WO2017170903A1 - Thermoplastic resin composition and molded object thereof - Google Patents

Thermoplastic resin composition and molded object thereof Download PDF

Info

Publication number
WO2017170903A1
WO2017170903A1 PCT/JP2017/013332 JP2017013332W WO2017170903A1 WO 2017170903 A1 WO2017170903 A1 WO 2017170903A1 JP 2017013332 W JP2017013332 W JP 2017013332W WO 2017170903 A1 WO2017170903 A1 WO 2017170903A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mass
resin composition
resin
amorphous
Prior art date
Application number
PCT/JP2017/013332
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 瀬野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59965969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017170903(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018509452A priority Critical patent/JP6835069B2/en
Publication of WO2017170903A1 publication Critical patent/WO2017170903A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Definitions

  • the present invention relates to a thermoplastic resin composition capable of self-healing even if a scratch occurs, and a molded body thereof.
  • Patent Document 1 describes an incompatible composition composed of poly (styrene-butadiene) and sulfonated poly (styrene-butadiene).
  • Patent Document 1 In recent years, transparency is also required for self-healing materials.
  • the composition described in Patent Document 1 is opaque because it is incompatible, and a necessary polymer is designed according to a temperature at which self-repair occurs (hereinafter, referred to as a repair temperature). There is a problem that it is necessary to synthesize and it is difficult to adjust the repair temperature.
  • An object of the present invention is to provide a thermoplastic resin composition that can give a molded article that is transparent and has self-healing performance, and that can easily adjust the repairing temperature by adjusting the content of its constituent components. And a molded article comprising the thermoplastic resin composition.
  • the present invention provides the following thermoplastic resin composition and molded article.
  • Amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5, and a weight average molecular weight of 500 to 50,
  • An amorphous thermoplastic resin (B) that is less than 000, the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) being 100% by mass
  • the content of the crystalline thermoplastic resin (A) is 25% by mass to 85% by mass
  • the content of the amorphous thermoplastic resin (B) is 15% by mass to 75% by mass
  • Thermoplastic resin composition satisfying (1) and requirement (2): Requirement (1)
  • the glass transition temperature of the thermoplastic resin composition is 0 ° C.
  • thermoplastic resin composition further contains a crystalline thermoplastic resin (C), The thermoplastic resin composition according to [1], wherein the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0.01 to 9% by mass. object.
  • a molded article comprising the thermoplastic resin composition according to [1] or [2].
  • thermoplastic resin composition which can give the molded object which is transparent and has self-repair performance, and can perform adjustment of repair temperature easily, and shaping
  • the body can be provided.
  • the amorphous thermoplastic resin is a thermoplastic resin having a crystal melting enthalpy (hereinafter sometimes referred to as ⁇ H) observed by differential scanning calorimetry of 40 J / g or less.
  • ⁇ H of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) is preferably 10 J / g or less, more preferably 1 J / g or less.
  • the melting enthalpy is obtained by analyzing a portion in the temperature range of ⁇ 50 ° C. or higher and 200 ° C. or lower of a melting curve measured by the following differential scanning calorimetry by a method based on JIS K7122.
  • thermoplastic resin composition of the present invention Next, a specific configuration of the thermoplastic resin composition of the present invention will be described.
  • thermoplastic resin composition of the present invention contains an amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5. .
  • the weight average molecular weight of the amorphous thermoplastic resin (A) is 50,000 or more and 500,000 or less, and the self-repairing performance and molding processability are improved, and the rigidity of the molded body made of the resin composition is increased. From the viewpoint, it is preferably 75,000 or more and 400,000 or less, more preferably 100,000 or more and 300,000 or less.
  • the molecular weight distribution is the ratio of the weight average molecular weight to the number average molecular weight.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography
  • the molecular weight distribution is a polystyrene equivalent number average measured by gel permeation chromatography.
  • a polymer soluble in chloroform is subjected to gel permeation chromatography using chloroform as a solvent.
  • those insoluble in chloroform are dissolved in xylene and then subjected to gel permeation chromatography using chloroform as a solvent.
  • the melt flow rate of the amorphous thermoplastic resin (A) measured at a temperature of 190 ° C. and a load of 21 N in accordance with JIS K7210 is preferably 0.01 g / 10 minutes from the viewpoint of improving moldability. As mentioned above, More preferably, it is 0.05 g / 10min or more, More preferably, it is 0.1 g / 10min or more.
  • the melt flow rate of the amorphous thermoplastic resin (A) is preferably 500 g / 10 min or less, more preferably from the viewpoint of improving the molding processability and increasing the rigidity of the molded body made of the resin composition. Is 50 g / 10 min or less, more preferably 10 g / 10 min or less.
  • the glass transition temperature of the thermoplastic amorphous resin (A) is preferably ⁇ 70 ° C. or higher and 150 ° C. or lower, more preferably ⁇ 50 ° C. or higher and 120 ° C. or lower, and further preferably ⁇ 30 ° C. or higher and 100 ° C. or lower. It is below °C.
  • the glass transition temperature is an intermediate glass transition temperature obtained by analyzing a melting curve measured by the following differential scanning calorimetry method by a method based on JIS K7121. [Differential scanning calorimetry] By means of a differential scanning calorimeter, an aluminum pan encapsulating about 5 mg of sample in a nitrogen atmosphere was (1) held at 200 ° C.
  • amorphous thermoplastic resin (A) examples include olefin resins, styrene elastomers, acrylic resins, polyester resins, polyamide resins, styrene / acrylonitrile resins, engineering plastics, polyvinyl chloride, chlorinated rubber, natural rubber, and chloroprene. Examples thereof include rubber, fluorine rubber, silicon rubber, and urethane rubber. Among these, olefin resin, styrene elastomer, acrylic resin, and engineering plastic are preferable. These may be used alone or in combination of two or more. Moreover, the amorphous thermoplastic resin (A) may be cross-linked.
  • the copolymer exemplified below may be a random copolymer or a block copolymer.
  • the olefin resin is a resin containing monomer units derived from olefins.
  • the olefin resin include amorphous propylene resin, amorphous ethylene resin, amorphous cyclic olefin resin, butyl rubber, polybutadiene, and isoprene resin.
  • the amorphous propylene resin is a polymer containing monomer units derived from propylene and having a ⁇ H of 40 J / g or less.
  • Amorphous propylene resins include propylene homopolymer, propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene copolymer , Propylene-vinylcyclohexane copolymer, propylene-4-vinylcyclohexene copolymer, propylene-norbornene copolymer, propylene-styrene copolymer, maleic anhydride modified propylene homopolymer, maleic anhydride modified propylene-ethylene copolymer Polymer, maleic anhydride modified propylene-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-propylene-1-hexene copolymer, ethylene-propylene-1-octene copolymer, ethylene-propylene -4-methyl-1-pentene copoly
  • the amorphous propylene resin is, for example, an atactic propylene resin.
  • the amorphous ethylene resin is a polymer containing 100% by mass of the amorphous ethylene resin, containing 50% by mass or more of monomer units derived from ethylene, and ⁇ H of 40 J / g or less.
  • Amorphous ethylene resins include ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene- Vinylcyclohexane copolymer, ethylene-4-vinylcyclohexene copolymer, ethylene-norbornene copolymer, ethylene-tetracyclododecene copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer Ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and the like.
  • the amorphous cyclic olefin resin is a polymer having a mass of the cyclic olefin resin of 100% by mass, containing 50% by mass or more of monomer units derived from the cyclic olefin, and a ⁇ H of 40 J / g or less.
  • Examples of the amorphous cyclic olefin resin include a norbornene ring-opening polymer, a tetracyclododecene ring-opening polymer, a norbornene-ethylene copolymer, a tetracyclododecene-ethylene copolymer, and the like.
  • the isoprene resin examples include polyisoprene, a copolymer of a C10 alicyclic compound that is a dimerized product of isoprene and a C10 chain compound, and the like.
  • the olefin resin is preferably an amorphous propylene resin, more preferably a propylene homopolymer, a propylene-1-butene copolymer, or an ethylene-propylene-1-butene copolymer.
  • styrene elastomer examples include styrene-butadiene-styrene triblock copolymer (SBS), styrene-isoprene-styrene triblock copolymer (SIS), styrene-butadiene random copolymer (SBR), and styrene- Isobutylene-styrene block copolymers (SIBS), hydrogenated products in which some or all of the carbon-carbon double bonds of these SBS copolymers are hydrogenated, maleic anhydride modified styrene-isoprene-styrene block copolymers Examples thereof include a polymer (MAH-SIS) and a maleic anhydride-modified styrene-butadiene-styrene block copolymer (MAH-SBS).
  • SBS styrene-butadiene-styrene triblock copolymer
  • These hydrogenated products include styrene- (ethylene / propylene) -styrene block copolymer (SEPS; SIS hydrogenated product), styrene- (ethylene / butylene) -styrene block copolymer (SEBS; hydrogenated SBS).
  • SEPS styrene- (ethylene / propylene) -styrene block copolymer
  • SEBS hydrogenated SBS
  • SEEPS Styrene-ethylene- (ethylene / propylene) -styrene block copolymer
  • SEEPS Styrene-ethylene- (ethylene / propylene) -styrene block copolymer
  • SBR hydrogenated polystyrene block copolymer
  • MAH-SEBS maleic anhydride modified styrene- ( And ethylene / butylene) -styrene block copolymer
  • MAH-SEPS maleic anhydride-modified styrene- (ethylene / propylene) -styrene block copolymer
  • a styrene-butadiene-styrene triblock copolymer a styrene-isoprene-styrene triblock copolymer, a styrene-butadiene random copolymer, a styrene- (ethylene / propylene) -styrene block copolymer, A styrene- (ethylene / butylene) -styrene block copolymer, a hydrogenated product in which part or all of these carbon-carbon double bond portions are hydrogenated.
  • acrylic resin examples include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, methyl acrylate-methyl methacrylate copolymer, and the like. . Of these, polybutyl methacrylate and polybutyl acrylate are preferable.
  • polyester resin examples include amorphous polyethylene terephthalate.
  • polyamide resin examples include amorphous polyamide.
  • styrene / acrylonitrile resin examples include polystyrene, ⁇ -methylstyrene-vinyltoluene copolymer, styrene-acrylonitrile copolymer, styrene-acrylonitrile-butadiene copolymer, styrene-acrylonitrile-indene copolymer, polyacrylonitrile and the like. Can be mentioned.
  • Examples of the engineering plastic include polysulfone, polyethersulfone, polyarylate, polyamideimide, polyetherimide, modified polyphenylene ether, and polycarbonate. Of these, polycarbonate is preferable.
  • thermoplastic resin composition of the present invention contains an amorphous thermoplastic resin (B) having a weight average molecular weight of 500 or more and less than 50,000.
  • the weight average molecular weight of the amorphous thermoplastic resin (B) is 500 or more and less than 50,000, and is preferably 700 from the viewpoint of improving self-healing performance, increasing the strength of the molded product, and suppressing tackiness. It is 40,000 or less, and more preferably 900 or more and 30,000 or less.
  • the glass transition temperature of the amorphous thermoplastic resin (B) is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 30 ° C. or higher and 150 ° C. or lower, and further preferably 40 ° C. or higher and 120 ° C. or lower. is there.
  • the molecular weight distribution of the amorphous thermoplastic resin (B) is preferably 1.0 or more and 4.5 or less, more preferably 1.0 or more, from the viewpoint of increasing the strength of the molded body and suppressing the adhesiveness. 4.0 or less, more preferably 1.0 or more and 3.5 or less.
  • Examples of the amorphous thermoplastic resin (B) in the present invention include the olefin resin, styrene elastomer, acrylic resin, polyester resin, polyamide resin, styrene / acrylonitrile resin, engineering plastic, polyvinyl chloride, and chlorinated rubber. Natural rubber, chloroprene rubber, fluorine rubber, silicon rubber, urethane rubber, rosin resin, terpene resin, petroleum resin, coumarone resin, xylene resin, styrene / maleic anhydride resin, and the like. Among them, rosin resin, terpene resin, styrene-maleic anhydride resin and the like are preferable.
  • the amorphous thermoplastic resin (B) may be cross-linked.
  • the amorphous thermoplastic resin (B) is a copolymer
  • the copolymer may be a random copolymer or a block copolymer.
  • rosin resin examples include natural rosin, polymerized rosin, partially hydrogenated rosin, fully hydrogenated rosin, esterified products of these rosins (for example, glycerin ester, pentaerythritol ester, ethylene glycol ester, methyl ester), rosin derivatives (for example, Disproportionated rosin, fumarized rosin, lime rosin).
  • terpene resin examples include homopolymers of cyclic terpenes such as ⁇ -pinene, ⁇ -pinene, and dipentene, copolymers of cyclic terpenes, and copolymers of cyclic terpenes and phenolic compounds such as phenol and bisphenol (for example, Terpene-phenol resins such as ⁇ -pinene-phenol resins, dipentene-phenol resins and terpene-bisphenol resins), aromatic modified terpene resins which are copolymers of cyclic terpenes and aromatic monomers, and carbons thereof
  • a hydrogenated terpene resin which is a hydrogenated product in which part or all of the intercalated double bond portion is hydrogenated can be mentioned.
  • Examples of the petroleum resin include homopolymers and copolymers of naphtha cracked oil C5 fraction, C6 to C11 fraction and other olefinic fractions, and carbon-carbon double bond portions of these homopolymers and copolymers.
  • Examples thereof include aliphatic petroleum resins, aromatic petroleum resins, alicyclic petroleum resins, and aliphatic-alicyclic copolymer resins, which are hydrogenated products in which a part or all of them are hydrogenated.
  • the synthetic petroleum resin further includes a copolymer of naphtha cracked oil and the above terpene, and a copolymer petroleum resin that is a hydrogenated product of the copolymer.
  • Examples of the coumarone resin include a polymer having one or more monomer units selected from the group consisting of coumarone, indene and styrene.
  • the thermoplastic resin composition of the present invention is the amorphous thermoplastic resin (A), wherein the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) is 100% by mass. Is 25 mass% or more and 85 mass% or less, and content of the said amorphous thermoplastic resin (B) is 15 mass% or more and 75 mass% or less. From the viewpoint of the strength of the molded body made of the thermoplastic resin, the content of the amorphous thermoplastic resin (A) is preferably 30% by mass or more, more preferably 35% by mass or more. From the viewpoint of the self-healing performance of the molded body made of the thermoplastic resin, the content of the amorphous thermoplastic resin (A) is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the thermoplastic resin composition of the present invention satisfies the requirements (1) and (2).
  • the glass transition temperature of the thermoplastic resin composition of the present invention is 0 ° C. or higher and 200 ° C. or lower.
  • the glass transition temperature of the thermoplastic resin composition is preferably 0 ° C. or higher and 150 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower.
  • only one glass transition temperature of the thermoplastic resin composition is observed within a temperature range of ⁇ 50 ° C. to 200 ° C. Is preferred. Only one glass transition temperature of the thermoplastic resin composition is observed within a temperature range of ⁇ 50 ° C. or higher and 200 ° C. or lower, which means that the thermoplastic resin contained in the thermoplastic resin composition is compatible.
  • the haze of a sheet having a thickness of 1 mm made of a thermoplastic resin composition is less than 8.0%.
  • the haze is preferably less than 7%, more preferably less than 5%.
  • the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) are in phase so that the haze of the 1 mm thick sheet made of the thermoplastic resin composition of the present invention is less than 8.0%. Select a combination to dissolve.
  • the thermoplastic resin composition further contains a crystalline thermoplastic resin (C) described later, the crystallinity is set so that the haze of the 1 mm thick sheet made of the thermoplastic resin composition is less than 8.0%.
  • the content of the thermoplastic resin (C) is adjusted.
  • the crystalline thermoplastic resin (C) and the amorphous thermoplastic resin (A) are amorphous so that the haze of the 1 mm thick sheet made of the thermoplastic resin composition of the present invention is less than 8.0%. It is preferable to be compatible with the thermoplastic resin (B).
  • the combination of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) contained in the thermoplastic resin composition of the present invention includes olefin resin and olefin resin, styrene elastomer and styrene elastomer, acrylic Resin and acrylic resin, polycarbonate and polycarbonate, olefin resin and rosin resin, olefin resin and terpene resin, olefin resin and petroleum resin, styrene elastomer and rosin resin, styrene elastomer and terpene resin, styrene elastomer and petroleum resin, acrylic resin And rosin resin, acrylic resin and terpene-phenol resin, polycarbonate and styrene-maleic anhydride resin.
  • the melt flow rate of the thermoplastic resin composition of the present invention measured at a temperature of 190 ° C. and a load of 21 N in accordance with JIS K7210 is preferably 0.05 to 300 g / 10 minutes, more preferably 0.1 to It is 200 g / 10 minutes, and more preferably 0.2 to 100 g / 10 minutes.
  • the thermoplastic resin composition of the present invention may contain a crystalline thermoplastic resin (C) in order to increase the rigidity of the molded body made of the thermoplastic resin composition.
  • the crystalline thermoplastic resin is a thermoplastic resin having a ⁇ H greater than 40 J / g.
  • the ⁇ H of the crystalline thermoplastic resin (C) is preferably 80 J / g or more.
  • crystalline thermoplastic resin (C) As said crystalline thermoplastic resin (C), crystalline olefin resin, wax, and paraffin are mentioned.
  • a crystalline olefin resin is a polymer containing monomer units derived from olefins and having a ⁇ H greater than 40 J / g.
  • Examples of the crystalline olefin resin include crystalline propylene resin and crystalline ethylene resin.
  • the crystalline propylene resin is a polymer containing monomer units derived from propylene and having a ⁇ H of greater than 40 J / g.
  • the crystalline propylene resin includes a propylene homopolymer, a propylene copolymer containing a monomer unit derived from propylene, and a monomer unit selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 10 carbon atoms.
  • a polymer is mentioned.
  • the propylene-based copolymer include a propylene-ethylene copolymer.
  • the propylene-based copolymer may be a random copolymer or a block copolymer.
  • the crystalline propylene resin may be modified with at least one compound selected from unsaturated carboxylic acids and derivatives thereof.
  • the at least one compound selected from unsaturated carboxylic acids and derivatives thereof includes maleic anhydride.
  • the crystalline ethylene resin is a polymer containing 50% by mass or more of monomer units derived from ethylene with a mass of the crystalline ethylene resin of 100% by mass and a ⁇ H of greater than 40 J / g.
  • Examples of the crystalline ethylene resin include high-density polyethylene, high-pressure low-density polyethylene, and ethylene- ⁇ -olefin copolymer.
  • the crystalline ethylene resin may be modified with at least one compound selected from unsaturated carboxylic acids and derivatives thereof.
  • the at least one compound selected from unsaturated carboxylic acids and derivatives thereof includes maleic anhydride. These resins may be used alone or in combination of two or more.
  • the crystalline thermoplastic resin (C) may be cross-linked.
  • the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0.
  • the content is preferably 0.01 to 9% by mass, more preferably 0.01 to 8% by mass, and still more preferably 0.01 to 6% by mass.
  • the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is as follows.
  • the content is preferably 0 to less than 0.01% by mass.
  • thermoplastic resin composition of the present invention if necessary, an antioxidant, an ultraviolet absorber, a crosslinking agent, a thermal stabilizer, a photodegradation inhibitor, an impact modifier, a plasticizer, a lubricant, a mold release agent, Nucleating agents, halogen-based flame retardants and non-halogen (polyphosphoric acid-based, red phosphorus-based, etc.) flame retardants, flame retardant aids, colorants such as pigments and dyes, mineral oil-based softeners, foaming agents, processing aids, An antistatic material or the like may be added.
  • an antioxidant an ultraviolet absorber, a crosslinking agent, a thermal stabilizer, a photodegradation inhibitor, an impact modifier, a plasticizer, a lubricant, a mold release agent, Nucleating agents, halogen-based flame retardants and non-halogen (polyphosphoric acid-based, red phosphorus-based, etc.) flame retardants, flame retardant aids, colorants such as pigments and dye
  • the total amount of the thermoplastic resin composition of the present invention is 100% by mass, and the total content of the amorphous thermoplastic resin (A), the amorphous thermoplastic resin (B), and the crystalline thermoplastic resin (C).
  • the amount is preferably 90% by mass or more, more preferably 91% by mass or more, further preferably 95% by mass or more, and further preferably 98% by mass or more.
  • thermoplastic resin composition and molded article are also included.
  • Amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5, and a weight average molecular weight of 500 to 50, Amorphous thermoplastic resin (B) that is less than 000, no filler, and the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B).
  • Amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5, and a weight average molecular weight of 500 to 50
  • Amorphous thermoplastic resin (B) that is less than 000, no filler, and the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B).
  • the content of the amorphous thermoplastic resin (A) is 25 mass% or more and 85 mass% or less
  • Thermoplastic resin composition satisfying the following requirement (1) and requirement (2): Requirement (1)
  • the glass transition temperature of the thermoplastic resin composition is 0 ° C. or higher and 200 ° C. or lower; and Requirement (2)
  • the haze of a 1 mm thick sheet made of the thermoplastic resin composition is less than 8.0% It is.
  • the thermoplastic resin composition further contains a crystalline thermoplastic resin (C),
  • the thermoplastic resin composition according to [4] wherein the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0.01 to 9% by mass. object.
  • a molded article comprising the thermoplastic resin composition according to [4] or [5].
  • the filler include inorganic fillers and organic fillers.
  • the thermoplastic resin composition is obtained by melt-mixing an amorphous thermoplastic resin (A), an amorphous thermoplastic resin (B), and a crystalline thermoplastic resin (C) as necessary. can get.
  • the method of melt mixing is not particularly limited, and examples thereof include known mixing methods, for example, a mixing method using an extruder, an open roll mill, a Banbury mixer, a kneader, or a melt mixing tank.
  • the temperature at the time of melt mixing is usually from 100 to 250 ° C., preferably from 130 to 200 ° C.
  • the molded body composed of the thermoplastic resin composition can self-repair not only the surface of the molded body but also the internal damage of the molded body.
  • the shape of the molded body includes a sheet, mat, film, pipe, tube, container, net, fiber, connector and the like.
  • Examples of the method for producing the molded body include injection molding, injection compression molding, press molding, and extrusion molding.
  • thermoplastic resin composition may be dissolved in a good solvent and used as a coating liquid.
  • a coating film formed by applying the coating liquid to a substrate and removing the solvent from the obtained coating film is also an example of the molded body.
  • the sheet composed of the thermoplastic resin composition may be used as a single layer, or the sheet composed of the thermoplastic resin composition is used as at least one layer. You may use as a multilayer sheet containing.
  • the multilayer sheet is a multilayer sheet having three or more layers, an adhesive layer may be provided as one layer.
  • the thickness of the sheet made of the thermoplastic resin composition is not particularly limited, but is usually 0.5 to 500 mm. In a multilayer sheet including the sheet made of the thermoplastic resin composition as at least one layer, the thickness of the layer made of the sheet made of the thermoplastic resin composition is usually 0, with the thickness of the multilayer sheet being 100%. 0.01 to 99.99%.
  • the film made of the thermoplastic resin composition may be used as a single layer, or the film made of the thermoplastic resin composition is used as at least one layer. It may be used as a multilayer film.
  • an adhesive layer may be provided as one layer.
  • the thickness of the film made of the thermoplastic resin composition is not particularly limited, but is usually 10 to 500 ⁇ m. In a multilayer film including the film composed of the thermoplastic resin composition as at least one layer, the thickness of the multilayer film is 100%, and the thickness of the layer composed of the film composed of the thermoplastic resin composition is usually 0. 0.01 to 99.99%.
  • the layer composed of the film or sheet made of the thermoplastic resin composition of the present invention is applied by applying a coating liquid containing the thermoplastic resin composition of the present invention to the substrate. It may be a layer formed by removing the solvent from the film.
  • the resin constituting the layer different from the layer composed of the film or sheet made of the thermoplastic resin composition of the present invention includes olefin resin, acrylic resin, styrene / acrylonitrile resin, polysulfone.
  • the olefin resin include ethylene resin, propylene resin, polybutene resin, and poly (4-methyl-1-pentene) resin.
  • the olefin resin may be modified with at least one compound selected from unsaturated carboxylic acids and derivatives thereof.
  • the olefin resin may be an amorphous olefin resin or a crystalline olefin resin.
  • the ethylene resin include high-density polyethylene, high-pressure low-density polyethylene, ethylene- ⁇ -olefin copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene -Methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-acrylic acid ester-glycidyl methacrylate copolymer.
  • styrene / acrylonitrile resin examples include polystyrene, styrene-acrylonitrile copolymer, and styrene-acrylonitrile-butadiene copolymer.
  • polyester resin examples include polyethylene terephthalate and polybutylene terephthalate.
  • Rubbers include natural rubber, polybutadiene rubber, polyacrylonitrile rubber, acrylonitrile-butadiene copolymer rubber, partially hydrogenated acrylonitrile-butadiene copolymer rubber, butyl rubber, chloroprene rubber, fluoro rubber, chlorosulfonated polyethylene, silicon rubber, Examples thereof include urethane rubber, isobutylene-isoprene copolymer rubber, halogenated isobutylene-isoprene copolymer rubber, chlorinated rubber, and styrene rubber.
  • Examples of the method for producing the multilayer film or multilayer sheet include a coextrusion inflation molding method, a coextrusion T-die casting molding method, a dry laminating method, a wet laminating method, a sand laminating method, and a hot melt laminating method.
  • the molded body may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, ozone treatment on the surface of the molded body. Moreover, in the manufacturing method of said multilayer film or multilayer sheet, you may perform the said surface treatment to at least one layer before lamination
  • the molded body may be coated on the surface of the molded body.
  • Coating treatment includes antistatic treatment, insulating treatment, conductive treatment, antiglare treatment, antireflection treatment, antifogging treatment, rustproofing treatment, waterproof treatment, antifouling treatment, antibacterial treatment, water repellent treatment, hydrophilic treatment, oil repellent treatment Treatment, water / oil repellency treatment, hydrophilic / lipophilic treatment, hard coat treatment, gas barrier treatment, sound absorption / vibration treatment, high refractive index treatment, scratch resistance treatment, weather resistance treatment, mold release treatment, biocompatibility treatment, etc. .
  • molded product of the present invention will be described below. Specific applications include sealing materials, heat insulation materials, soundproofing materials, shoe soles, packaging materials, coating materials, patches, bandages, hose clips, fluid transport pipes, flexible hoses, asphalt additives, hot melt adhesives, and adhesives Additives for agents, articles that generally need to exhibit good fracture resistance and / or fatigue resistance, and the like.
  • Optical applications include optical films, optical sheets, optical filters, high-intensity prism sheets, optical condensing spheres, antireflection optical articles, light controllable laminates, transparent daylighting materials, antiglare films, protective films, and pen input. Examples include surface materials for devices.
  • Electrical equipment relations include electrical cables, sheaths, wire coating materials, electrical insulation members, electronic equipment casings, machine parts, vibration-resistant fatigue members, capacitors, solid electrolytes, and the like.
  • Tire materials include tire tubes and tire puncture sealing.
  • Others include fiber reinforced materials, rust preventives, corrosion inhibitors, spray pigments, paints such as barrier materials (organic matter, gas, humidity), pet building materials, building materials such as floors, walls, doors, waterproof sheets, waterproofing Sheet, Actuator, Cleaning pad, Automobile material, Artificial leather, Synthetic leather, Artificial skin, Endovascular stent, Septum, Dental composite restoration material, Sleeve material, Laminated glass, Transfer foil, Flame retardant film, Writing instrument shaft Tube, cushion material, cushioning agent, agricultural film, decorative film, decorative sheet, greenhouse sheet, insect net, furniture, clothes, bag, shoes, sports equipment, container, cutting board, cutting board, antibacterial film, antibacterial molding Body, barrier film, packing and the like.
  • barrier materials organic matter, gas, humidity
  • pet building materials building materials such as floors, walls, doors, waterproof sheets, waterproofing Sheet, Actuator, Cleaning pad
  • Automobile material Artificial leather, Synthetic leather, Artificial skin, Endovascular stent, Septum, Dental composite restoration material, Sleeve material, Laminated glass, Transfer foil, Flame retardant film
  • the melting curve was analyzed by a method based on JIS K7121, and the melting point and glass transition temperature were determined.
  • the melting enthalpy ⁇ H (J / g) was obtained by analyzing the melting curve by a method based on JIS K7122.
  • Melt flow rate (MFR, unit: g / 10 minutes) According to the method defined in JIS K7210, measurement was performed by the A method under the conditions of a load of 21 N and a temperature of 190 ° C. or 230 ° C.
  • a press sheet (thickness: 1 mm) of the resin composition
  • the obtained composition was sandwiched between a PET film or a release PET film, an aluminum plate, and a steel plate, and a hot press at 190 ° C. for 5 minutes. After preheating, the pressure was applied for 5 minutes. After completion of pressurization, the sheet was cooled with a cooling press at 30 ° C. to obtain a press sheet. At this time, the thickness of the press sheet was adjusted to 1 mm using a steel spacer.
  • Each test piece was subjected to a tensile test using a tensile testing machine (RTF-1325-PL-WS, manufactured by A & D) at a distance between grips of 60 mm and a speed of 100 mm / min. The measurement was performed at a temperature of 23 ° C. ⁇ 2 ° C. and a humidity of 50% ⁇ 5%. In addition, the said tension test was complete
  • a tensile testing machine RTF-1325-PL-WS, manufactured by A & D
  • Repair rate (%) ((Elongation when cutting a sample after repair) ⁇ (Elongation when cutting a damaged sample)) / ((Elongation when cutting without a scratch) ⁇ (Elongation when cutting with a wound)) ⁇ 100
  • the repair rate calculated by measuring elongation at break using a test piece heated at 40 ° C. for 17 hours in a blow dryer is referred to as a repair rate (40 ° C.).
  • the repair rate calculated by measuring the elongation at break using a test piece heated at 80 ° C. for 17 hours in a blow dryer is referred to as the repair rate (80 ° C.).
  • the reaction mixture was continuously withdrawn so that the reaction mixture in the polymerization vessel maintained an amount of 100 L.
  • dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride as a component of the polymerization catalyst at a supply rate of 0.005 g / hour
  • Triphenylmethyltetrakis (pentafluorophenyl) borate was continuously fed at a feed rate of 0.298 g / hr and triisobutylaluminum was fed at a feed rate of 2.315 g / hr.
  • the copolymerization reaction was carried out at 45 ° C. by circulating cooling water through a jacket attached to the outside of the polymerization vessel. A small amount of ethanol was added to the reaction mixture continuously extracted from the upper part of the polymerization vessel to stop the polymerization reaction, and then the monomer was removed and washed with water. Next, the solvent was removed with steam in a large amount of water, and further dried under reduced pressure at 80 ° C. for 24 hours to obtain an amorphous propylene-1-butene copolymer. The production rate of the copolymer was 7.10 kg / hour.
  • n-butyllithium n-hexane solution (Tokyo Chemical Industry Co., Ltd., n-butyllithium concentration 1.6 mol / L) until it is colored, scavenge impurities contained in the system, add 0.05 mL, 30 Polymerization was started by raising the temperature to 0 ° C. After 300 minutes, 1 mL of Echinen F-6 (Nihon Alcohol Sales) was added to stop the polymerization. After the termination of the polymerization, 600 mL of toluene was added to the tetrahydrofuran solution containing the polymer, and the resulting solution was washed with about 500 mL of pure water until the solution became neutral.
  • Echinen F-6 Nehon Alcohol Sales
  • the polymer was precipitated by adding the washing liquid into Echinen F-6, and the polymer separated by filtration was further washed twice with Echinen F-6.
  • the obtained polymer was vacuum dried at 80 ° C. to obtain 35 g of a polymer.
  • the MFR could not be measured because the sample did not flow under the conditions of 190 ° C. and 21N.
  • Example 1 39% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B).
  • Example 2 48% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B).
  • 150 (manufactured by Yasuhara Chemical Co., Ltd.) 48% by mass, and 4% by mass of“ Sumitomo Nobrene FLX80E4 ” was used as the crystalline thermoplastic resin (C).
  • MFR of the obtained resin composition was 22 g / 10min (190 degreeC, 21N), and Tg was 9.1 degreeC.
  • the press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 74%, the repair rate (40 ° C.) was 0%, the Young's modulus was 250 MPa, and the haze was 4.0%.
  • Example 3 57% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B).
  • MFR of the obtained resin composition was 15 g / 10min (190 degreeC, 21N), and Tg was 5.0 degreeC.
  • the press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 100%, the repair rate (40 ° C.) was 40%, the Young's modulus was 35 MPa, and the haze was 3.7%.
  • Example 4 Styrene-isoprene-styrene block copolymer “Hibler 5127” (manufactured by Kuraray Co., Ltd.) 60% by mass as the amorphous thermoplastic resin (A), hydrogenated terpene resin “Clearon P” as the amorphous thermoplastic resin (B) The same procedure as in Example 1 was carried out except that 40% by mass of “ ⁇ 105” was used. MFR of the obtained resin composition was 54 g / 10min (190 degreeC, 21N), and Tg was 19.3 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 61%, Young's modulus 374 MPa, and haze 7.8%.
  • Example 5 Hydrogenated styrene-isoprene-styrene block copolymer “HIBLER 7311F” (manufactured by Kuraray Co., Ltd.) 40% by mass as the amorphous thermoplastic resin (A), hydrogenated terpene resin “Amorphous thermoplastic resin (B)” The same procedure as in Example 1 was performed except that 60% by mass of Clearon P-150 was used. MFR of the obtained resin composition was 37 g / 10min (190 degreeC, 21N), and Tg was 19.4 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 97%, Young's modulus 556 MPa, and haze 2.6%.
  • Example 3 84% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B).
  • Example 10 was carried out in the same manner as in Example 1 except that 9% by mass of 105 ”and 7% by mass of“ Sumitomo Nobrene FLX80E4 ”were used as the crystalline thermoplastic resin (C).
  • the obtained resin composition had an MFR of 6.2 g / 10 min (190 ° C., 21 N), and a Tg of ⁇ 7.5 ° C.
  • the press sheet produced from the obtained resin composition had high adhesiveness, was not stampable, and the repair rate could not be measured.
  • the haze was 9.2%.
  • Example 4 50% by mass of propylene resin “Best Plast 703” (manufactured by Evonik) as amorphous thermoplastic resin (A) and 50% by mass of hydrogenated terpene resin “Clearon P-150” as amorphous thermoplastic resin (B)
  • the same operation as in Example 1 was carried out except that it was used.
  • the obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more, and a Tg of ⁇ 2.5 ° C.
  • the press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured.
  • the haze was 15.6%.
  • amorphous thermoplastic resin (A) 50% by mass of propylene resin “Best Plast 708” (Evonik) and 50% by mass of hydrogenated terpene resin “Clearon P-150” as amorphous thermoplastic resin (B).
  • the same operation as in Example 1 was carried out except that it was used.
  • the obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more, and a Tg of ⁇ 5.3 ° C.
  • the press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured.
  • the haze was 56.4%.
  • Example 6 50% by mass of propylene resin “Best Plast 792” (manufactured by Evonik) as amorphous thermoplastic resin (A), and 50% by mass of hydrogenated terpene resin “Clearon P-150” as amorphous thermoplastic resin (B)
  • the same operation as in Example 1 was carried out except that it was used.
  • the obtained resin composition had an MFR of 904 g / 10 min (190 ° C., 21 N), and a Tg of ⁇ 3.1 ° C.
  • the press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured.
  • the haze was 55.0%.
  • the obtained resin composition had an MFR of 124 g / 10 min (190 ° C., 21 N), and a Tg of 5.0 ° C.
  • the press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 118 MPa, and haze 8.3%.
  • the obtained resin composition had an MFR of 5 g / 10 min (190 ° C., 21 N), and a Tg of ⁇ 13.9 ° C.
  • the press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 70 MPa, and haze 10.0%.
  • amorphous thermoplastic resin (A) 41% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1, and as the amorphous thermoplastic resin (B), a hydrogenated petroleum resin “Alcon P— 90 "(Arakawa Chemical Industries, Ltd.) 45% by mass, 4% by mass of Sumitomo Nobrene FLX80E4 as crystalline thermoplastic resin (C), and 10% by mass of petroleum wax” Paraffin Wax 155 "(Nippon Seiwa Co., Ltd.) The same procedure as in Example 1 was performed except that% was used. MFR of the obtained resin composition was 132 g / 10min (190 degreeC, 21N). The haze of the press sheet produced from the obtained resin composition was 77.2%.
  • MFR of the obtained resin composition was 196 g / 10min (190 degreeC, 21N), and Tg was 2.2 degreeC.
  • the press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 1100 MPa, and haze 36.1%.
  • thermoplastic resin (A) As the amorphous thermoplastic resin (A), 5.6% by mass of the propylene resin “Tough Selenium X1107”, as the amorphous thermoplastic resin (B), 55.5% by mass of the hydrogenated terpene resin “Clearon P-125”, crystalline Example except that 16.7% by mass of crystalline propylene resin “Wintech WFX4” and 22.2% by mass of crystalline propylene resin “Biscol 660P” (manufactured by Sanyo Chemical Industries, Ltd.) were used as the thermoplastic resin (C). 1 was carried out. The MFR of the obtained resin composition was 2000 g / 10 min (190 ° C., 21 N) or more. The press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured. The haze was 3.7%.
  • the same procedure as in Example 1 was performed except that 12% by mass of petroleum-based wax “paraffin wax 155” (manufactured by Nippon Seiwa Co., Ltd.) was used as (C).
  • the obtained resin composition had an MFR of 1183 g / 10 min (190 ° C., 21 N), and a Tg of ⁇ 16.9 ° C.
  • the press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 39 MPa, and haze 88.8%.
  • Example 14 45% by mass of propylene resin “Best Plast 792” as amorphous thermoplastic resin (A), 45% by mass of hydrogenated petroleum resin “Alcon P-90” as amorphous thermoplastic resin (B), crystalline thermoplastic resin
  • the same procedure as in Example 1 was performed except that 10% by mass of petroleum-based wax “paraffin wax 155” (manufactured by Nippon Seiwa Co., Ltd.) was used as (C).
  • the obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more and a Tg of ⁇ 12.8 ° C.
  • the press sheet produced from the obtained resin composition had high adhesiveness, was not stampable, and the repair rate could not be measured.
  • the haze was 31.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention provides: a thermoplastic resin composition which comprises an amorphous thermoplastic resin (A) having a weight-average molecular weight of 50,000-500,000 and a molecular-weight distribution of 1.0-3.5 and an amorphous thermoplastic resin (B) having a weight-average molecular weight of 500 or higher but lower than 50,000 and in which, when the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) is taken as 100 mass%, then the content of the amorphous thermoplastic resin (A) is 25-85 mass% and the content of the amorphous thermoplastic resin (B) is 15-75 mass%, the composition satisfying the following requirements (1) and (2); and a molded object comprising the thermoplastic resin composition. Requirement (1): the thermoplastic resin composition has a glass transition temperature of 0-200°C. Requirement (2): a 1 mm-thick sheet formed from the thermoplastic resin composition has a haze less than 8.0%.

Description

熱可塑性樹脂組成物およびその成形体Thermoplastic resin composition and molded article thereof
 本発明は、傷が生じてもその傷を自己修復することが可能な熱可塑性樹脂組成物、およびその成形体に関するものである。 The present invention relates to a thermoplastic resin composition capable of self-healing even if a scratch occurs, and a molded body thereof.
 長期的に美観を損なわない製品等の開発を目的として、傷が生じてもその傷を自己修復することが可能な自己修復性材料に対するニーズが高まっている。自己修復性材料として、例えば、特許文献1には、ポリ(スチレン-ブタジエン)とスルホン化ポリ(スチレン-ブタジエン)からなる非相溶な組成物が記載されている。 There is a growing need for self-healing materials that can self-repair even if scratches occur, with the goal of developing products that do not spoil the beauty of the long-term. As a self-healing material, for example, Patent Document 1 describes an incompatible composition composed of poly (styrene-butadiene) and sulfonated poly (styrene-butadiene).
国際公開第2014/113432号International Publication No. 2014/113432
 近年、自己修復性材料にも透明性が要求されている。しかしながら、特許文献1に記載された組成物は、非相溶であるため不透明であり、また、自己修復が起こる温度(以下、修復温度と記すことがある。)に応じて必要なポリマーを設計、合成する必要があり、修復温度の調整が困難であるという課題があった。 In recent years, transparency is also required for self-healing materials. However, the composition described in Patent Document 1 is opaque because it is incompatible, and a necessary polymer is designed according to a temperature at which self-repair occurs (hereinafter, referred to as a repair temperature). There is a problem that it is necessary to synthesize and it is difficult to adjust the repair temperature.
 本発明の目的は、透明で、かつ自己修復性能を有する成形体を与えることができ、その構成成分の含有量を調整することにより、修復温度の調整を容易に行うことができる熱可塑性樹脂組成物、および該熱可塑性樹脂組成物からなる成形体を提供することにある。 An object of the present invention is to provide a thermoplastic resin composition that can give a molded article that is transparent and has self-healing performance, and that can easily adjust the repairing temperature by adjusting the content of its constituent components. And a molded article comprising the thermoplastic resin composition.
 本発明は、以下に示す熱可塑性樹脂組成物及び成形体等を提供する。
[1] 重量平均分子量が50,000以上500,000以下であり、分子量分布が1.0以上3.5以下である非晶性熱可塑性樹脂(A)と、重量平均分子量が500以上50,000未満である非晶性熱可塑性樹脂(B)とを含有し、上記非晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(B)の合計量を100質量%として、上記非晶性熱可塑性樹脂(A)の含有量が25質量%以上85質量%以下であり、上記非晶性熱可塑性樹脂(B)の含有量が15質量%以上75質量%以下であり、下記要件(1)および要件(2)を満足する熱可塑性樹脂組成物:
要件(1)上記熱可塑性樹脂組成物のガラス転移温度が0℃以上200℃以下である;及び
要件(2)上記熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満である。
[2] 熱可塑性樹脂組成物がさらに結晶性熱可塑性樹脂(C)を含有し、
熱可塑性樹脂組成物中の熱可塑性樹脂の総量を100質量%として、上記結晶性熱可塑性樹脂(C)の含有量が0.01~9質量%である[1]に記載の熱可塑性樹脂組成物。
[3] [1]または[2]に記載の熱可塑性樹脂組成物からなる成形体。
The present invention provides the following thermoplastic resin composition and molded article.
[1] Amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5, and a weight average molecular weight of 500 to 50, An amorphous thermoplastic resin (B) that is less than 000, the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) being 100% by mass, The content of the crystalline thermoplastic resin (A) is 25% by mass to 85% by mass, the content of the amorphous thermoplastic resin (B) is 15% by mass to 75% by mass, and the following requirements Thermoplastic resin composition satisfying (1) and requirement (2):
Requirement (1) The glass transition temperature of the thermoplastic resin composition is 0 ° C. or higher and 200 ° C. or lower; and Requirement (2) The haze of a 1 mm thick sheet made of the thermoplastic resin composition is less than 8.0% It is.
[2] The thermoplastic resin composition further contains a crystalline thermoplastic resin (C),
The thermoplastic resin composition according to [1], wherein the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0.01 to 9% by mass. object.
[3] A molded article comprising the thermoplastic resin composition according to [1] or [2].
 本発明によれば、透明で、かつ自己修復性能を有する成形体を与えることができ、修復温度の調整を容易に行うことができる熱可塑性樹脂組成物、および該熱可塑性樹脂組成物からなる成形体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermoplastic resin composition which can give the molded object which is transparent and has self-repair performance, and can perform adjustment of repair temperature easily, and shaping | molding which consists of this thermoplastic resin composition The body can be provided.
 以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本明細書において、非晶性熱可塑性樹脂とは、示差走査熱量測定によって観測される結晶の融解エンタルピー(以下、ΔHと記すことがある。)が40J/g以下の熱可塑性樹脂である。自己修復性能を高くするという観点から、非晶性熱可塑性樹脂(A)および非晶性熱可塑性樹脂(B)のΔHは好ましくは10J/g以下、より好ましくは1J/g以下である。
 本明細書において、融解エンタルピーとは、以下の示差走査熱量測定方法により測定される融解曲線の-50℃以上200℃以下の温度範囲内の部分をJIS K7122に準拠した方法により解析して得られる融解熱である。
 [示差走査熱量測定方法]
 示差走査熱量計により、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、(1)200℃で5分間保持し、次に(2)10℃/分の速度で200℃から-50℃まで降温し、次に(3)-50℃で5分間保持し、次に(4)10℃/分の速度で-50℃から200℃まで昇温する。過程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とする。
In the present specification, the amorphous thermoplastic resin is a thermoplastic resin having a crystal melting enthalpy (hereinafter sometimes referred to as ΔH) observed by differential scanning calorimetry of 40 J / g or less. From the viewpoint of enhancing the self-repairing performance, ΔH of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) is preferably 10 J / g or less, more preferably 1 J / g or less.
In this specification, the melting enthalpy is obtained by analyzing a portion in the temperature range of −50 ° C. or higher and 200 ° C. or lower of a melting curve measured by the following differential scanning calorimetry by a method based on JIS K7122. Heat of fusion.
[Differential scanning calorimetry]
By means of a differential scanning calorimeter, an aluminum pan encapsulating about 5 mg of sample in a nitrogen atmosphere was (1) held at 200 ° C. for 5 minutes, then (2) from 200 ° C. to −50 at a rate of 10 ° C./min. Then, the temperature is lowered to (3) -50 ° C for 5 minutes, and (4) the temperature is raised from -50 ° C to 200 ° C at a rate of 10 ° C / min. The differential scanning calorimetry curve obtained by calorimetry in step (4) is taken as the melting curve.
 次に、本願発明の熱可塑性樹脂組成物の具体的構成について説明する。 Next, a specific configuration of the thermoplastic resin composition of the present invention will be described.
 本発明の熱可塑性樹脂組成物は、重量平均分子量が50,000以上500,000以下であり、分子量分布が1.0以上3.5以下である非晶性熱可塑性樹脂(A)を含有する。 The thermoplastic resin composition of the present invention contains an amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5. .
 非晶性熱可塑性樹脂(A)の重量平均分子量は、50,000以上500,000以下であり、自己修復性能、成形加工性を良好にし、樹脂組成物からなる成形体の剛性を高くするという観点から、好ましくは、75,000以上400,000以下であり、より好ましくは100,000以上300,000以下である。 The weight average molecular weight of the amorphous thermoplastic resin (A) is 50,000 or more and 500,000 or less, and the self-repairing performance and molding processability are improved, and the rigidity of the molded body made of the resin composition is increased. From the viewpoint, it is preferably 75,000 or more and 400,000 or less, more preferably 100,000 or more and 300,000 or less.
 非晶性熱可塑性樹脂(A)の分子量分布は、1.0以上3.5以下であり、自己修復性能、成形加工性を良好にし、樹脂組成物からなる成形体の剛性を高くするという観点から、好ましくは、1.0以上3.0以下であり、より好ましくは1.0以上2.5以下である。分子量分布とは、数平均分子量に対する重量平均分子量の比である。
 本明細書において、重量平均分子量は、ゲル・パーミエイション・クロマトグラフィーにより測定されるポリスチレン換算重量平均分子量であり、分子量分布は、ゲル・パーミエイション・クロマトグラフィーにより測定されるポリスチレン換算数平均分子量に対するポリスチレン換算重量平均分子量の比である。クロロホルムに可溶な重合体は、クロロホルムを溶媒としてゲル・パーミエイション・クロマトグラフィーを行う。後述のオレフィン樹脂のうち、クロロホルムに不溶なものは、キシレンに溶解させた後、クロロホルムを溶媒としてゲル・パーミエイション・クロマトグラフィーを行う。
The viewpoint of the molecular weight distribution of the amorphous thermoplastic resin (A) being 1.0 or more and 3.5 or less, improving the self-repairing performance and molding processability, and increasing the rigidity of the molded body made of the resin composition. Therefore, it is preferably 1.0 or more and 3.0 or less, and more preferably 1.0 or more and 2.5 or less. The molecular weight distribution is the ratio of the weight average molecular weight to the number average molecular weight.
In this specification, the weight average molecular weight is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography, and the molecular weight distribution is a polystyrene equivalent number average measured by gel permeation chromatography. It is the ratio of the weight average molecular weight in terms of polystyrene to the molecular weight. A polymer soluble in chloroform is subjected to gel permeation chromatography using chloroform as a solvent. Of the olefin resins described below, those insoluble in chloroform are dissolved in xylene and then subjected to gel permeation chromatography using chloroform as a solvent.
 JIS K7210に準拠して温度190℃、荷重21Nで測定される非晶性熱可塑性樹脂(A)のメルトフローレートは、成形加工性を良好にするという観点から、好ましくは0.01g/10分以上、より好ましくは0.05g/10分以上、さらに好ましくは0.1g/10分以上である。非晶性熱可塑性樹脂(A)のメルトフローレートは、成形加工性を良好にし、樹脂組成物からなる成形体の剛性を高くするという観点から、好ましくは500g/10分以下であり、より好ましくは、50g/10分以下、さらに好ましくは10g/10分以下である。 The melt flow rate of the amorphous thermoplastic resin (A) measured at a temperature of 190 ° C. and a load of 21 N in accordance with JIS K7210 is preferably 0.01 g / 10 minutes from the viewpoint of improving moldability. As mentioned above, More preferably, it is 0.05 g / 10min or more, More preferably, it is 0.1 g / 10min or more. The melt flow rate of the amorphous thermoplastic resin (A) is preferably 500 g / 10 min or less, more preferably from the viewpoint of improving the molding processability and increasing the rigidity of the molded body made of the resin composition. Is 50 g / 10 min or less, more preferably 10 g / 10 min or less.
 熱可塑性非晶性樹脂(A)のガラス転移温度は、好ましくは-70℃以上150℃以下であり、より好ましくは、-50℃以上120℃以下であり、さらに好ましくは、-30℃以上100℃以下である。
 本明細書において、ガラス転移温度とは、以下の示差走査熱量測定方法により測定される融解曲線を、JIS K7121に準拠した方法により解析して得られる中間点ガラス転移温度である。
 [示差走査熱量測定方法]
 示差走査熱量計により、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、(1)200℃で5分間保持し、次に(2)10℃/分の速度で200℃から-50℃まで降温し、次に(3)-50℃で5分間保持し、次に(4)10℃/分の速度で-50℃から200℃まで昇温する。過程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とする。
The glass transition temperature of the thermoplastic amorphous resin (A) is preferably −70 ° C. or higher and 150 ° C. or lower, more preferably −50 ° C. or higher and 120 ° C. or lower, and further preferably −30 ° C. or higher and 100 ° C. or lower. It is below ℃.
In this specification, the glass transition temperature is an intermediate glass transition temperature obtained by analyzing a melting curve measured by the following differential scanning calorimetry method by a method based on JIS K7121.
[Differential scanning calorimetry]
By means of a differential scanning calorimeter, an aluminum pan encapsulating about 5 mg of sample in a nitrogen atmosphere was (1) held at 200 ° C. for 5 minutes, then (2) from 200 ° C. to −50 at a rate of 10 ° C./min. Then, the temperature is lowered to (3) -50 ° C for 5 minutes, and (4) the temperature is raised from -50 ° C to 200 ° C at a rate of 10 ° C / min. The differential scanning calorimetry curve obtained by calorimetry in step (4) is taken as the melting curve.
 非晶性熱可塑性樹脂(A)としては、例えば、オレフィン樹脂、スチレン系エラストマー、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、スチレン・アクリロニトリル樹脂、エンジニアリングプラスチック、ポリ塩化ビニル、塩素化ゴム、天然ゴム、クロロプレンゴム、フッ素ゴム、シリコンゴム、ウレタンゴムなどが挙げられる。中でも好ましくは、オレフィン樹脂、スチレン系エラストマー、アクリル樹脂、エンジニアリングプラスチックが挙げられる。これらは、単独で使用してもよく2種以上を併用してもよい。また、非晶性熱可塑性樹脂(A)は、架橋されていてもよい。以下に例示する共重合体は、ランダム共重合体でもよく、ブロック共重合体でもよい。 Examples of the amorphous thermoplastic resin (A) include olefin resins, styrene elastomers, acrylic resins, polyester resins, polyamide resins, styrene / acrylonitrile resins, engineering plastics, polyvinyl chloride, chlorinated rubber, natural rubber, and chloroprene. Examples thereof include rubber, fluorine rubber, silicon rubber, and urethane rubber. Among these, olefin resin, styrene elastomer, acrylic resin, and engineering plastic are preferable. These may be used alone or in combination of two or more. Moreover, the amorphous thermoplastic resin (A) may be cross-linked. The copolymer exemplified below may be a random copolymer or a block copolymer.
 前記オレフィン樹脂とは、オレフィンに由来する単量体単位を含有する樹脂である。前記オレフィン樹脂としては、非晶性プロピレン樹脂、非晶性エチレン樹脂、非晶性環状オレフィン樹脂、ブチルゴム、ポリブタジエン、イソプレン樹脂等が挙げられる。
 非晶性プロピレン樹脂とは、プロピレンに由来する単量体単位を含有し、ΔHが40J/g以下の重合体である。非晶性プロピレン樹脂としては、プロピレン単独重合体、プロピレン-エチレン共重合体、プロピレン-1-ブテン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1-ペンテン共重合体、プロピレン-ビニルシクロヘキサン共重合体、プロピレン-4-ビニルシクロヘキセン共重合体、プロピレン-ノルボルネン共重合体、プロピレン-スチレン共重合体、無水マレイン酸変性プロピレン単独重合体、無水マレイン酸変性プロピレン-エチレン共重合体、無水マレイン酸変性プロピレン-ブテン共重合体、エチレン-プロピレン-1-ブテン共重合体、エチレン-プロピレン-1-ヘキセン共重合体、エチレン-プロピレン-1-オクテン共重合体、エチレン-プロピレン-4-メチル-1-ペンテン共重合体、エチレン-プロピレン-スチレン共重合体、エチレン-プロピレン-ノルボルネン共重合体、エチレン-プロピレン-4-ビニルシクロヘキセン共重合体、エチレン-プロピレン-ビニルシクロヘキサン共重合体、エチレン-プロピレン-5-エチリデン-2-ノルボルネン共重合体、エチレン-プロピレン-ジシクロペンタジエン共重合体、エチレン-プロピレン-1,4-ヘキサジエン共重合体、エチレン-プロピレン-5-ビニル-2-ノルボルネン共重合体、無水マレイン酸変性エチレン-プロピレン-ブテン共重合体等が挙げられる。上記非晶性プロピレン樹脂は、例えばアタクチックのプロピレン樹脂である。
 非晶性エチレン樹脂とは、該非晶性エチレン樹脂の質量を100質量%として、エチレンに由来する単量体単位を50質量%以上含有し、ΔHが40J/g以下の重合体である。非晶性エチレン樹脂としては、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、エチレン-4-メチル-1-ペンテン共重合体、エチレン-ビニルシクロヘキサン共重合体、エチレン-4-ビニルシクロヘキセン共重合体、エチレン-ノルボルネン共重合体、エチレン-テトラシクロドデセン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体等が挙げられる。
 非晶性環状オレフィン樹脂とは、該環状オレフィン樹脂の質量を100質量%として、環状オレフィンに由来する単量体単位を50質量%以上含有し、ΔHが40J/g以下の重合体である。非晶性環状オレフィン樹脂としては、ノルボルネン開環重合体、テトラシクロドデセン開環重合体、ノルボルネン-エチレン共重合体、テトラシクロドデセン-エチレン共重合体等が挙げられる。
 イソプレン樹脂としては、ポリイソプレン、イソプレンの二量化物であるC10脂環式化合物とC10鎖状化合物との共重合体等が挙げられる。
 前記オレフィン樹脂として好ましくは、非晶性プロピレン樹脂であり、より好ましくは、プロピレン単独重合体、プロピレン-1-ブテン共重合体、エチレン-プロピレン-1-ブテン共重合体である。
The olefin resin is a resin containing monomer units derived from olefins. Examples of the olefin resin include amorphous propylene resin, amorphous ethylene resin, amorphous cyclic olefin resin, butyl rubber, polybutadiene, and isoprene resin.
The amorphous propylene resin is a polymer containing monomer units derived from propylene and having a ΔH of 40 J / g or less. Amorphous propylene resins include propylene homopolymer, propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene copolymer , Propylene-vinylcyclohexane copolymer, propylene-4-vinylcyclohexene copolymer, propylene-norbornene copolymer, propylene-styrene copolymer, maleic anhydride modified propylene homopolymer, maleic anhydride modified propylene-ethylene copolymer Polymer, maleic anhydride modified propylene-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-propylene-1-hexene copolymer, ethylene-propylene-1-octene copolymer, ethylene-propylene -4-methyl-1-pentene copolymer, Tylene-propylene-styrene copolymer, ethylene-propylene-norbornene copolymer, ethylene-propylene-4-vinylcyclohexene copolymer, ethylene-propylene-vinylcyclohexane copolymer, ethylene-propylene-5-ethylidene-2- Norbornene copolymer, ethylene-propylene-dicyclopentadiene copolymer, ethylene-propylene-1,4-hexadiene copolymer, ethylene-propylene-5-vinyl-2-norbornene copolymer, maleic anhydride modified ethylene- And propylene-butene copolymer. The amorphous propylene resin is, for example, an atactic propylene resin.
The amorphous ethylene resin is a polymer containing 100% by mass of the amorphous ethylene resin, containing 50% by mass or more of monomer units derived from ethylene, and ΔH of 40 J / g or less. Amorphous ethylene resins include ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene- Vinylcyclohexane copolymer, ethylene-4-vinylcyclohexene copolymer, ethylene-norbornene copolymer, ethylene-tetracyclododecene copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer Ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and the like.
The amorphous cyclic olefin resin is a polymer having a mass of the cyclic olefin resin of 100% by mass, containing 50% by mass or more of monomer units derived from the cyclic olefin, and a ΔH of 40 J / g or less. Examples of the amorphous cyclic olefin resin include a norbornene ring-opening polymer, a tetracyclododecene ring-opening polymer, a norbornene-ethylene copolymer, a tetracyclododecene-ethylene copolymer, and the like.
Examples of the isoprene resin include polyisoprene, a copolymer of a C10 alicyclic compound that is a dimerized product of isoprene and a C10 chain compound, and the like.
The olefin resin is preferably an amorphous propylene resin, more preferably a propylene homopolymer, a propylene-1-butene copolymer, or an ethylene-propylene-1-butene copolymer.
 前記スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンのトリブロック共重合体(SBS)、スチレン-イソプレン-スチレンのトリブロック共重合体(SIS)、スチレン-ブタジエンランダム共重合体(SBR)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、これらSBS等の共重合体の炭素間二重結合部分の一部又は全部が水素化された水素化体、無水マレイン酸変性スチレン-イソプレン-スチレンブロック共重合体(MAH-SIS)、無水マレイン酸変性スチレン-ブタジエン-スチレンブロック共重合体(MAH-SBS)などが挙げられる。
 これらの水素化体としては、スチレン-(エチレン/プロピレン)-スチレンブロック共重合体(SEPS;SISの水素化体)、スチレン-(エチレン/ブチレン)-スチレンブロック共重合体(SEBS;SBSの水素化体)、スチレン-エチレン-(エチレン/プロピレン)-スチレンブロック共重合体(SEEPS;スチレン-ブタジエン/イソプレン-スチレンブロック共重合体の水素化体)、水素化SBR、無水マレイン酸変性スチレン-(エチレン/ブチレン)-スチレンブロック共重合体(MAH-SEBS)、無水マレイン酸変性スチレン-(エチレン/プロピレン)-スチレンブロック共重合体(MAH-SEPS)等が挙げられる。
 中でも好ましくは、スチレン-ブタジエン-スチレンのトリブロック共重合体、スチレン-イソプレン-スチレンのトリブロック共重合体、スチレン-ブタジエンランダム共重合体、スチレン-(エチレン/プロピレン)-スチレンブロック共重合体、スチレン-(エチレン/ブチレン)-スチレンブロック共重合体、これらの炭素間二重結合部分の一部又は全部が水素化された水素化体である。
Examples of the styrene elastomer include styrene-butadiene-styrene triblock copolymer (SBS), styrene-isoprene-styrene triblock copolymer (SIS), styrene-butadiene random copolymer (SBR), and styrene- Isobutylene-styrene block copolymers (SIBS), hydrogenated products in which some or all of the carbon-carbon double bonds of these SBS copolymers are hydrogenated, maleic anhydride modified styrene-isoprene-styrene block copolymers Examples thereof include a polymer (MAH-SIS) and a maleic anhydride-modified styrene-butadiene-styrene block copolymer (MAH-SBS).
These hydrogenated products include styrene- (ethylene / propylene) -styrene block copolymer (SEPS; SIS hydrogenated product), styrene- (ethylene / butylene) -styrene block copolymer (SEBS; hydrogenated SBS). ), Styrene-ethylene- (ethylene / propylene) -styrene block copolymer (SEEPS; hydrogenated styrene-butadiene / isoprene-styrene block copolymer), hydrogenated SBR, maleic anhydride modified styrene- ( And ethylene / butylene) -styrene block copolymer (MAH-SEBS), maleic anhydride-modified styrene- (ethylene / propylene) -styrene block copolymer (MAH-SEPS), and the like.
Among them, a styrene-butadiene-styrene triblock copolymer, a styrene-isoprene-styrene triblock copolymer, a styrene-butadiene random copolymer, a styrene- (ethylene / propylene) -styrene block copolymer, A styrene- (ethylene / butylene) -styrene block copolymer, a hydrogenated product in which part or all of these carbon-carbon double bond portions are hydrogenated.
 前記アクリル樹脂としては、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、アクリル酸メチル-メタクリル酸メチル共重合体等が挙げられる。中でも好ましくは、ポリメタクリル酸ブチル、ポリアクリル酸ブチルである。 Examples of the acrylic resin include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, methyl acrylate-methyl methacrylate copolymer, and the like. . Of these, polybutyl methacrylate and polybutyl acrylate are preferable.
 前記ポリエステル樹脂としては、非晶性ポリエチレンテレフタレート等が挙げられる。 Examples of the polyester resin include amorphous polyethylene terephthalate.
 前記ポリアミド樹脂としては、非晶性ポリアミド等が挙げられる。 Examples of the polyamide resin include amorphous polyamide.
 前記スチレン・アクリロニトリル樹脂としては、ポリスチレン、α-メチルスチレン-ビニルトルエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-アクリロニトリル-ブタジエン共重合体、スチレン-アクリロニトリル-インデン共重合体、ポリアクリロニトリル等が挙げられる。 Examples of the styrene / acrylonitrile resin include polystyrene, α-methylstyrene-vinyltoluene copolymer, styrene-acrylonitrile copolymer, styrene-acrylonitrile-butadiene copolymer, styrene-acrylonitrile-indene copolymer, polyacrylonitrile and the like. Can be mentioned.
 前記エンジニアリングプラスチックとしては、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、変性ポリフェニレンエーテル、ポリカーボネート等が挙げられる。中でも好ましくは、ポリカーボネートである。 Examples of the engineering plastic include polysulfone, polyethersulfone, polyarylate, polyamideimide, polyetherimide, modified polyphenylene ether, and polycarbonate. Of these, polycarbonate is preferable.
 本発明の熱可塑性樹脂組成物は、重量平均分子量が500以上50,000未満である非晶性熱可塑性樹脂(B)を含有する。 The thermoplastic resin composition of the present invention contains an amorphous thermoplastic resin (B) having a weight average molecular weight of 500 or more and less than 50,000.
 非晶性熱可塑性樹脂(B)の重量平均分子量は、500以上50,000未満であり、自己修復性能を向上し、成形体の強度を高め、粘着性を抑えるという観点から、好ましくは、700以上40,000以下であり、より好ましくは900以上30,000以下である。 The weight average molecular weight of the amorphous thermoplastic resin (B) is 500 or more and less than 50,000, and is preferably 700 from the viewpoint of improving self-healing performance, increasing the strength of the molded product, and suppressing tackiness. It is 40,000 or less, and more preferably 900 or more and 30,000 or less.
 非晶性熱可塑性樹脂(B)のガラス転移温度は、好ましくは0℃以上200℃以下であり、より好ましくは、30℃以上150℃以下であり、さらに好ましくは、40℃以上120℃以下である。 The glass transition temperature of the amorphous thermoplastic resin (B) is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 30 ° C. or higher and 150 ° C. or lower, and further preferably 40 ° C. or higher and 120 ° C. or lower. is there.
 非晶性熱可塑性樹脂(B)の分子量分布は、成形体の強度を高め、粘着性を抑えるという観点から、好ましくは1.0以上4.5以下であり、より好ましくは、1.0以上4.0以下であり、さらに好ましくは1.0以上3.5以下である。 The molecular weight distribution of the amorphous thermoplastic resin (B) is preferably 1.0 or more and 4.5 or less, more preferably 1.0 or more, from the viewpoint of increasing the strength of the molded body and suppressing the adhesiveness. 4.0 or less, more preferably 1.0 or more and 3.5 or less.
 本発明における非晶性熱可塑性樹脂(B)としては、例えば、上述のオレフィン樹脂、スチレン系エラストマー、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、スチレン・アクリロニトリル樹脂、エンジニアリングプラスチック、ポリ塩化ビニル、塩素化ゴム、天然ゴム、クロロプレンゴム、フッ素ゴム、シリコンゴム、ウレタンゴム、ロジン樹脂、テルペン樹脂、石油樹脂、クマロン樹脂、キシレン樹脂、スチレン・無水マレイン酸樹脂などが挙げられる。中でも好ましくは、ロジン樹脂、テルペン樹脂、スチレン-無水マレイン酸樹脂などが挙げられる。これらは、単独で使用してもよく2種以上を併用してもよい。また、非晶性熱可塑性樹脂(B)は、架橋されていてもよい。非晶性熱可塑性樹脂(B)が共重合体の場合は、該共重合体は、ランダム共重合体でもよく、ブロック共重合体でもよい。 Examples of the amorphous thermoplastic resin (B) in the present invention include the olefin resin, styrene elastomer, acrylic resin, polyester resin, polyamide resin, styrene / acrylonitrile resin, engineering plastic, polyvinyl chloride, and chlorinated rubber. Natural rubber, chloroprene rubber, fluorine rubber, silicon rubber, urethane rubber, rosin resin, terpene resin, petroleum resin, coumarone resin, xylene resin, styrene / maleic anhydride resin, and the like. Among them, rosin resin, terpene resin, styrene-maleic anhydride resin and the like are preferable. These may be used alone or in combination of two or more. The amorphous thermoplastic resin (B) may be cross-linked. When the amorphous thermoplastic resin (B) is a copolymer, the copolymer may be a random copolymer or a block copolymer.
 上記ロジン樹脂としては、天然ロジン、重合ロジン、部分水添ロジン、完全水添ロジン、これらロジンのエステル化物(例えば、グリセリンエステル、ペンタエリスリトールエステル、エチレングリコールエステル、メチルエステル)、ロジン誘導体(例えば、不均化ロジン、フマル化ロジン、ライム化ロジン)が挙げられる。 Examples of the rosin resin include natural rosin, polymerized rosin, partially hydrogenated rosin, fully hydrogenated rosin, esterified products of these rosins (for example, glycerin ester, pentaerythritol ester, ethylene glycol ester, methyl ester), rosin derivatives (for example, Disproportionated rosin, fumarized rosin, lime rosin).
 上記テルペン樹脂としては、α-ピネン、β-ピネンおよびジペンテン等の環状テルペンの単独重合体、環状テルペンの共重合体、環状テルペンと、フェノール、ビスフェノール等のフェノール系化合物との共重合体(例えば、α-ピネン-フェノール樹脂、ジペンテン-フェノール樹脂およびテルペン-ビスフェノール樹脂等のテルペン-フェノール系樹脂)、環状テルペンと芳香族モノマーとの共重合体である芳香族変性テルペン樹脂、および、これらの炭素間二重結合部分の一部又は全部が水素化された水素化体である水添テルペン樹脂が挙げられる。 Examples of the terpene resin include homopolymers of cyclic terpenes such as α-pinene, β-pinene, and dipentene, copolymers of cyclic terpenes, and copolymers of cyclic terpenes and phenolic compounds such as phenol and bisphenol (for example, Terpene-phenol resins such as α-pinene-phenol resins, dipentene-phenol resins and terpene-bisphenol resins), aromatic modified terpene resins which are copolymers of cyclic terpenes and aromatic monomers, and carbons thereof A hydrogenated terpene resin which is a hydrogenated product in which part or all of the intercalated double bond portion is hydrogenated can be mentioned.
 上記石油樹脂としては、ナフサ分解油のC5留分、C6~C11留分およびその他オレフィン系留分の単独重合体や共重合体、これらの単独重合体や共重合体の炭素間二重結合部分の一部又は全部が水素化された水素化体である脂肪族系石油樹脂、芳香族系石油樹脂、脂環式系石油樹脂、脂肪族-脂環式共重合樹脂が挙げられる。合成石油樹脂として、さらに、ナフサ分解油と上記のテルペンとの共重合体や、該共重合体の水素化体である共重合系石油樹脂も挙げられる。 Examples of the petroleum resin include homopolymers and copolymers of naphtha cracked oil C5 fraction, C6 to C11 fraction and other olefinic fractions, and carbon-carbon double bond portions of these homopolymers and copolymers. Examples thereof include aliphatic petroleum resins, aromatic petroleum resins, alicyclic petroleum resins, and aliphatic-alicyclic copolymer resins, which are hydrogenated products in which a part or all of them are hydrogenated. The synthetic petroleum resin further includes a copolymer of naphtha cracked oil and the above terpene, and a copolymer petroleum resin that is a hydrogenated product of the copolymer.
 上記クマロン樹脂としては、クマロン、インデンおよびスチレンからなる群より選ばれる一種以上の単量体単位を有する重合体が挙げられる。 Examples of the coumarone resin include a polymer having one or more monomer units selected from the group consisting of coumarone, indene and styrene.
 本発明の熱可塑性樹脂組成物は、上記非晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(B)の合計量を100質量%として、上記非晶性熱可塑性樹脂(A)の含有量が25質量%以上85質量%以下であり、上記非晶性熱可塑性樹脂(B)の含有量が15質量%以上75質量%以下である。該熱可塑性樹脂からなる成形体の強度の観点から、上記非晶性熱可塑性樹脂(A)の含有量は、好ましくは30質量%以上であり、より好ましくは35質量%以上である。該熱可塑性樹脂からなる成形体の自己修復性能の観点から、上記非晶性熱可塑性樹脂(A)の含有量は、好ましくは80質量%以下であり、より好ましくは70質量%以下である。 The thermoplastic resin composition of the present invention is the amorphous thermoplastic resin (A), wherein the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) is 100% by mass. Is 25 mass% or more and 85 mass% or less, and content of the said amorphous thermoplastic resin (B) is 15 mass% or more and 75 mass% or less. From the viewpoint of the strength of the molded body made of the thermoplastic resin, the content of the amorphous thermoplastic resin (A) is preferably 30% by mass or more, more preferably 35% by mass or more. From the viewpoint of the self-healing performance of the molded body made of the thermoplastic resin, the content of the amorphous thermoplastic resin (A) is preferably 80% by mass or less, more preferably 70% by mass or less.
 本発明の熱可塑性樹脂組成物は、要件(1)および要件(2)を満足する。
要件(1)本発明の熱可塑性樹脂組成物のガラス転移温度が0℃以上200℃以下である。
 上記熱可塑性樹脂組成物のガラス転移温度は好ましくは0℃以上150℃以下であり、より好ましくは0℃以上100℃以下である。
 本発明の熱可塑性樹脂組成物が要件(1)を満足するために、該熱可塑性樹脂組成物のガラス転移温度は、-50℃以上200℃以下の温度範囲内に1つのみ観測されることが好ましい。-50℃以上200℃以下の温度範囲内に熱可塑性樹脂組成物のガラス転移温度が1つのみ観測される、ということは、熱可塑性樹脂組成物に含有される熱可塑性樹脂が相溶していることを意味する。
The thermoplastic resin composition of the present invention satisfies the requirements (1) and (2).
Requirement (1) The glass transition temperature of the thermoplastic resin composition of the present invention is 0 ° C. or higher and 200 ° C. or lower.
The glass transition temperature of the thermoplastic resin composition is preferably 0 ° C. or higher and 150 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower.
In order for the thermoplastic resin composition of the present invention to satisfy the requirement (1), only one glass transition temperature of the thermoplastic resin composition is observed within a temperature range of −50 ° C. to 200 ° C. Is preferred. Only one glass transition temperature of the thermoplastic resin composition is observed within a temperature range of −50 ° C. or higher and 200 ° C. or lower, which means that the thermoplastic resin contained in the thermoplastic resin composition is compatible. Means that
要件(2)熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満である。
 上記ヘイズは好ましくは7%未満であり、より好ましくは5%未満である。
 本発明の熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満となるように、非晶性熱可塑性樹脂(A)と非晶性熱可塑性樹脂(B)とが相溶する組み合わせを選択する。熱可塑性樹脂組成物が後述の結晶性熱可塑性樹脂(C)を更に含有する場合は、熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満となるように、結晶性熱可塑性樹脂(C)の含有量を調整する。本発明の熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満となるように、結晶性熱可塑性樹脂(C)が非晶性熱可塑性樹脂(A)と非晶性熱可塑性樹脂(B)と相溶することが好ましい。
Requirement (2) The haze of a sheet having a thickness of 1 mm made of a thermoplastic resin composition is less than 8.0%.
The haze is preferably less than 7%, more preferably less than 5%.
The amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) are in phase so that the haze of the 1 mm thick sheet made of the thermoplastic resin composition of the present invention is less than 8.0%. Select a combination to dissolve. When the thermoplastic resin composition further contains a crystalline thermoplastic resin (C) described later, the crystallinity is set so that the haze of the 1 mm thick sheet made of the thermoplastic resin composition is less than 8.0%. The content of the thermoplastic resin (C) is adjusted. The crystalline thermoplastic resin (C) and the amorphous thermoplastic resin (A) are amorphous so that the haze of the 1 mm thick sheet made of the thermoplastic resin composition of the present invention is less than 8.0%. It is preferable to be compatible with the thermoplastic resin (B).
 本発明の熱可塑性樹脂組成物に含まれる非晶性熱可塑性樹脂(A)と非晶性熱可塑性樹脂(B)の組み合わせとしては、オレフィン樹脂とオレフィン樹脂、スチレン系エラストマーとスチレン系エラストマー、アクリル樹脂とアクリル樹脂、ポリカーボネートとポリカーボネート、オレフィン樹脂とロジン樹脂、オレフィン樹脂とテルペン樹脂、オレフィン樹脂と石油樹脂、スチレン系エラストマーとロジン樹脂、スチレン系エラストマーとテルペン樹脂、スチレン系エラストマーと石油樹脂、アクリル樹脂とロジン樹脂、アクリル樹脂とテルペン-フェノール系樹脂、ポリカーボネートとスチレン-無水マレイン酸樹脂などが挙げられる。 The combination of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) contained in the thermoplastic resin composition of the present invention includes olefin resin and olefin resin, styrene elastomer and styrene elastomer, acrylic Resin and acrylic resin, polycarbonate and polycarbonate, olefin resin and rosin resin, olefin resin and terpene resin, olefin resin and petroleum resin, styrene elastomer and rosin resin, styrene elastomer and terpene resin, styrene elastomer and petroleum resin, acrylic resin And rosin resin, acrylic resin and terpene-phenol resin, polycarbonate and styrene-maleic anhydride resin.
 JIS K7210に準拠して温度190℃、荷重21Nで測定される本発明の熱可塑性樹脂組成物のメルトフローレートは、好ましくは0.05~300g/10分であり、より好ましくは0.1~200g/10分であり、さらに好ましくは0.2~100g/10分である。 The melt flow rate of the thermoplastic resin composition of the present invention measured at a temperature of 190 ° C. and a load of 21 N in accordance with JIS K7210 is preferably 0.05 to 300 g / 10 minutes, more preferably 0.1 to It is 200 g / 10 minutes, and more preferably 0.2 to 100 g / 10 minutes.
 本発明の熱可塑性樹脂組成物は、該熱可塑性樹脂組成物からなる成形体の剛性を高くするために、結晶性熱可塑性樹脂(C)を含有してもよい。
 本明細書において、結晶性熱可塑性樹脂とは、ΔHが40J/gより大きい熱可塑性樹脂である。結晶性熱可塑性樹脂(C)のΔHは好ましくは80J/g以上である。
The thermoplastic resin composition of the present invention may contain a crystalline thermoplastic resin (C) in order to increase the rigidity of the molded body made of the thermoplastic resin composition.
In the present specification, the crystalline thermoplastic resin is a thermoplastic resin having a ΔH greater than 40 J / g. The ΔH of the crystalline thermoplastic resin (C) is preferably 80 J / g or more.
 上記結晶性熱可塑性樹脂(C)としては、結晶性オレフィン樹脂、ワックス、パラフィンが挙げられる。
 結晶性オレフィン樹脂とは、オレフィンに由来する単量体単位を含有し、ΔHが40J/gより大きい重合体である。
 結晶性オレフィン樹脂としては、結晶性プロピレン樹脂、結晶性エチレン樹脂が挙げられる。
 結晶性プロピレン樹脂とは、プロピレンに由来する単量体単位を含有し、ΔHが40J/gより大きい重合体である。結晶性プロピレン樹脂としては、プロピレン単独重合体、プロピレンに由来する単量体単位と、エチレンおよび炭素原子数4~10のα-オレフィンからなる群より選ばれる単量体単位とを含むプロピレン系共重合体が挙げられる。上記プロピレン系共重合体としては、プロピレン-エチレン共重合体が挙げられる。上記プロピレン系共重合体は、ランダム共重合体でもブロック共重合体でもよい。結晶性プロピレン樹脂は、不飽和カルボン酸およびその誘導体から選ばれる少なくとも1種の化合物で変性されていてもよい。不飽和カルボン酸およびその誘導体から選ばれる少なくとも1種の化合物としては、無水マレイン酸が挙げられる。
 結晶性エチレン樹脂とは、該結晶性エチレン樹脂の質量を100質量%として、エチレンに由来する単量体単位を50質量%以上含有し、ΔHが40J/gより大きい重合体である。結晶性エチレン樹脂としては、高密度ポリエチレン、高圧法低密度ポリエチレン、エチレン-α-オレフィン共重合体が挙げられる。結晶性エチレン樹脂は、不飽和カルボン酸およびその誘導体から選ばれる少なくとも1種の化合物で変性されていてもよい。不飽和カルボン酸およびその誘導体から選ばれる少なくとも1種の化合物としては、無水マレイン酸が挙げられる。
 これらの樹脂は、単独で使用してもよく2種以上を併用してもよい。結晶性熱可塑性樹脂(C)は、架橋されていてもよい。
As said crystalline thermoplastic resin (C), crystalline olefin resin, wax, and paraffin are mentioned.
A crystalline olefin resin is a polymer containing monomer units derived from olefins and having a ΔH greater than 40 J / g.
Examples of the crystalline olefin resin include crystalline propylene resin and crystalline ethylene resin.
The crystalline propylene resin is a polymer containing monomer units derived from propylene and having a ΔH of greater than 40 J / g. The crystalline propylene resin includes a propylene homopolymer, a propylene copolymer containing a monomer unit derived from propylene, and a monomer unit selected from the group consisting of ethylene and an α-olefin having 4 to 10 carbon atoms. A polymer is mentioned. Examples of the propylene-based copolymer include a propylene-ethylene copolymer. The propylene-based copolymer may be a random copolymer or a block copolymer. The crystalline propylene resin may be modified with at least one compound selected from unsaturated carboxylic acids and derivatives thereof. The at least one compound selected from unsaturated carboxylic acids and derivatives thereof includes maleic anhydride.
The crystalline ethylene resin is a polymer containing 50% by mass or more of monomer units derived from ethylene with a mass of the crystalline ethylene resin of 100% by mass and a ΔH of greater than 40 J / g. Examples of the crystalline ethylene resin include high-density polyethylene, high-pressure low-density polyethylene, and ethylene-α-olefin copolymer. The crystalline ethylene resin may be modified with at least one compound selected from unsaturated carboxylic acids and derivatives thereof. The at least one compound selected from unsaturated carboxylic acids and derivatives thereof includes maleic anhydride.
These resins may be used alone or in combination of two or more. The crystalline thermoplastic resin (C) may be cross-linked.
 1つの態様として、得られる成形体の剛性を高くするという観点から、熱可塑性樹脂組成物中の熱可塑性樹脂の総量を100質量%として、上記結晶性熱可塑性樹脂(C)の含有量が0.01~9質量%であることが好ましく、より好ましくは0.01~8質量%であり、さらに好ましくは0.01~6質量%である。
 1つの態様として、得られる成形体の柔軟性を高くするという観点から、熱可塑性樹脂組成物中の熱可塑性樹脂の総量を100質量%として、上記結晶性熱可塑性樹脂(C)の含有量が0~0.01質量%未満であることが好ましい。
As one aspect, from the viewpoint of increasing the rigidity of the obtained molded body, the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0. The content is preferably 0.01 to 9% by mass, more preferably 0.01 to 8% by mass, and still more preferably 0.01 to 6% by mass.
As one aspect, from the viewpoint of increasing the flexibility of the obtained molded body, the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is as follows. The content is preferably 0 to less than 0.01% by mass.
 本発明の熱可塑性樹脂組成物には、必要に応じ、酸化防止剤、紫外線吸収剤、架橋剤、熱安定剤、光劣化防止剤、耐衝撃改質剤、可塑剤、滑剤、離型剤、核剤、ハロゲン系難燃剤や非ハロゲン(ポリ燐酸系、赤燐系等)の難燃剤、難燃助剤、顔料、染料などの着色剤、鉱物油系軟化剤、発泡剤、加工助剤、帯電防止材等を添加してもよい。
 本発明の熱可塑性樹脂組成物の総量を100質量%として、上記非晶性熱可塑性樹脂(A)と非晶性熱可塑性樹脂(B)と上記結晶性熱可塑性樹脂(C)の合計の含有量は、90質量%以上が好ましく、91質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上がさらに好ましい。
In the thermoplastic resin composition of the present invention, if necessary, an antioxidant, an ultraviolet absorber, a crosslinking agent, a thermal stabilizer, a photodegradation inhibitor, an impact modifier, a plasticizer, a lubricant, a mold release agent, Nucleating agents, halogen-based flame retardants and non-halogen (polyphosphoric acid-based, red phosphorus-based, etc.) flame retardants, flame retardant aids, colorants such as pigments and dyes, mineral oil-based softeners, foaming agents, processing aids, An antistatic material or the like may be added.
The total amount of the thermoplastic resin composition of the present invention is 100% by mass, and the total content of the amorphous thermoplastic resin (A), the amorphous thermoplastic resin (B), and the crystalline thermoplastic resin (C). The amount is preferably 90% by mass or more, more preferably 91% by mass or more, further preferably 95% by mass or more, and further preferably 98% by mass or more.
 本発明の一態様として、以下の熱可塑性樹脂組成物及び成形体も挙げられる。
[4] 重量平均分子量が50,000以上500,000以下であり、分子量分布が1.0以上3.5以下である非晶性熱可塑性樹脂(A)と、重量平均分子量が500以上50,000未満である非晶性熱可塑性樹脂(B)とを含有し、充填剤を含有せず、上記非晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(B)の合計量を100質量%として、上記非晶性熱可塑性樹脂(A)の含有量が25質量%以上85質量%以下であり、上記非晶性熱可塑性樹脂(B)の含有量が15質量%以上75質量%以下であり、下記要件(1)および要件(2)を満足する熱可塑性樹脂組成物:
要件(1)上記熱可塑性樹脂組成物のガラス転移温度が0℃以上200℃以下である;及び
要件(2)上記熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満である。
[5] 熱可塑性樹脂組成物がさらに結晶性熱可塑性樹脂(C)を含有し、
熱可塑性樹脂組成物中の熱可塑性樹脂の総量を100質量%として、上記結晶性熱可塑性樹脂(C)の含有量が0.01~9質量%である[4]に記載の熱可塑性樹脂組成物。
[6] [4]または[5]に記載の熱可塑性樹脂組成物からなる成形体。
 上記充填剤としては、無機充填剤、有機充填剤が挙げられる。
As one aspect of the present invention, the following thermoplastic resin composition and molded article are also included.
[4] Amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5, and a weight average molecular weight of 500 to 50, Amorphous thermoplastic resin (B) that is less than 000, no filler, and the total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B). As 100 mass%, the content of the amorphous thermoplastic resin (A) is 25 mass% or more and 85 mass% or less, and the content of the amorphous thermoplastic resin (B) is 15 mass% or more and 75 mass%. % Thermoplastic resin composition satisfying the following requirement (1) and requirement (2):
Requirement (1) The glass transition temperature of the thermoplastic resin composition is 0 ° C. or higher and 200 ° C. or lower; and Requirement (2) The haze of a 1 mm thick sheet made of the thermoplastic resin composition is less than 8.0% It is.
[5] The thermoplastic resin composition further contains a crystalline thermoplastic resin (C),
The thermoplastic resin composition according to [4], wherein the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0.01 to 9% by mass. object.
[6] A molded article comprising the thermoplastic resin composition according to [4] or [5].
Examples of the filler include inorganic fillers and organic fillers.
 上記熱可塑性樹脂組成物は、非晶性熱可塑性樹脂(A)と、非晶性熱可塑性樹脂(B)と、必要に応じて更に結晶性熱可塑性樹脂(C)とを溶融混合することによって得られる。溶融混合の方法は、特に限定されることはなく、公知の混合方法、例えば、押出機、オープンロールミル、バンバリーミキサー、ニーダー、または溶融混合槽などを用いる混合方法が挙げられる。溶融混合時の温度は通常100~250℃であり、好ましくは、130~200℃である。 The thermoplastic resin composition is obtained by melt-mixing an amorphous thermoplastic resin (A), an amorphous thermoplastic resin (B), and a crystalline thermoplastic resin (C) as necessary. can get. The method of melt mixing is not particularly limited, and examples thereof include known mixing methods, for example, a mixing method using an extruder, an open roll mill, a Banbury mixer, a kneader, or a melt mixing tank. The temperature at the time of melt mixing is usually from 100 to 250 ° C., preferably from 130 to 200 ° C.
 上記熱可塑性樹脂組成物からなる成形体は、成形体表面の破損だけではなく成形体内部の破損も自己修復可能である。 The molded body composed of the thermoplastic resin composition can self-repair not only the surface of the molded body but also the internal damage of the molded body.
 上記成形体の形状は、シート、マット、フィルム、パイプ、チューブ、容器、ネット、繊維、コネクター等が挙げられる。 The shape of the molded body includes a sheet, mat, film, pipe, tube, container, net, fiber, connector and the like.
 上記成形体の製造方法としては、射出成形、射出圧縮成形、プレス成型、押出成形などが挙げられる。 Examples of the method for producing the molded body include injection molding, injection compression molding, press molding, and extrusion molding.
 上記熱可塑性樹脂組成物を良溶媒に溶解し、コーティング液として使用してもよい。前記コーティング液を基材に塗布し、得られた塗布膜から溶媒を除去して形成されたコーティング膜も、上記成形体の一態様として挙げられる。 The above thermoplastic resin composition may be dissolved in a good solvent and used as a coating liquid. A coating film formed by applying the coating liquid to a substrate and removing the solvent from the obtained coating film is also an example of the molded body.
 上記熱可塑性樹脂組成物からなる成形体がシートである場合、上記熱可塑性樹脂組成物からなるシートを単層で用いてもよいし、上記熱可塑性樹脂組成物からなるシートを少なくとも1つの層として含む多層シートとして用いてもよい。前記多層シートが3層以上の多層シートである場合、1つの層として接着剤層を設けてもよい。
 上記熱可塑性樹脂組成物からなるシートの厚みは、特に制限されるものではないが、通常0.5~500mmである。上記熱可塑性樹脂組成物からなるシートを少なくとも1つの層として含む多層シートにおいて、該多層シートの厚みを100%として、上記熱可塑性樹脂組成物からなるシートで構成される層の厚みは、通常0.01~99.99%である。
When the molded body composed of the thermoplastic resin composition is a sheet, the sheet composed of the thermoplastic resin composition may be used as a single layer, or the sheet composed of the thermoplastic resin composition is used as at least one layer. You may use as a multilayer sheet containing. When the multilayer sheet is a multilayer sheet having three or more layers, an adhesive layer may be provided as one layer.
The thickness of the sheet made of the thermoplastic resin composition is not particularly limited, but is usually 0.5 to 500 mm. In a multilayer sheet including the sheet made of the thermoplastic resin composition as at least one layer, the thickness of the layer made of the sheet made of the thermoplastic resin composition is usually 0, with the thickness of the multilayer sheet being 100%. 0.01 to 99.99%.
 上記熱可塑性樹脂組成物からなる成形体がフィルムである場合、上記熱可塑性樹脂組成物からなるフィルムを単層で用いてもよいし、上記熱可塑性樹脂組成物からなるフィルムを少なくとも1つの層として含む多層フィルムとして用いてもよい。前記多層フィルムが3層以上の多層フィルムである場合、1つの層として接着剤層を設けてもよい。
 上記熱可塑性樹脂組成物からなるフィルムの厚みは、特に制限されるものではないが、通常10~500μmである。上記熱可塑性樹脂組成物からなるフィルムを少なくとも1つの層として含む多層フィルムにおいて、該多層フィルムの厚みを100%として、上記熱可塑性樹脂組成物からなるフィルムで構成される層の厚みは、通常0.01~99.99%である。
When the molded body made of the thermoplastic resin composition is a film, the film made of the thermoplastic resin composition may be used as a single layer, or the film made of the thermoplastic resin composition is used as at least one layer. It may be used as a multilayer film. When the multilayer film is a multilayer film having three or more layers, an adhesive layer may be provided as one layer.
The thickness of the film made of the thermoplastic resin composition is not particularly limited, but is usually 10 to 500 μm. In a multilayer film including the film composed of the thermoplastic resin composition as at least one layer, the thickness of the multilayer film is 100%, and the thickness of the layer composed of the film composed of the thermoplastic resin composition is usually 0. 0.01 to 99.99%.
 上記の多層フィルムまたは多層シートにおいて、本発明の熱可塑性樹脂組成物からなるフィルムまたはシートで構成される層は、本発明の熱可塑性樹脂組成物を含有するコーティング液を基材に塗布し、塗布膜から溶媒を除去して形成された層であってもよい。
 上記の多層フィルムまたは多層シートにおいて、本発明の熱可塑性樹脂組成物からなるフィルムまたはシートで構成される層とは異なる層を構成する樹脂としては、オレフィン樹脂、アクリル樹脂、スチレン・アクリロニトリル樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド、ポリイミド、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリアセタール、ポリカーボネート、ポリアリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリウレタン、フッ素系樹脂、ゴム類、液晶ポリマー、エポキシ系樹脂、メラミン樹脂、ユリア樹脂、フェノール樹脂、シリコン樹脂等が挙げられる。
 オレフィン樹脂としては、エチレン樹脂、プロピレン樹脂、ポリブテン系樹脂、ポリ(4-メチル-1-ペンテン)系樹脂が挙げられる。オレフィン樹脂は、不飽和カルボン酸およびその誘導体から選ばれる少なくとも1種の化合物で変性されていてもよい。オレフィン樹脂は、非晶性オレフィン樹脂でもよく、結晶性オレフィン樹脂でもよい。
 エチレン樹脂としては、高密度ポリエチレン、高圧法低密度ポリエチレン、エチレン-α-オレフィン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-メタクリル酸グリシジル共重合体、エチレン-アクリル酸エステル-メタクリル酸グリシジル共重合体が挙げられる。
 スチレン・アクリロニトリル樹脂としては、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-アクリロニトリル-ブタジエン共重合体が挙げられる。
 ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートが挙げられる。
 ゴム類としては、天然ゴム、ポリブタジエンゴム、ポリアクリロニトリルゴム、アクリロニトリル-ブタジエン共重合体ゴム、部分水添アクリロニトリル-ブタジエン共重合体ゴム、ブチルゴム、クロロプレンゴム、フッ素ゴム、クロロスルホン化ポリエチレン、シリコンゴム、ウレタンゴム、イソブチレン-イソプレン共重合体ゴム、ハロゲン化イソブチレン-イソプレン共重合体ゴム、塩素化ゴム、スチレン系ゴムが挙げられる。
In the above-mentioned multilayer film or multilayer sheet, the layer composed of the film or sheet made of the thermoplastic resin composition of the present invention is applied by applying a coating liquid containing the thermoplastic resin composition of the present invention to the substrate. It may be a layer formed by removing the solvent from the film.
In the above multilayer film or multilayer sheet, the resin constituting the layer different from the layer composed of the film or sheet made of the thermoplastic resin composition of the present invention includes olefin resin, acrylic resin, styrene / acrylonitrile resin, polysulfone. , Polyethersulfone, polyetheretherketone, polyester resin, polyamide resin, polyamideimide, polyimide, polyphenylene ether, polyphenylene sulfide, polyacetal, polycarbonate, polyarylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyurethane, fluorine-based Examples thereof include resins, rubbers, liquid crystal polymers, epoxy resins, melamine resins, urea resins, phenol resins, and silicon resins.
Examples of the olefin resin include ethylene resin, propylene resin, polybutene resin, and poly (4-methyl-1-pentene) resin. The olefin resin may be modified with at least one compound selected from unsaturated carboxylic acids and derivatives thereof. The olefin resin may be an amorphous olefin resin or a crystalline olefin resin.
Examples of the ethylene resin include high-density polyethylene, high-pressure low-density polyethylene, ethylene-α-olefin copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene -Methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-acrylic acid ester-glycidyl methacrylate copolymer.
Examples of the styrene / acrylonitrile resin include polystyrene, styrene-acrylonitrile copolymer, and styrene-acrylonitrile-butadiene copolymer.
Examples of the polyester resin include polyethylene terephthalate and polybutylene terephthalate.
Rubbers include natural rubber, polybutadiene rubber, polyacrylonitrile rubber, acrylonitrile-butadiene copolymer rubber, partially hydrogenated acrylonitrile-butadiene copolymer rubber, butyl rubber, chloroprene rubber, fluoro rubber, chlorosulfonated polyethylene, silicon rubber, Examples thereof include urethane rubber, isobutylene-isoprene copolymer rubber, halogenated isobutylene-isoprene copolymer rubber, chlorinated rubber, and styrene rubber.
 上記の多層フィルムまたは多層シートの製造方法としては、例えば、共押出インフレーション成形法、共押出Tダイキャスト成形法、ドライラミネート法、ウェットラミネート法、サンドラミネート法、ホットメルトラミネート法などが挙げられる。 Examples of the method for producing the multilayer film or multilayer sheet include a coextrusion inflation molding method, a coextrusion T-die casting molding method, a dry laminating method, a wet laminating method, a sand laminating method, and a hot melt laminating method.
 上記成形体は該成形体の表面に、コロナ放電処理、火炎処理、プラズマ処理、オゾン処理等の表面処理を施してもよい。また、上記の多層フィルムまたは多層シートの製造方法において、積層前の少なくとも一層に上記表面処理を施してもよい。
 上記成形体は該成形体の表面に、コーティング処理を施してもよい。コーティング処理としては帯電防止処理、絶縁性処理、導電性処理、防眩処理、反射防止処理、防曇処理防錆処理、防水処理、防汚処理、抗菌処理、撥水処理、親水処理、撥油処理、撥水撥油処理、親水親油処理、ハードコート処理、ガスバリア性処理、吸音・制振処理、高屈折率処理、耐擦傷処理、耐候処理、離型処理、生体適合処理などが挙げられる。
The molded body may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, ozone treatment on the surface of the molded body. Moreover, in the manufacturing method of said multilayer film or multilayer sheet, you may perform the said surface treatment to at least one layer before lamination | stacking.
The molded body may be coated on the surface of the molded body. Coating treatment includes antistatic treatment, insulating treatment, conductive treatment, antiglare treatment, antireflection treatment, antifogging treatment, rustproofing treatment, waterproof treatment, antifouling treatment, antibacterial treatment, water repellent treatment, hydrophilic treatment, oil repellent treatment Treatment, water / oil repellency treatment, hydrophilic / lipophilic treatment, hard coat treatment, gas barrier treatment, sound absorption / vibration treatment, high refractive index treatment, scratch resistance treatment, weather resistance treatment, mold release treatment, biocompatibility treatment, etc. .
 本発明の成形体の用途について、以下に説明する。
 具体的な用途としては、シール材、断熱材、防音材、靴底、包装材料、コーティング材、パッチ、包帯、ホースクリップ、流体輸送用パイプ、フレキシブルホース、アスファルト用添加剤ホットメルト接着剤、接着剤用添加剤、一般に良好な耐破断性および/または耐疲労性を示す必要のある物品、などが挙げられる。
The use of the molded product of the present invention will be described below.
Specific applications include sealing materials, heat insulation materials, soundproofing materials, shoe soles, packaging materials, coating materials, patches, bandages, hose clips, fluid transport pipes, flexible hoses, asphalt additives, hot melt adhesives, and adhesives Additives for agents, articles that generally need to exhibit good fracture resistance and / or fatigue resistance, and the like.
 光学用途としては、光学フィルム、光学シート、光学フィルタ、高輝度プリズムシート、光学的集光球体、反射防止性光学物品、光制御性積層体、透明採光材、防眩フィルム、保護フィルム、ペン入力装置用表面材などが挙げられる。 Optical applications include optical films, optical sheets, optical filters, high-intensity prism sheets, optical condensing spheres, antireflection optical articles, light controllable laminates, transparent daylighting materials, antiglare films, protective films, and pen input. Examples include surface materials for devices.
 電気機器関係としては、電気ケーブル、シース、電線被覆材、電気絶縁用部材、電子機器筐体、機械パーツ、耐振動疲労部材、キャパシタ、固体電解質などが挙げられる。 Electrical equipment relations include electrical cables, sheaths, wire coating materials, electrical insulation members, electronic equipment casings, machine parts, vibration-resistant fatigue members, capacitors, solid electrolytes, and the like.
 タイヤ材としては、タイヤチューブ、タイヤパンクシーリングなどが挙げられる。 Tire materials include tire tubes and tire puncture sealing.
 その他としては、繊維強化材料、防錆剤、腐食防止材、吹き付け顔料、バリヤー材(有機物、気体、湿度)などの塗料、ペット用建材、床、壁、ドアなどの建材、遮水シート、防水シート、アクチュエーター、クリーニングパッド、自動車材、人工皮革、合成皮革、人工皮膚、血管内治療用ステント、セプタム、歯科用複合修復材料、スリーブ材、積層ガラス、転写箔、難燃性フィルム、筆記具用軸筒、クッション材、緩衝剤、農業用フィルム、加飾フィルム、化粧シート、ビニールハウス用シート、防虫ネット、家具、衣服、鞄、靴、スポーツ用品、容器、まな板、カッティングボード、抗菌フィルム、抗菌成形体、バリアフィルム、パッキンなどが挙げられる。 Others include fiber reinforced materials, rust preventives, corrosion inhibitors, spray pigments, paints such as barrier materials (organic matter, gas, humidity), pet building materials, building materials such as floors, walls, doors, waterproof sheets, waterproofing Sheet, Actuator, Cleaning pad, Automobile material, Artificial leather, Synthetic leather, Artificial skin, Endovascular stent, Septum, Dental composite restoration material, Sleeve material, Laminated glass, Transfer foil, Flame retardant film, Writing instrument shaft Tube, cushion material, cushioning agent, agricultural film, decorative film, decorative sheet, greenhouse sheet, insect net, furniture, clothes, bag, shoes, sports equipment, container, cutting board, cutting board, antibacterial film, antibacterial molding Body, barrier film, packing and the like.
 以下、実施例及び比較例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[測定・評価方法] [Measurement and evaluation method]
(1)融点、ガラス転移点(Tg、単位:℃)
 示差走査熱量計(TAインスツルメンツ社製、DSC Q100)により、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、(1)200℃で5分間保持し、次に(2)10℃/分の速度で200℃から-50℃まで降温し、次に(3)-50℃で5分間保持し、次に(4)10℃/分の速度で-50℃から200℃程度まで昇温した。過程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とした。前記融解曲線をJIS K7121に準拠した方法により解析して融点、ガラス転移温度を求めた。
融解エンタルピーΔH(J/g)は、前記融解曲線をJIS K7122に準拠した方法により解析して得た。
(1) Melting point, glass transition point (Tg, unit: ° C)
With a differential scanning calorimeter (TA Instruments, DSC Q100), under an atmosphere of nitrogen, an aluminum pan containing about 5 mg of sample was held at (1) 200 ° C. for 5 minutes, and then (2) 10 ° C. / The temperature is lowered from 200 ° C to -50 ° C at a rate of minutes, then (3) held at -50 ° C for 5 minutes, and then (4) the temperature is raised from -50 ° C to about 200 ° C at a rate of 10 ° C / minute did. The differential scanning calorimetry curve obtained by calorimetry in step (4) was taken as the melting curve. The melting curve was analyzed by a method based on JIS K7121, and the melting point and glass transition temperature were determined.
The melting enthalpy ΔH (J / g) was obtained by analyzing the melting curve by a method based on JIS K7122.
(2)分子量、分子量分布
 ゲル・パーミエーション・クロマトグラフ(GPC)を用い、ポリスチレン標準物質で校正した上で、下記条件で分子量分布曲線を測定した。数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)で分子量分布を評価した。クロロホルムに可溶な熱可塑性樹脂はクロロホルムに溶解させた後、下記条件で分子量分布曲線を測定した。クロロホルムに難溶なベストプラストはキシレンに溶解させた後、下記条件で分子量分布曲線を測定した。TOPAS 9506は分離カラムを1本用いた以外は下記条件と同じ条件で分子量分布曲線を測定した。
 <条件>
装置:SHIMADZU LC
分離カラム: Agilent Polypore 2本
測定温度:30℃
溶離液:クロロホルム
流速:1.0mL/分
試料溶液濃度:約1mg/1mL
試料注入量:100μL
検出器:示差屈折
(2) Molecular weight, molecular weight distribution After calibrating with a polystyrene standard substance using a gel permeation chromatograph (GPC), a molecular weight distribution curve was measured under the following conditions. The molecular weight distribution was evaluated by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn). A thermoplastic resin soluble in chloroform was dissolved in chloroform, and a molecular weight distribution curve was measured under the following conditions. The best plast, which is hardly soluble in chloroform, was dissolved in xylene, and the molecular weight distribution curve was measured under the following conditions. For TOPAS 9506, the molecular weight distribution curve was measured under the same conditions as described below except that one separation column was used.
<Conditions>
Equipment: SHIMADZU LC
Separation column: 2 Agilent Polypores Measurement temperature: 30 ° C
Eluent: Chloroform flow rate: 1.0 mL / min Sample solution concentration: about 1 mg / 1 mL
Sample injection volume: 100 μL
Detector: Differential refraction
(3)重合体中のスチレン含有量
 重合体のH NMR測定を行い、重合体中のスチレン含有量を算出した。
装置: 核磁気共鳴装置(日本電子社製、JNM-AL400)
測定溶媒:重クロロホルム
測定温度:35℃
(3) Styrene content in polymer 1 H NMR measurement of the polymer was performed to calculate the styrene content in the polymer.
Apparatus: Nuclear magnetic resonance apparatus (manufactured by JEOL Ltd., JNM-AL400)
Measuring solvent: Deuterated chloroform Measuring temperature: 35 ° C
(4)メルトフローレート(MFR、単位:g/10分)
JIS  K7210に規定された方法に従い、荷重21N、温度190℃、または、230℃の条件で、A法により測定した。
(4) Melt flow rate (MFR, unit: g / 10 minutes)
According to the method defined in JIS K7210, measurement was performed by the A method under the conditions of a load of 21 N and a temperature of 190 ° C. or 230 ° C.
(5)樹脂組成物のプレスシート(厚さ1mm)の作製
 得られた組成物をPETフィルムまたは離型PETフィルム、アルミ板、更に鋼製平板に挟んで190℃の熱プレス機にて5分間予熱した後、5分間加圧した。加圧完了後、30℃の冷却プレス機にて冷却してプレスシートを得た。この際、鋼製スペーサーを用いてプレスシートの厚さを1mmに調整した。
(5) Production of a press sheet (thickness: 1 mm) of the resin composition The obtained composition was sandwiched between a PET film or a release PET film, an aluminum plate, and a steel plate, and a hot press at 190 ° C. for 5 minutes. After preheating, the pressure was applied for 5 minutes. After completion of pressurization, the sheet was cooled with a cooling press at 30 ° C. to obtain a press sheet. At this time, the thickness of the press sheet was adjusted to 1 mm using a steel spacer.
(6)打ち抜き加工性(成形性)
 上記(5)により得られたプレスシート(厚さ1mm)を、JIS K6251のダンベル状2号形試験片作製用打ち抜き刃により打ち抜く際に、割れなかったものを記号「○」で表し、割れたものを記号「×割れ」、プレスシートの粘着性が高く打ち抜けなかったものを「×粘着」とした。
 打ち抜き時に割れるもの、または粘着性が高く打ち抜けなかったものは、成形体として使用できない。
(6) Punching workability (formability)
When the press sheet (thickness 1 mm) obtained by the above (5) was punched with a punching blade for producing a dumbbell-shaped No. 2 test piece of JIS K6251, the one that was not broken was represented by the symbol “◯” and cracked. The product was designated as “x crack”, and the press sheet was highly sticky and could not be punched out.
Those that are cracked at the time of punching, or those that are highly sticky and cannot be punched cannot be used as a molded body.
(7)厚さ1mm当たりのヘイズ(単位%)
 上記(5)により得られたプレスシート(厚さ1mm)を用い、JIS K7105の規定に従って、ヘイズメーター(日本電色工業製NDH2000)を用いてヘイズを測定した。ヘイズが小さいほど、フィルムは透明性に優れる。
(7) Haze per 1 mm thickness (unit%)
Using the press sheet (thickness 1 mm) obtained by the above (5), haze was measured using a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS K7105. The smaller the haze, the better the film is.
(8)修復率評価(引張試験)
 上記(5)により得られたプレスシートよりJIS K6521のダンベル状2号形試験片を作製した。得られた試験片の中央部に、試験片平行部に対して垂直に厚さ方向50%の切断傷をカッターナイフ(OLFA社製、ノンスリップH型、品番:151BG)で付与し、傷入り試験片を作製した。傷入り試験片を送風乾燥機にて、所定の温度にて17時間加熱したものを修復後試験片とした。それぞれの試験片に対し、引張試験機(A&D社製、RTF-1325-PL-WS)を用いて、つかみ具間距離60mm、100mm/分の速度で引張試験を行った。測定は、温度23℃±2℃、湿度50%±5%で行った。なお、上記引張試験は、装置の都合上、試験片が切断しなくても、つかみ具間距離が600mmとなった時点で終了した。
 JIS  K7161に準拠した方法で、引張-応力カーブのゼロ点での接線の傾きから初期弾性率(ヤング率)、JIS  K6521に準拠した方法で、切断時伸びを測定した。
 修復率は傷なし試験片、傷入り試験片、修復後試験片の切断時伸びを用いて、以下の式にて算出した。
 修復率(%)=((修復後サンプルの切断時伸び)-(傷入りサンプルの切断時伸び))/((傷なしの切断時伸び)-(傷入りの切断時伸び))×100
 以下、送風乾燥機にて40℃にて17時間加熱した試験片を用いて切断時伸びを測定し算出された修復率を修復率(40℃)と記す。送風乾燥機にて80℃にて17時間加熱した試験片を用いて切断時伸びを測定し算出された修復率を修復率(80℃)と記す。
(8) Repair rate evaluation (tensile test)
A dumbbell-shaped No. 2 type test piece of JIS K6521 was produced from the press sheet obtained by the above (5). A 50% cut in the thickness direction perpendicular to the parallel part of the test piece was applied to the center of the obtained test piece with a cutter knife (OLFA, non-slip H type, product number: 151BG), and a scratch test was performed. A piece was made. What was heated for 17 hours at a predetermined temperature with a blow dryer was used as a test piece after repair. Each test piece was subjected to a tensile test using a tensile testing machine (RTF-1325-PL-WS, manufactured by A & D) at a distance between grips of 60 mm and a speed of 100 mm / min. The measurement was performed at a temperature of 23 ° C. ± 2 ° C. and a humidity of 50% ± 5%. In addition, the said tension test was complete | finished when the distance between grips became 600 mm, even if the test piece did not cut | disconnect for the convenience of an apparatus.
The initial elastic modulus (Young's modulus) was measured from the slope of the tangent at the zero point of the tensile-stress curve by a method according to JIS K7161, and the elongation at break was measured by a method according to JIS K6521.
The repair rate was calculated by the following equation using the elongation at break of the scratch-free test piece, the scratched test piece, and the post-repair test piece.
Repair rate (%) = ((Elongation when cutting a sample after repair) − (Elongation when cutting a damaged sample)) / ((Elongation when cutting without a scratch) − (Elongation when cutting with a wound)) × 100
Hereinafter, the repair rate calculated by measuring elongation at break using a test piece heated at 40 ° C. for 17 hours in a blow dryer is referred to as a repair rate (40 ° C.). The repair rate calculated by measuring the elongation at break using a test piece heated at 80 ° C. for 17 hours in a blow dryer is referred to as the repair rate (80 ° C.).
[合成例1]非晶性プロピレン-1-ブテン共重合体の合成
 攪拌機を備えた100LのSUS製重合器中で、プロピレンと1-ブテンとを、分子量調節剤として水素を用い、以下の方法で連続的に共重合させて、非晶性プロピレン-1-ブテン共重合体を得た。
 重合器の下部から、重合溶媒としてのヘキサンを100L/時間の供給速度で、プロピレンを24.00kg/時間の供給速度で、1-ブテンを1.81kg/時間の供給速度で、それぞれ連続的に供給した。
 重合器の上部から、重合器中の反応混合物が100Lの量を保持するように、反応混合物を連続的に抜き出した。
 重合器の下部から、重合触媒の成分として、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライドを0.005g/時間の供給速度で、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレートを0.298g/時間の供給速度で、トリイソブチルアルミニウムを2.315g/時間の供給速度で、それぞれ連続的に供給した。
 共重合反応は、重合器の外部に取り付けられたジャケットに冷却水を循環させることによって、45℃で行った。
 重合器の上部から連続的に抜き出された反応混合物に少量のエタノールを添加して重合反応を停止させた後、脱モノマーおよび水洗浄した。次いで、大量の水中でスチームにより溶媒を除去し、さらに80℃ で24時間、減圧乾燥して、非晶性プロピレン-1-ブテン共重合体を得た。該共重合体の生成速度は7.10kg/時間であった。
 得られた非晶性プロピレン-1-ブテン共重合体を分析した結果、1-ブテン含有量4mol%、Mw 219,000、Mw/Mn=2.1、ΔH=0J/g、MFR=3g/10分(190℃、21N)であった。
[Synthesis Example 1] Synthesis of amorphous propylene-1-butene copolymer In a 100 L SUS polymerizer equipped with a stirrer, propylene and 1-butene were used as molecular weight regulators and hydrogen as the following method. To obtain an amorphous propylene-1-butene copolymer.
From the bottom of the polymerization vessel, hexane as a polymerization solvent was continuously fed at a feed rate of 100 L / hr, propylene was fed at a feed rate of 24.00 kg / hr, and 1-butene was fed at a feed rate of 1.81 kg / hr. Supplied.
From the top of the polymerization vessel, the reaction mixture was continuously withdrawn so that the reaction mixture in the polymerization vessel maintained an amount of 100 L.
From the lower part of the polymerization vessel, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride as a component of the polymerization catalyst at a supply rate of 0.005 g / hour, Triphenylmethyltetrakis (pentafluorophenyl) borate was continuously fed at a feed rate of 0.298 g / hr and triisobutylaluminum was fed at a feed rate of 2.315 g / hr.
The copolymerization reaction was carried out at 45 ° C. by circulating cooling water through a jacket attached to the outside of the polymerization vessel.
A small amount of ethanol was added to the reaction mixture continuously extracted from the upper part of the polymerization vessel to stop the polymerization reaction, and then the monomer was removed and washed with water. Next, the solvent was removed with steam in a large amount of water, and further dried under reduced pressure at 80 ° C. for 24 hours to obtain an amorphous propylene-1-butene copolymer. The production rate of the copolymer was 7.10 kg / hour.
As a result of analyzing the obtained amorphous propylene-1-butene copolymer, the content of 1-butene was 4 mol%, Mw 219000, Mw / Mn = 2.1, ΔH = 0 J / g, MFR = 3 g / 10 minutes (190 ° C., 21 N).
[合成例2]スチレン-ブタジエン共重合体の合成
 加熱乾燥後、窒素で置換した内容積300ミリリットルのナス型フラスコに撹拌子を入れ、テトラヒドロフラン(和光純薬工業株式会社)146mL、スチレン(東京化成工業株式会社)24mLを加え、次いで、ブタジエンのトルエン溶液(アルドリッチ、ブタジエン濃度20質量%)を130mL加えた。n-ブチルリチウムのn-ヘキサン溶液(東京化成工業株式会社、n-ブチルリチウム濃度1.6mol/L)を着色するまで加え、系中に含まれる不純物をスカベンジした後、0.05mL加え、30℃まで昇温することで重合を開始した。300分経過後、エキネンF-6(日本アルコール販売)を1mL添加し、重合を停止した。重合停止後、ポリマーを含有するテトラヒドロフラン溶液に600mLのトルエンを加え、得られた溶液を約500mLの純水にて液が中性になるまで洗浄した。洗浄液をエキネンF-6中に添加することにより、重合体を析出させ、濾別した重合体をさらにエキネンF-6で2回洗浄した。得られた重合体を80℃で真空乾燥することで、35gの重合体が得られた。得られた重合体を分析した結果、スチレン含有量34mol%、Mw 663,000、Mw/Mn=3.3、Tg=26℃、ΔH=0Jであった。MFRは、190℃、21Nの条件で試料が流れず測定不可であった。
[Synthesis Example 2] Synthesis of Styrene-Butadiene Copolymer After heating and drying, a stirrer was placed in an eggplant-shaped flask having an internal volume of 300 ml substituted with nitrogen, and 146 mL of tetrahydrofuran (Wako Pure Chemical Industries, Ltd.) and styrene (Tokyo Kasei). Kogyo Co., Ltd.) 24 mL was added, and then 130 mL of a butadiene toluene solution (Aldrich, butadiene concentration 20 mass%) was added. Add n-butyllithium n-hexane solution (Tokyo Chemical Industry Co., Ltd., n-butyllithium concentration 1.6 mol / L) until it is colored, scavenge impurities contained in the system, add 0.05 mL, 30 Polymerization was started by raising the temperature to 0 ° C. After 300 minutes, 1 mL of Echinen F-6 (Nihon Alcohol Sales) was added to stop the polymerization. After the termination of the polymerization, 600 mL of toluene was added to the tetrahydrofuran solution containing the polymer, and the resulting solution was washed with about 500 mL of pure water until the solution became neutral. The polymer was precipitated by adding the washing liquid into Echinen F-6, and the polymer separated by filtration was further washed twice with Echinen F-6. The obtained polymer was vacuum dried at 80 ° C. to obtain 35 g of a polymer. As a result of analyzing the obtained polymer, the styrene content was 34 mol%, Mw 663,000, Mw / Mn = 3.3, Tg = 26 ° C., and ΔH = 0J. The MFR could not be measured because the sample did not flow under the conditions of 190 ° C. and 21N.
[合成例3]スチレン-ブタジエン共重合体の合成
 テトラヒドロフランを115mL、スチレンを28mL、ブタジエンのトルエン溶液(アルドリッチ、ブタジエン濃度20質量%)を120mL、n-ブチルリチウムのn-ヘキサン溶液を37.5mL、重合時間を120分にした以外は合成例2と同様に合成した。40gの重合体が得られた。得られた重合体を分析した結果、スチレン含有量39mol%、Mw 27,000、Mw/Mn=1.2、Tg=35℃、ΔH=0Jであった。
Synthesis Example 3 Synthesis of Styrene-Butadiene Copolymer 115 mL of tetrahydrofuran, 28 mL of styrene, 120 mL of toluene solution of butadiene (Aldrich, butadiene concentration 20% by mass), 37.5 mL of n-hexane solution of n-butyllithium The synthesis was performed in the same manner as in Synthesis Example 2 except that the polymerization time was 120 minutes. 40 g of polymer was obtained. As a result of analyzing the obtained polymer, the styrene content was 39 mol%, Mw 27,000, Mw / Mn = 1.2, Tg = 35 ° C., and ΔH = 0J.
[合成例4]スルホン化スチレン-ブタジエン共重合体ナトリウム塩の合成
 合成例3で得られた重合体のスルホン化は、J.App.Polym.Sci.,Vol.96,1398,(2005).に従って実施した。スルホン化率を測定した結果、31mmol-OH/100g-重合体であった。スルホン化したスチレン-ブタジエン共重合体の中和は、Macromolecules,Vol.40,6401,(2007).に従って実施した。中和度が100となるように酢酸ナトリウムを添加した。得られたスルホン化スチレン-ブタジエン共重合体ナトリウム塩のMFRを測定した結果、1000以上(190℃、21N)であった。
[Synthesis Example 4] Synthesis of Sulfonated Styrene-Butadiene Copolymer Sodium Salt Sulfonation of the polymer obtained in Synthesis Example 3 is described in J. Am. App. Polym. Sci. , Vol. 96, 1398, (2005). It carried out according to. As a result of measuring the sulfonation rate, it was 31 mmol-OH / 100 g-polymer. Neutralization of the sulfonated styrene-butadiene copolymer is described in Macromolecules, Vol. 40, 6401, (2007). It carried out according to. Sodium acetate was added so that the degree of neutralization was 100. The MFR of the obtained sulfonated styrene-butadiene copolymer sodium salt was measured and found to be 1000 or more (190 ° C., 21 N).
[実施例1]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体39質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」(ヤスハラケミカル株式会社製)58質量%、および結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」3質量%を、混練機(東洋精機製ラボプラストミル(Cモデル)、ミキサー:R-100H)を用いて、混練時の樹脂温度190℃、混練時間5分、スクリュー回転速度80rpmの条件で混練を行い、樹脂組成物を得た。得られた樹脂組成物のMFRは50g/10分(190℃、21N)、Tgは3.2℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は100%、ヤング率59MPa、ヘイズ3.4%であった。
[Example 1]
39% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). 105 ”(manufactured by Yasuhara Chemical Co., Ltd.) and 3% by mass of“ Sumitomo Nobrene FLX80E4 ”as the crystalline thermoplastic resin (C), kneader (Toyo Seiki Laboplast Mill (C model), mixer: R- 100H), kneading was performed under the conditions of a resin temperature at the time of kneading of 190 ° C., a kneading time of 5 minutes, and a screw rotation speed of 80 rpm to obtain a resin composition. MFR of the obtained resin composition was 50 g / 10min (190 degreeC, 21N), and Tg was 3.2 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 100%, Young's modulus 59 MPa, and haze 3.4%.
[実施例2]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体48質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-150」(ヤスハラケミカル株式会社製)48質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」4質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは22g/10分(190℃、21N)、Tgは9.1℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は74%、修復率(40℃)は0%、ヤング率250MPa、ヘイズ4.0%であった。
[Example 2]
48% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). 150 ”(manufactured by Yasuhara Chemical Co., Ltd.) 48% by mass, and 4% by mass of“ Sumitomo Nobrene FLX80E4 ”was used as the crystalline thermoplastic resin (C). MFR of the obtained resin composition was 22 g / 10min (190 degreeC, 21N), and Tg was 9.1 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 74%, the repair rate (40 ° C.) was 0%, the Young's modulus was 250 MPa, and the haze was 4.0%.
[実施例3]
非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体57質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」38質量%、および結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」5質量%を均一に混合し、内径15mmの二軸混練機(テクノベル社製KZW15-45MG、内径:15mm、L/D=45)にて設定温度:190℃、スクリュー回転数:500rpmで加熱溶融混練し、樹脂組成物を得た。得られた樹脂組成物のMFRは15g/10分(190℃、21N)、Tgは5.0℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は100%、修復率(40℃)は40%、ヤング率35MPa、ヘイズ3.7%であった。
[Example 3]
57% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). 105 ”38% by mass and 5% by mass of“ Sumitomo Nobrene FLX80E4 ”as the crystalline thermoplastic resin (C) were mixed uniformly, and a twin-screw kneader with an inner diameter of 15 mm (Technobel KZW15-45MG, inner diameter: 15 mm, L / D = 45) at a set temperature of 190 ° C. and a screw rotation speed of 500 rpm, and melted and kneaded to obtain a resin composition. MFR of the obtained resin composition was 15 g / 10min (190 degreeC, 21N), and Tg was 5.0 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 100%, the repair rate (40 ° C.) was 40%, the Young's modulus was 35 MPa, and the haze was 3.7%.
[実施例4]
 非晶性熱可塑性樹脂(A)としてスチレン-イソプレン-スチレンブロック共重合体「ハイブラー5127」(株式会社クラレ製)60質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」40質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは54g/10分(190℃、21N)、Tgは19.3℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は61%、ヤング率374MPa、ヘイズ7.8%であった。
[Example 4]
Styrene-isoprene-styrene block copolymer “Hibler 5127” (manufactured by Kuraray Co., Ltd.) 60% by mass as the amorphous thermoplastic resin (A), hydrogenated terpene resin “Clearon P” as the amorphous thermoplastic resin (B) The same procedure as in Example 1 was carried out except that 40% by mass of “−105” was used. MFR of the obtained resin composition was 54 g / 10min (190 degreeC, 21N), and Tg was 19.3 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 61%, Young's modulus 374 MPa, and haze 7.8%.
[実施例5]
 非晶性熱可塑性樹脂(A)として水添スチレン-イソプレン-スチレンブロック共重合体「ハイブラー7311F」(株式会社クラレ製)40質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-150」60質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは37g/10分(190℃、21N)、Tgは19.4℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は97%、ヤング率556MPa、ヘイズ2.6%であった。
[Example 5]
Hydrogenated styrene-isoprene-styrene block copolymer “HIBLER 7311F” (manufactured by Kuraray Co., Ltd.) 40% by mass as the amorphous thermoplastic resin (A), hydrogenated terpene resin “Amorphous thermoplastic resin (B)” The same procedure as in Example 1 was performed except that 60% by mass of Clearon P-150 was used. MFR of the obtained resin composition was 37 g / 10min (190 degreeC, 21N), and Tg was 19.4 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 97%, Young's modulus 556 MPa, and haze 2.6%.
[比較例1]
 非晶性熱可塑性樹脂(A)として合成例2で製造されたスチレン-ブタジエン共重合体40質量%と、非晶性熱可塑性樹脂(B)として合成例4で製造されたスルホン化スチレン-ブタジエン共重合体ナトリウム塩60質量%とを、小型混練機(Xplore、DSM社製)を用いて、混練時の樹脂温度130℃、混練時間5分、スクリュー回転速度100rpmの条件で混練を2回行い、樹脂組成物を得た。得られた樹脂組成物のTgは29.3℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(40℃)は50%、ヤング率1615MPa、ヘイズ14.1%であった。
[Comparative Example 1]
40% by mass of the styrene-butadiene copolymer produced in Synthesis Example 2 as an amorphous thermoplastic resin (A) and the sulfonated styrene-butadiene produced in Synthesis Example 4 as an amorphous thermoplastic resin (B) 60% by mass of sodium salt of copolymer is kneaded twice using a small kneader (Xplore, manufactured by DSM) under conditions of a resin temperature of 130 ° C., a kneading time of 5 minutes, and a screw rotation speed of 100 rpm. A resin composition was obtained. The obtained resin composition had a Tg of 29.3 ° C. The press sheet produced from the obtained resin composition was punchable, and the repair rate (40 ° C.) was 50%, Young's modulus was 1615 MPa, and haze was 14.1%.
[比較例2]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体19質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」79質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」2質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは2000g/10分(190℃、21N)以上、Tgは19.6℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き時に割れ、修復率を測定することができなかった。ヘイズは1.4%であった。
[Comparative Example 2]
19% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). The same procedure as in Example 1 was carried out except that 105 ”79% by mass and 2% by mass of“ Sumitomo Nobrene FLX80E4 ”were used as the crystalline thermoplastic resin (C). The obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more and a Tg of 19.6 ° C. The press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured. The haze was 1.4%.
[比較例3]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体84質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」9質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」7質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは6.2g/10分(190℃、21N)、Tgは-7.5℃であった。得られた樹脂組成物から作製したプレスシートは粘着性が高く、打ち抜き加工不可能であり、修復率を測定することができなかった。ヘイズは9.2%であった。
[Comparative Example 3]
84% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). Example 10 was carried out in the same manner as in Example 1 except that 9% by mass of 105 ”and 7% by mass of“ Sumitomo Nobrene FLX80E4 ”were used as the crystalline thermoplastic resin (C). The obtained resin composition had an MFR of 6.2 g / 10 min (190 ° C., 21 N), and a Tg of −7.5 ° C. The press sheet produced from the obtained resin composition had high adhesiveness, was not stampable, and the repair rate could not be measured. The haze was 9.2%.
[比較例4]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「ベストプラスト703」(エボニック社製)50質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-150」50質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは2000g/10分(190℃、21N)以上、Tgは-2.5℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き時に割れ、修復率を測定することができなかった。ヘイズは15.6%であった。
[Comparative Example 4]
50% by mass of propylene resin “Best Plast 703” (manufactured by Evonik) as amorphous thermoplastic resin (A) and 50% by mass of hydrogenated terpene resin “Clearon P-150” as amorphous thermoplastic resin (B) The same operation as in Example 1 was carried out except that it was used. The obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more, and a Tg of −2.5 ° C. The press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured. The haze was 15.6%.
[比較例5]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「ベストプラスト708」(エボニック社製)50質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-150」50質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは2000g/10分(190℃、21N)以上、Tgは-5.3℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き時に割れ、修復率を測定することができなかった。ヘイズは56.4%であった。
[Comparative Example 5]
As amorphous thermoplastic resin (A), 50% by mass of propylene resin “Best Plast 708” (Evonik) and 50% by mass of hydrogenated terpene resin “Clearon P-150” as amorphous thermoplastic resin (B). The same operation as in Example 1 was carried out except that it was used. The obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more, and a Tg of −5.3 ° C. The press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured. The haze was 56.4%.
[比較例6]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「ベストプラスト792」(エボニック社製)50質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-150」50質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは904g/10分(190℃、21N)、Tgは-3.1℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き時に割れ、修復率を測定することができなかった。ヘイズは55.0%であった。
[Comparative Example 6]
50% by mass of propylene resin “Best Plast 792” (manufactured by Evonik) as amorphous thermoplastic resin (A), and 50% by mass of hydrogenated terpene resin “Clearon P-150” as amorphous thermoplastic resin (B) The same operation as in Example 1 was carried out except that it was used. The obtained resin composition had an MFR of 904 g / 10 min (190 ° C., 21 N), and a Tg of −3.1 ° C. The press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured. The haze was 55.0%.
[比較例7]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体35質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」52質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」3質量%と無水マレイン酸変性結晶性プロピレン樹脂「ユーメックス1010」(三洋化成工業株式会社製)10質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは124g/10分(190℃、21N)、Tgは5.0℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は0%、ヤング率118MPa、ヘイズ8.3%であった。
[Comparative Example 7]
35% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). 105 ”52% by mass, 3% by mass of“ Sumitomo Nobrene FLX80E4 ”and 10% by mass of maleic anhydride-modified crystalline propylene resin“ Yumex 1010 ”(manufactured by Sanyo Chemical Industries, Ltd.) as the crystalline thermoplastic resin (C) Except for this, the same procedure as in Example 1 was performed. The obtained resin composition had an MFR of 124 g / 10 min (190 ° C., 21 N), and a Tg of 5.0 ° C. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 118 MPa, and haze 8.3%.
[比較例8]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体31質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-105」46質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」3質量%と無水マレイン酸変性結晶性プロピレン樹脂「ユーメックス1010」20質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは321g/10分(190℃、21N)、Tgは7.0℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は0%、ヤング率98MPa、ヘイズ33.5%であった。
[Comparative Example 8]
31% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the hydrogenated terpene resin “Clearon P— as the amorphous thermoplastic resin (B). 105 ”46% by mass, the same as in Example 1 except that 3% by mass of“ Sumitomo Nobrene FLX80E4 ”and 20% by mass of maleic anhydride-modified crystalline propylene resin“ Yumex 1010 ”were used as the crystalline thermoplastic resin (C). Carried out. MFR of the obtained resin composition was 321 g / 10 minutes (190 degreeC, 21N), and Tg was 7.0 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 98 MPa, and haze 33.5%.
[比較例9]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「タフセレンX1107」(住友化学株式会社製)42質量%、非晶性熱可塑性樹脂(B)として水添石油樹脂「アルコンP-125」(荒川化学工業株式会社製)30質量%、結晶性熱可塑性樹脂(C)として結晶性プロピレン樹脂「住友ノーブレンFLX80E4」(住友化学株式会社製)28質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは5g/10分(190℃、21N)、Tgは―13.9℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は0%、ヤング率70MPa、ヘイズ10.0%であった。
[Comparative Example 9]
42% by mass of propylene resin “Tufselen X1107” (manufactured by Sumitomo Chemical Co., Ltd.) as the amorphous thermoplastic resin (A), and hydrogenated petroleum resin “Arcon P-125” (Arakawa Chemical) as the amorphous thermoplastic resin (B) This was carried out in the same manner as in Example 1 except that 30% by mass of Kogyo Co., Ltd. and 28% by mass of crystalline propylene resin “Sumitomo Nobrene FLX80E4” (Sumitomo Chemical Co., Ltd.) were used as the crystalline thermoplastic resin (C). . The obtained resin composition had an MFR of 5 g / 10 min (190 ° C., 21 N), and a Tg of −13.9 ° C. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 70 MPa, and haze 10.0%.
[比較例10]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体41質量%、非晶性熱可塑性樹脂(B)として水添石油樹脂「アルコンP-90」(荒川化学工業株式会社製)45質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」4質量%と石油系ワックス「パラフィンワックス155」(日本精蝋株式会社製)10質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは132g/10分(190℃、21N)であった。得られた樹脂組成物から作製したプレスシートのヘイズは77.2%であった。
[Comparative Example 10]
As amorphous thermoplastic resin (A), 41% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1, and as the amorphous thermoplastic resin (B), a hydrogenated petroleum resin “Alcon P— 90 "(Arakawa Chemical Industries, Ltd.) 45% by mass, 4% by mass of Sumitomo Nobrene FLX80E4 as crystalline thermoplastic resin (C), and 10% by mass of petroleum wax" Paraffin Wax 155 "(Nippon Seiwa Co., Ltd.) The same procedure as in Example 1 was performed except that% was used. MFR of the obtained resin composition was 132 g / 10min (190 degreeC, 21N). The haze of the press sheet produced from the obtained resin composition was 77.2%.
[比較例11]
 非晶性熱可塑性樹脂(A)として水添スチレン-イソプレンブロック共重合体「セプトン2004F」(株式会社クラレ社製)12.5質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-125」(ヤスハラケミカル株式会社製)62.5質量%、結晶性熱可塑性樹脂(C)として結晶性プロピレン樹脂「ウインテックWFX4」(日本ポリプロ株式会社製)25質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは196g/10分(190℃、21N)、Tgは2.2℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は0%、ヤング率1100MPa、ヘイズ36.1%であった。
[Comparative Example 11]
Hydrogenated styrene-isoprene block copolymer “Septon 2004F” (manufactured by Kuraray Co., Ltd.) 12.5% by mass as the amorphous thermoplastic resin (A), and hydrogenated terpene resin as the amorphous thermoplastic resin (B) “Clearon P-125” (manufactured by Yashara Chemical Co., Ltd.) 62.5% by mass, and crystalline propylene resin “Wintech WFX4” (manufactured by Nippon Polypro Co., Ltd.) 25% by mass was used as the crystalline thermoplastic resin (C). Was carried out in the same manner as in Example 1. MFR of the obtained resin composition was 196 g / 10min (190 degreeC, 21N), and Tg was 2.2 degreeC. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 1100 MPa, and haze 36.1%.
[比較例12]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「タフセレンX1107」5.6質量%、非晶性熱可塑性樹脂(B)として水添テルペン樹脂「クリアロンP-125」55.5質量%、結晶性熱可塑性樹脂(C)として結晶性プロピレン樹脂「ウインテックWFX4」16.7質量%と結晶性プロピレン樹脂「ビスコール660P」(三洋化成工業株式会社製)22.2質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは2000g/10分(190℃、21N)以上であった。得られた樹脂組成物から作製したプレスシートは打ち抜き時に割れ、修復率を測定することができなかった。ヘイズ3.7%であった。
[Comparative Example 12]
As the amorphous thermoplastic resin (A), 5.6% by mass of the propylene resin “Tough Selenium X1107”, as the amorphous thermoplastic resin (B), 55.5% by mass of the hydrogenated terpene resin “Clearon P-125”, crystalline Example except that 16.7% by mass of crystalline propylene resin “Wintech WFX4” and 22.2% by mass of crystalline propylene resin “Biscol 660P” (manufactured by Sanyo Chemical Industries, Ltd.) were used as the thermoplastic resin (C). 1 was carried out. The MFR of the obtained resin composition was 2000 g / 10 min (190 ° C., 21 N) or more. The press sheet produced from the obtained resin composition was cracked at the time of punching, and the repair rate could not be measured. The haze was 3.7%.
[比較例13]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「ベストプラスト792」62質量%、非晶性熱可塑性樹脂(B)として水添石油樹脂「アルコンP-125」26質量%、結晶性熱可塑性樹脂(C)として石油系ワックス「パラフィンワックス155」(日本精蝋株式会社製)12質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは1183g/10分(190℃、21N)、Tgは-16.9℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は0%、ヤング率39MPa、ヘイズ88.8%であった。
[Comparative Example 13]
62% by mass of propylene resin “Best Plast 792” as amorphous thermoplastic resin (A), 26% by mass of hydrogenated petroleum resin “Alcon P-125” as amorphous thermoplastic resin (B), crystalline thermoplastic resin The same procedure as in Example 1 was performed except that 12% by mass of petroleum-based wax “paraffin wax 155” (manufactured by Nippon Seiwa Co., Ltd.) was used as (C). The obtained resin composition had an MFR of 1183 g / 10 min (190 ° C., 21 N), and a Tg of −16.9 ° C. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 0%, Young's modulus 39 MPa, and haze 88.8%.
[比較例14]
 非晶性熱可塑性樹脂(A)としてプロピレン樹脂「ベストプラスト792」45質量%、非晶性熱可塑性樹脂(B)として水添石油樹脂「アルコンP-90」45質量%、結晶性熱可塑性樹脂(C)として石油系ワックス「パラフィンワックス155」(日本精蝋株式会社製)10質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは2000g/10分(190℃、21N)以上、Tgは-12.8℃であった。得られた樹脂組成物から作製したプレスシートは粘着性が高く、打ち抜き加工不可能であり、修復率を測定することができなかった。ヘイズ31.4%であった。
[Comparative Example 14]
45% by mass of propylene resin “Best Plast 792” as amorphous thermoplastic resin (A), 45% by mass of hydrogenated petroleum resin “Alcon P-90” as amorphous thermoplastic resin (B), crystalline thermoplastic resin The same procedure as in Example 1 was performed except that 10% by mass of petroleum-based wax “paraffin wax 155” (manufactured by Nippon Seiwa Co., Ltd.) was used as (C). The obtained resin composition had an MFR of 2000 g / 10 min (190 ° C., 21 N) or more and a Tg of −12.8 ° C. The press sheet produced from the obtained resin composition had high adhesiveness, was not stampable, and the repair rate could not be measured. The haze was 31.4%.
[比較例15]
 非晶性熱可塑性樹脂(A)として合成例1で製造された非晶性プロピレン-1-ブテン共重合体48質量%、非晶性熱可塑性樹脂(B)として環状オレフィン樹脂「TOPAS 9506」(ポリプラスチックス株式会社製)48質量%、結晶性熱可塑性樹脂(C)として「住友ノーブレンFLX80E4」4質量%を用いた以外は実施例1と同様に実施した。得られた樹脂組成物のMFRは3g/10分(190℃、21N)、Tgは-8.7℃、65.1℃であった。得られた樹脂組成物から作製したプレスシートは打ち抜き可能であり、修復率(80℃)は26%、ヤング率71MPa、ヘイズ93.7%であった。
[Comparative Example 15]
48% by mass of the amorphous propylene-1-butene copolymer produced in Synthesis Example 1 as the amorphous thermoplastic resin (A), and the cyclic olefin resin “TOPAS 9506” as the amorphous thermoplastic resin (B) ( This was carried out in the same manner as in Example 1 except that 48% by mass of Polyplastics Co., Ltd. and 4% by mass of “Sumitomo Nobrene FLX80E4” were used as the crystalline thermoplastic resin (C). The obtained resin composition had an MFR of 3 g / 10 min (190 ° C., 21 N), and Tg of −8.7 ° C. and 65.1 ° C. The press sheet produced from the obtained resin composition was punchable, and the repair rate (80 ° C.) was 26%, Young's modulus 71 MPa, and haze 93.7%.
<記号の説明>
 A-1: 非晶性プロピレン系重合体樹脂(1-ブテン含有量4mol%、Mw 219,000、Mw/Mn=2.1、ΔH=0J/g、MFR=3g/10分(190℃、21N)(合成例1)
 A-2: スチレン-イソプレン-スチレンブロック共重合体「ハイブラー5127」(スチレン含有量20%、Mw 109,000、Mw/Mn=1.5、ΔH=0J/g、MFR=4g/分(190℃、21N)(株式会社クラレ製))
 A-3: 水添スチレン-イソプレン-スチレンブロック共重合体「ハイブラー7311F」(スチレン含有量12%、Mw 132,000、Mw/Mn=1.1、ΔH=0J/g、MFR=0.4g/分(190℃、21N)(株式会社クラレ製))
 A-4: スチレン-ブタジエン共重合体(スチレン含有量34mol%、Mw 663,000、Mw/Mn=3.3、ΔH=0J/g、MFR 流れず測定不可(190℃、21N))(合成例2)
 A-5: プロピレン樹脂「ベストプラスト703」(Mw 41,600、Mw/Mn=5.6、ΔH=35J/g、MFR=1000g/10分以上(190℃、21N))(エボニック社製)
 A-6: プロピレン樹脂「ベストプラスト708」(Mw 56,900、Mw/Mn=3.6、ΔH=28J/g、MFR=1000g/10分以上 (190℃、21N))(エボニック社製)
 A-7: プロピレン樹脂「ベストプラスト792」(Mw 141,000、Mw/Mn=4.5、ΔH=18J/g、MFR=500g/10分(230℃、21N)、220g/10min(190℃、21N))(エボニック社製)
 A-8: プロピレン樹脂「タフセレンX1107」(Mw 321,000、Mw/Mn=2.1、ΔH=0J/g、MFR=1.2g/10分(190℃、21N))(住友化学株式会社製)
 A-9: 水添スチレン-イソプレンブロック共重合体「セプトン2004F」(スチレン含有量18%、Mw 78,700、Mw/Mn=1.0、ΔH=0J/g)(株式会社クラレ製)
 B-1: 水添テルペン樹脂「クリアロンP-105」(Mw 1,100、Mw/Mn=2.8、ΔH=0J/g)(ヤスハラケミカル株式会社製)
 B-2: 水添テルペン樹脂「クリアロンP-150」(Mw 1,200、Mw/Mn=2.3、ΔH=0J/g)(ヤスハラケミカル株式会社製)
 B-3: スルホン化スチレン-ブタジエン共重合体ナトリウム塩(スチレン含有量39mol%(スルホン化前)、Mw 27,000(スルホン化前)、Mw/Mn=1.2(スルホン化前)、ΔH=0J/g(スルホン化前)、スルホン化率31mmol-OH/100g-重合体、中和度100%、MFR 1000g/10分以上(190℃、21N))(合成例4)
 B-4: 水添石油樹脂「アルコンP-125」(Mw 1,400、Mw/Mn=3.2、ΔH=0J/g)(荒川化学工業株式会社製)
 B-5: 水添石油樹脂「アルコンP-90」(Mw 900、Mw/Mn=3.2、ΔH=0J/g)(荒川化学工業株式会社製)
 B-6: 水添テルペン樹脂「クリアロンP-125」(Mw 1,100、Mw/Mn=2.9、ΔH=0J/g)(ヤスハラケミカル株式会社製)
 B-7: 環状オレフィン樹脂「TOPAS 9506」(Mw=107,000、Mw/Mn=1.9、ΔH=0J/g)(ポリプラスチックス株式会社製)
 C-1: 結晶性プロピレン樹脂「住友ノーブレンFLX80E4」(融点163℃、ΔH=120J/g、MFR=8g/10分(230℃、21N))(住友化学株式会社製)
 C-2: 無水マレイン酸変性結晶性プロピレン樹脂「ユーメックス1010」(融点140℃、ΔH=74J/g)(三洋化成工業株式会社製)
 C-3: 石油系ワックス「パラフィンワックス155」(融点68℃、ΔH=218J/g)(日本精蝋株式会社製)
 C-4: 結晶性プロピレン樹脂「ウインテックWFX4」(融点123℃、ΔH=79J/g)(日本ポリプロ株式会社製)
 C-5: 結晶性プロピレン樹脂「ビスコール660P」(融点131℃、ΔH=79J/g)(三洋化成工業株式会社製)
<Explanation of symbols>
A-1: Amorphous propylene polymer resin (1-butene content 4 mol%, Mw 219000, Mw / Mn = 2.1, ΔH = 0 J / g, MFR = 3 g / 10 min (190 ° C., 21N) (Synthesis Example 1)
A-2: Styrene-isoprene-styrene block copolymer “Hibler 5127” (styrene content 20%, Mw 109,000, Mw / Mn = 1.5, ΔH = 0 J / g, MFR = 4 g / min (190 (C, 21N) (Kuraray Co., Ltd.))
A-3: Hydrogenated styrene-isoprene-styrene block copolymer “HIBLER 7311F” (styrene content 12%, Mw 132,000, Mw / Mn = 1.1, ΔH = 0 J / g, MFR = 0.4 g) / Min (190 ° C, 21N) (Kuraray Co., Ltd.))
A-4: Styrene-butadiene copolymer (styrene content 34 mol%, Mw 663,000, Mw / Mn = 3.3, ΔH = 0 J / g, MFR does not flow and cannot be measured (190 ° C., 21 N)) (synthesis Example 2)
A-5: Propylene resin “Best Plast 703” (Mw 41,600, Mw / Mn = 5.6, ΔH = 35 J / g, MFR = 1000 g / 10 min or more (190 ° C., 21 N)) (manufactured by Evonik)
A-6: Propylene resin “Best Plast 708” (Mw 56,900, Mw / Mn = 3.6, ΔH = 28 J / g, MFR = 1000 g / 10 min or more (190 ° C., 21 N)) (manufactured by Evonik)
A-7: Propylene resin “Best Plast 792” (Mw 141,000, Mw / Mn = 4.5, ΔH = 18 J / g, MFR = 500 g / 10 min (230 ° C., 21 N), 220 g / 10 min (190 ° C.) 21N)) (Evonik)
A-8: Propylene resin “Tufselen X1107” (Mw 321,000, Mw / Mn = 2.1, ΔH = 0 J / g, MFR = 1.2 g / 10 min (190 ° C., 21 N)) (Sumitomo Chemical Co., Ltd.) Made)
A-9: Hydrogenated styrene-isoprene block copolymer “Septon 2004F” (styrene content 18%, Mw 78,700, Mw / Mn = 1.0, ΔH = 0 J / g) (manufactured by Kuraray Co., Ltd.)
B-1: Hydrogenated terpene resin “Clearon P-105” (Mw 1,100, Mw / Mn = 2.8, ΔH = 0 J / g) (manufactured by Yashara Chemical Co., Ltd.)
B-2: Hydrogenated terpene resin “Clearon P-150” (Mw 1,200, Mw / Mn = 2.3, ΔH = 0 J / g) (manufactured by Yashara Chemical Co., Ltd.)
B-3: Sodium salt of sulfonated styrene-butadiene copolymer (styrene content 39 mol% (before sulfonation), Mw 27,000 (before sulfonation), Mw / Mn = 1.2 (before sulfonation), ΔH = 0 J / g (before sulfonation), sulfonation rate 31 mmol-OH / 100 g-polymer, neutralization degree 100%, MFR 1000 g / 10 min or more (190 ° C., 21 N)) (Synthesis Example 4)
B-4: Hydrogenated petroleum resin “Alcon P-125” (Mw 1,400, Mw / Mn = 3.2, ΔH = 0 J / g) (Arakawa Chemical Industries, Ltd.)
B-5: Hydrogenated petroleum resin “Alcon P-90” (Mw 900, Mw / Mn = 3.2, ΔH = 0 J / g) (Arakawa Chemical Industries, Ltd.)
B-6: Hydrogenated terpene resin “Clearon P-125” (Mw 1,100, Mw / Mn = 2.9, ΔH = 0 J / g) (manufactured by Yashara Chemical Co., Ltd.)
B-7: Cyclic olefin resin “TOPAS 9506” (Mw = 107,000, Mw / Mn = 1.9, ΔH = 0 J / g) (manufactured by Polyplastics Co., Ltd.)
C-1: Crystalline propylene resin “Sumitomo Nobrene FLX80E4” (melting point: 163 ° C., ΔH = 120 J / g, MFR = 8 g / 10 min (230 ° C., 21 N)) (manufactured by Sumitomo Chemical Co., Ltd.)
C-2: Maleic anhydride-modified crystalline propylene resin “Yumex 1010” (melting point 140 ° C., ΔH = 74 J / g) (manufactured by Sanyo Chemical Industries, Ltd.)
C-3: Petroleum wax “paraffin wax 155” (melting point 68 ° C., ΔH = 218 J / g) (manufactured by Nippon Seiwa Co., Ltd.)
C-4: Crystalline propylene resin “Wintec WFX4” (melting point: 123 ° C., ΔH = 79 J / g) (manufactured by Nippon Polypro Co., Ltd.)
C-5: Crystalline propylene resin “Biscol 660P” (melting point 131 ° C., ΔH = 79 J / g) (manufactured by Sanyo Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
※結晶化、融解ピークのみ観測
Figure JPOXMLDOC01-appb-T000004
* Observe only crystallization and melting peaks

Claims (3)

  1.  重量平均分子量が50,000以上500,000以下であり、分子量分布が1.0以上3.5以下である非晶性熱可塑性樹脂(A)と、重量平均分子量が500以上50,000未満である非晶性熱可塑性樹脂(B)とを含有し、
    上記非晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(B)の合計量を100質量%として、上記非晶性熱可塑性樹脂(A)の含有量が25質量%以上85質量%以下であり、上記非晶性熱可塑性樹脂(B)の含有量が15質量%以上75質量%以下であり、
    下記要件(1)および要件(2)を満足する熱可塑性樹脂組成物:
    要件(1)上記熱可塑性樹脂組成物のガラス転移温度が0℃以上200℃以下である;および
    要件(2)上記熱可塑性樹脂組成物からなる厚さ1mmのシートのヘイズが8.0%未満である。
    An amorphous thermoplastic resin (A) having a weight average molecular weight of 50,000 to 500,000 and a molecular weight distribution of 1.0 to 3.5; and a weight average molecular weight of 500 to less than 50,000 Containing an amorphous thermoplastic resin (B),
    The total amount of the amorphous thermoplastic resin (A) and the amorphous thermoplastic resin (B) is 100% by mass, and the content of the amorphous thermoplastic resin (A) is 25% by mass to 85% by mass. %, And the content of the amorphous thermoplastic resin (B) is 15 mass% or more and 75 mass% or less,
    Thermoplastic resin composition satisfying the following requirement (1) and requirement (2):
    Requirement (1) The glass transition temperature of the thermoplastic resin composition is 0 ° C. or higher and 200 ° C. or lower; and Requirement (2) The haze of a 1 mm thick sheet made of the thermoplastic resin composition is less than 8.0% It is.
  2.  熱可塑性樹脂組成物がさらに結晶性熱可塑性樹脂(C)を含有し、
    熱可塑性樹脂組成物中の熱可塑性樹脂の総量を100質量%として、上記結晶性熱可塑性樹脂(C)の含有量が0.01~9質量%である請求項1に記載の熱可塑性樹脂組成物。
    The thermoplastic resin composition further contains a crystalline thermoplastic resin (C),
    The thermoplastic resin composition according to claim 1, wherein the total amount of the thermoplastic resin in the thermoplastic resin composition is 100% by mass, and the content of the crystalline thermoplastic resin (C) is 0.01 to 9% by mass. object.
  3.  請求項1または2に記載の熱可塑性樹脂組成物からなる成形体。 A molded article comprising the thermoplastic resin composition according to claim 1 or 2.
PCT/JP2017/013332 2016-03-31 2017-03-30 Thermoplastic resin composition and molded object thereof WO2017170903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509452A JP6835069B2 (en) 2016-03-31 2017-03-30 Thermoplastic resin composition and its molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-070639 2016-03-31
JP2016070639 2016-03-31
JP2017-008199 2017-01-20
JP2017008199 2017-01-20

Publications (1)

Publication Number Publication Date
WO2017170903A1 true WO2017170903A1 (en) 2017-10-05

Family

ID=59965969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013332 WO2017170903A1 (en) 2016-03-31 2017-03-30 Thermoplastic resin composition and molded object thereof

Country Status (2)

Country Link
JP (1) JP6835069B2 (en)
WO (1) WO2017170903A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070729A (en) * 2019-10-29 2021-05-06 パナソニックIpマネジメント株式会社 Resin composition and molding
WO2021230241A1 (en) * 2020-05-11 2021-11-18 国立大学法人 東京大学 Self-healing polymer material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067627A1 (en) * 2003-01-27 2004-08-12 Mitsui Chemicals, Inc. Propylene polymer composition and use thereof
WO2006123759A1 (en) * 2005-05-18 2006-11-23 Mitsui Chemicals, Inc. Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those
JP2011222562A (en) * 2010-04-02 2011-11-04 Tokyo Ohka Kogyo Co Ltd Stripping method and stripping liquid
JP2015189802A (en) * 2014-03-27 2015-11-02 株式会社ダイセル Sheet-shaped transparent sealing material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067627A1 (en) * 2003-01-27 2004-08-12 Mitsui Chemicals, Inc. Propylene polymer composition and use thereof
WO2006123759A1 (en) * 2005-05-18 2006-11-23 Mitsui Chemicals, Inc. Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those
JP2011222562A (en) * 2010-04-02 2011-11-04 Tokyo Ohka Kogyo Co Ltd Stripping method and stripping liquid
JP2015189802A (en) * 2014-03-27 2015-11-02 株式会社ダイセル Sheet-shaped transparent sealing material and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070729A (en) * 2019-10-29 2021-05-06 パナソニックIpマネジメント株式会社 Resin composition and molding
WO2021230241A1 (en) * 2020-05-11 2021-11-18 国立大学法人 東京大学 Self-healing polymer material
JPWO2021230241A1 (en) * 2020-05-11 2021-11-18
JP7468932B2 (en) 2020-05-11 2024-04-16 国立大学法人 東京大学 Self-healing polymer materials

Also Published As

Publication number Publication date
JP6835069B2 (en) 2021-02-24
JPWO2017170903A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
TW583207B (en) Hydrogenated copolymer
JP6072995B1 (en) Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded product, liquid packaging container, medical device, medical tube, weather seal corner member and weather seal
JP4101180B2 (en) Modified hydrogenated copolymer
WO2007139116A1 (en) Process for production of cross copolymers, cross copolymers obtained by the process, and use thereof
RU2722160C2 (en) Hydrogenated block copolymer, polypropylene resin composition and moulded article
US20100015331A1 (en) Hot melt adhesive compositions and methods of making and using same
KR20180039101A (en) Hydrogenated block copolymer, polypropylene resin composition and molded article
JP6211083B2 (en) Surface protection film
JP6835069B2 (en) Thermoplastic resin composition and its molded article
CN112566978B (en) Composition and elastomer
RU2713173C1 (en) Resin composition and moulded article
JP2006265281A (en) Pressure-sensitive adhesive film or pressure-sensitive adhesive sheet, and manufacturing method thereof
JP2011079237A (en) Heat-shrinkable laminated film
WO2002038654A1 (en) Surface-protecting film/sheet and decorative film/sheet, and decorative material
WO2018003676A1 (en) Thermoplastic resin composition and molded body of same
JP2004162049A (en) Polyolefin-based resin composition and use of the same
JP6908048B2 (en) the film
JP2001106628A (en) Substrate film for pasting and pasting material
JP2006282738A (en) Adhesive film or adhesive sheet, method for producing the same and adhesive product comprising the same
CN116406330B (en) Resin composition, adhesive, laminate, surface protective film, method for producing surface protective film, and method for protecting surface
JP2004217839A (en) Propylene-based resin composition and molding thereof
JP5294417B2 (en) Heat shrinkable laminated film
WO2023243691A1 (en) Stretched polyethylene film for lamination
JP2023184221A (en) Stretched polyethylene film for lamination
JP2023184219A (en) Stretched polyethylene film for lamination

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509452

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775437

Country of ref document: EP

Kind code of ref document: A1