WO2018230674A1 - Antiviral or virus-inactivating agent - Google Patents
Antiviral or virus-inactivating agent Download PDFInfo
- Publication number
- WO2018230674A1 WO2018230674A1 PCT/JP2018/022821 JP2018022821W WO2018230674A1 WO 2018230674 A1 WO2018230674 A1 WO 2018230674A1 JP 2018022821 W JP2018022821 W JP 2018022821W WO 2018230674 A1 WO2018230674 A1 WO 2018230674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virus
- group
- antiviral
- agent
- inactivating agent
- Prior art date
Links
- 0 *C(NC(Cc1c[n]c2c1cccc2)C(O)=O)=O Chemical compound *C(NC(Cc1c[n]c2c1cccc2)C(O)=O)=O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/405—Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
Definitions
- the present invention relates to an antiviral or virus inactivating agent or the like.
- virus infection countermeasures are a major issue in modern society.
- treatment and prevention The importance of education does not wait for prevention, but isolation and disinfection are fundamental in terms of technique.
- Disinfectant is indispensable for disinfection, but chlorine-based disinfectant (Patent Document 1) that is generally used has strong tissue damage and its usage is limited. In order to perform effective disinfection in a safe manner for users in old-age facilities and infant facilities, an effective disinfectant that is light in tissue damage is desired.
- disinfectants are limited in their application to the human body due to their tissue damage and cannot be used as therapeutic agents.
- an inactivating agent with little tissue damage can be developed, it can be considered not only a safe disinfectant but also a prophylactic / therapeutic agent for viral infection on the body surface.
- An object of the present invention is to provide an antiviral agent having higher safety for living bodies and suitable not only for application to articles but also for living bodies.
- the present invention provides an antiviral agent that has higher safety for living bodies, is suitable not only for application to articles but also for living bodies, and has a higher antiviral or virus inactivating action. Is an issue.
- the present inventor is able to solve the above problems by using a compound represented by the general formula (1) such as N acetyltryptophan. I found it. The present inventor has completed the present invention by further research based on this finding.
- R 1 represents an alkyl group having 1 to 6 carbon atoms.
- R 2 represents an alkylene group having 1 to 6 carbon atoms.
- R 3 represents a group derived from a nitrogen-containing heterocycle.
- An antiviral or viral inactivating agent comprising at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof.
- Item 2 The antiviral or virus inactivating agent according to Item 1, which is a compound represented by:
- Item 3 The antiviral or virus inactivating agent according to Item 1 or 2, which is a compound represented by:
- Item 4. The antiviral or virus inactivating agent according to any one of Items 1 to 3, wherein the alkyl group represented by R 1 has 1 to 3 carbon atoms.
- Item 5 The antiviral or virus inactivating agent according to any one of Items 1 to 4, which is used for application to a living body.
- Item 6 The antiviral or virus inactivating agent according to Item 5, which is a pharmaceutical, cosmetic, disinfectant or detergent.
- Item 7. The antiviral or virus inactivating agent according to any one of Items 1 to 4, which is used for application to articles.
- Item 8 The antiviral or virus inactivating agent according to Item 7, which is a disinfectant or a cleaning agent.
- R 1 represents an alkyl group having 1 to 6 carbon atoms.
- R 2 represents an alkylene group having 1 to 6 carbon atoms.
- R 3 represents a group derived from a nitrogen-containing heterocycle.
- R 1 represents an alkyl group having 1 to 6 carbon atoms.
- R 2 represents an alkylene group having 1 to 6 carbon atoms.
- R 3 represents a group derived from a nitrogen-containing heterocycle.
- a whole vaccine comprising at least one selected from the group consisting of a compound represented by the formula: salts thereof, and solvates thereof; and an inactivated virus.
- an antiviral or virus inactivating agent that has higher safety for living bodies and is suitable not only for application to articles but also for living bodies.
- the antiviral or virus inactivating agent of the present invention can exert an antiviral or viral inactivating action not only on enveloped viruses but also on non-enveloped viruses.
- the active ingredient of the antiviral or virus inactivating agent of the present invention since it has higher safety against living bodies, it can be suitably used for the production of a whole vaccine consisting of whole virus particles.
- Test Example 1 The result of Test Example 1 is shown.
- HSV-1 herpes simplex virus type 1
- FCV feline calicivirus
- HRV human rhinovirus
- HRV human rhinovirus
- Test Example 2 HSV-1 F strain; ⁇ : Influenza virus A0PR8 strain; ⁇ : FCV; ⁇ : HRV The result of Test Example 2 is shown. Each type and subtype of influenza virus is mixed in various concentrations of N-acetyltryptophan aqueous solution, and the relative values of the residual virus infectivity when incubated at 30 ° C. for 10 minutes are shown. The value when kept warm in a solution containing no N-acetyltryptophan is 1.
- ⁇ Influenza A virus A0PR8 strain (H1N1 subtype); ⁇ : Influenza A virus A / Aichi / 68 strain (H3N2 subtype); ⁇ : Influenza B virus B / Tokyo strain
- Test Example 3 The result of Test Example 3 is shown.
- HSV-1 F strain ( ⁇ , ⁇ ) or influenza virus A0PR8 strain ( ⁇ , ⁇ ) was mixed with various concentrations of N-acetyltryptophan aqueous solution, and the relative value of the residual virus infectivity when incubated at 30 ° C for 5 minutes was calculated. Show. In order to achieve a final concentration of 0.25% in the reaction solution, a concentrated bovine serum albumin (BSA) solution (10%) was added to the virus solution in advance ( ⁇ , ⁇ ⁇ ) and a solvent ( Two types of virus solutions were used, one with phosphate buffered saline (PBS) added ( ⁇ , ⁇ ). The value when kept warm in a solution containing no N-acetyltryptophan was taken as 1.
- BSA bovine serum albumin
- the result at the time of using influenza virus in the test example 4 is shown. Shows the relative value of residual virus infectivity when influenza virus A0PR8 strain is added to a reaction solution in which N-acetyltryptophan at the indicated concentration is dissolved in 10 mM citrate buffer adjusted to various pH and incubated at 30 ° C for 5 minutes. . ⁇ : pH 7.0; ⁇ : pH 6.0; ⁇ : pH 5.8; ⁇ : pH 5.5; ⁇ : pH 5.2; ⁇ : pH 5.0. The value when kept in a phosphate buffered saline solution (hereinafter referred to as PBS) not containing N-acetyltryptophan was set to 1.
- PBS phosphate buffered saline solution
- the result at the time of using a feline calicivirus in the test example 4 is shown.
- the relative value of the residual virus infectivity when feline calicivirus was added to a reaction solution in which N-acetyltryptophan at the indicated concentration was dissolved in 10 mM citrate buffer adjusted to various pH and incubated at 37 ° C. for 20 minutes is shown.
- the value when kept warm in PBS without N-acetyltryptophan was taken as 1.
- the result of Test Example 5 is shown.
- the relative value of the residual virus infectivity when HSV-1 is added to a reaction solution prepared by dissolving N acetyltryptophan in 5.0 mM in various buffer solutions adjusted to the indicated pH and kept at 30 ° C. for 5 minutes is shown.
- the value when kept warm in PBS without N-acetyltryptophan was taken as 1.
- the result of Test Example 6 is shown.
- the relative values of the residual virus infectivity when the influenza virus A0PR8 strain was added to 10 mM citrate buffer (pH 5.0) containing the indicated concentration of N-acetyltryptophan and incubated at various temperatures for 5 minutes are shown.
- ⁇ N-acetyltryptophan-containing culture solution
- ⁇ control culture solution (containing methanol as solvent).
- the virus yield value in a culture medium containing no N-acetyltryptophan was taken as 1.
- the result at the time of using influenza virus in the test example 7 is shown. Shows the relative value of virus yield after infecting MDCK cells with 4 infectious influenza virus A / Aichi strains per cell and then cultivating the virus-infected cells overnight in a medium containing the indicated concentration of N-acetyltryptophan. .
- ⁇ N-acetyltryptophan-containing culture solution
- ⁇ control culture solution (containing methanol as solvent).
- the virus yield value in a culture medium containing no N-acetyltryptophan was taken as 1.
- Antiviral or virus inactivating agent contains at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof,
- the present invention relates to a virus or a virus inactivating agent (in this specification, sometimes referred to as “agent of the present invention”). This will be described below.
- the compound represented by the general formula (1) has the following general formula (1).
- R 1 represents an alkyl group having 1 to 6 carbon atoms.
- the alkyl group represented by R 1 includes any of linear or branched (preferably linear).
- the number of carbon atoms of the alkyl group is preferably 1 to 4, more preferably 1 to 3, further preferably 1 to 2, and still more preferably 1.
- Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, neopentyl group, n -Hexyl group, 3-methylpentyl group and the like.
- R 2 represents an alkylene group having 1 to 6 carbon atoms.
- the alkylene group represented by R 2 includes any of linear or branched (preferably linear).
- the number of carbon atoms of the alkylene group is preferably 1 to 4, more preferably 1 to 3, further preferably 1 to 2, and still more preferably 1.
- Specific examples of the alkylene group include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, n-hexylene group and the like.
- R 3 represents a group derived from a nitrogen-containing heterocycle (a group obtained by removing one hydrogen atom (preferably a hydrogen atom bonded to a carbon atom) from the nitrogen-containing heterocycle).
- the group derived from the nitrogen-containing heterocycle represented by R 3 is not particularly limited, and examples thereof include heteroaryl groups having 3 to 20, preferably 3 to 12, and more preferably 7 to 11 ring members. .
- the number of nitrogen atoms contained in the group derived from the nitrogen-containing heterocycle is, for example, 1 to 3, preferably 1 to 2, and more preferably 1.
- the group derived from the nitrogen-containing heterocycle is preferably a group having —NH— in the ring.
- the group derived from the nitrogen-containing heterocycle is preferably a group that does not contain a heteroatom other than a nitrogen atom.
- the group derived from the nitrogen-containing heterocycle is, for example, monocyclic or polycyclic (bicyclic, tricyclic, etc.), and preferably bicyclic.
- the group derived from the nitrogen-containing heterocycle is preferably a nitrogen-containing heteroaryl group.
- the group derived from the nitrogen-containing heterocyclic ring include pyrrolyl group, pyridyl group, pyrrolidyl group, piperidyl group, imidazolyl group, pyrazolyl group, pyrazyl group, pyrimidyl group, pyridazyl group, piperazyl group, triazinyl group, oxazolyl group, Examples include isoxazolyl group, morpholyl group, thiazolyl group, isothiazolyl group, indolyl group, quinolyl group, isoquinolyl group, benzimidazolyl group, quinazolyl group, phthalazyl group, purinyl group, and pteridyl group. Among these, an indolyl group is preferable, and a 3-indolyl group is more preferable.
- the compound represented by the general formula (1) is preferably the general formula (1A):
- R 1 is the same as defined above.
- the compound represented by these is mentioned.
- the salt of the compound represented by the general formula (1) is not particularly limited, and any appropriate acceptable salt can be adopted depending on the application.
- an acidic salt or a basic salt can be employed.
- acidic salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate; acetate, propionate, tartrate, fumarate, maleate, malic acid Organic salts such as salts, citrates, methanesulfonates, paratoluenesulfonates, and the like.
- Examples of basic salts include alkali metal salts such as sodium salts and potassium salts; calcium salts, magnesium Alkaline earth metal salts such as salts; salts with ammonia; morpholine, piperidine, pyrrolidine, monoalkylamine, dialkylamine, trialkylamine, mono (hydroxyalkyl) amine, di (hydroxyalkyl) amine, tri (hydroxyalkyl) Examples thereof include salts with organic amines such as amines.
- the compound represented by the general formula (1) or a salt thereof may be a solvate.
- the solvent an appropriate suitable solvent can be adopted depending on the application. Examples of the solvent include water, ethanol, glycerol, acetic acid and the like.
- the compound represented by the general formula (1) can be synthesized by various methods, for example, according to or according to a known synthesis method.
- a commercially available product can be used as it is or appropriately modified as the compound represented by the general formula (1).
- influenza virus for example, type A, type B, etc.
- rubella virus for example, a virus, rubella virus, Ebola virus, coronavirus, measles virus, varicella-zoster virus, herpes simplex virus , Mumps virus, arbovirus, RS virus, SARS virus, hepatitis virus (eg, hepatitis B virus, hepatitis C virus, etc.), yellow fever virus, AIDS virus, rabies virus, hantavirus, dengue virus, nipavirus, lisa virus, etc.
- influenza virus for example, type A, type B, etc.
- rubella virus for example, type A, type B, etc.
- Ebola virus for example, type A, type B, etc.
- coronavirus for example, type A, type B, etc.
- measles virus measles virus
- varicella-zoster virus varicella-zoster virus
- herpes simplex virus Mumps virus, ar
- Envelope virus (virus with envelope); adenovirus, norovirus, rotavirus, human papillomavirus, poliovirus, enterovirus, coxsackie virus, human parvovirus, encephalomyocarditis virus, polio Luz, non-enveloped viruses such as rhinovirus (virus non-enveloped), and the like.
- respiratory infection virus that spreads through droplets (droplets) and contact infection viruses that spread through contact with secretory fluid (mucus), and more preferably influenza viruses, herpes viruses, Examples include rhinovirus.
- the agent of the present invention can be widely used in various fields requiring antiviral properties.
- the agent of the present invention can be used in various fields such as industry, washing, medical care, food, daily necessities and the like.
- the agent of the present invention is classified into a use applied to a living body and a use applied to an article described later.
- Uses applied to living bodies examples include pharmaceuticals, cosmetics, disinfectants, and cleaning agents.
- the application target in this case is not particularly limited, and examples thereof include various mammals such as humans, monkeys, mice, rats, dogs, cats, rabbits, pigs, horses, cows, sheep, goats and deer.
- an antiviral effect and / or a virus inactivating effect can be exhibited at a site where the active ingredient comes into contact.
- the form of the agent of the present invention is not particularly limited, and can take a form normally used in each application depending on the application of the agent of the present invention.
- a patch plaster, plaster, etc., tape (reservoir type, matrix type, etc.), cataplasm, patch, microneedle, etc.), ointment, external liquid (Liniments, lotions, etc.), sprays (external aerosols, pump sprays, etc.), creams, gels, eye drops, eye ointments, nasal drops, suppositories, rectal semisolids, enemas
- parenteral intake such as external preparation forms; tablets (including oral disintegrating tablets, chewable tablets, effervescent tablets, troches, jelly-like drops, etc.), pills, granules
- oral dosage forms such as fine granules, powders, hard capsules, soft capsules, dry syrups, liquids (including drinks, suspensions, syrups), and jelly And Use formulation are preferably exemplified.
- a liquid agent a gel agent, a cream agent, an ointment, a stick agent etc. are mentioned, for example.
- a disinfectant or a cleaning agent for example, liquid (solution, emulsion, suspension, etc.), semi-solid (gel, cream, paste, etc.), solid (tablet, particulate agent, capsule) , Film agents, kneaded materials, molten solids, waxy solids, elastic solids, and the like).
- dentifrices teethpaste, liquid dentifrice, liquid dentifrice, powder dentifrice, etc.
- mouthwashes coating agents, patches, mouth fresheners, food ( For example, chewing gum, tablet candy, candy, gummi, film, troche, etc.).
- a spray type nasal drop etc. will be mentioned more specifically.
- soap, body soap, shampoo, rinse, spray agent and the like can be mentioned.
- the agent of the present invention may further contain other components as necessary.
- the other components are not particularly limited as long as they are components that can be blended in, for example, pharmaceuticals, cosmetics, disinfectants, detergents, and the like.
- bases, carriers, solvents, dispersants, emulsifiers, buffers, Stabilizers, excipients, binders, disintegrants, lubricants, thickeners, humectants, colorants, fragrances, chelating agents and the like can be mentioned.
- the buffering agent is not particularly limited, and an appropriate suitable one can be adopted depending on the application.
- Preferred examples include phosphate buffer and acetate buffer.
- the agent of the present invention is preferably used so that the pH becomes acidic when applied to a living body.
- the pH of the agent of the present invention is preferably, for example, less than 7, preferably 6 or less, more preferably 5.5 or less, and further preferably 5 or less.
- the lower limit of pH is not particularly limited, and is 1, 2, 3, or 4, for example.
- the content of the active ingredient of the agent of the present invention depends on the type, use, usage mode, application target, application target state, and the like of the active ingredient, and is not limited to, for example, 0.000001 to 100% by weight, Preferably, it can be 0.01 to 50% by weight.
- the amount of application (for example, administration, ingestion, inoculation, etc.) of the agent of the present invention is not particularly limited as long as it is an effective amount that exhibits a desired effect, and is generally 0.1 to 1 per day as the weight of the active ingredient. 1000 mg / kg body weight.
- the above dose is preferably administered once a day or divided into 2 to 3 times a day, and can be appropriately increased or decreased depending on age, disease state, and symptoms.
- Uses applied to articles examples include disinfectants and cleaning agents.
- the application object in this case is not particularly limited, and includes industrial products and raw materials used in various fields.
- Specific examples of goods include OA equipment, home appliances, air conditioning equipment, vacuum cleaners, desks, chairs, sofas, benches, windows, straps, handles, seats, automatic ticket gates, automatic ticket vending machines, vending machines, doors, fences , Handrails, tableware, cooking utensils, packaging films, packaging bags, bottles, bottles, packaging packs, sinks, toilet bowls, stationery, books, shelves, toothbrushes, mirrors, air conditioning filters, masks, coats, jackets, pants, skirts, shirts, Knit shirt, blouse, sweater, cardigan, nightwear, underwear, underwear, diaper, supporter, socks, tights, stockings, hat, scarf, scarf, collar, stall, gloves, clothes lining, clothes lining, clothes Filling, work clothes, uniforms, school uniforms, curtains, net doors, futon mats, futon cotton, duvet covers, pillowcases, sheets, mats, cars Tsu door, towel, handkerchief, wall cloth, band-aids, bandages, and the like.
- an antiviral effect and / or a virus inactivating effect can be exhibited at a site where the active ingredient comes into contact.
- part which an active ingredient contacts is not restricted to the site
- the dosage form of the agent of the present invention is not particularly limited, and can be appropriately selected according to its use.
- Examples of the dosage form include liquids such as liquids, emulsions, suspensions, dispersants, and aerosols; solid or semi-solids such as wettable powders, powders, granules, fine granules, and flowables.
- the agent of the present invention may further contain other components as necessary.
- the other components are not particularly limited as long as they are components that can be blended in, for example, an article cleaning agent, disinfectant, etc.
- a base a carrier, a solvent, a dispersant, an emulsifier, a buffer, a stabilizer.
- the buffering agent is not particularly limited, and an appropriate suitable one can be adopted depending on the application.
- Preferred examples include phosphate buffer and acetate buffer.
- the agent of the present invention is preferably used so that the pH becomes acidic when applied to a living body.
- the pH of the agent of the present invention is preferably, for example, less than 7, preferably 6 or less, more preferably 5.5 or less, and further preferably 5 or less.
- the lower limit of pH is not particularly limited, and is 1, 2, 3, or 4, for example.
- the content of the active ingredient of the agent of the present invention depends on the type, use, usage mode, application target, application target state, and the like of the active ingredient, and is not limited to, for example, 0.000001 to 100% by weight, Preferably, it can be 0.001 to 50% by weight.
- the present invention comprises at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof, and an inactivated virus.
- the present invention relates to a vaccine (sometimes referred to herein as “the vaccine of the present invention”) and a method for producing the same.
- the compound represented by the general formula (1), a salt thereof, and a solvate thereof are the same as those in the agent of the present invention.
- the vaccine of the present invention can be produced by treating a virus with at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof. it can. By this step, the virus is inactivated and becomes an active ingredient of the vaccine.
- influenza viruses for example, A type, B type, etc.
- rubella virus for example, a virus
- Ebola virus for example, a virus
- coronavirus for example, a virus
- measles virus for example, varicella-zoster virus
- herpes simplex virus mumps virus
- arbovirus Envelope viruses
- Envelope viruses such as RS virus, SARS virus, hepatitis virus (eg, hepatitis B virus, hepatitis C virus, etc.), yellow fever virus, AIDS virus, rabies virus, hantavirus, dengue virus, nipah virus, lisa virus, etc.
- envelope virus is mentioned, More preferably, influenza virus, herpes virus, rhinovirus etc. are mentioned.
- the agent of the present invention can also be used.
- the mode of virus treatment is not particularly limited as long as the virus is inactivated.
- adopted as a whole vaccine manufacturing method is employable.
- antiviral agents In the treatment of viruses, other antiviral agents and / or virus inactivating agents can be used in combination as appropriate.
- Feline calicivirus (hereinafter abbreviated as FCV) and human rhinovirus type 1 (hereinafter abbreviated as HRV) were used as non-enveloped viruses.
- Influenza virus (Orthomyxoviridae) was originally a waterfowl digestive infection virus (transmitted by faecal infection), but in humans it was a respiratory infection virus transmitted by droplet infection and contact infection, and herpes simplex virus (Herpesviridae) is a body surface mucosal infection virus transmitted by contact infection.
- Human rhinovirus is also a Picornaviridae, but it is respiratory-infected and is the largest causative virus for human cold syndrome.
- Feline calicivirus (Caliciviridae) has almost the same viral particle structure as poliovirus. In cats, it is not a digestive organ infection but a respiratory infection virus, but it is also treated by the Ministry of Health, Labor and Welfare as a norovirus substitute virus because it is the Caliciviridae family like norovirus.
- MDCK cells derived from cell canine kidney was used for the infectivity of measurement and growth experiments of the influenza virus.
- Vero cells derived from African green monkey kidney were used for measurement of HSV-1 infectious titer, and cat-derived CRFK cells or human-derived HeLa cells were used to measure infectious titers of FCV and HRV, respectively.
- Eagle minimum essential medium (MEM) containing 5% fetal bovine serum (FBS) was used for cell culture.
- virus infectivity titer was determined by the plaque method except for HRV (HRV was determined by the 50% tissue culture infectious dose method). Dilute each virus sample 10-fold with Dulbecco's phosphate buffered saline (PBS) and inoculate 0.5 ml of this into monolayer culture cells grown to saturation in a 50 mm dish and slowly incubate for 1 hour at room temperature. Viral adsorption was performed by mechanical shaking.
- PBS Dulbecco's phosphate buffered saline
- bovine serum albumin (BSA) is used in the diluent for influenza virus, and 0.5% fetal calf serum (in the diluent for HSV-1 or FCV). FBS was added.
- the MDCK cells infected with influenza virus were HSV-1 or FCV in MEM containing 0.6% agar (Difco purified agar) and acetylated trypsin (6 ⁇ g / ml).
- Vero cells infected with A. were cultured in MEM containing 0.5% FBS and 0.6% methylcellulose, respectively.
- Influenza virus, HSV-1, and FCV were cultured at 37 ° C, the former being cultured for 2 days and the latter being cultured for 2-3 days. After culturing, dishes containing infected cells were fixed and stained with a solution containing 10% formalin and 0.5% (w / v) crystal violet, and plaques were counted visually after washing and air drying.
- the progeny virus produced a part of the culture supernatant was taken in the case of influenza virus, and the amount of infectious virus released therein was measured by the plaque method.
- the infected cells are frozen and thawed twice with the culture solution at -80 ° C, the infected cells are crushed under mild conditions, and the intracellular virus is also released outside the cell.
- Each infectious virus was quantified by the plaque method as the amount of total progeny virus.
- the degree of inhibition of virus growth was produced in the culture solution containing the amount of sample solution at each concentration when the amount of infectious progeny virus produced when the sample was not added to the culture solution of infected cells was 1. It was expressed as a relative ratio of the amount of progeny virus.
- virus inactivation effect (virucidal effect) Each sample solution was added to an Assist tube and ice-cooled, and the virus solution was added to the sample so that the amount was 1/19 of the sample. The well-mixed sample-virus mixture is allowed to stand at 30 ° C for 30 minutes, then immediately diluted 10-fold with cold virus dilution (PBS with serum or BSA added depending on the test virus species), and infection in each dilution Sex virus amount was measured by plaque method.
- PBS cold virus dilution
- the degree of inactivation is the amount of residual infectious virus when kept in the sample solution at each concentration, and the amount of residual infectious virus in the sample kept warm using virus dilution instead of sample solution is 1. Expressed as a relative ratio.
- Test Example 1 Inactivation of various viruses by N-acetyltryptophan Residual virus infection when the virus is mixed in an aqueous solution or citrate buffer containing various concentrations of N-acetyltryptophan (hereinafter abbreviated as N-AcTrp) and kept at a predetermined temperature
- N-AcTrp N-acetyltryptophan
- Test Example 2 Inactivation of influenza virus N-AcTrp showed a strong inactivation action against influenza virus, and inactivated non-enveloped viruses, which are generally known to be difficult to disinfect, such as HRV and FCV, which are respiratory infections. Therefore, we examined the inactivating effect of N-AcTrp on other types and subtypes of influenza viruses that are of great social interest as respiratory infection viruses. The results are shown in FIG.
- influenza virus species two subtypes of influenza A virus, (H1N1 subtype and H3N2 subtype) that are known to infect humans as the causative virus of seasonal influenza, In addition, a remarkable inactivation effect was observed in influenza virus B).
- Test Example 3 Virus inactivation in the presence of protein It is known that the inactivation ability of many virus inactivating active substances is clearly reduced by the coexistence of proteins even in a very small amount. Thus, we investigated how much protein N-AcTrp suffers from protein interference. Highly sensitive influenza virus and HSV-1 were used as test viruses. The results are shown in FIG.
- N-AcTrp inactivation by N-AcTrp is greatly inhibited in the presence of 0.25% bovine serum albumin (BSA; bovine serum albumin) compared to the case without protein.
- BSA bovine serum albumin
- N-AcTrp concentration when N-AcTrp concentration is increased, it is inactivated to below the detection limit even in the presence of BSA.
- BSA concentration the degree of inhibition received from BSA is light, and N-AcTrp is compared It is characterized by being less susceptible to protein interference.
- Test Example 4 Effect of pH on virus inactivation of N-AcTrp Regarding the effect of pH on virus inactivation by N-AcTrp, the most sensitive influenza virus (envelope virus) and the least sensitive FCV (non-enveloped virus) It investigated using.
- FIG. 4 shows the results with influenza virus
- FIG. 5 shows the results with FCV.
- Test Example 5 Effect of buffer composition on virus inactivation of N-AcTrp I noticed that there was a difference in the degree of inactivation even when using the same concentration of N-AcTrp. In order to investigate the cause, virus inactivation by N-AcTrp The influence of the buffer material on the effect was also investigated. HSV-1 (envelope virus) was used as the virus. The results are shown in FIG.
- the virus inactivating action of N-AcTrp was greatly affected by the type of organic acid used for preparing the buffer solution.
- the virus inactivation activity was stronger when using a phosphate buffer than when using an acetate buffer.
- Test Example 6 Effect of incubation temperature on virus inactivation of N-AcTrp The effect of incubation temperature on inactivation of influenza virus by N-AcTrp in 10 mM citrate buffer (pH 5.0) was investigated. The results are shown in FIG.
- virus inactivation by acidic pH is also affected by temperature (when the N-AcTrp concentration is 0 mM), but virus inactivation by N-AcTrp was clearly seen.
- the virus inactivation effect of N-AcTrp occurs even at ice temperature (0 ° C), but the inactivation effect was limited below 25 ° C. Beyond 30 ° C, it became more prominent as the heat retention temperature increased.
- Test Example 7 Inhibition of virus growth by N-AcTrp (antiviral effect) The inhibitory effect of virus growth by N-AcTrp was examined. The results when HSV-1 is used are shown in FIG. 8, and the results when influenza virus is used are shown in FIG.
- the virus yield after one-stage growth decreased with increasing concentration of N-AcTrp, and N-AcTrp not only inactivated the virus, but also HSV-1 And virus growth in influenza virus-infected cells were significantly inhibited.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Dermatology (AREA)
- Birds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Cosmetics (AREA)
Abstract
The purpose of the present invention is to provide an antiviral agent which has a higher safety to living organisms and is appropriately applicable not only to articles but also to living organisms. An antiviral agent which comprises at least one member selected from the group consisting of a compound represented by general formula (1) such as N-acetyl tryptophan, a salt thereof and a solvate of the same.
Description
本発明は、抗ウイルス又はウイルス不活化剤等に関する。
The present invention relates to an antiviral or virus inactivating agent or the like.
インフルエンザ、麻疹、水痘等の多くのウイルス性疾患は、身近な物品に付着したウイルス、飛沫感染、飛沫核感染等によって容易に伝播する。このため、ウイルス感染対策は現代社会における大きな課題である。ウイルス感染対策には、治療と予防の二つの側面があり、予防においては、教育の重要性は言を待たないが、手技的には隔離と消毒が基本となっている。
Many viral diseases such as influenza, measles and chickenpox are easily transmitted by viruses attached to familiar items, droplet infection, and droplet nuclear infection. For this reason, virus infection countermeasures are a major issue in modern society. There are two aspects of virus infection control: treatment and prevention. The importance of education does not wait for prevention, but isolation and disinfection are fundamental in terms of technique.
消毒には消毒薬が必須であるが、一般的に使用されている塩素系の消毒薬(特許文献1)は組織障害性が強く、その使用法に制限がある。老健施設や乳幼児施設などで利用者に安全な形で効果的な消毒を行うためには、組織障害性が軽く、かつ、効果的な消毒薬が望まれている。
Disinfectant is indispensable for disinfection, but chlorine-based disinfectant (Patent Document 1) that is generally used has strong tissue damage and its usage is limited. In order to perform effective disinfection in a safe manner for users in old-age facilities and infant facilities, an effective disinfectant that is light in tissue damage is desired.
また、一般に消毒薬はその組織障害性のゆえに人体への適用は限定され、治療薬としては利用できない。しかし、組織障害性の少ない不活化薬が開発できれば、単に安全な消毒剤に留まらず、体表でのウイルス感染の予防薬・治療薬としての可能性も考えられる。
In general, disinfectants are limited in their application to the human body due to their tissue damage and cannot be used as therapeutic agents. However, if an inactivating agent with little tissue damage can be developed, it can be considered not only a safe disinfectant but also a prophylactic / therapeutic agent for viral infection on the body surface.
本発明は、生体に対する安全性がより高く、物品への適用のみならず生体への適用にも適した抗ウイルス剤を提供することを課題とする。好ましくは、本発明は、生体に対する安全性がより高く、物品への適用のみならず生体への適用にも適しており、且つ抗ウイルス又はウイルス不活化作用がより高い抗ウイルス剤を提供することを課題とする。
An object of the present invention is to provide an antiviral agent having higher safety for living bodies and suitable not only for application to articles but also for living bodies. Preferably, the present invention provides an antiviral agent that has higher safety for living bodies, is suitable not only for application to articles but also for living bodies, and has a higher antiviral or virus inactivating action. Is an issue.
本発明者は、上記課題に鑑みて鋭意、系統的かつ網羅的に研究を行った結果、Nアセチルトリプトファン等の一般式(1)で表される化合物を用いることにより、上記課題を解決できることを見出した。本発明者は、この知見に基づいてさらに研究を進めることにより、本発明を完成させるに至った。
As a result of earnestly, systematically and exhaustively researched in view of the above problems, the present inventor is able to solve the above problems by using a compound represented by the general formula (1) such as N acetyltryptophan. I found it. The present inventor has completed the present invention by further research based on this finding.
即ち、本発明は、下記の態様を包含する:
項1. 一般式(1): That is, the present invention includes the following embodiments:
Item 1. General formula (1):
項1. 一般式(1): That is, the present invention includes the following embodiments:
[式中、R1は炭素原子数1~6のアルキル基を示す。R2は炭素原子数1~6のアルキレン基を示す。R3は含窒素複素環由来の基を示す。]
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、抗ウイルス又はウイルス不活化剤。 [Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 represents an alkylene group having 1 to 6 carbon atoms. R 3 represents a group derived from a nitrogen-containing heterocycle. ]
An antiviral or viral inactivating agent comprising at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof.
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、抗ウイルス又はウイルス不活化剤。 [Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 represents an alkylene group having 1 to 6 carbon atoms. R 3 represents a group derived from a nitrogen-containing heterocycle. ]
An antiviral or viral inactivating agent comprising at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof.
項2. 前記化合物が、一般式(1A):
Item 2. The compound is represented by the general formula (1A):
[式中、R1及びR2は前記に同じである。]
で表される化合物である、項1に記載の抗ウイルス又はウイルス不活化剤。 [Wherein, R 1 and R 2 are the same as defined above. ]
Item 2. The antiviral or virus inactivating agent according to Item 1, which is a compound represented by:
で表される化合物である、項1に記載の抗ウイルス又はウイルス不活化剤。 [Wherein, R 1 and R 2 are the same as defined above. ]
項3. 前記化合物が、一般式(1AA):
Item 3. The compound is represented by the general formula (1AA):
[式中、R1は前記に同じである。]
で表される化合物である、項1又は2に記載の抗ウイルス又はウイルス不活化剤。 [Wherein, R 1 is the same as defined above. ]
Item 3. The antiviral or virus inactivating agent according to Item 1 or 2, which is a compound represented by:
で表される化合物である、項1又は2に記載の抗ウイルス又はウイルス不活化剤。 [Wherein, R 1 is the same as defined above. ]
項4. 前記R1で示されるアルキル基の炭素原子数が1~3である、項1~3のいずれかに記載の抗ウイルス又はウイルス不活化剤。
Item 4. Item 4. The antiviral or virus inactivating agent according to any one of Items 1 to 3, wherein the alkyl group represented by R 1 has 1 to 3 carbon atoms.
項5. 生体に適用するために用いられる、項1~4のいずれかに記載の抗ウイルス又はウイルス不活化剤。
Item 5. Item 5. The antiviral or virus inactivating agent according to any one of Items 1 to 4, which is used for application to a living body.
項6. 医薬、化粧品、消毒剤又は洗浄剤である、項5に記載の抗ウイルス又はウイルス不活化剤。
Item 6. Item 6. The antiviral or virus inactivating agent according to Item 5, which is a pharmaceutical, cosmetic, disinfectant or detergent.
項7. 物品に適用するために用いられる、項1~4のいずれかに記載の抗ウイルス又はウイルス不活化剤。
Item 7. Item 5. The antiviral or virus inactivating agent according to any one of Items 1 to 4, which is used for application to articles.
項8. 消毒剤又は洗浄剤である、項7に記載の抗ウイルス又はウイルス不活化剤。
Item 8. Item 8. The antiviral or virus inactivating agent according to Item 7, which is a disinfectant or a cleaning agent.
項9. 一般式(1):
Item 9. General formula (1):
[式中、R1は炭素原子数1~6のアルキル基を示す。R2は炭素原子数1~6のアルキレン基を示す。R3は含窒素複素環由来の基を示す。]
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を用いてウイルスを処理することを含む、ホールワクチンの製造方法。 [Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 represents an alkylene group having 1 to 6 carbon atoms. R 3 represents a group derived from a nitrogen-containing heterocycle. ]
A method for producing a whole vaccine, comprising treating a virus with at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof.
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を用いてウイルスを処理することを含む、ホールワクチンの製造方法。 [Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 represents an alkylene group having 1 to 6 carbon atoms. R 3 represents a group derived from a nitrogen-containing heterocycle. ]
A method for producing a whole vaccine, comprising treating a virus with at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof.
項10. 一般式(1):
Item 10. General formula (1):
[式中、R1は炭素原子数1~6のアルキル基を示す。R2は炭素原子数1~6のアルキレン基を示す。R3は含窒素複素環由来の基を示す。]
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種、並びに不活化ウイルスを含有する、ホールワクチン。 [Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 represents an alkylene group having 1 to 6 carbon atoms. R 3 represents a group derived from a nitrogen-containing heterocycle. ]
A whole vaccine comprising at least one selected from the group consisting of a compound represented by the formula: salts thereof, and solvates thereof; and an inactivated virus.
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種、並びに不活化ウイルスを含有する、ホールワクチン。 [Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms. R 2 represents an alkylene group having 1 to 6 carbon atoms. R 3 represents a group derived from a nitrogen-containing heterocycle. ]
A whole vaccine comprising at least one selected from the group consisting of a compound represented by the formula: salts thereof, and solvates thereof; and an inactivated virus.
本発明によれば、生体に対する安全性がより高く、物品への適用のみならず生体への適用にも適した抗ウイルス又はウイルス不活化剤を提供することができる。また、本発明の抗ウイルス又はウイルス不活化剤は、エンベロープウイルスのみならず非エンベロープウイルスに対しても、抗ウイルス又はウイルス不活化作用を発揮することができる。さらに、本発明の抗ウイルス又はウイルス不活化剤の有効成分は、生体に対する安全性がより高いので、ウイルス粒子全体からなるホールワクチンの製造に好適に使用することができる。
According to the present invention, it is possible to provide an antiviral or virus inactivating agent that has higher safety for living bodies and is suitable not only for application to articles but also for living bodies. Moreover, the antiviral or virus inactivating agent of the present invention can exert an antiviral or viral inactivating action not only on enveloped viruses but also on non-enveloped viruses. Furthermore, since the active ingredient of the antiviral or virus inactivating agent of the present invention has higher safety against living bodies, it can be suitably used for the production of a whole vaccine consisting of whole virus particles.
本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
In this specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
1.抗ウイルス又はウイルス不活化剤
本発明は、一態様として、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、抗ウイルス又はウイルス不活化剤(本明細書において、「本発明の剤」と示すこともある。)に関するものである。以下に、これについて説明する。 1. Antiviral or virus inactivating agent The present invention, as one aspect, contains at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof, The present invention relates to a virus or a virus inactivating agent (in this specification, sometimes referred to as “agent of the present invention”). This will be described below.
本発明は、一態様として、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、抗ウイルス又はウイルス不活化剤(本明細書において、「本発明の剤」と示すこともある。)に関するものである。以下に、これについて説明する。 1. Antiviral or virus inactivating agent The present invention, as one aspect, contains at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof, The present invention relates to a virus or a virus inactivating agent (in this specification, sometimes referred to as “agent of the present invention”). This will be described below.
1-1.一般式(1)で表される化合物
一般式(1)は、以下の式である。 1-1. The compound represented by the general formula (1) has the following general formula (1).
一般式(1)は、以下の式である。 1-1. The compound represented by the general formula (1) has the following general formula (1).
R1は炭素原子数1~6のアルキル基を示す。R1で示されるアルキル基には、直鎖状又は分岐鎖状(好ましくは直鎖状)のいずれのものも包含される。該アルキル基の炭素原子数は、好ましくは1~4、より好ましくは1~3、さらに好ましくは1~2、よりさらに好ましくは1である。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、3-メチルペンチル基等が挙げられる。
R 1 represents an alkyl group having 1 to 6 carbon atoms. The alkyl group represented by R 1 includes any of linear or branched (preferably linear). The number of carbon atoms of the alkyl group is preferably 1 to 4, more preferably 1 to 3, further preferably 1 to 2, and still more preferably 1. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, neopentyl group, n -Hexyl group, 3-methylpentyl group and the like.
R2は炭素原子数1~6のアルキレン基を示す。R2で示されるアルキレン基には、直鎖状又は分岐鎖状(好ましくは直鎖状)のいずれのものも包含される。該アルキレン基の炭素原子数は、好ましくは1~4、より好ましくは1~3、さらに好ましくは1~2、よりさらに好ましくは1である。該アルキレン基の具体例としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、n-ヘキシレン基等が挙げられる。
R 2 represents an alkylene group having 1 to 6 carbon atoms. The alkylene group represented by R 2 includes any of linear or branched (preferably linear). The number of carbon atoms of the alkylene group is preferably 1 to 4, more preferably 1 to 3, further preferably 1 to 2, and still more preferably 1. Specific examples of the alkylene group include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, n-hexylene group and the like.
R3は含窒素複素環由来の基(含窒素複素環から1つの水素原子(好ましくは炭素原子に結合した水素原子)が除かれてなる基)を示す。R3で示される含窒素複素環由来の基としては、特に制限されず、例えば、環構成原子数が3~20、好ましくは3~12、より好ましくは7~11のヘテロアリール基が挙げられる。該含窒素複素環由来の基が有する窒素原子数は、例えば1~3、好ましくは1~2、より好ましくは1である。該含窒素複素環由来の基は、好ましくは環中に-NH-を有する基である。該含窒素複素環由来の基は、好ましくは、窒素原子以外のヘテロ原子を含まない基である。該含窒素複素環由来の基は、例えば単環式又は多環式(二環式、三環式等)であり、好ましくは二環式である。該含窒素複素環由来の基は、好ましくは含窒素ヘテロアリール基である。該含窒素複素環由来の基の具体例としては、ピロリル基、ピリジル基、ピロリジル基、ピペリジル基、イミダゾリル基、ピラゾリル基、ピラジル基、ピリミジル基、ピリダジル基、ピペラジル基、トリアジニル基、オキサゾリル基、イソオキサゾリル基、モルホリル基、チアゾリル基、イソチアゾリル基、インドリル基、キノリル基、イソキノリル基、ベンゾイミダゾリル基、キナゾリル基、フタラジル基、プリニル基、プテリジル基等が挙げられる。これらの中でも、好ましくはインドリル基が挙げられ、より好ましくは3-インドリル基が挙げられる。
R 3 represents a group derived from a nitrogen-containing heterocycle (a group obtained by removing one hydrogen atom (preferably a hydrogen atom bonded to a carbon atom) from the nitrogen-containing heterocycle). The group derived from the nitrogen-containing heterocycle represented by R 3 is not particularly limited, and examples thereof include heteroaryl groups having 3 to 20, preferably 3 to 12, and more preferably 7 to 11 ring members. . The number of nitrogen atoms contained in the group derived from the nitrogen-containing heterocycle is, for example, 1 to 3, preferably 1 to 2, and more preferably 1. The group derived from the nitrogen-containing heterocycle is preferably a group having —NH— in the ring. The group derived from the nitrogen-containing heterocycle is preferably a group that does not contain a heteroatom other than a nitrogen atom. The group derived from the nitrogen-containing heterocycle is, for example, monocyclic or polycyclic (bicyclic, tricyclic, etc.), and preferably bicyclic. The group derived from the nitrogen-containing heterocycle is preferably a nitrogen-containing heteroaryl group. Specific examples of the group derived from the nitrogen-containing heterocyclic ring include pyrrolyl group, pyridyl group, pyrrolidyl group, piperidyl group, imidazolyl group, pyrazolyl group, pyrazyl group, pyrimidyl group, pyridazyl group, piperazyl group, triazinyl group, oxazolyl group, Examples include isoxazolyl group, morpholyl group, thiazolyl group, isothiazolyl group, indolyl group, quinolyl group, isoquinolyl group, benzimidazolyl group, quinazolyl group, phthalazyl group, purinyl group, and pteridyl group. Among these, an indolyl group is preferable, and a 3-indolyl group is more preferable.
一般式(1)で表される化合物としては、好ましくは一般式(1A):
The compound represented by the general formula (1) is preferably the general formula (1A):
[式中、R1及びR2は前記に同じである。]
で表される化合物が挙げられ、より好ましくは一般式(1AA) [Wherein, R 1 and R 2 are the same as defined above. ]
And more preferably a compound represented by the general formula (1AA)
で表される化合物が挙げられ、より好ましくは一般式(1AA) [Wherein, R 1 and R 2 are the same as defined above. ]
And more preferably a compound represented by the general formula (1AA)
[式中、R1は前記に同じである。]
で表される化合物が挙げられる。 [Wherein, R 1 is the same as defined above. ]
The compound represented by these is mentioned.
で表される化合物が挙げられる。 [Wherein, R 1 is the same as defined above. ]
The compound represented by these is mentioned.
一般式(1)で表される化合物の塩は、特に制限されず、用途に応じて、許容される適切な塩を採用することができる。該塩としては、酸性塩、塩基性塩のいずれも採用することができる。酸性塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩; 酢酸塩、プロピオン酸塩、酒石酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、クエン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩が挙げられ、塩基性塩の例としては、ナトリウム塩、及びカリウム塩等のアルカリ金属塩; 並びにカルシウム塩、マグネシウム塩等のアルカリ土類金属塩; アンモニアとの塩; モルホリン、ピペリジン、ピロリジン、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、モノ(ヒドロキシアルキル)アミン、ジ(ヒドロキシアルキル)アミン、トリ(ヒドロキシアルキル)アミン等の有機アミンとの塩等が挙げられる。
The salt of the compound represented by the general formula (1) is not particularly limited, and any appropriate acceptable salt can be adopted depending on the application. As the salt, either an acidic salt or a basic salt can be employed. Examples of acidic salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate; acetate, propionate, tartrate, fumarate, maleate, malic acid Organic salts such as salts, citrates, methanesulfonates, paratoluenesulfonates, and the like. Examples of basic salts include alkali metal salts such as sodium salts and potassium salts; calcium salts, magnesium Alkaline earth metal salts such as salts; salts with ammonia; morpholine, piperidine, pyrrolidine, monoalkylamine, dialkylamine, trialkylamine, mono (hydroxyalkyl) amine, di (hydroxyalkyl) amine, tri (hydroxyalkyl) Examples thereof include salts with organic amines such as amines.
一般式(1)で表される化合物又はその塩は、溶媒和物とすることもできる。溶媒としては、用途に応じて、許容される適切な溶媒を採用することができる。溶媒としては、例えば、水、エタノール、グリセロール、酢酸等が挙げられる。
The compound represented by the general formula (1) or a salt thereof may be a solvate. As the solvent, an appropriate suitable solvent can be adopted depending on the application. Examples of the solvent include water, ethanol, glycerol, acetic acid and the like.
一般式(1)で表される化合物は、様々な方法で、例えば公知の合成方法に従って又は準じて合成することができる。また、市販されているものをそのまま、或いは適宜修飾したものを、一般式(1)で表される化合物として用いることもできる。
The compound represented by the general formula (1) can be synthesized by various methods, for example, according to or according to a known synthesis method. In addition, a commercially available product can be used as it is or appropriately modified as the compound represented by the general formula (1).
1-2.用途
本発明の剤の対象ウイルスとしては、特に制限されないが、例えばインフルエンザウイルス(例えばA型、B型等)、風疹ウイルス、エボラウイルス、コロナウイルス、麻疹ウイルス、水痘・帯状疱疹ウイルス、単純ヘルペスウイルス、ムンプスウイルス、アルボウイルス、RSウイルス、SARSウイルス、肝炎ウイルス(例えば、B型肝炎ウイルス、C型肝炎ウイルス等)、黄熱ウイルス、エイズウイルス、狂犬病ウイルス、ハンタウイルス、デングウイルス、ニパウイルス、リッサウイルス等のエンベロープウイルス(エンベロープを有するウイルス); アデノウイルス、ノロウイルス、ロタウイルス、ヒトパピローマウイルス、ポリオウイルス、エンテロウイルス、コクサッキーウイルス、ヒトパルボウイルス、脳心筋炎ウイルス、ポリオウイルス、ライノウイルス等の非エンベロープウイルス(エンベロープを有さないウイルス)等が挙げられる。これらの中でも、好ましくはドロップレット(液滴)を介して拡がる呼吸器感染症ウイルス及び分泌液(粘液)との接触を介して拡がる接触感染ウイルスが挙げられ、より好ましくはインフルエンザウイルス、ヘルペスウイルス、ライノウイルス等が挙げられる。 1-2. Uses Although the target virus of the agent of the present invention is not particularly limited, for example, influenza virus (for example, type A, type B, etc.), rubella virus, Ebola virus, coronavirus, measles virus, varicella-zoster virus, herpes simplex virus , Mumps virus, arbovirus, RS virus, SARS virus, hepatitis virus (eg, hepatitis B virus, hepatitis C virus, etc.), yellow fever virus, AIDS virus, rabies virus, hantavirus, dengue virus, nipavirus, lisa virus, etc. Envelope virus (virus with envelope); adenovirus, norovirus, rotavirus, human papillomavirus, poliovirus, enterovirus, coxsackie virus, human parvovirus, encephalomyocarditis virus, polio Luz, non-enveloped viruses such as rhinovirus (virus non-enveloped), and the like. Among these, respiratory infection virus that spreads through droplets (droplets) and contact infection viruses that spread through contact with secretory fluid (mucus), and more preferably influenza viruses, herpes viruses, Examples include rhinovirus.
本発明の剤の対象ウイルスとしては、特に制限されないが、例えばインフルエンザウイルス(例えばA型、B型等)、風疹ウイルス、エボラウイルス、コロナウイルス、麻疹ウイルス、水痘・帯状疱疹ウイルス、単純ヘルペスウイルス、ムンプスウイルス、アルボウイルス、RSウイルス、SARSウイルス、肝炎ウイルス(例えば、B型肝炎ウイルス、C型肝炎ウイルス等)、黄熱ウイルス、エイズウイルス、狂犬病ウイルス、ハンタウイルス、デングウイルス、ニパウイルス、リッサウイルス等のエンベロープウイルス(エンベロープを有するウイルス); アデノウイルス、ノロウイルス、ロタウイルス、ヒトパピローマウイルス、ポリオウイルス、エンテロウイルス、コクサッキーウイルス、ヒトパルボウイルス、脳心筋炎ウイルス、ポリオウイルス、ライノウイルス等の非エンベロープウイルス(エンベロープを有さないウイルス)等が挙げられる。これらの中でも、好ましくはドロップレット(液滴)を介して拡がる呼吸器感染症ウイルス及び分泌液(粘液)との接触を介して拡がる接触感染ウイルスが挙げられ、より好ましくはインフルエンザウイルス、ヘルペスウイルス、ライノウイルス等が挙げられる。 1-2. Uses Although the target virus of the agent of the present invention is not particularly limited, for example, influenza virus (for example, type A, type B, etc.), rubella virus, Ebola virus, coronavirus, measles virus, varicella-zoster virus, herpes simplex virus , Mumps virus, arbovirus, RS virus, SARS virus, hepatitis virus (eg, hepatitis B virus, hepatitis C virus, etc.), yellow fever virus, AIDS virus, rabies virus, hantavirus, dengue virus, nipavirus, lisa virus, etc. Envelope virus (virus with envelope); adenovirus, norovirus, rotavirus, human papillomavirus, poliovirus, enterovirus, coxsackie virus, human parvovirus, encephalomyocarditis virus, polio Luz, non-enveloped viruses such as rhinovirus (virus non-enveloped), and the like. Among these, respiratory infection virus that spreads through droplets (droplets) and contact infection viruses that spread through contact with secretory fluid (mucus), and more preferably influenza viruses, herpes viruses, Examples include rhinovirus.
本発明の剤は、抗ウイルス性を要する各種分野において広く使用することができる。本発明の剤は、例えば工業、洗浄、医療、食品、日用品等の各種分野において使用することができる。本発明の剤は、生体に適用する用途と、後述の物品に適用する用途とに分けられる。
The agent of the present invention can be widely used in various fields requiring antiviral properties. The agent of the present invention can be used in various fields such as industry, washing, medical care, food, daily necessities and the like. The agent of the present invention is classified into a use applied to a living body and a use applied to an article described later.
1-2-1.生体に適用する用途
生体に適用する用途としては、例えば医薬、化粧品、消毒剤、洗浄剤等が挙げられる。この場合の適用対象は特に限定されず、例えば、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ、ブタ、ウマ、ウシ、ヒツジ、ヤギ、シカなどの種々の哺乳類動物などが挙げられる。 1-2-1. Uses applied to living bodies Examples of uses applied to living bodies include pharmaceuticals, cosmetics, disinfectants, and cleaning agents. The application target in this case is not particularly limited, and examples thereof include various mammals such as humans, monkeys, mice, rats, dogs, cats, rabbits, pigs, horses, cows, sheep, goats and deer.
生体に適用する用途としては、例えば医薬、化粧品、消毒剤、洗浄剤等が挙げられる。この場合の適用対象は特に限定されず、例えば、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ、ブタ、ウマ、ウシ、ヒツジ、ヤギ、シカなどの種々の哺乳類動物などが挙げられる。 1-2-1. Uses applied to living bodies Examples of uses applied to living bodies include pharmaceuticals, cosmetics, disinfectants, and cleaning agents. The application target in this case is not particularly limited, and examples thereof include various mammals such as humans, monkeys, mice, rats, dogs, cats, rabbits, pigs, horses, cows, sheep, goats and deer.
本発明の剤を生体に適用することによって、有効成分が接触する部位において抗ウイルス効果及び/又はウイルスの不活化効果を発揮することができる。
By applying the agent of the present invention to a living body, an antiviral effect and / or a virus inactivating effect can be exhibited at a site where the active ingredient comes into contact.
本発明の剤の形態は、特に限定されず、本発明の剤の用途に応じて、各用途において通常使用される形態をとることができる。
The form of the agent of the present invention is not particularly limited, and can take a form normally used in each application depending on the application of the agent of the present invention.
形態としては、用途が医薬である場合は、例えば貼付剤(プラスター剤、硬膏剤等のテープ剤(リザーバー型、マトリックス型等)、パップ剤、パッチ剤、マイクロニードル等)、軟膏剤、外用液剤(リニメント剤、ローション剤等)、スプレー剤(外用エアゾール剤、ポンプスプレー剤等、クリーム剤、ゲル剤、点眼剤、眼軟膏剤、点鼻剤、坐剤、直腸用半固形剤、注腸剤等の非経口摂取に適した製剤形態(特に、外用製剤形態); 錠剤(口腔内側崩壊錠、咀嚼可能錠、発泡錠、トローチ剤、ゼリー状ドロップ剤などを含む)、丸剤、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、ドライシロップ剤、液剤(ドリンク剤、懸濁剤、シロップ剤を含む)、ゼリー剤などの経口摂取に適した製剤形態(経口製剤形態)が挙げられ、外用製剤形態が好ましく挙げられる。
As a form, when the use is a medicine, for example, a patch (plaster, plaster, etc., tape (reservoir type, matrix type, etc.), cataplasm, patch, microneedle, etc.), ointment, external liquid (Liniments, lotions, etc.), sprays (external aerosols, pump sprays, etc.), creams, gels, eye drops, eye ointments, nasal drops, suppositories, rectal semisolids, enemas Formulation forms suitable for parenteral intake such as external preparation forms; tablets (including oral disintegrating tablets, chewable tablets, effervescent tablets, troches, jelly-like drops, etc.), pills, granules, Examples of dosage forms suitable for oral consumption (oral dosage forms) such as fine granules, powders, hard capsules, soft capsules, dry syrups, liquids (including drinks, suspensions, syrups), and jelly And Use formulation are preferably exemplified.
形態としては、用途が化粧品である場合は、例えば液剤、ジェル剤、クリーム剤、軟膏剤、スティック剤等が挙げられる。
As a form, when a use is cosmetics, a liquid agent, a gel agent, a cream agent, an ointment, a stick agent etc. are mentioned, for example.
形態としては、用途が消毒剤又は洗浄剤である場合は、例えば液体(溶液、乳液、懸濁液など)、半固体(ゲル、クリーム、ペーストなど)、固体(錠剤、粒子状剤、カプセル剤、フィルム剤、混練物、溶融固体、ロウ状固体、弾性固体など)などの任意の形態を採ることができる。例えば、口腔に適用する場合であれば、より具体的には、歯磨剤(練歯磨、液体歯磨、液状歯磨、粉歯磨など)、洗口剤、塗布剤、貼付剤、口中清涼剤、食品(例えば、チューインガム、錠菓、キャンディ、グミ、フィルム、トローチなど)などが挙げられる。また、鼻腔に適用する場合であれば、より具体的には、スプレー型点鼻剤等が挙げられる。皮膚に適用する場合であれば、石鹸、ボディソープ、シャンプー、リンス、スプレー剤等が挙げられる。
As the form, when the use is a disinfectant or a cleaning agent, for example, liquid (solution, emulsion, suspension, etc.), semi-solid (gel, cream, paste, etc.), solid (tablet, particulate agent, capsule) , Film agents, kneaded materials, molten solids, waxy solids, elastic solids, and the like). For example, when applied to the oral cavity, more specifically, dentifrices (toothpaste, liquid dentifrice, liquid dentifrice, powder dentifrice, etc.), mouthwashes, coating agents, patches, mouth fresheners, food ( For example, chewing gum, tablet candy, candy, gummi, film, troche, etc.). Moreover, if it is a case where it applies to a nasal cavity, a spray type nasal drop etc. will be mentioned more specifically. In the case of application to the skin, soap, body soap, shampoo, rinse, spray agent and the like can be mentioned.
本発明の剤は、必要に応じてさらに他の成分を含んでいてもよい。他の成分としては、例えば医薬、化粧品、消毒剤、洗浄剤などに配合され得る成分である限り特に限定されるものではないが、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤などが挙げられる。
The agent of the present invention may further contain other components as necessary. The other components are not particularly limited as long as they are components that can be blended in, for example, pharmaceuticals, cosmetics, disinfectants, detergents, and the like. For example, bases, carriers, solvents, dispersants, emulsifiers, buffers, Stabilizers, excipients, binders, disintegrants, lubricants, thickeners, humectants, colorants, fragrances, chelating agents and the like can be mentioned.
緩衝剤としては、特に制限されず、用途に応じて、許容される適切なものを採用することができる。好ましくはリン酸緩衝液、酢酸緩衝液等が挙げられる。
The buffering agent is not particularly limited, and an appropriate suitable one can be adopted depending on the application. Preferred examples include phosphate buffer and acetate buffer.
本発明の剤は、生体に適用した際に、pHが酸性となるように使用することが好ましい。この観点から、本発明の剤のpHは、例えば7未満、好ましくは6以下、より好ましくは5.5以下、さらに好ましくは5以下であることが好ましい。なお、pHの下限値は特に制限されず、例えば1、2、3、4である。
The agent of the present invention is preferably used so that the pH becomes acidic when applied to a living body. From this viewpoint, the pH of the agent of the present invention is preferably, for example, less than 7, preferably 6 or less, more preferably 5.5 or less, and further preferably 5 or less. The lower limit of pH is not particularly limited, and is 1, 2, 3, or 4, for example.
本発明の剤の有効成分の含有量は、有効成分の種類、用途、使用態様、適用対象、適用対象の状態などに左右されるものであり、限定はされないが、例えば0.000001~100重量%、好ましくは0.01~50重量%とすることができる。
The content of the active ingredient of the agent of the present invention depends on the type, use, usage mode, application target, application target state, and the like of the active ingredient, and is not limited to, for example, 0.000001 to 100% by weight, Preferably, it can be 0.01 to 50% by weight.
本発明の剤の適用(例えば、投与、摂取、接種など)量は、所望の効果を発現する有効量であれば特に限定されず、通常は、有効成分の重量として、一般に一日あたり0.1~1000 mg/kg体重である。上記投与量は1日1回又は2~3回に分けて投与するのが好ましく、年齢、病態、症状により適宜増減することもできる。
The amount of application (for example, administration, ingestion, inoculation, etc.) of the agent of the present invention is not particularly limited as long as it is an effective amount that exhibits a desired effect, and is generally 0.1 to 1 per day as the weight of the active ingredient. 1000 mg / kg body weight. The above dose is preferably administered once a day or divided into 2 to 3 times a day, and can be appropriately increased or decreased depending on age, disease state, and symptoms.
1-2-2.物品に適用する用途
物品に適用する用途としては、例えば消毒剤、洗浄剤等が挙げられる。この場合の適用対象は、特に制限されず、各種分野において用いられている工業製品やその原材料が挙げられる。 1-2-2. Uses applied to articles Examples of uses applied to articles include disinfectants and cleaning agents. The application object in this case is not particularly limited, and includes industrial products and raw materials used in various fields.
物品に適用する用途としては、例えば消毒剤、洗浄剤等が挙げられる。この場合の適用対象は、特に制限されず、各種分野において用いられている工業製品やその原材料が挙げられる。 1-2-2. Uses applied to articles Examples of uses applied to articles include disinfectants and cleaning agents. The application object in this case is not particularly limited, and includes industrial products and raw materials used in various fields.
物品の具体例としては、OA機器、家電、空調機器、掃除機、机、椅子、ソファー、ベンチ、窓、つり革、ハンドル、シート、自動改札機、自動券売機、自動販売機、扉、柵、手摺、食器、調理用具、包装フィルム、包装袋、瓶、ボトル、包装パック、シンク、便器、文房具、書籍、棚、歯ブラシ、鏡、空調フィルター、マスク、コート、ジャケット、ズボン、スカート、ワイシャツ、ニットシャツ、ブラウス、セーター、カーディガン、ナイトウエア、肌着、下着、オムツ、サポーター、靴下、タイツ、ストッキング、帽子、スカーフ、マフラー、襟巻き、ストール、手袋、服の裏地、服の芯地、服の中綿、作業着、ユニフォーム、学童用制服等の衣料、カーテン、アミ戸、布団地、布団綿、布団カバー、枕カバー、シーツ、マット、カーペット、タオル、ハンカチ、壁布、バンドエイド、包帯等が挙げられる。
Specific examples of goods include OA equipment, home appliances, air conditioning equipment, vacuum cleaners, desks, chairs, sofas, benches, windows, straps, handles, seats, automatic ticket gates, automatic ticket vending machines, vending machines, doors, fences , Handrails, tableware, cooking utensils, packaging films, packaging bags, bottles, bottles, packaging packs, sinks, toilet bowls, stationery, books, shelves, toothbrushes, mirrors, air conditioning filters, masks, coats, jackets, pants, skirts, shirts, Knit shirt, blouse, sweater, cardigan, nightwear, underwear, underwear, diaper, supporter, socks, tights, stockings, hat, scarf, scarf, collar, stall, gloves, clothes lining, clothes lining, clothes Filling, work clothes, uniforms, school uniforms, curtains, net doors, futon mats, futon cotton, duvet covers, pillowcases, sheets, mats, cars Tsu door, towel, handkerchief, wall cloth, band-aids, bandages, and the like.
本発明の剤を物品に適用することによって、有効成分が接触する部位において抗ウイルス効果及び/又はウイルスの不活化効果を発揮することができる。なお、有効成分が接触する部位は、物品上の部位に限られず、物品が生体等に適用された場合には生体中の部位も包含される。
By applying the agent of the present invention to an article, an antiviral effect and / or a virus inactivating effect can be exhibited at a site where the active ingredient comes into contact. In addition, the site | part which an active ingredient contacts is not restricted to the site | part on an article | item, When the article | item is applied to the biological body etc., the site | part in a biological body is also included.
本発明の剤の剤形は特に制限されず、その用途に応じて適宜選択することができる。剤形としては、例えば液剤、乳剤、懸濁剤、分散剤、エアゾール剤等の液剤; 水和剤、粉剤、粒剤、微粒剤、フロアブル剤等の固形又は半固形剤等が挙げられる。
The dosage form of the agent of the present invention is not particularly limited, and can be appropriately selected according to its use. Examples of the dosage form include liquids such as liquids, emulsions, suspensions, dispersants, and aerosols; solid or semi-solids such as wettable powders, powders, granules, fine granules, and flowables.
本発明の剤は、必要に応じてさらに他の成分を含んでいてもよい。他の成分としては、例えば物品の洗浄剤、消毒剤などに配合され得る成分である限り特に限定されるものではないが、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤などが挙げられる。
The agent of the present invention may further contain other components as necessary. The other components are not particularly limited as long as they are components that can be blended in, for example, an article cleaning agent, disinfectant, etc. For example, a base, a carrier, a solvent, a dispersant, an emulsifier, a buffer, a stabilizer. , Excipients, binders, disintegrants, lubricants, thickeners, humectants, colorants, fragrances, chelating agents and the like.
緩衝剤としては、特に制限されず、用途に応じて、許容される適切なものを採用することができる。好ましくはリン酸緩衝液、酢酸緩衝液等が挙げられる。
The buffering agent is not particularly limited, and an appropriate suitable one can be adopted depending on the application. Preferred examples include phosphate buffer and acetate buffer.
本発明の剤は、生体に適用した際に、pHが酸性となるように使用することが好ましい。この観点から、本発明の剤のpHは、例えば7未満、好ましくは6以下、より好ましくは5.5以下、さらに好ましくは5以下であることが好ましい。なお、pHの下限値は特に制限されず、例えば1、2、3、4である。
The agent of the present invention is preferably used so that the pH becomes acidic when applied to a living body. From this viewpoint, the pH of the agent of the present invention is preferably, for example, less than 7, preferably 6 or less, more preferably 5.5 or less, and further preferably 5 or less. The lower limit of pH is not particularly limited, and is 1, 2, 3, or 4, for example.
本発明の剤の有効成分の含有量は、有効成分の種類、用途、使用態様、適用対象、適用対象の状態などに左右されるものであり、限定はされないが、例えば0.000001~100重量%、好ましくは0.001~50重量%とすることができる。
The content of the active ingredient of the agent of the present invention depends on the type, use, usage mode, application target, application target state, and the like of the active ingredient, and is not limited to, for example, 0.000001 to 100% by weight, Preferably, it can be 0.001 to 50% by weight.
2.ホールワクチン
本発明は、一態様として、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種、並びに不活化ウイルスを含有する、ホールワクチン(本明細書において、「本発明のワクチン」と示すこともある。)、及びその製造方法に関する。 2. Whole vaccine The present invention, as one aspect, comprises at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof, and an inactivated virus. The present invention relates to a vaccine (sometimes referred to herein as “the vaccine of the present invention”) and a method for producing the same.
本発明は、一態様として、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種、並びに不活化ウイルスを含有する、ホールワクチン(本明細書において、「本発明のワクチン」と示すこともある。)、及びその製造方法に関する。 2. Whole vaccine The present invention, as one aspect, comprises at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof, and an inactivated virus. The present invention relates to a vaccine (sometimes referred to herein as “the vaccine of the present invention”) and a method for producing the same.
一般式(1)で表される化合物、その塩、及びそれらの溶媒和物については、本発明の剤における態様と同様である。
The compound represented by the general formula (1), a salt thereof, and a solvate thereof are the same as those in the agent of the present invention.
本発明のワクチンは、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を用いてウイルスを処理することにより、製造することができる。該工程により、ウイルスが不活化され、ワクチンの有効成分となる。
The vaccine of the present invention can be produced by treating a virus with at least one selected from the group consisting of a compound represented by the general formula (1), a salt thereof, and a solvate thereof. it can. By this step, the virus is inactivated and becomes an active ingredient of the vaccine.
ウイルスとしては、特に制限されないが、例えばインフルエンザウイルス(例えばA型、B型等)、風疹ウイルス、エボラウイルス、コロナウイルス、麻疹ウイルス、水痘・帯状疱疹ウイルス、単純ヘルペスウイルス、ムンプスウイルス、アルボウイルス、RSウイルス、SARSウイルス、肝炎ウイルス(例えば、B型肝炎ウイルス、C型肝炎ウイルス等)、黄熱ウイルス、エイズウイルス、狂犬病ウイルス、ハンタウイルス、デングウイルス、ニパウイルス、リッサウイルス等のエンベロープウイルス(エンベロープを有するウイルス); アデノウイルス、ノロウイルス、ロタウイルス、ヒトパピローマウイルス、ポリオウイルス、エンテロウイルス、コクサッキーウイルス、ヒトパルボウイルス、脳心筋炎ウイルス、ポリオウイルス、ライノウイルス等の非エンベロープウイルス(エンベロープを有さないウイルス)等が挙げられる。これらの中でも、好ましくはエンベロープウイルスが挙げられ、より好ましくはインフルエンザウイルス、ヘルペスウイルス、ライノウイルス等が挙げられる。
Although it does not restrict | limit especially as a virus, For example, influenza viruses (for example, A type, B type, etc.), rubella virus, Ebola virus, coronavirus, measles virus, varicella-zoster virus, herpes simplex virus, mumps virus, arbovirus, Envelope viruses such as RS virus, SARS virus, hepatitis virus (eg, hepatitis B virus, hepatitis C virus, etc.), yellow fever virus, AIDS virus, rabies virus, hantavirus, dengue virus, nipah virus, lisa virus, etc. ); Adenovirus, Norovirus, Rotavirus, Human papillomavirus, Poliovirus, Enterovirus, Coxsackie virus, Human parvovirus, Encephalomyocarditis virus, Poliovirus, Rhinoui Non-enveloped viruses such as Rus (viruses without an envelope). Among these, Preferably, envelope virus is mentioned, More preferably, influenza virus, herpes virus, rhinovirus etc. are mentioned.
ウイルスの処理においては、本発明の剤を用いることもできる。
In the treatment of viruses, the agent of the present invention can also be used.
ウイルスの処理の態様は、ウイルスが不活化する限りにおいて特に制限されない。ホールワクチン製造方法として採用され得る公知の態様を、採用することができる。
The mode of virus treatment is not particularly limited as long as the virus is inactivated. The well-known aspect which can be employ | adopted as a whole vaccine manufacturing method is employable.
ウイルスの処理の際には、適宜、他の抗ウイルス剤及び/又はウイルス不活化剤を併用することもできる。
In the treatment of viruses, other antiviral agents and / or virus inactivating agents can be used in combination as appropriate.
以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
材料と方法
以下の各試験例で行った各実験の材料及び方法は、特に制約しない限り、以下に示す通りである。 Materials and Methods The materials and methods of each experiment conducted in the following test examples are as shown below unless otherwise limited.
以下の各試験例で行った各実験の材料及び方法は、特に制約しない限り、以下に示す通りである。 Materials and Methods The materials and methods of each experiment conducted in the following test examples are as shown below unless otherwise limited.
材料と方法1.ウイルス
エンベロープウイルスとして、インフルエンザウイルスA/Aichi/68(H3N2)株、A/PR8/34(H1N1)株、B/Tokyo株、及び単純ヘルペスウイルス1型F株(以下、HSV-1と略)を用いた。非エンベロープウイルスとして、ネコカリシウイルス(以下、FCVと略)、及びヒトライノウイルス1型(以下、HRVと略)を用いた。 Materials and methods As viral envelope virus, influenza virus A / Aichi / 68 (H3N2) strain, A / PR8 / 34 (H1N1 ) strain, B / Tokyo strain, and herpessimplex virus type 1 strain F (hereinafter, HSV-1 and approximately) the Using. Feline calicivirus (hereinafter abbreviated as FCV) and human rhinovirus type 1 (hereinafter abbreviated as HRV) were used as non-enveloped viruses.
エンベロープウイルスとして、インフルエンザウイルスA/Aichi/68(H3N2)株、A/PR8/34(H1N1)株、B/Tokyo株、及び単純ヘルペスウイルス1型F株(以下、HSV-1と略)を用いた。非エンベロープウイルスとして、ネコカリシウイルス(以下、FCVと略)、及びヒトライノウイルス1型(以下、HRVと略)を用いた。 Materials and methods As viral envelope virus, influenza virus A / Aichi / 68 (H3N2) strain, A / PR8 / 34 (H1N1 ) strain, B / Tokyo strain, and herpes
インフルエンザウイルス(オルソミキソウイルス科)は、元来は水鳥の消化器感染ウイルス(糞口感染で伝播)であるが人では飛沫感染ならびに接触感染により伝播する呼吸器感染ウイルスであり、単純ヘルペスウイルス(ヘルペスウイルス科)は接触感染で伝播する体表粘膜感染ウイルスである。ヒトライノウイルスもピコルナウイルス科だが呼吸器感染し、ヒトの風邪症候群の最大の原因ウイルスである。ネコカリシウイルス(カリシウイルス科)はポリオウイルスとほとんど同じウイルス粒子構造をしている。ネコでは消化器感染ではなく呼吸器感染ウイルスであるが、ノロウイルスと同じくカリシウイルス科ということでノロウイルスの代替ウイルスとして厚生労働省でも扱われている。
Influenza virus (Orthomyxoviridae) was originally a waterfowl digestive infection virus (transmitted by faecal infection), but in humans it was a respiratory infection virus transmitted by droplet infection and contact infection, and herpes simplex virus (Herpesviridae) is a body surface mucosal infection virus transmitted by contact infection. Human rhinovirus is also a Picornaviridae, but it is respiratory-infected and is the largest causative virus for human cold syndrome. Feline calicivirus (Caliciviridae) has almost the same viral particle structure as poliovirus. In cats, it is not a digestive organ infection but a respiratory infection virus, but it is also treated by the Ministry of Health, Labor and Welfare as a norovirus substitute virus because it is the Caliciviridae family like norovirus.
材料と方法2.細胞
イヌ腎由来のMDCK細胞をインフルエンザウイルスの増殖実験と感染価の測定に用いた。HSV-1の感染価の測定にはアフリカミドリザル腎由来のVero細胞を用い、FCVとHRVの感染価の測定には、それぞれネコ由来のCRFK細胞またはヒト由来HeLa細胞を用いた。細胞の培養には5%ウシ胎児血清(FBS)を含むイーグル最低必須培地(MEM)を用いた。 Materials and methods MDCK cells derived from cell canine kidney was used for the infectivity of measurement and growth experiments of the influenza virus. Vero cells derived from African green monkey kidney were used for measurement of HSV-1 infectious titer, and cat-derived CRFK cells or human-derived HeLa cells were used to measure infectious titers of FCV and HRV, respectively. Eagle minimum essential medium (MEM) containing 5% fetal bovine serum (FBS) was used for cell culture.
イヌ腎由来のMDCK細胞をインフルエンザウイルスの増殖実験と感染価の測定に用いた。HSV-1の感染価の測定にはアフリカミドリザル腎由来のVero細胞を用い、FCVとHRVの感染価の測定には、それぞれネコ由来のCRFK細胞またはヒト由来HeLa細胞を用いた。細胞の培養には5%ウシ胎児血清(FBS)を含むイーグル最低必須培地(MEM)を用いた。 Materials and methods MDCK cells derived from cell canine kidney was used for the infectivity of measurement and growth experiments of the influenza virus. Vero cells derived from African green monkey kidney were used for measurement of HSV-1 infectious titer, and cat-derived CRFK cells or human-derived HeLa cells were used to measure infectious titers of FCV and HRV, respectively. Eagle minimum essential medium (MEM) containing 5% fetal bovine serum (FBS) was used for cell culture.
材料と方法3.ウイルス感染価の定量
ウイルスの感染価の定量はHRVを除いてプラック法で行った(HRVは50%組織培養感染量法で定量)。各ウイルス試料をダルベッコのリン酸緩衝塩類溶液(PBS)で10倍階段希釈し、その0.5mlを、50mm-ディッシュ中で飽和状態にまで生やした単層培養細胞に接種し、室温で1時間ゆっくり機械的な振盪を行い、ウイルス吸着を行った。希釈液にはウイルスの非特異的な不活化を抑えるために、インフルエンザウイルスに対する希釈液には0.1%ウシ血清アルブミン(BSA)を、HSV-1又はFCVに対する希釈液には0.5%ウシ胎児血清(FBS)を加えた。 Materials and methods Quantification of virus infectivity titer The virus infectivity titer was determined by the plaque method except for HRV (HRV was determined by the 50% tissue culture infectious dose method). Dilute each virus sample 10-fold with Dulbecco's phosphate buffered saline (PBS) and inoculate 0.5 ml of this into monolayer culture cells grown to saturation in a 50 mm dish and slowly incubate for 1 hour at room temperature. Viral adsorption was performed by mechanical shaking. In order to suppress non-specific inactivation of the virus in the diluent, 0.1% bovine serum albumin (BSA) is used in the diluent for influenza virus, and 0.5% fetal calf serum (in the diluent for HSV-1 or FCV). FBS) was added.
ウイルスの感染価の定量はHRVを除いてプラック法で行った(HRVは50%組織培養感染量法で定量)。各ウイルス試料をダルベッコのリン酸緩衝塩類溶液(PBS)で10倍階段希釈し、その0.5mlを、50mm-ディッシュ中で飽和状態にまで生やした単層培養細胞に接種し、室温で1時間ゆっくり機械的な振盪を行い、ウイルス吸着を行った。希釈液にはウイルスの非特異的な不活化を抑えるために、インフルエンザウイルスに対する希釈液には0.1%ウシ血清アルブミン(BSA)を、HSV-1又はFCVに対する希釈液には0.5%ウシ胎児血清(FBS)を加えた。 Materials and methods Quantification of virus infectivity titer The virus infectivity titer was determined by the plaque method except for HRV (HRV was determined by the 50% tissue culture infectious dose method). Dilute each virus sample 10-fold with Dulbecco's phosphate buffered saline (PBS) and inoculate 0.5 ml of this into monolayer culture cells grown to saturation in a 50 mm dish and slowly incubate for 1 hour at room temperature. Viral adsorption was performed by mechanical shaking. In order to suppress non-specific inactivation of the virus in the diluent, 0.1% bovine serum albumin (BSA) is used in the diluent for influenza virus, and 0.5% fetal calf serum (in the diluent for HSV-1 or FCV). FBS) was added.
ウイルス吸着後、未吸着のウイルスを吸引除去した後、インフルエンザウイルスに感染したMDCK細胞は0.6%寒天(Difco purified agar)とアセチル化トリプシン(6μg/ml)を含むMEM中で、HSV-1又はFCVに感染したVero細胞は0.5%FBSと0.6%メチルセルロースを含むMEM中で、それぞれ培養した。インフルエンザウイルスとHSV-1、FCVとは37℃で、前者は2日間、後者は2~3日間培養した。培養後、感染細胞を含むディッシュは10%ホルマリンと0.5%(w/v)クリスタルヴァイオレットを含む液で固定染色を行い、水洗・風乾後にプラックを視認により計数した。
After adsorbing the virus, the unadsorbed virus was removed by suction, and then the MDCK cells infected with influenza virus were HSV-1 or FCV in MEM containing 0.6% agar (Difco purified agar) and acetylated trypsin (6μg / ml). Vero cells infected with A. were cultured in MEM containing 0.5% FBS and 0.6% methylcellulose, respectively. Influenza virus, HSV-1, and FCV were cultured at 37 ° C, the former being cultured for 2 days and the latter being cultured for 2-3 days. After culturing, dishes containing infected cells were fixed and stained with a solution containing 10% formalin and 0.5% (w / v) crystal violet, and plaques were counted visually after washing and air drying.
材料と方法4.抗ウイルス作用(antiviral effects)の測定
ウイルス増殖に対する各試料の作用は以下のように行った。Vero細胞(HSV-1又はPV-1に対する抗ウイルス作用を調べる時)又はMDCK細胞(インフルエンザウイルスに対する作用調べる時)を、6穴ディッシュ(直径33mm)中で、ウェル底面全体を覆うようになるまで単層培養した。それぞれのウイルスを細胞当たり4~10個(PFU;感染単位)になるよう加え、室温にて60分間ロッカープラットフォーム上でウイルス吸着を行った。ウイルス吸着が完了した後、6穴ディッシュの各ウェルのウイルス感染細胞に0.1%BSAを含むMEMを1.0mlづつ培養液として加え、さらに各ウェルに加える試料液量を変えて種々の試料濃度になるように培養液に添加した後、各ウイルスが完全に増殖するのに必要な時間(HSV-1では16~28時間;インフルエンザウイルスでは12~18時間)培養した。 Materials and methods Measurement of antiviral effects The effect of each sample on virus growth was performed as follows. Vero cells (when investigating the antiviral effect on HSV-1 or PV-1) or MDCK cells (when investigating the effect on influenza virus) in a 6-well dish (diameter 33 mm) until the entire bottom of the well is covered Monolayer culture was performed. Each virus was added to 4 to 10 cells per cell (PFU; infectious unit), and virus adsorption was performed on a rocker platform at room temperature for 60 minutes. After virus adsorption is completed, add 1.0 ml of MEM containing 0.1% BSA to each virus-infected cell in each well of a 6-well dish as a culture solution, and change the amount of sample solution added to each well to obtain various sample concentrations. After being added to the culture solution, the cells were cultured for the time necessary for complete growth of each virus (16 to 28 hours for HSV-1; 12 to 18 hours for influenza virus).
ウイルス増殖に対する各試料の作用は以下のように行った。Vero細胞(HSV-1又はPV-1に対する抗ウイルス作用を調べる時)又はMDCK細胞(インフルエンザウイルスに対する作用調べる時)を、6穴ディッシュ(直径33mm)中で、ウェル底面全体を覆うようになるまで単層培養した。それぞれのウイルスを細胞当たり4~10個(PFU;感染単位)になるよう加え、室温にて60分間ロッカープラットフォーム上でウイルス吸着を行った。ウイルス吸着が完了した後、6穴ディッシュの各ウェルのウイルス感染細胞に0.1%BSAを含むMEMを1.0mlづつ培養液として加え、さらに各ウェルに加える試料液量を変えて種々の試料濃度になるように培養液に添加した後、各ウイルスが完全に増殖するのに必要な時間(HSV-1では16~28時間;インフルエンザウイルスでは12~18時間)培養した。 Materials and methods Measurement of antiviral effects The effect of each sample on virus growth was performed as follows. Vero cells (when investigating the antiviral effect on HSV-1 or PV-1) or MDCK cells (when investigating the effect on influenza virus) in a 6-well dish (diameter 33 mm) until the entire bottom of the well is covered Monolayer culture was performed. Each virus was added to 4 to 10 cells per cell (PFU; infectious unit), and virus adsorption was performed on a rocker platform at room temperature for 60 minutes. After virus adsorption is completed, add 1.0 ml of MEM containing 0.1% BSA to each virus-infected cell in each well of a 6-well dish as a culture solution, and change the amount of sample solution added to each well to obtain various sample concentrations. After being added to the culture solution, the cells were cultured for the time necessary for complete growth of each virus (16 to 28 hours for HSV-1; 12 to 18 hours for influenza virus).
生じた子孫ウイルスの定量には、インフルエンザウイルスの場合には培養上清の一部を採り、その中に放出された感染性ウイルス量をプラック法で測定した。HSV-1の場合には感染細胞を培養液と共に2回-80℃で凍結融解し感染細胞を温和な条件下で破砕し、細胞内ウイルスも細胞外に放出させた後、細胞融解液中の感染性ウイルスを総子孫ウイルス量としてそれぞれプラック法で定量した。
For the quantification of the progeny virus produced, a part of the culture supernatant was taken in the case of influenza virus, and the amount of infectious virus released therein was measured by the plaque method. In the case of HSV-1, the infected cells are frozen and thawed twice with the culture solution at -80 ° C, the infected cells are crushed under mild conditions, and the intracellular virus is also released outside the cell. Each infectious virus was quantified by the plaque method as the amount of total progeny virus.
ウイルス増殖の抑制の程度は、感染細胞の培養液中に試料を加えなかった時に産生された感染性子孫ウイルス量を1とした時の、各濃度の試料液量を含む培養液で産生された子孫ウイルス量の相対比で表した。
The degree of inhibition of virus growth was produced in the culture solution containing the amount of sample solution at each concentration when the amount of infectious progeny virus produced when the sample was not added to the culture solution of infected cells was 1. It was expressed as a relative ratio of the amount of progeny virus.
材料と方法5.ウイルス不活化作用(殺ウイルス作用 virucidal effect)の測定 Assist tubeに各試料液を一定量加え氷冷し、そこに試料の1/19量になるようにウイルス液を添加した。充分に混和した試料-ウイルス混液を30℃で30分間静置後、直ちに冷たいウイルス希釈液(被検ウイルス種によって血清またはBSAを添加したPBS)で10倍階段希釈し、各希釈液中の感染性ウイルス量をプラック法にて測定した。
Materials and methods Measurement of virus inactivation effect (virucidal effect) Each sample solution was added to an Assist tube and ice-cooled, and the virus solution was added to the sample so that the amount was 1/19 of the sample. The well-mixed sample-virus mixture is allowed to stand at 30 ° C for 30 minutes, then immediately diluted 10-fold with cold virus dilution (PBS with serum or BSA added depending on the test virus species), and infection in each dilution Sex virus amount was measured by plaque method.
不活化の程度は、各濃度の試料液中で保温した時の残存感染性ウイルス量を、試料液の代わりにウイルス希釈液を用いて保温したサンプルにおける残存感染性ウイルス量を1とした時の相対比で表した。
The degree of inactivation is the amount of residual infectious virus when kept in the sample solution at each concentration, and the amount of residual infectious virus in the sample kept warm using virus dilution instead of sample solution is 1. Expressed as a relative ratio.
試験例1.Nアセチルトリプトファンによる種々のウイルスの不活化
種々の濃度のNアセチルトリプトファン(以下、N-AcTrpと略)を含む水溶液またはクエン酸緩衝液にウイルスを混和し、所定温度で保温した時の残存ウイルス感染価(感染性ウイルス量)を調べた。結果を図1に示す。 Test Example 1. Inactivation of various viruses by N-acetyltryptophan Residual virus infection when the virus is mixed in an aqueous solution or citrate buffer containing various concentrations of N-acetyltryptophan (hereinafter abbreviated as N-AcTrp) and kept at a predetermined temperature The titer (infectious viral load) was examined. The results are shown in FIG.
種々の濃度のNアセチルトリプトファン(以下、N-AcTrpと略)を含む水溶液またはクエン酸緩衝液にウイルスを混和し、所定温度で保温した時の残存ウイルス感染価(感染性ウイルス量)を調べた。結果を図1に示す。 Test Example 1. Inactivation of various viruses by N-acetyltryptophan Residual virus infection when the virus is mixed in an aqueous solution or citrate buffer containing various concentrations of N-acetyltryptophan (hereinafter abbreviated as N-AcTrp) and kept at a predetermined temperature The titer (infectious viral load) was examined. The results are shown in FIG.
図1に示されるように、N-AcTrpを含まない対照溶液に保温した時の値に較べて顕著な低下がN-AcTrp濃度に依存して見られた。ウイルス不活化の程度はエンベロープウイルスで顕著であり、インフルエンザウイルスで最も高く、3 mMで検出限界(10-5)以下にまで不活化された。保温温度も保温時間もより強める必要があったが、非エンベロープウイルスのHRVとFCVもN-AcTrpによって不活化された。
As shown in FIG. 1, a significant decrease was observed depending on the concentration of N-AcTrp compared to the value when incubated in a control solution containing no N-AcTrp. The degree of virus inactivation was prominent in enveloped virus, highest in influenza virus, and inactivated to 3 mM or below the detection limit (10 -5 ). Although it was necessary to increase the incubation temperature and incubation time, the non-enveloped viruses HRV and FCV were also inactivated by N-AcTrp.
試験例2.インフルエンザウイルスの不活化
N-AcTrpがインフルエンザウイルスに対して強い不活化作用を示し、一般に消毒薬が効きにくいと知られている非エンベロープウイルスについても呼吸器感染ウイルスであるHRVやFCVを不活化したので、呼吸器感染ウイルスとして社会的に関心の高いインフルエンザウイルスの他の型や亜型についてもN-AcTrpの不活化作用を調べた。結果を図2に示す。 Test Example 2. Inactivation of influenza virus N-AcTrp showed a strong inactivation action against influenza virus, and inactivated non-enveloped viruses, which are generally known to be difficult to disinfect, such as HRV and FCV, which are respiratory infections. Therefore, we examined the inactivating effect of N-AcTrp on other types and subtypes of influenza viruses that are of great social interest as respiratory infection viruses. The results are shown in FIG.
N-AcTrpがインフルエンザウイルスに対して強い不活化作用を示し、一般に消毒薬が効きにくいと知られている非エンベロープウイルスについても呼吸器感染ウイルスであるHRVやFCVを不活化したので、呼吸器感染ウイルスとして社会的に関心の高いインフルエンザウイルスの他の型や亜型についてもN-AcTrpの不活化作用を調べた。結果を図2に示す。 Test Example 2. Inactivation of influenza virus N-AcTrp showed a strong inactivation action against influenza virus, and inactivated non-enveloped viruses, which are generally known to be difficult to disinfect, such as HRV and FCV, which are respiratory infections. Therefore, we examined the inactivating effect of N-AcTrp on other types and subtypes of influenza viruses that are of great social interest as respiratory infection viruses. The results are shown in FIG.
図2に示されるように、季節性インフルエンザの原因ウイルスとしてヒトへの感染が知られている全てのインフルエンザウイルス種(A型インフルエンザウイルスの2つの亜型、(H1N1亜型とH3N2亜型)、ならびにB型インフルエンザウイルス)において顕著な不活化作用が見られた。
As shown in Figure 2, all influenza virus species (two subtypes of influenza A virus, (H1N1 subtype and H3N2 subtype)) that are known to infect humans as the causative virus of seasonal influenza, In addition, a remarkable inactivation effect was observed in influenza virus B).
試験例3.タンパク質存在下でのウイルス不活化
ウイルス不活化活性物質の多くは極微量でもタンパク質の共存によって明らかに不活化能が減じることが知られている。そこで、N-AcTrpの場合にどの程度タンパク質による妨害を受けるかを調べた。試験ウイルスとしては感受性の高いインフルンザウイルスとHSV-1とを用いた。結果を図3に示す。 Test Example 3. Virus inactivation in the presence of protein It is known that the inactivation ability of many virus inactivating active substances is clearly reduced by the coexistence of proteins even in a very small amount. Thus, we investigated how much protein N-AcTrp suffers from protein interference. Highly sensitive influenza virus and HSV-1 were used as test viruses. The results are shown in FIG.
ウイルス不活化活性物質の多くは極微量でもタンパク質の共存によって明らかに不活化能が減じることが知られている。そこで、N-AcTrpの場合にどの程度タンパク質による妨害を受けるかを調べた。試験ウイルスとしては感受性の高いインフルンザウイルスとHSV-1とを用いた。結果を図3に示す。 Test Example 3. Virus inactivation in the presence of protein It is known that the inactivation ability of many virus inactivating active substances is clearly reduced by the coexistence of proteins even in a very small amount. Thus, we investigated how much protein N-AcTrp suffers from protein interference. Highly sensitive influenza virus and HSV-1 were used as test viruses. The results are shown in FIG.
図3に示されるように、いずれのウイルスも、タンパク質の無い場合と比べると、0.25%ウシ血清アルブミン(BSA; bovine serum albumin)存在下ではN-AcTrpによる不活化が大きく阻害されているが、HSV-1で明示されているようにN-AcTrp濃度を高めるとBSA存在下でも検出限界以下にまで不活化され、BSA濃度を考えるとBSAから受けた阻害の程度は軽く、N-AcTrpは比較的にタンパク質による妨害を受けにくいという特長がある。
As shown in FIG. 3, in any virus, inactivation by N-AcTrp is greatly inhibited in the presence of 0.25% bovine serum albumin (BSA; bovine serum albumin) compared to the case without protein. As shown in HSV-1, when N-AcTrp concentration is increased, it is inactivated to below the detection limit even in the presence of BSA. Considering BSA concentration, the degree of inhibition received from BSA is light, and N-AcTrp is compared It is characterized by being less susceptible to protein interference.
また、同様の結果は、BSAに代えてヒト免疫グロブリンタンパクを用いた時にも得られた。
Similar results were obtained when human immunoglobulin protein was used instead of BSA.
試験例4.N-AcTrpのウイルス不活化に対するpHの影響
N-AcTrpによるウイルス不活化に対するpHの影響について、一番感受性の高かったインフルエンザウイルス(エンベロープウイルス)と一番感受性の低かったFCV(非エンベロープウイルス)とを用いて調べた。図4にインフルエンザウイルスでの結果、図5にFCVでの結果を示す。 Test Example 4. Effect of pH on virus inactivation of N-AcTrp Regarding the effect of pH on virus inactivation by N-AcTrp, the most sensitive influenza virus (envelope virus) and the least sensitive FCV (non-enveloped virus) It investigated using. FIG. 4 shows the results with influenza virus, and FIG. 5 shows the results with FCV.
N-AcTrpによるウイルス不活化に対するpHの影響について、一番感受性の高かったインフルエンザウイルス(エンベロープウイルス)と一番感受性の低かったFCV(非エンベロープウイルス)とを用いて調べた。図4にインフルエンザウイルスでの結果、図5にFCVでの結果を示す。 Test Example 4. Effect of pH on virus inactivation of N-AcTrp Regarding the effect of pH on virus inactivation by N-AcTrp, the most sensitive influenza virus (envelope virus) and the least sensitive FCV (non-enveloped virus) It investigated using. FIG. 4 shows the results with influenza virus, and FIG. 5 shows the results with FCV.
図4及び5に示されるように、いずれのウイルス場合も中性pHでは有意の不活化がみられるものの不活化作用は弱く、pHが酸性になるにつれてより強い不活化が見られた。
As shown in FIGS. 4 and 5, in any case, although significant inactivation was observed at neutral pH, the inactivation action was weak, and stronger inactivation was observed as the pH became acidic.
試験例5.N-AcTrpのウイルス不活化に対する緩衝液組成の影響
同じ濃度のN-AcTrpを用いても不活化の程度に差があることに気付いたので、その原因を調べるべく、N-AcTrpによるウイルス不活化に対する緩衝液の素材の影響についても検討した。ウイルスとしてはHSV-1(エンベロープウイルス)を用いた。結果を図6に示す。 Test Example 5. Effect of buffer composition on virus inactivation of N-AcTrp I noticed that there was a difference in the degree of inactivation even when using the same concentration of N-AcTrp. In order to investigate the cause, virus inactivation by N-AcTrp The influence of the buffer material on the effect was also investigated. HSV-1 (envelope virus) was used as the virus. The results are shown in FIG.
同じ濃度のN-AcTrpを用いても不活化の程度に差があることに気付いたので、その原因を調べるべく、N-AcTrpによるウイルス不活化に対する緩衝液の素材の影響についても検討した。ウイルスとしてはHSV-1(エンベロープウイルス)を用いた。結果を図6に示す。 Test Example 5. Effect of buffer composition on virus inactivation of N-AcTrp I noticed that there was a difference in the degree of inactivation even when using the same concentration of N-AcTrp. In order to investigate the cause, virus inactivation by N-AcTrp The influence of the buffer material on the effect was also investigated. HSV-1 (envelope virus) was used as the virus. The results are shown in FIG.
図6に示されるように、推定通り、緩衝液の作成に用いる有機酸の種類によってN-AcTrpのウイルス不活化作用は大きく影響を受けた。ウイルス不活活性は、リン酸緩衝液を用いた場合の方が、酢酸緩衝液を用いるよりも強かった。
As shown in FIG. 6, as estimated, the virus inactivating action of N-AcTrp was greatly affected by the type of organic acid used for preparing the buffer solution. The virus inactivation activity was stronger when using a phosphate buffer than when using an acetate buffer.
試験例6.N-AcTrpのウイルス不活化に対する保温温度の影響
10mMクエン酸緩衝液(pH 5.0)中でのN-AcTrpによるインフルエンザウイルスの不活化に与える保温温度の影響について調べた。結果を図7に示す。 Test Example 6. Effect of incubation temperature on virus inactivation of N-AcTrp The effect of incubation temperature on inactivation of influenza virus by N-AcTrp in 10 mM citrate buffer (pH 5.0) was investigated. The results are shown in FIG.
10mMクエン酸緩衝液(pH 5.0)中でのN-AcTrpによるインフルエンザウイルスの不活化に与える保温温度の影響について調べた。結果を図7に示す。 Test Example 6. Effect of incubation temperature on virus inactivation of N-AcTrp The effect of incubation temperature on inactivation of influenza virus by N-AcTrp in 10 mM citrate buffer (pH 5.0) was investigated. The results are shown in FIG.
図7に示されるように、酸性pHによるウイルス不活化も温度による影響を受けている(N-AcTrp濃度が0mMの時)が、N-AcTrpによるウイルス不活化が明確に見られた。N-AcTrpのウイルス不活化作用は氷温(0℃)でも起こるが、25℃以下では不活化効果は限定的であった。30℃を超えると、保温温度の上昇につれてより顕著になった。
As shown in FIG. 7, virus inactivation by acidic pH is also affected by temperature (when the N-AcTrp concentration is 0 mM), but virus inactivation by N-AcTrp was clearly seen. The virus inactivation effect of N-AcTrp occurs even at ice temperature (0 ° C), but the inactivation effect was limited below 25 ° C. Beyond 30 ° C, it became more prominent as the heat retention temperature increased.
試験例7.N-AcTrpによるウイルス増殖の阻害(抗ウイルス作用)
N-AcTrpによるウイルス増殖の阻害作用を調べた。HSV-1を用いた場合の結果を図8に示し、インフルエンザウイルスを用いた場合の結果を図9に示す。 Test Example 7. Inhibition of virus growth by N-AcTrp (antiviral effect)
The inhibitory effect of virus growth by N-AcTrp was examined. The results when HSV-1 is used are shown in FIG. 8, and the results when influenza virus is used are shown in FIG.
N-AcTrpによるウイルス増殖の阻害作用を調べた。HSV-1を用いた場合の結果を図8に示し、インフルエンザウイルスを用いた場合の結果を図9に示す。 Test Example 7. Inhibition of virus growth by N-AcTrp (antiviral effect)
The inhibitory effect of virus growth by N-AcTrp was examined. The results when HSV-1 is used are shown in FIG. 8, and the results when influenza virus is used are shown in FIG.
図8及び9に示されるように、一段増殖後のウイルス収量はN-AcTrp濃度の増加にともない濃度依存的に低下しており、N-AcTrpはウイルスを不活化するだけでなく、HSV-1やインフルエンザウイルスの感染細胞でのウイルス増殖を有意に阻害した。
As shown in FIGS. 8 and 9, the virus yield after one-stage growth decreased with increasing concentration of N-AcTrp, and N-AcTrp not only inactivated the virus, but also HSV-1 And virus growth in influenza virus-infected cells were significantly inhibited.
Claims (10)
- 一般式(1):
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、抗ウイルス又はウイルス不活化剤。 General formula (1):
An antiviral or viral inactivating agent comprising at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof. - 前記R1で示されるアルキル基の炭素原子数が1~3である、請求項1~3のいずれかに記載の抗ウイルス又はウイルス不活化剤。 The antiviral or viral inactivating agent according to any one of claims 1 to 3, wherein the alkyl group represented by R 1 has 1 to 3 carbon atoms.
- 生体に適用するために用いられる、請求項1~4のいずれかに記載の抗ウイルス又はウイルス不活化剤。 The antiviral or viral inactivating agent according to any one of claims 1 to 4, which is used for application to a living body.
- 医薬、化粧品、消毒剤又は洗浄剤である、請求項5に記載の抗ウイルス又はウイルス不活化剤。 The antiviral or viral inactivating agent according to claim 5, which is a medicine, cosmetics, disinfectant or detergent.
- 物品に適用するために用いられる、請求項1~4のいずれかに記載の抗ウイルス又はウイルス不活化剤。 The antiviral or virus inactivating agent according to any one of claims 1 to 4, which is used for application to an article.
- 消毒剤又は洗浄剤である、請求項7に記載の抗ウイルス又はウイルス不活化剤。 The antiviral or virus inactivating agent according to claim 7, which is a disinfectant or a cleaning agent.
- 一般式(1):
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を用いてウイルスを処理することを含む、ホールワクチンの製造方法。 General formula (1):
A method for producing a whole vaccine, comprising treating a virus with at least one selected from the group consisting of a compound represented by the formula: salt thereof, and solvate thereof. - 一般式(1):
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種、並びに不活化ウイルスを含有する、ホールワクチン。 General formula (1):
A whole vaccine comprising at least one selected from the group consisting of a compound represented by the formula: salts thereof, and solvates thereof; and an inactivated virus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017118476A JP2020128342A (en) | 2017-06-16 | 2017-06-16 | Antiviral or virus-inactivating agent |
JP2017-118476 | 2017-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230674A1 true WO2018230674A1 (en) | 2018-12-20 |
Family
ID=64659232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022821 WO2018230674A1 (en) | 2017-06-16 | 2018-06-15 | Antiviral or virus-inactivating agent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020128342A (en) |
WO (1) | WO2018230674A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171556A1 (en) * | 2022-03-10 | 2023-09-14 | 積水化学工業株式会社 | Viral infection inhibitor, viral infection inhibiting product, viral infection inhibiting paint, and resin composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238894A1 (en) * | 2022-06-10 | 2023-12-14 | 国立大学法人東北大学 | Antiviral agent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999016447A1 (en) * | 1997-09-26 | 1999-04-08 | Wakamoto Pharmaceutical Co., Ltd. | Aqueous preparation containing antiviral agent having purine or pyrimidine skeleton |
JP2014522827A (en) * | 2011-06-28 | 2014-09-08 | ロイコケア・アクチェンゲゼルシャフト | Method for preventing unfolding of (poly) peptide and / or inducing (re) folding of (poly) peptide |
-
2017
- 2017-06-16 JP JP2017118476A patent/JP2020128342A/en active Pending
-
2018
- 2018-06-15 WO PCT/JP2018/022821 patent/WO2018230674A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999016447A1 (en) * | 1997-09-26 | 1999-04-08 | Wakamoto Pharmaceutical Co., Ltd. | Aqueous preparation containing antiviral agent having purine or pyrimidine skeleton |
JP2014522827A (en) * | 2011-06-28 | 2014-09-08 | ロイコケア・アクチェンゲゼルシャフト | Method for preventing unfolding of (poly) peptide and / or inducing (re) folding of (poly) peptide |
Non-Patent Citations (4)
Title |
---|
FUJITA, H ET AL.: "Antiviral effects of amino acid derivatives with the fluorene substituent on murine leukemia viruses", J NATL CANCER INST, vol. 70, no. 2, 1983, pages 275 - 278 * |
HU , GUOPING ET AL.: "Inhibitors of HIV-1 integrase-human LEDGF/p75 interaction identified from natural products via virtual screening", CHIN J CHEM, vol. 30, no. 12, 2012, pages 2752 - 2758 * |
JMEDPLUS, vol. 44, 25 September 2017 (2017-09-25), pages 186, [retrieved on 20180802] * |
JMEDPLUS, vol. 65, 27 September 2017 (2017-09-27), pages 223, [retrieved on 20180802] * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171556A1 (en) * | 2022-03-10 | 2023-09-14 | 積水化学工業株式会社 | Viral infection inhibitor, viral infection inhibiting product, viral infection inhibiting paint, and resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2020128342A (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9609872B2 (en) | Antibacterial agent composition and antiviral agent composition comprising silicon-containing compound; antibacterializing method, cleaning/mouth rinsing method; method for fixing antibacterial agent and antiviral agent | |
CN108042535A (en) | For treating the Compounds and methods for of influenza | |
JP2009545541A (en) | Use of cationic surfactants for antivirals | |
WO2018230674A1 (en) | Antiviral or virus-inactivating agent | |
JP2016537346A (en) | Inhibitors of influenza virus replication | |
US20210137966A1 (en) | Virucidal compounds and uses thereof | |
CA2545157A1 (en) | Disinfecting composition and methods of making and using same | |
TW201625573A (en) | CHROMENONE anti-viral compounds, pharmaceutical compositions, and methods of use thereof | |
EP2694046A1 (en) | Methods and pharmaceutical compositions for inhibiting influenza viruses replication | |
JP2018515527A (en) | Inhibitors of influenza virus replication | |
WO2021256473A1 (en) | Anti-coronavirus agent | |
JP3159704B2 (en) | Azo derivatives and use of these derivatives as drugs and anti-AIDS agents | |
JP2022030481A (en) | Antiviral agent | |
WO2021241666A1 (en) | Antiviral agent | |
US20230151302A1 (en) | Cationic surfactants, in particular ethyl lauroyl arginate LAE, for treating or preventing infections and contaminations with Coronavirus | |
WO2022102590A1 (en) | Anti-viral agent | |
JP6189516B1 (en) | Antiviral agent | |
US11666621B2 (en) | Composition having inhibitory effect on virus and bacteria | |
US20240165138A1 (en) | Antiviral agent | |
JP5612314B2 (en) | Drugs and methods for destroying viruses and bacteria and inhibiting their growth | |
Yamasaki et al. | Antiviral and Virucidal Activities of Nα‐Cocoyl‐L‐Arginine Ethyl Ester | |
CN117015306A (en) | antiviral agent | |
JP2022130161A (en) | Anti-coronavirus agent | |
Warda et al. | Patents related to dengue virus infection | |
US20120157519A1 (en) | Tellerium-containing compounds for treating viral infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18817146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18817146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |