列情報に基づいて、当該タンパク質の所望の部分(DNA結合ドメインを含む部分)をコードする領域をカバーするようにオリゴDNAプライマーを合成し、当該タンパク質を産生する細胞より調製した全RNA若しくはmRNA画分を鋳型として用い、RT-PCR法によって増幅することにより、クローニングすることができる。 DNA encoding nucleic acid sequence recognition modules such as zinc finger motifs, TAL effectors, and PPR motifs can be obtained by any of the methods described above for each module. For example, DNA encoding sequence recognition modules such as restriction enzymes, transcription factors, RNA polymerase, etc. covers the region encoding the desired part of the protein (part containing the DNA binding domain) based on the cDNA sequence information. Thus, oligo DNA primers can be synthesized and cloned by amplifying by RT-PCR using total RNA or mRNA fraction prepared from cells producing the protein as a template.
 ヌクレアーゼや転写抑制因子等のエフェクターをコードするDNAも、同様に、使用するエフェクターのcDNA配列情報をもとにオリゴDNAプライマーを合成し、当該エフェクターを産生する細胞より調製した全RNA若しくはmRNA画分を鋳型として用い、RT-PCR法によって増幅することにより、クローニングすることができる。例えば、FokIをコードするDNAはそのcDNA配列をもとに、CDSの上流及び下流に対して適当なプライマーを設計し、Flavobacterium okeanokoites (IFO 12536)由来mRNAからRT-PCR法によりクローニングできる。 Similarly, for DNA encoding effectors such as nucleases and transcriptional repressors, oligo DNA primers are synthesized based on the cDNA sequence information of the effector used, and total RNA or mRNA fractions prepared from cells producing the effector. And can be cloned by amplification by RT-PCR. For example, DNA encoding FokI can be cloned from mRNA derived from Flavobacterium okeanokoites (IFO 12536) by RT-PCR by designing appropriate primers upstream and downstream of CDS based on the cDNA sequence.
 クローン化された核酸配列認識モジュールをコードするDNAは、そのまま、又は所望により制限酵素で消化するか、適当なリンカー及び/又は核移行シグナルを付加することができる。ヌクレアーゼや転写抑制因子等のエフェクターと組み合わせて用いる場合、クローン化された核酸配列認識モジュールをコードするDNAを、前記クローン化された核酸配列認識モジュールをコードするDNAとライゲーションして、融合タンパク質をコードするDNAを調製することができる。或いは、核酸配列認識モジュールをコードするDNAと、エフェクターをコードするDNAに、それぞれ結合ドメイン若しくはその結合パートナーをコードするDNAを融合させるか、両DNAに分離インテインをコードするDNAを融合させることにより、核酸配列認識モジュールとエフェクターとが宿主細胞内で翻訳された後に複合体を形成できるようにしてもよい。これらの場合も、所望により一方若しくは両方のDNAの適当な位置に、リンカー及び/又は核移行シグナルを連結することができる。 The DNA encoding the cloned nucleic acid sequence recognition module can be digested as it is or with a restriction enzyme if desired, or an appropriate linker and / or nuclear translocation signal can be added. When used in combination with an effector such as a nuclease or transcription repressor, the DNA encoding the cloned nucleic acid sequence recognition module is ligated with the DNA encoding the cloned nucleic acid sequence recognition module to encode a fusion protein. DNA can be prepared. Alternatively, by fusing the DNA encoding the nucleic acid sequence recognition module and the DNA encoding the effector, respectively, by fusing the DNA encoding the binding domain or its binding partner, or by fusing the DNA encoding the separation intein to both DNAs, A complex may be formed after the nucleic acid sequence recognition module and the effector are translated in the host cell. In these cases, a linker and / or a nuclear translocation signal can be linked to an appropriate position of one or both of DNAs as desired.
 核酸配列認識モジュールをコードするDNA、エフェクターをコードするDNAは、化学的にDNA鎖を合成するか、若しくは合成した一部オーバーラップするオリゴDNA短鎖を、PCR法やGibson Assembly法を利用して接続することにより、その全長をコードするDNAを構築することも可能である。化学合成又はPCR法若しくはGibson Assembly法との組み合わせで全長DNAを構築することの利点は、該DNAを導入する宿主に合わせて使用コドンをCDS全長にわたり設計できる点にある。異種DNAの発現に際し、そのDNA配列を宿主生物において使用頻度の高いコドンに変換することで、タンパク質発現量の増大が期待できる。使用する宿主におけるコドン使用頻度のデータは、例えば(公財)かずさDNA研究所のホームページに公開されている遺伝暗号使用頻度データベース(http://www.kazusa.or.jp/codon/index.html)を用いることができ、又は各宿主におけるコドン使用頻度を記した文献を参照してもよい。入手したデータと導入しようとするDNA配列を参照し、該DNA配列に用いられているコドンの中で宿主において使用頻度の低いものを、同一のアミノ酸をコードし使用頻度の高いコドンに変換すればよい。 For DNA encoding nucleic acid sequence recognition modules and DNA encoding effectors, chemically synthesize DNA strands, or synthesize partially overlapping oligo DNA short strands using the PCR method or Gibson Assembly method. By connecting, it is possible to construct a DNA encoding the full length. The advantage of constructing full-length DNA in combination with chemical synthesis or PCR method or Gibson Assembly method is that the codon used can be designed over the entire CDS according to the host into which the DNA is introduced. In the expression of heterologous DNA, an increase in protein expression level can be expected by converting the DNA sequence into a codon frequently used in the host organism. Data on the frequency of codon usage in the host to be used is, for example, the genetic code usage frequency database (http://www.kazusa.or.jp/codon/index.html) published on the Kazusa DNA Research Institute website. ) May be used, or references describing the frequency of codon usage in each host may be consulted. By referring to the obtained data and the DNA sequence to be introduced and converting the codon used in the DNA sequence that is not frequently used in the host into a codon that encodes the same amino acid and is frequently used Good.
 核酸配列認識モジュール及び/又はエフェクターをコードするDNAが挿入される発現ベクターとしては、レトロウイルス、ワクシニアウイルス、アデノウイルスなどの動物ウイルスベクターなどが用いられる。
 プロモーターとしては、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなど哺乳動物細胞で機能し得るプロモーターが用いられるが、これらに限定されない。
As an expression vector into which DNA encoding a nucleic acid sequence recognition module and / or effector is inserted, an animal virus vector such as a retrovirus, vaccinia virus, adenovirus, or the like is used.
Promoters include SRα promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, etc. A promoter that can function in mammalian cells is used, but is not limited thereto.
 発現ベクターは、上記の他に、所望によりエンハンサー、スプライシングシグナル、ターミネーター、ポリA付加シグナル、薬剤耐性遺伝子等の選択マーカー、複製起点などを含有していてもよい。 In addition to the above, the expression vector may contain an enhancer, a splicing signal, a terminator, a poly A addition signal, a selection marker such as a drug resistance gene, a replication origin, and the like as desired.
 核酸配列認識モジュール(及び所望により、さらにエフェクター)をコードする発現ベクターを対象となる哺乳動物の標的細胞(例、がん細胞、p53が不活性化した前がん細胞)に導入することによって、該細胞内において核酸配列認識モジュール又は該モジュールとエフェクターとの複合体が発現・形成され、c-Myc遺伝子上の標的ヌクレオチド配列と接触させることができる。 By introducing an expression vector encoding a nucleic acid sequence recognition module (and optionally an effector further) into target mammalian target cells (eg, cancer cells, precancerous cells inactivated p53), A nucleic acid sequence recognition module or a complex of the module and an effector is expressed and formed in the cell, and can be brought into contact with a target nucleotide sequence on the c-Myc gene.
(b)ゲノム配列の改変を伴う結合阻害物質
 上記(a)において、ヌクレアーゼとして、DSB活性を有する野生型酵素を用いることにより、本発明のシスエレメント内でDSBを生じせしめ、本発明のシスエレメントの1以上のヌクレオチドの欠失又は他のヌクレオチドへの置換、或いは該シスエレメント内への1以上のヌクレオチドの挿入をもたらすことにより、該シスエレメントを破壊することができる。
(B) Binding Inhibitor with Genomic Sequence Modification In (a) above, by using a wild-type enzyme having DSB activity as a nuclease, DSB is generated in the cis element of the present invention, and the cis element of the present invention The cis element can be disrupted by deletion of one or more nucleotides or substitution of other nucleotides, or insertion of one or more nucleotides into the cis element.
 c-Myc遺伝子は、本発明のシスエレメント内で切断された後、非相同末端連結(NHEJ)により修復されるが、その際の修復エラーにより、該シスエレメントの1以上のヌクレオチドの欠失又は他のヌクレオチドへの置換、或いは該シスエレメント内への1以上のヌクレオチドの挿入を生じる。その結果、Runx3の該変異シスエレメントに対する親和性が顕著に低下し、該変異シスエレメントへのRunx3の結合が阻害され、c-Myc遺伝子の転写活性化が抑制される。 The c-Myc gene is cleaved within the cis element of the present invention and then repaired by non-homologous end joining (NHEJ), but due to a repair error, deletion of one or more nucleotides of the cis element or Substitution for other nucleotides, or insertion of one or more nucleotides within the cis element occurs. As a result, the affinity of Runx3 to the mutant cis element is significantly reduced, the binding of Runx3 to the mutant cis element is inhibited, and the transcriptional activation of the c-Myc gene is suppressed.
 本発明のシスエレメント内に変異を導入する別の態様として、本発明のシスエレメントに隣接する上流及び下流の配列それぞれに相同な配列を含み、かつ該シスエレメント部分に変異が導入されたDNA(ドナーDNA)を、核酸配列認識モジュールとヌクレアーゼとの複合体をコードするDNAとともに、対象となる哺乳動物細胞に導入することで、本発明の標的領域を含む領域と該ドナーDNAとの間で相同組換えを引き起こすことにより、本発明のシスエレメント内に所望の変異を導入することができる。ドナーDNAに含まれる、該シスエレメントに隣接する上流及び下流の配列それぞれに相同な配列は、相同組換えを生じるに十分な長さであれば、特に制限されず、それぞれ50~100mer程度の比較的短い配列であってもよいし(図4-2参照)、あるいは、数kbに及ぶ長いホモロジーアームであってもよい(図4-1参照)。後者の場合、ドナーDNAはそれが挿入されたターゲティングベクターの形態で提供され得る。「ドナーDNAが挿入されたターゲティングベクター」とは、単に上記ドナーDNAと同一の配列が挿入されたターゲティングベクターにとどまらず、ドナーDNAの間又は外側に、選択マーカー及び/又はリコンビナーゼ標的配列を有するものも含む。該ターゲティングベクターの基本骨格となるベクターは特に限定されず、形質転換を行う細胞(例えば、大腸菌)中で自己複製可能なものであればよい。例えば、市販のpBluscript(Stratagene社製)、pZErO1.1(Invitrogen社)、pGEM-1(Promega社)等が使用可能である。 As another embodiment for introducing a mutation into the cis element of the present invention, a DNA comprising a sequence homologous to each of the upstream and downstream sequences adjacent to the cis element of the present invention and having the mutation introduced into the cis element part ( The donor DNA is introduced into the target mammalian cell together with the DNA encoding the complex of the nucleic acid sequence recognition module and the nuclease, so that the region containing the target region of the present invention is homologous with the donor DNA. By causing recombination, a desired mutation can be introduced into the cis element of the present invention. The sequence homologous to the upstream and downstream sequences adjacent to the cis element contained in the donor DNA is not particularly limited as long as it is long enough to cause homologous recombination. It may be a short sequence (see FIG. 4-2) or a long homology arm extending over several kb (see FIG. 4-1). In the latter case, the donor DNA can be provided in the form of a targeting vector into which it has been inserted. “Targeting vector into which donor DNA has been inserted” is not limited to a targeting vector into which the same sequence as the above donor DNA is inserted, but has a selection marker and / or a recombinase target sequence between or outside the donor DNA. Including. The vector serving as the basic skeleton of the targeting vector is not particularly limited as long as it is capable of self-replication in a cell to be transformed (for example, E. coli). For example, commercially available pBluescript (manufactured by Stratagene), pZErO1.1 (Invitrogen), pGEM-1 (Promega) and the like can be used.
 ドナーDNAは、二本鎖DNA(環状二本鎖DNA、直鎖状二本鎖DNA)、一本鎖DNAのいずれの形態でも、細胞に導入され得る。 Donor DNA can be introduced into cells in any form of double-stranded DNA (circular double-stranded DNA, linear double-stranded DNA) or single-stranded DNA.
 DSBは想定外のゲノム改変を伴うため、強い細胞毒性や染色体の転位などの副作用があり、遺伝子治療における信頼性を損なうおそれがある。そのため、ヌクレアーゼに代えて、エフェクターとしてDSBを伴わずにゲノム改変が可能な酵素を、核酸配列認識モジュールと組み合わせて用いることができる。そのような酵素としては、例えば、核酸塩基の置換基を他の置換基に変換することで、異なる塩基に置換する酵素(例、デアミナーゼ等)、脱塩基反応を触媒し、内在の修復機構のエラーを利用して脱塩基部位に変異を導入する酵素(例、DNAグリコシラーゼ等)が挙げられるが、それらに限定されない。尚、この場合、核酸配列認識モジュールがCRISPR-Casであれば、Casとして、少なくとも一方のDNA切断能が失活した変異体(nCas)、好ましくは両方のDNA切断能が失活した変異体(dCas)が用いられる。エフェクターとしてデアミナーゼを用いる場合の詳細は、例えば国際公開第2015/133554号に、DNAグリコシラーゼを用いる場合の詳細は、例えば国際公開第2016/072399号に、それぞれ記載されている。 Since DSB involves unexpected genomic alterations, it has side effects such as strong cytotoxicity and chromosomal translocation, which may impair reliability in gene therapy. Therefore, instead of nuclease, an enzyme capable of genome modification without DSB as an effector can be used in combination with a nucleic acid sequence recognition module. As such an enzyme, for example, an enzyme that substitutes a different base by converting a nucleobase substituent to another substituent (eg, deaminase), catalyzes an abasic reaction, and has an intrinsic repair mechanism. An enzyme that introduces a mutation into an abasic site using an error (eg, DNA glycosylase, etc.) can be mentioned, but is not limited thereto. In this case, if the nucleic acid sequence recognition module is CRISPR-Cas, as Cas, a mutant (nCas) in which at least one DNA cleavage ability is inactivated, preferably a mutant in which both DNA cleavage ability is inactivated (nCas) dCas) is used. Details of using deaminase as the effector are described in, for example, International Publication No. 2015/133554, and details of using DNA glycosylase are described in, for example, International Publication No. 2016/072399.
 上述のように、c-Myc遺伝子の転写調節領域には、本発明のシスエレメント以外にも多数のRunx結合配列が存在する(上記非特許文献1、図1参照)。従って、本発明のシスエレメントに加えて、これらのRunx結合配列の1以上へのRunx3の結合を阻害することで、さらにc-Myc遺伝子の転写を抑制し得る。c-Myc遺伝子の転写調節領域上の他のRunx結合配列を特異的に遮断するには、本発明の標的領域に代えて、目的のRunx結合配列TGCGGT又はACCGCAの少なくとも一部を含む、連続する12ヌクレオチド以上の部分ヌクレオチド配列からなる領域を標的領域として、上記と同様の手法を実施すればよい。この場合、核酸配列認識モジュールとしてCRISPR-Casを用いれば、ガイドRNAを各標的ヌクレオチド配列に対して設計しさえすればよいので、ZFモチーフやTALエフェクターを用いる場合より簡便である。 As described above, in the transcriptional regulatory region of the c-Myc gene, there are many Runx binding sequences in addition to the cis element of the present invention (see Non-Patent Document 1 and FIG. 1). Therefore, transcription of the c-Myc gene can be further suppressed by inhibiting the binding of Runx3 to one or more of these Runx binding sequences in addition to the cis element of the present invention. To specifically block other Runx binding sequences on the transcriptional regulatory region of the c-Myc gene, instead of the target region of the present invention, a sequence containing at least part of the target Runx binding sequence TGCGGT or ACCGCA What is necessary is just to implement the method similar to the above by making the area | region which consists of a partial nucleotide sequence 12 nucleotides or more into a target area | region. In this case, if CRISPR-Cas is used as the nucleic acid sequence recognition module, it is only necessary to design the guide RNA for each target nucleotide sequence, which is simpler than using a ZF motif or a TAL effector.
3.本発明の結合阻害物質の用途
(a)抗腫瘍剤
 本発明の結合阻害物質は、本発明の標的領域を特異的に認識して結合することにより、本発明のシスエレメントへのRunx3の結合を阻害し、Runx3やc-Mycの発現を直接阻害するよりも、効率よくc-Myc遺伝子の転写活性化を抑制することができ、しかも他の遺伝子上のRunx結合領域へのオフターゲット作用が十分に低減されているので、がん、特にp53の不活性化を伴うがんに対して、安全かつ有効な抗腫瘍薬となり得る。
3. Use of binding inhibitor of the present invention (a) Antitumor agent The binding inhibitor of the present invention specifically recognizes and binds to the target region of the present invention, thereby binding Runx3 to the cis element of the present invention. Can inhibit the transcriptional activation of the c-Myc gene more efficiently than the direct inhibition of Runx3 and c-Myc expression, and the off-target effect on the Runx binding region on other genes is sufficient. Therefore, it can be a safe and effective antitumor agent against cancer, particularly cancer with inactivation of p53.
 本発明は、少なくとも部分的には、多くのがんにおいて共通に認められるp53の不活性化とc-Mycの発現上昇という現象が、p53による抑制を脱したRunx3がc-Myc遺伝子の特定のRunx結合配列に結合することにより、該遺伝子の転写を活性化していることの発見に基づいている。
 従って、本発明の結合阻害物質が抗腫瘍効果を発揮し得るがんとしては、p53が不活性化している限り特に制限はなく、例えば、慢性リンパ球性白血病、子宮頸がん、神経膠腫、ホジキンリンパ腫、非ホジキンリンパ腫、悪性中皮腫、骨肉腫、黒色腫、多発性骨髄腫、急性リンパ球性がん、慢性骨髄性がん、皮膚がん、甲状腺がん、咽頭がん、喉頭がん、肺がん、食道がん、胃がん、肝臓がん、膵臓がん、腎臓がん、前立腺がん、小腸がん、大腸がん、直腸がん、結腸がん、精巣がん、卵巣がん、子宮頸がん、尿管がん、膀胱がんが挙げられる。特に、p53の変異率が高く、且つ悪性度が高い膵臓がんや、骨肉腫、とりわけ、化学療法による治療期間が1年に及び、かつそれでも治癒困難である場合が多い小児性骨肉腫の治療に有用である。
In the present invention, at least in part, the phenomenon of p53 inactivation and c-Myc increased expression that are commonly observed in many cancers is caused by the fact that Runx3, which has been derepressed by p53, is a specific c-Myc gene. It is based on the discovery that it activates transcription of the gene by binding to the Runx binding sequence.
Therefore, there is no particular limitation on the cancer with which the binding inhibitor of the present invention can exert an antitumor effect, as long as p53 is inactivated. For example, chronic lymphocytic leukemia, cervical cancer, glioma , Hodgkin lymphoma, non-Hodgkin lymphoma, malignant mesothelioma, osteosarcoma, melanoma, multiple myeloma, acute lymphocytic cancer, chronic myelogenous cancer, skin cancer, thyroid cancer, pharyngeal cancer, larynx Cancer, lung cancer, esophageal cancer, stomach cancer, liver cancer, pancreatic cancer, kidney cancer, prostate cancer, small intestine cancer, colon cancer, rectal cancer, colon cancer, testicular cancer, ovarian cancer Cervical cancer, ureteral cancer, bladder cancer. In particular, treatment of pancreatic cancer with high p53 mutation rate and high malignancy, and osteosarcoma, especially pediatric osteosarcoma, which has a treatment period of 1 year and is often difficult to cure. Useful for.
 本発明の結合阻害物質がアンチジーン(例、TFO、PIポリアミド、PNA等)の場合には、有効量の該結合阻害物質を単独で、あるいは、医薬上許容される担体とともに医薬組成物として、製剤化することができる。一方、本発明の結合阻害物がゲノム編集技術において利用される核酸配列認識モジュール(及び該モジュールと複合体を形成するエフェクター)である場合、好ましくは、該結合阻害物質は、それをコードするDNAを含む発現ベクター(以下、「本発明のベクター」ともいう。)の形態で、製剤化される。本発明の発現ベクターとしては、例えば、無毒化したレトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンドビスウイルス、センダイウイルス、SV40、免疫不全症ウイルス(HIV)等のウイルスベクターを用いることができる。好ましくはアデノウイルス又はアデノ随伴ウイルスベクターが挙げられる。 When the binding inhibitor of the present invention is an antigene (eg, TFO, PI polyamide, PNA, etc.), an effective amount of the binding inhibitor alone or with a pharmaceutically acceptable carrier as a pharmaceutical composition, It can be formulated. On the other hand, when the binding inhibitor of the present invention is a nucleic acid sequence recognition module (and an effector that forms a complex with the module) used in genome editing technology, preferably the binding inhibitor is a DNA encoding the same. In the form of an expression vector (hereinafter also referred to as “vector of the present invention”). Examples of the expression vector of the present invention include a detoxified retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, Sindbis virus, Sendai virus, SV40, immunodeficiency virus (HIV). ) And the like can be used. Preferably, an adenovirus or an adeno-associated virus vector is used.
 医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリド等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。 Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolide, dispersants such as surfactants, water, Although diluents, such as physiological saline, base wax, etc. are mentioned, it is not limited to them.
 アンチジーン分子や本発明のベクターの標的細胞内への導入を促進するために、本発明の抗腫瘍剤は、更に核酸導入用試薬を含むことができる。該核酸導入用試薬としては、アテロコラーゲン;リポソーム;ナノパーティクル;リポフェクチン、リプフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質等を用いることが出来る。 In order to promote introduction of an antigene molecule or a vector of the present invention into a target cell, the antitumor agent of the present invention can further contain a reagent for nucleic acid introduction. Examples of the nucleic acid introduction reagent include atelocollagen; liposome; nanoparticle; lipofectin, lipofectamine, DOGS (transfectam), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI) Cationic lipids such as can be used.
 好ましい一実施態様において、本発明の抗腫瘍剤は、アンチジーン分子や本発明のベクターがリポソームに封入されてなる医薬組成物であり得る。リポソームは、1以上の脂質二重層により包囲された内相を有する微細閉鎖小胞であり、通常は水溶性物質を内相に、脂溶性物質を脂質二重層内に保持することができる。本明細書において「封入」という場合には、アンチジーン分子や本発明のベクターはリポソーム内相に保持されてもよいし、脂質二重層内に保持されてもよい。本発明に用いられるリポソームは単層膜であっても多層膜であってもよく、また、粒子径は、例えば10~1000nm、好ましくは50~300nmの範囲で適宜選択できる。標的組織への送達性を考慮すると、粒子径は、例えば200nm以下、好ましくは100nm以下であり得る。 In a preferred embodiment, the antitumor agent of the present invention can be a pharmaceutical composition in which an antigene molecule or the vector of the present invention is encapsulated in liposomes. Liposomes are fine closed vesicles having an inner phase surrounded by one or more lipid bilayers, and can usually retain a water-soluble substance in the inner phase and a fat-soluble substance in the lipid bilayer. In the present specification, when “encapsulated” is used, the antigene molecule and the vector of the present invention may be retained in the liposome internal phase or in the lipid bilayer. The liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected, for example, in the range of 10 to 1000 nm, preferably 50 to 300 nm. In consideration of deliverability to the target tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
 アンチジーンや本発明のベクターのリポソームへの封入法としては、リピドフィルム法(ボルテックス法)、逆相蒸発法、界面活性剤除去法、凍結融解法、リモートローディング法等が挙げられるが、これらに限定されず、任意の公知の方法を適宜選択することができる。 Examples of the encapsulation method of the antigene or the vector of the present invention in the liposome include a lipid film method (vortex method), a reverse phase evaporation method, a surfactant removal method, a freeze-thaw method, a remote loading method, and the like. Without limitation, any known method can be appropriately selected.
 本発明の抗腫瘍剤は、経口的にまたは非経口的に、哺乳動物(例、ヒト、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル)に対して投与することが可能であるが、非経口的に投与するのが望ましい。 The antitumor agent of the present invention can be administered orally or parenterally to mammals (eg, human, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey). However, it is desirable to administer parenterally.
 また、徐放性の製剤(ミニペレット製剤等)を調製し患部近くに埋め込むことも可能であり、或いはオスモチックポンプ等を用いて患部に連続的に徐々に投与することも可能である。 It is also possible to prepare a sustained-release preparation (such as a mini-pellet preparation) and embed it in the vicinity of the affected area, or to gradually and continuously administer the affected area using an osmotic pump or the like.
 非経口的な投与(例えば、皮下注射、筋肉注射、局所注入、腹腔内投与など)に好適な製剤としては、水性および非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性および非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分および医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解または懸濁すればよい状態で保存することもできる。 Formulations suitable for parenteral administration (eg, subcutaneous injection, intramuscular injection, local infusion, intraperitoneal administration, etc.) include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like. The preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials. Alternatively, the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
 医薬組成物中のアンチジーン分子や本発明のベクターの含有量は、例えば、医薬組成物全体の約0.1ないし100重量%である。 The content of the antigene molecule and the vector of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the whole pharmaceutical composition.
 本発明の抗腫瘍剤の投与量は、投与方法、対象とするがんの種類、重篤度、投与対象の状況(性別、年齢、体重など)によって異なるが、例えば、成人に全身投与する場合、通常、アンチジーン分子の一回投与量として2 nmol/kg以上50 nmol/kg以下、局所投与する場合、1 pmol/kg以上10 nmol/kg以下が望ましい。かかる投与量を1~10回、より好ましくは5~10回投与することが望ましい。あるいは、本発明のベクターがウイルスベクター粒子として投与される場合、1回につき、例えばウイルスの力価として約1×103 pfu~1×1015 pfuの範囲で投与され得る。 The dose of the antitumor agent of the present invention varies depending on the administration method, the type of cancer to be treated, the severity, and the situation (sex, age, weight, etc.) of the administration target. For example, when administered systemically to an adult Usually, a single dose of antigene molecule is preferably 2 nmol / kg or more and 50 nmol / kg or less, and when administered locally, 1 pmol / kg or more and 10 nmol / kg or less is desirable. It is desirable to administer such dose 1 to 10 times, more preferably 5 to 10 times. Alternatively, when the vector of the present invention is administered as viral vector particles, it can be administered at a time, for example, in the range of about 1 × 10 3 pfu to 1 × 10 15 pfu as the virus titer.
 本発明の結合阻害物質が、それをコードするDNAを含む発現ベクターの形態で提供される場合、本発明の抗腫瘍剤は、投与対象から採取された細胞や組織(例、がん細胞)に添加して、該細胞内に該発現ベクターを導入し、それを投与対象の体内、好ましくはがん病変部に戻す、ex vivo製剤であってもよい。この場合、細胞への遺伝子導入法としては、リポフェクション法、リン酸-カルシウム共沈法;微小ガラス管を用いた直接注入法等が挙げられる。また、組織への遺伝子導入法としては、内包型リポソームによる遺伝子導入法、静電気型リポソームによる遺伝子導入法、HVJ-リポソーム法、改良型HVJ-リポソーム法(HVJ-AVEリポソーム法)、受容体介在性遺伝子導入法、パーティクル銃で担体(金属粒子)とともに有効成分を細胞に移入する方法、naked-DNAの直接導入法、正電荷ポリマーによる導入法等が挙げられる。 When the binding inhibitor of the present invention is provided in the form of an expression vector containing the DNA encoding the same, the antitumor agent of the present invention is applied to cells or tissues (eg, cancer cells) collected from the administration subject. It may be an ex 製 剤 vivo preparation that is added to introduce the expression vector into the cell and return it to the body of the administration target, preferably the cancer lesion. In this case, examples of the method for introducing a gene into a cell include a lipofection method, a phosphate-calcium coprecipitation method, and a direct injection method using a micro glass tube. In addition, gene transfer methods to tissues include gene transfer methods using encapsulated liposomes, gene transfer methods using electrostatic liposomes, HVJ-liposome method, improved HVJ-liposome method (HVJ-AVE liposome method), receptor-mediated Examples thereof include a gene introduction method, a method of transferring an active ingredient together with a carrier (metal particles) with a particle gun, a direct introduction method of naked-DNA, and a introduction method using a positively charged polymer.
 本発明の抗腫瘍剤は、他の薬剤、例えば、がん種に応じた既存の抗がん剤と併用することができる。本発明の抗腫瘍剤と他の薬剤とを併用する場合には、本発明の結合阻害物質と他の薬剤を自体公知の方法に従って混合し、合剤とすることもできるが、それぞれを別々に製剤化し、同一対象に対して同時に又は時間差をおいて投与してもよい。
 他の薬剤の投与量としては、例えば、当該薬剤を単独投与する場合に通常使用される投与量をそのまま適用することができる。
The antitumor agent of the present invention can be used in combination with other drugs, for example, existing anticancer drugs depending on the cancer type. When the antitumor agent of the present invention is used in combination with another drug, the binding inhibitor of the present invention and the other drug can be mixed according to a method known per se to form a mixture, but each is separately It may be formulated and administered to the same subject at the same time or with a time difference.
As the dose of the other drug, for example, the dose usually used when the drug is administered alone can be applied as it is.
 上述のように、p53が正常に機能していれば、p53はRunx3と結合してc-Myc遺伝子へのRunx3の結合を阻害するので、c-Myc遺伝子の発現上昇は抑制されている。従って、本発明の抗腫瘍剤は、p53が不活性化されているがんで特に有効である。そのため、本発明の抗腫瘍剤による治療奏功性を予測するために、投与対象であるがん患者がp53変異を有しているかを検定することが望ましい。従って、本発明はまた、本発明の抗腫瘍剤と、p53の不活性化を検定する試薬とを組み合わせてなる医薬を提供する。p53遺伝子の変異検出方法として、p53遺伝子のエキソンをPCR法で増幅し、シークエンシングやSSCP解析を行う方法が広く普及している。例えば、p53遺伝子の各エキソンを含む領域を増幅するようにデザインしたプライマーのセットは市販されている。p53不活性化の検定において、p53が不活性化されていない(野生型であるか、Runx3との結合能に影響しない変異を有する)と判定された場合、本発明の抗腫瘍剤は無効であるか、効果は限定的であると予測することができるので、他の治療法を選択することを考慮すべきである。 As described above, if p53 is functioning normally, p53 binds to Runx3 and inhibits the binding of Runx3 to the c-Myc gene, so that the increase in expression of the c-Myc gene is suppressed. Therefore, the antitumor agent of the present invention is particularly effective because p53 is inactivated. Therefore, it is desirable to test whether the cancer patient to be administered has a p53 mutation in order to predict the therapeutic efficacy of the antitumor agent of the present invention. Therefore, the present invention also provides a medicament comprising a combination of the antitumor agent of the present invention and a reagent for assaying p53 inactivation. As a method for detecting a mutation in the p53 gene, a method in which an exon of the p53 gene is amplified by a PCR method, and sequencing or SSCP analysis is widely used. For example, a set of primers designed to amplify a region containing each exon of the p53 gene is commercially available. When it is determined in the assay for p53 inactivation that p53 is not inactivated (it is a wild type or has a mutation that does not affect the ability to bind Runx3), the antitumor agent of the present invention is ineffective One should consider choosing other therapies, as the effects can be expected to be limited.
(b)遺伝子改変動物
 本発明の結合阻害物質が、ゲノム配列の改変を伴うゲノム編集の構成要素(例、核酸配列認識モジュール、ヌクレアーゼ、核酸塩基改変酵素、ドナーDNA)である場合、これらを用いて、本発明のシスエレメント内に変異を有し、該シスエレメントの機能が欠損した非ヒト動物を作製することができる。
(B) Genetically modified animals When the binding inhibitor of the present invention is a component of genome editing that involves modification of the genome sequence (eg, nucleic acid sequence recognition module, nuclease, nucleobase modifying enzyme, donor DNA), these are used. Thus, a non-human animal having a mutation in the cis element of the present invention and lacking the function of the cis element can be produced.
 非ヒト動物としては、非ヒト温血動物(非ヒト哺乳動物及び鳥類)が好ましい。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット、ウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の家畜、イヌ、ネコ等のペット、サル、オランウータン、チンパンジー等の霊長類が挙げられる。鳥類としては、例えばニワトリが挙げられる。 As the non-human animal, non-human warm-blooded animals (non-human mammals and birds) are preferable. Mammals include, for example, laboratory animals such as mice, rats, hamsters, guinea pigs and rabbits, domestic animals such as pigs, cows, goats, horses and sheep, pets such as dogs and cats, primates such as monkeys, orangutans and chimpanzees. Is mentioned. Examples of birds include chickens.
 本発明の遺伝子改変動物は、例えば、p53コンディショナルノックアウト非ヒト動物由来の多能性幹細胞(例、ES細胞、iPS細胞)に、本発明の結合阻害物質を導入して、NHEJもしくは相同組換えにより本発明のシスエレメントが機能欠損した多能性幹細胞を作製した後、自体公知の方法によりキメラ胚、キメラ動物を作製し、ジャームライントランスミッションしたキメラ動物から子孫を得ることによって製造できる。ゲノム編集技術の利用により、一度に両方のアレルの機能を欠損させることができ、ホモ接合性の遺伝子改変動物を容易に得ることができる。 The genetically modified animal of the present invention can be obtained by introducing NHEJ or homologous recombination by introducing the binding inhibitor of the present invention into, for example, a pluripotent stem cell derived from a p53 conditional knockout non-human animal (eg, ES cell, iPS cell). Thus, after producing a pluripotent stem cell in which the cis element of the present invention is deficient in function, a chimeric embryo or a chimeric animal is produced by a method known per se, and a progeny is obtained from the chimeric animal subjected to germline transmission. By using genome editing technology, the functions of both alleles can be deleted at once, and homozygous genetically modified animals can be easily obtained.
 このようにして得られた本発明の遺伝子改変動物は、c-Myc遺伝子の転写調節の分子機構や、p53、c-Myc及びRunx3によるがんの発症・進展に関する分子機構の解析などに有用である。 The genetically modified animal of the present invention thus obtained is useful for analyzing the molecular mechanism of transcriptional regulation of the c-Myc gene and the molecular mechanism related to the onset and progression of cancer by p53, c-Myc and Runx3. is there.
4.スクリーニング方法
 本発明はまた、本発明のシスエレメントを含む、c-Myc遺伝子の調節領域内の特定領域に対する特異的な結合能力を指標とする、抗腫瘍活性を有する物質のスクリーニング方法を提供する。当該方法は、以下の(1)~(3)の工程を含む。
(1)被検物質の存在下又は非存在下で、本発明のシスエレメントを含む、連続する12ヌクレオチド以上の部分ヌクレオチド配列を有する二本鎖DNAと、Runx3とを接触させる工程、
(2)該DNAとRunx3との結合を測定する工程、及び
(3)該DNAとRunx3との結合を阻害した被検物質を、抗腫瘍活性を有する物質の候補として選択する工程
 前記工程(1)に用いられる二本鎖DNAとしては、上述の本発明の標的領域を構成する二本鎖DNAが好ましい。
4). Screening method The present invention also provides a method for screening a substance having antitumor activity, using as an index the ability to specifically bind to a specific region in the regulatory region of the c-Myc gene, which contains the cis element of the present invention. The method includes the following steps (1) to (3).
(1) A step of bringing Runx3 into contact with a double-stranded DNA having a partial nucleotide sequence of 12 nucleotides or more that contains the cis element of the present invention in the presence or absence of a test substance,
(2) a step of measuring the binding between the DNA and Runx3, and (3) a step of selecting a test substance that inhibits the binding between the DNA and Runx3 as a candidate for a substance having antitumor activity. As the double-stranded DNA used in (2), the double-stranded DNA constituting the target region of the present invention described above is preferable.
 本発明のスクリーニング方法に供される被検物質は、いかなる公知化合物及び新規化合物であってもよく、例えば、核酸、糖質、脂質、タンパク質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、固相合成やファージディスプレイ法により作製されたランダムペプチドライブラリー、或いは微生物、動植物、海洋生物等由来の天然成分等が挙げられる。 The test substance used in the screening method of the present invention may be any known compound and novel compound, for example, using nucleic acids, carbohydrates, lipids, proteins, peptides, low molecular weight organic compounds, combinatorial chemistry techniques. Examples thereof include a compound library prepared, a random peptide library prepared by solid phase synthesis or a phage display method, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
 好ましい実施形態においては、本発明のスクリーニング方法は、下記の工程(1’)~(3’)さらに含む。
(1’)被検物質の存在下又は非存在下で、Runx結合配列TGCGGTを含み、かつc-Myc遺伝子の調節領域に存在しない、連続する12ヌクレオチド以上の部分ヌクレオチド配列を有する二本鎖DNAと、Runx3とを接触させる工程、
(2’)該DNAとRunx3との結合を測定する工程、及び
(3’)該DNAとRunx3との結合を阻害しないか、その阻害活性が、前記工程(1)の二本鎖DNAとRunx3と結合に対する阻害活性よりも低い被検物質を、抗腫瘍活性を有する物質の候補として選択する工程
 前記工程(1’)に用いられる二本鎖DNAとしては、c-Myc遺伝子以外の遺伝子、好ましくは生存に関連する遺伝子内に存在する、Runx結合配列を含む部分ヌクレオチド配列からなるものが挙げられる。多数のそのような配列を有する二本鎖DNAを収集し、例えばアレイ化することによって、被検物質のRunx3結合阻害の特異性(オフターゲット作用の程度)を網羅的に検出することができる。
In a preferred embodiment, the screening method of the present invention further comprises the following steps (1 ′) to (3 ′).
(1 ′) a double-stranded DNA having a partial nucleotide sequence of 12 or more consecutive nucleotides containing the Runx binding sequence TGCGGT and not present in the regulatory region of the c-Myc gene in the presence or absence of a test substance And a step of contacting Runx3,
(2 ′) a step of measuring the binding between the DNA and Runx3; and (3 ′) whether the binding between the DNA and Runx3 is not inhibited or the inhibitory activity is determined by the double-stranded DNA and Runx3 in the step (1). A step of selecting a test substance having a lower inhibitory activity on binding as a candidate for a substance having antitumor activity The double-stranded DNA used in the step (1 ′) is preferably a gene other than the c-Myc gene, preferably Includes a partial nucleotide sequence including a Runx binding sequence, which is present in a gene related to survival. By collecting and arraying, for example, an array of double-stranded DNAs having a large number of such sequences, the specificity of the test substance for inhibiting Runx3 binding (degree of off-target action) can be comprehensively detected.
 Runx3タンパク質は自体公知の方法により調製できる。例えば、Runx3遺伝子の発現組織からRunx3タンパク質を単離・精製できる。しかしながら、迅速、容易且つ大量にRunx3タンパク質を調製し、また、ヒト等のRunx3タンパク質を調製するためには、遺伝子組換え技術により組換えタンパク質を調製するのが好ましい。組換えタンパク質は、細胞系、無細胞系のいずれで調製したものでもよい。 Runx3 protein can be prepared by a method known per se. For example, the Runx3 protein can be isolated and purified from the expression tissue of the Runx3 gene. However, in order to prepare a Runx3 protein rapidly, easily and in large quantities, and to prepare a Runx3 protein such as a human, it is preferable to prepare a recombinant protein by a gene recombination technique. The recombinant protein may be prepared in either a cell system or a cell-free system.
 工程(2)(2’)では、被検物質による、二本鎖DNAとRunx3との結合の程度を測定することにより、被検物質の該結合に対する阻害の程度を検定する。二本鎖DNAとRunx3との結合は、自体公知の方法、例えば、ゲルシフトアッセイ、アフィニティークロマトグラフィー等の結果を、イメージアナライザー、分光光度計等で測定することにより行われ得る。 In step (2) (2 '), the degree of inhibition of the test substance against the binding is assayed by measuring the degree of binding between the double-stranded DNA and Runx3 by the test substance. The binding between the double-stranded DNA and Runx3 can be performed by a method known per se, for example, by measuring the results of gel shift assay, affinity chromatography, etc. with an image analyzer, a spectrophotometer or the like.
 工程(3)により、本発明のシスエレメントとRunx3との結合を阻害する被検物質が選択される。さらに、工程(3’)により、本発明のシスエレメント以外のRunx結合配列、例えば、c-Myc遺伝子以外で、調節領域内にRunx結合配列を含む遺伝子、好ましくは生存に関連する遺伝子の、該Runx結合配列へのRunx3の結合を阻害しないか、阻害活性の弱い被検物質が選択される。 In step (3), a test substance that inhibits the binding between the cis element of the present invention and Runx3 is selected. Furthermore, by the step (3 ′), a Runx binding sequence other than the cis element of the present invention, for example, a gene containing a Runx binding sequence in the regulatory region other than the c-Myc gene, preferably a gene associated with survival, A test substance that does not inhibit the binding of Runx3 to the Runx binding sequence or has a weak inhibitory activity is selected.
 上記のスクリーニング方法により選択された被検物質を、例えば、p53コンディショナルノックアウト動物(例えば、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、サル等の哺乳動物)へ投与することにより、該被検物質のc-Myc遺伝子の発現抑制効果及び/又は抗腫瘍効果や、副作用の程度を確認することができる。 The test substance selected by the above screening method is administered to, for example, a p53 conditional knockout animal (for example, a mammal such as a mouse, rat, hamster, guinea pig, rabbit, dog, monkey). The c-Myc gene expression inhibitory effect and / or antitumor effect of the substance and the degree of side effects can be confirmed.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 マウス・ヒトのc-Mycプロモーター領域として、転写開始点から上流3kbを図1に示す。下に塩基配列を拡大して明示したように、c-Myc遺伝子の転写開始点からもっとも近位に存在するRunxサイト(TGCGGT)をmR1として着目した。mR1はほ乳類において相同性が高く良く保存された領域に存在しており、マウスのmR1は-360bp付近に、ヒトのmR1は-310bp付近に位置し、近接する。
[Example 1]
FIG. 1 shows 3 kb upstream from the transcription start site as a mouse / human c-Myc promoter region. As clearly shown by enlarging the base sequence below, the runx site (TGCGGT) present closest to the transcription start point of the c-Myc gene was noted as mR1. mR1 is located in a highly conserved region with high homology in mammals, and mouse mR1 is located near -360 bp, and human mR1 is located near -310 bp.
[実施例2]
 マウスmR1配列にCRISPR/Cas9システムを用いて変異を導入したマウス骨肉腫細胞を準備した。骨芽細胞特異的p53ノックアウトマウスに発症した骨肉腫から樹立した細胞株(83-1細胞)のmR1配列に、-365~-363の位置に存在するTGG(アンチセンス側の配列)PAM配列を使用し、CRISPR/Cas9システムでインデルを誘起して2種類のホモ欠損変異(T7およびT13欠損変異)を導入した細胞(83-1-T7細胞および83-1-T13細胞)を作出した。図2左図のEMSA(Electrophoresis-Mobility-Shift-Assay)が示すように、83-1細胞の核抽出液中の内在性Runx3およびRunx2タンパク質のDNA結合力は、正常配列を有する2本鎖20塩基プローブDNA(WT:TTCCACCTGCGGTGACTGAT(配列番号7);5’末端ビオチンラベル)に比べ、T7およびT13欠損変異をもつプローブDNA(T7:GTTCCACCGCGGTGACTGAT(配列番号8)、T13:CTGTTCCACCGGTGACTGAT(配列番号9);ともに5’末端ビオチンラベル)に対しては明らかに減少した(室温で20分反応させた後、4%ポリアクリルアミドゲル電気泳動にて検出)。特にT13欠損変異でRunx3およびRunx2タンパク質の結合が完全に阻害された。図2中図のWesternブロットの結果が示すように、83-1-T7細胞および83-1-T13細胞では、コントロールの83-1-C細胞と比較しRunx3のタンパク量は変わらないものの、明らかにc-Mycのタンパク量が減少していた。83-1-T7細胞および83-1-T13細胞の造腫瘍性を83-1-C細胞とともにヌードマウスを用いた担癌実験で検討した。ヌードマウス(BALB/c nu/nu ♀ 6週齢)の背側の皮下に、それぞれ2.5x10個注入し、30日後に形成された腫瘍の重量を測定し比較した(図2右図)。83-1-T7細胞を注入したマウスおよび83-1-T13細胞を注入したマウスでは、コントロールの83-1-C細胞を注入したマウスと比較して、明らかに造腫瘍能が抑制されていた。
[Example 2]
Mouse osteosarcoma cells in which mutations were introduced into the mouse mR1 sequence using the CRISPR / Cas9 system were prepared. In the mR1 sequence of a cell line (83-1 cell) established from osteosarcoma that developed in osteoblast-specific p53 knockout mice, a TGG (antisense side sequence) PAM sequence located at positions of -365 to -363 was added. The cells (83-1-T7 cells and 83-1-T13 cells) into which two types of homo-deficient mutations (T7 and T13-deficient mutations) were introduced by inducing the indel using the CRISPR / Cas9 system were produced. As shown by EMSA (Electrophoresis-Mobility-Shift-Assay) on the left side of FIG. 2, the DNA binding strength of endogenous Runx3 and Runx2 proteins in the nuclear extract of 83-1 cells is a double-stranded 20 having a normal sequence. Compared with base probe DNA (WT: TTCCACC TGCGGT GACTGAT (SEQ ID NO: 7); biotin label at 5 ′ end), probe DNA having T7 and T13 deletion mutations (T7: GTCCACC GCGGT GACTGAT (SEQ ID NO: 8), T13: CGTTCCCACC GGT GACTGAT (SEQ ID NO: 9); both were clearly reduced (5 ′ terminal biotin label) (detected by 4% polyacrylamide gel electrophoresis after 20 minutes of reaction at room temperature). In particular, the T13 deletion mutation completely inhibited the binding of Runx3 and Runx2 proteins. As shown in the result of Western blotting in FIG. 2, the protein amount of Runx3 is not changed in 83-1-T7 cells and 83-1-T13 cells compared to control 83-1-C cells, but clearly In addition, the amount of c-Myc protein was decreased. The tumorigenicity of 83-1-T7 cells and 83-1-T13 cells was examined in a tumor bearing experiment using nude mice together with 83-1-C cells. 2.5 × 10 6 mice were injected subcutaneously on the dorsal side of nude mice (BALB / c nu / nu ♀ 6 weeks old), and the weight of the tumor formed after 30 days was measured and compared (right diagram in FIG. 2). . In mice injected with 83-1-T7 cells and mice injected with 83-1-T13 cells, the tumorigenicity was clearly suppressed as compared to mice injected with control 83-1-C cells. .
[実施例3]
 Runx3およびc-Mycそれぞれを特異的shRNAを用いてノックダウンさせた83-1細胞を作出し、それらの造腫瘍性を検討した担癌実験の結果を、[実施例2]で得られた担癌実験の結果と比較した(図3)。担癌実験は、[実施例2]とまったく同様に実施した。Clontech社のpSIRENレトロウイルス用shRNA発現ベクターに、Runx3およびc-MycそれぞれのsiRNA特異的配列(Runx3:TGGTCGGTGGAAATAGAAA(配列番号10)、c-Myc:GAACATCATCATCCAGGAC(配列番号11))を組み込み、HEK293T細胞にトランスフェクションすることでレトロウイルスを産生させた。そのレトロウイルスを83-1細胞に感染させることでshRNA発現系を83-1細胞のゲノムに挿入し、U6プロモーターによりshRNAが恒常的に発現されるようにした。感染細胞は、pSIRENベクターにコードされたピューロマイシン耐性遺伝子の活性を利用して、5μg/mlのピューロマイシン添加培養液で培養することによって選別し、生き残った細胞を2.5x10個ヌードマウスに注入した。mR1への変異の導入により、Runx3のノックダウンやc-Mycのノックダウンよりも高い造腫瘍能抑制効果が示された。
[Example 3]
83-1 cells in which Runx3 and c-Myc were knocked down using specific shRNA were prepared, and the results of cancer-bearing experiments in which their tumorigenicity was examined were obtained in [Example 2]. It compared with the result of the cancer experiment (FIG. 3). The cancer bearing experiment was carried out in the same manner as in [Example 2]. The siRNA-specific sequences of Runx3 and c-Myc (Runx3: TGGTCGGGGAAATAGAAAAA (SEQ ID NO: 10), c-Myc: GAACATCATCATCCAGGAC (SEQ ID NO: 11)) are incorporated into Clontech's pSIREN retrovirus shRNA expression vector, and HEK29 is incorporated into TEK29. Retroviruses were produced by transfection. By infecting the 83-1 cell with the retrovirus, the shRNA expression system was inserted into the genome of the 83-1 cell so that the shRNA was constitutively expressed by the U6 promoter. Infected cells were selected by culturing in a culture medium supplemented with 5 μg / ml of puromycin using the activity of the puromycin resistance gene encoded in the pSIREN vector, and the surviving cells were divided into 2.5 × 10 6 nude mice. Injected. The introduction of mutations into mR1 showed a higher tumorigenic effect suppressing effect than that of Runx3 knockdown or c-Myc knockdown.
[実施例4-1]
 c-Myc遺伝子の転写開始点より上流のmR1:TGCGGTをBglII配列(AGATCT)に置換する(図4-1)。c-Myc遺伝子のExon2の上流に「FRT-Neoカセット-FRT」を挿入したターゲティングベクターを構築した。定法に従い、C57BL/6由来のES細胞(TT2)にターゲティングベクターをエレクトロポレーション法で導入し、Neoカセット由来のネオマイシン耐性遺伝子活性を利用して、ネオマイシン(G418)で選別した。生き残ったES細胞のうち、期待通りに相同組み換えを起こしたES細胞からキメラマウスを作成し、F1マウスを得た。その後、F1マウスはCAG-FLPマウス(全身性に酵母由来のFLPリコンビナーゼを発現するマウス)と交配して、その産仔から、Neoカセットが除かれたマウスを選別した。FRT配列特異的にDNAを切り出すFLPリコンビナーゼの活性を利用した。
[Example 4-1]
The mR1: TGCGGT upstream from the transcription start point of the c-Myc gene is replaced with the BglII sequence (AGATCT) (FIG. 4-1). A targeting vector in which “FRT-Neo cassette-FRT” was inserted upstream of Exon2 of the c-Myc gene was constructed. According to a standard method, targeting vectors were introduced into C57BL / 6-derived ES cells (TT2) by electroporation, and neomycin (G418) was selected using the neomycin-resistant gene activity derived from the Neo cassette. Among the surviving ES cells, chimeric mice were prepared from ES cells that had undergone homologous recombination as expected, and F1 mice were obtained. Thereafter, F1 mice were crossed with CAG-FLP mice (a mouse systemically expressing yeast-derived FLP recombinase), and mice from which the Neo cassette had been removed were selected from their offspring. The activity of FLP recombinase that excises DNA in an FRT sequence-specific manner was used.
[実施例4-2]
 ゲノム編集を受精卵に応用し、mR1を特異的に変異させたマウスを作製した(図4-2)。(1) CTGCGTATATCAGTCACCGC(配列番号12)を標的とするcrRNAとtracrRNAの複合体がガイドRNAを構成し、Cas9ヌクレアーゼを誘導する。誘導されたCas9ヌクレアーゼは、PAM配列(AGG)から数塩基5’側の位置でゲノムDNAを二本鎖切断する。(2)二本鎖切断されたゲノムDNAは、mR1を制限酵素BglIIサイト(AGATCT)で置換した一本鎖DNAをドナーとして、HDR(Homology-directed repair; 相同組み換え修復)によって修復される。一本鎖DNAには、切断箇所から5’と3’の両方向に70塩基余りの相同配列を持たせている。(3)HDRによって修復されたゲノムDNAは、mR1が特異的に制限酵素BglIIサイト(AGATCT)で置換される。
[Example 4-2]
Genome editing was applied to fertilized eggs to produce mice that specifically mutated mR1 (FIG. 4-2). (1) A complex of crRNA and tracrRNA targeting CTGCGTATATCAGTCACCGC (SEQ ID NO: 12) constitutes a guide RNA and induces Cas9 nuclease. The induced Cas9 nuclease cleaves the genomic DNA into double strands at a position 5 ′ to several bases from the PAM sequence (AGG). (2) The double-stranded genomic DNA is repaired by HDR (Homology-directed repair) using a single-stranded DNA in which mR1 is replaced with a restriction enzyme BglII site (AGATCT) as a donor. The single-stranded DNA has a homologous sequence of about 70 bases in both the 5 ′ and 3 ′ directions from the cleavage site. (3) In the genomic DNA repaired by HDR, mR1 is specifically substituted with a restriction enzyme BglII site (AGATCT).
[実施例5-1]
 マウスmR1配列近傍にCRISPR/Cas9システムを用いて変異を導入したマウス骨肉腫細胞を準備した。骨芽細胞特異的p53ノックアウトマウスで発症した骨肉腫から樹立した細胞株(83-1細胞)のmR1配列近傍の、-341~-339の位置に存在するAGG(センス側の配列)PAM配列を使用し、CRISPR/Cas9システムでインデルを誘起して2種類のホモ欠損変異(NA8およびNA11欠損変異)を導入した細胞(83-1-NA8および83-1-NA11細胞)を作出した。これらの細胞、及び[実施例2]と同様の方法により作出した細胞(83-1-T13細胞及び83-1-T18細胞)の造腫瘍性を検討する担癌実験を、[実施例2]とまったく同様に実施した(図5)。83-1-NA11細胞、83-1-T7細胞又は83-1-T13細胞を注入したマウスはいずれも、コントロールの83-1-C細胞(WT)を注入したマウスと比較して、大幅に造腫瘍能が抑制されていた。一方で、83-1-NA11細胞を注入したマウスは、造腫瘍能があまり抑制されていなかった。従って、mR1への変異の導入により腫瘍形成能が大幅に低下するが、mR1以外の部分に欠損(NA8)があっても、腫瘍形成能はそれほど変わらないことが示された。
[Example 5-1]
Mouse osteosarcoma cells in which mutations were introduced in the vicinity of the mouse mR1 sequence using the CRISPR / Cas9 system were prepared. An AGG (sense-side sequence) PAM sequence present at a position of −341 to −339 in the vicinity of the mR1 sequence of a cell line (83-1 cell) established from osteosarcoma developed in an osteoblast-specific p53 knockout mouse The cells (83-1-NA8 and 83-1-NA11 cells) into which two types of homo-deficient mutations (NA8 and NA11-deficient mutations) were introduced by inducing indels with the CRISPR / Cas9 system were used. A cancer-bearing experiment for examining the tumorigenicity of these cells and cells (83-1-T13 cells and 83-1-T18 cells) produced by the same method as in [Example 2] was carried out in [Example 2]. And was carried out in exactly the same way (FIG. 5). Mice injected with 83-1-NA11 cells, 83-1-T7 cells, or 83-1-T13 cells were significantly more in comparison with mice injected with control 83-1-C cells (WT). Tumor-forming ability was suppressed. On the other hand, in mice injected with 83-1-NA11 cells, tumorigenicity was not significantly suppressed. Therefore, it was shown that the tumor-forming ability is greatly reduced by the introduction of mutations into mR1, but the tumor-forming ability does not change so much even if there is a defect (NA8) in a part other than mR1.
[実施例5-2]
 変異を導入する細胞として、83-1細胞(mOS4 cl.1)だけでなく、OSマウスに発症した骨肉腫由来の細胞株(mOS3 cl.2及び97-3細胞)を用いること以外は、[実施例2]と同様の方法により、CRISPR/Cas9システムを用いて、マウスmR1配列に欠失又は挿入を有するホモ変異を導入したマウス骨肉腫細胞(親細胞(Parental)、T7細胞、T14細胞、T13細胞、T18細胞、T16細胞、T3細胞、A5細胞、A3細胞;ただし、T7細胞、T14細胞は同じホモ変異をもつが別クローン由来)を準備し、担癌実験を行った(図6)。いずれの細胞も、コントロールの親細胞と比較して、造腫瘍能が抑制されていた。
[Example 5-2]
Except for using not only 83-1 cells (mOS4 cl.1) but also osteosarcoma-derived cell lines that developed in OS mice (mOS3 cl.2 and 97-3 cells) as cells to be introduced with mutations [ Example 2] Using the CRISPR / Cas9 system, mouse osteosarcoma cells (parent cells (Parental), T7 cells, T14 cells, in which homozygous mutations having deletions or insertions were introduced into the mouse mR1 sequence) were introduced in the same manner as in Example 2. T13 cells, T18 cells, T16 cells, T3 cells, A5 cells, A3 cells; however, T7 cells and T14 cells have the same homozygous mutation but derived from different clones) were prepared, and a tumor bearing experiment was performed (FIG. 6). . All cells had suppressed tumorigenicity as compared to the control parental cells.
 以上より、mR1配列のいずれかの位置に、少なくとも1塩基の置換、挿入又は欠失の変異の導入が導入されることにより、特異的に腫瘍形成能が低下することが推測された。 From the above, it was speculated that the ability to form tumors was specifically reduced by introducing at least one base substitution, insertion, or deletion mutation at any position in the mR1 sequence.
[実施例6]
 The Jackson Laboratory(米国)から、C57B6系統の全身性p53遺伝子ノックアウトマウス(#002101; Current Biology Vol.4 p1-7, 1994; p53-/-マウス)を購入した。p53-/-マウスは、3~4か月程度で大半がT細胞リンパ腫を発症して死亡するため(Current Biology Vol.4 p1-7, 1994)、T細胞リンパ腫発症モデルとして使用できる。
 C57B6系統の全身性Runx3遺伝子ノックアウトマウス(Runx3遺伝子のExon3をLacZに置き換えたマウス;Cell Vol.109 p113-124, 2002)を交配に使用して、p53-/-Runx3+/-マウスを作出した。なお、C57B6系統Runx3-/-マウスは生後すぐに死亡するため、p53-/-Runx3-/-マウスは検討できなかった。
 全長Runx3はプロモーターの違いから2種類の全長タンパク質が生じるが、そのひとつであるP1プロモーター由来の全長Runx3を、Exon0を欠失させることにより全身性にノックアウトしたマウス(Runx3(P1)-/-マウス)を作製した。C57B6系統のRunx3(P1)-/-マウスは、P2プロモーター由来の全長Runx3は発現しているため、野生型と同程度の寿命で健康であり、交配も可能である。交配を繰り返すことによって、p53-/- Runx3(P1)-/-マウスを作出した。
 実施例4-2で得たC57B6系統のmR1ホモ変異体マウス(mR1m/mマウス)は、野生型と同程度の寿命で健康であり、交配も可能であった。交配を繰り返すことによって、p53-/-mR1m/mマウスを作出した。
[Example 6]
C57B6 strain systemic p53 gene knockout mice (# 002101; Current Biology Vol. 4 p1-7, 1994; p53 − / − mice) were purchased from The Jackson Laboratory (USA). Since most of p53 − / − mice develop T cell lymphoma and die in about 3 to 4 months (Current Biology Vol.4 p1-7, 1994), they can be used as a T cell lymphoma onset model.
Systemic Runx3 gene knockout mice of C57B6 strain (mice in which Exon3 of Runx3 gene was replaced with LacZ; Cell Vol.109 p113-124, 2002) were used for mating to generate p53 − / − Runx3 +/− mice. . Since C57B6 strain Runx3 − / − mice died immediately after birth, p53 − / − Runx3 − / − mice could not be examined.
The full-length Runx3 generates two types of full-length proteins due to the difference in promoters. One of them, the full-length Runx3 derived from the P1 promoter, was knocked out systemically by deleting Exon0 (Runx3 (P1) − / − mouse) ) Was produced. The C57B6 strain Runx3 (P1) − / − mouse expresses the full-length Runx3 derived from the P2 promoter, and is healthy with a lifespan comparable to that of the wild type, and can be mated. By repeating the mating, p53 − / − Runx3 (P1) − / − mice were generated.
The C57B6 strain mR1 homozygous mouse (mR1 m / m mouse) obtained in Example 4-2 was healthy with a lifespan comparable to that of the wild type, and could be mated. By repeating the mating, p53 − / − mR1 m / m mice were generated.
 これらの作出したマウスについて、生存率を評価した。結果を図7に示す。mR1を全身性に欠損させたマウスは、野生型と遜色なく健康で交配も可能であったことから、mR1を阻害しても副作用の心配がないことが示された。p53-/-マウスは胸腺にリンパ腫を発症して早期に死亡したが、p53-/-mR1m/mマウスは、長期間にわたって生存している。従って、p53-/-による造腫瘍性は、mR1変異によりレスキューされることが示された。しかも驚くべきことに、このレスキュー効果は、Runx3+/-や、Runx3(P1)-/-による効果よりも顕著に高かった。 Survival rates were evaluated for these generated mice. The results are shown in FIG. Mice lacking mR1 systemically were healthy and mating without inferiority to the wild type, indicating that there was no concern about side effects even when mR1 was inhibited. Although p53 − / − mice developed lymphoma in the thymus and died early, p53 − / − mR1 m / m mice survived for a long time. Therefore, it was shown that tumorigenicity by p53 − / − is rescued by mR1 mutation. Moreover, surprisingly, this rescue effect was significantly higher than the effect of Runx3 +/− and Runx3 (P1) − / − .
 本出願は、日本で出願された特願2017-119159(出願日:2017年6月16日)を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2017-119159 filed in Japan (filing date: June 16, 2017), the contents of which are incorporated in full herein.
 本発明によれば、c-Myc遺伝子上の特定の領域(本発明の標的領域)へのRunx3の結合を阻害するだけで、極めて多くの種類の腫瘍細胞の造腫瘍能を抑制できる。しかも、当該結合を特異的に阻害し得る物質は、c-Myc遺伝子以外の遺伝子発現に及ぼすRunx3の作用には影響しないので、副作用が低減された安全な抗腫瘍剤として大いに有用である。 According to the present invention, it is possible to suppress the tumorigenicity of an extremely large number of types of tumor cells only by inhibiting the binding of Runx3 to a specific region (target region of the present invention) on the c-Myc gene. In addition, since a substance that can specifically inhibit the binding does not affect the action of Runx3 on gene expression other than the c-Myc gene, it is very useful as a safe antitumor agent with reduced side effects.

Claims (14)

  1.  c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTの少なくとも一部を含む、連続する12ヌクレオチド以上の標的領域を特異的に認識し、該Runx結合配列へのRunx3の結合を阻害する物質を含有する、抗腫瘍剤。 Specific recognition of a continuous target region of 12 nucleotides or more including at least part of the Runx binding sequence TGCGGT closest to the transcription start point upstream of the transcription start point of the c-Myc gene, and the Runx binding sequence An antitumor agent comprising a substance that inhibits the binding of Runx3 to.
  2.  前記Runx結合配列が、ヒトc-Myc遺伝子の転写開始点から-309~-304番目のヌクレオチド配列、又は他の哺乳動物オルソログにおける該ヌクレオチド配列に対応する配列(counterpart)である、請求項1に記載の剤。 The Runx binding sequence is a nucleotide sequence from -309 to -304 from the transcription start point of the human c-Myc gene, or a sequence corresponding to the nucleotide sequence in other mammalian orthologs (counterpart). The agent described.
  3.  p53が不活性化されている対象に適用することを特徴とする、請求項1又は2に記載の剤。 3. The agent according to claim 1 or 2, which is applied to a subject in which p53 is inactivated.
  4.  前記物質が、前記標的領域内のDNA配列に対するアンチジーンである、請求項1~3のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 3, wherein the substance is an antigene against a DNA sequence in the target region.
  5.  前記アンチジーンがピロール・イミダゾールポリアミドである、請求項4に記載の剤。 The agent according to claim 4, wherein the antigene is pyrrole-imidazole polyamide.
  6.  前記物質が、前記標的領域に特異的に結合する核酸配列認識モジュールである、請求項1~3のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 3, wherein the substance is a nucleic acid sequence recognition module that specifically binds to the target region.
  7.  前記核酸配列認識モジュールが、CRISPR-Cas、ジンクフィンガーモチーフ、TALエフェクター又はPPRモチーフである、請求項6に記載の剤。 The agent according to claim 6, wherein the nucleic acid sequence recognition module is CRISPR-Cas, zinc finger motif, TAL effector or PPR motif.
  8.  前記核酸配列認識モジュールがCRISPR-dCasである、請求項6に記載の剤。 The agent according to claim 6, wherein the nucleic acid sequence recognition module is CRISPR-dCas.
  9.  前記物質が、前記核酸配列認識モジュールと複合体形成するヌクレアーゼとからなる、請求項6又は7に記載の剤。 The agent according to claim 6 or 7, wherein the substance comprises a nuclease that forms a complex with the nucleic acid sequence recognition module.
  10.  前記物質が、前記ヌクレアーゼで切断される部位で相同組換えを生じさせ得るドナーDNAをさらに含む、請求項9に記載の剤。 The agent according to claim 9, wherein the substance further comprises donor DNA capable of causing homologous recombination at a site cleaved by the nuclease.
  11.  前記核酸配列認識モジュールが、転写抑制因子と複合体を形成する、請求項6~8のいずれか1項に記載の剤。 The agent according to any one of claims 6 to 8, wherein the nucleic acid sequence recognition module forms a complex with a transcription repressing factor.
  12.  前記物質が、それをコードする1以上の発現ベクターの形態で提供される、請求項1~3及び6~11のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 3 and 6 to 11, wherein the substance is provided in the form of one or more expression vectors encoding the substance.
  13.  p53の不活性化を検定するための試薬と組み合わせてなる、請求項1~12のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 12, which is combined with a reagent for assaying inactivation of p53.
  14.  (1)被検物質の存在下又は非存在下で、c-Myc遺伝子の転写開始点の上流における、該転写開始点の最も近傍のRunx結合配列TGCGGTを含む、連続する12ヌクレオチド以上の部分ヌクレオチド配列を有する二本鎖DNAと、Runx3とを接触させる工程、
    (2)該DNAとRunx3との結合を測定する工程、及び
    (3)該DNAとRunx3との結合を阻害した被検物質を、抗腫瘍活性を有する物質の候補として選択する工程
    を含む、抗腫瘍活性を有する物質のスクリーニング方法。
    (1) 12 or more consecutive partial nucleotides containing the Runx binding sequence TGCGGT closest to the transcription start point upstream of the transcription start point of the c-Myc gene in the presence or absence of the test substance Contacting double-stranded DNA having a sequence with Runx3;
    (2) measuring the binding between the DNA and Runx3, and (3) selecting a test substance that inhibits the binding between the DNA and Runx3 as a candidate for a substance having antitumor activity. A screening method for a substance having tumor activity.
PCT/JP2018/023028 2017-06-16 2018-06-15 Oncogene transcription control region WO2018230731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525586A JP7212943B2 (en) 2017-06-16 2018-06-15 Transcriptional regulatory regions of oncogenes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-119159 2017-06-16
JP2017119159 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230731A1 true WO2018230731A1 (en) 2018-12-20

Family

ID=64659123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023028 WO2018230731A1 (en) 2017-06-16 2018-06-15 Oncogene transcription control region

Country Status (2)

Country Link
JP (1) JP7212943B2 (en)
WO (1) WO2018230731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189147A1 (en) * 2018-03-26 2019-10-03 国立大学法人神戸大学 Method for modifying target site in double-stranded dna in cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JACOBS, PAEJONETTE T. ET AL.: "Runx Transcription Factors Repress Human and Murine c-Myc Expression in a DNA-Binding and C-Terminally Dependent Manner", PLOS ONE, vol. 8, no. 7, 2013, pages 1 - 16, XP055460173, ISSN: 1932-6203 *
LEE, CECILIA WEI LIN ET AL.: "Role of RUNX3 in Bone Morphogenetic Protein Signaling in Colorectal Cancer", CANCER RESEARCH, vol. 70, no. 10, 2010, pages 4243 - 4252, XP055570505, ISSN: 0008-5472 *
MORITA, KEN ET AL.: "Genetic regulation of the RUNX transcription factor family has antitumor effects", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 127, no. 7, 22 May 2017 (2017-05-22), pages 2815 - 2828, XP055460190, ISSN: 0021-9738 *
SHIN, MIN-HWA ET AL.: "A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells", PLOS GENET., vol. 12, no. 2, 2016, pages 1 - 25, XP055570493, ISSN: 1553-7390 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189147A1 (en) * 2018-03-26 2019-10-03 国立大学法人神戸大学 Method for modifying target site in double-stranded dna in cell
JPWO2019189147A1 (en) * 2018-03-26 2020-04-30 国立大学法人神戸大学 Method for modifying target site of double-stranded DNA possessed by cell
JP2020191879A (en) * 2018-03-26 2020-12-03 国立大学法人神戸大学 Methods for modifying target sites of double-stranded dna in cells
US11041169B2 (en) 2018-03-26 2021-06-22 National University Corporation Kobe University Method for modifying target site in double-stranded DNA in cell
JP7250349B2 (en) 2018-03-26 2023-04-03 国立大学法人神戸大学 Method for modifying target site of double-stranded DNA possessed by cells

Also Published As

Publication number Publication date
JPWO2018230731A1 (en) 2020-04-16
JP7212943B2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US20230174978A1 (en) Methods and compositions for modulating gene expression
US11339410B2 (en) Methods and products for expressing proteins in cells
JP2019500899A (en) Cellular RNA tracking and manipulation through nuclear delivery of CRISPR / Cas9
TWI723363B (en) Pharmaceutical composition for treating cancers comprising guide rna and endonuclease
US20210322577A1 (en) Methods and systems for modifying dna
AU2020206997A1 (en) A non-toxic Cas9 enzyme and application thereof
US20230159920A1 (en) Methods and compositions comprising brd9 activating therapies for treating cancers and related disorders
WO2022047624A1 (en) Small cas proteins and uses thereof
WO2018230731A1 (en) Oncogene transcription control region
CA2949345C (en) Small interfering rna (sirna) for the therapy of type 2 (ado2) autosomal dominant osteopetrosis caused by clcn7 (ado2 clcn7-dependent) gene mutation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818876

Country of ref document: EP

Kind code of ref document: A1