WO2018230238A1 - Semisolid electrolyte, electrode, electrode having semisolid electrolyte layer, and secondary battery - Google Patents

Semisolid electrolyte, electrode, electrode having semisolid electrolyte layer, and secondary battery Download PDF

Info

Publication number
WO2018230238A1
WO2018230238A1 PCT/JP2018/018977 JP2018018977W WO2018230238A1 WO 2018230238 A1 WO2018230238 A1 WO 2018230238A1 JP 2018018977 W JP2018018977 W JP 2018018977W WO 2018230238 A1 WO2018230238 A1 WO 2018230238A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
semi
solid electrolyte
electrode
weight
Prior art date
Application number
PCT/JP2018/018977
Other languages
French (fr)
Japanese (ja)
Inventor
篤 宇根本
克 上田
敦史 飯島
明秀 田中
純 川治
奥村 壮文
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2019525229A priority Critical patent/JP6875522B2/en
Priority to KR1020197029374A priority patent/KR102272029B1/en
Priority to CN201880023968.2A priority patent/CN110521049B/en
Publication of WO2018230238A1 publication Critical patent/WO2018230238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a semi-solid electrolyte, an electrode, an electrode with a semi-solid electrolyte layer, and a secondary battery.
  • Patent Document 1 discloses a positive electrode containing a positive electrode active material capable of inserting or removing anions, a negative electrode containing a negative electrode active material capable of inserting or removing cations, A non-aqueous electrolyte storage element comprising a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an aqueous solvent, wherein the non-aqueous solvent comprises 85.0-99.9% by weight of chain carbonate with respect to the total amount of the non-aqueous solvent.
  • non-aqueous electrolyte wherein the cyclic carbonate contains at least fluorinated cyclic carbonate, and the concentration of the electrolyte salt in the non-aqueous electrolyte is 2 mol / L or more
  • a power storage element is disclosed.
  • the present invention aims to improve the life of a secondary battery.
  • Described in this specification is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise manner.
  • the upper limit value or the lower limit value of the numerical ranges described in this specification may be replaced with the values shown in the examples.
  • a lithium ion secondary battery is an electrochemical device that can store or use electrical energy by occlusion / release of lithium ions to and from an electrode in a nonaqueous electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is a subject of the present invention.
  • the technical idea of the present invention can be applied to sodium ion secondary batteries, magnesium ion secondary batteries, aluminum ion secondary batteries and the like in addition to lithium ion secondary batteries.
  • FIG. 1 is an external view of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a secondary battery according to an embodiment of the present invention.
  • 1 and FIG. 2 are stacked secondary batteries, and the secondary battery 1000 includes a positive electrode 100, a negative electrode 200, an outer package 500, and a semi-solid electrolyte layer 300.
  • the outer package 500 houses the semi-solid electrolyte layer 300, the positive electrode 100, and the negative electrode 200.
  • the material of the outer package 500 can be selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the present invention can also be applied to a wound secondary battery.
  • an electrode body 400 including a positive electrode 100, a semi-solid electrolyte layer 300, and a negative electrode 200 is laminated.
  • the positive electrode 100 or the negative electrode 200 may be referred to as an electrode or a secondary battery electrode.
  • the positive electrode 100, the negative electrode 200, or the semi-solid electrolyte layer 300 may be referred to as a secondary battery sheet.
  • a structure in which the semi-solid electrolyte layer 300 and the positive electrode 100 or the negative electrode 200 are integrated may be referred to as an electrode with a semi-solid electrolyte layer.
  • the electrode with a semi-solid electrolyte layer has a semi-solid electrolyte layer containing a semi-solid electrolyte and an electrode, and the electrode is preferably a negative electrode.
  • the positive electrode 100 has a positive electrode current collector 120 and a positive electrode mixture layer 110.
  • a positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120.
  • the negative electrode 200 includes a negative electrode current collector 220 and a negative electrode mixture layer 210. Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
  • the positive electrode mixture layer 110 or the negative electrode mixture layer 210 may be referred to as an electrode mixture layer, and the positive electrode current collector 120 or the negative electrode current collector 220 may be referred to as an electrode current collector.
  • the positive electrode current collector 120 has a positive electrode tab portion 130.
  • the negative electrode current collector 220 has a negative electrode tab portion 230.
  • the positive electrode tab portion 130 or the negative electrode tab portion 230 may be referred to as an electrode tab portion.
  • An electrode mixture layer is not formed on the electrode tab portion. However, an electrode mixture layer may be formed on the electrode tab portion as long as the performance of the secondary battery 1000 is not adversely affected.
  • the positive electrode tab portion 130 and the negative electrode tab portion 230 protrude to the outside of the outer package 500, and the plurality of protruding positive electrode tab portions 130 and the plurality of negative electrode tab portions 230 are bonded together by, for example, ultrasonic bonding. Thus, a parallel connection is formed in the secondary battery 1000.
  • the present invention can also be applied to a bipolar secondary battery in which an electrical series connection is configured in the secondary battery 1000.
  • the positive electrode mixture layer 110 includes a positive electrode active material, a positive electrode conductive agent, and a positive electrode binder.
  • the negative electrode mixture layer 210 includes a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder.
  • the semi-solid electrolyte layer 300 has a semi-solid electrolyte binder and a semi-solid electrolyte.
  • a semi-solid electrolyte includes particles and a semi-solid electrolyte.
  • the positive electrode active material or the negative electrode active material may be referred to as an electrode active material
  • the positive electrode conductive agent or the negative electrode conductive agent may be referred to as an electrode conductive agent
  • the positive electrode binder or the negative electrode binder may be referred to as an electrode binder.
  • the pores of the electrode mixture layer may be filled with a semisolid electrolyte.
  • the semi-solid electrolyte is injected into the secondary battery 1000 from the vacant side or the injection hole of the outer package 500, and the semi-solid electrolyte is filled in the pores of the electrode mixture layer.
  • particles contained in the semisolid electrolyte are not required, and particles such as an electrode active material and an electrode conductive agent in the electrode mixture layer function as particles, and these particles hold the semisolid electrolyte.
  • a slurry in which the semisolid electrolyte, the electrode active material, the electrode conductive agent, and the electrode binder are mixed is prepared, and the prepared slurry is collected into the electrode current collector.
  • methods such as applying together on the body.
  • the semi-solid electrolyte used for forming the semi-solid electrolyte layer 300 includes a semi-solid electrolyte solvent in which an electrolyte salt such as a lithium salt is dissolved in an ether solvent or an ionic liquid, a negative electrode interface additive, and an optional low-viscosity organic solvent. It is a material in which a semi-solid electrolyte and particles such as SiO 2 are mixed.
  • the semi-solid electrolyte layer 300 serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200 and also serves as an electronic insulator, thereby preventing a short circuit between the positive electrode 100 and the negative electrode 200.
  • a separator such as a microporous membrane may be used for the semisolid electrolyte layer 300.
  • the separator polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used.
  • the semi-solid electrolyte is applied to the semi-solid electrolyte layer 300 by injecting the semi-solid electrolyte into the secondary battery 1000 from the vacant side or the injection hole of the outer package 500. Filled.
  • the semi-solid electrolyte may be contained in only one or two or more of the positive electrode 100, the negative electrode 200, and the semi-solid electrolyte layer 300.
  • the electrode conductive agent improves the conductivity of the electrode mixture layer.
  • As the electrode conductive agent ketjen black, acetylene black and the like are preferably used, but are not limited thereto.
  • the electrode binder binds an electrode active material or an electrode conductive agent in the electrode.
  • the electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
  • ⁇ Positive electrode active material> In the positive electrode active material exhibiting a noble potential, lithium ions are desorbed during the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer are inserted during the discharging process.
  • part of oxygen in these materials may be replaced with other elements such as fluorine.
  • chalcogenides such as sulfur, TiS 2 , MoS 2 , Mo 6 S 8 and TiSe 2
  • vanadium oxides such as V 2 O 5
  • halides such as FeF 3 , Fe (MoO 4 ) 3 constituting polyanions
  • quinone organic crystals such as Fe 2 (SO 4 ) 3 and Li 3 Fe 2 (PO 4 ) 3
  • the amount of lithium or anion in the chemical composition may deviate from the above stoichiometric composition.
  • ⁇ Positive electrode current collector 120> As the positive electrode current collector 120, an aluminum foil having a thickness of 10 to 100 ⁇ m or an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used. In addition to aluminum, stainless steel, titanium, and the like can also be applied. Any positive electrode current collector 120 can be used without being limited by the material, shape, manufacturing method and the like.
  • ⁇ Negative electrode active material> lithium ions are desorbed in the discharging process, and lithium ions desorbed from the positive electrode active material in the positive electrode mixture layer 110 are inserted in the charging process.
  • the negative electrode active material exhibiting a base potential include carbon materials (eg, graphite, graphitizable carbon material, amorphous carbon material, organic crystal, activated carbon, etc.), conductive polymer materials (eg, polyacene).
  • lithium composite oxides eg, lithium titanate: Li 4 Ti 5 O 12 and Li 2 TiO 4
  • metal lithium metals alloyed with lithium (eg, aluminum, silicon) , Tin or the like) and oxides thereof can be used, but are not limited thereto.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • copper, stainless steel, titanium, nickel, etc. can also be applied.
  • Any negative electrode current collector 220 can be used without being limited by the material, shape, manufacturing method, and the like.
  • An electrode mixture layer is prepared by adhering an electrode slurry in which an electrode active material, an electrode conductive agent, an electrode binder, and an organic solvent are mixed to an electrode current collector by a doctor blade method, a dipping method, a spray method, or the like. Then, an organic solvent is dried and an electrode is produced by press-molding an electrode mixture layer by a roll press.
  • the electrode slurry may contain a semisolid electrolyte or a semisolid electrolyte.
  • a plurality of electrode mixture layers may be laminated on the electrode current collector by performing a plurality of times from application to drying.
  • the thickness of the electrode mixture layer is preferably equal to or greater than the average particle diameter of the electrode active material. If the thickness of the electrode mixture layer is small, the electron conductivity between adjacent electrode active materials may deteriorate.
  • the particles are preferably insulative particles and insoluble in a semi-solid electrolytic solution containing an organic solvent or ionic liquid.
  • oxide inorganic particles such as silica (SiO 2 ) particles, ⁇ -alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, zirconia (ZrO 2 ) particles can be preferably used.
  • a solid electrolyte may be used as the particles.
  • the solid electrolyte include particles of an inorganic solid electrolyte such as an oxide solid electrolyte or a sulfide solid electrolyte.
  • the average primary particle size of the particles is preferably 1 nm to 10 ⁇ m. If the average particle size of the primary particles of the particles is large, the particles may not properly hold a sufficient amount of the semisolid electrolyte, which may make it difficult to form a semisolid electrolyte. Moreover, when the average particle diameter of the primary particle of particle
  • the average primary particle diameter of the particles is more preferably 1 nm to 50 nm, and further preferably 1 nm to 10 nm. The average particle size of the primary particles of the particles can be measured using a known particle size distribution measuring device using a laser scattering method.
  • the semi-solid electrolyte includes a semi-solid electrolyte solvent, an optional low viscosity organic solvent, and a negative electrode interface additive.
  • the semi-solid electrolyte solvent includes an ionic liquid or a mixture of an ether solvent exhibiting similar properties to the ionic liquid and an electrolyte salt.
  • the electrolyte salt may contain a low-viscosity organic solvent instead of the semi-solid electrolyte.
  • An ionic liquid or an ether solvent may be referred to as a main solvent.
  • An ionic liquid is a compound that dissociates into a cation and an anion at room temperature, and maintains a liquid state.
  • the ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt.
  • the semi-solid electrolyte solvent is desirably a low volatility, specifically, a vapor pressure at room temperature of 150 Pa or less from the viewpoint of stability in the air and heat resistance in the secondary battery.
  • the content of the semisolid electrolyte in the electrode mixture layer is preferably 20% by volume to 40% by volume.
  • the content of the semi-solid electrolytic solution is small, there is a possibility that the ion conduction path inside the electrode mixture layer is not sufficiently formed and the rate characteristic is lowered.
  • a semi-solid electrolyte solution may leak from an electrode mixture layer.
  • the ionic liquid is composed of a cation and an anion. Ionic liquids are classified into imidazolium, ammonium, pyrrolidinium, piperidinium, pyridinium, morpholinium, phosphonium, sulfonium, and the like depending on the cation species. Examples of the cation constituting the imidazolium-based ionic liquid include alkyl imidazolium cations such as 1-ethyl-3-methylimidazolium (EMI) and 1-butyl-3-methylimidazolium (BMI).
  • EMI 1-ethyl-3-methylimidazolium
  • BMI 1-butyl-3-methylimidazolium
  • Examples of the cation constituting the ammonium-based ionic liquid include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME) and tetraamylammonium, as well as N, N, N- There are alkylammonium cations such as trimethyl-N-propylammonium.
  • Examples of the cation constituting the pyrrolidinium-based ionic liquid include alkylpyrrolidinium cations such as N-methyl-N-propylpyrrolidinium (Py13) and 1-butyl-1-methylpyrrolidinium.
  • Examples of the cation constituting the piperidinium-based ionic liquid include alkylpiperidinium cations such as N-methyl-N-propylpiperidinium (PP13) and 1-butyl-1-methylpiperidinium.
  • Examples of the cation constituting the pyridinium-based ionic liquid include alkylpyridinium cations such as 1-butylpyridinium and 1-butyl-4-methylpyridinium.
  • Examples of the cation constituting the morpholinium-based ionic liquid include alkylmorpholinium such as 4-ethyl-4-methylmorpholinium.
  • Examples of cations constituting the phosphonium-based ionic liquid include alkylphosphonium cations such as tetrabutylphosphonium and tributylmethylphosphonium.
  • Examples of the cation constituting the sulfonium-based ionic liquid include alkylsulfonium cations such as trimethylsulfonium and tributylsulfonium.
  • anion paired with these cations examples include bis (trifluoromethanesulfonyl) imide (TFSI), bis (fluorosulfonyl) imide (FSI), tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), There are bis (pentafluoroethanesulfonyl) imide (BETI), trifluoromethanesulfonate (triflate), acetate, dimethyl phosphate, dicyanamide, trifluoro (trifluoromethyl) borate and the like. These ionic liquids may be used alone or in combination.
  • Lithium cation and those consisting of the above anions can be used as lithium salts, such as lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (pentafluoroethane) Examples include, but are not limited to, sulfonyl) imide (LiBETI), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium triflate. These electrolyte salts may be used alone or in combination.
  • the ether solvent constitutes a solvated ionic liquid together with the electrolyte salt.
  • a symmetric glycol diglyceride represented by a known glyme (RO (CH 2 CH 2 O) n-R ′ (R and R ′ are saturated hydrocarbons, n is an integer)) showing properties similar to ionic liquids.
  • RO CH 2 CH 2 O
  • n-R ′ saturated hydrocarbons, n is an integer
  • tetraglyme tetraethylene dimethyl glycol, G4
  • triglyme triethylene glycol dimethyl ether, G3
  • pentag lime pentag lime
  • pentag lime pentag lime
  • pentag lime pentag lime
  • lithium imide salts such as LiFSI, LiTFSI, and LiBETI can be used, but are not limited thereto.
  • a mixture of an ether solvent and an electrolyte salt may be used alone or in combination.
  • the low viscosity organic solvent lowers the viscosity of the semi-solid electrolyte solvent and improves the ionic conductivity. Since the internal resistance of the semi-solid electrolyte containing the semi-solid electrolyte solvent is large, the internal resistance of the semi-solid electrolyte can be lowered by increasing the ionic conductivity of the semi-solid electrolyte solvent by adding a low viscosity organic solvent. . However, since the semi-solid electrolyte solvent is electrochemically unstable, the decomposition reaction is accelerated with respect to the battery operation, causing the secondary battery 1000 to increase in resistance and decrease in capacity with the repeated operation of the secondary battery 1000. there is a possibility.
  • the cations of the semi-solid electrolyte solvent are inserted into the graphite during the charging reaction, destroying the graphite structure, and the repetitive operation of the secondary battery 1000 may not be possible. There is.
  • the low-viscosity organic solvent is desirably a solvent having a viscosity lower than 140 Pa ⁇ s, which is a viscosity of a mixture of an ether solvent and an electrolyte salt at 25 ° C., for example.
  • Low-viscosity organic solvents include propylene carbonate (PC), trimethyl phosphate (TMP), gamma butyl lactone (GBL), ethylene carbonate (EC), triethyl phosphate (TEP), tris phosphite (2,2,2- Trifluoroethyl) (TFP), dimethyl methylphosphonate (DMMP), and the like. These low-viscosity organic solvents may be used alone or in combination.
  • the above electrolyte salt may be dissolved in a low viscosity organic solvent. From the viewpoint of the capacity retention rate of the secondary battery 1000, EC is desirable as a low viscosity organic solvent.
  • a fluorine-based resin is preferably used as the semi-solid electrolyte binder.
  • the fluorine-based resin polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (P (VDF-HFP)), polytetrafluoroethylene (PTFE), or the like is preferably used.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP copolymer of polyvinylidene fluoride and hexafluoropropylene
  • PTFE polytetrafluoroethylene
  • a semi-solid electrolyte is constituted by supporting or holding the semi-solid electrolyte on the particles.
  • a semi-solid electrolyte solution and particles are mixed at a specific volume ratio, an organic solvent such as methanol is added and mixed to prepare a semi-solid electrolyte slurry, and the slurry is then mixed with a petri dish.
  • a method of obtaining a semi-solid electrolyte powder by distilling off the organic solvent is a method for producing a semi-solid electrolyte.
  • Methods for producing the semi-solid electrolyte layer 300 include a method of compressing a semi-solid electrolyte powder into a pellet using a molding die, a method of adding a semi-solid electrolyte binder to a semi-solid electrolyte powder, and mixing it into a sheet. There is. By adding and mixing semi-solid electrolyte binder powder to the semi-solid electrolyte, a highly flexible sheet-like semi-solid electrolyte layer 300 can be produced.
  • the semi-solid electrolyte layer 300 can be produced by adding and mixing a solution of a binder in which a semi-solid electrolyte binder is dissolved in a dispersion solvent to the semi-solid electrolyte and distilling off the dispersion solvent.
  • the semi-solid electrolyte layer 300 may be produced by applying and drying the above-mentioned semi-solid electrolyte with a binder solution added and mixed on the electrode.
  • the content of the semisolid electrolyte in the semisolid electrolyte layer 300 is desirably 70% by volume to 90% by volume.
  • the interface resistance between the electrode and the semisolid electrolyte layer 300 may increase.
  • the content of the semi-solid electrolyte is large, the semi-solid electrolyte may leak from the semi-solid electrolyte layer 300.
  • ⁇ Negative bulk density> By setting the negative electrode bulk density (hereinafter also simply referred to as negative electrode density or density) to a predetermined value, the battery capacity of the secondary battery 1000 can be improved. Specifically, (negative electrode bulk density (g / cm 3 )) ⁇ ⁇ 0.05042 (negative electrode interface additive weight ratio (%)) 2 +0.4317 (negative electrode interface additive weight ratio (%)) + 0.9032, especially Desirably, (negative electrode bulk density (g / cm 3 )) ⁇ ⁇ 0.076 (weight ratio of negative electrode interface additive (%)) 2 +0.571 (weight ratio of negative electrode interface additive (%)) + 0.6251.
  • the weight ratio of the negative electrode interface additive means the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the weight of the applied negative electrode (hereinafter the same).
  • the method for measuring the negative electrode bulk density can be obtained by measuring the weight and thickness of the negative electrode mixture layer 210 applied on the current collector foil. Specifically, it can be obtained by dividing the measured weight of the negative electrode mixture layer 210 by the product of the thickness and area of the negative electrode mixture layer 210.
  • the negative electrode interface additive forms a passive film on the negative electrode surface and suppresses reductive decomposition of the semi-solid electrolyte.
  • Examples of the negative electrode interface additive include vinylene carbonate (VC), lithium bis (oxalate) borate (LiBOB), fluoroethylene carbonate (FEC), and ethylene sulfite. These negative electrode interface additives may be used alone or in combination.
  • the semi-solid electrolyte of the present invention comprises a semi-solid electrolyte solvent, an optional low-viscosity organic solvent and a semi-solid electrolyte solution containing a negative electrode interface additive, and particles, with respect to the sum of the weight of the semi-solid electrolyte and the negative electrode applied. It is used by applying to the negative electrode so that the weight of the negative electrode interface additive is 0.6% to 11.7%. By defining the amount of the negative electrode interface additive relative to the sum of the weight of the semisolid electrolyte and the negative electrode, the stability between the semisolid electrolyte and the interface of the negative electrode 200 containing graphite or the like is improved.
  • the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the applied negative electrode (hereinafter referred to as the negative electrode interface additive weight ratio) is 0.6% to 11.7%, particularly 1.7% to 5.8. % Is desirable.
  • the weight ratio of the negative electrode interface additive is small, the interface between the semisolid electrolyte that contributes to the stable operation of the secondary battery 1000 and the negative electrode 200 containing graphite may not be formed, which may reduce the life of the secondary battery 1000.
  • the weight ratio of the negative electrode interface additive is large, there is a possibility that a decomposition reaction is induced on the surface of the positive electrode 100, thereby reducing the Coulomb efficiency and increasing the battery resistance.
  • the weight ratio of the negative electrode interface additive can be determined by determining the weight of the negative electrode interface additive relative to the sum of the weights of the semisolid electrolytes used for the negative electrode 200 and the semisolid electrolyte layer 300.
  • Example 1> ⁇ Preparation of semi-solid electrolyte> Tetraglyme (G4) and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) were weighed so as to have a molar ratio of 1: 1, charged into a beaker, and mixed until a homogeneous solvent was prepared to produce a lithium glyme complex. .
  • a lithium glyme complex and fumed silica nanoparticles having a particle diameter of 7 nm are weighed so that the volume ratio is 80:20, and further, propylene carbonate (PC) as a low viscosity organic solvent, vinylene carbonate (VC) as a negative electrode interface additive, Methanol was put into a beaker together with a stir bar and stirred at 600 rpm using a stirrer to obtain a uniform mixture. This mixture was put into an eggplant flask and dried for 3 hours at 100 mbar and 60 ° C. using an evaporator. After drying, the powder was passed through a 100 ⁇ m mesh sieve to obtain a powdery semi-solid electrolyte.
  • PC propylene carbonate
  • VC vinylene carbonate
  • PVDF Polyvinylidene fluoride
  • Graphite was used as the negative electrode active material.
  • the negative electrode conductive agent and the negative electrode binder are the same as those of the positive electrode 100. These were weighed and mixed so that the weight ratio was 88: 2: 10 to obtain a negative electrode slurry.
  • This was applied onto a stainless steel foil as the negative electrode current collector 220 and dried at 80 ° C. for 2 hours to remove N-methylpyrrolidone, thereby obtaining a negative electrode sheet.
  • the negative electrode sheet was punched out with a diameter of 13 mm and uniaxially pressed to obtain a negative electrode 200 with a double-side coating amount of 17 mg / cm 2 and a density of 1.6 g / cm 3 . The weight of the obtained negative electrode was measured.
  • the weight ratio of the lithium glyme complex to PC in the obtained semisolid electrolyte layer 300 was 55.5: 44.5.
  • the weight of VC was 0.6% (negative electrode interface additive weight ratio) with respect to the sum of the weight of the semisolid electrolyte and the weight of the negative electrode 200.
  • a positive electrode 100, a negative electrode 200, and a semi-solid electrolyte layer 300 were laminated and sealed in a 2032 type coin cell to obtain a lithium ion secondary battery.
  • Example 1 was performed except that the weight of VC (weight ratio of negative electrode interface additive) with respect to the sum of the weight of the semisolid electrolyte and the negative electrode 200 was changed as shown in FIG.
  • LiBOB Lithium bis (oxalate) borate
  • Example 12 to 14 Example except that fluoroethylene carbonate (FEC) was used as the negative electrode interface additive, and the weight of the FEC relative to the sum of the weight of the semisolid electrolyte and the negative electrode 200 (weight ratio of the negative electrode interface additive) was as shown in FIG. Same as 1.
  • FEC fluoroethylene carbonate
  • Example 15 Ethylene carbonate (EC) is used as the low viscosity organic solvent, vinylene carbonate (VC) is used as the negative electrode interface additive, and the weight ratio of the lithium glyme complex and EC in the semisolid electrolyte layer 300 is as shown in FIG. Example 1 was repeated except that the weight of VC with respect to the sum of the weight of the solid electrolyte and the weight of the negative electrode 200 was 1.7%.
  • EC Ethylene carbonate
  • VC vinylene carbonate
  • the weight ratio of the lithium glyme complex and EC in the semisolid electrolyte layer 300 is as shown in FIG. Example 1 was repeated except that the weight of VC with respect to the sum of the weight of the solid electrolyte and the weight of the negative electrode 200 was 1.7%.
  • Example 1 was performed except that the density of the negative electrode 200, the weight of the semisolid electrolyte, and the weight of VC with respect to the sum of the negative electrode 200 (weight ratio of the negative electrode interface additive) were as shown in FIG.
  • Example 1 was repeated except that no negative electrode interface additive was used.
  • Example 1 was performed except that the weight of VC (weight ratio of negative electrode interface additive) with respect to the sum of the weight of the semisolid electrolyte and the negative electrode 200 was changed as shown in FIG.
  • the measurement voltage range is 2.7 V to 4.2 V
  • the battery is operated in the constant current-constant voltage mode
  • the discharge is operated in the constant current mode
  • the discharge is performed after the first cycle discharge.
  • the capacity (initial discharge capacity) and the discharge capacity after 30 cycle discharge (30 cycle discharge capacity) were measured.
  • FIG. 3 shows the measurement results of Examples and Comparative Examples.
  • Figure 3 shows the value obtained by dividing the initial discharge capacity by the 30-cycle discharge capacity (discharge capacity retention rate). It is considered that the initial discharge capacity strongly influences the battery capacity of the secondary battery 1000, and the discharge capacity maintenance ratio strongly influences the life of the secondary battery 1000. Therefore, the battery capacity evaluation standard was that the initial discharge capacity was 105 (mAh / g) or more, and the life evaluation standard was that the discharge capacity retention rate was 65% or more.
  • the discharge capacity retention rate was a desirable value for any of the examples.
  • the weight ratio of the negative electrode interface additive was 1.7% to 5.8%
  • the low-viscosity solvent was the same, and the 30-cycle discharge capacity was larger than that of the comparative example not including the negative electrode interface additive.
  • the example in which the negative electrode interface additive was added had a larger initial discharge capacity than the comparative example in which the negative electrode interface additive was not added.
  • FIG. 4 shows a relationship diagram between the deterioration coefficient and the negative electrode interface additive weight ratio.
  • the discharge capacity retention rate was plotted against the cycle number 1/2, and the slope was obtained by linear approximation and defined as the degradation coefficient.
  • the deterioration coefficient always takes a negative value, and the smaller the absolute value is, the higher the capacity retention rate is. As shown in FIG.
  • the deterioration factor is -5 (discharge capacity maintenance rate after 100 cycles is 50%) because the negative electrode interface additive weight ratio is 1.3% to 13.9%, and the deterioration factor is -3 (after 100 cycles).
  • the negative electrode interface additive is VC>
  • the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the negative electrode 200 is 0.6% to 11.7%
  • Comparative Example 1 that does not include the negative electrode interface additive
  • Comparative Examples 2 and 3 in which the weight ratio of the negative electrode interface additive is 14.6% or more
  • the 30-cycle discharge capacity was large.
  • the weight ratio of the negative electrode interface additive was 0.6% to 5.8% (Examples 1 to 7)
  • the 30-cycle discharge capacity was larger than those of Comparative Examples 1, 2 and 3.
  • the weight ratio of the negative electrode interface additive was 1.7% to 5.8% (Examples 3 to 7)
  • the discharge capacity was as high as 130 mAh / g or more during the battery operation at least 30 times.
  • the weight ratio of the negative electrode interface additive When the weight ratio of the negative electrode interface additive is small, the interface between the semi-solid electrolyte and the negative electrode 200 is not sufficiently stabilized, and the initial discharge capacity is reduced due to partial progress of co-insertion and reductive decomposition of the lithium glyme complex. It is possible. On the other hand, when the weight ratio of the negative electrode interface additive is large, it is considered that VC gradually decomposes on the surface of the positive electrode 100 with the cycle operation to induce high resistance, thereby reducing the discharge capacity.
  • Example 15 where the low-viscosity organic solvent is EC, the initial discharge capacity and 30-cycle discharge capacity were large by setting the weight ratio of the negative electrode interface additive to 1.7%.
  • the negative electrode interface additive is LiBOB>
  • the maximum value of the negative electrode interface additive weight ratio was 1.7%. This is because when the weight ratio is larger than this, the introduced LiBOB may not be completely dissolved in the mixed solvent.
  • the weight ratio of the negative electrode interface additive was 0.6% to 1.7%, the initial discharge capacity and the 30-cycle discharge capacity were larger than those of Comparative Example 1 not including LiBOB.
  • ⁇ Negative electrode interface additive is FEC>
  • the initial discharge capacity was larger than that of Comparative Example 1 containing no FEC, and the 30 cycle discharge capacity was 100 mAh / g or more.
  • the battery capacity depends not only on the negative electrode interface additive weight ratio but also on the negative electrode bulk density. This is because when the negative electrode bulk density is small, the negative electrode 200 becomes thick and the resistance of the secondary battery may increase. Also, when the negative electrode bulk density is large, the gap inside the electrode becomes small, and the negative electrode interface additive does not reach the vicinity of the electrode current collector during the initial charge, so that the decomposition reaction of the semi-solid electrolyte is induced. This is because the resistance of the secondary battery may increase.
  • FIG. 5 shows the relationship between the initial discharge capacity and the negative electrode interface additive weight ratio, with the negative electrode bulk density being constant (1.12 to 1.77 g / cm 3 ) for Examples 16 to 33 and Comparative Examples 4 to 9.
  • the initial discharge capacity was approximated by a quadratic function depending on the negative electrode interface additive weight ratio.
  • the constant term of the approximate curve depended on the negative electrode bulk density.
  • FIG. 6 shows the relationship between the negative electrode bulk density and the initial discharge capacity for Examples 16 to 33 and Comparative Examples 4 to 9, with the negative electrode interface additive weight ratio being constant (0 to 5.8%).
  • the initial discharge capacity was approximated by a straight line having a negative slope with respect to the negative electrode bulk density.
  • the magnitude of the slope of the straight line was dependent on the weight ratio of the negative electrode interface additive.
  • the relationship between the negative electrode bulk density and the negative electrode interface additive weight ratio required to obtain a certain initial discharge capacity Q was determined from the approximate curves and approximate lines obtained from FIGS. 5 and 6, and is shown in FIG. Regardless of the negative electrode bulk density, the initial discharge capacity Q was increased by adding the negative electrode interface additive. In the region indicated by (negative electrode bulk density (g / cm 3 )) ⁇ ⁇ 0.05042 (negative electrode interface additive weight ratio (%)) 2 +0.4317 (negative electrode interface additive weight ratio (%)) + 0.9032
  • the initial discharge capacity Q was 120 mAh / g or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to prolong the life of a secondary battery. This semisolid electrolyte includes: a semisolid electrolytic solution that includes a semisolid electrolytic solvent and a negative electrode interface additive; and particles, wherein the weight ratio of the negative electrode interface additive with respect to the sum of the weight of the semisolid electrolyte and the weight of a negative electrode to be applied is 0.6-11.7%. The weight ratio of the negative electrode interface additive to be applied with respect to the sum of the weight of the semisolid electrolyte and the weight of the negative electrode is preferably 1.7-5.8% by weight. In the secondary battery which includes the semisolid electrolyte, the capacity maintenance rate of the secondary battery after a prescribed number of cycles is preferably higher than that of a secondary battery not including the negative electrode interface additive.

Description

半固体電解質、電極、半固体電解質層付き電極、および二次電池Semi-solid electrolyte, electrode, electrode with semi-solid electrolyte layer, and secondary battery
 本発明は、半固体電解質、電極、半固体電解質層付き電極、および二次電池に関する。 The present invention relates to a semi-solid electrolyte, an electrode, an electrode with a semi-solid electrolyte layer, and a secondary battery.
 従来の非水電解液二次電池として、特許文献1には、アニオンを挿入乃至脱離可能な正極活物質を含む正極と、カチオンを挿入乃至脱離可能な負極活物質を含む負極と、非水溶媒に電解質塩が溶解されてなる非水電解液とを備えた非水電解液蓄電素子であって、前記非水溶媒は、非水溶媒全量に対して鎖状カーボネートを85.0-99.9質量%および環状カーボネートを0.1-15.0質量%含み、 前記環状カーボネートは少なくともフッ素化環状カーボネートを含み、前記非水電解液中の電解質塩の濃度が2mol/L以上であることを特徴とする非水電解液蓄電素子が開示されている。 As a conventional non-aqueous electrolyte secondary battery, Patent Document 1 discloses a positive electrode containing a positive electrode active material capable of inserting or removing anions, a negative electrode containing a negative electrode active material capable of inserting or removing cations, A non-aqueous electrolyte storage element comprising a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an aqueous solvent, wherein the non-aqueous solvent comprises 85.0-99.9% by weight of chain carbonate with respect to the total amount of the non-aqueous solvent. And non-aqueous electrolyte, wherein the cyclic carbonate contains at least fluorinated cyclic carbonate, and the concentration of the electrolyte salt in the non-aqueous electrolyte is 2 mol / L or more A power storage element is disclosed.
特開2016-058252号公報JP 2016-058252 A
 特許文献1の方法では、非水溶媒の重量に対してフッ素化環状カーボネートの量を規定しているため、二次電池の寿命を向上させることは難しい。 In the method of Patent Document 1, since the amount of fluorinated cyclic carbonate is regulated with respect to the weight of the non-aqueous solvent, it is difficult to improve the life of the secondary battery.
 本発明は、二次電池の寿命を向上させることを目的とする。 The present invention aims to improve the life of a secondary battery.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are as follows, for example.
 半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量が0.6%~11.7%である半固体電解質。 A semi-solid electrolyte containing a semi-solid electrolyte solvent and a negative electrode interface additive, and a semi-solid electrolyte containing particles, wherein the weight of the negative electrode interface additive is 0.6% relative to the sum of the weight of the semi-solid electrolyte and the negative electrode applied Semi-solid electrolyte that is ~ 11.7%.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-117337号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2017-117337, which is the basis of the priority of the present application.
 本発明により二次電池の寿命を向上できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。 The lifetime of the secondary battery can be improved by the present invention. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
二次電池の外観図である。It is an external view of a secondary battery. 二次電池の断面図である。It is sectional drawing of a secondary battery. 実施例および比較例の結果を示す表である。It is a table | surface which shows the result of an Example and a comparative example. 劣化係数と負極界面添加材重量比との関係図である。It is a related figure of a deterioration coefficient and negative electrode interface additive weight ratio. 負極界面添加材重量比と初回放電容量との関係図である。It is a relationship diagram of negative electrode interface additive weight ratio and initial discharge capacity. 初回放電容量と負極かさ密度との関係図である。It is a related figure of initial discharge capacity and negative electrode bulk density. 負極かさ密度と負極界面添加材重量比との関係図である。It is a related figure of negative electrode bulk density and negative electrode interface additive weight ratio.
 以下、図面などを用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 本明細書に記載される「~」は、その前後に記載される数値を下限値および上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値または下限値は、他の段階的に記載されている上限値または下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値または下限値は、実施例中に示されている値に置き換えてもよい。 "~" Described in this specification is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise manner. The upper limit value or the lower limit value of the numerical ranges described in this specification may be replaced with the values shown in the examples.
 本明細書では、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、非水電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用できる。 In this specification, a lithium ion secondary battery will be described as an example of the secondary battery. A lithium ion secondary battery is an electrochemical device that can store or use electrical energy by occlusion / release of lithium ions to and from an electrode in a nonaqueous electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is a subject of the present invention. The technical idea of the present invention can be applied to sodium ion secondary batteries, magnesium ion secondary batteries, aluminum ion secondary batteries and the like in addition to lithium ion secondary batteries.
 図1は、本発明の一実施形態に係る二次電池の外観図である。図2は、本発明の一実施形態に係る二次電池の断面図である。図1および図2は積層型の二次電池であり、二次電池1000は、正極100、負極200、外装体500および半固体電解質層300を有する。外装体500は、半固体電解質層300、正極100、負極200、を収容する。外装体500の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼など、非水電解質に対し耐食性のある材料から選択することができる。本発明は、捲回型の二次電池にも適用できる。 FIG. 1 is an external view of a secondary battery according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a secondary battery according to an embodiment of the present invention. 1 and FIG. 2 are stacked secondary batteries, and the secondary battery 1000 includes a positive electrode 100, a negative electrode 200, an outer package 500, and a semi-solid electrolyte layer 300. FIG. The outer package 500 houses the semi-solid electrolyte layer 300, the positive electrode 100, and the negative electrode 200. The material of the outer package 500 can be selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel. The present invention can also be applied to a wound secondary battery.
 二次電池1000内で、正極100、半固体電解質層300、負極200で構成される電極体400が積層されている。正極100または負極200を電極または二次電池用電極と称する場合がある。正極100、負極200、または半固体電解質層300を二次電池用シートと称する場合がある。半固体電解質層300および正極100または負極200が一体構造になっているものを半固体電解質層付き電極と称する場合がある。半固体電解質層付き電極は、半固体電解質を含む半固体電解質層および電極を有し、電極は負極であることが好ましい。 In the secondary battery 1000, an electrode body 400 including a positive electrode 100, a semi-solid electrolyte layer 300, and a negative electrode 200 is laminated. The positive electrode 100 or the negative electrode 200 may be referred to as an electrode or a secondary battery electrode. The positive electrode 100, the negative electrode 200, or the semi-solid electrolyte layer 300 may be referred to as a secondary battery sheet. A structure in which the semi-solid electrolyte layer 300 and the positive electrode 100 or the negative electrode 200 are integrated may be referred to as an electrode with a semi-solid electrolyte layer. The electrode with a semi-solid electrolyte layer has a semi-solid electrolyte layer containing a semi-solid electrolyte and an electrode, and the electrode is preferably a negative electrode.
 正極100は、正極集電体120および正極合剤層110を有する。正極集電体120の両面に正極合剤層110が形成されている。負極200は、負極集電体220および負極合剤層210を有する。負極集電体220の両面に負極合剤層210が形成されている。正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体と称する場合がある。 The positive electrode 100 has a positive electrode current collector 120 and a positive electrode mixture layer 110. A positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120. The negative electrode 200 includes a negative electrode current collector 220 and a negative electrode mixture layer 210. Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220. The positive electrode mixture layer 110 or the negative electrode mixture layer 210 may be referred to as an electrode mixture layer, and the positive electrode current collector 120 or the negative electrode current collector 220 may be referred to as an electrode current collector.
 正極集電体120は正極タブ部130を有する。負極集電体220は負極タブ部230を有する。正極タブ部130または負極タブ部230を電極タブ部と称する場合がある。電極タブ部には電極合剤層が形成されていない。ただし、二次電池1000の性能に悪影響を与えない範囲で電極タブ部に電極合剤層を形成してもよい。正極タブ部130および負極タブ部230は、外装体500の外部に突出しており、突出した複数の正極タブ部130同士、複数の負極タブ部230同士が、例えば超音波接合などで接合されることで、二次電池1000内で並列接続が形成される。本発明は、二次電池1000中で電気的な直列接続を構成させたバイポーラ型の二次電池にも適用できる。 The positive electrode current collector 120 has a positive electrode tab portion 130. The negative electrode current collector 220 has a negative electrode tab portion 230. The positive electrode tab portion 130 or the negative electrode tab portion 230 may be referred to as an electrode tab portion. An electrode mixture layer is not formed on the electrode tab portion. However, an electrode mixture layer may be formed on the electrode tab portion as long as the performance of the secondary battery 1000 is not adversely affected. The positive electrode tab portion 130 and the negative electrode tab portion 230 protrude to the outside of the outer package 500, and the plurality of protruding positive electrode tab portions 130 and the plurality of negative electrode tab portions 230 are bonded together by, for example, ultrasonic bonding. Thus, a parallel connection is formed in the secondary battery 1000. The present invention can also be applied to a bipolar secondary battery in which an electrical series connection is configured in the secondary battery 1000.
 正極合剤層110は、正極活物質、正極導電剤、正極バインダを有する。負極合剤層210は、負極活物質、負極導電剤、負極バインダを有する。半固体電解質層300は、半固体電解質バインダおよび半固体電解質を有する。半固体電解質は、粒子および半固体電解液を含む。正極活物質または負極活物質を電極活物質、正極導電剤または負極導電剤を電極導電剤、正極バインダまたは負極バインダを電極バインダと称する場合がある。 The positive electrode mixture layer 110 includes a positive electrode active material, a positive electrode conductive agent, and a positive electrode binder. The negative electrode mixture layer 210 includes a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder. The semi-solid electrolyte layer 300 has a semi-solid electrolyte binder and a semi-solid electrolyte. A semi-solid electrolyte includes particles and a semi-solid electrolyte. The positive electrode active material or the negative electrode active material may be referred to as an electrode active material, the positive electrode conductive agent or the negative electrode conductive agent may be referred to as an electrode conductive agent, and the positive electrode binder or the negative electrode binder may be referred to as an electrode binder.
 電極合剤層の細孔に半固体電解液を充填させてもよい。この場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入し、電極合剤層の細孔に半固体電解液を充填させる。この場合、半固体電解質に含まれる粒子を要せず、電極合剤層中の電極活物質や電極導電剤などの粒子が粒子として機能して、それらの粒子が半固体電解液を保持する。電極合剤層の細孔に半固体電解液を充填する別の方法として、半固体電解液、電極活物質、電極導電剤、電極バインダを混合したスラリーを調製し、調製したスラリーを電極集電体上に一緒に塗布する方法などがある。 The pores of the electrode mixture layer may be filled with a semisolid electrolyte. In this case, the semi-solid electrolyte is injected into the secondary battery 1000 from the vacant side or the injection hole of the outer package 500, and the semi-solid electrolyte is filled in the pores of the electrode mixture layer. In this case, particles contained in the semisolid electrolyte are not required, and particles such as an electrode active material and an electrode conductive agent in the electrode mixture layer function as particles, and these particles hold the semisolid electrolyte. As another method for filling the pores of the electrode mixture layer with the semisolid electrolyte, a slurry in which the semisolid electrolyte, the electrode active material, the electrode conductive agent, and the electrode binder are mixed is prepared, and the prepared slurry is collected into the electrode current collector. There are methods such as applying together on the body.
 半固体電解質層300の形成に用いる半固体電解質は、エーテル系溶媒またはイオン液体にリチウム塩などの電解質塩を溶解させた半固体電解質溶媒、負極界面添加材、および任意の低粘度有機溶媒を含む半固体電解液と、SiOなどの粒子とを混合した材料である。半固体電解質層300は正極100と負極200の間にリチウムイオンの伝達させる媒体となる他に、電子の絶縁体としても働き、正極100と負極200の短絡を防止する。 The semi-solid electrolyte used for forming the semi-solid electrolyte layer 300 includes a semi-solid electrolyte solvent in which an electrolyte salt such as a lithium salt is dissolved in an ether solvent or an ionic liquid, a negative electrode interface additive, and an optional low-viscosity organic solvent. It is a material in which a semi-solid electrolyte and particles such as SiO 2 are mixed. The semi-solid electrolyte layer 300 serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200 and also serves as an electronic insulator, thereby preventing a short circuit between the positive electrode 100 and the negative electrode 200.
 半固体電解質層300に微多孔膜などのセパレータを用いてもよい。セパレータとして、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータに微多孔膜が用いられる場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入することで、半固体電解質層300に半固体電解液が充填される。 A separator such as a microporous membrane may be used for the semisolid electrolyte layer 300. As the separator, polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used. When a microporous membrane is used for the separator, the semi-solid electrolyte is applied to the semi-solid electrolyte layer 300 by injecting the semi-solid electrolyte into the secondary battery 1000 from the vacant side or the injection hole of the outer package 500. Filled.
 正極100、負極200、または半固体電解質層300のいずれか一つのみまたは二つ以上に半固体電解質が含まれていてもよい。 The semi-solid electrolyte may be contained in only one or two or more of the positive electrode 100, the negative electrode 200, and the semi-solid electrolyte layer 300.
 <電極導電剤>
 電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラックなどが好適に用いられるが、これに限られない。
<Electrode conductive agent>
The electrode conductive agent improves the conductivity of the electrode mixture layer. As the electrode conductive agent, ketjen black, acetylene black and the like are preferably used, but are not limited thereto.
 <電極バインダ>
 電極バインダは、電極中の電極活物質や電極導電剤などを結着させる。電極バインダとしては、スチレン-ブタジエンゴム、カルボキシメチルセルロ-ス、ポリフッ化ビニリデン(PVDF)およびこれらの混合物などが挙げられるが、これに限られない。
<Electrode binder>
The electrode binder binds an electrode active material or an electrode conductive agent in the electrode. Examples of the electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
 <正極活物質>
 貴な電位を示す正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層の負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が望ましく、具体例としては、LiMO2、Li過剰組成のLi[LiM]O2、LiM2O4、LiMPO4、LiMVOx、LiMBO3、Li2MSiO4(ただし、M = Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ruなどを少なくとも1種類以上含む)が挙げられる。また、これら材料における酸素の一部を、フッ素など、他の元素に置換してもよい。さらに、硫黄、TiS2、MoS2、Mo6S8、TiSe2などのカルコゲナイドや、V2O5などのバナジウム系酸化物、FeF3などのハライド、ポリアニオンを構成するFe(MoO4)3、Fe2(SO4)3、Li3Fe2(PO4)3など、キノン系有機結晶などが挙げられるが、これらに限られない。さらに、化学組成におけるリチウムやアニオン量は上記定比組成からずれていてもよい。
<Positive electrode active material>
In the positive electrode active material exhibiting a noble potential, lithium ions are desorbed during the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer are inserted during the discharging process. As a material of the positive electrode active material, a lithium composite oxide containing a transition metal is desirable. Specific examples include LiMO 2 , Li-rich composition Li [LiM] O 2 , LiM 2 O 4 , LiMPO 4 , LiMVO x , LiMBO 3 , Li 2 MSiO 4 (however, M = Co, Ni, Mn, Fe, Cr, Zn, Ta, Al, Mg, Cu, Cd, Mo, Nb, W, Ru, etc. are included) . Further, part of oxygen in these materials may be replaced with other elements such as fluorine. Furthermore, chalcogenides such as sulfur, TiS 2 , MoS 2 , Mo 6 S 8 and TiSe 2 , vanadium oxides such as V 2 O 5 , halides such as FeF 3 , Fe (MoO 4 ) 3 constituting polyanions, Examples include, but are not limited to, quinone organic crystals such as Fe 2 (SO 4 ) 3 and Li 3 Fe 2 (PO 4 ) 3 . Furthermore, the amount of lithium or anion in the chemical composition may deviate from the above stoichiometric composition.
 <正極集電体120>
 正極集電体120として、厚さが10~100μmのアルミニウム箔、あるいは厚さが10~100μm、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用できる。材質、形状、製造方法などに制限されることなく、任意の正極集電体120を使用できる。
<Positive electrode current collector 120>
As the positive electrode current collector 120, an aluminum foil having a thickness of 10 to 100 μm or an aluminum perforated foil having a thickness of 10 to 100 μm and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used. In addition to aluminum, stainless steel, titanium, and the like can also be applied. Any positive electrode current collector 120 can be used without being limited by the material, shape, manufacturing method and the like.
 <負極活物質>
 負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層110中の正極活物質から脱離したリチウムイオンが挿入される。卑な電位を示す負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料、有機結晶、活性炭など)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:Li4Ti5O12やLi2TiO4など)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズなどを少なくとも1種類以上含む)やこれらの酸化物を用いることができるが、これに限られない。
<Negative electrode active material>
In the negative electrode active material, lithium ions are desorbed in the discharging process, and lithium ions desorbed from the positive electrode active material in the positive electrode mixture layer 110 are inserted in the charging process. Examples of the negative electrode active material exhibiting a base potential include carbon materials (eg, graphite, graphitizable carbon material, amorphous carbon material, organic crystal, activated carbon, etc.), conductive polymer materials (eg, polyacene). , Polyparaphenylene, polyaniline, polyacetylene), lithium composite oxides (eg, lithium titanate: Li 4 Ti 5 O 12 and Li 2 TiO 4 ), metal lithium, metals alloyed with lithium (eg, aluminum, silicon) , Tin or the like) and oxides thereof can be used, but are not limited thereto.
 <負極集電体220>
 負極集電体220として、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。銅の他に、ステンレス鋼、チタン、ニッケルなども適用できる。材質、形状、製造方法などに制限されることなく、任意の負極集電体220を使用できる。
<Negative electrode current collector 220>
As the negative electrode current collector 220, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to copper, stainless steel, titanium, nickel, etc. can also be applied. Any negative electrode current collector 220 can be used without being limited by the material, shape, manufacturing method, and the like.
 <電極>
 電極活物質、電極導電剤、電極バインダおよび有機溶媒を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法などによって電極集電体へ付着させることで電極合剤層が作製される。その後、有機溶媒を乾燥させ、ロールプレスによって電極合剤層を加圧成形することにより電極が作製される。電極スラリーに半固体電解液または半固体電解質を含めてもよい。塗布から乾燥までを複数回行うことにより、複数の電極合剤層を電極集電体に積層させてもよい。電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。
<Electrode>
An electrode mixture layer is prepared by adhering an electrode slurry in which an electrode active material, an electrode conductive agent, an electrode binder, and an organic solvent are mixed to an electrode current collector by a doctor blade method, a dipping method, a spray method, or the like. Then, an organic solvent is dried and an electrode is produced by press-molding an electrode mixture layer by a roll press. The electrode slurry may contain a semisolid electrolyte or a semisolid electrolyte. A plurality of electrode mixture layers may be laminated on the electrode current collector by performing a plurality of times from application to drying. The thickness of the electrode mixture layer is preferably equal to or greater than the average particle diameter of the electrode active material. If the thickness of the electrode mixture layer is small, the electron conductivity between adjacent electrode active materials may deteriorate.
 <粒子>
 粒子としては、電気化学的安定性の観点から、絶縁性粒子であり有機溶媒またはイオン液体を含む半固体電解液に不溶であることが好ましい。粒子として、例えば、シリカ(SiO2)粒子、γ-アルミナ(Al2O3)粒子、セリア(CeO2)粒子、ジルコニア(ZrO2)粒子などの酸化物無機粒子を好ましく用いることができる。粒子として固体電解質を用いてもよい。固体電解質としては、例えば、酸化物系固体電解質や硫化物系固体電解質などの無機系固体電解質の粒子が挙げられる。
<Particle>
From the viewpoint of electrochemical stability, the particles are preferably insulative particles and insoluble in a semi-solid electrolytic solution containing an organic solvent or ionic liquid. As the particles, for example, oxide inorganic particles such as silica (SiO 2 ) particles, γ-alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, zirconia (ZrO 2 ) particles can be preferably used. A solid electrolyte may be used as the particles. Examples of the solid electrolyte include particles of an inorganic solid electrolyte such as an oxide solid electrolyte or a sulfide solid electrolyte.
 半固体電解液の保持量は粒子の比表面積に比例すると考えられるため、粒子の一次粒子の平均粒径は、1nm~10μmが好ましい。粒子の一次粒子の平均粒径が大きいと、粒子が十分な量の半固体電解液を適切に保持できず半固体電解質の形成が困難になる可能性がある。また、粒子の一次粒子の平均粒径が小さいと、粒子間の表面間力が大きくなって粒子同士が凝集し易くなって、半固体電解質の形成が困難になる可能性がある。粒子の一次粒子の平均粒径は、1nm~50nmがより好ましく、1nm~10nmがさらに好ましい。粒子の一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて測定できる。 Since the amount of semi-solid electrolyte retained is considered to be proportional to the specific surface area of the particles, the average primary particle size of the particles is preferably 1 nm to 10 μm. If the average particle size of the primary particles of the particles is large, the particles may not properly hold a sufficient amount of the semisolid electrolyte, which may make it difficult to form a semisolid electrolyte. Moreover, when the average particle diameter of the primary particle of particle | grains is small, the surface force between particle | grains will become large and particle | grains will aggregate easily, and formation of a semi-solid electrolyte may become difficult. The average primary particle diameter of the particles is more preferably 1 nm to 50 nm, and further preferably 1 nm to 10 nm. The average particle size of the primary particles of the particles can be measured using a known particle size distribution measuring device using a laser scattering method.
 <半固体電解液>
 半固体電解液は、半固体電解質溶媒、任意の低粘度有機溶媒、および負極界面添加材を含む。半固体電解質溶媒は、イオン液体またはイオン液体に類似の性質を示すエーテル系溶媒と、電解質塩との混合物を含む。半固体電解液が低粘度有機溶媒を含む場合、電解質塩は、半固体電解質溶媒ではなく低粘度有機溶媒が含んでいてもよい。また、半固体電解質溶媒と低粘度有機溶媒の両方に含んでいてもよい。イオン液体またはエーテル系溶媒を主溶媒と称する場合がある。イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。半固体電解質溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性、具体的には室温における蒸気圧が150Pa以下であるものが望ましい。
<Semi-solid electrolyte>
The semi-solid electrolyte includes a semi-solid electrolyte solvent, an optional low viscosity organic solvent, and a negative electrode interface additive. The semi-solid electrolyte solvent includes an ionic liquid or a mixture of an ether solvent exhibiting similar properties to the ionic liquid and an electrolyte salt. When the semi-solid electrolyte contains a low-viscosity organic solvent, the electrolyte salt may contain a low-viscosity organic solvent instead of the semi-solid electrolyte. Moreover, you may contain in both a semi-solid electrolyte solvent and a low-viscosity organic solvent. An ionic liquid or an ether solvent may be referred to as a main solvent. An ionic liquid is a compound that dissociates into a cation and an anion at room temperature, and maintains a liquid state. The ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt. The semi-solid electrolyte solvent is desirably a low volatility, specifically, a vapor pressure at room temperature of 150 Pa or less from the viewpoint of stability in the air and heat resistance in the secondary battery.
 電極合剤層に半固体電解液が含まれている場合、電極合剤層中の半固体電解液の含有量は20体積%~40体積%であることが望ましい。半固体電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、半固体電解液の含有量が多い場合、電極合剤層から半固体電解液が漏れ出す可能性がある。 When the electrode mixture layer contains a semisolid electrolyte, the content of the semisolid electrolyte in the electrode mixture layer is preferably 20% by volume to 40% by volume. When the content of the semi-solid electrolytic solution is small, there is a possibility that the ion conduction path inside the electrode mixture layer is not sufficiently formed and the rate characteristic is lowered. Moreover, when there is much content of a semi-solid electrolyte solution, a semi-solid electrolyte solution may leak from an electrode mixture layer.
 イオン液体はカチオンおよびアニオンで構成される。イオン液体としては、カチオン種に応じ、イミダゾリウム系、アンモニウム系、ピロリジニウム系、ピペリジニウム系、ピリジニウム系、モルホリニウム系、ホスホニウム系、スルホニウム系などに分類される。イミダゾリウム系イオン液体を構成するカチオンには、例えば、1-エチル-3-メチルイミダゾリウム(EMI)や1-ブチル-3-メチルイミダゾリウム(BMI)などのアルキルイミダゾリウムカチオンなどがある。アンモニウム系イオン液体を構成するカチオンには、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム(DEME)やテトラアミルアンモニウムなどのほかに、N,N,N-トリメチル-N-プロピルアンモニウムなどのアルキルアンモニウムカチオンがある。ピロリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピロリジニウム(Py13)や1-ブチル-1-メチルピロリジニウムなどのアルキルピロリジニウムカチオンなどがある。ピペリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピペリジニウム(PP13)や1-ブチル-1-メチルピペリジニウムなどのアルキルピペリジニウムカチオンなどがある。ピリジニウム系イオン液体を構成するカチオンには、例えば、1-ブチルピリジニウムや1-ブチル-4-メチルピリジニウムなどのアルキルピリジニウムカチオンなどがある。モルホリニウム系イオン液体を構成するカチオンには、例えば、4-エチル-4-メチルモルホリニウムなどのアルキルモルホリニウムなどがある。ホスホニウム系イオン液体を構成するカチオンには、例えば、テトラブチルホスホニウムやトリブチルメチルホスホニウムなどのアルキルホスホニウムカチオンなどがある。スルホニウム系イオン液体を構成するカチオンには、例えば、トリメチルスルホニウムやトリブチルスルホニウムなどのアルキルスルホニウムカチオンなどがある。これらカチオンと対になるアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI)、ビス(フルオロスルホニル)イミド(FSI)、テトラフルオロボレート(BF4)、ヘキサフルオロホスファート(PF6)、ビス(ペンタフルオロエタンスルホニル)イミド(BETI)、トリフルオロメタンスルホネート(トリフラート)、アセテート、ジメチルホスファート、ジシアナミド、トリフルオロ(トリフルオロメチル)ボレートなどがある。これらのイオン液体を単独または複数組み合わせて使用してもよい。 The ionic liquid is composed of a cation and an anion. Ionic liquids are classified into imidazolium, ammonium, pyrrolidinium, piperidinium, pyridinium, morpholinium, phosphonium, sulfonium, and the like depending on the cation species. Examples of the cation constituting the imidazolium-based ionic liquid include alkyl imidazolium cations such as 1-ethyl-3-methylimidazolium (EMI) and 1-butyl-3-methylimidazolium (BMI). Examples of the cation constituting the ammonium-based ionic liquid include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME) and tetraamylammonium, as well as N, N, N- There are alkylammonium cations such as trimethyl-N-propylammonium. Examples of the cation constituting the pyrrolidinium-based ionic liquid include alkylpyrrolidinium cations such as N-methyl-N-propylpyrrolidinium (Py13) and 1-butyl-1-methylpyrrolidinium. Examples of the cation constituting the piperidinium-based ionic liquid include alkylpiperidinium cations such as N-methyl-N-propylpiperidinium (PP13) and 1-butyl-1-methylpiperidinium. Examples of the cation constituting the pyridinium-based ionic liquid include alkylpyridinium cations such as 1-butylpyridinium and 1-butyl-4-methylpyridinium. Examples of the cation constituting the morpholinium-based ionic liquid include alkylmorpholinium such as 4-ethyl-4-methylmorpholinium. Examples of cations constituting the phosphonium-based ionic liquid include alkylphosphonium cations such as tetrabutylphosphonium and tributylmethylphosphonium. Examples of the cation constituting the sulfonium-based ionic liquid include alkylsulfonium cations such as trimethylsulfonium and tributylsulfonium. Examples of the anion paired with these cations include bis (trifluoromethanesulfonyl) imide (TFSI), bis (fluorosulfonyl) imide (FSI), tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), There are bis (pentafluoroethanesulfonyl) imide (BETI), trifluoromethanesulfonate (triflate), acetate, dimethyl phosphate, dicyanamide, trifluoro (trifluoromethyl) borate and the like. These ionic liquids may be used alone or in combination.
 イオン液体とともに用いる電解質塩として、溶媒に均一に分散できるものを使用できる。カチオンがリチウム、上記アニオンからなるものがリチウム塩として使用することができ、例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF4)、リチウムヘキサフルオロホスファート(LiPF6)、リチウムトリフラートなどが挙げられるが、これに限られない。これらの電解質塩を単独または複数組み合わせて使用してもよい。 As the electrolyte salt used with the ionic liquid, one that can be uniformly dispersed in a solvent can be used. Lithium cation and those consisting of the above anions can be used as lithium salts, such as lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (pentafluoroethane) Examples include, but are not limited to, sulfonyl) imide (LiBETI), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium triflate. These electrolyte salts may be used alone or in combination.
 エーテル系溶媒は、電解質塩とともに溶媒和イオン液体を構成する。エーテル系溶媒として、イオン液体に類似の性質を示す公知のグライム(R-O(CH2CH2O)n-R’(R、R’は飽和炭化水素、nは整数)で表される対称グリコールジエーテルの総称)を利用できる。イオン伝導性の観点から、テトラグライム(テトラエチレンジメチルグリコール、G4)、トリグライム(トリエチレングリコールジメチルエーテル、G3)、ペンタグライム(ペンタエチレングリコールジメチルエーテル、G5)、ヘキサグライム(ヘキサエチレングリコールジメチルエーテル、G6)を好ましく用いることができる。また、エーテル系溶媒として、クラウンエーテル((-CH2-CH2-O)n(nは整数)で表される大環状エーテルの総称)を利用できる。具体的には、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6などを好ましく用いることができるが、これに限らない。これらのエーテル系溶媒を単独または複数組み合わせて使用してもよい。電解質塩と錯体構造を形成できる点で、テトラグライム、トリグライムを用いることが好ましい。 The ether solvent constitutes a solvated ionic liquid together with the electrolyte salt. As an ether solvent, a symmetric glycol diglyceride represented by a known glyme (RO (CH 2 CH 2 O) n-R ′ (R and R ′ are saturated hydrocarbons, n is an integer)) showing properties similar to ionic liquids. The generic name of ether) can be used. From the viewpoint of ion conductivity, tetraglyme (tetraethylene dimethyl glycol, G4), triglyme (triethylene glycol dimethyl ether, G3), pentag lime (pentaethylene glycol dimethyl ether, G5), hexaglyme (hexaethylene glycol dimethyl ether, G6) It can be preferably used. In addition, crown ether (a general term for macrocyclic ethers represented by (—CH 2 —CH 2 —O) n (n is an integer)) can be used as an ether solvent. Specifically, 12-crown-4, 15-crown-5, 18-crown-6, dibenzo-18-crown-6 and the like can be preferably used, but are not limited thereto. These ether solvents may be used alone or in combination. Tetraglyme and triglyme are preferably used in that they can form a complex structure with the electrolyte salt.
 エーテル系溶媒とともに用いる電解質塩としては、LiFSI、LiTFSI、LiBETIなどのリチウムイミド塩を利用できるが、これに限らない。エーテル系溶媒および電解質塩の混合物を単独または複数組み合わせて使用してもよい。 As the electrolyte salt used together with the ether solvent, lithium imide salts such as LiFSI, LiTFSI, and LiBETI can be used, but are not limited thereto. A mixture of an ether solvent and an electrolyte salt may be used alone or in combination.
 <低粘度有機溶媒>
 低粘度有機溶媒は、半固体電解質溶媒の粘度を下げ、イオン伝導率を向上させる。半固体電解質溶媒を含む半固体電解液の内部抵抗は大きいため、低粘度有機溶媒を添加して半固体電解質溶媒のイオン伝導率を上げることにより、半固体電解液の内部抵抗を下げることができる。ただ、半固体電解質溶媒が電気化学的に不安定であるため、電池動作に対して分解反応が促進され、二次電池1000の繰返し動作に伴って二次電池1000の抵抗増加や容量低下を引き起こす可能性がある。さらに、負極活物質として黒鉛を利用した二次電池1000では、充電反応中、半固体電解質溶媒のカチオンが黒鉛に挿入されて黒鉛構造を破壊し、二次電池1000の繰返し動作ができなくなる可能性がある。
<Low viscosity organic solvent>
The low viscosity organic solvent lowers the viscosity of the semi-solid electrolyte solvent and improves the ionic conductivity. Since the internal resistance of the semi-solid electrolyte containing the semi-solid electrolyte solvent is large, the internal resistance of the semi-solid electrolyte can be lowered by increasing the ionic conductivity of the semi-solid electrolyte solvent by adding a low viscosity organic solvent. . However, since the semi-solid electrolyte solvent is electrochemically unstable, the decomposition reaction is accelerated with respect to the battery operation, causing the secondary battery 1000 to increase in resistance and decrease in capacity with the repeated operation of the secondary battery 1000. there is a possibility. Furthermore, in the secondary battery 1000 using graphite as the negative electrode active material, the cations of the semi-solid electrolyte solvent are inserted into the graphite during the charging reaction, destroying the graphite structure, and the repetitive operation of the secondary battery 1000 may not be possible. There is.
 低粘度有機溶媒は、例えばエーテル系溶媒および電解質塩の混合物の25℃における粘度である140Pa・sよりも粘度の小さい溶媒であることが望ましい。低粘度有機溶媒として、炭酸プロピレン(PC)、リン酸トリメチル(TMP)、ガンマブチルラクトン(GBL)、炭酸エチレン(EC)、リン酸トリエチル(TEP)、亜リン酸トリス(2,2,2-トリフルオロエチル)(TFP)、メチルホスホン酸ジメチル(DMMP)などが挙げられる。これらの低粘度有機溶媒を単独または複数組み合わせて使用してもよい。低粘度有機溶媒に上記の電解質塩を溶解させてもよい。二次電池1000の容量維持率の観点から低粘度有機溶媒としてECが望ましい。 The low-viscosity organic solvent is desirably a solvent having a viscosity lower than 140 Pa · s, which is a viscosity of a mixture of an ether solvent and an electrolyte salt at 25 ° C., for example. Low-viscosity organic solvents include propylene carbonate (PC), trimethyl phosphate (TMP), gamma butyl lactone (GBL), ethylene carbonate (EC), triethyl phosphate (TEP), tris phosphite (2,2,2- Trifluoroethyl) (TFP), dimethyl methylphosphonate (DMMP), and the like. These low-viscosity organic solvents may be used alone or in combination. The above electrolyte salt may be dissolved in a low viscosity organic solvent. From the viewpoint of the capacity retention rate of the secondary battery 1000, EC is desirable as a low viscosity organic solvent.
 <半固体電解質バインダ>
 半固体電解質バインダは、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(P(VDF-HFP))、ポリテトラフルオロエチレン(PTFE)などが好適に用いられる。これらの半固体電解質バインダを単独または複数組み合わせて使用してもよい。PVDF、P(VDF-HFP)、PTFEを用いることで、半固体電解質層300と電極集電体の密着性が向上するため、電池性能が向上する。
<Semi-solid electrolyte binder>
As the semi-solid electrolyte binder, a fluorine-based resin is preferably used. As the fluorine-based resin, polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (P (VDF-HFP)), polytetrafluoroethylene (PTFE), or the like is preferably used. These semi-solid electrolyte binders may be used alone or in combination. By using PVDF, P (VDF-HFP), and PTFE, the adhesion between the semi-solid electrolyte layer 300 and the electrode current collector is improved, so that the battery performance is improved.
 <半固体電解質>
 半固体電解液が粒子に担持または保持されることにより半固体電解質が構成される。半固体電解質の作製方法として、半固体電解液と粒子とを特定の体積比率で混合し、メタノールなどの有機溶媒を添加し・混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレに広げ、有機溶媒を留去して半固体電解質の粉末を得る方法などが挙げられる。半固体電解液が低粘度有機溶媒を含む場合、低粘度有機溶媒が揮発しやすいことを考慮して、半固体電解液が最終的に目標とする量で半固体電解質中に含まれるように制御するものとする。
<Semi-solid electrolyte>
A semi-solid electrolyte is constituted by supporting or holding the semi-solid electrolyte on the particles. As a method for producing a semi-solid electrolyte, a semi-solid electrolyte solution and particles are mixed at a specific volume ratio, an organic solvent such as methanol is added and mixed to prepare a semi-solid electrolyte slurry, and the slurry is then mixed with a petri dish. And a method of obtaining a semi-solid electrolyte powder by distilling off the organic solvent. When semi-solid electrolyte contains low-viscosity organic solvent, considering that low-viscosity organic solvent tends to volatilize, control so that semi-solid electrolyte is finally included in semi-solid electrolyte in the target amount It shall be.
 <半固体電解質層300>
 半固体電解質層300の作製方法として、半固体電解質の粉末を成型ダイスなどでペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法などがある。半固体電解質に半固体電解質バインダの粉末を添加・混合することにより、柔軟性の高いシート状の半固体電解質層300を作製できる。また、半固体電解質に、分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を添加・混合し、分散溶媒を留去することで、半固体電解質層300を作製できる。半固体電解質層300は、前記の、半固体電解質に結着剤の溶液を添加・混合したものを電極上に塗布および乾燥することにより作製してもよい。
<Semi-solid electrolyte layer 300>
Methods for producing the semi-solid electrolyte layer 300 include a method of compressing a semi-solid electrolyte powder into a pellet using a molding die, a method of adding a semi-solid electrolyte binder to a semi-solid electrolyte powder, and mixing it into a sheet. There is. By adding and mixing semi-solid electrolyte binder powder to the semi-solid electrolyte, a highly flexible sheet-like semi-solid electrolyte layer 300 can be produced. Moreover, the semi-solid electrolyte layer 300 can be produced by adding and mixing a solution of a binder in which a semi-solid electrolyte binder is dissolved in a dispersion solvent to the semi-solid electrolyte and distilling off the dispersion solvent. The semi-solid electrolyte layer 300 may be produced by applying and drying the above-mentioned semi-solid electrolyte with a binder solution added and mixed on the electrode.
 半固体電解質層300中の半固体電解液の含有量は70体積%~90体積%であることが望ましい。半固体電解液の含有量が小さい場合、電極と半固体電解質層300との界面抵抗が増加する可能性がある。また、半固体電解液の含有量が大きい場合、半固体電解質層300から半固体電解液が漏れ出してしまう可能性がある。 The content of the semisolid electrolyte in the semisolid electrolyte layer 300 is desirably 70% by volume to 90% by volume. When the content of the semisolid electrolyte is small, the interface resistance between the electrode and the semisolid electrolyte layer 300 may increase. Further, when the content of the semi-solid electrolyte is large, the semi-solid electrolyte may leak from the semi-solid electrolyte layer 300.
 <負極かさ密度>
 負極かさ密度(以下、単に負極密度または密度ともいう)を所定の値にすることにより、二次電池1000の電池容量を向上できる。具体的には、(負極かさ密度(g/cm3))≦-0.05042(負極界面添加材重量比(%))2+0.4317(負極界面添加材重量比(%))+0.9032、特に(負極かさ密度(g/cm3))≦-0.076(負極界面添加材重量比(%))2+0.571(負極界面添加材重量比(%))+0.6251、とすることが望ましい。ここで、上記負極界面添加材重量比は、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比を意味する(以下、同様)。負極かさ密度の計測方法は、集電箔上に塗布した負極合剤層210の重量と厚みを計測することで求めることができる。具体的には、計測した負極合剤層210の重量を、負極合剤層210の厚みと面積の積で割ることによって求めることができる。
<Negative bulk density>
By setting the negative electrode bulk density (hereinafter also simply referred to as negative electrode density or density) to a predetermined value, the battery capacity of the secondary battery 1000 can be improved. Specifically, (negative electrode bulk density (g / cm 3 )) ≦ −0.05042 (negative electrode interface additive weight ratio (%)) 2 +0.4317 (negative electrode interface additive weight ratio (%)) + 0.9032, especially Desirably, (negative electrode bulk density (g / cm 3 )) ≦ −0.076 (weight ratio of negative electrode interface additive (%)) 2 +0.571 (weight ratio of negative electrode interface additive (%)) + 0.6251. Here, the weight ratio of the negative electrode interface additive means the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the weight of the applied negative electrode (hereinafter the same). The method for measuring the negative electrode bulk density can be obtained by measuring the weight and thickness of the negative electrode mixture layer 210 applied on the current collector foil. Specifically, it can be obtained by dividing the measured weight of the negative electrode mixture layer 210 by the product of the thickness and area of the negative electrode mixture layer 210.
 <負極界面添加材>
 負極界面添加材は、負極表面に不動態被膜を形成して半固体電解液の還元分解を抑制する。負極界面添加材として、炭酸ビニレン(VC)、リチウムビス(オキサレート)ボラート(LiBOB)、炭酸フルオロエチレン(FEC)、およびエチレンサルファイトなどが挙げられる。これらの負極界面添加材を単独または複数組み合わせて使用してもよい。
<Negative electrode interface additive>
The negative electrode interface additive forms a passive film on the negative electrode surface and suppresses reductive decomposition of the semi-solid electrolyte. Examples of the negative electrode interface additive include vinylene carbonate (VC), lithium bis (oxalate) borate (LiBOB), fluoroethylene carbonate (FEC), and ethylene sulfite. These negative electrode interface additives may be used alone or in combination.
 本発明の半固体電解質は、半固体電解質溶媒、任意の低粘度有機溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含み、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量が0.6%~11.7%となるように負極に適用して使用される。半固体電解質の重量と負極の重量の和に対する負極界面添加材の量を規定することによって、半固体電解質と黒鉛などを含む負極200の界面との安定性が向上する。具体的には、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比(以下、負極界面添加材重量比と記す)を0.6%~11.7%、特に1.7%~5.8%、とすることが望ましい。負極界面添加材重量比が小さい場合、二次電池1000の安定動作に資する半固体電解質と黒鉛を含む負極200との界面が形成されないために、二次電池1000の寿命が低下する可能性がある。負極界面添加材重量比が大きい場合、正極100の表面で分解反応を誘発して、クーロン効率を下げ、電池抵抗を上昇させる可能性がある。、負極200と半固体電解質層300に用いた半固体電解質の重量和に対する、負極界面添加材重量を求めることにより、負極界面添加材重量比を決めることができる。 The semi-solid electrolyte of the present invention comprises a semi-solid electrolyte solvent, an optional low-viscosity organic solvent and a semi-solid electrolyte solution containing a negative electrode interface additive, and particles, with respect to the sum of the weight of the semi-solid electrolyte and the negative electrode applied. It is used by applying to the negative electrode so that the weight of the negative electrode interface additive is 0.6% to 11.7%. By defining the amount of the negative electrode interface additive relative to the sum of the weight of the semisolid electrolyte and the negative electrode, the stability between the semisolid electrolyte and the interface of the negative electrode 200 containing graphite or the like is improved. Specifically, the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the applied negative electrode (hereinafter referred to as the negative electrode interface additive weight ratio) is 0.6% to 11.7%, particularly 1.7% to 5.8. % Is desirable. When the weight ratio of the negative electrode interface additive is small, the interface between the semisolid electrolyte that contributes to the stable operation of the secondary battery 1000 and the negative electrode 200 containing graphite may not be formed, which may reduce the life of the secondary battery 1000. . When the weight ratio of the negative electrode interface additive is large, there is a possibility that a decomposition reaction is induced on the surface of the positive electrode 100, thereby reducing the Coulomb efficiency and increasing the battery resistance. The weight ratio of the negative electrode interface additive can be determined by determining the weight of the negative electrode interface additive relative to the sum of the weights of the semisolid electrolytes used for the negative electrode 200 and the semisolid electrolyte layer 300.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 <実施例1>
 <半固体電解質の作製>
 テトラグライム(G4)とリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)がモル比で1:1となるよう、秤量してビーカーに投入し、均一溶媒になるまで混合してリチウムグライム錯体を作製した。リチウムグライム錯体と、粒子径7nmのヒュームドシリカナノ粒子が体積比80:20となるよう秤量し、さらに、低粘度有機溶媒である炭酸プロピレン(PC)、負極界面添加材として炭酸ビニレン(VC)、メタノールを攪拌子とともにビーカーに投入し、スターラーを用いて600rpmで攪拌して均一な混合物を得た。この混合物を、ナスフラスコに投入し、エバポレータを用い、100mbar、60℃で3時間かけて乾燥した。乾燥後粉末を、100μmメッシュのふるいにかけて粉末状の半固体電解質を得た。
<Example 1>
<Preparation of semi-solid electrolyte>
Tetraglyme (G4) and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) were weighed so as to have a molar ratio of 1: 1, charged into a beaker, and mixed until a homogeneous solvent was prepared to produce a lithium glyme complex. . A lithium glyme complex and fumed silica nanoparticles having a particle diameter of 7 nm are weighed so that the volume ratio is 80:20, and further, propylene carbonate (PC) as a low viscosity organic solvent, vinylene carbonate (VC) as a negative electrode interface additive, Methanol was put into a beaker together with a stir bar and stirred at 600 rpm using a stirrer to obtain a uniform mixture. This mixture was put into an eggplant flask and dried for 3 hours at 100 mbar and 60 ° C. using an evaporator. After drying, the powder was passed through a 100 μm mesh sieve to obtain a powdery semi-solid electrolyte.
 <正極100の作製>
 正極活物質してLiNi0.33Mn0.33Co0.33O2を、正極導電剤としてアセチレンブラックを、正極バインダとしてN-メチルピロリドンへ溶解させたポリフッ化ビニリデン(PVDF)を重量比が84:7:9となるよう秤量して混合し、正極スラリーとした。これを正極集電体120であるステンレス箔上へ塗布し、80℃で2時間乾燥してN-メチルピロリドンを除去し、正極シートを得た。正極シートを、直径13mmで打ち抜き、一軸プレスすることにより、両面塗工量37.5g/cm2、密度2.5g/cm3とする正極100を得た。
<Preparation of positive electrode 100>
Polyvinylidene fluoride (PVDF) prepared by dissolving LiNi 0.33 Mn 0.33 Co 0.33 O 2 as a positive electrode active material, acetylene black as a positive electrode conductive agent, and N-methylpyrrolidone as a positive electrode binder has a weight ratio of 84: 7: 9 Weighed and mixed so that a positive electrode slurry was obtained. This was applied onto a stainless steel foil as the positive electrode current collector 120 and dried at 80 ° C. for 2 hours to remove N-methylpyrrolidone, thereby obtaining a positive electrode sheet. The positive electrode sheet was punched out with a diameter of 13 mm and uniaxially pressed to obtain a positive electrode 100 with a double-side coating amount of 37.5 g / cm 2 and a density of 2.5 g / cm 3 .
 <負極200の作製>
 負極活物質として黒鉛を使用した。負極導電剤と負極バインダは正極100と同様である。これらを重量比が88:2:10となるよう秤量して混合し、負極スラリーとした。これを負極集電体220であるステンレス箔上へ塗布し、80℃で2時間乾燥してN-メチルピロリドンを除去し、負極シートを得た。負極シートを、直径13mmで打ち抜き、一軸プレスすることにより、両面塗工量17mg/cm2、密度1.6g/cm3とする負極200を得た。得られた負極の重量を測定した。
<Preparation of negative electrode 200>
Graphite was used as the negative electrode active material. The negative electrode conductive agent and the negative electrode binder are the same as those of the positive electrode 100. These were weighed and mixed so that the weight ratio was 88: 2: 10 to obtain a negative electrode slurry. This was applied onto a stainless steel foil as the negative electrode current collector 220 and dried at 80 ° C. for 2 hours to remove N-methylpyrrolidone, thereby obtaining a negative electrode sheet. The negative electrode sheet was punched out with a diameter of 13 mm and uniaxially pressed to obtain a negative electrode 200 with a double-side coating amount of 17 mg / cm 2 and a density of 1.6 g / cm 3 . The weight of the obtained negative electrode was measured.
 <半固体電解質層300の作製>
 半固体電解質とバインダとしてのポリテトラフルオロエチレン(PTFE)が、重量比95:5となるよう、それぞれ秤量して乳鉢に投入し、均一混合した。この混合物を、ポリテトラフルオロエチレンのシートを介して油圧プレス機にセットし、400kgf/cm2でプレスした。さらに、ギャップを500に設定したロールプレス機で圧延し、厚み200μmのシート状の半固体電解質層300を作製した。これを直径16mmで打ち抜き、以下のリチウムイオン二次電池の作製に用いた。得られた半固体電解質層300中のリチウムグライム錯体とPCとの重量比は55.5:44.5であった。VCの重量は半固体電解質の重量と負極200の重量の和に対して0.6%(負極界面添加材重量比)であった。
<Preparation of semi-solid electrolyte layer 300>
The semi-solid electrolyte and polytetrafluoroethylene (PTFE) as a binder were weighed to a weight ratio of 95: 5, put into a mortar, and uniformly mixed. This mixture was set in a hydraulic press through a polytetrafluoroethylene sheet and pressed at 400 kgf / cm 2 . Further, the sheet was rolled with a roll press machine having a gap set to 500 to produce a sheet-like semi-solid electrolyte layer 300 having a thickness of 200 μm. This was punched out to a diameter of 16 mm and used for the production of the following lithium ion secondary battery. The weight ratio of the lithium glyme complex to PC in the obtained semisolid electrolyte layer 300 was 55.5: 44.5. The weight of VC was 0.6% (negative electrode interface additive weight ratio) with respect to the sum of the weight of the semisolid electrolyte and the weight of the negative electrode 200.
 <リチウムイオン二次電池の作製>
 正極100、負極200、半固体電解質層300を積層し、2032型コインセルに封入してリチウムイオン二次電池とした。
<Production of lithium ion secondary battery>
A positive electrode 100, a negative electrode 200, and a semi-solid electrolyte layer 300 were laminated and sealed in a 2032 type coin cell to obtain a lithium ion secondary battery.
 <実施例2~9>
 半固体電解質の重量と負極200の重量の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 2 to 9>
Example 1 was performed except that the weight of VC (weight ratio of negative electrode interface additive) with respect to the sum of the weight of the semisolid electrolyte and the negative electrode 200 was changed as shown in FIG.
 <実施例10~11>
 負極界面添加材としてリチウムビス(オキサレート)ボラート(LiBOB)を用い、半固体電解質の重量と負極200の重量の和に対するLiBOBの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 10 to 11>
Lithium bis (oxalate) borate (LiBOB) was used as the negative electrode interface additive, and the LiBOB weight (negative electrode interface additive weight ratio) relative to the sum of the weight of the semisolid electrolyte and the negative electrode 200 was as shown in FIG. The same as in Example 1.
 <実施例12~14>
 負極界面添加材として炭酸フルオロエチレン(FEC)を用い、半固体電解質の重量と負極200の重量の和に対するFECの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 12 to 14>
Example except that fluoroethylene carbonate (FEC) was used as the negative electrode interface additive, and the weight of the FEC relative to the sum of the weight of the semisolid electrolyte and the negative electrode 200 (weight ratio of the negative electrode interface additive) was as shown in FIG. Same as 1.
 <実施例15>
 低粘度有機溶媒として炭酸エチレン(EC)を用い、負極界面添加材として炭酸ビニレン(VC)を用い、半固体電解質層300中のリチウムグライム錯体とECとの重量比を図3のようにし、半固体電解質の重量と負極200の重量の和に対するVCの重量を1.7%とした以外は、実施例1と同様にした。
<Example 15>
Ethylene carbonate (EC) is used as the low viscosity organic solvent, vinylene carbonate (VC) is used as the negative electrode interface additive, and the weight ratio of the lithium glyme complex and EC in the semisolid electrolyte layer 300 is as shown in FIG. Example 1 was repeated except that the weight of VC with respect to the sum of the weight of the solid electrolyte and the weight of the negative electrode 200 was 1.7%.
 <実施例16~33>
 負極200の密度、半固体電解質の重量と負極200の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 16 to 33>
Example 1 was performed except that the density of the negative electrode 200, the weight of the semisolid electrolyte, and the weight of VC with respect to the sum of the negative electrode 200 (weight ratio of the negative electrode interface additive) were as shown in FIG.
 <比較例1>
 負極界面添加材を使用しなかった以外は、実施例1と同様にした。
<Comparative Example 1>
Example 1 was repeated except that no negative electrode interface additive was used.
 <比較例2~3>
 半固体電解質の重量と負極200の重量の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Comparative Examples 2-3>
Example 1 was performed except that the weight of VC (weight ratio of negative electrode interface additive) with respect to the sum of the weight of the semisolid electrolyte and the negative electrode 200 was changed as shown in FIG.
 <比較例4~9>
 負極界面添加材を使用しなかった以外は、実施例16~21と同様にした。
<Comparative Examples 4 to 9>
The same operation as in Examples 16 to 21 except that the negative electrode interface additive was not used.
 <放電容量の測定>
 実施例および比較例のリチウムイオン二次電池について、測定電圧範囲を2.7V~4.2Vとし、充電は定電流-定電圧モードで、放電は定電流モードで電池動作させ、初回サイクル放電後の放電容量(初回放電容量)、30サイクル放電後の放電容量(30サイクル放電容量)を測定した。
<Measurement of discharge capacity>
For the lithium ion secondary batteries of Examples and Comparative Examples, the measurement voltage range is 2.7 V to 4.2 V, the battery is operated in the constant current-constant voltage mode, the discharge is operated in the constant current mode, and the discharge is performed after the first cycle discharge. The capacity (initial discharge capacity) and the discharge capacity after 30 cycle discharge (30 cycle discharge capacity) were measured.
 <考察>
 図3に、実施例および比較例の測定結果を示す。初回放電容量を30サイクル放電容量で割った値(放電容量維持率)を図3に示す。二次電池1000の電池容量には初回放電容量が、二次電池1000の寿命には放電容量維持率が強く影響すると考えられている。そこで、電池容量の評価基準としては、初回放電容量が105(mAh/g)以上あることを条件とし、寿命の評価基準としては、放電容量維持率が65%以上であることを条件とした。
<Discussion>
FIG. 3 shows the measurement results of Examples and Comparative Examples. Figure 3 shows the value obtained by dividing the initial discharge capacity by the 30-cycle discharge capacity (discharge capacity retention rate). It is considered that the initial discharge capacity strongly influences the battery capacity of the secondary battery 1000, and the discharge capacity maintenance ratio strongly influences the life of the secondary battery 1000. Therefore, the battery capacity evaluation standard was that the initial discharge capacity was 105 (mAh / g) or more, and the life evaluation standard was that the discharge capacity retention rate was 65% or more.
 負極界面添加材の組成に依らず、いずれの実施例についても、放電容量維持率が望ましい値であった。特に、負極界面添加材重量比が1.7%~5.8%の場合、低粘度溶媒が同一であり、負極界面添加材を含まない比較例よりも30サイクル放電容量が大きかった。 Regardless of the composition of the negative electrode interface additive, the discharge capacity retention rate was a desirable value for any of the examples. In particular, when the weight ratio of the negative electrode interface additive was 1.7% to 5.8%, the low-viscosity solvent was the same, and the 30-cycle discharge capacity was larger than that of the comparative example not including the negative electrode interface additive.
 負極かさ密度に依らず、負極界面添加材が添加されていない比較例に比べて、負極界面添加材が添加されている実施例の方が、初回放電容量が大きかった。 Regardless of the negative electrode bulk density, the example in which the negative electrode interface additive was added had a larger initial discharge capacity than the comparative example in which the negative electrode interface additive was not added.
 図4に、劣化係数と負極界面添加材重量比との関係図を示す。放電容量維持率を、サイクル数の1/2乗に対してプロットし、直線近似により傾きを求めて劣化係数と定義した。劣化係数は常に負の値をとり、その絶対値が小さいほど容量維持率が高いことを示す。図4に示したように、負極界面添加材重量比に対して劣化係数をプロットし、両者の関係を最小二乗法によりフィッティングしたところ、(劣化係数)=-0.1375(負極界面添加材重量比)2+2.0857(負極界面添加材重量比)-7.5141なる関係があった。この関係から、負極界面添加材を含まない比較例1よりも劣化係数の絶対値が小さくなるのは、負極界面添加材重量比が15.2%以下であることがわかった。なお、負極界面添加材を含まない二次電池1000の劣化係数は-7.5141であり、100サイクル後の放電容量維持率は24.9%であることが期待される。劣化係数が-5(100サイクル後の放電容量維持率が50%)となるのは、負極界面添加材重量比が1.3%~13.9%であり、さらに、劣化係数が-3(100サイクル後の放電容量維持率が70%)となるのは、負極界面添加材重量比が2.6%~12.6%であった。 FIG. 4 shows a relationship diagram between the deterioration coefficient and the negative electrode interface additive weight ratio. The discharge capacity retention rate was plotted against the cycle number 1/2, and the slope was obtained by linear approximation and defined as the degradation coefficient. The deterioration coefficient always takes a negative value, and the smaller the absolute value is, the higher the capacity retention rate is. As shown in FIG. 4, when the deterioration coefficient was plotted against the negative electrode interface additive weight ratio and the relationship between the two was fitted by the least square method, (deterioration coefficient) = − 0.1375 (negative electrode interface additive weight ratio) 2 +2.0857 (weight ratio of negative electrode interface additive) -7.5141 From this relationship, it was found that the absolute value of the deterioration coefficient is smaller than that of Comparative Example 1 that does not include the negative electrode interface additive, and the weight ratio of the negative electrode interface additive is 15.2% or less. Note that the deterioration coefficient of the secondary battery 1000 not including the negative electrode interface additive is −7.5141, and the discharge capacity retention rate after 100 cycles is expected to be 24.9%. The deterioration factor is -5 (discharge capacity maintenance rate after 100 cycles is 50%) because the negative electrode interface additive weight ratio is 1.3% to 13.9%, and the deterioration factor is -3 (after 100 cycles). The reason why the discharge capacity retention ratio was 70%) was that the weight ratio of the negative electrode interface additive was 2.6% to 12.6%.
 <負極界面添加材がVC>
 主溶媒がG4、低粘度有機溶媒がPC、負極界面添加材がVCである二次電池では、半固体電解質の重量と負極200の重量の和に対する負極界面添加材重量比が0.6%~11.7%(実施例1~9)で、負極界面添加材を含まない比較例1、負極界面添加材重量比が14.6%以上の比較例2および3と比較して、30サイクル放電容量が大きかった。負極界面添加材重量比が0.6%~5.8%(実施例1~7)では、比較例1、2および3よりも30サイクル放電容量が大きかった。さらに、負極界面添加材重量比が1.7%~5.8%(実施例3~7)では、少なくとも30回の繰り返し電池動作中、放電容量が130mAh/g以上と高かった。
<The negative electrode interface additive is VC>
In a secondary battery in which the main solvent is G4, the low-viscosity organic solvent is PC, and the negative electrode interface additive is VC, the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the negative electrode 200 is 0.6% to 11.7% In (Examples 1 to 9), compared with Comparative Example 1 that does not include the negative electrode interface additive, and Comparative Examples 2 and 3 in which the weight ratio of the negative electrode interface additive is 14.6% or more, the 30-cycle discharge capacity was large. When the weight ratio of the negative electrode interface additive was 0.6% to 5.8% (Examples 1 to 7), the 30-cycle discharge capacity was larger than those of Comparative Examples 1, 2 and 3. Furthermore, when the weight ratio of the negative electrode interface additive was 1.7% to 5.8% (Examples 3 to 7), the discharge capacity was as high as 130 mAh / g or more during the battery operation at least 30 times.
 負極界面添加材重量比が小さい場合、半固体電解質と負極200との界面が十分に安定化されず、リチウムグライム錯体の共挿入や還元分解が部分的に進行して初回放電容量が小さくなったことが考えられる。一方、負極界面添加材重量比が大きい場合、サイクル動作に伴って徐々に正極100の表面でVCが分解して高抵抗を誘発し、これによって放電容量が小さくなったと考えられる。 When the weight ratio of the negative electrode interface additive is small, the interface between the semi-solid electrolyte and the negative electrode 200 is not sufficiently stabilized, and the initial discharge capacity is reduced due to partial progress of co-insertion and reductive decomposition of the lithium glyme complex. It is possible. On the other hand, when the weight ratio of the negative electrode interface additive is large, it is considered that VC gradually decomposes on the surface of the positive electrode 100 with the cycle operation to induce high resistance, thereby reducing the discharge capacity.
 低粘度有機溶媒がECである実施例15について、負極界面添加材重量比を1.7%とすることにより、初回放電容量および30サイクル放電容量は大きかった。 In Example 15 where the low-viscosity organic solvent is EC, the initial discharge capacity and 30-cycle discharge capacity were large by setting the weight ratio of the negative electrode interface additive to 1.7%.
 <負極界面添加材がLiBOB>
 負極界面添加材をLiBOBとした実施例10および11では、負極界面添加材重量比の最大値を1.7%としている。これよりも重量比が大きい場合には、導入したLiBOBが混合溶媒に溶解しきらない可能性があるためである。負極界面添加材重量比を0.6%~1.7%とすることで、LiBOBを含まない比較例1よりも初回放電容量および30サイクル放電容量は大きかった。
<The negative electrode interface additive is LiBOB>
In Examples 10 and 11 in which the negative electrode interface additive was LiBOB, the maximum value of the negative electrode interface additive weight ratio was 1.7%. This is because when the weight ratio is larger than this, the introduced LiBOB may not be completely dissolved in the mixed solvent. By setting the weight ratio of the negative electrode interface additive to 0.6% to 1.7%, the initial discharge capacity and the 30-cycle discharge capacity were larger than those of Comparative Example 1 not including LiBOB.
 <負極界面添加材がFEC>
 負極界面添加材をFECとした実施例12~14は、FECを含まない比較例1よりも初回放電容量は大きく、30サイクル放電容量も100mAh/g以上を示した。
<Negative electrode interface additive is FEC>
In Examples 12 to 14 in which the negative electrode interface additive was FEC, the initial discharge capacity was larger than that of Comparative Example 1 containing no FEC, and the 30 cycle discharge capacity was 100 mAh / g or more.
 負極界面添加材重量比が1.7%、3.5%および5.8%の時、放電容量維持率はそれぞれ97%、88%および85%と、単調に減少した。これは、負極界面添加材重量比が1.7%以上の組成範囲では、黒鉛含有の負極200と半固体電解質との界面を部分的には安定化させる効果がある一方、最適重量比よりも過剰であり、繰り返し電池動作に伴って、正極100と半固体電解質との界面でFECの分解反応が起き、これによって高抵抗が誘発されたことが要因として考えられる。 When the weight ratio of the negative electrode interface additive was 1.7%, 3.5% and 5.8%, the discharge capacity retention rate decreased monotonously to 97%, 88% and 85%, respectively. This has the effect of partially stabilizing the interface between the graphite-containing negative electrode 200 and the semisolid electrolyte in the composition range where the weight ratio of the negative electrode interface additive is 1.7% or more, but it is in excess of the optimum weight ratio. It can be considered that the FEC decomposition reaction occurred at the interface between the positive electrode 100 and the semisolid electrolyte with repeated battery operation, and this caused high resistance.
 <負極界面添加材重量比と負極かさ密度>
 電極塗工量が一定である場合、電池容量は、負極界面添加材重量比だけでなく、負極かさ密度にも依存する。これは、負極かさ密度が小さい場合には、負極200が厚くなるために二次電池の抵抗が上昇する可能性があるからである。また、負極かさ密度が大きい場合には、電極内部の空隙が小さくなり、初回充電中に負極界面添加材が電極集電体近くまで到達しないために半固体電解質の分解反応が誘発されて、二次電池の抵抗が上昇する可能性があるからである。
<Negative electrode interface additive weight ratio and negative electrode bulk density>
When the electrode coating amount is constant, the battery capacity depends not only on the negative electrode interface additive weight ratio but also on the negative electrode bulk density. This is because when the negative electrode bulk density is small, the negative electrode 200 becomes thick and the resistance of the secondary battery may increase. Also, when the negative electrode bulk density is large, the gap inside the electrode becomes small, and the negative electrode interface additive does not reach the vicinity of the electrode current collector during the initial charge, so that the decomposition reaction of the semi-solid electrolyte is induced. This is because the resistance of the secondary battery may increase.
 図5に、実施例16~33および比較例4~9について、負極かさ密度を一定(1.12~1.77g/cm3)とし、負極界面添加材重量比に対する初回放電容量の関係を示した。この場合、初回放電容量は負極界面添加材重量比に依存して、二次関数で近似できた。一方、近似曲線の定数項は負極かさ密度に依存した。 FIG. 5 shows the relationship between the initial discharge capacity and the negative electrode interface additive weight ratio, with the negative electrode bulk density being constant (1.12 to 1.77 g / cm 3 ) for Examples 16 to 33 and Comparative Examples 4 to 9. In this case, the initial discharge capacity was approximated by a quadratic function depending on the negative electrode interface additive weight ratio. On the other hand, the constant term of the approximate curve depended on the negative electrode bulk density.
 図6に、実施例16~33および比較例4~9について、負極界面添加材重量比を一定(0~5.8%)とし、負極かさ密度に対する初回放電容量の関係を示した。この場合、初回放電容量は負極かさ密度に対して負の傾きをもつ直線で近似できた。直線の傾きの大きさは、負極界面添加材重量比に依存した。これら図5および図6の結果は、負極かさ密度と負極界面添加材の両方が初回放電容量のパラメータとして寄与していることを示している。 FIG. 6 shows the relationship between the negative electrode bulk density and the initial discharge capacity for Examples 16 to 33 and Comparative Examples 4 to 9, with the negative electrode interface additive weight ratio being constant (0 to 5.8%). In this case, the initial discharge capacity was approximated by a straight line having a negative slope with respect to the negative electrode bulk density. The magnitude of the slope of the straight line was dependent on the weight ratio of the negative electrode interface additive. These results in FIGS. 5 and 6 indicate that both the negative electrode bulk density and the negative electrode interface additive contribute as parameters of the initial discharge capacity.
 図5および図6から得た近似曲線と近似直線から、一定の初回放電容量Qを得るために必要な負極かさ密度と負極界面添加材重量比の関係を求め、図7に示した。負極かさ密度に依らず、負極界面添加材を添加することにより、初回放電容量Qが大きくなった。また、(負極かさ密度(g/cm3))≦-0.05042(負極界面添加材重量比(%))2+0.4317(負極界面添加材重量比(%))+0.9032で示される領域では、初回放電容量Qが120mAh/g以上であった。さらに、(負極かさ密度(g/cm3))≦-0.076(負極界面添加材重量比(%))2+0.571(負極界面添加材重量比(%))+0.6251で示される領域では、初回放電容量Qは130mAh/g以上であった。 The relationship between the negative electrode bulk density and the negative electrode interface additive weight ratio required to obtain a certain initial discharge capacity Q was determined from the approximate curves and approximate lines obtained from FIGS. 5 and 6, and is shown in FIG. Regardless of the negative electrode bulk density, the initial discharge capacity Q was increased by adding the negative electrode interface additive. In the region indicated by (negative electrode bulk density (g / cm 3 )) ≦ −0.05042 (negative electrode interface additive weight ratio (%)) 2 +0.4317 (negative electrode interface additive weight ratio (%)) + 0.9032 The initial discharge capacity Q was 120 mAh / g or more. Further, in the region indicated by (negative electrode bulk density (g / cm 3 )) ≦ −0.076 (negative electrode interface additive weight ratio (%)) 2 +0.571 (negative electrode interface additive weight ratio (%)) + 0.6251 The initial discharge capacity Q was 130 mAh / g or more.
100      正極
110      正極合剤層
120      正極集電体
130      正極タブ部
200      負極
210      負極合剤層
220      負極集電体
230      負極タブ部
300      半固体電解質層
400      電極体
500      外装体
1000     二次電池
100 positive electrode
110 Positive electrode mixture layer
120 Positive electrode current collector
130 Positive electrode tab
200 Negative electrode
210 Negative electrode mixture layer
220 Negative electrode current collector
230 Negative electrode tab
300 Semi-solid electrolyte layer
400 electrode body
500 exterior body
1000 Secondary battery
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (8)

  1.  半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、
     前記半固体電解質の重量と適用する負極の重量の和に対する前記負極界面添加材の重量比が0.6%~11.7%である半固体電解質。
    A semi-solid electrolyte solution comprising a semi-solid electrolyte solvent and a negative electrode interface additive, and a semi-solid electrolyte comprising particles,
    A semi-solid electrolyte in which the weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the applied negative electrode is 0.6% to 11.7%.
  2.  請求項1の半固体電解質において、
     前記半固体電解質の重量と適用する負極の重量の和に対する前記負極界面添加材の重量比が1.7%~5.8%である半固体電解質。
    The semi-solid electrolyte of claim 1,
    A semi-solid electrolyte in which the weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the applied negative electrode is 1.7% to 5.8%.
  3.  請求項1の半固体電解質において、
     前記負極界面添加材は炭酸ビニレン(VC)である半固体電解質。
    The semi-solid electrolyte of claim 1,
    The negative electrode interface additive is a semi-solid electrolyte that is vinylene carbonate (VC).
  4.  請求項1の半固体電解質において、
     前記半固体電解液は低粘度有機溶媒をさらに含む半固体電解質。
    The semi-solid electrolyte of claim 1,
    The semi-solid electrolyte is a semi-solid electrolyte further comprising a low viscosity organic solvent.
  5.  請求項1の半固体電解質を含む半固体電解質層を有する電極。 An electrode having a semi-solid electrolyte layer containing the semi-solid electrolyte of claim 1.
  6.  請求項1の半固体電解質を含む半固体電解質層および電極を有する半固体電解質層付き電極。 An electrode with a semi-solid electrolyte layer comprising a semi-solid electrolyte layer containing the semi-solid electrolyte according to claim 1 and an electrode.
  7.  請求項6の半固体電解質層付き電極であって、
     前記電極は負極であり、
     以下を満たす半固体電解質層付き電極。
     (負極かさ密度(g/cm3))≦-0.05042(前記半固体電解質の重量と負極の重量の和に対する前記負極界面添加材の重量比(%))2+0.4317(前記半固体電解質の重量と負極の重量の和に対する前記負極界面添加材の重量比(%))+0.9032
    The electrode with a semi-solid electrolyte layer according to claim 6,
    The electrode is a negative electrode;
    An electrode with a semi-solid electrolyte layer that satisfies the following.
    (Negative electrode bulk density (g / cm 3 )) ≦ −0.05042 (weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the negative electrode (%)) 2 +0.4317 (of the semisolid electrolyte Weight ratio of the negative electrode interface additive to the sum of weight and negative electrode weight (%)) + 0.9032
  8.  請求項1の半固体電解質を含む半固体電解質層を有する二次電池であって、
     所定サイクル後の前記二次電池の容量維持率が、前記負極界面添加材を含まない場合の前記二次電池の容量維持率よりも大きい二次電池。
    A secondary battery having a semi-solid electrolyte layer comprising the semi-solid electrolyte of claim 1,
    A secondary battery in which a capacity retention rate of the secondary battery after a predetermined cycle is larger than a capacity retention ratio of the secondary battery when the negative electrode interface additive is not included.
PCT/JP2018/018977 2017-06-15 2018-05-16 Semisolid electrolyte, electrode, electrode having semisolid electrolyte layer, and secondary battery WO2018230238A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019525229A JP6875522B2 (en) 2017-06-15 2018-05-16 Semi-solid electrolyte, electrodes, electrodes with semi-solid electrolyte layer, and secondary batteries
KR1020197029374A KR102272029B1 (en) 2017-06-15 2018-05-16 Semi-solid electrolyte, electrode, electrode with semi-solid electrolyte layer, and secondary battery
CN201880023968.2A CN110521049B (en) 2017-06-15 2018-05-16 Semi-solid electrolyte, electrode with semi-solid electrolyte layer, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-117337 2017-06-15
JP2017117337 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230238A1 true WO2018230238A1 (en) 2018-12-20

Family

ID=64660269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018977 WO2018230238A1 (en) 2017-06-15 2018-05-16 Semisolid electrolyte, electrode, electrode having semisolid electrolyte layer, and secondary battery

Country Status (4)

Country Link
JP (1) JP6875522B2 (en)
KR (1) KR102272029B1 (en)
CN (1) CN110521049B (en)
WO (1) WO2018230238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359344A1 (en) * 2018-10-02 2021-11-18 Eliiy Power Co., Ltd. Method for manufacturing lithium-ion cell and lithium-ion cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792793B (en) * 2021-01-25 2024-01-26 中国科学院物理研究所 Sodium ion battery additive and high-power sodium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207217A (en) * 2013-03-19 2014-10-30 ソニー株式会社 Battery, electrolytic layer, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system
JP2016527176A (en) * 2013-08-02 2016-09-08 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177574B2 (en) * 2001-11-02 2008-11-05 松下電器産業株式会社 Lithium secondary battery
JP5408702B2 (en) * 2009-01-23 2014-02-05 Necエナジーデバイス株式会社 Lithium ion battery
JPWO2013128679A1 (en) * 2012-02-29 2015-07-30 新神戸電機株式会社 Lithium ion battery
US20140322576A1 (en) * 2012-02-29 2014-10-30 Shin-Kobe Electric Machinery Co., Ltd. Lithium Ion Battery
KR20150041978A (en) * 2013-10-10 2015-04-20 에스케이케미칼주식회사 Electrolyte for secondary cell and secondary cell comprising same
JP2016058252A (en) 2014-09-10 2016-04-21 株式会社リコー Nonaqueous electrolyte power storage device and lithium ion secondary battery
CN104993135A (en) * 2015-06-13 2015-10-21 田东 Lithium ion battery with long cycle performance
JPWO2017077986A1 (en) * 2015-11-06 2018-06-14 株式会社日立製作所 Lithium ion secondary battery and method for producing lithium ion secondary battery
CN105720300B (en) * 2016-03-31 2019-06-21 成都国珈星际固态锂电科技有限公司 Gel polymer lithium ion battery and preparation method thereof and electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207217A (en) * 2013-03-19 2014-10-30 ソニー株式会社 Battery, electrolytic layer, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system
JP2016527176A (en) * 2013-08-02 2016-09-08 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359344A1 (en) * 2018-10-02 2021-11-18 Eliiy Power Co., Ltd. Method for manufacturing lithium-ion cell and lithium-ion cell

Also Published As

Publication number Publication date
JPWO2018230238A1 (en) 2020-01-09
KR20190119654A (en) 2019-10-22
KR102272029B1 (en) 2021-07-01
CN110521049B (en) 2022-03-15
CN110521049A (en) 2019-11-29
JP6875522B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP6686229B2 (en) Semi-solid electrolyte layer, battery cell sheet and secondary battery
WO2019234977A1 (en) Semisolid electrolyte layer and secondary battery
JP6924264B2 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
WO2019176174A1 (en) Positive electrode slurry, positive electrode, cell sheet, secondary battery
JP6875522B2 (en) Semi-solid electrolyte, electrodes, electrodes with semi-solid electrolyte layer, and secondary batteries
CN113169379B (en) Nonaqueous electrolyte solution, semisolid electrolyte layer, sheet for secondary battery, and secondary battery
JP2009187880A (en) Nonaqueous electrolyte secondary battery
JP6843966B2 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrodes, secondary battery
WO2021111847A1 (en) Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery
WO2019225078A1 (en) Insulating layer, battery cell sheet, and secondary battery
JP2020202158A (en) Insulation layer, battery cell sheet, and battery cell
JP2020004598A (en) battery
WO2019142502A1 (en) Negative electrode, half secondary battery and secondary battery
WO2021225065A1 (en) Non-aqueous electrolytic solution, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery
WO2019198329A1 (en) Insulation layer, battery cell sheet, and battery
WO2020003864A1 (en) Negative electrode, battery cell sheet, and secondary battery
WO2019087815A1 (en) Positive electrode mixture layer, positive electrode, half secondary battery, and secondary battery
WO2019064645A1 (en) Half secondary battery and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029374

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817200

Country of ref document: EP

Kind code of ref document: A1