WO2018230614A1 - Thermoplastic elastomer composition - Google Patents
Thermoplastic elastomer composition Download PDFInfo
- Publication number
- WO2018230614A1 WO2018230614A1 PCT/JP2018/022616 JP2018022616W WO2018230614A1 WO 2018230614 A1 WO2018230614 A1 WO 2018230614A1 JP 2018022616 W JP2018022616 W JP 2018022616W WO 2018230614 A1 WO2018230614 A1 WO 2018230614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copolymer
- vinyl compound
- aromatic vinyl
- ethylene
- thermoplastic elastomer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a thermoplastic elastomer composition excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and a molded body, a sheet, and a medical tube using the same.
- thermoplastic elastomers having excellent productivity have been increasingly used for applications such as automobile parts, home appliance parts, medical parts or sundries, where vulcanized rubber has been the mainstream.
- many new thermoplastic elastomers having required characteristics according to various uses have been proposed.
- a so-called styrene-ethylene copolymer is obtained by a method in which a small amount of divinylbenzene is copolymerized and a polystyrene chain (cross chain) is introduced via a vinyl group of a divinylbenzene unit.
- Cross copolymers have been proposed.
- the cross-copolymer obtained by this method is a block copolymer having a branched structure having a styrene-ethylene copolymer chain as a soft segment and polystyrene as a hard segment, and is extremely excellent in scratch resistance and molding processability. It has become a material.
- the cross-copolymer is a thermoplastic elastomer that has extremely excellent properties such as scratch resistance, softness, transparency, and moldability, but depending on the application, curing at low temperatures is an issue, and excellent low-temperature softness, etc. It was necessary to use a processing technique such as blending with a resin, elastomer, rubber, additive, etc. having the above characteristics.
- low temperature characteristics may be required because it may be connected to an infusion pump used at low temperatures.
- blocking resistance at high temperatures may be required because heating is performed during sterilization. Transparency decreases when pursuing low-temperature properties and blocking resistance with a cross-copolymer alone. There was a problem to do.
- a support layer occupying 50% or more of the tube thickness is a cross-copolymer having sufficient softness
- an inner layer is a multi-layer tube having a small blocking property. It is proposed to improve the blockage caused by the close contact between the inner walls when clamped with a.
- the dissemination of medical parts has been promoted, and in many cases it is incinerated after use to prevent biohazards, and it is important to use non-soft PVC material that does not generate chlorine compounds as gas during incineration. It has become.
- An object of the present invention is to provide a thermoplastic elastomer composition excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and a molded article, a sheet, and a medical tube using the same.
- the gist of the present invention is as follows.
- Olefin-aromatic vinyl compound system in which aromatic vinyl compound monomer unit is 10 to 23 mol%, aromatic polyene monomer unit is 0.01 to 0.5 mol%, and the balance is an olefin monomer unit.
- the acetylated monoglyceride plasticizer (B) is used for 100 parts by mass of the cross-copolymer (A) containing the main chain of the copolymer and the cross-chain of the aromatic vinyl compound polymer comprising the aromatic vinyl compound monomer unit.
- a thermoplastic elastomer composition comprising 3 to 10 parts by mass.
- the cross copolymer (A) contains 70 to 95% by mass of an olefin-aromatic vinyl compound copolymer and 5 to 30% by mass of an aromatic vinyl compound polymer.
- Thermoplastic elastomer composition contains 70 to 95% by mass of an olefin-aromatic vinyl compound copolymer and 5 to 30% by mass of an aromatic vinyl compound polymer. Thermoplastic elastomer composition.
- thermoplastic elastomer composition according to any one of [1] or [2], wherein the aromatic vinyl compound monomer unit is styrene.
- thermoplastic elastomer composition according to any one of [2] to [3], wherein the olefin monomer unit is ethylene.
- thermoplastic elastomer composition according to any one of [1] to [4], wherein the aromatic polyene monomer unit is divinylbenzene.
- thermoplastic elastomer composition according to any one of [1] to [5], wherein the acetylated monoglyceride plasticizer (B) is substantially acetylated monolauryl glyceride.
- the cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit.
- the content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, and the balance is the content of ethylene monomer units.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
- the content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass.
- thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per 100 parts by mass of a cross copolymer (A), the cross copolymer (A ) Satisfies all the following conditions (4) to (7).
- B acetylated monoglyceride plasticizer
- the content is 10 to 23 mol%, and the content of the ethylene-aromatic vinyl copolymer component contained is in the range of 70 to 95% by mass, (5) The ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer contained have a bond, (6) MFR (200 ° C., weight 49 N) is in the range of 0.05 to 50 g / 10 minutes, (7) The gel content is 0.2% by mass or less.
- thermoplastic elastomer composition according to any one of [1] to [8].
- thermoplastic elastomer composition that is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and a molded article, sheet, and medical tube using the same.
- thermoplastic elastomer composition The present invention relates to aromatic vinyl compound monomer units of 10 to 23 mol%, aromatic polyene monomer units of 0.01 to 0.5 mol%, preferably 0.01 to 0.2 mol%, and the balance being olefin.
- a cross copolymer (A) 100 comprising a main chain of an olefin-aromatic vinyl compound copolymer as a monomer unit and a cross chain of an aromatic vinyl compound polymer comprising an aromatic vinyl compound monomer unit.
- a thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per part by mass.
- a to B means not less than A and not more than B.
- the cross copolymer (A) is an olefin-aromatic vinyl compound copolymer comprising an aromatic vinyl compound monomer unit, an olefin monomer unit, and an aromatic polyene monomer unit.
- the polymer which consists of an aromatic vinyl compound monomer unit has the structure couple
- aromatic vinyl compound monomer unit examples include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, p- Examples thereof include units derived from styrene monomers such as t-butylstyrene, p-chlorostyrene and o-chlorostyrene.
- a styrene unit, a p-methylstyrene unit, and a p-chlorostyrene unit are preferable, and a styrene unit is particularly preferable.
- One type of these aromatic vinyl compound monomer units may be used, or two or more types may be used in combination.
- olefin monomer units include ethylene and ⁇ -olefins having 3 to 20 carbon atoms such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinylcyclohexane, cyclic olefins, Examples thereof include units derived from each ⁇ -olefin monomer and cyclic olefin monomer such as cyclopentene and norbornene.
- a mixture of an ethylene unit, a propylene unit, a 1-butene unit, a 1-hexene unit, a 1-octene unit or the like is used, and an ethylene unit is particularly preferably used.
- the aromatic polyene monomer unit is an aromatic polyene having 10 to 30 carbon atoms and having a plurality of double bonds (vinyl group) and one or more aromatic groups, such as o- Divinylbenzene, p-divinylbenzene, m-divinylbenzene, 1,4-divinylnaphthalene, 3,4-divinylnaphthalene, 2,6-divinylnaphthalene, 1,2-divinyl-3,4-dimethylbenzene, 1,3 -Units derived from an aromatic polyene monomer such as divinyl-4,5,8-tributylnaphthalene, preferably any one or two of orthodivinylbenzene unit, paradivinylbenzene unit and metadivinylbenzene unit A mixture of seeds or more is preferably used.
- aromatic groups such as o- Divinylbenzene, p-divinylbenzene, m-divinylbenz
- each structural unit in the olefin-aromatic vinyl compound-based copolymer is 10 to 23 mol% of the aromatic vinyl compound monomer unit from the viewpoint of flexibility and transparency, and the aromatic polyene monomer unit. 0.01 to 0.5 mol%, the balance being olefin monomer units, and from the viewpoints of softness and blocking resistance as a thermoplastic elastomer composition, preferably aromatic vinyl compound monomer units 12 ⁇ 18 mol%, aromatic polyene monomer units 0.01 to 0.2 mol%, and the balance is olefin monomer units.
- the content ratio of the olefin-aromatic vinyl compound copolymer and the polymer comprising the aromatic vinyl compound monomer unit is preferably an olefin-aromatic vinyl compound copolymer from the viewpoint of transparency and flexibility. Is from 70 to 95% by weight, and the polymer comprising aromatic vinyl compound monomer units is from 5 to 30% by weight. From the viewpoint of physical properties as a thermoplastic elastomer composition, olefin-aromatic vinyl is particularly preferable.
- the compound-based copolymer is 82 to 92% by mass, and the polymer composed of aromatic vinyl compound monomer units is 8 to 18% by mass.
- the peak intensity (area) of vinyl group hydrogen (proton) of the divinylbenzene unit of the cross-copolymer is compared with the same peak intensity (area) of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer macromonomer. And less than 50%, preferably less than 20%.
- the divinylbenzene unit is copolymerized simultaneously with the polymerization of the styrene unit, and the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via the divinylbenzene unit.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit.
- the fact that the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via a divinylbenzene unit can be proved by the following observable phenomenon. That is, even after the Soxhlet extraction is carried out a sufficient number of times using an appropriate solvent, the contained ethylene-styrene-divinylbenzene copolymer chain cannot be separated from the polystyrene chain.
- the ethylene-styrene-divinylbenzene copolymer and polystyrene of the same composition as the ethylene-styrene-divinylbenzene copolymer chain contained in this cross copolymer are subjected to Soxhlet extraction with boiling acetone, so that the acetone insoluble part As an ethylene-styrene-divinylbenzene copolymer and as an acetone soluble part into polystyrene.
- the expression defining the cross copolymer of this embodiment is that the cross copolymer (A) has an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain. And a copolymer having a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit.
- the cross-copolymer may contain a relatively small amount of an aromatic vinyl compound (polystyrene) homopolymer.
- the cross copolymer (A) comprises an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain via an aromatic polyene monomer unit.
- the copolymer has a bonding structure and further satisfies all the following conditions (1) to (3).
- the content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, preferably 12 to 18 mol%, The content is 0.01 mol% or more and 0.5 mol% or less, preferably 0.01 mol% or more and 0.2 mol% or less, and the balance is the content of ethylene monomer units.
- the ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
- the content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross-copolymer is in the range of 70 to 95% by mass, preferably 82 to 92% by mass.
- the weight average molecular weight Mw of the aromatic vinyl compound polymer chain is arbitrary, but is generally in the range of 10,000 to 80,000. In the cross copolymer, the molecular weight of the aromatic vinyl compound polymer chain bonded to the main chain ethylene-aromatic vinyl compound-aromatic polyene copolymer cannot be determined.
- the weight average molecular weight Mw of the aromatic vinyl compound polymer homopolymer contained in a relatively small amount in the copolymer is defined as the weight average molecular weight Mw of the aromatic vinyl compound polymer chain contained in the cross copolymer. Yes.
- the peak derived from the ethylene-aromatic vinyl compound copolymer (ethylene-styrene copolymer) and the peak derived from the aromatic vinyl compound polymer (polystyrene) The ethylene unit content, the aromatic vinyl compound (styrene) unit content derived from the ethylene-aromatic vinyl compound copolymer (ethylene-styrene copolymer) of the cross copolymer, and the weight of the aromatic vinyl compound
- the content of coalesced (polystyrene) can be determined.
- aromatic polyene actually contained in an ethylene-aromatic vinyl compound copolymer (ethylene-styrene-divinylbenzene copolymer) in an amount of 0.01 mol% to 0.5 mol%.
- Content is included in the aromatic vinyl compound (styrene) unit content in which the peak positions overlap, and each content is obtained.
- the acetone-insoluble part occupying most of the cross-copolymer contains both an ethylene-aromatic vinyl compound copolymer (ethylene-styrene copolymer) and an aromatic vinyl compound polymer (polystyrene). This cannot be separated by further fractionation operations.
- the ethylene-aromatic vinyl compound copolymer chain and the aromatic vinyl compound polymer chain have a bond (for example, the ethylene-styrene copolymer chain and the polystyrene chain). Can be proved).
- This cross-copolymer is substantially free of gels and has thermoplasticity despite the fact that the ethylene-aromatic vinyl compound copolymer chain and the aromatic vinyl compound polymer chain have a bond. Practical moldability as a resin, that is, a specific MFR value can be shown.
- thermoplastic elastomer composition obtained by blending 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) with 100 parts by mass of a cross copolymer (A)
- the copolymer (A) can be defined as a copolymer that satisfies all of the following conditions (4) to (7).
- the manufacturing method of the cross copolymer (A) based on this invention is demonstrated.
- the polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but is more preferable because solution polymerization has a high degree of freedom in controlling polymerization in obtaining a desired cross-copolymer. is there.
- the polymerization method is not particularly limited as long as the desired cross-copolymer (A) can be obtained.
- a coordination polymerization step of polymerizing an olefin-aromatic vinyl compound copolymer using a coordination polymerization catalyst, and a coordination In the coexistence of the olefin-aromatic vinyl compound copolymer obtained in the polymerization step and the aromatic vinyl compound monomer, polymerization is performed using an anionic polymerization initiator to form an aromatic polyene monomer unit of the main chain.
- the coordination polymerization process will be specifically described.
- the coordination polymerization catalyst a single site coordination polymerization catalyst composed of a transition metal compound and a promoter can be used.
- Methylaluminoxane can be suitably used as a cocatalyst that assists the activity of the single site coordination polymerization catalyst.
- alkyl aluminum can be used suitably.
- the solvent to be used is preferably a hydrocarbon system such as cyclohexane, methylcyclohexane, toluene, ethylbenzene, or an aromatic hydrocarbon system because it poisons the single-site coordination polymerization catalyst if it has a polar functional group.
- the amount of the solvent added is preferably 200 to 900 parts by mass with respect to 100 parts by mass of the obtained copolymer. If it is 200 mass parts or more, it is suitable when controlling a polymerization-solution viscosity and reaction rate, and if it is 900 mass parts or less, it is preferable from a viewpoint of productivity.
- the anionic polymerization process will be specifically described.
- the main chain is polymerized by using an anionic polymerization initiator in the coexistence of the olefin-aromatic vinyl compound copolymer obtained in the coordination polymerization step and the aromatic vinyl compound monomer.
- a cross-copolymer (A) having a structure in which a polymer composed of an aromatic vinyl compound monomer unit is cross-linked to a vinyl group remaining in the aromatic polyene monomer unit is synthesized.
- the olefin-aromatic vinyl compound copolymer obtained in the coordination polymerization step is precipitated by a poor solvent such as methanol, the solvent is evaporated by a heating roll or the like (drum dryer method), and the concentrator. Concentrate the solution after removing the solvent with a vent type extruder, disperse the solution in water, blow off water vapor to remove the solvent by heating (steam stripping method), crumb forming Any method such as a method may be used for the anionic polymerization step after separation and purification from the polymerization solution after the coordination polymerization.
- a polymerization solution containing an olefin-aromatic vinyl compound copolymer may be used in the anionic polymerization step without separating and purifying the olefin-aromatic vinyl compound copolymer from the polymerization solution.
- the anionic polymerization initiator known anionic polymerization initiators such as n-butyllithium and sec-butyllithium can be used.
- the aromatic vinyl compound monomer the aromatic vinyl compound monomer remaining in the polymerization solution after the coordination polymerization can be used as it is.
- the target cross-copolymer (A) can be obtained by adding a required amount before the start of anionic polymerization, or adding or adding in the middle of anionic polymerization.
- the method for recovering the cross-copolymer (A) is not particularly limited, a method for precipitation with a poor solvent such as methanol, a method for evaporation by evaporation with a heating roll or the like (drum dryer method), and a solution of water.
- a known method such as a method of recovering a copolymer by blowing water vapor and removing the solvent by heating (a steam stripping method) or a crumb forming method can be used.
- a polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and a polymerization solvent is devolatilized.
- This method is economical because the devolatilizing component containing the polymerization solvent is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in the distillation tower. It is preferable from the viewpoint.
- acetylated monoglyceride plasticizer (B) examples include, but are not limited to, acetylated monolauryl glyceride, acetylated monocapryl glyceride, acetylated monostearyl glyceride, and acetylated monooleyl. A glyceride is mentioned. These plasticizers may be used alone or in combination.
- the plasticizer used in the present invention is preferably an acetylated monoglyceride plasticizer from the viewpoints of transparency and blocking resistance. Particularly preferred is substantially acetylated monolauryl glyceride. If the acetylated monoglyceride plasticizer (B) is substantially acetylated monolauryl glyceride, it is particularly preferred because blocking resistance is improved.
- substantially means that 70% by mass or more of the contained plasticizer is acetylated monolauryl glyceride.
- the structure of the glycerin fatty acid ester plasticizer (B) used was measured by performing composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and Synapt G2 manufactured by Waters as a mass spectrometer (MS). .
- acetylated monoglyceride plasticizer (B) a commercially available product can be used, and it can also be produced using a known production method.
- These acetylated monoglyceride lubricants can be purchased from, for example, Riken Vitamin.
- the blending amount of the acetylated monoglyceride plasticizer (B) is preferably 3 to 10 parts by mass of the acetylated monoglyceride plasticizer (B) with respect to 100 parts by mass of the cross copolymer (A). If the amount of the acetylated monoglyceride plasticizer (B) is 3 parts by mass or more, low temperature curing is suppressed, which is preferable. A blending amount of the acetylated monoglyceride plasticizer (B) of 10 parts by mass or less is preferable because a decrease in tensile strength is suppressed.
- the blending amount of the acetylated monoglyceride plasticizer (B) is most preferably 4 to 8 parts by mass.
- thermoplastic elastomer composition of this embodiment is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance. Specifically, the transparency is 20% or less for a 1 mm-thick sheet, the softness is 79 or less in terms of A hardness, the tensile property is a tensile stress of 3.0 MPa or more at 23 ° C. and 100% elongation, and Tensile stress at 5 ° C. and 100% elongation is 7.5 MPa or less, low temperature characteristics (low temperature curing), the difference in tensile stress at 100% elongation at 5 ° C. and 23 ° C.
- the anti-blocking property is evaluated by the method defined in this example, and the evaluation level is 2 or more. Furthermore, most preferably, the transparency is 15% or less for a 1 mm thick sheet, the softness is 75 or less in terms of A hardness, and the tensile properties are 23 ° C., 100% elongation tensile stress 3.5 MPa or more, And the tensile stress at 100% elongation at 5 ° C is 6.5 MPa or less, and the low temperature property (low temperature curing) is the difference between the tensile stress at 100% elongation at 5 ° C and 23 ° C is 3.0 MPa or less.
- the anti-blocking property is evaluated by the method defined in this example, and the evaluation level is 3 or more.
- thermoplastic elastomer composition of the present invention a lubricant, a stabilizer, an antistatic agent, an impact strength improver, a processing aid, an ultraviolet absorber, and an antioxidant are added to the thermoplastic elastomer composition of the present invention, as necessary.
- thermoplastic resins such as ethylene-based resins, propylene-based resins, or styrene-diene block copolymers such as SBS, SIS, SEBS, and SEPS and hydrogenated products thereof may be used as the cross-copolymer (A) 100. It can add in the ratio of 1 to 30 mass parts with respect to the mass part.
- the method for producing the thermoplastic elastomer composition of the present invention is not particularly limited, but a single-screw extruder, a mating co-rotating or mating counter-rotating twin-screw extruder, a non- or incomplete mating two It can be manufactured using a known melt-kneading apparatus such as a screw extruder such as a screw extruder, Banbury mixer, a kneader, and a mixing roll. Among them, the melt-mixing method using an extruder is from the viewpoint of productivity and good kneadability. preferable.
- thermoplastic elastomer composition of the present embodiment is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and can be used for various molded articles, particularly suitable for sheets and medical tubes. It is. There is no restriction
- molding method of a molded object Well-known methods, such as an extrusion molding method, an injection molding method, a blow molding method, a rotation molding method, can be used.
- thermoplastic elastomer composition of the present invention can be synthesized by, for example, synthesis described in JP2009-102515A, WO09 / 128444, WO13 / 018171, or JP2011-153214A. It is suitably used for leather, grips or exterior members, foams, skin materials, tape substrates, wire coating materials, gaskets, or conductive sheets.
- the sheet using the thermoplastic elastomer composition of the present invention may be a single layer or a multilayer. In the case of a multilayer, you may use as a multilayer which has the layer which consists of another resin component.
- the thermoplastic elastomer composition of the present invention is, for example, a medical device described in International Publication No.
- thermoplastic elastomer composition of the present invention may be a single layer or multiple layers. Moreover, in the case of a multilayer, you may use as a multilayer which has the layer which consists of another resin component.
- Cross copolymer (A) The following cross copolymers 1 to 7 were used. These cross-copolymers were produced by the production methods of Examples or Comparative Examples described in International Publication No. 2000/37517, International Publication No. 2007/139116, and Japanese Unexamined Patent Publication No. 2009-12092. Was similarly determined by the method described in these publications. In other words, the composition in the cross-copolymer or ethylene-aromatic vinyl compound-aromatic polyene copolymer, ie, the content of ethylene, aromatic vinyl compound or aromatic vinyl compound polymer is determined by 1 H-NMR (proton NMR).
- the content of aromatic polyene in the ethylene-aromatic vinyl compound-aromatic polyene copolymer was determined from the amount of aromatic polyene charged at the time of polymerization and gas chromatographic analysis of the polymerization solution sampled after completion of coordination polymerization. It calculated by calculating
- the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polystyrene chain were determined by GPC measurement of the aromatic vinyl compound polymer separated by solvent fractionation.
- the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit is the same peak of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer obtained in the coordination polymerization step.
- the strength (area) was less than 20%.
- the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit substantially disappeared in the cross-copolymer after anionic polymerization.
- cross copolymer was subjected to Soxhlet extraction using boiling acetone.
- the ethylene-styrene-divinylbenzene copolymer chain substantially ethylene-styrene copolymer chain
- the polystyrene chain contained therein were removed. I could't sort it.
- Mw weight average molecular weight
- Mw / Mn molecular weight distribution
- Mw molecular weight distribution
- ⁇ GPC measurement conditions Device name: HLC-8220 (manufactured by Tosoh Corporation) Column: Four series of Shodex GPC KF-404HQ Temperature: 40 ° C Detection: Differential refractive index Solvent: Tetrahydrofuran Calibration curve: Prepared using standard polystyrene (PS).
- Cross copolymer (A-1) An ethylene-styrene-divinylbenzene copolymer having a styrene content of 11 mol%, a divinylbenzene content of 0.06 mol%, a weight average molecular weight of 121,000, a molecular weight distribution of 2.2, -Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass, -Weight average molecular weight of polystyrene chain 13,000, molecular weight distribution 1.2 A hardness 83 -MFR 0.7g / 10min (200 ° C, weight 49N)
- Cross copolymer (A-2) An ethylene-styrene-divinylbenzene copolymer having a styrene content of 15 mol%, a divinylbenzene content of 0.06 mol%, a weight average molecular weight of 141,000, a molecular weight distribution of
- Acetylated monoglyceride plasticizer (B) Acetylated monoglyceride plasticizer (B-1): Acetylated monolauryl glyceride Riquemar PL-012 (manufactured by Riken Vitamin Co., Ltd.) was used. The content of acetylated monolauryl glyceride was 80% by mass or more. A mixture of acetylated monoglyceride plasticizer (B-2): acetylated monolauryl glyceride: acetylated monocaprylic glyceride (mass ratio 50:50) Riquemar PL-019 (manufactured by Riken Vitamin Co., Ltd.) was used.
- the structures of the plasticizers (B-1) to (B-2) used were subjected to composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and SynaptG2 manufactured by Waters as a mass spectrometer (MS). Performed and measured.
- Other plasticizers (C) Other plasticizer (C-1): Liquid paraffin Hicol M-352 (manufactured by Kaneda) was used.
- the structure of the plasticizer (C-1) used was measured by composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and SynaptG2 manufactured by Waters as a mass spectrometer (MS). The results are shown in Table 1.
- Table 3 shows the ratios of the cross copolymers (A-1) to (A-7) and the acetylated monoglyceride plasticizers (B-1) to (B-2) or other plasticizers (C-1).
- (Mass part) was melt-kneaded at a cylinder temperature of 200 ° C. with a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) and pelletized to obtain a thermoplastic elastomer composition. About the obtained thermoplastic elastomer composition, the test piece according to the following evaluation criteria was created and evaluated. The results are shown in Table 2.
- Sheet preparation was as follows. As a sample for physical property evaluation, a square mirror surface press sheet having a thickness (1 mm) formed by a heat press method (200 ° C., time 5 minutes, pressure 50 kg / cm 2) using a mirror surface mold (manufactured by STAVAX) was used. .
- a haze meter (Nippon Denshoku Industries Co., Ltd. NDH-1001DP type) was used to measure the haze of a square mirror surface press sheet having a thickness of 1 mm and a side of 50 mm in accordance with JIS K7136. In addition, the haze of 20% or less was set as an acceptable level, and 15% or less was set as a particularly preferable level.
- the tensile stress at 100% elongation is the tensile stress when 100% elongation is given to the test piece.
- a 1 mm thick press sheet was punched into a No. 3 dumbbell mold and used.
- the tensile speed was 500 mm / min.
- the tensile property is a tensile stress of 3.0 MPa or more at 23 ° C.
- the tensile stress is 7.5 MPa or less at 100 ° elongation of 5 ° C.
- the tensile property is a tensile stress of 3 at 23 ° C. and 100% elongation.
- a tensile stress of 6.5 MPa or less at 5 ° C. and 100% elongation was set to a particularly preferable level.
- Softness In accordance with JIS K6253-3, instantaneous hardness was determined using type A durometer hardness. Six 1 mm-thick press sheets were used as test pieces. In addition, A hardness 79 or less was made into the acceptable level, and 75 or less was made into the most preferable level.
- Examples 1 to 9 all had a haze of 20% or less, 23 ° C., 100% elongation tensile stress of 3.0 MPa or more, 5 ° C., 100% elongation tensile stress of 7.5 MPa or less, low temperature curing of 3.5 MPa or less, A It had a hardness of 79 or less and a blocking resistance evaluation of 2 or more, was excellent in transparency, tensile properties, softness and blocking resistance, and low-temperature curing was suppressed. On the other hand, Comparative Examples 1 to 6 were inferior in any of physical properties among transparency, tensile properties, softness and anti-blocking properties, or weakly suppressed at low temperature.
- Example 10 Using the thermoplastic elastomer composition obtained in Example 2, a tube having an outer diameter of 3.6 mm, an inner diameter of 2.4 mm, and a tube thickness of 0.6 mm was formed by extrusion molding. The characteristics as a medical tube were evaluated according to the following criteria. The results are shown in Table 3.
- the subject is touched at 23 ° C. with the prepared tube cut to a length of 20 cm and a comparative soft polyvinyl chloride medical single-layer tube, and the one with the soft touch is selected. If the created tube was softer than a soft polyvinyl chloride medical single-layer tube, ⁇ (excellent), if equal, ⁇ (good), and if the created tube was clearly hard, ⁇ (impossible). As for the softness of the tube, ⁇ (good) or better was regarded as acceptable.
- the kink start radius is preferably 10 mm or less.
- the shape of the generated kink (bending) was observed. Observe the situation where crushing occurs relatively uniformly in a wide part of the tube. ⁇ (excellent): Wide kink is generated and crushing occurs in a narrower range ⁇ (good): A relatively wide kink is generated, crushing occurs in a narrower range, and the tube is broken ⁇ (defective) ): Classified as acute-angle kink. The shape of the kink was set to pass (good) or better.
- Nitroglycerin adsorptivity Nitroglycerin injection solution (active ingredient 50 mg / 100 mL, Millisrol injection, Nippon Kayaku Co., Ltd.) 60 mL was injected into 1 L of Japanese Pharmacopoeia physiological saline and gently stirred. Immediately, the sample was sampled with a syringe with a syringe needle to obtain a blank. The tube of the infusion set was closed with a flow rate adjusting clamp, and the drip tube was pierced through a rubber stopper. The lower half of the drip tube was filled with the solution by pumping the drip tube.
- the clamp for adjusting the flow rate was gradually loosened, and the tube was filled with the solution, and then set on the infusion pump.
- the flow rate was set to 36 mL / h, the flow rate adjusting clamp was opened, the switch was turned on, and infusion was started.
- the solution flowing out from the tip was sampled over time, and the concentration was measured using ACQUITY UPLC manufactured by Waters as liquid chromatography (LC).
- the infusion was performed for 180 minutes, and the first 60 minutes were sampled every 5 minutes and thereafter every 15 minutes. If the density drop was within 10% compared to the blank density, the test was accepted.
- the tube was closed with a flow rate adjusting clamp, and the drip tube was pierced through a rubber stopper of Japanese Pharmacopoeia saline.
- the lower half of the drip tube was filled with the saline by pumping the drip tube.
- the flow rate adjusting clamp was gradually loosened, and the tube was filled with the saline solution, and then set on the infusion pump.
- the flow rate was set to 250 mL / h, the flow rate adjusting clamp was opened, the switch was turned on, and infusion was started. Immediately after this, the amount of physiological saline per minute flowing out from the tip was measured and used as the initial flow rate. After 24 hours, the flow rate per minute was again measured in the same manner.
- Tube state after completion of pump infusion After completion of the above-mentioned pump flow rate stability, the squeezed portion of the tube was incised, and the surface state of the inner and outer surfaces, the change in tube diameter, and the presence or absence of cracks were observed.
- thermoplastic elastomer composition of the present invention is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and can be suitably used for molded articles, sheets, and medical tubes.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Materials For Medical Uses (AREA)
Abstract
[Problem] To provide: a thermoplastic elastomer composition which has excellent transparency, flexibility, low-temperature characteristics, tensile characteristics and blocking resistance; and a molded body, a sheet and a tube for medical use, each of which uses this thermoplastic elastomer composition. [Solution] A thermoplastic elastomer composition which is obtained by blending 3-10 parts by mass of (B) an acetylated monoglyceride-based plasticizer per 100 parts by mass of (A) a cross-copolymer which comprises a main chain of an olefin-aromatic vinyl compound copolymer containing 10-23% by mole of an aromatic vinyl compound monomer unit and 0.01-0.5% by mole of an aromatic polyene monomer unit, with the balance made up of an olefin monomer unit, and a cross chain of an aromatic vinyl compound polymer that is formed from an aromatic vinyl compound monomer unit.
Description
本発明は、透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性に優れる熱可塑性エラストマー組成物、及びそれを用いた成形体、シート、医療用チューブに関する。
The present invention relates to a thermoplastic elastomer composition excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and a molded body, a sheet, and a medical tube using the same.
近年、従来から加硫ゴムが主流であった自動車部品、家電部品、医療部品又は雑貨等の用途に、生産性に優れる熱可塑性エラストマーが多く利用されるようになってきている。その中で、各種用途に応じた要求特性を有する新規熱可塑性エラストマーが数多く提案されている。例えば、特許文献1、2には、スチレン-エチレン共重合体に少量のジビニルベンゼンを共重合し、ジビニルベンゼンユニットのビニル基を介してポリスチレン鎖(クロス鎖)を導入する方法によって得られる、いわゆるクロス共重合体が提案されている。この方法により得られるクロス共重合体は、スチレン-エチレン共重合体鎖をソフトセグメントとし、ポリスチレンをハードセグメントとして有する分岐型構造のブロック共重合体であり、耐傷付性や成形加工性に極めて優れた材料となっている。
In recent years, thermoplastic elastomers having excellent productivity have been increasingly used for applications such as automobile parts, home appliance parts, medical parts or sundries, where vulcanized rubber has been the mainstream. Among them, many new thermoplastic elastomers having required characteristics according to various uses have been proposed. For example, in Patent Documents 1 and 2, a so-called styrene-ethylene copolymer is obtained by a method in which a small amount of divinylbenzene is copolymerized and a polystyrene chain (cross chain) is introduced via a vinyl group of a divinylbenzene unit. Cross copolymers have been proposed. The cross-copolymer obtained by this method is a block copolymer having a branched structure having a styrene-ethylene copolymer chain as a soft segment and polystyrene as a hard segment, and is extremely excellent in scratch resistance and molding processability. It has become a material.
クロス共重合体は、耐傷付性、軟質性、透明性、成形加工性など極めて優れた特性を有する熱可塑性エラストマーであるが、用途によっては低温での硬化が課題となり、低温軟質性に優れる等の特性を有する樹脂、エラストマー、ゴム、添加物等とブレンドするなどの加工技術を用いる必要があった。また、医療用チューブ用途では、低温で使用する輸液ポンプに接続する場合があるため、低温特性を要求される場合がある。加えて、医療用チューブ用途では、滅菌時に加熱を行うため、高温時の耐ブロッキング性を要求される場合があり、クロス共重合体単独で低温特性及び耐ブロッキング性を追及すると、透明性が低下するといった課題があった。
The cross-copolymer is a thermoplastic elastomer that has extremely excellent properties such as scratch resistance, softness, transparency, and moldability, but depending on the application, curing at low temperatures is an issue, and excellent low-temperature softness, etc. It was necessary to use a processing technique such as blending with a resin, elastomer, rubber, additive, etc. having the above characteristics. In addition, in medical tube applications, low temperature characteristics may be required because it may be connected to an infusion pump used at low temperatures. In addition, in medical tube applications, blocking resistance at high temperatures may be required because heating is performed during sterilization. Transparency decreases when pursuing low-temperature properties and blocking resistance with a cross-copolymer alone. There was a problem to do.
例えば、医療部品である医療用チューブでは、軟質性、透明性、耐折り曲げ性(耐キンク性)に加えて、薬剤の吸着吸収が少なく定量的に輸送できる薬剤定量性や輸液ポンプ回路に適する耐しごき性(形状回復性、耐摩耗性等)、さらには滅菌のためのガンマ線や電子線に対する耐放射線性に優れるなどの様々な特性が要求される。これらの要求に対して、特許文献3では、チューブ成形後に電子線照射により表面を架橋させることで、軟質性、透明性、薬剤の低吸着吸収性、ポンプ回路適性、化学的安定性、さらには耐キンク性に優れ、ブロッキングを抑制し各種滅菌法に対応する耐熱性を有する医療用チューブとすることを提案している。特許文献4では、チューブ厚さの50%以上を占める支持層を十分な軟質性を有するクロス共重合体とし、内層をブロッキング性が小さい材料とした多層チューブとすることで、折り曲げ時や鉗子などでクランプした際の内壁同士の密着による閉塞を改善することを提案している。なお、近年では医療部品のディスポーザブル化が進められてきており、バイオハザード防止のために使用後に焼却処理されることが多く、焼却時に塩素化合物をガスとして発生しない非軟質塩ビ材を用いることが重要となっている。
For example, in medical tubes that are medical parts, in addition to softness, transparency, and bending resistance (kink resistance), there is little drug absorption and absorption, and drug quantification that can be transported quantitatively and resistance to infusion pump circuits. Various properties are required such as ironing ability (shape recovery, wear resistance, etc.) and excellent radiation resistance against gamma rays and electron beams for sterilization. In response to these requirements, in Patent Document 3, the surface is cross-linked by electron beam irradiation after tube forming, so that the softness, transparency, low absorption and absorption of drugs, pump circuit suitability, chemical stability, It has been proposed to provide a medical tube having excellent kink resistance, heat resistance corresponding to various sterilization methods while suppressing blocking. In Patent Document 4, a support layer occupying 50% or more of the tube thickness is a cross-copolymer having sufficient softness, and an inner layer is a multi-layer tube having a small blocking property. It is proposed to improve the blockage caused by the close contact between the inner walls when clamped with a. In recent years, the dissemination of medical parts has been promoted, and in many cases it is incinerated after use to prevent biohazards, and it is important to use non-soft PVC material that does not generate chlorine compounds as gas during incineration. It has become.
本発明は、透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性に優れる熱可塑性エラストマー組成物、及びそれを用いた成形体、シート、医療用チューブを提供することを課題とする。
An object of the present invention is to provide a thermoplastic elastomer composition excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and a molded article, a sheet, and a medical tube using the same.
本発明は、以下を要旨とするものである。
〔1〕芳香族ビニル化合物単量体単位10~23モル%、芳香族ポリエン単量体単位0.01~0.5モル%、残部がオレフィン単量体単位であるオレフィン-芳香族ビニル化合物系共重合体の主鎖と、芳香族ビニル化合物単量体単位からなる芳香族ビニル化合物重合体のクロス鎖を含むクロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物。 The gist of the present invention is as follows.
[1] Olefin-aromatic vinyl compound system in which aromatic vinyl compound monomer unit is 10 to 23 mol%, aromatic polyene monomer unit is 0.01 to 0.5 mol%, and the balance is an olefin monomer unit. The acetylated monoglyceride plasticizer (B) is used for 100 parts by mass of the cross-copolymer (A) containing the main chain of the copolymer and the cross-chain of the aromatic vinyl compound polymer comprising the aromatic vinyl compound monomer unit. ) A thermoplastic elastomer composition comprising 3 to 10 parts by mass.
〔1〕芳香族ビニル化合物単量体単位10~23モル%、芳香族ポリエン単量体単位0.01~0.5モル%、残部がオレフィン単量体単位であるオレフィン-芳香族ビニル化合物系共重合体の主鎖と、芳香族ビニル化合物単量体単位からなる芳香族ビニル化合物重合体のクロス鎖を含むクロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物。 The gist of the present invention is as follows.
[1] Olefin-aromatic vinyl compound system in which aromatic vinyl compound monomer unit is 10 to 23 mol%, aromatic polyene monomer unit is 0.01 to 0.5 mol%, and the balance is an olefin monomer unit. The acetylated monoglyceride plasticizer (B) is used for 100 parts by mass of the cross-copolymer (A) containing the main chain of the copolymer and the cross-chain of the aromatic vinyl compound polymer comprising the aromatic vinyl compound monomer unit. ) A thermoplastic elastomer composition comprising 3 to 10 parts by mass.
〔2〕クロス共重合体(A)が、オレフィン-芳香族ビニル化合物系共重合体を70~95質量%、芳香族ビニル化合物重合体を5~30質量%を含む、〔1〕に記載の熱可塑性エラストマー組成物。
[2] The cross copolymer (A) contains 70 to 95% by mass of an olefin-aromatic vinyl compound copolymer and 5 to 30% by mass of an aromatic vinyl compound polymer. Thermoplastic elastomer composition.
〔3〕芳香族ビニル化合物単量体単位がスチレンである〔1〕または〔2〕のいずれかに記載の熱可塑性エラストマー組成物。
[3] The thermoplastic elastomer composition according to any one of [1] or [2], wherein the aromatic vinyl compound monomer unit is styrene.
〔4〕オレフィン単量体単位がエチレンである〔2〕~〔3〕のいずれか一項に記載の熱可塑性エラストマー組成物。
[4] The thermoplastic elastomer composition according to any one of [2] to [3], wherein the olefin monomer unit is ethylene.
〔5〕芳香族ポリエン単量体単位がジビニルベンゼンである〔1〕~〔4〕のいずれか一項に記載の熱可塑性エラストマー組成物。
[5] The thermoplastic elastomer composition according to any one of [1] to [4], wherein the aromatic polyene monomer unit is divinylbenzene.
〔6〕アセチル化モノグリセライド系可塑剤(B)が実質的にアセチル化モノラウリルグリセライドである〔1〕~〔5〕のいずれか一項に記載の熱可塑性エラストマー組成物。
[6] The thermoplastic elastomer composition according to any one of [1] to [5], wherein the acetylated monoglyceride plasticizer (B) is substantially acetylated monolauryl glyceride.
〔7〕クロス共重合体(A)が、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件をすべて満足する共重合体であることを特徴とする〔1〕に記載の熱可塑性エラストマー組成物。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~23モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%の範囲にある。 [7] The cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The thermoplastic elastomer composition according to [1], which is a copolymer satisfying all of the following conditions (1) to (3):
(1) The content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, and the balance is the content of ethylene monomer units.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass.
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~23モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%の範囲にある。 [7] The cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The thermoplastic elastomer composition according to [1], which is a copolymer satisfying all of the following conditions (1) to (3):
(1) The content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, and the balance is the content of ethylene monomer units.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass.
〔8〕クロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物であって、クロス共重合体(A)が、以下の(4)~(7)の条件をすべて満たす、熱可塑性エラストマー組成物。
(4)1H-NMR測定により、エチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体に帰属されるピークが観察され、エチレン-芳香族ビニル化合物共重合体中の芳香族ビニル化合物含量が10~23モル%であり、含まれるエチレン-芳香族ビニル共重合体成分の含量が70~95質量%の範囲であり、
(5)含まれるエチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体が結合を有しており、
(6)MFR(200℃、加重49N)が0.05~50g/10分の範囲であり、
(7)含まれるゲル分が0.2質量%以下である。 [8] A thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per 100 parts by mass of a cross copolymer (A), the cross copolymer (A ) Satisfies all the following conditions (4) to (7).
(4) By 1 H-NMR measurement, peaks attributed to the ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer were observed, and the aromatic vinyl compound in the ethylene-aromatic vinyl compound copolymer was observed. The content is 10 to 23 mol%, and the content of the ethylene-aromatic vinyl copolymer component contained is in the range of 70 to 95% by mass,
(5) The ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer contained have a bond,
(6) MFR (200 ° C., weight 49 N) is in the range of 0.05 to 50 g / 10 minutes,
(7) The gel content is 0.2% by mass or less.
(4)1H-NMR測定により、エチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体に帰属されるピークが観察され、エチレン-芳香族ビニル化合物共重合体中の芳香族ビニル化合物含量が10~23モル%であり、含まれるエチレン-芳香族ビニル共重合体成分の含量が70~95質量%の範囲であり、
(5)含まれるエチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体が結合を有しており、
(6)MFR(200℃、加重49N)が0.05~50g/10分の範囲であり、
(7)含まれるゲル分が0.2質量%以下である。 [8] A thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per 100 parts by mass of a cross copolymer (A), the cross copolymer (A ) Satisfies all the following conditions (4) to (7).
(4) By 1 H-NMR measurement, peaks attributed to the ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer were observed, and the aromatic vinyl compound in the ethylene-aromatic vinyl compound copolymer was observed. The content is 10 to 23 mol%, and the content of the ethylene-aromatic vinyl copolymer component contained is in the range of 70 to 95% by mass,
(5) The ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer contained have a bond,
(6) MFR (200 ° C., weight 49 N) is in the range of 0.05 to 50 g / 10 minutes,
(7) The gel content is 0.2% by mass or less.
〔9〕〔1〕~〔8〕のいずれか一項に記載の熱可塑性エラストマー組成物を用いた成形体。
[9] A molded body using the thermoplastic elastomer composition according to any one of [1] to [8].
〔10〕シートである〔9〕に記載の成形体。
[10] The molded article according to [9], which is a sheet.
〔11〕医療用チューブである〔9〕に記載の成形体。
[11] The molded article according to [9], which is a medical tube.
本発明によれば、透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性に優れる熱可塑性エラストマー組成物、及びそれを用いた成形体、シート、医療用チューブを提供することができる。
According to the present invention, it is possible to provide a thermoplastic elastomer composition that is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and a molded article, sheet, and medical tube using the same.
以下、本発明の熱可塑性エラストマー組成物を詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
[熱可塑性エラストマー組成物]
本発明は、芳香族ビニル化合物単量体単位10~23モル%、芳香族ポリエン単量体単位0.01~0.5モル%、好ましくは0.01~0.2モル%、残部がオレフィン単量体単位であるオレフィン-芳香族ビニル化合物系共重合体の主鎖と、芳香族ビニル化合物単量体単位からなる芳香族ビニル化合物重合体のクロス鎖を含むクロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物である。 Hereinafter, the thermoplastic elastomer composition of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.
[Thermoplastic elastomer composition]
The present invention relates to aromatic vinyl compound monomer units of 10 to 23 mol%, aromatic polyene monomer units of 0.01 to 0.5 mol%, preferably 0.01 to 0.2 mol%, and the balance being olefin. A cross copolymer (A) 100 comprising a main chain of an olefin-aromatic vinyl compound copolymer as a monomer unit and a cross chain of an aromatic vinyl compound polymer comprising an aromatic vinyl compound monomer unit. A thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per part by mass.
[熱可塑性エラストマー組成物]
本発明は、芳香族ビニル化合物単量体単位10~23モル%、芳香族ポリエン単量体単位0.01~0.5モル%、好ましくは0.01~0.2モル%、残部がオレフィン単量体単位であるオレフィン-芳香族ビニル化合物系共重合体の主鎖と、芳香族ビニル化合物単量体単位からなる芳香族ビニル化合物重合体のクロス鎖を含むクロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物である。 Hereinafter, the thermoplastic elastomer composition of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.
[Thermoplastic elastomer composition]
The present invention relates to aromatic vinyl compound monomer units of 10 to 23 mol%, aromatic polyene monomer units of 0.01 to 0.5 mol%, preferably 0.01 to 0.2 mol%, and the balance being olefin. A cross copolymer (A) 100 comprising a main chain of an olefin-aromatic vinyl compound copolymer as a monomer unit and a cross chain of an aromatic vinyl compound polymer comprising an aromatic vinyl compound monomer unit. A thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per part by mass.
なお、本明細書及び特許請求の範囲において、「A~B」という記載は、A以上でありB以下であるという意味である。
In the present specification and claims, the description “A to B” means not less than A and not more than B.
(クロス共重合体(A))
本発明の一実施形態において、クロス共重合体(A)は、芳香族ビニル化合物単量体単位、オレフィン単量体単位、及び芳香族ポリエン単量体単位からなるオレフィン-芳香族ビニル化合物系共重合体(オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体)の主鎖と、芳香族ビニル化合物単量体単位からなる重合体(芳香族ビニル化合物重合体)のクロス鎖とを含み、芳香族ビニル化合物単量体単位からなる重合体が、主鎖の芳香族ポリエン単量体単位を介して結合している構造を有する。 (Cross copolymer (A))
In one embodiment of the present invention, the cross copolymer (A) is an olefin-aromatic vinyl compound copolymer comprising an aromatic vinyl compound monomer unit, an olefin monomer unit, and an aromatic polyene monomer unit. A main chain of a polymer (olefin-aromatic vinyl compound-aromatic polyene copolymer) and a cross chain of a polymer (aromatic vinyl compound polymer) comprising an aromatic vinyl compound monomer unit, The polymer which consists of an aromatic vinyl compound monomer unit has the structure couple | bonded through the aromatic polyene monomer unit of the principal chain.
本発明の一実施形態において、クロス共重合体(A)は、芳香族ビニル化合物単量体単位、オレフィン単量体単位、及び芳香族ポリエン単量体単位からなるオレフィン-芳香族ビニル化合物系共重合体(オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体)の主鎖と、芳香族ビニル化合物単量体単位からなる重合体(芳香族ビニル化合物重合体)のクロス鎖とを含み、芳香族ビニル化合物単量体単位からなる重合体が、主鎖の芳香族ポリエン単量体単位を介して結合している構造を有する。 (Cross copolymer (A))
In one embodiment of the present invention, the cross copolymer (A) is an olefin-aromatic vinyl compound copolymer comprising an aromatic vinyl compound monomer unit, an olefin monomer unit, and an aromatic polyene monomer unit. A main chain of a polymer (olefin-aromatic vinyl compound-aromatic polyene copolymer) and a cross chain of a polymer (aromatic vinyl compound polymer) comprising an aromatic vinyl compound monomer unit, The polymer which consists of an aromatic vinyl compound monomer unit has the structure couple | bonded through the aromatic polyene monomer unit of the principal chain.
芳香族ビニル化合物単量体単位としては、スチレン及び各種の置換スチレン、例えばp-メチルスチレン、m-メチルスチレン、o-メチルスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、p-クロロスチレン、o-クロロスチレン等の各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位、p-メチルスチレン単位、p-クロロスチレン単位であり、特に好ましくはスチレン単位である。これら芳香族ビニル化合物単量体単位は、1種類でもよく、2種類以上の併用であってもよい。
Examples of the aromatic vinyl compound monomer unit include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, p- Examples thereof include units derived from styrene monomers such as t-butylstyrene, p-chlorostyrene and o-chlorostyrene. Among these, a styrene unit, a p-methylstyrene unit, and a p-chlorostyrene unit are preferable, and a styrene unit is particularly preferable. One type of these aromatic vinyl compound monomer units may be used, or two or more types may be used in combination.
オレフィン単量体単位としては、エチレン及び炭素数3~20のα-オレフィン、例えばプロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、ビニルシクロヘキサンや、環状オレフィンすなわちシクロペンテン、ノルボルネン等、各α-オレフィン系単量体及び環状オレフィン系単量体に由来する単位が挙げられる。好ましくは、エチレン単位、プロピレン単位、1-ブテン単位、1-ヘキセン単位、1-オクテン単位等の混合物が用いられ、特に好ましくはエチレン単位が用いられる。
Examples of olefin monomer units include ethylene and α-olefins having 3 to 20 carbon atoms such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinylcyclohexane, cyclic olefins, Examples thereof include units derived from each α-olefin monomer and cyclic olefin monomer such as cyclopentene and norbornene. Preferably, a mixture of an ethylene unit, a propylene unit, a 1-butene unit, a 1-hexene unit, a 1-octene unit or the like is used, and an ethylene unit is particularly preferably used.
芳香族ポリエン単量体単位としては、10以上30以下の炭素数を持ち、複数の二重結合(ビニル基)と単数又は複数の芳香族基を有した芳香族ポリエンであり、例えば、o-ジビニルベンゼン、p-ジビニルベンゼン、m-ジビニルベンゼン、1,4-ジビニルナフタレン、3,4-ジビニルナフタレン、2,6-ジビニルナフタレン、1,2-ジビニル-3,4-ジメチルベンゼン、1,3-ジビニル-4,5,8-トリブチルナフタレン等、芳香族ポリエン単量体に由来する単位が挙げられ、好ましくはオルトジビニルベンゼン単位、パラジビニルベンゼン単位及びメタジビニルベンゼン単位のいずれか1種又は2種以上の混合物が好適に用いられる。
The aromatic polyene monomer unit is an aromatic polyene having 10 to 30 carbon atoms and having a plurality of double bonds (vinyl group) and one or more aromatic groups, such as o- Divinylbenzene, p-divinylbenzene, m-divinylbenzene, 1,4-divinylnaphthalene, 3,4-divinylnaphthalene, 2,6-divinylnaphthalene, 1,2-divinyl-3,4-dimethylbenzene, 1,3 -Units derived from an aromatic polyene monomer such as divinyl-4,5,8-tributylnaphthalene, preferably any one or two of orthodivinylbenzene unit, paradivinylbenzene unit and metadivinylbenzene unit A mixture of seeds or more is preferably used.
オレフィン-芳香族ビニル化合物系共重合体中の各構成単位の含有割合は、軟質性、透明性の観点から、芳香族ビニル化合物単量体単位10~23モル%、芳香族ポリエン単量体単位0.01~0.5モル%、残部がオレフィン単量体単位であり、さらに熱可塑性エラストマー組成物としての軟質性や耐ブロッキング性の観点からは、好ましくは芳香族ビニル化合物単量体単位12~18モル%、芳香族ポリエン単量体単位0.01~0.2モル%、残部がオレフィン単量体単位である。
The content of each structural unit in the olefin-aromatic vinyl compound-based copolymer is 10 to 23 mol% of the aromatic vinyl compound monomer unit from the viewpoint of flexibility and transparency, and the aromatic polyene monomer unit. 0.01 to 0.5 mol%, the balance being olefin monomer units, and from the viewpoints of softness and blocking resistance as a thermoplastic elastomer composition, preferably aromatic vinyl compound monomer units 12 ˜18 mol%, aromatic polyene monomer units 0.01 to 0.2 mol%, and the balance is olefin monomer units.
オレフィン-芳香族ビニル化合物系共重合体と、芳香族ビニル化合物単量体単位からなる重合体の含有割合は、透明性、軟質性の観点から、好ましくはオレフィン-芳香族ビニル化合物系共重合体が70~95質量%、芳香族ビニル化合物単量体単位からなる重合体が5~30質量%であり、さらに熱可塑性エラストマー組成物としての物性の観点からは、特に好ましくはオレフィン-芳香族ビニル化合物系共重合体が82~92質量%、芳香族ビニル化合物単量体単位からなる重合体が8~18質量%である。
The content ratio of the olefin-aromatic vinyl compound copolymer and the polymer comprising the aromatic vinyl compound monomer unit is preferably an olefin-aromatic vinyl compound copolymer from the viewpoint of transparency and flexibility. Is from 70 to 95% by weight, and the polymer comprising aromatic vinyl compound monomer units is from 5 to 30% by weight. From the viewpoint of physical properties as a thermoplastic elastomer composition, olefin-aromatic vinyl is particularly preferable. The compound-based copolymer is 82 to 92% by mass, and the polymer composed of aromatic vinyl compound monomer units is 8 to 18% by mass.
オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合していることは、以下の観察可能な現象で証明できる。以下の説明では、最も好ましいエチレン-芳香族ビニル化合物(スチレン)-芳香族ポリエン(ジビニルベンゼン)共重合体鎖と芳香族ビニル化合物(ポリスチレン)鎖がジビニルベンゼン単位を介して結合している例について示す。製造方法の詳細は下記参照。すなわち配位重合工程で得られたエチレン-スチレン-ジビニルベンゼン共重合体マクロモノマーと、本共重合体とスチレン単位の存在下でのアニオン重合を経て得られるクロス共重合体の1H-NMR(プロトンNMR)を測定し、両者のジビニルベンゼン単位のビニル基水素(プロトン)のピーク強度を適当な内部標準ピーク(エチレン-スチレン-ジビニルベンゼン共重合体に由来する適当なピーク)を用いて比較する。ここで、クロス共重合体のジビニルベンゼン単位のビニル基水素(プロトン)のピーク強度(面積)が、エチレン-スチレン-ジビニルベンゼン共重合体マクロモノマーのジビニルベンゼン単位の同ピーク強度(面積)と比較して50%未満、好ましくは20%未満である。アニオン重合(クロス化工程)の際にスチレン単位の重合と同時にジビニルベンゼン単位も共重合し、エチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖がジビニルベンゼン単位を介して結合されるために、アニオン重合後のクロス共重合体ではジビニルベンゼン単位のビニル基の水素(プロトン)のピーク強度は大きく減少する。実際にはジビニルベンゼン単位のビニル基の水素(プロトン)のピークはアニオン重合後のクロス共重合体では実質的に消失している。詳細は公知文献「ジビニルベンゼンユニットを含有するオレフィン系共重合体を用いた分岐型共重合体の合成」、荒井亨、長谷川勝、日本ゴム協会誌、p382、vol.82(2009)に記載されている。
The fact that the olefin-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain are bonded via the aromatic polyene monomer unit can be proved by the following observable phenomenon. In the following description, an example in which the most preferable ethylene-aromatic vinyl compound (styrene) -aromatic polyene (divinylbenzene) copolymer chain and aromatic vinyl compound (polystyrene) chain are bonded via a divinylbenzene unit will be described. Show. See below for details of the manufacturing method. That is, 1H-NMR (proton) of the cross-copolymer obtained by anionic polymerization in the presence of the ethylene-styrene-divinylbenzene copolymer macromonomer obtained in the coordination polymerization step and the present copolymer and styrene units. NMR) is measured, and the peak intensities of vinyl group hydrogen (protons) of both divinylbenzene units are compared using an appropriate internal standard peak (appropriate peak derived from an ethylene-styrene-divinylbenzene copolymer). Here, the peak intensity (area) of vinyl group hydrogen (proton) of the divinylbenzene unit of the cross-copolymer is compared with the same peak intensity (area) of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer macromonomer. And less than 50%, preferably less than 20%. In the anionic polymerization (cross-linking step), the divinylbenzene unit is copolymerized simultaneously with the polymerization of the styrene unit, and the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via the divinylbenzene unit. In the cross-copolymer after anionic polymerization, the peak intensity of hydrogen (proton) of vinyl group of divinylbenzene unit is greatly reduced. Actually, the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit substantially disappears in the cross-copolymer after the anionic polymerization. For details, see the publicly known document “Synthesis of a branched copolymer using an olefin copolymer containing a divinylbenzene unit”, Jun Arai, Masaru Hasegawa, Journal of the Japan Rubber Association, p382, vol. 82 (2009).
別な観点から、クロス共重合体(A)において、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合している(一例としてエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖がジビニルベンゼン単位を介して結合している)ことは、以下の観察可能な現象で証明できる。すなわち本クロス共重合体に対し、適当な溶媒を用いソックスレー抽出を十分な回数行った後においても、含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖を分別することができない。通常、本クロス共重合体に含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖と同一組成のエチレン-スチレン-ジビニルベンゼン共重合体とポリスチレンは、沸騰アセトンによるソックスレー抽出を行うことで、アセトン不溶部としてエチレン-スチレン-ジビニルベンゼン共重合体に、アセトン可溶部としてポリスチレンに分別できる。しかし、本クロス共重合体に同様のソックスレー抽出を行った場合、アセトン可溶部として本クロス共重合体に含まれる比較的少量のポリスチレンホモポリマーが得られるが、大部分の量を占めるアセトン不溶部には、NMR測定を行うことでエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖が共に含まれていることが示され、これらはソックスレー抽出で分別することができないことがわかる。これについてもその詳細は公知文献「ジビニルベンゼンユニットを含有するオレフィン系共重合体を用いた分岐型共重合体の合成」、荒井亨、長谷川勝、日本ゴム協会誌、p382、vol.82(2009)に記載されている。
From another viewpoint, in the cross copolymer (A), the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The fact that the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via a divinylbenzene unit can be proved by the following observable phenomenon. That is, even after the Soxhlet extraction is carried out a sufficient number of times using an appropriate solvent, the contained ethylene-styrene-divinylbenzene copolymer chain cannot be separated from the polystyrene chain. Normally, the ethylene-styrene-divinylbenzene copolymer and polystyrene of the same composition as the ethylene-styrene-divinylbenzene copolymer chain contained in this cross copolymer are subjected to Soxhlet extraction with boiling acetone, so that the acetone insoluble part As an ethylene-styrene-divinylbenzene copolymer and as an acetone soluble part into polystyrene. However, when the same Soxhlet extraction is performed on the cross copolymer, a relatively small amount of polystyrene homopolymer contained in the cross copolymer is obtained as the acetone soluble part, but the acetone insoluble, which accounts for the majority, is obtained. The NMR measurement shows that the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are both contained in the part, and it can be seen that these cannot be separated by Soxhlet extraction. Details of this are also described in the publicly known document “Synthesis of a branched copolymer using an olefin copolymer containing a divinylbenzene unit”, Jun Arai, Masaru Hasegawa, Journal of Japan Rubber Association, p382, vol. 82 (2009).
以上から本実施形態のクロス共重合体を規定する表現としては、クロス共重合体(A)は、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖を有し、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合している構造を有する共重合体である。本クロス共重合体には、比較的少量の芳香族ビニル化合物(ポリスチレン)ホモポリマーが含まれていても良い。
From the above, the expression defining the cross copolymer of this embodiment is that the cross copolymer (A) has an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain. And a copolymer having a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The cross-copolymer may contain a relatively small amount of an aromatic vinyl compound (polystyrene) homopolymer.
本発明の一実施形態において、クロス共重合体(A)は、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件をすべて満足する共重合体である。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~23モル%、好ましくは12~18モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、好ましくは0.01モル%以上0.2モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%、好ましくは82~92質量%の範囲にある。 In one embodiment of the present invention, the cross copolymer (A) comprises an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain via an aromatic polyene monomer unit. The copolymer has a bonding structure and further satisfies all the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, preferably 12 to 18 mol%, The content is 0.01 mol% or more and 0.5 mol% or less, preferably 0.01 mol% or more and 0.2 mol% or less, and the balance is the content of ethylene monomer units.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross-copolymer is in the range of 70 to 95% by mass, preferably 82 to 92% by mass.
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~23モル%、好ましくは12~18モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、好ましくは0.01モル%以上0.2モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%、好ましくは82~92質量%の範囲にある。 In one embodiment of the present invention, the cross copolymer (A) comprises an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain via an aromatic polyene monomer unit. The copolymer has a bonding structure and further satisfies all the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, preferably 12 to 18 mol%, The content is 0.01 mol% or more and 0.5 mol% or less, preferably 0.01 mol% or more and 0.2 mol% or less, and the balance is the content of ethylene monomer units.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross-copolymer is in the range of 70 to 95% by mass, preferably 82 to 92% by mass.
また、芳香族ビニル化合物重合体鎖の重量平均分子量Mwは任意であるが、一般的には1万~8万の範囲である。クロス共重合体においては主鎖であるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体と結合している芳香族ビニル化合物重合体鎖の分子量は求めることができないので、本明細書では、クロス共重合体の中に比較的少量含まれる、芳香族ビニル化合物重合体ホモポリマーの重量平均分子量Mwをもって、クロス共重合体に含まれる芳香族ビニル化合物重合体鎖の重量平均分子量Mwと定義している。
The weight average molecular weight Mw of the aromatic vinyl compound polymer chain is arbitrary, but is generally in the range of 10,000 to 80,000. In the cross copolymer, the molecular weight of the aromatic vinyl compound polymer chain bonded to the main chain ethylene-aromatic vinyl compound-aromatic polyene copolymer cannot be determined. The weight average molecular weight Mw of the aromatic vinyl compound polymer homopolymer contained in a relatively small amount in the copolymer is defined as the weight average molecular weight Mw of the aromatic vinyl compound polymer chain contained in the cross copolymer. Yes.
なお、クロス共重合体(A)を1H-NMR測定すると、含まれる芳香族ポリエン(ジビニルベンゼン)ユニットは、芳香族ビニル化合物(スチレン)ユニットと比較し著しくその量が少なく、さらにピーク位置が芳香族ビニル化合物(スチレン)ユニットと重なることから、そのピークを直接確認することはできない。そのため、本クロス共重合体の1H-NMR測定では、エチレン-芳香族ビニル化合物共重合体(エチレン-スチレン共重合体)に由来するピークと芳香族ビニル化合物重合体(ポリスチレン)に由来するピークが観察され、これからクロス共重合体のエチレン-芳香族ビニル化合物共重合体(エチレン-スチレン共重合体)に由来するエチレンユニット含量、芳香族ビニル化合物(スチレン)ユニット含量、及び芳香族ビニル化合物重合体(ポリスチレン)の含量を求めることができる。なおここでは、エチレン-芳香族ビニル化合物共重合体(エチレン-スチレン-ジビニルベンゼン共重合体)中に、実際には0.01モル%以上0.5モル%以下含まれる芳香族ポリエン(ジビニルベンゼン)の含量は、ピーク位置が重なる芳香族ビニル化合物(スチレン)ユニット含量に含めて、前記各含量を求めている。また、クロス共重合体の大部分を占める上記アセトン不溶部には、エチレン-芳香族ビニル化合物共重合体(エチレンースチレン共重合体)と芳香族ビニル化合物重合体(ポリスチレン)が共に含まれ、これをさらなる分別操作によって分離することができない。それ故、本クロス共重合体において、エチレン-芳香族ビニル化合物共重合体鎖と芳香族ビニル化合物重合体鎖とが結合を有している(一例としてエチレン-スチレン共重合体鎖とポリスチレン鎖とが結合を有している)ことを立証することができる。本クロス共重合体は、エチレン-芳香族ビニル化合物共重合体鎖と芳香族ビニル化合物重合体鎖とが結合を有しているにも関わらず、ゲル分が実質的に含まれず、かつ熱可塑性樹脂としての実用的な成形加工性、すなわち特定のMFR値を示すことができる。
As a result of 1 H-NMR measurement of the cross-copolymer (A), the amount of aromatic polyene (divinylbenzene) unit contained was significantly less than that of the aromatic vinyl compound (styrene) unit, and the peak position was further reduced. Since it overlaps with the aromatic vinyl compound (styrene) unit, the peak cannot be confirmed directly. Therefore, in the 1 H-NMR measurement of the present cross-copolymer, the peak derived from the ethylene-aromatic vinyl compound copolymer (ethylene-styrene copolymer) and the peak derived from the aromatic vinyl compound polymer (polystyrene) The ethylene unit content, the aromatic vinyl compound (styrene) unit content derived from the ethylene-aromatic vinyl compound copolymer (ethylene-styrene copolymer) of the cross copolymer, and the weight of the aromatic vinyl compound The content of coalesced (polystyrene) can be determined. Here, aromatic polyene (divinylbenzene) actually contained in an ethylene-aromatic vinyl compound copolymer (ethylene-styrene-divinylbenzene copolymer) in an amount of 0.01 mol% to 0.5 mol%. ) Content is included in the aromatic vinyl compound (styrene) unit content in which the peak positions overlap, and each content is obtained. The acetone-insoluble part occupying most of the cross-copolymer contains both an ethylene-aromatic vinyl compound copolymer (ethylene-styrene copolymer) and an aromatic vinyl compound polymer (polystyrene). This cannot be separated by further fractionation operations. Therefore, in the present cross copolymer, the ethylene-aromatic vinyl compound copolymer chain and the aromatic vinyl compound polymer chain have a bond (for example, the ethylene-styrene copolymer chain and the polystyrene chain). Can be proved). This cross-copolymer is substantially free of gels and has thermoplasticity despite the fact that the ethylene-aromatic vinyl compound copolymer chain and the aromatic vinyl compound polymer chain have a bond. Practical moldability as a resin, that is, a specific MFR value can be shown.
以上、本発明の一実施形態において、クロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物において、クロス共重合体(A)は、検出性という観点からは、以下の(4)~(7)の条件をすべて満たす共重合体として規定できる。
(4)1H-NMR測定により、エチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体に帰属されるピークが観察され、エチレン-芳香族ビニル化合物中の芳香族ビニル化合物含量が10~23モル%、好ましくは12~18モル%、であり、含まれるエチレン-芳香族ビニル化合物共重合体成分の含量が70~95質量%、より好ましくは82~92質量%の範囲であり、
(5)含まれるエチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体が結合を有しており、
(6)MFR(200℃、加重49N)が0.05~50g/10分の範囲、より好ましくは0.1~20g/10分の範囲であり、
(7)含まれるゲル分が0.2質量%以下、より好ましくは0.1質量%以下である。
なお、メルトフローレート(MFR)は、JIS K 7210に準じて測定することができる。ゲル分は、ASTM-D2765-84に従い求めることができる。 As described above, in one embodiment of the present invention, in a thermoplastic elastomer composition obtained by blending 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) with 100 parts by mass of a cross copolymer (A), From the viewpoint of detectability, the copolymer (A) can be defined as a copolymer that satisfies all of the following conditions (4) to (7).
(4) According to 1 H-NMR measurement, peaks attributed to the ethylene-aromatic vinyl compound copolymer and the aromatic vinyl compound polymer were observed, and the content of the aromatic vinyl compound in the ethylene-aromatic vinyl compound was 10 -23 mol%, preferably 12-18 mol%, and the content of the ethylene-aromatic vinyl compound copolymer component contained is in the range of 70-95 wt%, more preferably 82-92 wt%,
(5) The ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer contained have a bond,
(6) MFR (200 ° C., weight 49 N) is in the range of 0.05 to 50 g / 10 min, more preferably in the range of 0.1 to 20 g / 10 min.
(7) The gel content is 0.2% by mass or less, more preferably 0.1% by mass or less.
The melt flow rate (MFR) can be measured according to JIS K 7210. The gel content can be determined according to ASTM-D2765-84.
(4)1H-NMR測定により、エチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体に帰属されるピークが観察され、エチレン-芳香族ビニル化合物中の芳香族ビニル化合物含量が10~23モル%、好ましくは12~18モル%、であり、含まれるエチレン-芳香族ビニル化合物共重合体成分の含量が70~95質量%、より好ましくは82~92質量%の範囲であり、
(5)含まれるエチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体が結合を有しており、
(6)MFR(200℃、加重49N)が0.05~50g/10分の範囲、より好ましくは0.1~20g/10分の範囲であり、
(7)含まれるゲル分が0.2質量%以下、より好ましくは0.1質量%以下である。
なお、メルトフローレート(MFR)は、JIS K 7210に準じて測定することができる。ゲル分は、ASTM-D2765-84に従い求めることができる。 As described above, in one embodiment of the present invention, in a thermoplastic elastomer composition obtained by blending 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) with 100 parts by mass of a cross copolymer (A), From the viewpoint of detectability, the copolymer (A) can be defined as a copolymer that satisfies all of the following conditions (4) to (7).
(4) According to 1 H-NMR measurement, peaks attributed to the ethylene-aromatic vinyl compound copolymer and the aromatic vinyl compound polymer were observed, and the content of the aromatic vinyl compound in the ethylene-aromatic vinyl compound was 10 -23 mol%, preferably 12-18 mol%, and the content of the ethylene-aromatic vinyl compound copolymer component contained is in the range of 70-95 wt%, more preferably 82-92 wt%,
(5) The ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer contained have a bond,
(6) MFR (200 ° C., weight 49 N) is in the range of 0.05 to 50 g / 10 min, more preferably in the range of 0.1 to 20 g / 10 min.
(7) The gel content is 0.2% by mass or less, more preferably 0.1% by mass or less.
The melt flow rate (MFR) can be measured according to JIS K 7210. The gel content can be determined according to ASTM-D2765-84.
(クロス共重合体(A)の製造方法)
本発明に係るクロス共重合体(A)の製造方法について説明する。重合様式においては、特に制限はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合が所望のクロス共重合体を得る上での重合制御の自由度が高いので、より好適である。 (Method for producing cross-copolymer (A))
The manufacturing method of the cross copolymer (A) based on this invention is demonstrated. The polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but is more preferable because solution polymerization has a high degree of freedom in controlling polymerization in obtaining a desired cross-copolymer. is there.
本発明に係るクロス共重合体(A)の製造方法について説明する。重合様式においては、特に制限はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合が所望のクロス共重合体を得る上での重合制御の自由度が高いので、より好適である。 (Method for producing cross-copolymer (A))
The manufacturing method of the cross copolymer (A) based on this invention is demonstrated. The polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but is more preferable because solution polymerization has a high degree of freedom in controlling polymerization in obtaining a desired cross-copolymer. is there.
重合方法は、所望のクロス共重合体(A)が得られれば特に限定されないが、配位重合触媒を用いてオレフィン-芳香族ビニル化合物系共重合体を重合する配位重合工程と、配位重合工程で得られたオレフィン-芳香族ビニル化合物系共重合体と芳香族ビニル化合物単量体の共存下、アニオン重合開始剤を用いて重合することにより主鎖の芳香族ポリエン単量体単位に残存するビニル基に芳香族ビニル化合物単量体単位からなる重合体をクロス鎖とする構造のクロス共重合体(A)を製造するアニオン重合工程とからなる二段階の重合工程を経る製造方法により製造することが可能である。
The polymerization method is not particularly limited as long as the desired cross-copolymer (A) can be obtained. A coordination polymerization step of polymerizing an olefin-aromatic vinyl compound copolymer using a coordination polymerization catalyst, and a coordination In the coexistence of the olefin-aromatic vinyl compound copolymer obtained in the polymerization step and the aromatic vinyl compound monomer, polymerization is performed using an anionic polymerization initiator to form an aromatic polyene monomer unit of the main chain. By a production method that undergoes a two-step polymerization process comprising an anionic polymerization process for producing a cross-copolymer (A) having a structure in which a polymer comprising an aromatic vinyl compound monomer unit is formed as a cross chain on the remaining vinyl group It is possible to manufacture.
(配位重合工程)
配位重合工程について具体的に説明する。配位重合触媒については、遷移金属化合物と助触媒から構成されるシングルサイト配位重合触媒を用いることができる。シングルサイト配位重合触媒の活性を助ける助触媒としてメチルアルミノキサンを好適に用いることができる。また、溶剤や各単量体原料に含まれる水分を除去し、シングルサイト配位重合触媒の被毒を抑制するためアルキルアルミニウムを好適に用いることができる。使用する溶剤は、極性官能基をもつとシングルサイト配位重合触媒を被毒ためシクロヘキサン、メチルシクロヘキサン、トルエン、エチルベンゼンなどの炭化水素系、及び芳香族炭化水素系が好適である。溶剤の添加量は、得られる共重合体量100質量部に対して200~900質量部が好ましい。200質量部以上であれば、重合液粘度及び反応速度を制御する上で好適であり、900質量部以下であれば、生産性の観点で好ましい。 (Coordination polymerization process)
The coordination polymerization process will be specifically described. As the coordination polymerization catalyst, a single site coordination polymerization catalyst composed of a transition metal compound and a promoter can be used. Methylaluminoxane can be suitably used as a cocatalyst that assists the activity of the single site coordination polymerization catalyst. Moreover, in order to remove the water | moisture content contained in a solvent and each monomer raw material, and to suppress the poisoning of a single site coordination polymerization catalyst, alkyl aluminum can be used suitably. The solvent to be used is preferably a hydrocarbon system such as cyclohexane, methylcyclohexane, toluene, ethylbenzene, or an aromatic hydrocarbon system because it poisons the single-site coordination polymerization catalyst if it has a polar functional group. The amount of the solvent added is preferably 200 to 900 parts by mass with respect to 100 parts by mass of the obtained copolymer. If it is 200 mass parts or more, it is suitable when controlling a polymerization-solution viscosity and reaction rate, and if it is 900 mass parts or less, it is preferable from a viewpoint of productivity.
配位重合工程について具体的に説明する。配位重合触媒については、遷移金属化合物と助触媒から構成されるシングルサイト配位重合触媒を用いることができる。シングルサイト配位重合触媒の活性を助ける助触媒としてメチルアルミノキサンを好適に用いることができる。また、溶剤や各単量体原料に含まれる水分を除去し、シングルサイト配位重合触媒の被毒を抑制するためアルキルアルミニウムを好適に用いることができる。使用する溶剤は、極性官能基をもつとシングルサイト配位重合触媒を被毒ためシクロヘキサン、メチルシクロヘキサン、トルエン、エチルベンゼンなどの炭化水素系、及び芳香族炭化水素系が好適である。溶剤の添加量は、得られる共重合体量100質量部に対して200~900質量部が好ましい。200質量部以上であれば、重合液粘度及び反応速度を制御する上で好適であり、900質量部以下であれば、生産性の観点で好ましい。 (Coordination polymerization process)
The coordination polymerization process will be specifically described. As the coordination polymerization catalyst, a single site coordination polymerization catalyst composed of a transition metal compound and a promoter can be used. Methylaluminoxane can be suitably used as a cocatalyst that assists the activity of the single site coordination polymerization catalyst. Moreover, in order to remove the water | moisture content contained in a solvent and each monomer raw material, and to suppress the poisoning of a single site coordination polymerization catalyst, alkyl aluminum can be used suitably. The solvent to be used is preferably a hydrocarbon system such as cyclohexane, methylcyclohexane, toluene, ethylbenzene, or an aromatic hydrocarbon system because it poisons the single-site coordination polymerization catalyst if it has a polar functional group. The amount of the solvent added is preferably 200 to 900 parts by mass with respect to 100 parts by mass of the obtained copolymer. If it is 200 mass parts or more, it is suitable when controlling a polymerization-solution viscosity and reaction rate, and if it is 900 mass parts or less, it is preferable from a viewpoint of productivity.
(アニオン重合工程)
アニオン重合工程について具体的に説明する。アニオン重合工程では、配位重合工程で得られたオレフィン-芳香族ビニル化合物系共重合体と芳香族ビニル化合物単量体との共存下、アニオン重合開始剤を用いて重合することにより、主鎖の芳香族ポリエン単量体単位に残存するビニル基に芳香族ビニル化合物単量体単位からなる重合体をクロス鎖とする構造のクロス共重合体(A)を合成する。配位重合工程で得られたオレフィン-芳香族ビニル化合物系共重合体は、メタノール等の貧溶媒により析出させる方法、加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー法)、濃縮器により溶液を濃縮した後にベント式押出機で溶媒を除去する方法、溶液を水に分散させ、水蒸気を吹き込んで溶媒を加熱除去して共重合体を回収する方法(スチームストリッピング法)、クラムフォーミング法等、任意の方法を用いて配位重合後の重合液から分離、精製してアニオン重合工程に用いても良い。また、オレフィン-芳香族ビニル化合物系共重合体を重合液から分離、精製せずに、オレフィン-芳香族ビニル化合物系共重合体を含んだ重合液をアニオン重合工程に用いても良く、この方法が生産性の観点から好適である。アニオン重合開始剤は、n-ブチルリチウム、sec-ブチルリチウム等公知のアニオン重合開始剤を用いることができる。芳香族ビニル化合物単量体は、配位重合後の重合液に残留する芳香族ビニル化合物単量体をそのまま用いることもできる。また、アニオン重合の開始前に必要量添加したり、アニオン重合の途中で追添、もしくは分添したりすることで、目的のクロス共重合体(A)を得ることができる。 (Anionic polymerization process)
The anionic polymerization process will be specifically described. In the anionic polymerization step, the main chain is polymerized by using an anionic polymerization initiator in the coexistence of the olefin-aromatic vinyl compound copolymer obtained in the coordination polymerization step and the aromatic vinyl compound monomer. A cross-copolymer (A) having a structure in which a polymer composed of an aromatic vinyl compound monomer unit is cross-linked to a vinyl group remaining in the aromatic polyene monomer unit is synthesized. The olefin-aromatic vinyl compound copolymer obtained in the coordination polymerization step is precipitated by a poor solvent such as methanol, the solvent is evaporated by a heating roll or the like (drum dryer method), and the concentrator. Concentrate the solution after removing the solvent with a vent type extruder, disperse the solution in water, blow off water vapor to remove the solvent by heating (steam stripping method), crumb forming Any method such as a method may be used for the anionic polymerization step after separation and purification from the polymerization solution after the coordination polymerization. In addition, a polymerization solution containing an olefin-aromatic vinyl compound copolymer may be used in the anionic polymerization step without separating and purifying the olefin-aromatic vinyl compound copolymer from the polymerization solution. Is preferable from the viewpoint of productivity. As the anionic polymerization initiator, known anionic polymerization initiators such as n-butyllithium and sec-butyllithium can be used. As the aromatic vinyl compound monomer, the aromatic vinyl compound monomer remaining in the polymerization solution after the coordination polymerization can be used as it is. Moreover, the target cross-copolymer (A) can be obtained by adding a required amount before the start of anionic polymerization, or adding or adding in the middle of anionic polymerization.
アニオン重合工程について具体的に説明する。アニオン重合工程では、配位重合工程で得られたオレフィン-芳香族ビニル化合物系共重合体と芳香族ビニル化合物単量体との共存下、アニオン重合開始剤を用いて重合することにより、主鎖の芳香族ポリエン単量体単位に残存するビニル基に芳香族ビニル化合物単量体単位からなる重合体をクロス鎖とする構造のクロス共重合体(A)を合成する。配位重合工程で得られたオレフィン-芳香族ビニル化合物系共重合体は、メタノール等の貧溶媒により析出させる方法、加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー法)、濃縮器により溶液を濃縮した後にベント式押出機で溶媒を除去する方法、溶液を水に分散させ、水蒸気を吹き込んで溶媒を加熱除去して共重合体を回収する方法(スチームストリッピング法)、クラムフォーミング法等、任意の方法を用いて配位重合後の重合液から分離、精製してアニオン重合工程に用いても良い。また、オレフィン-芳香族ビニル化合物系共重合体を重合液から分離、精製せずに、オレフィン-芳香族ビニル化合物系共重合体を含んだ重合液をアニオン重合工程に用いても良く、この方法が生産性の観点から好適である。アニオン重合開始剤は、n-ブチルリチウム、sec-ブチルリチウム等公知のアニオン重合開始剤を用いることができる。芳香族ビニル化合物単量体は、配位重合後の重合液に残留する芳香族ビニル化合物単量体をそのまま用いることもできる。また、アニオン重合の開始前に必要量添加したり、アニオン重合の途中で追添、もしくは分添したりすることで、目的のクロス共重合体(A)を得ることができる。 (Anionic polymerization process)
The anionic polymerization process will be specifically described. In the anionic polymerization step, the main chain is polymerized by using an anionic polymerization initiator in the coexistence of the olefin-aromatic vinyl compound copolymer obtained in the coordination polymerization step and the aromatic vinyl compound monomer. A cross-copolymer (A) having a structure in which a polymer composed of an aromatic vinyl compound monomer unit is cross-linked to a vinyl group remaining in the aromatic polyene monomer unit is synthesized. The olefin-aromatic vinyl compound copolymer obtained in the coordination polymerization step is precipitated by a poor solvent such as methanol, the solvent is evaporated by a heating roll or the like (drum dryer method), and the concentrator. Concentrate the solution after removing the solvent with a vent type extruder, disperse the solution in water, blow off water vapor to remove the solvent by heating (steam stripping method), crumb forming Any method such as a method may be used for the anionic polymerization step after separation and purification from the polymerization solution after the coordination polymerization. In addition, a polymerization solution containing an olefin-aromatic vinyl compound copolymer may be used in the anionic polymerization step without separating and purifying the olefin-aromatic vinyl compound copolymer from the polymerization solution. Is preferable from the viewpoint of productivity. As the anionic polymerization initiator, known anionic polymerization initiators such as n-butyllithium and sec-butyllithium can be used. As the aromatic vinyl compound monomer, the aromatic vinyl compound monomer remaining in the polymerization solution after the coordination polymerization can be used as it is. Moreover, the target cross-copolymer (A) can be obtained by adding a required amount before the start of anionic polymerization, or adding or adding in the middle of anionic polymerization.
(回収工程)
クロス共重合体(A)を回収する方法については、特に限定はなく、メタノール等の貧溶媒により析出させる方法、加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー法)、溶液を水に分散させ、水蒸気を吹き込んで溶媒を加熱除去して共重合体を回収する方法(スチームストリッピング法)、クラムフォーミング法等、公知の方法を用いることができる。また、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤を脱揮処理する方法がある。この方法は、重合溶剤を含む脱揮成分を、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤を再利用することができるので、経済的な観点で好適である。 (Recovery process)
The method for recovering the cross-copolymer (A) is not particularly limited, a method for precipitation with a poor solvent such as methanol, a method for evaporation by evaporation with a heating roll or the like (drum dryer method), and a solution of water. A known method such as a method of recovering a copolymer by blowing water vapor and removing the solvent by heating (a steam stripping method) or a crumb forming method can be used. Further, there is a method in which a polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and a polymerization solvent is devolatilized. This method is economical because the devolatilizing component containing the polymerization solvent is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in the distillation tower. It is preferable from the viewpoint.
クロス共重合体(A)を回収する方法については、特に限定はなく、メタノール等の貧溶媒により析出させる方法、加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー法)、溶液を水に分散させ、水蒸気を吹き込んで溶媒を加熱除去して共重合体を回収する方法(スチームストリッピング法)、クラムフォーミング法等、公知の方法を用いることができる。また、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤を脱揮処理する方法がある。この方法は、重合溶剤を含む脱揮成分を、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤を再利用することができるので、経済的な観点で好適である。 (Recovery process)
The method for recovering the cross-copolymer (A) is not particularly limited, a method for precipitation with a poor solvent such as methanol, a method for evaporation by evaporation with a heating roll or the like (drum dryer method), and a solution of water. A known method such as a method of recovering a copolymer by blowing water vapor and removing the solvent by heating (a steam stripping method) or a crumb forming method can be used. Further, there is a method in which a polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and a polymerization solvent is devolatilized. This method is economical because the devolatilizing component containing the polymerization solvent is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in the distillation tower. It is preferable from the viewpoint.
本クロス共重合体及びその製造方法の詳細は、その全体の記載をそれぞれ出典明示によりここに援用する、国際公開第2000/37517号、国際公開第2007/139116号、または特開2009-120792号公報に記載されている。
For details of the present cross-copolymer and its production method, the entire description thereof is incorporated herein by reference, International Publication No. 2000/37517, International Publication No. 2007/139116, or Japanese Patent Application Laid-Open No. 2009-12092. It is described in the publication.
(アセチル化モノグリセライド系可塑剤(B))
本発明に用いるアセチル化モノグリセライド系可塑剤(B)の例としては、これに限定されるものではないが、アセチル化モノラウリルグリセライド、アセチル化モノカプリルグリセライド、アセチル化モノステアリルグリセライド、アセチル化モノオレイルグリセライドが挙げられる。
これらの可塑剤は、単独で用いても、複数を組み合わせて用いてもよい。 (Acetylated monoglyceride plasticizer (B))
Examples of the acetylated monoglyceride plasticizer (B) used in the present invention include, but are not limited to, acetylated monolauryl glyceride, acetylated monocapryl glyceride, acetylated monostearyl glyceride, and acetylated monooleyl. A glyceride is mentioned.
These plasticizers may be used alone or in combination.
本発明に用いるアセチル化モノグリセライド系可塑剤(B)の例としては、これに限定されるものではないが、アセチル化モノラウリルグリセライド、アセチル化モノカプリルグリセライド、アセチル化モノステアリルグリセライド、アセチル化モノオレイルグリセライドが挙げられる。
これらの可塑剤は、単独で用いても、複数を組み合わせて用いてもよい。 (Acetylated monoglyceride plasticizer (B))
Examples of the acetylated monoglyceride plasticizer (B) used in the present invention include, but are not limited to, acetylated monolauryl glyceride, acetylated monocapryl glyceride, acetylated monostearyl glyceride, and acetylated monooleyl. A glyceride is mentioned.
These plasticizers may be used alone or in combination.
本発明に用いられる可塑剤は、アセチル化モノグリセライド系可塑剤であれば、透明性、耐ブロッキング性の観点から好ましい。特に好ましくは、実質的にアセチル化モノラウリルグリセライドである。アセチル化モノグリセライド系可塑剤(B)が実質的にアセチル化モノラウリルグリセライドであれば、耐ブロッキング性が向上するので特に好ましい。ここで、実質的にとは、含まれる可塑剤のうち、70質量%以上がアセチル化モノラウリルグリセライドであることを示す。使用したグリセリン脂肪酸エステル系可塑剤(B)の構造は、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLC、質量分析計(MS)としてWaters社製 SynaptG2を用いて組成分析を行い、測定した。
The plasticizer used in the present invention is preferably an acetylated monoglyceride plasticizer from the viewpoints of transparency and blocking resistance. Particularly preferred is substantially acetylated monolauryl glyceride. If the acetylated monoglyceride plasticizer (B) is substantially acetylated monolauryl glyceride, it is particularly preferred because blocking resistance is improved. Here, “substantially” means that 70% by mass or more of the contained plasticizer is acetylated monolauryl glyceride. The structure of the glycerin fatty acid ester plasticizer (B) used was measured by performing composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and Synapt G2 manufactured by Waters as a mass spectrometer (MS). .
アセチル化モノグリセライド系可塑剤(B)は、市販のものを使用することが出来、公知の製造方法を用いて製造することも出来る。これらのアセチル化モノグリセライド系滑剤は、例えば理研ビタミン社から購入できる。
As the acetylated monoglyceride plasticizer (B), a commercially available product can be used, and it can also be produced using a known production method. These acetylated monoglyceride lubricants can be purchased from, for example, Riken Vitamin.
アセチル化モノグリセライド系可塑剤(B)の配合量は、クロス共重合体(A)100質量部に対して、アセチル化モノグリセライド系可塑剤(B)を3~10質量部が好ましい。アセチル化モノグリセライド系可塑剤(B)の配合量が3質量部以上であれば低温硬化が抑制されるので好ましい。アセチル化モノグリセライド系可塑剤(B)の配合量が10質量部以下であれば引張強度の低下が抑制されるので好ましい。本実施形態の熱可塑性エラストマー組成物の透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性の観点からは、アセチル化モノグリセライド系可塑剤(B)の配合量は最も好ましくは、4~8質量部である。
The blending amount of the acetylated monoglyceride plasticizer (B) is preferably 3 to 10 parts by mass of the acetylated monoglyceride plasticizer (B) with respect to 100 parts by mass of the cross copolymer (A). If the amount of the acetylated monoglyceride plasticizer (B) is 3 parts by mass or more, low temperature curing is suppressed, which is preferable. A blending amount of the acetylated monoglyceride plasticizer (B) of 10 parts by mass or less is preferable because a decrease in tensile strength is suppressed. From the viewpoints of transparency, softness, low temperature properties, tensile properties, and blocking resistance of the thermoplastic elastomer composition of the present embodiment, the blending amount of the acetylated monoglyceride plasticizer (B) is most preferably 4 to 8 parts by mass.
本実施形態の熱可塑性エラストマー組成物は、透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性に優れる。具体的には、透明性は1mm厚さのシートで20%以下であり、軟質性はA硬度で79以下であり、引張特性は、23℃、100%伸び時引張応力3.0MPa以上、かつ5℃、100%伸び時引張応力が7.5MPa以下であり、低温特性(低温硬化)は、5℃及び23℃条件下での100%伸び時引張応力の差が3.5MPa以下であり、耐ブロッキング性は、本実施例に定める方法で評価し、評価レベル2以上である。更に、最も好ましくは、透明性は1mm厚さのシートで15%以下であり、軟質性はA硬度で75以下であり、引張特性は、23℃、100%伸び時引張応力3.5MPa以上、かつ5℃、100%伸び時引張応力が6.5MPa以下であり、低温特性(低温硬化)は、5℃及び23℃条件下での100%伸び時引張応力の差が3.0MPa以下であり、耐ブロッキング性は、本実施例に定める方法で評価し、評価レベル3以上である。
The thermoplastic elastomer composition of this embodiment is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance. Specifically, the transparency is 20% or less for a 1 mm-thick sheet, the softness is 79 or less in terms of A hardness, the tensile property is a tensile stress of 3.0 MPa or more at 23 ° C. and 100% elongation, and Tensile stress at 5 ° C. and 100% elongation is 7.5 MPa or less, low temperature characteristics (low temperature curing), the difference in tensile stress at 100% elongation at 5 ° C. and 23 ° C. is 3.5 MPa or less, The anti-blocking property is evaluated by the method defined in this example, and the evaluation level is 2 or more. Furthermore, most preferably, the transparency is 15% or less for a 1 mm thick sheet, the softness is 75 or less in terms of A hardness, and the tensile properties are 23 ° C., 100% elongation tensile stress 3.5 MPa or more, And the tensile stress at 100% elongation at 5 ° C is 6.5 MPa or less, and the low temperature property (low temperature curing) is the difference between the tensile stress at 100% elongation at 5 ° C and 23 ° C is 3.0 MPa or less. The anti-blocking property is evaluated by the method defined in this example, and the evaluation level is 3 or more.
本発明の熱可塑性エラストマー組成物には、必要に応じて、本発明の効果を阻害しない範囲で、滑剤、安定剤、帯電防止剤、衝撃強度改良剤、加工助剤、紫外線吸収剤、酸化防止剤、有機系または無機系発泡剤、架橋剤、共架橋剤、架橋助剤、粘着剤、軟化剤、着色顔料、難燃剤を、例えば、クロス共重合体(A)100質量部に対して、0.01質量部以上10質量部以下の割合で添加することができる。
また、エチレン系樹脂、プロピレン系樹脂、あるいはSBS、SIS、SEBS、SEPS等のスチレン-ジエン系ブロック共重合体やその水添物等の他の熱可塑性樹脂を、クロス共重合体(A)100質量部に対して、1質量部以上30質量部以下の割合で添加することができる。 In the thermoplastic elastomer composition of the present invention, a lubricant, a stabilizer, an antistatic agent, an impact strength improver, a processing aid, an ultraviolet absorber, and an antioxidant are added to the thermoplastic elastomer composition of the present invention, as necessary. Agent, organic or inorganic foaming agent, crosslinking agent, co-crosslinking agent, crosslinking aid, pressure-sensitive adhesive, softener, color pigment, flame retardant, for example, with respect to 100 parts by mass of the cross-copolymer (A), It can add in the ratio of 0.01 mass part or more and 10 mass parts or less.
Further, other thermoplastic resins such as ethylene-based resins, propylene-based resins, or styrene-diene block copolymers such as SBS, SIS, SEBS, and SEPS and hydrogenated products thereof may be used as the cross-copolymer (A) 100. It can add in the ratio of 1 to 30 mass parts with respect to the mass part.
また、エチレン系樹脂、プロピレン系樹脂、あるいはSBS、SIS、SEBS、SEPS等のスチレン-ジエン系ブロック共重合体やその水添物等の他の熱可塑性樹脂を、クロス共重合体(A)100質量部に対して、1質量部以上30質量部以下の割合で添加することができる。 In the thermoplastic elastomer composition of the present invention, a lubricant, a stabilizer, an antistatic agent, an impact strength improver, a processing aid, an ultraviolet absorber, and an antioxidant are added to the thermoplastic elastomer composition of the present invention, as necessary. Agent, organic or inorganic foaming agent, crosslinking agent, co-crosslinking agent, crosslinking aid, pressure-sensitive adhesive, softener, color pigment, flame retardant, for example, with respect to 100 parts by mass of the cross-copolymer (A), It can add in the ratio of 0.01 mass part or more and 10 mass parts or less.
Further, other thermoplastic resins such as ethylene-based resins, propylene-based resins, or styrene-diene block copolymers such as SBS, SIS, SEBS, and SEPS and hydrogenated products thereof may be used as the cross-copolymer (A) 100. It can add in the ratio of 1 to 30 mass parts with respect to the mass part.
本発明の熱可塑性エラストマー組成物の製造方法については特に制限はないが、単軸押出機、かん合形同方向回転またはかん合形異方向回転二軸押出機、非または不完全かん合形二軸押出機等のスクリュー押出機、バンバリーミキサー、コニーダー及び混合ロール等の公知の溶融混練装置を用いて製造することが出来、中でも押出機による溶融混合法が、生産性、良混練性の観点から好ましい。
The method for producing the thermoplastic elastomer composition of the present invention is not particularly limited, but a single-screw extruder, a mating co-rotating or mating counter-rotating twin-screw extruder, a non- or incomplete mating two It can be manufactured using a known melt-kneading apparatus such as a screw extruder such as a screw extruder, Banbury mixer, a kneader, and a mixing roll. Among them, the melt-mixing method using an extruder is from the viewpoint of productivity and good kneadability. preferable.
本実施形態の熱可塑性エラストマー組成物は、透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性に優れており、各種成形体に供することが出来、とりわけシート、医療用チューブには好適である。成形体の成形方法には特に制限はなく、押出成形法、射出成形法、ブロー成形法、回転成形法など、公知の方法を用いることができる。
The thermoplastic elastomer composition of the present embodiment is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and can be used for various molded articles, particularly suitable for sheets and medical tubes. It is. There is no restriction | limiting in particular in the shaping | molding method of a molded object, Well-known methods, such as an extrusion molding method, an injection molding method, a blow molding method, a rotation molding method, can be used.
本発明の熱可塑性エラストマー組成物は、例えば、特開2009-102515号公報、国際公開第09/128444号、国際公開第13/018171号、または特開2011-153214号公報に記載されている合成皮革、グリップまたは外装部材、発泡体、表皮材、テープ基材、電線被覆材、ガスケット、または導電性シートに好適に用いられる。本発明の熱可塑性エラストマー組成物を用いたシートは単層であっても、多層であっても良い。多層の場合は、他の樹脂成分からなる層を有する多層として用いてもよい。本発明の熱可塑性エラストマー組成物は、例えば、国際公開第2007/139116号、特開2009-120792号公報、特開2013-202133号公報、または国際公開第2013/137326号に記載されている医療用チューブに好適に用いられる。本発明の熱可塑性エラストマー組成物を用いた医療用チューブは単層であっても、多層であってもよい。また多層の場合は他の樹脂成分からなる層を有する多層として用いてもよい。
The thermoplastic elastomer composition of the present invention can be synthesized by, for example, synthesis described in JP2009-102515A, WO09 / 128444, WO13 / 018171, or JP2011-153214A. It is suitably used for leather, grips or exterior members, foams, skin materials, tape substrates, wire coating materials, gaskets, or conductive sheets. The sheet using the thermoplastic elastomer composition of the present invention may be a single layer or a multilayer. In the case of a multilayer, you may use as a multilayer which has the layer which consists of another resin component. The thermoplastic elastomer composition of the present invention is, for example, a medical device described in International Publication No. 2007/139116, Japanese Unexamined Patent Publication No. 2009-120922, Japanese Unexamined Patent Publication No. 2013-202133, or International Publication No. 2013/137326. It is suitably used for tubes. The medical tube using the thermoplastic elastomer composition of the present invention may be a single layer or multiple layers. Moreover, in the case of a multilayer, you may use as a multilayer which has the layer which consists of another resin component.
以下、実施例及び比較例をあげて本発明を説明するが、これらは何れも例示的なものであって本発明の内容を限定するものではない。
実施例、比較例に用いた原料樹脂、製法は以下の通りである。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, these are all illustrations and do not limit the content of this invention.
The raw material resins and production methods used in Examples and Comparative Examples are as follows.
実施例、比較例に用いた原料樹脂、製法は以下の通りである。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, these are all illustrations and do not limit the content of this invention.
The raw material resins and production methods used in Examples and Comparative Examples are as follows.
クロス共重合体(A)
下記クロス共重合体1~7を使用した。
これらのクロス共重合体は、国際公開第2000/37517号、国際公開第2007/139116号、特開2009-120792号公報に記載の実施例あるいは比較例の製造方法で製造したもので、下記組成は、同様にこれら公報記載の方法で求めた。つまり、クロス共重合体やエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体中の組成、すなわちエチレン、芳香族ビニル化合物の含量や芳香族ビニル化合物重合体の含量は、1H-NMR(プロトンNMR)により求めた。また、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体中の芳香族ポリエンの含量は、重合時に仕込んだ芳香族ポリエン量と、配位重合終了後にサンプリングした重合液のガスクロマトグラフ分析から求めた未反応芳香族ポリエン量の差から重合に使用された芳香族ポリエン量を求め、重合により得られた共重合体の量と比較することで算出した。重合液中の分子量はGPC測定により求めた。ポリスチレン鎖の重量平均分子量(Mw)、分子量分布(Mw/Mn)は、溶媒分別により分離された、芳香族ビニル化合物重合体のGPC測定により求めた。
これらのクロス共重合体においては、ジビニルベンゼンユニットのビニル基水素(プロトン)ピーク強度(面積)が、配位重合工程で得られたエチレン-スチレン-ジビニルベンゼン共重合体のジビニルベンゼンユニットの同ピーク強度(面積)と比較して20%未満であった。実際にはジビニルベンゼンユニットのビニル基の水素(プロトン)ピークはアニオン重合後のクロス共重合体では実質的に消失していた。また、本クロス共重合体に対し、沸騰アセトンを用いソックスレー抽出を行ったが、含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖(実質的にはエチレン-スチレン共重合体鎖)とポリスチレン鎖を分別することができなかった。なお、クロス共重合体を規定するために、用いられるエチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量、ジビニルベンゼン含量、重量平均分子量(Mw)、分子量分布(Mw/Mn)、クロス共重合体中のエチレン-スチレン-ジビニルベンゼン共重合体の含量、ポリスチレン鎖の重量平均分子量(Mw)、分子量分布(Mw/Mn)、及びMFRを示す。ASTM-D2765-84で測定したゲル分は、何れのクロス共重合体においても0.1質量%未満(検出下限以下)であった。
なお、GPCの測定条件は以下のとおりである。
<GPC測定条件>
装置名:HLC-8220(東ソー社製)
カラム:Shodex GPC KF-404HQを4本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
検量線:標準ポリスチレン(PS)を用いて作製した。 Cross copolymer (A)
The following cross copolymers 1 to 7 were used.
These cross-copolymers were produced by the production methods of Examples or Comparative Examples described in International Publication No. 2000/37517, International Publication No. 2007/139116, and Japanese Unexamined Patent Publication No. 2009-12092. Was similarly determined by the method described in these publications. In other words, the composition in the cross-copolymer or ethylene-aromatic vinyl compound-aromatic polyene copolymer, ie, the content of ethylene, aromatic vinyl compound or aromatic vinyl compound polymer is determined by 1 H-NMR (proton NMR). The content of aromatic polyene in the ethylene-aromatic vinyl compound-aromatic polyene copolymer was determined from the amount of aromatic polyene charged at the time of polymerization and gas chromatographic analysis of the polymerization solution sampled after completion of coordination polymerization. It calculated by calculating | requiring the amount of aromatic polyene used for superposition | polymerization from the difference of the amount of unreacted aromatic polyene, and comparing with the amount of the copolymer obtained by superposition | polymerization. The molecular weight in the polymerization solution was determined by GPC measurement. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polystyrene chain were determined by GPC measurement of the aromatic vinyl compound polymer separated by solvent fractionation.
In these cross copolymers, the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit is the same peak of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer obtained in the coordination polymerization step. The strength (area) was less than 20%. Actually, the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit substantially disappeared in the cross-copolymer after anionic polymerization. In addition, the cross copolymer was subjected to Soxhlet extraction using boiling acetone. The ethylene-styrene-divinylbenzene copolymer chain (substantially ethylene-styrene copolymer chain) and the polystyrene chain contained therein were removed. I couldn't sort it. The styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) of the ethylene-styrene-divinylbenzene copolymer used to define the cross copolymer, the cross copolymer The ethylene-styrene-divinylbenzene copolymer content, polystyrene chain weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and MFR are shown. The gel content measured by ASTM-D2765-84 was less than 0.1% by mass (below the lower limit of detection) in any cross-copolymer.
The measurement conditions for GPC are as follows.
<GPC measurement conditions>
Device name: HLC-8220 (manufactured by Tosoh Corporation)
Column: Four series of Shodex GPC KF-404HQ Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Calibration curve: Prepared using standard polystyrene (PS).
下記クロス共重合体1~7を使用した。
これらのクロス共重合体は、国際公開第2000/37517号、国際公開第2007/139116号、特開2009-120792号公報に記載の実施例あるいは比較例の製造方法で製造したもので、下記組成は、同様にこれら公報記載の方法で求めた。つまり、クロス共重合体やエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体中の組成、すなわちエチレン、芳香族ビニル化合物の含量や芳香族ビニル化合物重合体の含量は、1H-NMR(プロトンNMR)により求めた。また、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体中の芳香族ポリエンの含量は、重合時に仕込んだ芳香族ポリエン量と、配位重合終了後にサンプリングした重合液のガスクロマトグラフ分析から求めた未反応芳香族ポリエン量の差から重合に使用された芳香族ポリエン量を求め、重合により得られた共重合体の量と比較することで算出した。重合液中の分子量はGPC測定により求めた。ポリスチレン鎖の重量平均分子量(Mw)、分子量分布(Mw/Mn)は、溶媒分別により分離された、芳香族ビニル化合物重合体のGPC測定により求めた。
これらのクロス共重合体においては、ジビニルベンゼンユニットのビニル基水素(プロトン)ピーク強度(面積)が、配位重合工程で得られたエチレン-スチレン-ジビニルベンゼン共重合体のジビニルベンゼンユニットの同ピーク強度(面積)と比較して20%未満であった。実際にはジビニルベンゼンユニットのビニル基の水素(プロトン)ピークはアニオン重合後のクロス共重合体では実質的に消失していた。また、本クロス共重合体に対し、沸騰アセトンを用いソックスレー抽出を行ったが、含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖(実質的にはエチレン-スチレン共重合体鎖)とポリスチレン鎖を分別することができなかった。なお、クロス共重合体を規定するために、用いられるエチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量、ジビニルベンゼン含量、重量平均分子量(Mw)、分子量分布(Mw/Mn)、クロス共重合体中のエチレン-スチレン-ジビニルベンゼン共重合体の含量、ポリスチレン鎖の重量平均分子量(Mw)、分子量分布(Mw/Mn)、及びMFRを示す。ASTM-D2765-84で測定したゲル分は、何れのクロス共重合体においても0.1質量%未満(検出下限以下)であった。
なお、GPCの測定条件は以下のとおりである。
<GPC測定条件>
装置名:HLC-8220(東ソー社製)
カラム:Shodex GPC KF-404HQを4本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
検量線:標準ポリスチレン(PS)を用いて作製した。 Cross copolymer (A)
The following cross copolymers 1 to 7 were used.
These cross-copolymers were produced by the production methods of Examples or Comparative Examples described in International Publication No. 2000/37517, International Publication No. 2007/139116, and Japanese Unexamined Patent Publication No. 2009-12092. Was similarly determined by the method described in these publications. In other words, the composition in the cross-copolymer or ethylene-aromatic vinyl compound-aromatic polyene copolymer, ie, the content of ethylene, aromatic vinyl compound or aromatic vinyl compound polymer is determined by 1 H-NMR (proton NMR). The content of aromatic polyene in the ethylene-aromatic vinyl compound-aromatic polyene copolymer was determined from the amount of aromatic polyene charged at the time of polymerization and gas chromatographic analysis of the polymerization solution sampled after completion of coordination polymerization. It calculated by calculating | requiring the amount of aromatic polyene used for superposition | polymerization from the difference of the amount of unreacted aromatic polyene, and comparing with the amount of the copolymer obtained by superposition | polymerization. The molecular weight in the polymerization solution was determined by GPC measurement. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polystyrene chain were determined by GPC measurement of the aromatic vinyl compound polymer separated by solvent fractionation.
In these cross copolymers, the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit is the same peak of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer obtained in the coordination polymerization step. The strength (area) was less than 20%. Actually, the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit substantially disappeared in the cross-copolymer after anionic polymerization. In addition, the cross copolymer was subjected to Soxhlet extraction using boiling acetone. The ethylene-styrene-divinylbenzene copolymer chain (substantially ethylene-styrene copolymer chain) and the polystyrene chain contained therein were removed. I couldn't sort it. The styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) of the ethylene-styrene-divinylbenzene copolymer used to define the cross copolymer, the cross copolymer The ethylene-styrene-divinylbenzene copolymer content, polystyrene chain weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and MFR are shown. The gel content measured by ASTM-D2765-84 was less than 0.1% by mass (below the lower limit of detection) in any cross-copolymer.
The measurement conditions for GPC are as follows.
<GPC measurement conditions>
Device name: HLC-8220 (manufactured by Tosoh Corporation)
Column: Four series of Shodex GPC KF-404HQ Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Calibration curve: Prepared using standard polystyrene (PS).
クロス共重合体(A-1)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量11モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量121000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:88質量%、
・ポリスチレン鎖の重量平均分子量13000、分子量分布1.2
・A硬度83
・MFRは0.7g/10分(200℃、加重49N)
クロス共重合体(A-2)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量141000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:94質量%、
・ポリスチレン鎖の重量平均分子量15000、分子量分布1.2
・A硬度76
・MFRは0.9g/10分(200℃、加重49N)
クロス共重合体(A-3)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量131000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:88質量%、
・ポリスチレン鎖の重量平均分子量14000、分子量分布1.2
・A硬度78
・MFRは1.3g/10分(200℃、加重49N)
クロス共重合体(A-4)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量112000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:81質量%、
・ポリスチレン鎖の重量平均分子量13000、分子量分布1.2
・A硬度81
・MFRは2.5g/10分(200℃、加重49N)
クロス共重合体(A-5)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量19モル%、ジビニルベンゼン含量0.05モル%、重量平均分子量141000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:85質量%、
・ポリスチレン鎖の重量平均分子量15000、分子量分布1.2
・A硬度73
・MFR 5.2g/10分(200℃、加重49N)
クロス共重合体(A-6)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量8モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量111000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:88質量%、
・ポリスチレン鎖の重量平均分子量12000、分子量分布1.2
・A硬度87
・MFR 0.5g/10分(200℃、加重49N)
クロス共重合体(A-7)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量25モル%、ジビニルベンゼン含量0.05モル%、重量平均分子量151000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:83質量%、
・ポリスチレン鎖の重量平均分子量16000、分子量分布1.2
・A硬度67
・MFRは7.3g/10分(200℃、加重49N) Cross copolymer (A-1)
An ethylene-styrene-divinylbenzene copolymer having a styrene content of 11 mol%, a divinylbenzene content of 0.06 mol%, a weight average molecular weight of 121,000, a molecular weight distribution of 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass,
-Weight average molecular weight of polystyrene chain 13,000, molecular weight distribution 1.2
A hardness 83
-MFR 0.7g / 10min (200 ° C, weight 49N)
Cross copolymer (A-2)
An ethylene-styrene-divinylbenzene copolymer having a styrene content of 15 mol%, a divinylbenzene content of 0.06 mol%, a weight average molecular weight of 141,000, a molecular weight distribution of 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 94% by mass,
-Weight average molecular weight of polystyrene chain 15000, molecular weight distribution 1.2
・ A hardness 76
-MFR is 0.9g / 10 min (200 ° C, weight 49N)
Cross copolymer (A-3)
-Styrene content 15 mol%, divinylbenzene content 0.06 mol%, weight average molecular weight 131000, molecular weight distribution 2.2, ethylene-styrene-divinylbenzene copolymer,
-Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass,
-Weight average molecular weight of polystyrene chain 14,000, molecular weight distribution 1.2
・ A hardness 78
-MFR 1.3g / 10min (200 ° C, weight 49N)
Cross copolymer (A-4)
-Styrene content of ethylene-styrene-divinylbenzene copolymer 15 mol%, divinylbenzene content 0.06 mol%, weight average molecular weight 112000, molecular weight distribution 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 81% by mass,
-Weight average molecular weight of polystyrene chain 13,000, molecular weight distribution 1.2
A hardness 81
・ MFR is 2.5g / 10min (200 ℃, weight 49N)
Cross copolymer (A-5)
An ethylene-styrene-divinylbenzene copolymer having a styrene content of 19 mol%, a divinylbenzene content of 0.05 mol%, a weight average molecular weight of 141,000, a molecular weight distribution of 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 85% by mass,
-Weight average molecular weight of polystyrene chain 15000, molecular weight distribution 1.2
A hardness 73
-MFR 5.2g / 10min (200 ° C, weight 49N)
Cross copolymer (A-6)
-The styrene content of the ethylene-styrene-divinylbenzene copolymer is 8 mol%, the divinylbenzene content is 0.06 mol%, the weight average molecular weight is 111,000, the molecular weight distribution is 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass,
-Weight average molecular weight of polystyrene chain 12000, molecular weight distribution 1.2
・ A hardness 87
・ MFR 0.5g / 10min (200 ℃, weight 49N)
Cross copolymer (A-7)
-Styrene content of 25 mol%, divinylbenzene content of 0.05 mol%, weight average molecular weight of 151,000, molecular weight distribution of ethylene-styrene-divinylbenzene copolymer, 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 83% by mass,
-Weight average molecular weight of polystyrene chain 16000, molecular weight distribution 1.2
・ A hardness 67
-MFR is 7.3 g / 10 min (200 ° C, weight 49N)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量11モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量121000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:88質量%、
・ポリスチレン鎖の重量平均分子量13000、分子量分布1.2
・A硬度83
・MFRは0.7g/10分(200℃、加重49N)
クロス共重合体(A-2)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量141000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:94質量%、
・ポリスチレン鎖の重量平均分子量15000、分子量分布1.2
・A硬度76
・MFRは0.9g/10分(200℃、加重49N)
クロス共重合体(A-3)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量131000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:88質量%、
・ポリスチレン鎖の重量平均分子量14000、分子量分布1.2
・A硬度78
・MFRは1.3g/10分(200℃、加重49N)
クロス共重合体(A-4)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量15モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量112000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:81質量%、
・ポリスチレン鎖の重量平均分子量13000、分子量分布1.2
・A硬度81
・MFRは2.5g/10分(200℃、加重49N)
クロス共重合体(A-5)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量19モル%、ジビニルベンゼン含量0.05モル%、重量平均分子量141000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:85質量%、
・ポリスチレン鎖の重量平均分子量15000、分子量分布1.2
・A硬度73
・MFR 5.2g/10分(200℃、加重49N)
クロス共重合体(A-6)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量8モル%、ジビニルベンゼン含量0.06モル%、重量平均分子量111000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:88質量%、
・ポリスチレン鎖の重量平均分子量12000、分子量分布1.2
・A硬度87
・MFR 0.5g/10分(200℃、加重49N)
クロス共重合体(A-7)
・エチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量25モル%、ジビニルベンゼン含量0.05モル%、重量平均分子量151000、分子量分布2.2、
・エチレン-スチレン-ジビニルベンゼン共重合体の含量:83質量%、
・ポリスチレン鎖の重量平均分子量16000、分子量分布1.2
・A硬度67
・MFRは7.3g/10分(200℃、加重49N) Cross copolymer (A-1)
An ethylene-styrene-divinylbenzene copolymer having a styrene content of 11 mol%, a divinylbenzene content of 0.06 mol%, a weight average molecular weight of 121,000, a molecular weight distribution of 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass,
-Weight average molecular weight of polystyrene chain 13,000, molecular weight distribution 1.2
A hardness 83
-MFR 0.7g / 10min (200 ° C, weight 49N)
Cross copolymer (A-2)
An ethylene-styrene-divinylbenzene copolymer having a styrene content of 15 mol%, a divinylbenzene content of 0.06 mol%, a weight average molecular weight of 141,000, a molecular weight distribution of 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 94% by mass,
-Weight average molecular weight of polystyrene chain 15000, molecular weight distribution 1.2
・ A hardness 76
-MFR is 0.9g / 10 min (200 ° C, weight 49N)
Cross copolymer (A-3)
-Styrene content 15 mol%, divinylbenzene content 0.06 mol%, weight average molecular weight 131000, molecular weight distribution 2.2, ethylene-styrene-divinylbenzene copolymer,
-Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass,
-Weight average molecular weight of polystyrene chain 14,000, molecular weight distribution 1.2
・ A hardness 78
-MFR 1.3g / 10min (200 ° C, weight 49N)
Cross copolymer (A-4)
-Styrene content of ethylene-styrene-divinylbenzene copolymer 15 mol%, divinylbenzene content 0.06 mol%, weight average molecular weight 112000, molecular weight distribution 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 81% by mass,
-Weight average molecular weight of polystyrene chain 13,000, molecular weight distribution 1.2
A hardness 81
・ MFR is 2.5g / 10min (200 ℃, weight 49N)
Cross copolymer (A-5)
An ethylene-styrene-divinylbenzene copolymer having a styrene content of 19 mol%, a divinylbenzene content of 0.05 mol%, a weight average molecular weight of 141,000, a molecular weight distribution of 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 85% by mass,
-Weight average molecular weight of polystyrene chain 15000, molecular weight distribution 1.2
A hardness 73
-MFR 5.2g / 10min (200 ° C, weight 49N)
Cross copolymer (A-6)
-The styrene content of the ethylene-styrene-divinylbenzene copolymer is 8 mol%, the divinylbenzene content is 0.06 mol%, the weight average molecular weight is 111,000, the molecular weight distribution is 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 88% by mass,
-Weight average molecular weight of polystyrene chain 12000, molecular weight distribution 1.2
・ A hardness 87
・ MFR 0.5g / 10min (200 ℃, weight 49N)
Cross copolymer (A-7)
-Styrene content of 25 mol%, divinylbenzene content of 0.05 mol%, weight average molecular weight of 151,000, molecular weight distribution of ethylene-styrene-divinylbenzene copolymer, 2.2,
-Content of ethylene-styrene-divinylbenzene copolymer: 83% by mass,
-Weight average molecular weight of polystyrene chain 16000, molecular weight distribution 1.2
・ A hardness 67
-MFR is 7.3 g / 10 min (200 ° C, weight 49N)
アセチル化モノグリセライド系可塑剤(B)
アセチル化モノグリセライド系可塑剤(B-1):アセチル化モノラウリルグリセライド リケマールPL-012(理研ビタミン社製)を使用した。アセチル化モノラウリルグリセライドの含量は80質量%以上であった。
アセチル化モノグリセライド系可塑剤(B-2):アセチル化モノラウリルグリセライド:アセチル化モノカプリルグリセライドの混合物(質量比50:50) リケマールPL-019(理研ビタミン社製)を使用した。
使用した可塑剤(B-1)~(B-2)の構造は、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLC、質量分析計(MS)としてWaters社製 SynaptG2を用いて組成分析を行い、測定した。
その他の可塑剤(C)
その他の可塑剤(C-1):流動パラフィン ハイコールM-352(カネダ製)を使用した。
使用した可塑剤(C-1)の構造は、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLC、質量分析計(MS)としてWaters社製 SynaptG2を用いて組成分析を行い、測定した。結果を表1に示す。 Acetylated monoglyceride plasticizer (B)
Acetylated monoglyceride plasticizer (B-1): Acetylated monolauryl glyceride Riquemar PL-012 (manufactured by Riken Vitamin Co., Ltd.) was used. The content of acetylated monolauryl glyceride was 80% by mass or more.
A mixture of acetylated monoglyceride plasticizer (B-2): acetylated monolauryl glyceride: acetylated monocaprylic glyceride (mass ratio 50:50) Riquemar PL-019 (manufactured by Riken Vitamin Co., Ltd.) was used.
The structures of the plasticizers (B-1) to (B-2) used were subjected to composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and SynaptG2 manufactured by Waters as a mass spectrometer (MS). Performed and measured.
Other plasticizers (C)
Other plasticizer (C-1): Liquid paraffin Hicol M-352 (manufactured by Kaneda) was used.
The structure of the plasticizer (C-1) used was measured by composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and SynaptG2 manufactured by Waters as a mass spectrometer (MS). The results are shown in Table 1.
アセチル化モノグリセライド系可塑剤(B-1):アセチル化モノラウリルグリセライド リケマールPL-012(理研ビタミン社製)を使用した。アセチル化モノラウリルグリセライドの含量は80質量%以上であった。
アセチル化モノグリセライド系可塑剤(B-2):アセチル化モノラウリルグリセライド:アセチル化モノカプリルグリセライドの混合物(質量比50:50) リケマールPL-019(理研ビタミン社製)を使用した。
使用した可塑剤(B-1)~(B-2)の構造は、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLC、質量分析計(MS)としてWaters社製 SynaptG2を用いて組成分析を行い、測定した。
その他の可塑剤(C)
その他の可塑剤(C-1):流動パラフィン ハイコールM-352(カネダ製)を使用した。
使用した可塑剤(C-1)の構造は、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLC、質量分析計(MS)としてWaters社製 SynaptG2を用いて組成分析を行い、測定した。結果を表1に示す。 Acetylated monoglyceride plasticizer (B)
Acetylated monoglyceride plasticizer (B-1): Acetylated monolauryl glyceride Riquemar PL-012 (manufactured by Riken Vitamin Co., Ltd.) was used. The content of acetylated monolauryl glyceride was 80% by mass or more.
A mixture of acetylated monoglyceride plasticizer (B-2): acetylated monolauryl glyceride: acetylated monocaprylic glyceride (mass ratio 50:50) Riquemar PL-019 (manufactured by Riken Vitamin Co., Ltd.) was used.
The structures of the plasticizers (B-1) to (B-2) used were subjected to composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and SynaptG2 manufactured by Waters as a mass spectrometer (MS). Performed and measured.
Other plasticizers (C)
Other plasticizer (C-1): Liquid paraffin Hicol M-352 (manufactured by Kaneda) was used.
The structure of the plasticizer (C-1) used was measured by composition analysis using ACQUITY UPLC manufactured by Waters as a liquid chromatography (LC) and SynaptG2 manufactured by Waters as a mass spectrometer (MS). The results are shown in Table 1.
[実施例1~9、比較例1~6]
クロス共重合体(A-1)~(A-7)と、アセチル化モノグリセライド系可塑剤(B-1)~(B-2)またはその他の可塑剤(C-1)を表3に示す割合(質量部)で二軸押出機(東芝機械社製TEM-35B)にてシリンダー温度200℃で溶融混練してペレット化し、熱可塑性エラストマー組成物を得た。得られた熱可塑性エラストマー組成物について、以下の評価基準に則した試験片を作成し、評価を行った。その結果を表2に示す。 [Examples 1 to 9, Comparative Examples 1 to 6]
Table 3 shows the ratios of the cross copolymers (A-1) to (A-7) and the acetylated monoglyceride plasticizers (B-1) to (B-2) or other plasticizers (C-1). (Mass part) was melt-kneaded at a cylinder temperature of 200 ° C. with a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) and pelletized to obtain a thermoplastic elastomer composition. About the obtained thermoplastic elastomer composition, the test piece according to the following evaluation criteria was created and evaluated. The results are shown in Table 2.
クロス共重合体(A-1)~(A-7)と、アセチル化モノグリセライド系可塑剤(B-1)~(B-2)またはその他の可塑剤(C-1)を表3に示す割合(質量部)で二軸押出機(東芝機械社製TEM-35B)にてシリンダー温度200℃で溶融混練してペレット化し、熱可塑性エラストマー組成物を得た。得られた熱可塑性エラストマー組成物について、以下の評価基準に則した試験片を作成し、評価を行った。その結果を表2に示す。 [Examples 1 to 9, Comparative Examples 1 to 6]
Table 3 shows the ratios of the cross copolymers (A-1) to (A-7) and the acetylated monoglyceride plasticizers (B-1) to (B-2) or other plasticizers (C-1). (Mass part) was melt-kneaded at a cylinder temperature of 200 ° C. with a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) and pelletized to obtain a thermoplastic elastomer composition. About the obtained thermoplastic elastomer composition, the test piece according to the following evaluation criteria was created and evaluated. The results are shown in Table 2.
(試験片の作成)
シート作製は以下に従った。物性評価用の試料は、鏡面金型(STAVAX製)を用いて、加熱プレス法(200℃、時間5分、圧力50kg/cm2)により成形した厚さ(1mm)の正方形鏡面プレスシートを用いた。 (Creation of specimen)
Sheet preparation was as follows. As a sample for physical property evaluation, a square mirror surface press sheet having a thickness (1 mm) formed by a heat press method (200 ° C., time 5 minutes, pressure 50 kg / cm 2) using a mirror surface mold (manufactured by STAVAX) was used. .
シート作製は以下に従った。物性評価用の試料は、鏡面金型(STAVAX製)を用いて、加熱プレス法(200℃、時間5分、圧力50kg/cm2)により成形した厚さ(1mm)の正方形鏡面プレスシートを用いた。 (Creation of specimen)
Sheet preparation was as follows. As a sample for physical property evaluation, a square mirror surface press sheet having a thickness (1 mm) formed by a heat press method (200 ° C., time 5 minutes, pressure 50 kg / cm 2) using a mirror surface mold (manufactured by STAVAX) was used. .
(透明性)
厚さ1mm、一辺50mmの正方形鏡面プレスシートを、JIS K7136に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて曇り度を測定した。なお、曇り度20%以下を合格レベルとし、15%以下を特に好ましいレベルとした。 (transparency)
A haze meter (Nippon Denshoku Industries Co., Ltd. NDH-1001DP type) was used to measure the haze of a square mirror surface press sheet having a thickness of 1 mm and a side of 50 mm in accordance with JIS K7136. In addition, the haze of 20% or less was set as an acceptable level, and 15% or less was set as a particularly preferable level.
厚さ1mm、一辺50mmの正方形鏡面プレスシートを、JIS K7136に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて曇り度を測定した。なお、曇り度20%以下を合格レベルとし、15%以下を特に好ましいレベルとした。 (transparency)
A haze meter (Nippon Denshoku Industries Co., Ltd. NDH-1001DP type) was used to measure the haze of a square mirror surface press sheet having a thickness of 1 mm and a side of 50 mm in accordance with JIS K7136. In addition, the haze of 20% or less was set as an acceptable level, and 15% or less was set as a particularly preferable level.
(引張特性)
JIS K6251に準拠して、23℃及び5℃条件下での、100%伸び時引張応力を求めた。100%伸び時引張応力とは、試験片に100%の伸びを与えたときの引張応力のことである。試験片として1mm厚プレスシートを3号ダンベル型に打抜いて使用した。引張速度は500mm/minとした。なお、引張特性は、23℃ 100%伸び時引張応力3.0MPa以上、かつ5℃ 100%伸び時引張応力7.5MPa以下を合格レベルとし、引張特性は、23℃ 100%伸び時引張応力3.5MPa以上、かつ5℃ 100%伸び時引張応力6.5MPa以下を特に好ましいレベルとした。 (Tensile properties)
Based on JIS K6251, the tensile stress at 100% elongation under 23 ° C. and 5 ° C. conditions was determined. The tensile stress at 100% elongation is the tensile stress when 100% elongation is given to the test piece. As a test piece, a 1 mm thick press sheet was punched into a No. 3 dumbbell mold and used. The tensile speed was 500 mm / min. In addition, the tensile property is a tensile stress of 3.0 MPa or more at 23 ° C. and 100% elongation and the tensile stress is 7.5 MPa or less at 100 ° elongation of 5 ° C., and the tensile property is a tensile stress of 3 at 23 ° C. and 100% elongation. A tensile stress of 6.5 MPa or less at 5 ° C. and 100% elongation was set to a particularly preferable level.
JIS K6251に準拠して、23℃及び5℃条件下での、100%伸び時引張応力を求めた。100%伸び時引張応力とは、試験片に100%の伸びを与えたときの引張応力のことである。試験片として1mm厚プレスシートを3号ダンベル型に打抜いて使用した。引張速度は500mm/minとした。なお、引張特性は、23℃ 100%伸び時引張応力3.0MPa以上、かつ5℃ 100%伸び時引張応力7.5MPa以下を合格レベルとし、引張特性は、23℃ 100%伸び時引張応力3.5MPa以上、かつ5℃ 100%伸び時引張応力6.5MPa以下を特に好ましいレベルとした。 (Tensile properties)
Based on JIS K6251, the tensile stress at 100% elongation under 23 ° C. and 5 ° C. conditions was determined. The tensile stress at 100% elongation is the tensile stress when 100% elongation is given to the test piece. As a test piece, a 1 mm thick press sheet was punched into a No. 3 dumbbell mold and used. The tensile speed was 500 mm / min. In addition, the tensile property is a tensile stress of 3.0 MPa or more at 23 ° C. and 100% elongation and the tensile stress is 7.5 MPa or less at 100 ° elongation of 5 ° C., and the tensile property is a tensile stress of 3 at 23 ° C. and 100% elongation. A tensile stress of 6.5 MPa or less at 5 ° C. and 100% elongation was set to a particularly preferable level.
(低温硬化)
上記の方法で、5℃及び23℃条件下での、100%伸び時引張応力を求め、23℃条件下での測定値と5℃条件下測定値での差を求めた。なお、低温硬化は、3.5MPa以下を合格レベルとし、3.0MPa以下を最も好ましいレベルとした。 (Low temperature curing)
The tensile stress at 100% elongation under 5 ° C and 23 ° C conditions was determined by the above method, and the difference between the measured value under 23 ° C condition and the measured value under 5 ° C condition was determined. In addition, low temperature hardening made 3.5 MPa or less into the pass level, and made 3.0 MPa or less into the most preferable level.
上記の方法で、5℃及び23℃条件下での、100%伸び時引張応力を求め、23℃条件下での測定値と5℃条件下測定値での差を求めた。なお、低温硬化は、3.5MPa以下を合格レベルとし、3.0MPa以下を最も好ましいレベルとした。 (Low temperature curing)
The tensile stress at 100% elongation under 5 ° C and 23 ° C conditions was determined by the above method, and the difference between the measured value under 23 ° C condition and the measured value under 5 ° C condition was determined. In addition, low temperature hardening made 3.5 MPa or less into the pass level, and made 3.0 MPa or less into the most preferable level.
(軟質性)
JIS K6253-3に準拠して、タイプAのデュロメータ硬度を用いて瞬間値の硬度を求めた。試験片として1mm厚プレスシートを6枚重ねて使用した。なお、A硬度79以下を合格レベルとし、75以下を最も好ましいレベルとした。 (Softness)
In accordance with JIS K6253-3, instantaneous hardness was determined using type A durometer hardness. Six 1 mm-thick press sheets were used as test pieces. In addition, A hardness 79 or less was made into the acceptable level, and 75 or less was made into the most preferable level.
JIS K6253-3に準拠して、タイプAのデュロメータ硬度を用いて瞬間値の硬度を求めた。試験片として1mm厚プレスシートを6枚重ねて使用した。なお、A硬度79以下を合格レベルとし、75以下を最も好ましいレベルとした。 (Softness)
In accordance with JIS K6253-3, instantaneous hardness was determined using type A durometer hardness. Six 1 mm-thick press sheets were used as test pieces. In addition, A hardness 79 or less was made into the acceptable level, and 75 or less was made into the most preferable level.
(耐ブロッキング性)
厚さ1mm、一辺60mmの正方形鏡面プレスシート2枚を重ね合わせ、直径60mm円盤状の錘(100g、300g)をのせ、60℃で2時間放置後、錘を外し、上面のプレスシートの角を持ち上げ、下面のプレスシートの剥がれ易さを観察することにより、以下の基準でブロッキング性を評価した。試験は1サンプルにつき、3回ずつ行った。
3:全ての錘でプレスシートが貼り付くことなく剥がれた。
2:100g錘ではプレスシートが貼り付くことなく剥がれるか、貼り付いても自重で剥がれたが、300g錘では貼り付いて自重では剥がれないものがあった。
1:全ての錘で貼り付いて自重では剥がれないものがあった。
0:錘をのせなくてもプレスシートが貼り付いて自重では剥がれないものがあった。
なお、2以上を合格レベルとし、3以上を最も好ましいレベルとした。 (Blocking resistance)
Two square mirror press sheets with a thickness of 1 mm and a side of 60 mm are superposed and a 60 mm diameter disc-shaped weight (100 g, 300 g) is placed, left at 60 ° C. for 2 hours, the weight is removed, and the corner of the top press sheet is removed. The blocking property was evaluated according to the following criteria by lifting and observing the ease of peeling of the press sheet on the lower surface. The test was performed three times for each sample.
3: The press sheet peeled off without sticking with all the weights.
2: The press sheet peeled off without sticking with the 100 g weight, or peeled off due to its own weight even when stuck, but there was a thing stuck with the 300 g weight but not peeled off by its own weight.
1: There was a thing stuck with all the weights and not peeled off by its own weight.
0: Some press sheets were stuck and could not be removed by their own weight without placing a weight.
In addition, 2 or more was made into the pass level, and 3 or more was made into the most preferable level.
厚さ1mm、一辺60mmの正方形鏡面プレスシート2枚を重ね合わせ、直径60mm円盤状の錘(100g、300g)をのせ、60℃で2時間放置後、錘を外し、上面のプレスシートの角を持ち上げ、下面のプレスシートの剥がれ易さを観察することにより、以下の基準でブロッキング性を評価した。試験は1サンプルにつき、3回ずつ行った。
3:全ての錘でプレスシートが貼り付くことなく剥がれた。
2:100g錘ではプレスシートが貼り付くことなく剥がれるか、貼り付いても自重で剥がれたが、300g錘では貼り付いて自重では剥がれないものがあった。
1:全ての錘で貼り付いて自重では剥がれないものがあった。
0:錘をのせなくてもプレスシートが貼り付いて自重では剥がれないものがあった。
なお、2以上を合格レベルとし、3以上を最も好ましいレベルとした。 (Blocking resistance)
Two square mirror press sheets with a thickness of 1 mm and a side of 60 mm are superposed and a 60 mm diameter disc-shaped weight (100 g, 300 g) is placed, left at 60 ° C. for 2 hours, the weight is removed, and the corner of the top press sheet is removed. The blocking property was evaluated according to the following criteria by lifting and observing the ease of peeling of the press sheet on the lower surface. The test was performed three times for each sample.
3: The press sheet peeled off without sticking with all the weights.
2: The press sheet peeled off without sticking with the 100 g weight, or peeled off due to its own weight even when stuck, but there was a thing stuck with the 300 g weight but not peeled off by its own weight.
1: There was a thing stuck with all the weights and not peeled off by its own weight.
0: Some press sheets were stuck and could not be removed by their own weight without placing a weight.
In addition, 2 or more was made into the pass level, and 3 or more was made into the most preferable level.
実施例1~9については、いずれも曇り度20%以下、23℃ 100%伸び時引張応力3.0MPa以上、5℃ 100%伸び時引張応力7.5MPa以下、低温硬化3.5MPa以下、A硬度79以下、耐ブロッキング性評価2以上であり、透明性、引張特性、軟質性及び耐ブロッキング性に優れ、且つ低温硬化が抑制されていた。一方、比較例1~6では、透明性、引張特性、軟質性及び耐ブロッキングのうちのいずれかの物性において劣るものであり、または低温硬化の抑制が弱いものであった。
For Examples 1 to 9, all had a haze of 20% or less, 23 ° C., 100% elongation tensile stress of 3.0 MPa or more, 5 ° C., 100% elongation tensile stress of 7.5 MPa or less, low temperature curing of 3.5 MPa or less, A It had a hardness of 79 or less and a blocking resistance evaluation of 2 or more, was excellent in transparency, tensile properties, softness and blocking resistance, and low-temperature curing was suppressed. On the other hand, Comparative Examples 1 to 6 were inferior in any of physical properties among transparency, tensile properties, softness and anti-blocking properties, or weakly suppressed at low temperature.
[医療用チューブへの適合性評価]
[実施例10]
実施例2で得られた熱可塑性エラストマー組成物を用いて、外径3.6mm、内径2.4mm、チューブ厚み0.6mmのチューブを押出成形により作成した。医療用チューブとしての特性を以下の基準に沿って評価した。結果を表3に示す。 [Compatibility evaluation for medical tubes]
[Example 10]
Using the thermoplastic elastomer composition obtained in Example 2, a tube having an outer diameter of 3.6 mm, an inner diameter of 2.4 mm, and a tube thickness of 0.6 mm was formed by extrusion molding. The characteristics as a medical tube were evaluated according to the following criteria. The results are shown in Table 3.
[実施例10]
実施例2で得られた熱可塑性エラストマー組成物を用いて、外径3.6mm、内径2.4mm、チューブ厚み0.6mmのチューブを押出成形により作成した。医療用チューブとしての特性を以下の基準に沿って評価した。結果を表3に示す。 [Compatibility evaluation for medical tubes]
[Example 10]
Using the thermoplastic elastomer composition obtained in Example 2, a tube having an outer diameter of 3.6 mm, an inner diameter of 2.4 mm, and a tube thickness of 0.6 mm was formed by extrusion molding. The characteristics as a medical tube were evaluated according to the following criteria. The results are shown in Table 3.
(チューブの軟質性)
20cmの長さに切断した作成したチューブと比較用の軟質塩ビ製医療用単層チューブを、23℃条件下で被験者に触らせ、触感が軟らかい方を選ぶ。作成したチューブが軟質塩ビ製医療用単層チューブより軟質であれば◎(優)、同等であれば○(良)、作成したチューブが明らかに硬ければ×(不可)とした。チューブの軟質性は○(良)以上を合格とした。 (Tube softness)
The subject is touched at 23 ° C. with the prepared tube cut to a length of 20 cm and a comparative soft polyvinyl chloride medical single-layer tube, and the one with the soft touch is selected. If the created tube was softer than a soft polyvinyl chloride medical single-layer tube, ◎ (excellent), if equal, ○ (good), and if the created tube was clearly hard, × (impossible). As for the softness of the tube, ○ (good) or better was regarded as acceptable.
20cmの長さに切断した作成したチューブと比較用の軟質塩ビ製医療用単層チューブを、23℃条件下で被験者に触らせ、触感が軟らかい方を選ぶ。作成したチューブが軟質塩ビ製医療用単層チューブより軟質であれば◎(優)、同等であれば○(良)、作成したチューブが明らかに硬ければ×(不可)とした。チューブの軟質性は○(良)以上を合格とした。 (Tube softness)
The subject is touched at 23 ° C. with the prepared tube cut to a length of 20 cm and a comparative soft polyvinyl chloride medical single-layer tube, and the one with the soft touch is selected. If the created tube was softer than a soft polyvinyl chloride medical single-layer tube, ◎ (excellent), if equal, ○ (good), and if the created tube was clearly hard, × (impossible). As for the softness of the tube, ○ (good) or better was regarded as acceptable.
(5℃条件下でのチューブの軟質性)
20cmの長さに切断した作成したチューブと比較用の軟質塩ビ製医療用単層チューブを、5℃条件下で被験者に触らせ、触感が軟らかい方を選ぶ。作成したチューブが軟質塩ビ製医療用単層チューブより軟質であれば◎(優)、同等であれば○(良)、作成したチューブが明らかに硬ければ×(不可)とした。チューブの軟質性は○(良)以上を合格とした。 (Softness of the tube under 5 ° C condition)
The subject is touched at 5 ° C. with the prepared tube cut to a length of 20 cm and a comparative soft polyvinyl chloride medical single-layer tube, and the one with the soft touch is selected. If the created tube was softer than a soft polyvinyl chloride medical single-layer tube, ◎ (excellent), if equal, ○ (good), and if the created tube was clearly hard, × (impossible). As for the softness of the tube, ○ (good) or better was regarded as acceptable.
20cmの長さに切断した作成したチューブと比較用の軟質塩ビ製医療用単層チューブを、5℃条件下で被験者に触らせ、触感が軟らかい方を選ぶ。作成したチューブが軟質塩ビ製医療用単層チューブより軟質であれば◎(優)、同等であれば○(良)、作成したチューブが明らかに硬ければ×(不可)とした。チューブの軟質性は○(良)以上を合格とした。 (Softness of the tube under 5 ° C condition)
The subject is touched at 5 ° C. with the prepared tube cut to a length of 20 cm and a comparative soft polyvinyl chloride medical single-layer tube, and the one with the soft touch is selected. If the created tube was softer than a soft polyvinyl chloride medical single-layer tube, ◎ (excellent), if equal, ○ (good), and if the created tube was clearly hard, × (impossible). As for the softness of the tube, ○ (good) or better was regarded as acceptable.
(透明性)
チューブに生理食塩水を流し、液面、泡等が肉眼で視認できるかどうかを観察した。容易に観察できる場合を○(良)とし、観察が困難な場合を×(不可)とした。 (transparency)
Saline was poured into the tube, and it was observed whether the liquid level, bubbles, etc. were visible with the naked eye. The case where it was easy to observe was marked with ◯ (good), and the case where observation was difficult was marked with x (impossible).
チューブに生理食塩水を流し、液面、泡等が肉眼で視認できるかどうかを観察した。容易に観察できる場合を○(良)とし、観察が困難な場合を×(不可)とした。 (transparency)
Saline was poured into the tube, and it was observed whether the liquid level, bubbles, etc. were visible with the naked eye. The case where it was easy to observe was marked with ◯ (good), and the case where observation was difficult was marked with x (impossible).
(減菌済み輸液セット基準による溶出物試験)
JIS T3211に準拠し、減菌済み輸液セット基準による溶出物試験を行い、pH、重金属、過マンガン酸カリウム還元性物質、蒸発残留物の測定を行った。以下のpH、重金属、過マンガン酸カリウム還元性物質、蒸発残留物の試験液及び空試験液は以下のようにして得た。
試験液:チューブ部分10gを約1cm長に細断し、蒸留水100mLで30分間煮沸し、試験液とした。
空試験液:蒸留水100mLを30分間煮沸し、空試験液とした。 (Eluate test based on sterilized infusion set standards)
In accordance with JIS T3211, the eluate test was performed based on the sterilized infusion set standard, and the pH, heavy metal, potassium permanganate reducing substance, and evaporation residue were measured. The following pH, heavy metal, potassium permanganate reducing substance, evaporation residue test solution and blank test solution were obtained as follows.
Test solution: 10 g of the tube portion was cut into about 1 cm length, and boiled with 100 mL of distilled water for 30 minutes to obtain a test solution.
Blank test solution: 100 mL of distilled water was boiled for 30 minutes to obtain a blank test solution.
JIS T3211に準拠し、減菌済み輸液セット基準による溶出物試験を行い、pH、重金属、過マンガン酸カリウム還元性物質、蒸発残留物の測定を行った。以下のpH、重金属、過マンガン酸カリウム還元性物質、蒸発残留物の試験液及び空試験液は以下のようにして得た。
試験液:チューブ部分10gを約1cm長に細断し、蒸留水100mLで30分間煮沸し、試験液とした。
空試験液:蒸留水100mLを30分間煮沸し、空試験液とした。 (Eluate test based on sterilized infusion set standards)
In accordance with JIS T3211, the eluate test was performed based on the sterilized infusion set standard, and the pH, heavy metal, potassium permanganate reducing substance, and evaporation residue were measured. The following pH, heavy metal, potassium permanganate reducing substance, evaporation residue test solution and blank test solution were obtained as follows.
Test solution: 10 g of the tube portion was cut into about 1 cm length, and boiled with 100 mL of distilled water for 30 minutes to obtain a test solution.
Blank test solution: 100 mL of distilled water was boiled for 30 minutes to obtain a blank test solution.
(pH)
試験液および空試験液をそれぞれ20mLとり、これらに塩化カリウム1.0gを水に溶かして1000mLとした液1.0mLずつを加え、日本薬局方一般試験法のpH測定法により、pH変化を測定した。pHの差は2.0以下であれば合格とした。 (PH)
Take 20 mL each of the test solution and the blank test solution, add 1.0 mL each of these solutions to 1000 mL by dissolving 1.0 g of potassium chloride in water, and measure the pH change by the pH measurement method of the Japanese Pharmacopoeia General Test Method did. A pH difference of 2.0 or less was accepted.
試験液および空試験液をそれぞれ20mLとり、これらに塩化カリウム1.0gを水に溶かして1000mLとした液1.0mLずつを加え、日本薬局方一般試験法のpH測定法により、pH変化を測定した。pHの差は2.0以下であれば合格とした。 (PH)
Take 20 mL each of the test solution and the blank test solution, add 1.0 mL each of these solutions to 1000 mL by dissolving 1.0 g of potassium chloride in water, and measure the pH change by the pH measurement method of the Japanese Pharmacopoeia General Test Method did. A pH difference of 2.0 or less was accepted.
(重金属)
試験液10mLをとり、日本薬局方の重金属試験法の第1法によって試験を実施した。空試験液には鉛標準液2.0mLを加え、同様に試験を行った。空試験液と比較して、色が濃くなれば合格とした。 (heavy metal)
10 mL of the test solution was taken and the test was carried out according to the first method of the Japanese Pharmacopoeia heavy metal test method. To the blank test solution, 2.0 mL of lead standard solution was added and the test was performed in the same manner. If the color became darker than the blank test solution, the test was accepted.
試験液10mLをとり、日本薬局方の重金属試験法の第1法によって試験を実施した。空試験液には鉛標準液2.0mLを加え、同様に試験を行った。空試験液と比較して、色が濃くなれば合格とした。 (heavy metal)
10 mL of the test solution was taken and the test was carried out according to the first method of the Japanese Pharmacopoeia heavy metal test method. To the blank test solution, 2.0 mL of lead standard solution was added and the test was performed in the same manner. If the color became darker than the blank test solution, the test was accepted.
(過マンガン酸カリウム還元性物質)
試験液10mLを共栓三角フラスコにとり、0.002mol/L過マンガン酸カリウム液20.0mLおよび希硫酸1mLを添加し密栓、ふり混ぜて10分間放置した後に、0.01mol/Lチオ硫酸ナトリウム溶液で滴定する(指示薬デンプン試液5滴)。別に空試験液10mLを用い同様に操作する。試験液および空試験液の0.002mol/L過マンガン酸カリウム液消費量の差は2.0mL以下であれば合格とした。 (Potassium permanganate reducing substance)
Take 10 mL of the test solution in a stoppered Erlenmeyer flask, add 20.0 mL of 0.002 mol / L potassium permanganate solution and 1 mL of dilute sulfuric acid, seal tightly, shake and leave for 10 minutes, then 0.01 mol / L sodium thiosulfate solution (5 drops of indicator starch test solution). Separately, 10 mL of blank test solution is used and the same operation is performed. If the difference in the consumption of 0.002 mol / L potassium permanganate solution between the test solution and the blank test solution was 2.0 mL or less, the test was accepted.
試験液10mLを共栓三角フラスコにとり、0.002mol/L過マンガン酸カリウム液20.0mLおよび希硫酸1mLを添加し密栓、ふり混ぜて10分間放置した後に、0.01mol/Lチオ硫酸ナトリウム溶液で滴定する(指示薬デンプン試液5滴)。別に空試験液10mLを用い同様に操作する。試験液および空試験液の0.002mol/L過マンガン酸カリウム液消費量の差は2.0mL以下であれば合格とした。 (Potassium permanganate reducing substance)
Take 10 mL of the test solution in a stoppered Erlenmeyer flask, add 20.0 mL of 0.002 mol / L potassium permanganate solution and 1 mL of dilute sulfuric acid, seal tightly, shake and leave for 10 minutes, then 0.01 mol / L sodium thiosulfate solution (5 drops of indicator starch test solution). Separately, 10 mL of blank test solution is used and the same operation is performed. If the difference in the consumption of 0.002 mol / L potassium permanganate solution between the test solution and the blank test solution was 2.0 mL or less, the test was accepted.
(蒸発残留物)
試験液10mLを水浴上で蒸発乾固し、残留物を105℃で1時間乾燥するとき、その重量が1.0mg以下であれば合格とした。 (Evaporation residue)
10 mL of the test solution was evaporated to dryness on a water bath, and when the residue was dried at 105 ° C. for 1 hour, if the weight was 1.0 mg or less, the test was accepted.
試験液10mLを水浴上で蒸発乾固し、残留物を105℃で1時間乾燥するとき、その重量が1.0mg以下であれば合格とした。 (Evaporation residue)
10 mL of the test solution was evaporated to dryness on a water bath, and when the residue was dried at 105 ° C. for 1 hour, if the weight was 1.0 mg or less, the test was accepted.
(キンク開始半径)
20cmのチューブを各曲率半径に曲げ、1分後にチューブの折れ曲がりの発生が確認されなかった最小の曲率半径を求めた。キンク開始半径は10mm以下が好ましい。また発生したキンク(折れ曲がり)の形状を観察した。チューブの幅広い部分に比較的均一に潰れが発生している状況を観察し、良好な順に、
◎(優):幅広のキンク発生とし、より狭い範囲で潰れが発生している
○(良):比較的幅広のキンク発生、より狭い範囲で潰れが発生し、チューブが折れている
△(不良):鋭角のキンク発生
と分類した。キンクの形状は○(良)以上を合格とした。 (Kink start radius)
A 20 cm tube was bent to each radius of curvature, and the minimum radius of curvature at which the occurrence of bending of the tube was not confirmed after 1 minute was determined. The kink start radius is preferably 10 mm or less. Moreover, the shape of the generated kink (bending) was observed. Observe the situation where crushing occurs relatively uniformly in a wide part of the tube.
◎ (excellent): Wide kink is generated and crushing occurs in a narrower range ○ (good): A relatively wide kink is generated, crushing occurs in a narrower range, and the tube is broken △ (defective) ): Classified as acute-angle kink. The shape of the kink was set to pass (good) or better.
20cmのチューブを各曲率半径に曲げ、1分後にチューブの折れ曲がりの発生が確認されなかった最小の曲率半径を求めた。キンク開始半径は10mm以下が好ましい。また発生したキンク(折れ曲がり)の形状を観察した。チューブの幅広い部分に比較的均一に潰れが発生している状況を観察し、良好な順に、
◎(優):幅広のキンク発生とし、より狭い範囲で潰れが発生している
○(良):比較的幅広のキンク発生、より狭い範囲で潰れが発生し、チューブが折れている
△(不良):鋭角のキンク発生
と分類した。キンクの形状は○(良)以上を合格とした。 (Kink start radius)
A 20 cm tube was bent to each radius of curvature, and the minimum radius of curvature at which the occurrence of bending of the tube was not confirmed after 1 minute was determined. The kink start radius is preferably 10 mm or less. Moreover, the shape of the generated kink (bending) was observed. Observe the situation where crushing occurs relatively uniformly in a wide part of the tube.
◎ (excellent): Wide kink is generated and crushing occurs in a narrower range ○ (good): A relatively wide kink is generated, crushing occurs in a narrower range, and the tube is broken △ (defective) ): Classified as acute-angle kink. The shape of the kink was set to pass (good) or better.
(耐鉗子性)
40℃において、生理食塩液を満たしたチューブを医療用チューブ鉗子で10時間閉止後、鉗子を外しチューブ内側が形状を回復し液が貫通する時間を測定し、チューブの耐鉗子性の指標とした。 (Forceps resistance)
At 40 ° C., the tube filled with physiological saline was closed with medical tube forceps for 10 hours, and then the forceps were removed, and the time during which the inside of the tube recovered its shape and the liquid penetrated was used as an index of the forceps resistance of the tube. .
40℃において、生理食塩液を満たしたチューブを医療用チューブ鉗子で10時間閉止後、鉗子を外しチューブ内側が形状を回復し液が貫通する時間を測定し、チューブの耐鉗子性の指標とした。 (Forceps resistance)
At 40 ° C., the tube filled with physiological saline was closed with medical tube forceps for 10 hours, and then the forceps were removed, and the time during which the inside of the tube recovered its shape and the liquid penetrated was used as an index of the forceps resistance of the tube. .
(薬剤吸着性)
ニトログリセリン吸着性:ニトログリセリン注射液(有効成分50mg/100mL、ミリスロール注、日本化薬社製)60mLを日本薬局方生理食塩水1Lに注入し、静かに攪拌した。ただちに注射針付注射筒でサンプリングし、ブランクとした。輸液セットのチューブを流量調節用クランプで閉塞し、点滴筒をゴム栓に刺通した。点滴筒をポンピングすることで点滴筒の下半分を当該溶液で満たした。流量調節用クランプを徐々にゆるめ、チューブの中を当該溶液で満たした後に輸液ポンプにセットした。流量を36mL/hに設定し、流量調節用クランプを開放、スイッチをONにし、輸液を開始した。先端より流出する溶液を経時的にサンプリングし、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLCを用いて濃度を測定した。輸液は180分行い、最初の60分は5分おき、それ以後は15分おきにサンプリングした。ブランクの濃度と比較して、濃度低下が10%以内であれば合格とした。 (Drug adsorption)
Nitroglycerin adsorptivity: Nitroglycerin injection solution (active ingredient 50 mg / 100 mL, Millisrol injection, Nippon Kayaku Co., Ltd.) 60 mL was injected into 1 L of Japanese Pharmacopoeia physiological saline and gently stirred. Immediately, the sample was sampled with a syringe with a syringe needle to obtain a blank. The tube of the infusion set was closed with a flow rate adjusting clamp, and the drip tube was pierced through a rubber stopper. The lower half of the drip tube was filled with the solution by pumping the drip tube. The clamp for adjusting the flow rate was gradually loosened, and the tube was filled with the solution, and then set on the infusion pump. The flow rate was set to 36 mL / h, the flow rate adjusting clamp was opened, the switch was turned on, and infusion was started. The solution flowing out from the tip was sampled over time, and the concentration was measured using ACQUITY UPLC manufactured by Waters as liquid chromatography (LC). The infusion was performed for 180 minutes, and the first 60 minutes were sampled every 5 minutes and thereafter every 15 minutes. If the density drop was within 10% compared to the blank density, the test was accepted.
ニトログリセリン吸着性:ニトログリセリン注射液(有効成分50mg/100mL、ミリスロール注、日本化薬社製)60mLを日本薬局方生理食塩水1Lに注入し、静かに攪拌した。ただちに注射針付注射筒でサンプリングし、ブランクとした。輸液セットのチューブを流量調節用クランプで閉塞し、点滴筒をゴム栓に刺通した。点滴筒をポンピングすることで点滴筒の下半分を当該溶液で満たした。流量調節用クランプを徐々にゆるめ、チューブの中を当該溶液で満たした後に輸液ポンプにセットした。流量を36mL/hに設定し、流量調節用クランプを開放、スイッチをONにし、輸液を開始した。先端より流出する溶液を経時的にサンプリングし、液体クロマトグラフィー(LC)として、Waters社製 ACQUITY UPLCを用いて濃度を測定した。輸液は180分行い、最初の60分は5分おき、それ以後は15分おきにサンプリングした。ブランクの濃度と比較して、濃度低下が10%以内であれば合格とした。 (Drug adsorption)
Nitroglycerin adsorptivity: Nitroglycerin injection solution (active ingredient 50 mg / 100 mL, Millisrol injection, Nippon Kayaku Co., Ltd.) 60 mL was injected into 1 L of Japanese Pharmacopoeia physiological saline and gently stirred. Immediately, the sample was sampled with a syringe with a syringe needle to obtain a blank. The tube of the infusion set was closed with a flow rate adjusting clamp, and the drip tube was pierced through a rubber stopper. The lower half of the drip tube was filled with the solution by pumping the drip tube. The clamp for adjusting the flow rate was gradually loosened, and the tube was filled with the solution, and then set on the infusion pump. The flow rate was set to 36 mL / h, the flow rate adjusting clamp was opened, the switch was turned on, and infusion was started. The solution flowing out from the tip was sampled over time, and the concentration was measured using ACQUITY UPLC manufactured by Waters as liquid chromatography (LC). The infusion was performed for 180 minutes, and the first 60 minutes were sampled every 5 minutes and thereafter every 15 minutes. If the density drop was within 10% compared to the blank density, the test was accepted.
(輸液ポンプ適性)
流量調節用クランプでチューブを閉塞し、点滴筒を日本薬局方生理食塩水のゴム栓に刺通した。点滴筒をポンピングすることで点滴筒の下半分を当該食塩水で満たした。流量調節用クランプを徐々にゆるめ、チューブの中を当該食塩水で満たした後に、輸液ポンプにセットした。流量を250mL/hに設定し、流量調節用クランプを開放、スイッチONにし輸液を開始した。この直後に先端より流出する一分間あたりの生理食塩水量を測定し、初期流量とした。24時間経過後、再び同様に1分間あたりの流量を測定した。24時間後の流量変化率が10%以内であれば合格とした。
ポンプ輸液終了後のチューブ状態:上記ポンプ流量安定性終了後に、チューブのしごき部分を切開し、内面および外面の表面状態、チューブ径の変化、亀裂の有無を観察した。 (Infusion pump suitability)
The tube was closed with a flow rate adjusting clamp, and the drip tube was pierced through a rubber stopper of Japanese Pharmacopoeia saline. The lower half of the drip tube was filled with the saline by pumping the drip tube. The flow rate adjusting clamp was gradually loosened, and the tube was filled with the saline solution, and then set on the infusion pump. The flow rate was set to 250 mL / h, the flow rate adjusting clamp was opened, the switch was turned on, and infusion was started. Immediately after this, the amount of physiological saline per minute flowing out from the tip was measured and used as the initial flow rate. After 24 hours, the flow rate per minute was again measured in the same manner. If the rate of change in flow rate after 24 hours was within 10%, it was considered acceptable.
Tube state after completion of pump infusion: After completion of the above-mentioned pump flow rate stability, the squeezed portion of the tube was incised, and the surface state of the inner and outer surfaces, the change in tube diameter, and the presence or absence of cracks were observed.
流量調節用クランプでチューブを閉塞し、点滴筒を日本薬局方生理食塩水のゴム栓に刺通した。点滴筒をポンピングすることで点滴筒の下半分を当該食塩水で満たした。流量調節用クランプを徐々にゆるめ、チューブの中を当該食塩水で満たした後に、輸液ポンプにセットした。流量を250mL/hに設定し、流量調節用クランプを開放、スイッチONにし輸液を開始した。この直後に先端より流出する一分間あたりの生理食塩水量を測定し、初期流量とした。24時間経過後、再び同様に1分間あたりの流量を測定した。24時間後の流量変化率が10%以内であれば合格とした。
ポンプ輸液終了後のチューブ状態:上記ポンプ流量安定性終了後に、チューブのしごき部分を切開し、内面および外面の表面状態、チューブ径の変化、亀裂の有無を観察した。 (Infusion pump suitability)
The tube was closed with a flow rate adjusting clamp, and the drip tube was pierced through a rubber stopper of Japanese Pharmacopoeia saline. The lower half of the drip tube was filled with the saline by pumping the drip tube. The flow rate adjusting clamp was gradually loosened, and the tube was filled with the saline solution, and then set on the infusion pump. The flow rate was set to 250 mL / h, the flow rate adjusting clamp was opened, the switch was turned on, and infusion was started. Immediately after this, the amount of physiological saline per minute flowing out from the tip was measured and used as the initial flow rate. After 24 hours, the flow rate per minute was again measured in the same manner. If the rate of change in flow rate after 24 hours was within 10%, it was considered acceptable.
Tube state after completion of pump infusion: After completion of the above-mentioned pump flow rate stability, the squeezed portion of the tube was incised, and the surface state of the inner and outer surfaces, the change in tube diameter, and the presence or absence of cracks were observed.
(ガンマ線耐性)
チューブにガンマ線照射後(25kGy)、肉眼にて色調および透明性を観察した。 (Gamma ray resistance)
After irradiating the tube with gamma rays (25 kGy), color tone and transparency were observed with the naked eye.
チューブにガンマ線照射後(25kGy)、肉眼にて色調および透明性を観察した。 (Gamma ray resistance)
After irradiating the tube with gamma rays (25 kGy), color tone and transparency were observed with the naked eye.
(電子線耐性)
加熱プレス法で得たシート(厚さ1mm)に対し、岩崎電気EB装置TYPE:CB250/15/180Lを用い、加速電圧250kV、照射線量30kGyの条件下、照射をシートの上下から計2回実施し、肉眼にて色調および透明性を観察した。 (Electron beam resistance)
Using the Iwasaki Electric EB equipment TYPE: CB250 / 15 / 180L, irradiation was performed twice from the top and bottom of the sheet under the conditions of an acceleration voltage of 250 kV and an irradiation dose of 30 kGy. The color tone and transparency were observed with the naked eye.
加熱プレス法で得たシート(厚さ1mm)に対し、岩崎電気EB装置TYPE:CB250/15/180Lを用い、加速電圧250kV、照射線量30kGyの条件下、照射をシートの上下から計2回実施し、肉眼にて色調および透明性を観察した。 (Electron beam resistance)
Using the Iwasaki Electric EB equipment TYPE: CB250 / 15 / 180L, irradiation was performed twice from the top and bottom of the sheet under the conditions of an acceleration voltage of 250 kV and an irradiation dose of 30 kGy. The color tone and transparency were observed with the naked eye.
本発明の熱可塑性エラストマー組成物は、透明性、軟質性、低温特性、引張特性、及び耐ブロッキング性に優れ、成形体、シート、医療用チューブに好適に使用可能である。
The thermoplastic elastomer composition of the present invention is excellent in transparency, softness, low temperature characteristics, tensile characteristics, and blocking resistance, and can be suitably used for molded articles, sheets, and medical tubes.
Claims (11)
- 芳香族ビニル化合物単量体単位10~23モル%、芳香族ポリエン単量体単位0.01~0.5モル%、残部がオレフィン単量体単位であるオレフィン-芳香族ビニル化合物系共重合体の主鎖と、芳香族ビニル化合物単量体単位からなる芳香族ビニル化合物重合体のクロス鎖を含むクロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物。 Olefin-aromatic vinyl compound copolymer in which aromatic vinyl compound monomer unit is 10 to 23 mol%, aromatic polyene monomer unit is 0.01 to 0.5 mol%, and the balance is olefin monomer unit Of acetylated monoglyceride plasticizer (B) 3 to 100 parts by mass of a cross-copolymer (A) comprising a main chain of the above and a cross-chain of an aromatic vinyl compound polymer comprising an aromatic vinyl compound monomer unit. A thermoplastic elastomer composition comprising 10 parts by mass.
- クロス共重合体(A)が、オレフィン-芳香族ビニル化合物系共重合体を70~95質量%、芳香族ビニル化合物重合体を5~30質量%を含む、請求項1に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer according to claim 1, wherein the cross-copolymer (A) contains 70 to 95% by mass of the olefin-aromatic vinyl compound copolymer and 5 to 30% by mass of the aromatic vinyl compound polymer. Composition.
- 芳香族ビニル化合物単量体単位がスチレンである請求項1または2のいずれかに記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 1, wherein the aromatic vinyl compound monomer unit is styrene.
- オレフィン単量体単位がエチレンである請求項1から3のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 3, wherein the olefin monomer unit is ethylene.
- 芳香族ポリエン単量体単位がジビニルベンゼンである請求項1から4のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 4, wherein the aromatic polyene monomer unit is divinylbenzene.
- アセチル化モノグリセライド系可塑剤(B)が実質的にアセチル化モノラウリルグリセライドである請求項1から5のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 5, wherein the acetylated monoglyceride plasticizer (B) is substantially acetylated monolauryl glyceride.
- クロス共重合体(A)が、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件をすべて満足する共重合体であることを特徴とする請求項1から6のいずれか一項に記載の熱可塑性エラストマー組成物。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~23モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%の範囲にある。 The cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The thermoplastic elastomer composition according to any one of claims 1 to 6, wherein the thermoplastic elastomer composition further satisfies the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 23 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, and the balance is the content of ethylene monomer units.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 to 300,000 and a molecular weight distribution (Mw / Mn) of 1.8 to 6.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass. - クロス共重合体(A)100質量部に対し、アセチル化モノグリセライド系可塑剤(B)3~10質量部を配合してなる熱可塑性エラストマー組成物であって、クロス共重合体(A)が、以下の(4)~(7)の条件をすべて満たす、熱可塑性エラストマー組成物。
(4)1H-NMR測定により、エチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体に帰属されるピークが観察され、エチレン-芳香族ビニル化合物共重合体中の芳香族ビニル化合物含量が10~23モル%であり、含まれるエチレン-芳香族ビニル共重合体成分の含量が70~95質量%の範囲であり、
(5)含まれるエチレン-芳香族ビニル化合物共重合体及び芳香族ビニル化合物重合体が結合を有しており、
(6)MFR(200℃、加重49N)が0.05~50g/10分の範囲であり、
(7)含まれるゲル分が0.2質量%以下である。 A thermoplastic elastomer composition comprising 3 to 10 parts by mass of an acetylated monoglyceride plasticizer (B) per 100 parts by mass of a cross copolymer (A), wherein the cross copolymer (A) is: A thermoplastic elastomer composition satisfying all the following conditions (4) to (7):
(4) By 1 H-NMR measurement, peaks attributed to the ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer were observed, and the aromatic vinyl compound in the ethylene-aromatic vinyl compound copolymer was observed. The content is 10 to 23 mol%, and the content of the ethylene-aromatic vinyl copolymer component contained is in the range of 70 to 95% by mass,
(5) The ethylene-aromatic vinyl compound copolymer and aromatic vinyl compound polymer contained have a bond,
(6) MFR (200 ° C., weight 49 N) is in the range of 0.05 to 50 g / 10 minutes,
(7) The gel content is 0.2% by mass or less. - 請求項1から8のいずれか一項に記載の熱可塑性エラストマー組成物を用いた成形体。 A molded body using the thermoplastic elastomer composition according to any one of claims 1 to 8.
- シートである請求項9に記載の成形体。 The molded article according to claim 9, which is a sheet.
- 医療用チューブである請求項9に記載の成形体。 The molded body according to claim 9, which is a medical tube.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-116139 | 2017-06-13 | ||
JP2017116139A JP2020128447A (en) | 2017-06-13 | 2017-06-13 | Thermoplastic elastomer composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230614A1 true WO2018230614A1 (en) | 2018-12-20 |
Family
ID=64660174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022616 WO2018230614A1 (en) | 2017-06-13 | 2018-06-13 | Thermoplastic elastomer composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020128447A (en) |
WO (1) | WO2018230614A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11124420A (en) * | 1997-10-24 | 1999-05-11 | Idemitsu Petrochem Co Ltd | Aromatic vinyl graft copolymer and its production |
JP2001316431A (en) * | 2000-05-08 | 2001-11-13 | Denki Kagaku Kogyo Kk | Medical molded article |
JP2002020553A (en) * | 2000-07-04 | 2002-01-23 | Shin Etsu Polymer Co Ltd | Polyolefin-based resin composition for packaging food |
JP2013202133A (en) * | 2012-03-27 | 2013-10-07 | Denki Kagaku Kogyo Kk | Medical tube |
-
2017
- 2017-06-13 JP JP2017116139A patent/JP2020128447A/en active Pending
-
2018
- 2018-06-13 WO PCT/JP2018/022616 patent/WO2018230614A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11124420A (en) * | 1997-10-24 | 1999-05-11 | Idemitsu Petrochem Co Ltd | Aromatic vinyl graft copolymer and its production |
JP2001316431A (en) * | 2000-05-08 | 2001-11-13 | Denki Kagaku Kogyo Kk | Medical molded article |
JP2002020553A (en) * | 2000-07-04 | 2002-01-23 | Shin Etsu Polymer Co Ltd | Polyolefin-based resin composition for packaging food |
JP2013202133A (en) * | 2012-03-27 | 2013-10-07 | Denki Kagaku Kogyo Kk | Medical tube |
Also Published As
Publication number | Publication date |
---|---|
JP2020128447A (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102623132B1 (en) | Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal | |
CN107922557B (en) | Hydrogenated block copolymer, polypropylene resin composition, and molded article | |
JP6099637B2 (en) | Block copolymer composition and sheet | |
EP3556806B1 (en) | Thermoplastic elastomer composition, extrusion-molded article, and medical tube | |
EP3165567B1 (en) | Polyolefin-based resin composition, film, medical bag, and tube | |
JP5062936B2 (en) | Block copolymer and composition thereof | |
JP5046469B2 (en) | Block copolymer composition | |
TWI655236B (en) | Block copolymer composition, manufacturing method and film thereof | |
JP5908771B2 (en) | Medical tube | |
WO2018230614A1 (en) | Thermoplastic elastomer composition | |
JP2018080248A (en) | Thermoplastic elastomer composition, and molded article and medical tube using the same | |
WO2017170903A1 (en) | Thermoplastic resin composition and molded object thereof | |
WO2018225744A1 (en) | Thermoplastic elastomer composition | |
KR20140138814A (en) | Multi-layer tube for medical use | |
JP2008221776A (en) | Laminated film | |
JP2004099749A (en) | Block copolymer composition and heat-shrinkable film therefrom | |
EP3478765B1 (en) | Polymer composition comprising at least one vinyl aromatic diene block copolymer and specific amounts of oil | |
JP4841060B2 (en) | Block copolymer and composition thereof | |
JP4641636B2 (en) | Block copolymer composition | |
EP4045106B1 (en) | Styrene butadiene block copolymer compositions for medical devices | |
JP4401052B2 (en) | Polymer composition and heat shrink film thereof | |
JP6896573B2 (en) | Styrene-based copolymer and its manufacturing method, molded product | |
WO2017110235A1 (en) | Cross - copolymer and medical single-layer tube including same | |
WO2023234054A1 (en) | Adhesive agent composition, hot-melt adhesive agent composition, and adhesive agent | |
JP2023049436A (en) | Tube using hydrogenated copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18817282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18817282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |