WO2018230221A1 - Rubber composition for tread, tread member, and tire - Google Patents

Rubber composition for tread, tread member, and tire Download PDF

Info

Publication number
WO2018230221A1
WO2018230221A1 PCT/JP2018/018324 JP2018018324W WO2018230221A1 WO 2018230221 A1 WO2018230221 A1 WO 2018230221A1 JP 2018018324 W JP2018018324 W JP 2018018324W WO 2018230221 A1 WO2018230221 A1 WO 2018230221A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
continuous phase
tread
phase
rubber
Prior art date
Application number
PCT/JP2018/018324
Other languages
French (fr)
Japanese (ja)
Inventor
遼大 曽根
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2018230221A1 publication Critical patent/WO2018230221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubber composition for a tread, a tread member, and a tire.
  • An object of the present invention is to provide a rubber composition for a tread excellent in wet grip performance without impairing low heat generation performance, and a tread member and a tire excellent in wet grip performance without impairing low loss performance.
  • a rubber composition for a tread obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer, and having a continuous phase and one or more discontinuous phases,
  • the rubber composition for a tread in which the elastic modulus E1 at 0 ° C. of the rubber composition constituting the rubber composition and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase satisfy 2 ⁇ (E1 / E2) ⁇ 10 It is a thing.
  • the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy ⁇ 1> or ⁇ 2> satisfying Tg1 ⁇ Tg2 ⁇ 20 ° C.
  • ⁇ 4> The rubber composition for a tread according to any one of ⁇ 1> to ⁇ 3>, including a filler, wherein the filler is localized in the continuous phase.
  • ⁇ 5> The tread rubber composition according to any one of ⁇ 1> to ⁇ 4>, which includes a liquid polymer, and the liquid polymer is localized in the discontinuous phase.
  • ⁇ 6> The rubber composition for a tread according to any one of ⁇ 1> to ⁇ 5>, including a resin, and the resin is localized in the continuous phase.
  • a rubber composition for a tread obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer and having a continuous phase and one or more discontinuous phases, The filler is localized in the continuous phase, and the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase are Tg1> Tg2 It is the rubber composition for tread which is.
  • the tread rubber composition according to ⁇ 7> or ⁇ 8> which includes a liquid polymer, and the liquid polymer is localized in the discontinuous phase.
  • the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase are 2 ⁇ (E1 / E2) ⁇ 10
  • ⁇ 12> The rubber composition for a tread according to any one of ⁇ 1> to ⁇ 11>, wherein the domain diameter of the discontinuous phase is 50 to 500 nm.
  • ⁇ 13> Any of ⁇ 4> to ⁇ 12>, wherein the ratio of the filler contained in the continuous phase among all the fillers is greater than the ratio of the diene polymer contained in the continuous phase among all the diene polymers. It is a rubber composition for tread as described in any one.
  • the amount of the liquid polymer contained in the discontinuous phase is more than 50 mass% and 100 mass% or less.
  • ⁇ 5>, ⁇ 6>, and ⁇ 9> to ⁇ 13> It is a rubber composition for treads as described in any one.
  • ⁇ 15> The total amount of the resin according to any one of ⁇ 6> and ⁇ 10> to ⁇ 14>, wherein the amount of the resin contained in the continuous phase is more than 50% by mass and 100% by mass or less. It is a rubber composition for treads.
  • ⁇ 16> A tread member using the tread rubber composition according to any one of ⁇ 1> to ⁇ 15>.
  • the present invention it is possible to provide a rubber composition for a tread excellent in wet grip performance without impairing low heat generation performance, and a tread member and tire excellent in wet grip performance without impairing low loss performance.
  • FIG. 1 is a schematic diagram showing a sea (continuous phase) -island (discontinuous phase) structure of a rubber composition for a tread of the present invention including a continuous phase and a discontinuous phase.
  • the rubber composition when simply referred to as “rubber composition”, it means a vulcanized rubber composition, and the rubber composition before vulcanization is referred to as “unvulcanized rubber composition”. Further, the rubber composition for tread may be simply referred to as “rubber composition”.
  • the “rubber component” is a component that contains at least a diene polymer and does not contain a filler (the content of the filler is 0% by mass). In addition to the diene polymer, the rubber component may contain a wax, an anti-aging agent, a zinc compound, sulfur and the like, if necessary. The rubber component is contained in the unvulcanized rubber composition and is not contained in the vulcanized rubber composition.
  • the rubber composition for a tread of the present invention includes the rubber composition for a tread of the first aspect of the present invention and the rubber composition for a tread of the second aspect of the present invention.
  • the matter described simply as “the rubber composition for a tread of the present invention” is common to the rubber composition for a tread of the first invention and the rubber composition for a tread of the second invention.
  • the rubber composition for a tread according to the first aspect of the present invention is a tread having a continuous phase and one or more discontinuous phases obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer.
  • the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase are 2 ⁇ (E1 / E2) ⁇ 10 is satisfied.
  • the rubber composition of the first invention is a vulcanized rubber composition obtained by vulcanizing an unvulcanized rubber composition containing a rubber component, and each of the continuous phase and the discontinuous phase of the vulcanized rubber composition
  • the elastic modulus E at 0 ° C. of the rubber composition constituting the phase satisfies the above formula.
  • the unvulcanized rubber composition constituting the rubber composition for a tread of the first aspect of the present invention may contain a filler.
  • the unvulcanized rubber composition comprises a rubber component and a filler.
  • the first rubber composition of the present invention includes an incompatible rubber composition, and as shown in FIG. 1, a continuous phase 2 and a non-continuous phase 4 that are incompatible with each other are composed of sea (continuous phase 2)- It has an island (non-continuous phase 4) structure. Since the discontinuous phase 4 is dispersed in the continuous phase 2, it may be referred to as a dispersed phase.
  • the continuous phase 2 is harder than the discontinuous phase 4 in the range where E1 / E2 is 2 to 10, the discontinuous phase 4 is soft, and the hard continuous phase 2 includes the micro soft discontinuous phase 4. It has a structure. It is considered that the rubber composition for a tread has a sea-island structure with a difference in elastic modulus, whereby distortion is increased and wet grip performance is improved. As will be described later, the rubber composition of the first present invention preferably contains a filler 6, and the filler 6 is preferably localized in the continuous phase 2.
  • the filler 6 is localized in the continuous phase 2
  • the proportion of the amount of the filler in the continuous phase 2 among all the fillers is the diene type in the continuous phase 2 among all the diene polymers. It means more than the proportion of polymer.
  • the ratio between the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase ( E1 / E2) is 2-10.
  • E1 / E2 is preferably 3 to 10.
  • the rubber composition for a tread of the second aspect of the present invention is for a tread having a continuous phase and one or more discontinuous phases obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer.
  • a rubber composition comprising a filler, the filler being localized in the continuous phase, the glass transition temperature Tg1 of the rubber component constituting the continuous phase, and the rubber component constituting the discontinuous phase
  • the “rubber component constituting the continuous phase” is a rubber component contained in the unvulcanized rubber composition when the rubber composition constituting the continuous phase is an unvulcanized rubber composition. .
  • the “rubber component constituting the discontinuous phase” is a rubber component contained in the unvulcanized rubber composition when the rubber composition constituting the discontinuous phase is an unvulcanized rubber composition. is there.
  • the rubber component constituting the continuous phase may be referred to as “rubber component R1”
  • the rubber component constituting the discontinuous phase may be referred to as “rubber component R2”. That is, in the second present invention, the glass transition temperature (Tg1) of the rubber component R1 is higher than the glass transition temperature (Tg2) of the rubber component R2.
  • the rubber composition of the second invention includes an incompatible rubber composition, and as shown in FIG. 1, a continuous phase 2 and a non-continuous phase 4 that are incompatible with each other are composed of sea (continuous phase 2)- It has an island (non-continuous phase 4) structure. Since the discontinuous phase 4 is dispersed in the continuous phase 2, it may be referred to as a dispersed phase.
  • the rubber composition of the second invention is a rubber composition for a tread having a continuous phase 2 and one or more discontinuous phases 4 obtained by vulcanizing an unvulcanized rubber composition containing a rubber component.
  • the filler 6 is contained in the continuous phase 2 and the glass transition temperature Tg1 of the rubber component constituting the continuous phase 2 and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase 4 are , Tg1> Tg2.
  • the continuous phase 2 becomes harder than the discontinuous phase 4, and the rubber of the present invention
  • the composition has a structure including a micro soft discontinuous phase 4 in a hard continuous phase 2.
  • the rubber composition of the second aspect of the present invention includes the filler 6 and the filler 6 is localized in the continuous phase 2. Since the filler 6 is localized in the continuous phase 2, an elastic difference due to the filler 6 occurs between the continuous phase 2 and the discontinuous phase 4 in addition to the elastic difference due to the rigidity of the rubber component. .
  • the filler 6 is localized in the continuous phase 2
  • the proportion of the amount of the filler in the continuous phase 2 among all the fillers is the diene type in the continuous phase 2 among all the diene polymers. It means more than the proportion of polymer.
  • the continuous phase 2 and the discontinuous phase 4 of the rubber composition of the second invention have a sea-island structure with a difference in elasticity, so that distortion increases and wet grip performance is improved.
  • description will be made with the reference numerals omitted.
  • the ratio between the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase ( E1 / E2) is preferably 2 to 10.
  • E1 / E2 is preferably 3 to 10.
  • the elastic modulus at 0 ° C. of the rubber composition constituting each phase is obtained by, for example, cutting the rubber composition with a microtome to obtain a sample, and obtaining the smooth surface of the obtained sample, Using an atomic force microscope (AFM), it can be measured by measuring in a measurement range of 2 ⁇ m ⁇ 2 ⁇ m. Specifically, a sample fixed on a fixed base at 0 ° C. is pushed in using a cantilever, and a force curve is measured. From the curve obtained from the measurement, analysis is performed based on the Hertz theory, and the elastic modulus E of each phase is measured as Young's modulus.
  • AFM atomic force microscope
  • the atomic force microscope for example, MFP-3D manufactured by ASYLUM RESEARCH can be used. Distinguishing between the smooth surface of the sample and where it is the continuous phase and where it is the discontinuous phase, the rubber composition constituting each phase is cut by a microtome to obtain a sample, and the smooth surface of the obtained sample is obtained.
  • the elastic modulus E of each phase is obtained by averaging the values measured at any five locations selected for random operation in the measurement range of 2 ⁇ m ⁇ 2 ⁇ m for the continuous phase.
  • the discontinuous phase one domain is measured per domain for any five domains selected in a random manner within a measurement range of 2 ⁇ m ⁇ 2 ⁇ m, and the obtained five values are averaged.
  • the domain diameter of the discontinuous phase is preferably 50 to 500 nm.
  • the domain diameter of the discontinuous phase is 50 nm or more, a region of an island portion where strain is applied is secured, and the wet grip performance is easily improved.
  • the domain diameter of the discontinuous phase is 500 nm or less, it is easy to maintain the hardness of the entire rubber composition, and it is easy to maintain low heat generation performance.
  • the domain diameter of the discontinuous phase is more preferably 80 to 400 nm, and still more preferably 100 to 300 nm.
  • the domain diameter (region width) of the discontinuous phase is measured by cutting the rubber composition constituting each phase with a microtome to obtain a sample, and observing the smooth surface of the obtained sample with an atomic force microscope can do. After ternarizing the image obtained by the atomic force microscope, if the domain is circular, the diameter of the circle is measured as the domain diameter. If the domain is irregular, such as a mottled pattern, the longitudinal direction of each domain ( The maximum length of the domain in the direction orthogonal to the direction in which the linear distance between the ends in one domain is the longest) is measured as the domain diameter.
  • the rubber composition of the present invention preferably contains a filler.
  • the range of the discontinuous phase is determined as follows. In the image obtained by the atomic force microscope, when the filler exists on the boundary line between the discontinuous phase and the continuous phase, the range in which the filler portion is extracted from the discontinuous phase is determined as the range of the discontinuous phase. .
  • the discontinuous phase is discontinuous in the boundary line between the discontinuous phase and the continuous phase without considering the presence of the filler.
  • the domain diameter is measured as the phase range. Further, it is preferable that the discontinuous phase does not include a domain having a domain diameter of 5 ⁇ m or more.
  • the rubber composition of the first invention has a ratio (E1 / E2) of the elastic modulus E at 0 ° C. of the rubber composition constituting each phase of the continuous phase and the discontinuous phase to 2 to 2.
  • E1 / E2 the elastic modulus of the rubber composition constituting each phase of the continuous phase and the discontinuous phase to 2 to 2.
  • the difference in elastic modulus between the continuous phase and the discontinuous phase can be balanced to achieve a balance between low heat generation performance and wet grip performance.
  • the rubber composition of the first present invention is a vulcanized rubber composition obtained by vulcanizing an unvulcanized rubber composition containing a rubber component, and a glass transition temperature Tg1 of the rubber component constituting the continuous phase;
  • Tg2 of the rubber component constituting the discontinuous phase is Tg1> Tg2, it is easy to give a difference in elastic modulus between the continuous phase and the discontinuous phase of the rubber composition after vulcanization.
  • the rubber composition of the second invention includes a filler, the filler is localized in the continuous phase, and the glass transition temperature Tg1 of the rubber component R1 constituting the continuous phase is a rubber constituting the discontinuous phase.
  • the temperature is higher than the glass transition temperature Tg2 of the component R2, thereby providing an elastic difference between the continuous phase and the discontinuous phase, and a balance between low heat generation performance and wet grip performance can be achieved.
  • the glass transition temperature Tg1 of the rubber component R1 constituting the continuous phase preferably satisfies Tg1 ⁇ Tg2 ⁇ 20 ° C. “Tg1 ⁇ Tg2” may be referred to as ⁇ Tg.
  • ⁇ Tg is preferably 80 ° C. or less, more preferably 25 to 75 ° C., and more preferably 30 to 70 ° C. from the viewpoint of improving low heat generation performance and wet grip performance. More preferably.
  • ⁇ Tg is preferably 75 ° C. or less, more preferably 25 to 70 ° C., and more preferably 30 to 67 ° C. from the viewpoint of improving low heat generation performance and wet grip performance. More preferably.
  • the rubber component contains a diene polymer.
  • the diene polymer may be a homopolymer of a diene monomer or may be a copolymer of a diene monomer and another monomer.
  • Examples of the diene polymer include natural rubber (NR), isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), and modified ones thereof.
  • the rubber component R1 constituting the continuous phase and the rubber component R2 constituting the discontinuous phase are incompatible with each other on the order of submicrons, and when the unvulcanized rubber composition is prepared, the rubber component R1 and the rubber component When R2 is mixed, phase separation occurs.
  • the rubber components R1 and R2 may be incompatible with each other on the order of submicrons, and may be compatible with the naked eye. In order to observe the incompatibility on the order of submicron, for example, using FIB / SEM, the region of 4 ⁇ m ⁇ 4 ⁇ m of the rubber composition is observed. The method of judging is mentioned.
  • An example of a method for selecting rubber components that are not compatible with each other is to use a difference in solubility parameter (SP value; Solubility Parameter) of the rubber component.
  • SP value solubility parameter
  • ) between the SP value (SP1) of the rubber component R1 and the SP value (SP2) of the rubber component R2 is preferably 0.15 or more.
  • the SP value of the rubber component can be calculated according to the Fedors method.
  • the unit of SP value is (cal / cm 3 ) 0.5 .
  • the rubber component R1 is a component listed as a rubber component that can be included in the unvulcanized rubber composition, and can constitute a continuous phase in which E1 / E2 falls within the range of 2 to 10 after vulcanization. It does not restrict
  • diene polymers including modified diene polymers; the same applies hereinafter
  • An incompatible diene polymer is used as the polymer.
  • the diene polymer in the rubber component R2 is two or more types of diene polymers, any of the diene polymers in the rubber component R1 is any of the diene polymers in the rubber component R2.
  • An incompatible diene polymer is used.
  • the glass transition temperature Tg1 of the rubber component R1 is preferably ⁇ 70 to ⁇ 10 ° C., and ⁇ 65 to ⁇ 15 ° C. Is more preferable, and is more preferably ⁇ 64 to ⁇ 20 ° C.
  • the glass transition temperature (Tg) of the rubber component R1, the rubber component R2 described later, and the liquid polymer can be measured by differential scanning calorimetry (DSC). For example, it can be measured using a differential scanning calorimeter manufactured by TA Instruments under the condition of a sweep rate of 5 to 10 ° C./min.
  • the rubber composition of the first invention preferably contains a filler, and the filler is continuous from the viewpoint of making the continuous phase harder and increasing the difference in elastic modulus from the discontinuous phase. It is preferable to be localized in the phase.
  • the rubber composition of the second aspect of the present invention contains a filler, and since the filler is localized in the continuous phase, the continuous phase is hard and has a large elastic difference from the discontinuous phase.
  • the polarity of the diene polymer and the filler can be used, or the diene polymer can be used as a modified functional group having an interaction property with the filler.
  • a diene polymer having a group referred to as a modified diene polymer.
  • a modified diene polymer it is preferable to use a modified diene polymer as the diene polymer.
  • modified functional group includes a modified functional group having an interaction property with a filler described later. Increases the interaction with the filler, making it easier to localize the filler in the continuous phase.
  • modified functional group having an interaction property with the filler means, for example, a covalent bond between the modified functional group and the surface of the filler (for example, silica); intermolecular force (ion-dipolar) This means a functional group capable of forming intermolecular forces such as dipole interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals forces.
  • a modified functional group with high interaction property with a filler for example, silica
  • a filler for example, silica
  • a nitrogen-containing functional group, a silicon-containing functional group, an oxygen-containing functional group etc. are mentioned suitably.
  • the modifying agent for obtaining the modified diene polymer can be appropriately selected from the above-mentioned known modifying agents having a modified functional group.
  • the modifying agent is preferably a modifying agent having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
  • the modifying agent is at least one selected from the group consisting of an alkoxysilane compound, a hydrocarbyloxysilane compound, and a combination thereof because of high interaction with a filler (for example, silica).
  • the alkoxysilane compound is not particularly limited, but is more preferably an alkoxysilane compound represented by the following general formula (I).
  • R 1 a -Si- (OR 2 ) 4-a (I)
  • R 1 and R 2 each independently represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, Is an integer of 0 to 2, and when there are a plurality of OR 2 , each OR 2 may be the same as or different from each other, and no active proton is contained in the molecule.
  • alkoxysilane compound represented by the general formula (I) include N- (1,3-dimethylbutylidene) -3-triethoxysilyl-1-propanamine, tetramethoxysilane, tetraethoxysilane, tetra -N-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxy Silane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltrime
  • N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, tetraethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane are preferable.
  • An alkoxysilane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the hydrocarbyloxysilane compound is preferably a hydrocarbyloxysilane compound represented by the following general formula (II).
  • n1 + n2 + n3 + n4 4 (where n2 is an integer of 1 to 4, n1, n3 and n4 are integers of 0 to 3), and A 1 is a saturated cyclic tertiary amine compound Residue, unsaturated cyclic tertiary amine compound residue, ketimine residue, nitrile group, (thio) isocyanate group, (thio) epoxy group, isocyanuric acid trihydrocarbyl ester group, carbonic acid dihydrocarbyl ester group, nitrile group, pyridine Group, (thio) ketone group, (thio) aldehyde group, amide group, (thio) carboxylic acid ester group, metal salt of (thio) carboxylic acid ester, carboxylic acid anhydride residue, carboxylic acid halogen compound residue, and It is at least one functional group selected from a primary or secondary amino group having a hydroly
  • a 1 may be a divalent group bonded to Si to form a cyclic structure
  • R 21 is an aliphatic monovalent having 1 to 20 carbon atoms Or an alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when n1 is 2 or more, they may be the same or different
  • R 23 has 1 to 20 carbon atoms.
  • R 24 is a divalent 1-20 carbon atoms aliphatic or alicyclic hydrocarbon group or a divalent C 6-18 When it is an aromatic hydrocarbon group and n4 is 2 or more, they may be the same or different.
  • the hydrolyzable group in the primary or secondary amino group having a hydrolyzable group or the mercapto group having a hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, particularly preferably a trimethylsilyl group.
  • the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (III).
  • p1 + p2 + p3 2 (wherein p2 is an integer of 1 to 2, p1 and p3 are integers of 0 to 1), A 2 is NRa (Ra is a monovalent A hydrocarbon group, a hydrolyzable group or a nitrogen-containing organic group), or sulfur, and R 25 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or 6 to 6 carbon atoms.
  • 18 is a monovalent aromatic hydrocarbon group
  • R 27 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • R 26 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a nitrogen-containing organic group. Any of them may contain a nitrogen atom and / or a silicon atom, and p2 is 2 May be the same or different from each other, or together form a ring, and R 28 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a carbon number 6 to 18 divalent aromatic hydrocarbon groups.
  • the hydrolyzable group a trimethylsilyl group or a tert-butyldimethylsilyl group is preferable, and a trimethylsilyl group is particularly preferable.
  • hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (IV) or (V).
  • q1 + q2 3 (where q1 is an integer of 0 to 2, q2 is an integer of 1 to 3), and R 31 is a divalent aliphatic having 1 to 20 carbon atoms. Or an alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, wherein R 32 and R 33 are each independently a hydrolyzable group, a monovalent fatty acid having 1 to 20 carbon atoms.
  • R 34 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a carbon number
  • R 35 is a monovalent aliphatic or alicyclic hydrocarbon having 1 to 20 carbon atoms Group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when q2 is 2 or more, May be different.
  • R 36 is a divalent aliphatic having 1 to 20 carbon atoms.
  • R 37 is a dimethylaminomethyl group, dimethylaminoethyl group, diethylaminomethyl group, diethylaminoethyl group, methylsilyl (methyl) Aminomethyl group, methylsilyl (methyl) aminoethyl group, methylsilyl (ethyl) aminomethyl group, methylsilyl (ethyl) aminoethyl group, dimethylsilylaminomethyl group, dimethylsilylaminoethyl group, monovalent fat having 1 to 20 carbon atoms
  • R 38 is a hydrocarbyloxy group having 1 to 20 carbon atoms, monovalent 1-20 carbon atoms aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon having 6 to 18 carbon atoms And when r2 is 2, they may be the same or different.
  • the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound having two or more nitrogen atoms represented by the following general formula (VI) or (VII).
  • TMS is a trimethylsilyl group
  • R 40 is a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic group having 6 to 18 carbon atoms.
  • R 41 is a hydrocarbyloxy group having 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic carbon atom having 6 to 18 carbon atoms.
  • R 42 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • TMS is a trimethylsilyl group
  • R 43 and R 44 are each independently a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aliphatic group having 6 to 18 carbon atoms.
  • R 45 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, R 45 may be the same or different.
  • hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (VIII).
  • R 46 has 1 to 3 carbon atoms.
  • 20 a divalent aliphatic or alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, wherein R 47 and R 48 are each independently a monovalent group having 1 to 20 carbon atoms.
  • a plurality of R 47 or R 48 may be the same or different.
  • hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (IX).
  • Y is a halogen atom
  • R 49 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • R 50 and R 51 are each independently a hydrolyzable group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • R 50 and R 51 are bonded to form a divalent organic group
  • R 52 and R 53 are each independently a halogen atom, a hydrocarbyloxy group, or a group having 1 to 20 carbon atoms.
  • R 50 and R 51 are preferably hydrolyzable groups, and the hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, and particularly preferably a trimethylsilyl group.
  • the hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound having a structure represented by the following general formulas (X) to (XIII).
  • R 91 may be the same or different and each represents a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • R 57 to R 59 , R 67 , R 71 , R 77 , R 78 , R 81 , R 84 , and R 92 may be the same or different and have 1 carbon atom.
  • ⁇ and ⁇ are integers of 0 to 5.
  • N1, N1, N7-tetramethyl-4-((trimethoxysilyl) methyl) -1,7heptane 2-((hexyl-dimethoxysilyl) methyl ) -N1, N1, N3, N3-2-pentamethylpropane-1,3-diamine, N1- (3- (dimethylamino) propyl-N3, N3-dimethyl-N1- (3- (trimethoxysilyl) propyl ) Propane-1,3-diamine, 4- (3- (dimethylamino) propyl) -N1, N1, N7, N7-tetramethyl-4-((trimethoxysilyl) methyl) heptane-1,7-diamine Is preferred.
  • hydrocarbyloxysilane compounds represented by the general formulas (II) to (XIII) are preferably used as a modifier for the rubber component R1, but as a modifier for the rubber component R2 and any other rubber component or polymer component. It may be used.
  • hydrocarbyloxysilane compounds represented by the general formulas (II) to (XIII) are preferably alkoxysilane compounds.
  • Suitable modifiers for obtaining the modified diene polymer by anionic polymerization include, for example, 3,4-bis (trimethylsilyloxy) -1-vinylbenzene, 3,4-bis (trimethylsilyloxy) benzaldehyde, 3,4 And at least one compound selected from -bis (tert-butyldimethylsilyloxy) benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone.
  • the modifier is preferably an amide portion of a lithium amide compound used as a polymerization initiator in anionic polymerization.
  • lithium amide compounds include lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, and lithium dipropyl.
  • the modifying agent that becomes the amide portion of lithium hexamethyleneimide is hexamethyleneimine
  • the modifying agent that becomes the amide portion of lithium pyrrolidide is pyrrolidine
  • the modifying agent that becomes the amide portion of lithium piperidide is piperidine.
  • Suitable modifiers for obtaining a modified diene polymer by coordination polymerization include, for example, at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde.
  • Suitable modifiers for obtaining a modified diene polymer by emulsion polymerization include, for example, at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene. These modifiers preferably used in emulsion polymerization are preferably copolymerized at the time of emulsion polymerization as monomers containing nitrogen atoms and / or silicon atoms.
  • the modification rate is preferably 30% or more, more preferably 35% or more, and particularly preferably 70% or more.
  • a filler especially silica comes to exist selectively by a continuous phase, and can improve low heat generation performance and wet grip performance.
  • modified diene polymer as the rubber component R1 will be described.
  • a copolymer of styrene and 1,3-butadiene (microstructure: 10% by mass of styrene / 40% by mass of vinyl bonds derived from 1,3-butadiene, base molecular weight (polystyrene conversion): 180,000).
  • a polymer was prepared, and modified with N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine in a state where the terminal was an anion, and a modified diene polymer (modification rate: 70).
  • the rubber component R2 is a component listed as a rubber component that can be included in the unvulcanized rubber composition, and can be a discontinuous phase in which E1 / E2 falls within the range of 2 to 10 after vulcanization.
  • one type may be used or two or more types may be used.
  • it can be selected in consideration of the relationship between the glass transition temperatures Tg1 and Tg2 described above.
  • diene polymers including modified diene polymers; the same applies hereinafter
  • an incompatible diene polymer is used.
  • the diene polymer in the rubber component R1 is two or more kinds of diene polymers
  • any of the diene polymers in the rubber component R2 is any of the diene polymers in the rubber component R1.
  • An incompatible diene polymer is used. Since the discontinuous phase is required to be a softer phase than the continuous phase, the glass transition temperature Tg2 of the rubber component R2 is preferably ⁇ 110 to ⁇ 60 ° C., and is ⁇ 100 to ⁇ 65 ° C. Is more preferable, and it is more preferably ⁇ 100 to ⁇ 67 ° C.
  • the elastic component ratio (E1 / E2) of the rubber composition is easily set to 2 to 10, and from the viewpoint of further improving wet grip performance and low heat generation performance, the rubber component R1 is a modified diene type. It is preferable that the rubber component R2 contains a diene polymer of natural rubber, isoprene rubber or butadiene.
  • the rubber component in the present invention may contain a resin.
  • the resin may be contained in either one of the continuous phase or the discontinuous phase, or may be contained in both, but the rubber composition is made by making the continuous phase harder and the discontinuous phase softer. From the viewpoint of further improving the low heat generation performance and wet grip performance, the resin is preferably localized in the continuous phase. “The resin is localized in the continuous phase” means that, in the total mass of the resin contained in the rubber composition of the present invention, the amount of the resin contained in the continuous phase is more than the amount of the resin contained in the discontinuous phase. Means many.
  • the amount of resin contained in the continuous phase is preferably more than 50% by mass and 100% by mass or less, and more preferably 60% by mass or more.
  • the degree of localization (partition rate) of the resin in the continuous phase is obtained, for example, by calculating the weight of the resin contained in each phase from the FOX equation using the glass transition temperature (Tg) of the rubber component after addition of the resin.
  • Tg glass transition temperature
  • the content of the resin in the rubber composition of the present invention can be 0 to 30 parts by mass with respect to 100 parts by mass of the total diene polymer in the unvulcanized rubber composition, and 25 parts by mass. The following is preferable.
  • the resin examples include terpene phenol resin, rosin-modified petroleum resin, dicyclopentadiene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, and the like.
  • the resin is a polymer compound having a glass transition temperature (Tg) of 50 ° C. or higher and a number average molecular weight (Mn) of 5,000 or lower from the viewpoint of further increasing the elastic modulus of the continuous phase of the rubber composition. Is preferred.
  • the resin used may be one type or two or more types.
  • Hyosin S As rosin-modified petroleum resin, Hyosin S from Taisha Matsuse Oil Co., Ltd .;
  • aromatic hydrocarbon resin C9 resin examples include Neopolymer L90, Neopolymer 120, Neopolymer E130, Neopolymer 140, Neopolymer 170S, Nippon Oil Neoresin D-145 manufactured by Nippon Petrochemical Co., Ltd .
  • Examples of the aliphatic hydrocarbon resin C5 resin include ESCOREZ1102 from Tonex, and Hilets T500X from Mitsui Chemicals;
  • Examples of the alicyclic hydrocarbon resin include quinton 1500, quinton 1700, quinton 1525L of ZEON Corporation;
  • Examples of the terpene phenol resin examples include YS Polystar T80, YS90L, YS Polystar T115, YS Polystar U115, Mighty Ace G125, etc., manufactured by Yashara Chemical Co., Ltd.
  • T-REZ R series manufactured by Tonen Chemical Co
  • the method for localizing the resin in the continuous phase is not particularly limited.
  • a resin having an SP value close to the SP value of the rubber component R1 constituting the continuous phase is used. Good.
  • ) between the SP value (SP1) of the rubber component R1 and the SP value (SP3) of the resin is less than 0.15 may be selected.
  • the unit of SP value is (cal / cm 3 ) 0.5 .
  • the rubber component in the present invention preferably contains a liquid polymer.
  • the liquid polymer may be contained in either one of the continuous phase or the discontinuous phase, or may be contained in both, but the rubber composition is made by making the continuous phase harder and the discontinuous phase softer. From the viewpoint of further improving the low heat generation performance and wet grip performance of the product, the liquid polymer is preferably localized in the discontinuous phase. “The liquid polymer is localized in the discontinuous phase” means that the amount of the liquid polymer contained in the discontinuous phase in the total mass of the liquid polymer contained in the rubber composition of the present invention is the liquid contained in the continuous phase. Means greater than the amount of polymer.
  • the amount of the liquid polymer contained in the discontinuous phase is preferably more than 50% by mass and 100% by mass or less, and more than 60% by mass. More preferred is 70% by mass or more.
  • the degree of localization (partition rate) of the liquid polymer in the discontinuous phase can be determined, for example, from the shift temperature amount of the glass transition temperature (Tg) measured from DSC for the rubber component. Using the glass transition temperature (Tg) of the rubber component after addition of the liquid polymer, the weight of the liquid polymer contained in each phase is calculated from the FOX equation.
  • the content of the liquid polymer in the rubber composition of the present invention is more than 0 parts by weight and 50 parts by weight or less with respect to 100 parts by weight of the total diene polymer in the rubber component of the unvulcanized rubber composition. It is preferably 5 to 45 parts by mass.
  • the rubber composition of the present invention when the rubber composition of the present invention contains a softening agent such as process oil, the rubber composition preferably does not contain a liquid polymer.
  • the liquid polymer is not particularly limited, and examples thereof include diene liquid polymers such as liquid polyisoprene, liquid polybutadiene, and liquid styrene-butadiene copolymer, liquid polybutene, liquid silicone polymer, and silane liquid polymer.
  • diene liquid polymers such as liquid polyisoprene, liquid polybutadiene, and liquid styrene-butadiene copolymer, liquid polybutene, liquid silicone polymer, and silane liquid polymer.
  • the liquid polymer a commercially available product may be used.
  • Ricon 142 liquid BR (1,4-polybutadiene structure
  • the liquid polymer has a glass transition temperature (Tg) of ⁇ 100 to 20 ° C. and a number average molecular weight (Mn) of 1,000 to 50,000 from the viewpoint of softening the discontinuous phase of the rubber composition. It is preferably a molecular compound.
  • the glass transition temperature of the liquid polymer is more preferably from ⁇ 100 to 0 ° C., and further preferably from ⁇ 100 to ⁇ 20 ° C.
  • the number average molecular weight of the liquid polymer is more preferably 3,000 to 30,000, still more preferably 5,000 to 20,000.
  • the liquid polymer used may be one type or two or more types.
  • the method for localizing the liquid polymer in the discontinuous phase is not particularly limited.
  • a polymer may be used.
  • ) between the SP value (SP2) of the rubber component R2 and the SP value (SP4) of the liquid polymer is less than 0.15 may be selected.
  • the unit of SP value is (cal / cm 3 ) 0.5 .
  • the rubber composition of the first aspect of the present invention preferably contains a filler.
  • the filler may be contained in either one of the continuous phase or the discontinuous phase, or may be contained in both, but the rubber composition is made by making the continuous phase harder and the discontinuous phase softer. From the viewpoint of further improving the low heat generation performance and wet grip performance of the product, the filler is preferably localized in the continuous phase.
  • the rubber composition of the second present invention contains a filler. From the viewpoint of hardening the continuous phase and softening the discontinuous phase to improve the low heat generation performance and wet grip performance of the rubber composition, the filler is localized in the continuous phase.
  • the filler may be contained only in the continuous phase, or may be further contained in the discontinuous phase.
  • the filler is localized in the continuous phase means that the ratio of the filler contained in the continuous phase among all the fillers (the degree of localization of the filler in the continuous phase) is It means that it is more than the ratio of the diene polymer contained in a continuous phase among diene polymers. This is represented by the following formula.
  • X filler (continuous phase) S filler (continuous phase) / [S filler (continuous phase) + S filler (non-continuous phase) ]> M diene polymer (continuous phase) / [M diene polymer (continuous phase) + M diene polymer (non-continuous phase) ]
  • X filler (continuous phase) is the degree of localization of the filler to the continuous phase
  • S filler (continuous phase) is the filler area contained in the continuous phase (measured from AFM)
  • S filler (discontinuous phase) is the area of the filler contained in the discontinuous phase (measured from AFM)
  • M diene polymer (continuous phase) is the mass of the diene polymer contained in the continuous phase
  • M diene polymer (discontinuous phase) represents the mass of the diene polymer contained in the discontinuous phase, respectively.
  • the degree of localization of the filler in the continuous phase is preferably “the ratio of the
  • the degree of localization (partition rate; mass%) of the filler in the continuous phase is determined by, for example, an atomic force microscope (for example, ASYLUM RESEARCH) in which a smooth surface of a sample cut by a microtome is cooled (for example, 0 ° C.). It can be obtained by measuring with a measurement range of 2 ⁇ m ⁇ 2 ⁇ m using a company MFP-3D). When measuring a system divided into two components, the region of 2 ⁇ m ⁇ 2 ⁇ m of the rubber composition is observed, and the obtained image is ternary for the two rubber components and the filler portion based on the difference in elastic modulus from the histogram.
  • an atomic force microscope for example, ASYLUM RESEARCH
  • a smooth surface of a sample cut by a microtome is cooled (for example, 0 ° C.). It can be obtained by measuring with a measurement range of 2 ⁇ m ⁇ 2 ⁇ m using a company MFP-3D).
  • the filler area contained in the phases of the two rubber components is obtained, and the ratio of the filler present in the continuous phase is calculated from the total amount of filler in the measurement region.
  • the filler is on the boundary surface between the two rubber components, two points where the three components of the rubber component and the filler are in contact are connected to divide the area of the filler.
  • the content of the filler in the rubber composition of the present invention is preferably 50 to 130 parts by mass with respect to 100 parts by mass of the total diene polymer in the rubber component of the unvulcanized rubber composition. 60 to 120 parts by mass is more preferable.
  • the filler is not particularly limited, and for example, a reinforcing filler that reinforces the rubber composition is used.
  • the reinforcing filler include silica and carbon black. Either one of silica and carbon black may be used alone, or both silica and carbon black may be used. From the viewpoint of improving wet grip performance, silica is preferably included.
  • the average aggregate area of the filler is not particularly limited, is preferably 2100 nm 2 or less, and more preferably 1800 nm 2 or less. Thereby, it is easy to achieve both low heat generation performance and wet grip performance.
  • the average agglomerate area of the filler is obtained, for example, from FIB-SEM, from the image obtained in the measurement range 4 ⁇ m ⁇ 4 ⁇ m, the agglomerate area of the filler part, and from the total agglomerate surface area of the filler part and the number of agglomerates,
  • the average aggregate area of the filler portion per unit area (2 ⁇ m ⁇ 2 ⁇ m) can be calculated by the number average (arithmetic average). In the calculation, particles in contact with the edge (side) of the image are not counted, and particles of 20 pixels or less are regarded as noise and are not counted.
  • Silica is not particularly limited, and can be used according to applications such as general grade silica, special silica surface-treated with a silane coupling agent, and the like.
  • wet silica is preferably used as the silica.
  • Carbon black is not particularly limited and can be appropriately selected depending on the purpose.
  • the carbon black is preferably, for example, FEF, SRF, HAF, ISAF, or SAF grade, and more preferably HAF, ISAF, or SAF grade.
  • the rubber component in the present invention can be blended by appropriately selecting compounding agents (excluding fillers) usually used in the rubber industry.
  • a compounding agent include an antioxidant, a silane coupling agent, a vulcanization accelerator such as stearic acid, a vulcanization accelerator such as zinc white, and a vulcanizer such as sulfur.
  • a commercial item can be used conveniently for a compounding agent.
  • the method for preparing the rubber composition of the present invention is not particularly limited, and the rubber composition can be obtained by vulcanizing the unvulcanized rubber composition by a known vulcanization method. Moreover, the preparation method of the unvulcanized rubber composition used as the raw material of the rubber composition of this invention is not specifically limited, The preparation method of a well-known unvulcanized rubber composition can be used.
  • diene polymers such as zinc oxide, anti-aging agent, wax, vulcanization accelerator and sulfur are vulcanized, and the vulcanization of diene polymers is accelerated.
  • the component is referred to as component C.
  • the component excluding component C and diene polymer is referred to as component D.
  • (A1) A diene polymer in the rubber component R1 and a component D (D1) necessary for constituting a continuous phase are kneaded to obtain an unvulcanized rubber composition 1, and separately in the rubber component R2.
  • the diene polymer and the component D (D2) necessary for constituting the discontinuous phase are kneaded to obtain an unvulcanized rubber composition 2, each of which is kneaded, and finally the component C is added. Kneading and kneading; (A2)
  • the diene polymer in the rubber component R1 and the component D (D1) necessary for constituting a continuous phase are kneaded to obtain an unvulcanized rubber composition 1, and then in the rubber component R2.
  • a method of adding the component D (D1) necessary for constituting the discontinuous phase and kneading, and finally adding the component C and kneading are a method of adding the component D (D1) necessary for constituting the discontinuous phase and kneading, and finally adding the component C and kneading.
  • the diene polymer in the rubber component R1, the diene polymer in the rubber component R2, and the component D (D1 and D2) are kneaded, and then the component C
  • the method of kneading is mentioned.
  • component D1 examples include a filler, a resin, a liquid polymer, and other components, and preferably include a filler, a resin, and other components.
  • the content of each component may be the amount described as the content in the rubber composition constituting the continuous phase.
  • Component D2 includes a filler, a resin, a liquid polymer, and other components, and preferably includes a liquid polymer and other components.
  • the content of each component may be the amount described as the content in the rubber composition constituting the discontinuous phase.
  • the domain diameter of the discontinuous phase is easily set to 50 to 500 nm. Further, by using the method (b), it becomes difficult to generate a domain having a domain diameter of 5 ⁇ m or more.
  • Each unvulcanized rubber composition is blended into the diene polymer in the rubber component by blending a filler and various compounding agents appropriately selected as necessary, and kneaded, heated, extruded, etc. Can be prepared.
  • the tread member of the present invention uses the above-described rubber composition for a tread of the present invention.
  • the tire of the present invention uses the tread member of the present invention. Thereby, the tread member and the tire are excellent in wet grip performance and low loss performance.
  • Examples of the tread member include, but are not limited to, a tread rubber.
  • the tire of the present invention is not particularly limited except that the tread rubber composition of the present invention is used for any of the tread members, and can be produced according to a conventional method.
  • Resin A Mitsui Chemicals, Hiretsu T500X (C5 resin)
  • Resin B Tonen Chemical Co., Ltd., T-REZ RD104 (C5C9 resin)
  • Resin C JX Nippon Oil & Energy Corporation, Nisseki Neopolymer 140 (C9 resin)
  • ⁇ filler ⁇ Silica Trade name “NipSil AQ” manufactured by Tosoh Silica Co., Ltd. Carbon black: Asahi Carbon Co., Ltd., # 80
  • Oil (process oil): Idemitsu Kosan Co., Ltd., Diana Process NH-70S Silane coupling agent: Shin-Etsu Chemical Co., Ltd., ABC-856 Anti-aging agent: Sumitomo Chemical, Antigen 6C Wax: Seiko Chemical Co., Suntite A Stearic acid: NOF Corporation, Tungsten zinc stearate Hana: Hakusuitec Co., Ltd., 2 types of zinc oxide Sulfur: Hosoi Chemical Co., Ltd., HK200-5 Vulcanization accelerator: Sumitomo Chemical Co., Ltd., Soxinol DG
  • iene polymer B modified low Tg-SBR
  • a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene are added to 67.5 g of 1,3-butadiene and 7.5 g of styrene, and 2,2 After adding 0.6 mmol of -ditetrahydrofurylpropane and 0.8 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours.
  • modifier 1 0.72 mmol was added as a modifier to the polymerization reaction system having a polymerization conversion rate of almost 100%, and a modification reaction was carried out at 50 ° C. for 30 minutes to obtain a diene polymer B. .
  • the glass transition temperature was measured by differential scanning calorimetry and found to be -62 ° C.
  • the diene system is the same as the polymerization reaction of the diene polymer B except that the polymerization reaction is performed, the modification reaction is not performed, and the termination reaction is performed with isopropyl alcohol (IPA).
  • IPA isopropyl alcohol
  • Polymer A was obtained.
  • the amount of bonded styrene was 10% by mass
  • the amount of vinyl bond in the butadiene portion was 40%
  • the peak molecular weight was 200,000.
  • the glass transition temperature was measured by differential scanning calorimetry and found to be -62 ° C.
  • iene polymer D modified high Tg-SBR
  • 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 mL pressure-resistant glass container so that 45 g of 1,3-butadiene and 30 g of styrene are added, and 2,2-ditetrahydrofuryl is added.
  • polymerization was carried out at 50 ° C. for 1.5 hours.
  • modifier 2 0.72 mmol was added as a modifier to the polymerization reaction system in which the polymerization conversion rate was almost 100%, and a modification reaction was performed at 50 ° C. for 30 minutes to obtain a diene polymer D. .
  • the glass transition temperature was measured by differential scanning calorimetry and found to be -32 ° C.
  • Examples 1-1 to 1-16, 1-18, and Comparative Examples 1-1 to 1-4 [Manufacture of rubber composition for tread] Among the components shown in Tables 1 to 3, components other than zinc oxide (zinc white), anti-aging agent, wax, vulcanization accelerator, and sulfur are started using a Banbury mixer based on the formulations shown in Tables 1 to 3. The mixture was kneaded for 5 minutes at a temperature of 100 C and a rotation speed of 70 rpm. Thereafter, zinc oxide, anti-aging agent, wax, vulcanization accelerator, and sulfur were kneaded in the final kneading step based on the formulations shown in Tables 1 to 3 to prepare an unvulcanized rubber composition. Each obtained unvulcanized rubber composition was vulcanized at 160 C for 20 minutes to produce a tread rubber composition.
  • Example 1-17> The diene polymer D, stearic acid, filler (silica), and silane coupling agent of the formulation shown in Table 3 were kneaded for 3 minutes at a starting temperature of 100 ° C. and a rotational speed of 70 rpm using a Banbury mixer (master). Batch kneading process). After the masterbatch kneading process, the diene polymer E and the liquid polymer are mixed and kneaded for 5 minutes, and the final kneading process of zinc oxide (zinc white), anti-aging agent, wax, vulcanization accelerator, and sulfur. To prepare an unvulcanized rubber composition of Example 1-17. The obtained unvulcanized rubber composition was vulcanized at 160 C for 20 minutes to produce a tread rubber composition of Example 1-17.
  • Measurements (1) to (8) were performed by the method described above. Also, E1 / E2 was calculated based on the results of (1) and (2), and the Tg difference (Tg1 ⁇ Tg2) (° C.) of the rubber component of each phase was calculated based on the results of (3) and (4). . Each rubber composition was evaluated for wet grip performance and low loss performance (low heat generation performance).
  • Total index The total (total index) of the index calculated in “1. Evaluation of wet grip performance” and the index calculated in “2. Evaluation of low loss performance (low heat generation performance)” is shown in Tables 1-6. . The larger the index value, the better the balance between wet grip performance and low loss performance (low heat generation performance).
  • the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase are 2 ⁇ (E1 / E2)
  • a rubber composition for tread satisfying ⁇ 10 was found to be excellent in wet grip performance without impairing low heat generation performance. Therefore, a tread member and a tire using such a tread rubber composition are considered to be excellent in wet grip performance without impairing low loss performance.
  • the filler is localized in the continuous phase (“the degree of localization of the filler in the continuous phase” exceeds 70%), and the rubber component glass constituting the continuous phase
  • the transition temperature Tg1 and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase are Tg1> Tg2, that is, “Tg difference between the rubber components of each phase (Tg1 ⁇ Tg2) (° C.)” is a positive value.
  • the tread rubber composition was found to be excellent in both wet grip performance and low heat generation performance. Therefore, it is considered that a tread member and a tire using such a tread rubber composition are excellent in wet grip performance and low loss performance.
  • the present invention it is possible to provide a rubber composition for a tread which is excellent in wet grip performance without impairing low heat generation performance. Moreover, according to this invention, the tread member and tire which are excellent in wet grip performance can be provided, without impairing low-loss performance.

Abstract

Provided is a rubber composition for tread which has a continuous phase 2 and at least one discontinuous phase 4 and is obtained by vulcanizing an unvulcanized rubber composition containing a diene polymer-containing rubber component, wherein the elastic modulus E1 at 0°C of a rubber composition constituting the continuous phase 2 and the elastic modulus E2 at 0°C of a rubber composition constituting the discontinuous phase 4 satisfy 2≤(E1/E2)≤10. The rubber composition for tread exhibits excellent wet grip performance without damaging low heat generation performance. The rubber composition for tread also contains a filler 6. The filler 6 is preferably localized in the continuous phase 2.

Description

トレッド用ゴム組成物、トレッド部材、およびタイヤTread rubber composition, tread member, and tire
 本発明は、トレッド用ゴム組成物、トレッド部材、およびタイヤに関する。 The present invention relates to a rubber composition for a tread, a tread member, and a tire.
 タイヤ用ゴム組成物では、ゴムの補強の観点からカーボンブラックが用いられている。
 近年、タイヤ用ゴム組成物に広く一般的に配合されるカーボンブラックに代え、シリカを配合することによりウェットグリップ性能が向上することが知られている(例えば、特許文献1参照)。
In the rubber composition for tires, carbon black is used from the viewpoint of rubber reinforcement.
In recent years, it is known that wet grip performance is improved by blending silica instead of carbon black that is widely blended in tire rubber compositions (see, for example, Patent Document 1).
 また、例えば、ガラス転移温度(Tg)の異なるゴムをブレンドして、ウェットグリップ性能を向上する検討もなされている(例えば、特許文献2参照)。 Also, for example, studies have been made to improve wet grip performance by blending rubbers having different glass transition temperatures (Tg) (see, for example, Patent Document 2).
特開2007-27730号公報JP 2007-27730 A 特開平8-27313号公報JP-A-8-27313
 しかし、上記開示の技術をもってしても、タイヤの転がり抵抗を低くする(低ロス性能を高くする)ことと、ウェットグリップ性能を高くすることとのバランスが十分ではなく、依然としてゴム組成物のウェットグリップ性能と低発熱性能には改善の余地があった。 However, even with the technology disclosed above, the balance between reducing the rolling resistance of the tire (increasing the low loss performance) and increasing the wet grip performance is still insufficient, and the rubber composition is still wet. There was room for improvement in grip performance and low heat generation performance.
 本発明は、低発熱性能を損ねずにウェットグリップ性能に優れるトレッド用ゴム組成物、並びに、低ロス性能を損ねずにウェットグリップ性能に優れるトレッド部材及びタイヤを提供することを目的とする。 An object of the present invention is to provide a rubber composition for a tread excellent in wet grip performance without impairing low heat generation performance, and a tread member and a tire excellent in wet grip performance without impairing low loss performance.
<1> ジエン系重合体を含有するゴム成分を含む未加硫ゴム組成物を加硫した、連続相と1相以上の非連続相とを有するトレッド用ゴム組成物であって、該連続相を構成するゴム組成物の0℃における弾性率E1と、該非連続相を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たすトレッド用ゴム組成物である。 <1> A rubber composition for a tread obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer, and having a continuous phase and one or more discontinuous phases, The rubber composition for a tread in which the elastic modulus E1 at 0 ° C. of the rubber composition constituting the rubber composition and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase satisfy 2 ≦ (E1 / E2) ≦ 10 It is a thing.
<2> 前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2である<1>に記載のトレッド用ゴム組成物である。 <2> The rubber composition for a tread according to <1>, wherein the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase are Tg1> Tg2. It is.
<3> 前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1-Tg2≧20℃を満たす<1>又は<2>に記載のトレッド用ゴム組成物である。 <3> The glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy <1> or <2> satisfying Tg1−Tg2 ≧ 20 ° C. The rubber composition for tread described.
<4> 充填剤を含み、該充填剤が前記連続相に局在している<1>~<3>のいずれか1つに記載のトレッド用ゴム組成物である。 <4> The rubber composition for a tread according to any one of <1> to <3>, including a filler, wherein the filler is localized in the continuous phase.
<5> 液状ポリマーを含み、該液状ポリマーが前記非連続相に局在している<1>~<4>のいずれか1つに記載のトレッド用ゴム組成物である。 <5> The tread rubber composition according to any one of <1> to <4>, which includes a liquid polymer, and the liquid polymer is localized in the discontinuous phase.
<6> 樹脂を含み、該樹脂が前記連続相に局在している<1>~<5>のいずれか1つに記載のトレッド用ゴム組成物である。 <6> The rubber composition for a tread according to any one of <1> to <5>, including a resin, and the resin is localized in the continuous phase.
<7> ジエン系重合体を含有するゴム成分を含む未加硫ゴム組成物を加硫した、連続相と1相以上の非連続相とを有するトレッド用ゴム組成物であって、充填剤を含み、該充填剤が前記連続相に局在しており、前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2であるトレッド用ゴム組成物である。 <7> A rubber composition for a tread obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer and having a continuous phase and one or more discontinuous phases, The filler is localized in the continuous phase, and the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase are Tg1> Tg2 It is the rubber composition for tread which is.
<8> 前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1-Tg2≧20℃を満たす<7>に記載のトレッド用ゴム組成物である。 <8> The tread according to <7>, wherein the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy Tg1-Tg2 ≧ 20 ° C. It is a rubber composition.
<9> 液状ポリマーを含み、該液状ポリマーが前記非連続相に局在している<7>又は<8>に記載のトレッド用ゴム組成物である。 <9> The tread rubber composition according to <7> or <8>, which includes a liquid polymer, and the liquid polymer is localized in the discontinuous phase.
<10> 樹脂を含み、該樹脂が前記連続相に局在している<7>~<9>のいずれか1つに記載のトレッド用ゴム組成物である。 <10> The rubber composition for a tread according to any one of <7> to <9>, including a resin, and the resin is localized in the continuous phase.
<11> 前記連続相を構成するゴム組成物の0℃における弾性率E1と、該非連続相を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たす<7>~<10>のいずれか1つに記載のトレッド用ゴム組成物である。 <11> The elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase are 2 ≦ (E1 / E2) ≦ 10 The rubber composition for a tread according to any one of <7> to <10>, wherein
<12> 前記非連続相のドメイン径が50~500nmである<1>~<11>のいずれか1つに記載のトレッド用ゴム組成物である。 <12> The rubber composition for a tread according to any one of <1> to <11>, wherein the domain diameter of the discontinuous phase is 50 to 500 nm.
<13> 全充填剤のうち前記連続相に含まれる充填剤の比率が、全ジエン系重合体のうち連続相に含まれるジエン系重合体の比率よりも多い<4>~<12>のいずれか1つに記載のトレッド用ゴム組成物である。 <13> Any of <4> to <12>, wherein the ratio of the filler contained in the continuous phase among all the fillers is greater than the ratio of the diene polymer contained in the continuous phase among all the diene polymers. It is a rubber composition for tread as described in any one.
<14> 前記液状ポリマー全質量中、前記非連続相に含まれる前記液状ポリマーの量が50質量%を超え100質量%以下である<5>、<6>及び<9>~<13>のいずれか1つに記載のトレッド用ゴム組成物である。 <14> In the total mass of the liquid polymer, the amount of the liquid polymer contained in the discontinuous phase is more than 50 mass% and 100 mass% or less. <5>, <6>, and <9> to <13> It is a rubber composition for treads as described in any one.
<15> 前記樹脂全質量中、前記連続相に含まれる前記樹脂の量が50質量%を超え100質量%以下である<6>及び<10>~<14>のいずれか1つに記載のトレッド用ゴム組成物である。 <15> The total amount of the resin according to any one of <6> and <10> to <14>, wherein the amount of the resin contained in the continuous phase is more than 50% by mass and 100% by mass or less. It is a rubber composition for treads.
<16> <1>~<15>のいずれか1つに記載のトレッド用ゴム組成物を用いたトレッド部材である。 <16> A tread member using the tread rubber composition according to any one of <1> to <15>.
<17> <16>に記載のトレッド部材を用いたタイヤである <17> A tire using the tread member according to <16>.
 本発明によれば、低発熱性能を損ねずにウェットグリップ性能に優れるトレッド用ゴム組成物、並びに、低ロス性能を損ねずにウェットグリップ性能に優れるトレッド部材及びタイヤを提供することができる。 According to the present invention, it is possible to provide a rubber composition for a tread excellent in wet grip performance without impairing low heat generation performance, and a tread member and tire excellent in wet grip performance without impairing low loss performance.
図1は、連続相と非連続相とを含む本発明のトレッド用ゴム組成物の海(連続相)-島(非連続相)構造を表す模式図である。FIG. 1 is a schematic diagram showing a sea (continuous phase) -island (discontinuous phase) structure of a rubber composition for a tread of the present invention including a continuous phase and a discontinuous phase.
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 なお、本発明において、単に「ゴム組成物」と称するときは、加硫済みのゴム組成物を意味し、加硫前のゴム組成物は「未加硫ゴム組成物」と称する。更に、トレッド用ゴム組成物を単に「ゴム組成物」と称することがある。
 本発明において、「ゴム成分」とは、少なくともジエン系重合体を含有し、充填剤を含有しない(充填剤の含有量が0質量%である)成分である。
ゴム成分には、ジエン系重合体のほか、必要に応じて、ワックス、老化防止剤、亜鉛化合物、硫黄等を含んでいてもよい。ゴム成分は未加硫ゴム組成物に含まれ、加硫済みのゴム組成物には含まれない。
Hereinafter, embodiments of the present invention will be described. These descriptions are intended to exemplify the present invention and do not limit the present invention in any way.
In the present invention, when simply referred to as “rubber composition”, it means a vulcanized rubber composition, and the rubber composition before vulcanization is referred to as “unvulcanized rubber composition”. Further, the rubber composition for tread may be simply referred to as “rubber composition”.
In the present invention, the “rubber component” is a component that contains at least a diene polymer and does not contain a filler (the content of the filler is 0% by mass).
In addition to the diene polymer, the rubber component may contain a wax, an anti-aging agent, a zinc compound, sulfur and the like, if necessary. The rubber component is contained in the unvulcanized rubber composition and is not contained in the vulcanized rubber composition.
<トレッド用ゴム組成物>
 本発明のトレッド用ゴム組成物は、第1の本発明のトレッド用ゴム組成物と、第2の本発明のトレッド用ゴム組成物を含む。以下、単に「本発明のトレッド用ゴム組成物」と記載する事項は、第1の本発明のトレッド用ゴム組成物と、第2の本発明のトレッド用ゴム組成物に共通する事項である。
<Rubber composition for tread>
The rubber composition for a tread of the present invention includes the rubber composition for a tread of the first aspect of the present invention and the rubber composition for a tread of the second aspect of the present invention. Hereinafter, the matter described simply as “the rubber composition for a tread of the present invention” is common to the rubber composition for a tread of the first invention and the rubber composition for a tread of the second invention.
 第1の本発明のトレッド用ゴム組成物は、ジエン系重合体を含有するゴム成分を含む未加硫ゴム組成物を加硫した、連続相と1相以上の非連続相とを有するトレッド用ゴム組成物であって、該連続相を構成するゴム組成物の0℃における弾性率E1と、該非連続相を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たす。
 つまり、第1の本発明のゴム組成物は、ゴム成分を含む未加硫ゴム組成物を加硫した加硫ゴム組成物であり、加硫ゴム組成物の連続相と非連続相について、各相を構成するゴム組成物の0℃での弾性率Eが上記式を満たす。
 第1の本発明のトレッド用ゴム組成物を構成する未加硫ゴム組成物は充填剤を含んでもよいが、その場合、未加硫ゴム組成物は、ゴム成分と充填剤とからなる。
The rubber composition for a tread according to the first aspect of the present invention is a tread having a continuous phase and one or more discontinuous phases obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer. The elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase are 2 ≦ (E1 / E2) ≦ 10 is satisfied.
That is, the rubber composition of the first invention is a vulcanized rubber composition obtained by vulcanizing an unvulcanized rubber composition containing a rubber component, and each of the continuous phase and the discontinuous phase of the vulcanized rubber composition The elastic modulus E at 0 ° C. of the rubber composition constituting the phase satisfies the above formula.
The unvulcanized rubber composition constituting the rubber composition for a tread of the first aspect of the present invention may contain a filler. In this case, the unvulcanized rubber composition comprises a rubber component and a filler.
 第1の本発明のゴム組成物の相構造の一例を、図1に示す模式図により説明する。
 第1の本発明のゴム組成物は、非相溶のゴム組成物を含み、図1に示すように、互いに相溶しない連続相2と非連続相4とが、海(連続相2)-島(非連続相4)構造をなしている。非連続相4は、連続相2中に分散していることから、分散相と称することがある。
 第1の本発明のゴム組成物は、連続相2を構成するゴム組成物の0℃における弾性率E1と、非連続相4を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たす。すなわち、連続相2が非連続相4よりも、E1/E2が2~10となる範囲で硬く、非連続相4が柔らかく、硬い連続相2の中に、ミクロの柔らかい非連続相4を含む構造を有する。トレッド用ゴム組成物が、弾性率の差がある海島構造を有することで、歪みが大きくなり、ウェットグリップ性能が向上すると考えられる。
 また、後述するように、第1の本発明のゴム組成物は、充填剤6を含んでいることが好ましく、更に、充填剤6が連続相2に局在していることが好ましい。
 ここで、「充填剤6が連続相2に局在」とは、全充填剤のうち連続相2中の充填剤の量の割合が、全ジエン系重合体のうち連続相2中のジエン系重合体の割合よりも多いことを意味する。
An example of the phase structure of the rubber composition of the first invention will be described with reference to the schematic diagram shown in FIG.
The first rubber composition of the present invention includes an incompatible rubber composition, and as shown in FIG. 1, a continuous phase 2 and a non-continuous phase 4 that are incompatible with each other are composed of sea (continuous phase 2)- It has an island (non-continuous phase 4) structure. Since the discontinuous phase 4 is dispersed in the continuous phase 2, it may be referred to as a dispersed phase.
In the rubber composition of the first invention, the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase 2 and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase 4 are 2 ≦ (E1 / E2) ≦ 10 is satisfied. That is, the continuous phase 2 is harder than the discontinuous phase 4 in the range where E1 / E2 is 2 to 10, the discontinuous phase 4 is soft, and the hard continuous phase 2 includes the micro soft discontinuous phase 4. It has a structure. It is considered that the rubber composition for a tread has a sea-island structure with a difference in elastic modulus, whereby distortion is increased and wet grip performance is improved.
As will be described later, the rubber composition of the first present invention preferably contains a filler 6, and the filler 6 is preferably localized in the continuous phase 2.
Here, “the filler 6 is localized in the continuous phase 2” means that the proportion of the amount of the filler in the continuous phase 2 among all the fillers is the diene type in the continuous phase 2 among all the diene polymers. It means more than the proportion of polymer.
 第1の本発明のトレッド用ゴム組成物において、連続相を構成するゴム組成物の0℃における弾性率E1と非連続相を構成するゴム組成物の0℃での弾性率E2との比(E1/E2)は、2~10である。より低発熱性能を高め、ウェットグリップ性能を向上する観点から、E1/E2は3~10であることが好ましい。 In the rubber composition for a tread according to the first aspect of the present invention, the ratio between the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase ( E1 / E2) is 2-10. From the viewpoint of further improving the low heat generation performance and improving the wet grip performance, E1 / E2 is preferably 3 to 10.
 第2の本発明のトレッド用ゴム組成物は、ジエン系重合体を含有するゴム成分を含む未加硫ゴム組成物を加硫した、連続相と1相以上の非連続相とを有するトレッド用ゴム組成物であって、充填剤を含み、該充填剤が前記連続相に局在しており、前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2である。
 本発明において、「連続相を構成するゴム成分」とは、連続相を構成するゴム組成物が未加硫ゴム組成物であるときに、当該未加硫ゴム組成物に含まれるゴム成分である。同様に、「非連続相を構成するゴム成分」とは、非連続相を構成するゴム組成物が未加硫ゴム組成物であるときに、当該未加硫ゴム組成物に含まれるゴム成分である。
 以下、連続相を構成するゴム成分を「ゴム成分R1」と称することがあり、非連続相を構成するゴム成分を「ゴム成分R2」と称することがある。
 つまり、第2の本発明においては、ゴム成分R1のガラス転移温度(Tg1)がゴム成分R2のガラス転移温度(Tg2)よりも大きい。
The rubber composition for a tread of the second aspect of the present invention is for a tread having a continuous phase and one or more discontinuous phases obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer. A rubber composition comprising a filler, the filler being localized in the continuous phase, the glass transition temperature Tg1 of the rubber component constituting the continuous phase, and the rubber component constituting the discontinuous phase The glass transition temperature Tg2 of Tg1> Tg2.
In the present invention, the “rubber component constituting the continuous phase” is a rubber component contained in the unvulcanized rubber composition when the rubber composition constituting the continuous phase is an unvulcanized rubber composition. . Similarly, the “rubber component constituting the discontinuous phase” is a rubber component contained in the unvulcanized rubber composition when the rubber composition constituting the discontinuous phase is an unvulcanized rubber composition. is there.
Hereinafter, the rubber component constituting the continuous phase may be referred to as “rubber component R1”, and the rubber component constituting the discontinuous phase may be referred to as “rubber component R2”.
That is, in the second present invention, the glass transition temperature (Tg1) of the rubber component R1 is higher than the glass transition temperature (Tg2) of the rubber component R2.
 第2の本発明のゴム組成物の相構造の一例を、図1に示す模式図により説明する。
 第2の本発明のゴム組成物は、非相溶のゴム組成物を含み、図1に示すように、互いに相溶しない連続相2と非連続相4とが、海(連続相2)-島(非連続相4)構造をなしている。非連続相4は、連続相2中に分散していることから、分散相と称することがある。
 第2の本発明のゴム組成物は、ゴム成分を含む未加硫ゴム組成物を加硫した、連続相2と1相以上の非連続相4とを有するトレッド用ゴム組成物であって、充填剤6を含み、充填剤6が連続相2に局在しており、連続相2を構成するゴム成分のガラス転移温度Tg1と、非連続相4を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2である。
An example of the phase structure of the rubber composition of the second invention will be described with reference to the schematic diagram shown in FIG.
The rubber composition of the second invention includes an incompatible rubber composition, and as shown in FIG. 1, a continuous phase 2 and a non-continuous phase 4 that are incompatible with each other are composed of sea (continuous phase 2)- It has an island (non-continuous phase 4) structure. Since the discontinuous phase 4 is dispersed in the continuous phase 2, it may be referred to as a dispersed phase.
The rubber composition of the second invention is a rubber composition for a tread having a continuous phase 2 and one or more discontinuous phases 4 obtained by vulcanizing an unvulcanized rubber composition containing a rubber component. The filler 6 is contained in the continuous phase 2 and the glass transition temperature Tg1 of the rubber component constituting the continuous phase 2 and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase 4 are , Tg1> Tg2.
 連続相2を構成するゴム成分のガラス転移温度を、連続相4を構成するゴム成分のガラス転移温度よりも大きくすることで、連続相2が非連続相4よりも硬くなり、本発明のゴム組成物は、硬い連続相2の中に、ミクロの柔らかい非連続相4を含む構造を有する。
 また、第2の本発明のゴム組成物は充填剤6を含み、かつ、充填剤6が連続相2に局在している。充填剤6が連続相2に局在することで、連続相2と非連続相4との間に、ゴム成分の剛性に起因する弾性差に加えて、充填剤6に起因する弾性差が生じる。
 ここで、「充填剤6が連続相2に局在」とは、全充填剤のうち連続相2中の充填剤の量の割合が、全ジエン系重合体のうち連続相2中のジエン系重合体の割合よりも多いことを意味する。
By making the glass transition temperature of the rubber component constituting the continuous phase 2 larger than the glass transition temperature of the rubber component constituting the continuous phase 4, the continuous phase 2 becomes harder than the discontinuous phase 4, and the rubber of the present invention The composition has a structure including a micro soft discontinuous phase 4 in a hard continuous phase 2.
Further, the rubber composition of the second aspect of the present invention includes the filler 6 and the filler 6 is localized in the continuous phase 2. Since the filler 6 is localized in the continuous phase 2, an elastic difference due to the filler 6 occurs between the continuous phase 2 and the discontinuous phase 4 in addition to the elastic difference due to the rigidity of the rubber component. .
Here, “the filler 6 is localized in the continuous phase 2” means that the proportion of the amount of the filler in the continuous phase 2 among all the fillers is the diene type in the continuous phase 2 among all the diene polymers. It means more than the proportion of polymer.
 このように、第2の本発明のゴム組成物の連続相2と非連続相4が、弾性差のある海島構造を有することで、歪みが大きくなり、ウェットグリップ性能が向上すると考えられる。
 以下、符号を省略して説明する。
Thus, it is considered that the continuous phase 2 and the discontinuous phase 4 of the rubber composition of the second invention have a sea-island structure with a difference in elasticity, so that distortion increases and wet grip performance is improved.
Hereinafter, description will be made with the reference numerals omitted.
 連続相を非連続相よりも硬くする観点から、連続相を構成するゴム組成物の0℃における弾性率E1と非連続相を構成するゴム組成物の0℃での弾性率E2との比(E1/E2)は、2~10であることが好ましい。E1/E2をかかる範囲として弾性率差をつけることで、第2の本発明のゴム組成物の低発熱性能をより高め、ウェットグリップ性能をより向上することができる。E1/E2は3~10であることが好ましい。  From the viewpoint of making the continuous phase harder than the discontinuous phase, the ratio between the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase ( E1 / E2) is preferably 2 to 10. By giving a difference in elastic modulus with E1 / E2 in such a range, the low heat generation performance of the rubber composition of the second invention can be further enhanced, and the wet grip performance can be further improved. E1 / E2 is preferably 3 to 10.
 第1及び第2の本発明において、各相を構成するゴム組成物の0℃における弾性率は、例えば、ミクロトームによりゴム組成物を切削して試料を得、得られた試料の平滑面を、原子間力顕微鏡(AFM)を用いて、測定範囲2μm×2μmで測定することで測定することができる。
 具体的には、0℃で固定台に固定した試料を、カンチレバーを用いて押し込み、フォースカーブを測定する。測定から得られた曲線から、Hertzの理論に基づき解析を行い、ヤング率として、各相の弾性率Eを測定する。
 原子間力顕微鏡は、例えばASYLUM RESEARCH社製MFP-3Dを用いることができる。
 試料の平滑面のうち、どこが連続相で、どこが非連続相であるかの区別は、各相を構成するゴム組成物を、ミクロトームにより切削して試料を得、得られた試料の平滑面を、原子間力顕微鏡により観察し、原子間力顕微鏡の3値化した画像観察により、全体にわたってドメインが繋がっている相を連続相、そうでない相を非連続相として判断することができる。
 なお、各相の弾性率Eは、連続相については、測定範囲2μm×2μm中で無雑作に選んだ任意の5箇所について測定した値を平均して求める。非連続相については、測定範囲2μm×2μm中で無雑作に選んだ任意の5のドメインについて、1つのドメインあたり1箇所測定し、得られた5つの値を平均して求める。
In the first and second aspects of the present invention, the elastic modulus at 0 ° C. of the rubber composition constituting each phase is obtained by, for example, cutting the rubber composition with a microtome to obtain a sample, and obtaining the smooth surface of the obtained sample, Using an atomic force microscope (AFM), it can be measured by measuring in a measurement range of 2 μm × 2 μm.
Specifically, a sample fixed on a fixed base at 0 ° C. is pushed in using a cantilever, and a force curve is measured. From the curve obtained from the measurement, analysis is performed based on the Hertz theory, and the elastic modulus E of each phase is measured as Young's modulus.
As the atomic force microscope, for example, MFP-3D manufactured by ASYLUM RESEARCH can be used.
Distinguishing between the smooth surface of the sample and where it is the continuous phase and where it is the discontinuous phase, the rubber composition constituting each phase is cut by a microtome to obtain a sample, and the smooth surface of the obtained sample is obtained. By observing with an atomic force microscope and ternary image observation of the atomic force microscope, it is possible to determine a phase in which domains are connected throughout as a continuous phase and a phase other than that as a discontinuous phase.
The elastic modulus E of each phase is obtained by averaging the values measured at any five locations selected for random operation in the measurement range of 2 μm × 2 μm for the continuous phase. For the discontinuous phase, one domain is measured per domain for any five domains selected in a random manner within a measurement range of 2 μm × 2 μm, and the obtained five values are averaged.
 非連続相のドメイン径は、50~500nmであることが好ましい。
 非連続相のドメイン径が50nm以上あることで、歪のかかる島部分の領域が確保され、ウェットグリップ性能が向上し易い。一方、非連続相のドメイン径が500nm以下であることで、ゴム組成物全体の硬さを維持し易く、低発熱性能を維持し易い。
 ウェットグリップ性能と低発熱性能をより向上する観点から、非連続相のドメイン径は、80~400nmであることがより好ましく、100~300nmであることが更に好ましい。
The domain diameter of the discontinuous phase is preferably 50 to 500 nm.
When the domain diameter of the discontinuous phase is 50 nm or more, a region of an island portion where strain is applied is secured, and the wet grip performance is easily improved. On the other hand, when the domain diameter of the discontinuous phase is 500 nm or less, it is easy to maintain the hardness of the entire rubber composition, and it is easy to maintain low heat generation performance.
From the viewpoint of further improving wet grip performance and low heat generation performance, the domain diameter of the discontinuous phase is more preferably 80 to 400 nm, and still more preferably 100 to 300 nm.
 非連続相のドメイン径(領域幅)は、各相を構成するゴム組成物を、ミクロトームにより切削して試料を得、得られた試料の平滑面を、原子間力顕微鏡により観察することにより測定することができる。
 原子間力顕微鏡により得られた画像を3値化後、ドメインが円形の場合は、円の直径をドメイン径として測定し、ドメインがまだら模様などの不定形の場合は、各ドメインの長手方向(一つのドメイン中の端間の直線距離が最も長い方向)と直交する方向の当該ドメインの最大の長さをドメイン径として測定する。
The domain diameter (region width) of the discontinuous phase is measured by cutting the rubber composition constituting each phase with a microtome to obtain a sample, and observing the smooth surface of the obtained sample with an atomic force microscope can do.
After ternarizing the image obtained by the atomic force microscope, if the domain is circular, the diameter of the circle is measured as the domain diameter. If the domain is irregular, such as a mottled pattern, the longitudinal direction of each domain ( The maximum length of the domain in the direction orthogonal to the direction in which the linear distance between the ends in one domain is the longest) is measured as the domain diameter.
 後述するように、本発明のゴム組成物は、充填剤を含んでいることが好ましく、ゴム組成物が充填剤を含んでいる場合は、次のように非連続相の範囲を判断する。
 原子間力顕微鏡により得られた画像において、非連続相と連続相との境界線上に充填剤が存在する場合は、非連続相から充填剤部分を抜き出した範囲を非連続相の範囲と判断する。一方、非連続相の境界線の内側に充填剤が含まれている場合は、充填剤の存在を考慮せずに、非連続相と連続相との境界線の、非連続相内を非連続相の範囲として、ドメイン径を測定する。
 更に、非連続相は、ドメイン径が5μm以上となるドメインを含まないことが好ましい。
As will be described later, the rubber composition of the present invention preferably contains a filler. When the rubber composition contains a filler, the range of the discontinuous phase is determined as follows.
In the image obtained by the atomic force microscope, when the filler exists on the boundary line between the discontinuous phase and the continuous phase, the range in which the filler portion is extracted from the discontinuous phase is determined as the range of the discontinuous phase. . On the other hand, when a filler is contained inside the boundary line of the discontinuous phase, the discontinuous phase is discontinuous in the boundary line between the discontinuous phase and the continuous phase without considering the presence of the filler. The domain diameter is measured as the phase range.
Further, it is preferable that the discontinuous phase does not include a domain having a domain diameter of 5 μm or more.
〔ゴム成分〕
 既述のように、第1の本発明のゴム組成物は、連続相と非連続相の各相を構成するゴム組成物の0℃での弾性率Eの比(E1/E2)を2~10として、連続相と非連続相との弾性率差をつけることで、低発熱性能とウェットグリップ性能のバランスをとることができる。
 ここで、第1の本発明のゴム組成物は、ゴム成分を含む未加硫ゴム組成物を加硫した加硫ゴム組成物であり、連続相を構成するゴム成分のガラス転移温度Tg1と、非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2であることで、加硫後のゴム組成物の連続相と非連続相の弾性率差をつけ易い。
[Rubber component]
As described above, the rubber composition of the first invention has a ratio (E1 / E2) of the elastic modulus E at 0 ° C. of the rubber composition constituting each phase of the continuous phase and the discontinuous phase to 2 to 2. As 10, the difference in elastic modulus between the continuous phase and the discontinuous phase can be balanced to achieve a balance between low heat generation performance and wet grip performance.
Here, the rubber composition of the first present invention is a vulcanized rubber composition obtained by vulcanizing an unvulcanized rubber composition containing a rubber component, and a glass transition temperature Tg1 of the rubber component constituting the continuous phase; When the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase is Tg1> Tg2, it is easy to give a difference in elastic modulus between the continuous phase and the discontinuous phase of the rubber composition after vulcanization.
 第2の本発明のゴム組成物は、充填剤を含み、充填剤が連続相に局在しており、連続相を構成するゴム成分R1のガラス転移温度Tg1が、非連続相を構成するゴム成分R2のガラス転移温度Tg2よりも大きく、それにより連続相と非連続相との弾性差がつき、低発熱性能とウェットグリップ性能のバランスをとることができる。 The rubber composition of the second invention includes a filler, the filler is localized in the continuous phase, and the glass transition temperature Tg1 of the rubber component R1 constituting the continuous phase is a rubber constituting the discontinuous phase. The temperature is higher than the glass transition temperature Tg2 of the component R2, thereby providing an elastic difference between the continuous phase and the discontinuous phase, and a balance between low heat generation performance and wet grip performance can be achieved.
 更に、ゴム組成物の連続相と非連続相の弾性率差をより大きくし、低発熱性能とウェットグリップ性能を向上する観点から、連続相を構成するゴム成分R1のガラス転移温度Tg1と、非連続相を構成するゴム成分R2のガラス転移温度Tg2は、Tg1-Tg2≧20℃を満たすことが好ましい。「Tg1-Tg2」をΔTgと称することがある。
 第1の本発明のゴム組成物において、低発熱性能とウェットグリップ性能を向上する観点から、ΔTgは80℃以下であることが好ましく、25~75℃であることがより好ましく、30~70℃であることが更に好ましい。
 第2の本発明のゴム組成物において、低発熱性能とウェットグリップ性能を向上する観点から、ΔTgは75℃以下であることが好ましく、25~70℃であることがより好ましく、30~67℃であることが更に好ましい。
Furthermore, from the viewpoint of increasing the difference in elastic modulus between the continuous phase and the discontinuous phase of the rubber composition and improving the low heat generation performance and the wet grip performance, the glass transition temperature Tg1 of the rubber component R1 constituting the continuous phase, The glass transition temperature Tg2 of the rubber component R2 constituting the continuous phase preferably satisfies Tg1−Tg2 ≧ 20 ° C. “Tg1−Tg2” may be referred to as ΔTg.
In the rubber composition of the first invention, ΔTg is preferably 80 ° C. or less, more preferably 25 to 75 ° C., and more preferably 30 to 70 ° C. from the viewpoint of improving low heat generation performance and wet grip performance. More preferably.
In the rubber composition of the second invention, ΔTg is preferably 75 ° C. or less, more preferably 25 to 70 ° C., and more preferably 30 to 67 ° C. from the viewpoint of improving low heat generation performance and wet grip performance. More preferably.
 本発明のゴム組成物において、ゴム成分は、ジエン系重合体を含有する。
 ジエン系重合体は、ジエン系モノマーの単独重合体であってもよいし、ジエン系モノマーと他のモノマーとの共重合体であってもよい。
 ジエン系重合体としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)及びこれらを変性したもの等が挙げられる。
 連続相を構成するゴム成分R1と非連続相を構成するゴム成分R2とは、互いにサブミクロンオーダーで非相溶であり、未加硫ゴム組成物を調製する際に、ゴム成分R1とゴム成分R2とを混合すると相分離する。ゴム成分R1とR2は、互いにサブミクロンオーダーで非相溶であればよく、肉眼での観察で相溶していてもよい。サブミクロンオーダーで非相溶であることを観察するためには、例えば、FIB/SEMを用いて、ゴム組成物の4μm×4μmの領域を観察し、染色具合の違いがあれば非相溶と判断する方法が挙げられる。
In the rubber composition of the present invention, the rubber component contains a diene polymer.
The diene polymer may be a homopolymer of a diene monomer or may be a copolymer of a diene monomer and another monomer.
Examples of the diene polymer include natural rubber (NR), isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), and modified ones thereof.
The rubber component R1 constituting the continuous phase and the rubber component R2 constituting the discontinuous phase are incompatible with each other on the order of submicrons, and when the unvulcanized rubber composition is prepared, the rubber component R1 and the rubber component When R2 is mixed, phase separation occurs. The rubber components R1 and R2 may be incompatible with each other on the order of submicrons, and may be compatible with the naked eye. In order to observe the incompatibility on the order of submicron, for example, using FIB / SEM, the region of 4 μm × 4 μm of the rubber composition is observed. The method of judging is mentioned.
 また、互いに相溶しないゴム成分を選択する手法の一例として、ゴム成分の溶解性パラメータ(SP値;Solubility Parameter)の差を用いることが挙げられる。SP値の差が大きいほど、互いに相溶しないゴム成分といえ、通常、未加硫ゴム組成物中の含有量が50体積%を超えるゴム成分が連続相となる。
 SP値差は、ゴム成分R1のSP値(SP1)と、ゴム成分R2のSP値(SP2)との差(|SP1-SP2|)が0.15以上であることが好ましい。
 ゴム成分のSP値は、Fedors法に従って算出することができる。なお、SP値の単位は(cal/cm0.5である。
An example of a method for selecting rubber components that are not compatible with each other is to use a difference in solubility parameter (SP value; Solubility Parameter) of the rubber component. The greater the difference in SP value, the more incompatible rubber components, and the rubber component whose content in the unvulcanized rubber composition generally exceeds 50% by volume is the continuous phase.
Regarding the SP value difference, the difference (| SP1-SP2 |) between the SP value (SP1) of the rubber component R1 and the SP value (SP2) of the rubber component R2 is preferably 0.15 or more.
The SP value of the rubber component can be calculated according to the Fedors method. The unit of SP value is (cal / cm 3 ) 0.5 .
(連続相を構成するゴム成分R1)
 ゴム成分R1としては、未加硫ゴム組成物に含み得るゴム成分として挙げた成分であって、加硫後にE1/E2が2~10の範囲に入る連続相を構成し得るものであれば、特に制限されず、1種であってもよいし2種以上を用いてもよい。例えば、既述のガラス転移温度Tg1、Tg2の関係を考慮して選択することができる。
 ただし、ゴム成分R1中、2種以上のジエン系重合体(変性ジエン系重合体を含む;以下同じ)を用いる場合は互いに相溶し、かつ非連続相を構成するゴム成分R2中のジエン系重合体とは非相溶のジエン系重合体を用いる。ゴム成分R2中のジエン系重合体が2種以上のジエン系重合体であるときは、ゴム成分R1中のジエン系重合体のいずれもが、ゴム成分R2中のジエン系重合体のいずれにも非相溶であるジエン系重合体を用いる。
(Rubber component R1 constituting the continuous phase)
The rubber component R1 is a component listed as a rubber component that can be included in the unvulcanized rubber composition, and can constitute a continuous phase in which E1 / E2 falls within the range of 2 to 10 after vulcanization. It does not restrict | limit, 1 type may be sufficient and 2 or more types may be used. For example, it can be selected in consideration of the relationship between the glass transition temperatures Tg1 and Tg2 described above.
However, when two or more types of diene polymers (including modified diene polymers; the same applies hereinafter) are used in the rubber component R1, the diene systems in the rubber component R2 that are compatible with each other and constitute a discontinuous phase. An incompatible diene polymer is used as the polymer. When the diene polymer in the rubber component R2 is two or more types of diene polymers, any of the diene polymers in the rubber component R1 is any of the diene polymers in the rubber component R2. An incompatible diene polymer is used.
 連続相は、非連続相よりも硬い相であることが求められることから、ゴム成分R1のガラス転移温度Tg1は-70~-10℃であることが好ましく、-65~-15℃であることがより好ましく、-64~-20℃であることが更に好ましい。
 なお、ゴム成分R1、後述するゴム成分R2及び液状ポリマーのガラス転移温度(Tg)は、示差走査熱量測定(DSC)により測定することができる。例えば、TAインスツルメント社製の示差走査熱量計を用いて、5~10℃/minの掃引速度の条件で測定することができる。
Since the continuous phase is required to be a harder phase than the discontinuous phase, the glass transition temperature Tg1 of the rubber component R1 is preferably −70 to −10 ° C., and −65 to −15 ° C. Is more preferable, and is more preferably −64 to −20 ° C.
The glass transition temperature (Tg) of the rubber component R1, the rubber component R2 described later, and the liquid polymer can be measured by differential scanning calorimetry (DSC). For example, it can be measured using a differential scanning calorimeter manufactured by TA Instruments under the condition of a sweep rate of 5 to 10 ° C./min.
 既述のように、第1の本発明のゴム組成物は、充填剤を含むことが好ましく、連続相をより硬くし、非連続相との弾性率差を大きくする観点から、充填剤が連続相に局在していることが好ましい。
 第2の本発明のゴム組成物は、充填剤を含んでおり、充填剤が連続相に局在していることから、連続相は硬く、非連続相との弾性差が大きい。
 本発明において、充填剤を連続相に局在させる手法としては、ジエン系重合体と充填剤との極性を利用したり、ジエン系重合体として、充填剤に対して相互作用性を有する変性官能基を有するジエン系重合体(変性ジエン系重合体という)を用いることが挙げられる。中でも、連続相に存在する充填剤の割合を高める観点から、ジエン系重合体として変性ジエン系重合体を用いることが好ましい。
As described above, the rubber composition of the first invention preferably contains a filler, and the filler is continuous from the viewpoint of making the continuous phase harder and increasing the difference in elastic modulus from the discontinuous phase. It is preferable to be localized in the phase.
The rubber composition of the second aspect of the present invention contains a filler, and since the filler is localized in the continuous phase, the continuous phase is hard and has a large elastic difference from the discontinuous phase.
In the present invention, as a technique for localizing the filler in the continuous phase, the polarity of the diene polymer and the filler can be used, or the diene polymer can be used as a modified functional group having an interaction property with the filler. And a diene polymer having a group (referred to as a modified diene polymer). Among these, from the viewpoint of increasing the proportion of the filler present in the continuous phase, it is preferable to use a modified diene polymer as the diene polymer.
 変性ジエン系重合体における変性官能基としては、特に制限はなく、目的に応じて適宜選択することができる。変性官能基としては、例えば、後述する充填剤に対して相互作用性を有する変性官能基などが好適に挙げられる。充填剤に対する相互作用性を高めて、充填剤を連続相に局在し易くする。
 ここで、「充填剤に対して相互作用性を有する変性官能基」とは、変性官能基と充填剤(例えば、シリカ)表面との間で、例えば、共有結合;分子間力(イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力などの分子間力)を形成することが可能な官能基を意味する。充填剤(例えば、シリカ)との相互作用性の高い変性官能基としては、特に制限はなく、例えば、含窒素官能基、含ケイ素官能基、含酸素官能基などが好適に挙げられる。
There is no restriction | limiting in particular as a modified functional group in a modified | denatured diene type polymer, According to the objective, it can select suitably. Suitable examples of the modified functional group include a modified functional group having an interaction property with a filler described later. Increases the interaction with the filler, making it easier to localize the filler in the continuous phase.
Here, the “modified functional group having an interaction property with the filler” means, for example, a covalent bond between the modified functional group and the surface of the filler (for example, silica); intermolecular force (ion-dipolar) This means a functional group capable of forming intermolecular forces such as dipole interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals forces. There is no restriction | limiting in particular as a modified functional group with high interaction property with a filler (for example, silica), For example, a nitrogen-containing functional group, a silicon-containing functional group, an oxygen-containing functional group etc. are mentioned suitably.
 変性ジエン系重合体を得るための変性剤としては、上述した変性官能基を有する公知の変性剤から適宜選択して用いることができる。 The modifying agent for obtaining the modified diene polymer can be appropriately selected from the above-mentioned known modifying agents having a modified functional group.
 変性剤は、ケイ素原子、窒素原子および酸素原子から選ばれる少なくとも1つの原子を有する変性剤であることが好ましい。 The modifying agent is preferably a modifying agent having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
 充填剤(例えば、シリカ)に対して高い相互作用性を有するため、変性剤は、アルコキシシラン化合物、ヒドロカルビルオキシシラン化合物およびこれらの組み合わせからなる群より選択される1種以上であることが好ましい。 It is preferable that the modifying agent is at least one selected from the group consisting of an alkoxysilane compound, a hydrocarbyloxysilane compound, and a combination thereof because of high interaction with a filler (for example, silica).
 上記アルコキシシラン化合物は、特に限定されないが、下記一般式(I)で表されるアルコキシシラン化合物であることがより好ましい。
 R -Si-(OR4-a ・・・ (I)
 一般式(I)中、RおよびRは、それぞれ独立に炭素数1~20の一価の脂肪族炭化水素基または炭素数6~18の一価の芳香族炭化水素基を示し、aは0~2の整数であり、ORが複数ある場合、各ORは互いに同一でも異なっていてもよく、また分子中には活性プロトンは含まれない。
The alkoxysilane compound is not particularly limited, but is more preferably an alkoxysilane compound represented by the following general formula (I).
R 1 a -Si- (OR 2 ) 4-a (I)
In the general formula (I), R 1 and R 2 each independently represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, Is an integer of 0 to 2, and when there are a plurality of OR 2 , each OR 2 may be the same as or different from each other, and no active proton is contained in the molecule.
 一般式(I)で表されるアルコキシシラン化合物の具体例としては、N-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリプロポキシシラン、プロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトリジメトキシシラン、メチルフェニルジメトキシシラン、ジメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジビニルジエトキシシランなどが挙げられる。これらの中でも、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシランが好適である。アルコキシシラン化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Specific examples of the alkoxysilane compound represented by the general formula (I) include N- (1,3-dimethylbutylidene) -3-triethoxysilyl-1-propanamine, tetramethoxysilane, tetraethoxysilane, tetra -N-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxy Silane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltripropoxy Silane, propyltriisopropoxysilane, butyltrimethoxysilane, butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyltrimethoxysilane, methylphenyldimethoxysilane, dimethyldiethoxysilane, vinyltrimethoxysilane, vinyltri Examples thereof include ethoxysilane and divinyldiethoxysilane. Among these, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, tetraethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane are preferable. An alkoxysilane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記ヒドロカルビルオキシシラン化合物は、下記一般式(II)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compound is preferably a hydrocarbyloxysilane compound represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000001

 一般式(II)中、n1+n2+n3+n4=4(但し、n2は1~4の整数であり、n1、n3およびn4は0~3の整数である)であり、Aは、飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、ケチミン残基、ニトリル基、(チオ)イソシアナート基、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル基、炭酸ジヒドロカルビルエステル基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸エステル基、(チオ)カルボン酸エステルの金属塩、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解性基を有する第一もしくは第二アミノ基またはメルカプト基の中から選択される少なくとも1種の官能基であり、n4が2以上の場合には同一でも異なっていてもよく、Aは、Siと結合して環状構造を形成する二価の基であってもよく、R21は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、n1が2以上の場合には同一でも異なっていてもよく、R23は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、n3が2以上の場合には同一でも異なっていてもよく、R22は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、いずれも窒素原子および/またはケイ素原子を含有していてもよく、n2が2以上の場合には、互いに同一もしくは異なっていてもよく、あるいは、一緒になって環を形成しており、R24は、炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基であり、n4が2以上の場合には同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000001

In the general formula (II), n1 + n2 + n3 + n4 = 4 (where n2 is an integer of 1 to 4, n1, n3 and n4 are integers of 0 to 3), and A 1 is a saturated cyclic tertiary amine compound Residue, unsaturated cyclic tertiary amine compound residue, ketimine residue, nitrile group, (thio) isocyanate group, (thio) epoxy group, isocyanuric acid trihydrocarbyl ester group, carbonic acid dihydrocarbyl ester group, nitrile group, pyridine Group, (thio) ketone group, (thio) aldehyde group, amide group, (thio) carboxylic acid ester group, metal salt of (thio) carboxylic acid ester, carboxylic acid anhydride residue, carboxylic acid halogen compound residue, and It is at least one functional group selected from a primary or secondary amino group having a hydrolyzable group or a mercapto group, and n4 is 2 or more. The case may be the same or different, A 1 may be a divalent group bonded to Si to form a cyclic structure, R 21 is an aliphatic monovalent having 1 to 20 carbon atoms Or an alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when n1 is 2 or more, they may be the same or different, and R 23 has 1 to 20 carbon atoms. A monovalent aliphatic or alicyclic hydrocarbon group, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a halogen atom, and when n3 is 2 or more, they may be the same or different, R 22 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, each of which contains a nitrogen atom and / or a silicon atom. May be contained, and when n2 is 2 or more, they are the same or different from each other Even if well, or forms a ring together, R 24 is a divalent 1-20 carbon atoms aliphatic or alicyclic hydrocarbon group or a divalent C 6-18 When it is an aromatic hydrocarbon group and n4 is 2 or more, they may be the same or different.
 加水分解性基を有する第一もしくは第二アミノ基または加水分解性基を有するメルカプト基における加水分解性基として、トリメチルシリル基またはtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。 The hydrolyzable group in the primary or secondary amino group having a hydrolyzable group or the mercapto group having a hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, particularly preferably a trimethylsilyl group.
 一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(III)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(III)中、p1+p2+p3=2(但し、p2は1~2の整数であり、p1およびp3は0~1の整数である)であり、Aは、NRa(Raは、一価の炭化水素基、加水分解性基または含窒素有機基である)、あるいは、硫黄であり、R25は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、R27は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基またはハロゲン原子であり、R26は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基または含窒素有機基であり、いずれも窒素原子および/またはケイ素原子を含有していてもよく、p2が2の場合には、互いに同一でも異なっていてもよく、あるいは、一緒になって環を形成しており、R28は、炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基である。加水分解性基として、トリメチルシリル基またはtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。 In the general formula (III), p1 + p2 + p3 = 2 (wherein p2 is an integer of 1 to 2, p1 and p3 are integers of 0 to 1), A 2 is NRa (Ra is a monovalent A hydrocarbon group, a hydrolyzable group or a nitrogen-containing organic group), or sulfur, and R 25 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or 6 to 6 carbon atoms. 18 is a monovalent aromatic hydrocarbon group, and R 27 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. Or a halogen atom, and R 26 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a nitrogen-containing organic group. Any of them may contain a nitrogen atom and / or a silicon atom, and p2 is 2 May be the same or different from each other, or together form a ring, and R 28 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a carbon number 6 to 18 divalent aromatic hydrocarbon groups. As the hydrolyzable group, a trimethylsilyl group or a tert-butyldimethylsilyl group is preferable, and a trimethylsilyl group is particularly preferable.
 一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(IV)または(V)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (IV) or (V).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(IV)中、q1+q2=3(但し、q1は0~2の整数であり、q2は1~3の整数である)であり、R31は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基であり、R32およびR33はそれぞれ独立して加水分解性基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、R34は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、q1が2の場合には同一でも異なっていてもよく、R35は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、q2が2以上の場合には同一でも異なっていてもよい。 In the general formula (IV), q1 + q2 = 3 (where q1 is an integer of 0 to 2, q2 is an integer of 1 to 3), and R 31 is a divalent aliphatic having 1 to 20 carbon atoms. Or an alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, wherein R 32 and R 33 are each independently a hydrolyzable group, a monovalent fatty acid having 1 to 20 carbon atoms. An aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and R 34 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a carbon number A monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, which may be the same or different when q1 is 2, and R 35 is a monovalent aliphatic or alicyclic hydrocarbon having 1 to 20 carbon atoms Group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when q2 is 2 or more, May be different.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(V)中、r1+r2=3(但し、r1は1~3の整数であり、r2は0~2の整数である)であり、R36は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基であり、R37はジメチルアミノメチル基、ジメチルアミノエチル基、ジエチルアミノメチル基、ジエチルアミノエチル基、メチルシリル(メチル)アミノメチル基、メチルシリル(メチル)アミノエチル基、メチルシリル(エチル)アミノメチル基、メチルシリル(エチル)アミノエチル基、ジメチルシリルアミノメチル基、ジメチルシリルアミノエチル基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、r1が2以上の場合には同一でも異なっていてもよく、R38は炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、r2が2の場合には同一でも異なっていてもよい。 In general formula (V), r1 + r2 = 3 (wherein r1 is an integer of 1 to 3 and r2 is an integer of 0 to 2), and R 36 is a divalent aliphatic having 1 to 20 carbon atoms. Or an alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and R 37 is a dimethylaminomethyl group, dimethylaminoethyl group, diethylaminomethyl group, diethylaminoethyl group, methylsilyl (methyl) Aminomethyl group, methylsilyl (methyl) aminoethyl group, methylsilyl (ethyl) aminomethyl group, methylsilyl (ethyl) aminoethyl group, dimethylsilylaminomethyl group, dimethylsilylaminoethyl group, monovalent fat having 1 to 20 carbon atoms An aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when r1 is 2 or more, they may be the same or different. Even if well, R 38 is a hydrocarbyloxy group having 1 to 20 carbon atoms, monovalent 1-20 carbon atoms aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon having 6 to 18 carbon atoms And when r2 is 2, they may be the same or different.
 一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(VI)または(VII)で表される2つ以上の窒素原子を有するヒドロカルビルオキシシラン化合物であることが好ましい。これにより充填剤が連続相に局在し易くなり、低発熱性能とウェットグリップ性能をより向上することができる。 The hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound having two or more nitrogen atoms represented by the following general formula (VI) or (VII). As a result, the filler is easily localized in the continuous phase, and the low heat generation performance and the wet grip performance can be further improved.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(VI)中、TMSはトリメチルシリル基であり、R40はトリメチルシリル基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、R41は炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、R42は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基である。 In the general formula (VI), TMS is a trimethylsilyl group, R 40 is a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic group having 6 to 18 carbon atoms. R 41 is a hydrocarbyloxy group having 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic carbon atom having 6 to 18 carbon atoms. R 42 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(VII)中、TMSはトリメチルシリル基であり、R43およびR44はそれぞれ独立して炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基であり、R45は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であり、各R45は、同一でも異なっていてもよい。 In general formula (VII), TMS is a trimethylsilyl group, and R 43 and R 44 are each independently a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aliphatic group having 6 to 18 carbon atoms. R 45 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, R 45 may be the same or different.
 一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(VIII)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (VIII).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(VIII)中、r1+r2=3(但し、r1は0~2の整数であり、r2は1~3の整数である)であり、TMSはトリメチルシリル基であり、R46は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基であり、R47およびR48はそれぞれ独立して炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基である。複数のR47またはR48は、同一でも異なっていてもよい。 In general formula (VIII), r1 + r2 = 3 (wherein r1 is an integer of 0 to 2 and r2 is an integer of 1 to 3), TMS is a trimethylsilyl group, and R 46 has 1 to 3 carbon atoms. 20 a divalent aliphatic or alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, wherein R 47 and R 48 are each independently a monovalent group having 1 to 20 carbon atoms. An aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. A plurality of R 47 or R 48 may be the same or different.
 一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(IX)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound represented by the following general formula (IX).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(IX)中、Yはハロゲン原子であり、R49は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基であり、R50およびR51はそれぞれ独立して加水分解性基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基であるか、あるいは、R50およびR51は結合して二価の有機基を形成しており、R52およびR53はそれぞれ独立してハロゲン原子、ヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基である。R50およびR51としては、加水分解性基であることが好ましく、加水分解性基として、トリメチルシリル基またはtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。 In general formula (IX), Y is a halogen atom, and R 49 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms. R 50 and R 51 are each independently a hydrolyzable group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. R 50 and R 51 are bonded to form a divalent organic group, and R 52 and R 53 are each independently a halogen atom, a hydrocarbyloxy group, or a group having 1 to 20 carbon atoms. A monovalent aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms; R 50 and R 51 are preferably hydrolyzable groups, and the hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, and particularly preferably a trimethylsilyl group.
 一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(X)~(XIII)で表される構造を有するヒドロカルビルオキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compound represented by the general formula (II) is preferably a hydrocarbyloxysilane compound having a structure represented by the following general formulas (X) to (XIII).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(X)~(XIII)中、記号U、Vはそれぞれ0~2かつU+V=2を満たす整数である。一般式(X)~(XIII)中のR54~R56、R60~R66、R68~R70、R72~R76、R79、R80、R82、R83、及びR85~R91は同一でも異なっていても良く、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の一価の芳香族炭化水素基である。一般式(X)~(XIII)中のR57~R59、R67、R71、R77、R78、R81、R84、及びR92は同一でも異なっていても良く、炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基または炭素数6~18の二価の芳香族炭化水素基である。一般式(XIII)中のαおよびβは0~5の整数である。 In the general formulas (X) to (XIII), the symbols U and V are integers satisfying 0 to 2 and U + V = 2, respectively. R 54 to R 56 , R 60 to R 66 , R 68 to R 70 , R 72 to R 76 , R 79 , R 80 , R 82 , R 83 , and R 85 in the general formulas (X) to (XIII) R 91 may be the same or different and each represents a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. In the general formulas (X) to (XIII), R 57 to R 59 , R 67 , R 71 , R 77 , R 78 , R 81 , R 84 , and R 92 may be the same or different and have 1 carbon atom. A divalent aliphatic or alicyclic hydrocarbon group of ˜20 or a divalent aromatic hydrocarbon group of 6 to 18 carbon atoms. In the general formula (XIII), α and β are integers of 0 to 5.
 一般式(X)~(XII)の化合物の中でも、N1,N1,N7-テトラメチル-4-((トリメトキシシリル)メチル)-1,7へプタン、2-((ヘキシル-ジメトキシシリル)メチル)-N1,N1,N3,N3-2-ペンタメチルプロパン-1,3-ジアミン、N1-(3-(ジメチルアミノ)プロピル-N3,N3-ジメチル-N1-(3-(トリメトキシシリル)プロピル)プロパン-1,3-ジアミン、4-(3-(ジメチルアミノ)プロピル)-N1,N1,N7,N7-テトラメチル-4-((トリメトキシシリル)メチル)へプタン-1,7-ジアミンが好ましい。 Among the compounds of the general formulas (X) to (XII), N1, N1, N7-tetramethyl-4-((trimethoxysilyl) methyl) -1,7heptane, 2-((hexyl-dimethoxysilyl) methyl ) -N1, N1, N3, N3-2-pentamethylpropane-1,3-diamine, N1- (3- (dimethylamino) propyl-N3, N3-dimethyl-N1- (3- (trimethoxysilyl) propyl ) Propane-1,3-diamine, 4- (3- (dimethylamino) propyl) -N1, N1, N7, N7-tetramethyl-4-((trimethoxysilyl) methyl) heptane-1,7-diamine Is preferred.
 一般式(XIII)の化合物の中でも、N,N-ジメチル-2-(3-(ジメトキシメチルシリル)プロポキシ)エタンアミン、N,N-ビス(トリメチルシリル)-2-(3-(トリメトキシシリル)プロポキシ)エタンアミン、N,N-ジメチル-2-(3-(トリメトキシシリル)プロポキシ)エタンアミン、N,N-ジメチル-3-(3-(トリメトキシシリル)プロポキシ)プロパン-1-アミンが好ましい。 Among the compounds of the general formula (XIII), N, N-dimethyl-2- (3- (dimethoxymethylsilyl) propoxy) ethanamine, N, N-bis (trimethylsilyl) -2- (3- (trimethoxysilyl) propoxy Ethanamine, N, N-dimethyl-2- (3- (trimethoxysilyl) propoxy) ethanamine, and N, N-dimethyl-3- (3- (trimethoxysilyl) propoxy) propan-1-amine are preferred.
 上記一般式(II)~(XIII)で表されるヒドロカルビルオキシシラン化合物は、ゴム成分R1の変性剤として用いることが好ましいが、ゴム成分R2及び任意のその他のゴム成分又はポリマー成分の変性剤として用いてもよい。 The hydrocarbyloxysilane compounds represented by the general formulas (II) to (XIII) are preferably used as a modifier for the rubber component R1, but as a modifier for the rubber component R2 and any other rubber component or polymer component. It may be used.
 一般式(II)~(XIII)で表されるヒドロカルビルオキシシラン化合物は、アルコキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compounds represented by the general formulas (II) to (XIII) are preferably alkoxysilane compounds.
 変性ジエン系重合体をアニオン重合によって得る場合に好適な変性剤としては、例えば、3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン、3,4-ビス(トリメチルシリルオキシ)ベンズアルデヒド、3,4-ビス(tert-ブチルジメチルシリルオキシ)ベンズアルデヒド、2-シアノピリジン、1,3-ジメチル-2-イミダゾリジノンおよび1-メチル-2-ピロリドンから選ばれる少なくとも1種の化合物が挙げられる。 Suitable modifiers for obtaining the modified diene polymer by anionic polymerization include, for example, 3,4-bis (trimethylsilyloxy) -1-vinylbenzene, 3,4-bis (trimethylsilyloxy) benzaldehyde, 3,4 And at least one compound selected from -bis (tert-butyldimethylsilyloxy) benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone.
 上記変性剤は、アニオン重合における重合開始剤として用いられるリチウムアミド化合物のアミド部分であることが好ましい。このようなリチウムアミド化合物としては、例えば、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミドおよびこれらの組み合わせが挙げられる。例えば、リチウムヘキサメチレンイミドのアミド部分となる変性剤はヘキサメチレンイミンであり、リチウムピロリジドのアミド部分となる変性剤はピロリジンであり、リチウムピペリジドのアミド部分となる変性剤はピペリジンである。 The modifier is preferably an amide portion of a lithium amide compound used as a polymerization initiator in anionic polymerization. Examples of such lithium amide compounds include lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, and lithium dipropyl. Amide, lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiverazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide, lithium methyl Phenethylamide and combinations thereof are mentioned. For example, the modifying agent that becomes the amide portion of lithium hexamethyleneimide is hexamethyleneimine, the modifying agent that becomes the amide portion of lithium pyrrolidide is pyrrolidine, and the modifying agent that becomes the amide portion of lithium piperidide is piperidine. .
 変性ジエン系重合体を配位重合によって得る場合に好適な変性剤としては、例えば、2-シアノピリジンおよび3,4-ジトリメチルシリルオキシベンズアルデヒドから選ばれる少なくとも1種の化合物が挙げられる。 Suitable modifiers for obtaining a modified diene polymer by coordination polymerization include, for example, at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde.
 変性ジエン系重合体を乳化重合によって得る場合に好適な変性剤としては、例えば、3,4-ジトリメチルシリルオキシベンズアルデヒドおよび4-ヘキサメチレンイミノアルキルスチレンから選ばれる少なくとも1種の化合物が挙げられる。乳化重合において好ましく用いられるこれらの変性剤は、窒素原子および/またはケイ素原子を含むモノマーとして、乳化重合時に共重合されることが好ましい。 Suitable modifiers for obtaining a modified diene polymer by emulsion polymerization include, for example, at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene. These modifiers preferably used in emulsion polymerization are preferably copolymerized at the time of emulsion polymerization as monomers containing nitrogen atoms and / or silicon atoms.
 変性ジエン系重合体における変性率としては、特に制限はなく、目的に応じて適宜選択することができる。変性率は、例えば、30%以上が好ましく、35%以上がより好ましく、70%以上が特に好ましい。これにより、充填剤(特に、シリカ)が連続相により選択的に存在するようになり、低発熱性能とウェットグリップ性能を向上することができる。 There is no restriction | limiting in particular as a modification rate in a modified diene polymer, According to the objective, it can select suitably. For example, the modification rate is preferably 30% or more, more preferably 35% or more, and particularly preferably 70% or more. Thereby, a filler (especially silica) comes to exist selectively by a continuous phase, and can improve low heat generation performance and wet grip performance.
 ゴム成分R1としての変性ジエン系重合体の一例を説明する。
 まず、スチレンと1,3-ブタジエンとの共重合体(ミクロ構造:スチレン10質量%/1,3-ブタジエン由来のビニル結合量40質量%、ベース分子量(ポリスチレン換算):180,000)であるポリマーを作製し、末端をアニオンとした状態で、N,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミンを用いて変性して、変性ジエン系重合体(変性率:70%、重量平均分子量(Mw):200,000)を得る。
An example of the modified diene polymer as the rubber component R1 will be described.
First, a copolymer of styrene and 1,3-butadiene (microstructure: 10% by mass of styrene / 40% by mass of vinyl bonds derived from 1,3-butadiene, base molecular weight (polystyrene conversion): 180,000). A polymer was prepared, and modified with N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine in a state where the terminal was an anion, and a modified diene polymer (modification rate: 70). %, Weight average molecular weight (Mw): 200,000).
(非連続相を構成するゴム成分R2)
 ゴム成分R2としては、未加硫ゴム組成物に含み得るゴム成分として挙げた成分であって、加硫後にE1/E2が2~10の範囲に入る非連続相を構成し得るものであれば、特に制限されず、1種であってもよいし2種以上を用いてもよい。例えば、既述のガラス転移温度Tg1、Tg2の関係を考慮して選択することができる。
 ただし、ゴム成分R2中、2種以上のジエン系重合体(変性ジエン系重合体を含む;以下同じ)を用いる場合は互いに相溶し、かつ連続相を構成するゴム成分R1中のジエン系重合体とは非相溶のジエン系重合体を用いる。ゴム成分R1中のジエン系重合体が2種以上のジエン系重合体であるときは、ゴム成分R2中のジエン系重合体のいずれもが、ゴム成分R1中のジエン系重合体のいずれにも非相溶であるジエン系重合体を用いる。
 非連続相は、連続相よりも柔らかい相であることが求められることから、ゴム成分R2のガラス転移温度Tg2は-110~-60℃であることが好ましく、-100~-65℃であることがより好ましく、-100~-67℃であることが更に好ましい。
(Rubber component R2 constituting the discontinuous phase)
The rubber component R2 is a component listed as a rubber component that can be included in the unvulcanized rubber composition, and can be a discontinuous phase in which E1 / E2 falls within the range of 2 to 10 after vulcanization. There is no particular limitation, and one type may be used or two or more types may be used. For example, it can be selected in consideration of the relationship between the glass transition temperatures Tg1 and Tg2 described above.
However, in the case where two or more kinds of diene polymers (including modified diene polymers; the same applies hereinafter) are used in the rubber component R2, the diene weights in the rubber component R1 that are compatible with each other and constitute a continuous phase. As the coalescence, an incompatible diene polymer is used. When the diene polymer in the rubber component R1 is two or more kinds of diene polymers, any of the diene polymers in the rubber component R2 is any of the diene polymers in the rubber component R1. An incompatible diene polymer is used.
Since the discontinuous phase is required to be a softer phase than the continuous phase, the glass transition temperature Tg2 of the rubber component R2 is preferably −110 to −60 ° C., and is −100 to −65 ° C. Is more preferable, and it is more preferably −100 to −67 ° C.
 本発明のゴム組成物では、ゴム製組成物の弾性率比(E1/E2)を2~10とし易く、ウェットグリップ性能と低発熱性能をより向上する観点から、ゴム成分R1が、変性ジエン系重合体を含み、ゴム成分R2が、天然ゴム、イソプレンゴムまたはブタジエンのジエン系重合体を含むことが好ましい。 In the rubber composition of the present invention, the elastic component ratio (E1 / E2) of the rubber composition is easily set to 2 to 10, and from the viewpoint of further improving wet grip performance and low heat generation performance, the rubber component R1 is a modified diene type. It is preferable that the rubber component R2 contains a diene polymer of natural rubber, isoprene rubber or butadiene.
〔樹脂〕
 本発明におけるゴム成分は、樹脂を含んでいてもよい。
 樹脂は、連続相と非連続相のいずれか一方に含まれていてもよいし、両方に含まれていてもよいが、連続相をより硬く、非連続相をより柔らかくして、ゴム組成物の低発熱性能とウェットグリップ性能をより向上する観点から、樹脂は、連続相に局在していることが好ましい。
 「樹脂が連続相に局在している」とは、本発明のゴム組成物に含まれる樹脂全質量中、連続相に含まれる樹脂の量が、非連続相に含まれる樹脂の量よりも多いことを意味する。樹脂全質量中、連続相に含まれる樹脂の量(樹脂の連続相への局在度合)は50質量%を超え100質量%以下であることが好ましく、60質量%以上がより好ましい。
 樹脂の連続相への局在度合(分配率)は、例えば、樹脂添加後のゴム成分のガラス転移温度(Tg)を用い、FOXの式から各相に含まれる樹脂の重量を算出することにより求めることができる。
 また、本発明のゴム組成物中の樹脂の含有量は、未加硫ゴム組成物中の全ジエン系重合体100質量部に対して、0~30質量部とすることができ、25質量部以下であることが好ましい。
〔resin〕
The rubber component in the present invention may contain a resin.
The resin may be contained in either one of the continuous phase or the discontinuous phase, or may be contained in both, but the rubber composition is made by making the continuous phase harder and the discontinuous phase softer. From the viewpoint of further improving the low heat generation performance and wet grip performance, the resin is preferably localized in the continuous phase.
“The resin is localized in the continuous phase” means that, in the total mass of the resin contained in the rubber composition of the present invention, the amount of the resin contained in the continuous phase is more than the amount of the resin contained in the discontinuous phase. Means many. In the total mass of the resin, the amount of resin contained in the continuous phase (the degree of localization of the resin in the continuous phase) is preferably more than 50% by mass and 100% by mass or less, and more preferably 60% by mass or more.
The degree of localization (partition rate) of the resin in the continuous phase is obtained, for example, by calculating the weight of the resin contained in each phase from the FOX equation using the glass transition temperature (Tg) of the rubber component after addition of the resin. Can be sought.
The content of the resin in the rubber composition of the present invention can be 0 to 30 parts by mass with respect to 100 parts by mass of the total diene polymer in the unvulcanized rubber composition, and 25 parts by mass. The following is preferable.
 樹脂としては、例えば、テルペンフェノール樹脂、ロジン変性石油樹脂、ジシクロペンタジエン樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂等を挙げることができる。
 樹脂は、ゴム組成物の連続相の弾性率をより高める観点から、ガラス転移温度(Tg)が50℃以上であり、数平均分子量(Mn)が5,000以下である高分子化合物であることが好ましい。使用する樹脂は1種類であっても2種類以上であってもよい。
Examples of the resin include terpene phenol resin, rosin-modified petroleum resin, dicyclopentadiene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, and the like.
The resin is a polymer compound having a glass transition temperature (Tg) of 50 ° C. or higher and a number average molecular weight (Mn) of 5,000 or lower from the viewpoint of further increasing the elastic modulus of the continuous phase of the rubber composition. Is preferred. The resin used may be one type or two or more types.
 ロジン変性石油樹脂としては、大社松精油社のハイロジンS;
 芳香族炭化水素樹脂C9樹脂としては、新日本石油化学社のネオポリマーL90、ネオポリマー120、ネオポリマーE130、ネオポリマー140、ネオポリマー170S、日石ネオレジンD-145;
 脂肪族炭化水素樹脂C5樹脂としては、トーネックス社のESCOREZ1102、三井化学社のハイレッツT500X;
 脂環族系炭化水素樹脂としては、日本ゼオン社のクイントン1500、クイントン1700、クイントン1525L;
 テルペンフェノール樹脂としては、ヤスハラケミカル社のYSポリスターT80、YS90L、YSポリスターT115、YSポリスターU115、マイティエースG125等を挙げることができる。
 また、C5C9樹脂として、東燃化学社のT-REZのRシリーズ、例えばRD104等を用いることもできる。
As rosin-modified petroleum resin, Hyosin S from Taisha Matsuse Oil Co., Ltd .;
Examples of the aromatic hydrocarbon resin C9 resin include Neopolymer L90, Neopolymer 120, Neopolymer E130, Neopolymer 140, Neopolymer 170S, Nippon Oil Neoresin D-145 manufactured by Nippon Petrochemical Co., Ltd .;
Examples of the aliphatic hydrocarbon resin C5 resin include ESCOREZ1102 from Tonex, and Hilets T500X from Mitsui Chemicals;
Examples of the alicyclic hydrocarbon resin include quinton 1500, quinton 1700, quinton 1525L of ZEON Corporation;
Examples of the terpene phenol resin include YS Polystar T80, YS90L, YS Polystar T115, YS Polystar U115, Mighty Ace G125, etc., manufactured by Yashara Chemical Co., Ltd.
Further, as the C5C9 resin, T-REZ R series manufactured by Tonen Chemical Co., Ltd., for example, RD104 can be used.
 樹脂を連続相に局在させる方法は特に制限されないが、例えば、未加硫ゴム組成物を調製するときに、連続相を構成するゴム成分R1のSP値に近いSP値を有する樹脂を用いればよい。具体的には、ゴム成分R1のSP値(SP1)と樹脂のSP値(SP3)との差(|SP1-SP3|)が0.15未満となる樹脂を選択すればよい。なお、SP値の単位は(cal/cm0.5である。 The method for localizing the resin in the continuous phase is not particularly limited. For example, when preparing an unvulcanized rubber composition, if a resin having an SP value close to the SP value of the rubber component R1 constituting the continuous phase is used. Good. Specifically, a resin in which the difference (| SP1-SP3 |) between the SP value (SP1) of the rubber component R1 and the SP value (SP3) of the resin is less than 0.15 may be selected. The unit of SP value is (cal / cm 3 ) 0.5 .
〔液状ポリマー〕
 本発明におけるゴム成分は、液状ポリマーを含むことが好ましい。
 液状ポリマーは、連続相と非連続相のいずれか一方に含まれていてもよいし、両方に含まれていてもよいが、連続相をより硬く、非連続相をより柔らかくして、ゴム組成物の低発熱性能とウェットグリップ性能をより向上する観点から、液状ポリマーは、非連続相に局在していることが好ましい。
 「液状ポリマーが非連続相に局在している」とは、本発明のゴム組成物に含まれる液状ポリマー全質量中、非連続相に含まれる液状ポリマーの量が、連続相に含まれる液状ポリマーの量よりも多いことを意味する。液状ポリマー全質量中、非連続相に含まれる液状ポリマーの量(液状ポリマーの非連続相への局在度合)は50質量%を超え100質量%以下であることが好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。
[Liquid polymer]
The rubber component in the present invention preferably contains a liquid polymer.
The liquid polymer may be contained in either one of the continuous phase or the discontinuous phase, or may be contained in both, but the rubber composition is made by making the continuous phase harder and the discontinuous phase softer. From the viewpoint of further improving the low heat generation performance and wet grip performance of the product, the liquid polymer is preferably localized in the discontinuous phase.
“The liquid polymer is localized in the discontinuous phase” means that the amount of the liquid polymer contained in the discontinuous phase in the total mass of the liquid polymer contained in the rubber composition of the present invention is the liquid contained in the continuous phase. Means greater than the amount of polymer. In the total mass of the liquid polymer, the amount of the liquid polymer contained in the discontinuous phase (the degree of localization of the liquid polymer in the discontinuous phase) is preferably more than 50% by mass and 100% by mass or less, and more than 60% by mass. More preferred is 70% by mass or more.
 液状ポリマーの非連続相への局在度合(分配率)は、例えば、ゴム成分について、DSCから測定したガラス転移温度(Tg)のシフト温度量から求めることができる。液状ポリマー添加後のゴム成分のガラス転移温度(Tg)を用い、FOXの式から各相に含まれる液状ポリマーの重量を算出する。 The degree of localization (partition rate) of the liquid polymer in the discontinuous phase can be determined, for example, from the shift temperature amount of the glass transition temperature (Tg) measured from DSC for the rubber component. Using the glass transition temperature (Tg) of the rubber component after addition of the liquid polymer, the weight of the liquid polymer contained in each phase is calculated from the FOX equation.
 本発明のゴム組成物中の液状ポリマーの含有量は、未加硫ゴム組成物のゴム成分中の全ジエン系重合体100質量部に対して、0質量部を超え50質量部以下であることが好ましく、5~45質量部であることがより好ましい。
 また、ゴム組成物の過度の軟化を抑制する観点から、本発明のゴム組成物は、プロセスオイル等の軟化剤を含む場合は、ゴム組成物は液状ポリマーを含まないことが好ましい。
The content of the liquid polymer in the rubber composition of the present invention is more than 0 parts by weight and 50 parts by weight or less with respect to 100 parts by weight of the total diene polymer in the rubber component of the unvulcanized rubber composition. It is preferably 5 to 45 parts by mass.
In addition, from the viewpoint of suppressing excessive softening of the rubber composition, when the rubber composition of the present invention contains a softening agent such as process oil, the rubber composition preferably does not contain a liquid polymer.
 液状ポリマーは、特に制限されず、例えば、液状ポリイソプレン、液状ポリブタジエン、液状スチレン-ブタジエン共重合体等のジエン系液状ポリマー、液状ポリブテン、液状シリコーンポリマー、シラン系液状ポリマー等が挙げられる。
 液状ポリマーは、市販品を用いてもよく、例えば、サートマー(クレイバレー)社製のRicon134〔液状BR(1,4-ポリブタジエン構造)、数平均分子量=8000、ブタジエン部分のビニル結合含量=28質量%〕、Ricon142〔液状BR(1,4-ポリブタジエン構造)、数平均分子量=3900、結合スチレン含量=0質量%、ブタジエン部分のビニル結合含量=55%、25℃において液状のポリブタジエン〕、Ricon150〔液状BR(1,4-ポリブタジエン構造)、数平均分子量=3900、ブタジエン部分のビニル結合含量=70質量%〕、Ricon154〔液状BR(1,3-ブタジエンホモポリマー)、数平均分子量=5200〕、Ricon181〔液状SBR(ブタジエン・スチレン・ランダムコポリマー)、数平均分子量=3200、ブタジエン部分のビニル結合含量=30%、結合スチレン含量=28質量%〕などが挙げられる。
The liquid polymer is not particularly limited, and examples thereof include diene liquid polymers such as liquid polyisoprene, liquid polybutadiene, and liquid styrene-butadiene copolymer, liquid polybutene, liquid silicone polymer, and silane liquid polymer.
As the liquid polymer, a commercially available product may be used. For example, Ricon 134 manufactured by Sartomer (Clay Valley) [liquid BR (1,4-polybutadiene structure), number average molecular weight = 8000, vinyl bond content of butadiene portion = 28 mass. %], Ricon 142 (liquid BR (1,4-polybutadiene structure), number average molecular weight = 3900, bound styrene content = 0 mass%, vinyl bond content of butadiene moiety = 55%, polybutadiene liquid at 25 ° C.), Ricon 150 [ Liquid BR (1,4-polybutadiene structure), number average molecular weight = 3900, vinyl bond content of butadiene moiety = 70% by mass], Ricon 154 [liquid BR (1,3-butadiene homopolymer), number average molecular weight = 5200], Ricon 181 [Liquid SBR (Butadiene / Styrene / Ran Mukoporima), number average molecular weight = 3200, vinyl bond content = 30% of the butadiene part, bound styrene content = 28 wt%], and the like.
 液状ポリマーは、ゴム組成物の非連続相をより柔らかくする観点から、ガラス転移温度(Tg)が-100~20℃であり、数平均分子量(Mn)が1,000~50,000である高分子化合物であることが好ましい。液状ポリマーのガラス転移温度は-100~0℃であることがより好ましく、-100~-20℃であることが更に好ましい。液状ポリマーの数平均分子量は3,000~30,000であることがより好ましく、5,000~20,000であることが更に好ましい。
 使用する液状ポリマーは1種類であっても2種類以上であってもよい。
The liquid polymer has a glass transition temperature (Tg) of −100 to 20 ° C. and a number average molecular weight (Mn) of 1,000 to 50,000 from the viewpoint of softening the discontinuous phase of the rubber composition. It is preferably a molecular compound. The glass transition temperature of the liquid polymer is more preferably from −100 to 0 ° C., and further preferably from −100 to −20 ° C. The number average molecular weight of the liquid polymer is more preferably 3,000 to 30,000, still more preferably 5,000 to 20,000.
The liquid polymer used may be one type or two or more types.
 液状ポリマーを非連続相に局在させる方法は特に制限されないが、例えば、未加硫ゴム組成物を調製するときに、非連続相を構成するゴム成分R2のSP値に近いSP値を有する液状ポリマーを用いればよい。具体的には、ゴム成分R2のSP値(SP2)と液状ポリマーのSP値(SP4)との差(|SP2-SP4|)が0.15未満となる液状ポリマーを選択すればよい。SP値の単位は(cal/cm0.5である。 The method for localizing the liquid polymer in the discontinuous phase is not particularly limited. For example, when preparing an unvulcanized rubber composition, a liquid having an SP value close to the SP value of the rubber component R2 constituting the discontinuous phase. A polymer may be used. Specifically, a liquid polymer in which the difference (| SP2-SP4 |) between the SP value (SP2) of the rubber component R2 and the SP value (SP4) of the liquid polymer is less than 0.15 may be selected. The unit of SP value is (cal / cm 3 ) 0.5 .
〔充填剤〕
 第1の本発明のゴム組成物は、充填剤を含むことが好ましい。充填剤は、連続相と非連続相のいずれか一方に含まれていてもよいし、両方に含まれていてもよいが、連続相をより硬く、非連続相をより柔らかくして、ゴム組成物の低発熱性能とウェットグリップ性能をより向上する観点から、充填剤は、連続相に局在していることが好ましい。
 一方、第2の本発明のゴム組成物は、充填剤を含む。連続相を硬く、非連続相を柔らかくして、ゴム組成物の低発熱性能とウェットグリップ性能を向上する観点から、充填剤は、連続相に局在している。なお、第2の本発明において、充填剤は、連続相のみに含まれていてもよいし、更に非連続相に含まれていてもよい。
 本発明において、「充填剤が連続相に局在している」とは、全充填剤のうち前記連続相に含まれる充填剤の比率(充填剤の連続相への局在度合)が、全ジエン系重合体のうち連続相に含まれるジエン系重合体の比率よりも多いことを意味する。このことは、下記式により表される。
filler(連続相)=Sfiller(連続相)/[Sfiller(連続相)+Sfiller(非連続相)]>Mジエン系重合体(連続相)/[Mジエン系重合体(連続相)+Mジエン系重合体(非連続相)]
 上記式において、
filler(連続相)は充填剤の連続相への局在度合、
filler(連続相)は連続相に含まれる充填剤面積(AFMから測定)、
filler(非連続相)は非連続相に含まれる充填剤面積(AFMから測定)、
ジエン系重合体(連続相)は連続相に含まれるジエン系重合体の質量、
ジエン系重合体(非連続相)は非連続相に含まれるジエン系重合体の質量を、それぞれ表す。
 充填剤の連続相への局在度合は、全ジエン系重合体のうち連続相中のジエン系重合体の比率×1.1以上」であることが好ましい。
〔filler〕
The rubber composition of the first aspect of the present invention preferably contains a filler. The filler may be contained in either one of the continuous phase or the discontinuous phase, or may be contained in both, but the rubber composition is made by making the continuous phase harder and the discontinuous phase softer. From the viewpoint of further improving the low heat generation performance and wet grip performance of the product, the filler is preferably localized in the continuous phase.
On the other hand, the rubber composition of the second present invention contains a filler. From the viewpoint of hardening the continuous phase and softening the discontinuous phase to improve the low heat generation performance and wet grip performance of the rubber composition, the filler is localized in the continuous phase. In the second aspect of the present invention, the filler may be contained only in the continuous phase, or may be further contained in the discontinuous phase.
In the present invention, “the filler is localized in the continuous phase” means that the ratio of the filler contained in the continuous phase among all the fillers (the degree of localization of the filler in the continuous phase) is It means that it is more than the ratio of the diene polymer contained in a continuous phase among diene polymers. This is represented by the following formula.
X filler (continuous phase) = S filler (continuous phase) / [S filler (continuous phase) + S filler (non-continuous phase) ]> M diene polymer (continuous phase) / [M diene polymer (continuous phase) + M diene polymer (non-continuous phase) ]
In the above formula,
X filler (continuous phase) is the degree of localization of the filler to the continuous phase,
S filler (continuous phase) is the filler area contained in the continuous phase (measured from AFM),
S filler (discontinuous phase) is the area of the filler contained in the discontinuous phase (measured from AFM),
M diene polymer (continuous phase) is the mass of the diene polymer contained in the continuous phase,
M diene polymer (discontinuous phase) represents the mass of the diene polymer contained in the discontinuous phase, respectively.
The degree of localization of the filler in the continuous phase is preferably “the ratio of the diene polymer in the continuous phase out of all diene polymers × 1.1 or more”.
 充填剤の連続相への局在度合(分配率;質量%)は、例えば、ミクロトームにより切削された試料の平滑面を、低温(例えば、0℃)にした原子間力顕微鏡(例えば、ASYLUM RESEARCH社製MFP-3D)を用いて、測定範囲2μm×2μmで測定することにより求めることができる。
 2成分に分かれた系を測定する場合、ゴム組成物の2μm×2μmの領域を観察し、得られた画像をヒストグラムより、弾性率の違いから2種のゴム成分と充填剤部分とに3値化し、2種の各ゴム成分の相に含まれる充填剤面積を求め、測定領域内の充填剤総量から連続相に存在する充填剤の割合を算出する。
 充填剤が2種のゴム成分の境界面にある場合は、各ゴム成分と充填剤との3成分が接している2点を結び、充填剤の面積を分割する。
The degree of localization (partition rate; mass%) of the filler in the continuous phase is determined by, for example, an atomic force microscope (for example, ASYLUM RESEARCH) in which a smooth surface of a sample cut by a microtome is cooled (for example, 0 ° C.). It can be obtained by measuring with a measurement range of 2 μm × 2 μm using a company MFP-3D).
When measuring a system divided into two components, the region of 2 μm × 2 μm of the rubber composition is observed, and the obtained image is ternary for the two rubber components and the filler portion based on the difference in elastic modulus from the histogram. Then, the filler area contained in the phases of the two rubber components is obtained, and the ratio of the filler present in the continuous phase is calculated from the total amount of filler in the measurement region.
When the filler is on the boundary surface between the two rubber components, two points where the three components of the rubber component and the filler are in contact are connected to divide the area of the filler.
 また、本発明のゴム組成物中の充填剤の含有量は、未加硫ゴム組成物のゴム成分中の全ジエン系重合体100質量部に対して、50~130質量部であることが好ましく、60~120質量部であることがより好ましい。 The content of the filler in the rubber composition of the present invention is preferably 50 to 130 parts by mass with respect to 100 parts by mass of the total diene polymer in the rubber component of the unvulcanized rubber composition. 60 to 120 parts by mass is more preferable.
 充填剤は、特に制限されず、例えば、ゴム組成物を補強する補強性充填剤が用いられる。補強性充填剤としては、例えば、シリカ、カーボンブラック等が挙げられ、シリカ及びカーボンブラックのいずれか一方を単独で用いてもよいし、シリカ及びカーボンブラックの両方を用いてもよい。ウェットグリップ性能向上の観点から、シリカを含むことが好ましい。
 充填剤の平均凝集塊面積は、特に限定されないが、2100nm以下であることが好ましく、1800nm以下であることがより好ましい。これにより、低発熱性能およびウェットグリップ性能を両立し易い。
The filler is not particularly limited, and for example, a reinforcing filler that reinforces the rubber composition is used. Examples of the reinforcing filler include silica and carbon black. Either one of silica and carbon black may be used alone, or both silica and carbon black may be used. From the viewpoint of improving wet grip performance, silica is preferably included.
The average aggregate area of the filler is not particularly limited, is preferably 2100 nm 2 or less, and more preferably 1800 nm 2 or less. Thereby, it is easy to achieve both low heat generation performance and wet grip performance.
 充填剤の平均凝集塊面積は、例えば、FIB-SEMより、測定範囲4μm×4μmで得られた画像よりフィラー部分の凝集塊面積を求め、フィラー部分の全凝集塊表面積と凝集塊の個数から、単位面積(2μm×2μm)あたりのフィラー部分の平均凝集塊面積を数平均(相加平均)により算出することができる。算出に当たり、画像の端(辺)に接している粒子はカウン卜せず、20ピクセル以下の粒子は、ノイズと見做しカウントしない。 The average agglomerate area of the filler is obtained, for example, from FIB-SEM, from the image obtained in the measurement range 4 μm × 4 μm, the agglomerate area of the filler part, and from the total agglomerate surface area of the filler part and the number of agglomerates, The average aggregate area of the filler portion per unit area (2 μm × 2 μm) can be calculated by the number average (arithmetic average). In the calculation, particles in contact with the edge (side) of the image are not counted, and particles of 20 pixels or less are regarded as noise and are not counted.
(シリカ)
 シリカは特に限定されず、一般グレードのシリカ、シランカップリング剤などで表面処理を施した特殊シリカなど、用途に応じて使用することができる。シリカは、例えば、湿式シリカを用いることが好ましい。
(silica)
Silica is not particularly limited, and can be used according to applications such as general grade silica, special silica surface-treated with a silane coupling agent, and the like. For example, wet silica is preferably used as the silica.
(カーボンブラック)
 カーボンブラックは、特に限定されず、目的に応じて適宜選択することができる。カーボンブラックは、例えば、FEF、SRF、HAF、ISAF、SAFグレードのものが好ましく、HAF、ISAF、SAFグレードのものがより好ましい。
(Carbon black)
Carbon black is not particularly limited and can be appropriately selected depending on the purpose. The carbon black is preferably, for example, FEF, SRF, HAF, ISAF, or SAF grade, and more preferably HAF, ISAF, or SAF grade.
〔その他の成分〕
 本発明におけるゴム成分は、ゴム工業界で通常使用される配合剤(充填剤を除く)を適宜選択して配合することができる。このような配合剤としては、例えば、老化防止剤、シランカップリング剤、ステアリン酸等の加硫促進剤、亜鉛華等の加硫促進助剤、硫黄等の加硫剤等が挙げられる。配合剤は、市販品を好適に使用することができる。
[Other ingredients]
The rubber component in the present invention can be blended by appropriately selecting compounding agents (excluding fillers) usually used in the rubber industry. Examples of such a compounding agent include an antioxidant, a silane coupling agent, a vulcanization accelerator such as stearic acid, a vulcanization accelerator such as zinc white, and a vulcanizer such as sulfur. A commercial item can be used conveniently for a compounding agent.
<トレッド用ゴム組成物の調製方法>
 本発明のゴム組成物の調製方法は、特に限定されず、未加硫ゴム組成物を、公知の加硫方法で加硫することで、ゴム組成物を得ることができる。
 また、本発明のゴム組成物の原料となる未加硫ゴム組成物の調製方法は、特に限定されず、公知の未加硫ゴム組成物の調製方法を用いることができる。
<Method for preparing rubber composition for tread>
The method for preparing the rubber composition of the present invention is not particularly limited, and the rubber composition can be obtained by vulcanizing the unvulcanized rubber composition by a known vulcanization method.
Moreover, the preparation method of the unvulcanized rubber composition used as the raw material of the rubber composition of this invention is not specifically limited, The preparation method of a well-known unvulcanized rubber composition can be used.
 未加硫ゴム組成物の調製方法としては、例えば、
(a)連続相を構成するゴム成分R1中のジエン系重合体と、非連続相を構成するゴム成分2中のジエン系重合体とを、別々に混練りし、両者を混合する方法;
(b)連続相を構成するゴム成分R1中のジエン系重合体と、非連続相を構成するゴム成分2中のジエン系重合体とを、同時に混合し、混練する方法等が挙げられる。
As a preparation method of the unvulcanized rubber composition, for example,
(A) A method in which the diene polymer in the rubber component R1 constituting the continuous phase and the diene polymer in the rubber component 2 constituting the discontinuous phase are separately kneaded and mixed together;
(B) A method in which the diene polymer in the rubber component R1 constituting the continuous phase and the diene polymer in the rubber component 2 constituting the discontinuous phase are simultaneously mixed and kneaded.
 未加硫ゴム組成物の構成成分のうち、酸化亜鉛、老化防止剤、ワックス、加硫促進剤、硫黄等の、ジエン系重合体を加硫し、またジエン系重合体の加硫を促進する成分を成分Cという。未加硫ゴム組成物の構成成分のうち、成分Cとジエン系重合体を除く成分を成分Dという。
 (a)の方法としては、より具体的には、
(a1)ゴム成分R1中のジエン系重合体と、連続相を構成するのに必要な成分D(D1)とを混練りして未加硫ゴム組成物1を得、別途、ゴム成分R2中のジエン系重合体と、非連続相を構成するのに必要な成分D(D2)とを混練りして未加硫ゴム組成物2を得、それぞれを混練りし、最後に成分Cを加えて混練りする方法;
(a2)ゴム成分R1中のジエン系重合体と、連続相を構成するのに必要な成分D(D1)とを混練りして未加硫ゴム組成物1を得、次いで、ゴム成分R2中のジエン系重合体と、非連続相を構成するのに必要な成分D(D1)とを加えて混練りし、最後に成分Cを加えて混練りする方法等が挙げられる。
Among the components of the unvulcanized rubber composition, diene polymers such as zinc oxide, anti-aging agent, wax, vulcanization accelerator and sulfur are vulcanized, and the vulcanization of diene polymers is accelerated. The component is referred to as component C. Among the components of the unvulcanized rubber composition, the component excluding component C and diene polymer is referred to as component D.
As a method of (a), more specifically,
(A1) A diene polymer in the rubber component R1 and a component D (D1) necessary for constituting a continuous phase are kneaded to obtain an unvulcanized rubber composition 1, and separately in the rubber component R2. The diene polymer and the component D (D2) necessary for constituting the discontinuous phase are kneaded to obtain an unvulcanized rubber composition 2, each of which is kneaded, and finally the component C is added. Kneading and kneading;
(A2) The diene polymer in the rubber component R1 and the component D (D1) necessary for constituting a continuous phase are kneaded to obtain an unvulcanized rubber composition 1, and then in the rubber component R2. And a method of adding the component D (D1) necessary for constituting the discontinuous phase and kneading, and finally adding the component C and kneading.
 (b)の方法としては、より具体的には、ゴム成分R1中のジエン系重合体とゴム成分R2中のジエン系重合体と成分D(D1及びD2)とを混練りし、次いで成分Cを混練する方法が挙げられる。 More specifically, as the method (b), the diene polymer in the rubber component R1, the diene polymer in the rubber component R2, and the component D (D1 and D2) are kneaded, and then the component C The method of kneading is mentioned.
 成分D1としては、充填剤、樹脂、液状ポリマー及びその他の成分が挙げられ、充填剤、樹脂、及びその他の成分を含むことが好ましい。各成分の含有量は、連続相を構成するゴム組成物中の含有量として説明した量とすればよい。
 成分D2としては、充填剤、樹脂、液状ポリマー及びその他の成分が挙げられ、液状ポリマー、及びその他の成分を含むことが好ましい。各成分の含有量は、非連続相を構成するゴム組成物中の含有量として説明した量とすればよい。
Examples of the component D1 include a filler, a resin, a liquid polymer, and other components, and preferably include a filler, a resin, and other components. The content of each component may be the amount described as the content in the rubber composition constituting the continuous phase.
Component D2 includes a filler, a resin, a liquid polymer, and other components, and preferably includes a liquid polymer and other components. The content of each component may be the amount described as the content in the rubber composition constituting the discontinuous phase.
 以上の中でも、(b)による方法でゴム成分等を混練りし、ゴム組成物を調製することが好ましい。(b)の方法を用いることで、非連続相のドメイン径を50~500nmとし易くなる。また、(b)の方法を用いることで、ドメイン径が5μm以上となるドメインが生成されにくくなる。 Among these, it is preferable to prepare a rubber composition by kneading rubber components and the like by the method (b). By using the method (b), the domain diameter of the discontinuous phase is easily set to 50 to 500 nm. Further, by using the method (b), it becomes difficult to generate a domain having a domain diameter of 5 μm or more.
 ゴム成分中のジエン系重合体に、充填剤と、必要に応じて適宜選択した各種配合剤とを配合して、混練り、熱入れ、押出等することにより、各未加硫ゴム組成物を調製することができる。 Each unvulcanized rubber composition is blended into the diene polymer in the rubber component by blending a filler and various compounding agents appropriately selected as necessary, and kneaded, heated, extruded, etc. Can be prepared.
<トレッド部材、タイヤ>
 本発明のトレッド部材は、既述の本発明のトレッド用ゴム組成物を用いてなる。また、本発明のタイヤは、本発明のトレッド部材を用いてなる。
 これにより、トレッド部材及びタイヤは、ウェットグリップ性能と低ロス性能に優れる。トレッド部材としては、例えば、トレッドゴムが挙げられるがこれに限定されない。
 本発明のタイヤは、本発明のトレッド用ゴム組成物をトレッド部材のいずれかに用いること以外は、特に制限はなく、常法に従って製造することができる。
<Tread member, tire>
The tread member of the present invention uses the above-described rubber composition for a tread of the present invention. The tire of the present invention uses the tread member of the present invention.
Thereby, the tread member and the tire are excellent in wet grip performance and low loss performance. Examples of the tread member include, but are not limited to, a tread rubber.
The tire of the present invention is not particularly limited except that the tread rubber composition of the present invention is used for any of the tread members, and can be produced according to a conventional method.
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are intended to illustrate the present invention and do not limit the present invention in any way.
 実施例で用いた材料の詳細は以下のとおりである。
〔変性剤〕
変性剤1:
 N,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミン、一般式(IV)のヒドロカルビルオキシシラン化合物に相当
変性剤2:
 N-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミン、一般式(V)のヒドロカルビルオキシシラン化合物に相当
The details of the materials used in the examples are as follows.
[Modifier]
Denaturant 1:
N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine, equivalent to hydrocarbyloxysilane compound of general formula (IV) 2:
N- (1,3-dimethylbutylidene) -3-triethoxysilyl-1-propanamine, equivalent to the hydrocarbyloxysilane compound of general formula (V)
〔液状ポリマー〕
液状ポリマーA:
 Ricon134〔液状BR1(1,4-ポリブタジエン構造)、サートマー社(クレイバレー社)製、数平均分子量=8000(ポリスチレン換算分子量=15100)、ブタジエン部分のビニル結合含量=28%〕
液状ポリマーB:
 Ricon150〔液状BR2(1,4-ポリブタジエン構造)、サートマー社(クレイバレー社)製、数平均分子量=3900(ポリスチレン換算分子量=7600)、ブタジエン部分のビニル結合含量=70%〕
液状ポリマーC:
 Ricon181〔液状SBR(ブタジエン・スチレン・ランダムコポリマー)、サートマー社(クレイバレー社)製、数平均分子量=3200(ポリスチレン換算分子量=8300)、ブタジエン部分のビニル結合含量=30%、結合スチレン含量=28質量%〕
[Liquid polymer]
Liquid polymer A:
Ricon 134 (liquid BR1 (1,4-polybutadiene structure), manufactured by Sartomer (Clay Valley), number average molecular weight = 8000 (polystyrene equivalent molecular weight = 15100), vinyl bond content of butadiene portion = 28%)
Liquid polymer B:
Ricon 150 [liquid BR2 (1,4-polybutadiene structure), manufactured by Sartomer (Clay Valley), number average molecular weight = 3900 (polystyrene equivalent molecular weight = 7600), vinyl bond content of butadiene portion = 70%]
Liquid polymer C:
Ricon 181 [Liquid SBR (Butadiene / Styrene / Random Copolymer), manufactured by Sartomer (Clay Valley), number average molecular weight = 3200 (polystyrene equivalent molecular weight = 8300), vinyl bond content of butadiene moiety = 30%, bound styrene content = 28 mass%〕
〔樹脂〕
樹脂A:三井化学社、ハイレッツ T500X(C5樹脂)
樹脂B:東燃化学社、T-REZ RD104(C5C9樹脂)
樹脂C:JX日鉱日石エネルギー社、日石ネオポリマー140(C9樹脂)
〔resin〕
Resin A: Mitsui Chemicals, Hiretsu T500X (C5 resin)
Resin B: Tonen Chemical Co., Ltd., T-REZ RD104 (C5C9 resin)
Resin C: JX Nippon Oil & Energy Corporation, Nisseki Neopolymer 140 (C9 resin)
〔充填剤〕
シリカ:東ソー・シリカ株式会社製の商品名NipSil AQ
カーボンブラック:旭カーボン株式会社 、#80
〔filler〕
Silica: Trade name “NipSil AQ” manufactured by Tosoh Silica Co., Ltd.
Carbon black: Asahi Carbon Co., Ltd., # 80
〔各種成分〕
オイル(プロセスオイル):出光興産社、ダイアナプロセスNH-70S
シランカップリング剤:信越化学工業社、ABC-856
老化防止剤:住友化学社、アンチゲン6C
ワックス:精工化学社、サンタイトA
ステアリン酸:日油社、桐印ステアリン酸
亜鉛華:ハクスイテック社、酸化亜鉛2種
硫黄:細井化学工業社、HK200-5
加硫促進剤:住友化学社、ソクシノールD-G
[Various ingredients]
Oil (process oil): Idemitsu Kosan Co., Ltd., Diana Process NH-70S
Silane coupling agent: Shin-Etsu Chemical Co., Ltd., ABC-856
Anti-aging agent: Sumitomo Chemical, Antigen 6C
Wax: Seiko Chemical Co., Suntite A
Stearic acid: NOF Corporation, Tungsten zinc stearate Hana: Hakusuitec Co., Ltd., 2 types of zinc oxide Sulfur: Hosoi Chemical Co., Ltd., HK200-5
Vulcanization accelerator: Sumitomo Chemical Co., Ltd., Soxinol DG
〔ジエン系重合体〕
 実施例及び比較例で用いたジエン系重合体は、以下の方法で合成し、又は下記製品を用いた。
(Diene polymer)
The diene polymer used in Examples and Comparative Examples was synthesized by the following method or the following product was used.
(ジエン系重合体B:変性低Tg-SBR)
 乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液およびスチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5gおよびスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤として変性剤1を0.72mmol添加し、50℃で30分間変性反応を行ない、ジエン系重合体Bを得た。示差走査熱量測定によりガラス転移温度を測定したところ、-62℃であった。
(Diene polymer B: modified low Tg-SBR)
To an 800 mL pressure-resistant glass container that has been dried and purged with nitrogen, a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene are added to 67.5 g of 1,3-butadiene and 7.5 g of styrene, and 2,2 After adding 0.6 mmol of -ditetrahydrofurylpropane and 0.8 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours. At this time, 0.72 mmol of modifier 1 was added as a modifier to the polymerization reaction system having a polymerization conversion rate of almost 100%, and a modification reaction was carried out at 50 ° C. for 30 minutes to obtain a diene polymer B. . The glass transition temperature was measured by differential scanning calorimetry and found to be -62 ° C.
(ジエン系重合体A:無変性低Tg-SBR)
 ジエン系重合体Bの合成において、重合反応までを行い、変性反応を行わず、イソプロピルアルコール(IPA)で停止反応を行った以外は、ジエン系重合体Bの重合反応と同様にして、ジエン系重合体Aを得た。得られたジエン系重合体Aのミクロ構造を測定した結果、結合スチレン量が10質量%、ブタジエン部分のビニル結合量が40%、ピーク分子量が200,000であった。示差走査熱量測定によりガラス転移温度を測定したところ、-62℃であった。
(Diene polymer A: unmodified low Tg-SBR)
In the synthesis of the diene polymer B, the diene system is the same as the polymerization reaction of the diene polymer B except that the polymerization reaction is performed, the modification reaction is not performed, and the termination reaction is performed with isopropyl alcohol (IPA). Polymer A was obtained. As a result of measuring the microstructure of the obtained diene polymer A, the amount of bonded styrene was 10% by mass, the amount of vinyl bond in the butadiene portion was 40%, and the peak molecular weight was 200,000. The glass transition temperature was measured by differential scanning calorimetry and found to be -62 ° C.
(ジエン系重合体D:変性高Tg-SBR)
 乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液およびスチレンのシクロヘキサン溶液を、1,3-ブタジエン45gおよびスチレン30gになるように加え、2,2-ジテトラヒドロフリルプロパン0.16mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤として変性剤2を0.72mmol添加し、50℃で30分間変性反応を行ない、ジエン系重合体Dを得た。示差走査熱量測定によりガラス転移温度を測定したところ、-32℃であった。
(Diene polymer D: modified high Tg-SBR)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 mL pressure-resistant glass container so that 45 g of 1,3-butadiene and 30 g of styrene are added, and 2,2-ditetrahydrofuryl is added. After adding 0.16 mmol of propane and 0.8 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours. At this time, 0.72 mmol of modifier 2 was added as a modifier to the polymerization reaction system in which the polymerization conversion rate was almost 100%, and a modification reaction was performed at 50 ° C. for 30 minutes to obtain a diene polymer D. . The glass transition temperature was measured by differential scanning calorimetry and found to be -32 ° C.
ジエン系重合体C:JSR社製、JSR 0202(無変性高Tg-SBR、Tg=-23℃)
ジエン系重合体E:宇部興産社製、UBE 150(BR、Tg=-95℃)
ジエン系重合体F:TSR20(NR、Tg=-70℃)
Diene polymer C: manufactured by JSR Corporation, JSR 0202 (unmodified high Tg-SBR, Tg = −23 ° C.)
Diene polymer E: UBE 150, manufactured by Ube Industries, Ltd. (BR, Tg = −95 ° C.)
Diene polymer F: TSR20 (NR, Tg = −70 ° C.)
<実施例1-1~1-16、1-18、及び比較例1-1~1-4>
〔トレッド用ゴム組成物の製造〕
 表1~3に示す成分のうち、酸化亜鉛(亜鉛華)、老化防止剤、ワックス、加硫促進剤、硫黄以外の成分について、表1~3に示す配合に基づき、バンバリーミキサーを用いて開始温度100C、回転速度70rpmで5分間混練りした。その後、酸化亜鉛、老化防止剤、ワックス、加硫促進剤、硫黄を、表1~3に示す配合に基づき最終練り工程にて混練りし、未加硫ゴム組成物を調製した。
 得られた各未加硫ゴム組成物を160C、20分で加硫してトレッド用ゴム組成物を製造した。
<Examples 1-1 to 1-16, 1-18, and Comparative Examples 1-1 to 1-4>
[Manufacture of rubber composition for tread]
Among the components shown in Tables 1 to 3, components other than zinc oxide (zinc white), anti-aging agent, wax, vulcanization accelerator, and sulfur are started using a Banbury mixer based on the formulations shown in Tables 1 to 3. The mixture was kneaded for 5 minutes at a temperature of 100 C and a rotation speed of 70 rpm. Thereafter, zinc oxide, anti-aging agent, wax, vulcanization accelerator, and sulfur were kneaded in the final kneading step based on the formulations shown in Tables 1 to 3 to prepare an unvulcanized rubber composition.
Each obtained unvulcanized rubber composition was vulcanized at 160 C for 20 minutes to produce a tread rubber composition.
<実施例1-17>
 表3に示す配合の、ジエン系重合体D、ステアリン酸、充填剤(シリカ)、及びシランカップリング剤を、バンバリーミキサーを用いて開始温度100℃、回転速度70rpmで3分間混練りした(マスターバッチ練り工程)。マスターバッチ練り工程を行った後、ジエン系重合体Eと液状ポリマーを配合して5分間混練りし、酸化亜鉛(亜鉛華)、老化防止剤、ワックス、加硫促進剤、硫黄を最終練り工程にて混練りし、実施例1-17の未加硫ゴム組成物を調製した。
 得られた未加硫ゴム組成物を160C、20分で加硫して、実施例1-17のトレッド用ゴム組成物を製造した。
<Example 1-17>
The diene polymer D, stearic acid, filler (silica), and silane coupling agent of the formulation shown in Table 3 were kneaded for 3 minutes at a starting temperature of 100 ° C. and a rotational speed of 70 rpm using a Banbury mixer (master). Batch kneading process). After the masterbatch kneading process, the diene polymer E and the liquid polymer are mixed and kneaded for 5 minutes, and the final kneading process of zinc oxide (zinc white), anti-aging agent, wax, vulcanization accelerator, and sulfur. To prepare an unvulcanized rubber composition of Example 1-17.
The obtained unvulcanized rubber composition was vulcanized at 160 C for 20 minutes to produce a tread rubber composition of Example 1-17.
<実施例2-1~2-19、比較例2-1~2-3>
〔トレッド用ゴム組成物の製造〕
 表4~6に示す成分のうち、酸化亜鉛(亜鉛華)、老化防止剤、ワックス、加硫促進剤、硫黄以外の成分について、表4~6に示す配合に基づき、バンバリーミキサーを用いて開始温度100C、回転速度70rpmで5分間混練りした。その後、酸化亜鉛、老化防止剤、ワックス、加硫促進剤、硫黄を、表4~6に示す配合に基づき最終練り工程にて混練りし、未加硫ゴム組成物を調製した。
 得られた各未加硫ゴム組成物を160C、20分で加硫してトレッド用ゴム組成物を製造した。
<Examples 2-1 to 2-19, Comparative Examples 2-1 to 2-3>
[Manufacture of rubber composition for tread]
Among the components shown in Tables 4 to 6, components other than zinc oxide (zinc white), anti-aging agent, wax, vulcanization accelerator, and sulfur were started using a Banbury mixer based on the formulations shown in Tables 4 to 6. The mixture was kneaded for 5 minutes at a temperature of 100 C and a rotation speed of 70 rpm. Thereafter, zinc oxide, anti-aging agent, wax, vulcanization accelerator, and sulfur were kneaded in the final kneading step based on the formulations shown in Tables 4 to 6 to prepare an unvulcanized rubber composition.
Each obtained unvulcanized rubber composition was vulcanized at 160 C for 20 minutes to produce a tread rubber composition.
 製造した各ゴム組成物について、以下の(1)~(8)の測定を行った。
(1)連続相を構成するゴム組成物の弾性率(E)E1
(2)非連続相を構成するゴム組成物の弾性率(E)E2
(3)連続相を構成するゴム成分のTg(Tg1)
(4)非連続相を構成するゴム成分のTg(Tg2)
(5)充填剤の連続相への局在度合
(6)液状ポリマーの非連続相への局在度合
(7)樹脂の連続相への局在度合
(8)5μm以上のドメイン有無の確認
With respect to each manufactured rubber composition, the following measurements (1) to (8) were performed.
(1) Elastic modulus of rubber composition constituting continuous phase (E) E1
(2) Elastic modulus (E) E2 of rubber composition constituting discontinuous phase
(3) Tg of rubber component constituting continuous phase (Tg1)
(4) Tg of rubber component constituting discontinuous phase (Tg2)
(5) Localization degree of the filler to the continuous phase (6) Localization degree of the liquid polymer to the discontinuous phase (7) Localization degree to the continuous phase of the resin (8) Confirmation of presence / absence of domains of 5 μm or more
 (1)~(8)の測定は、上述した方法により行った。また、(1)及び(2)の結果に基づきE1/E2を算出し、(3)及び(4)の結果に基づき各相のゴム成分のTg差(Tg1-Tg2)(℃)を算出した。また、各ゴム組成物について、ウェットグリップ性能と低ロス性能(低発熱性能)を評価した。 Measurements (1) to (8) were performed by the method described above. Also, E1 / E2 was calculated based on the results of (1) and (2), and the Tg difference (Tg1−Tg2) (° C.) of the rubber component of each phase was calculated based on the results of (3) and (4). . Each rubber composition was evaluated for wet grip performance and low loss performance (low heat generation performance).
1.ウェットグリップ性能の評価
 室温でブリティッシュ・ポータブル・スキッド・テスター(BPST)にて、湿潤コンクリート路面上を各ゴム組成物の試験片でこすって測定した際の抵抗値を測定した。
 表1の実施例1-1~1-3及び比較例1-1~1-3においては、比較例1-1を100として指数表示した。また、表2及び3の実施例1-4~1-18及び比較例1-4においては、比較例1-4を100として指数表示した。
 表4~6においては、比較例2-1を100として指数表示した。
 結果を表1~6に示す。
 指数値は大きい程、抵抗値が大きく、ウェットグリップ性能に優れることを示す。
1. Evaluation of wet grip performance The resistance value was measured by rubbing the wet concrete road surface with a test piece of each rubber composition at room temperature using a British portable skid tester (BPST).
In Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 in Table 1, the comparative example 1-1 was set as 100 and indicated as an index. Further, in Examples 1-4 to 1-18 and Comparative Example 1-4 in Tables 2 and 3, the index was displayed with Comparative Example 1-4 as 100.
In Tables 4 to 6, the comparative example 2-1 was set as 100 and indicated as an index.
The results are shown in Tables 1-6.
The larger the index value, the larger the resistance value, indicating better wet grip performance.
2.低ロス性能(低発熱性能)の評価
 各ゴム組成物について、損失正接(tanδ)を、粘弾性測定装置(レオメトリックス社製)を用いて、温度50℃、歪み5%、周波数15Hzの条件で測定した。
 得られたtanδの値は、表1の実施例1-1~1-3及び比較例1-1~1-3においては、比較例1-1の値を100として、それぞれの逆数について指数表示した。また、表2及び3の実施例1-4~1-18及び比較例1-4においては、比較例1-4を100として指数表示した。
 表4~6においては、比較例2-1を100として指数表示した。
 結果を表1~6に示す。
 指数値が大きいほど低ロス性能に優れる。
2. Evaluation of Low Loss Performance (Low Heat Generation Performance) For each rubber composition, loss tangent (tan δ) was measured using a viscoelasticity measuring device (manufactured by Rheometrics) at a temperature of 50 ° C., a strain of 5%, and a frequency of 15 Hz. It was measured.
The obtained tan δ values are expressed as indices in the reciprocals of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 in Table 1 with the value of Comparative Example 1-1 being 100. did. Further, in Examples 1-4 to 1-18 and Comparative Example 1-4 in Tables 2 and 3, the index was displayed with Comparative Example 1-4 as 100.
In Tables 4 to 6, the comparative example 2-1 was set as 100 and indicated as an index.
The results are shown in Tables 1-6.
The larger the index value, the better the low loss performance.
3.合計指数
 「1.ウェットグリップ性能の評価」で算出した指数と、「2.低ロス性能(低発熱性能)の評価」で算出した指数との合計(合計指数)を表1~6に示した。指数値が大きいほど、ウェットグリップ性能と低ロス性能(低発熱性能)のバランスに優れることを示す。
3. Total index The total (total index) of the index calculated in “1. Evaluation of wet grip performance” and the index calculated in “2. Evaluation of low loss performance (low heat generation performance)” is shown in Tables 1-6. . The larger the index value, the better the balance between wet grip performance and low loss performance (low heat generation performance).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1~3に示すように、連続相を構成するゴム組成物の0℃における弾性率E1と、非連続相を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たすトレッド用ゴム組成物は、低発熱性能を損ねずにウェットグリップ性能に優れることがわかった。従って、このようなトレッド用ゴム組成物を用いたトレッド部材及びタイヤは、低ロス性能を損ねずにウェットグリップ性能に優れると考えられる。 As shown in Tables 1 to 3, the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase are 2 ≦ (E1 / E2) A rubber composition for tread satisfying ≦ 10 was found to be excellent in wet grip performance without impairing low heat generation performance. Therefore, a tread member and a tire using such a tread rubber composition are considered to be excellent in wet grip performance without impairing low loss performance.
 また、表4~6に示すように、充填剤が連続相に局在し(「充填剤の連続相への局在度合」が70%超)、かつ、連続相を構成するゴム成分のガラス転移温度Tg1と、非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2、すなわち、「各相のゴム成分のTg差(Tg1-Tg2)(℃)」がプラスの値となるトレッド用ゴム組成物は、ウェットグリップ性能と低発熱性能の両方に優れることがわかった。従って、このようなトレッド用ゴム組成物を用いたトレッド部材及びタイヤは、ウェットグリップ性能と低ロス性能に優れると考えられる。 Further, as shown in Tables 4 to 6, the filler is localized in the continuous phase (“the degree of localization of the filler in the continuous phase” exceeds 70%), and the rubber component glass constituting the continuous phase The transition temperature Tg1 and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase are Tg1> Tg2, that is, “Tg difference between the rubber components of each phase (Tg1−Tg2) (° C.)” is a positive value. The tread rubber composition was found to be excellent in both wet grip performance and low heat generation performance. Therefore, it is considered that a tread member and a tire using such a tread rubber composition are excellent in wet grip performance and low loss performance.
 本発明によれば、低発熱性能を損ねずにウェットグリップ性能に優れるトレッド用ゴム組成物を提供することができる。また、本発明によれば、低ロス性能を損ねずにウェットグリップ性能に優れるトレッド部材及びタイヤを提供することができる。 According to the present invention, it is possible to provide a rubber composition for a tread which is excellent in wet grip performance without impairing low heat generation performance. Moreover, according to this invention, the tread member and tire which are excellent in wet grip performance can be provided, without impairing low-loss performance.
2 連続相
4 非連続相
6 充填剤
2 Continuous phase 4 Non-continuous phase 6 Filler

Claims (17)

  1.  ジエン系重合体を含有するゴム成分を含む未加硫ゴム組成物を加硫した、連続相と1相以上の非連続相とを有するトレッド用ゴム組成物であって、
     該連続相を構成するゴム組成物の0℃における弾性率E1と、該非連続相を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たすトレッド用ゴム組成物。
    A rubber composition for a tread obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer, having a continuous phase and one or more discontinuous phases,
    Tread in which the elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase satisfy 2 ≦ (E1 / E2) ≦ 10 Rubber composition.
  2.  前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2である請求項1に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to claim 1, wherein the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy Tg1> Tg2.
  3.  前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1-Tg2≧20℃を満たす請求項1又は2に記載のトレッド用ゴム組成物。 The rubber for tread according to claim 1 or 2, wherein the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy Tg1-Tg2 ≧ 20 ° C. Composition.
  4.  充填剤を含み、該充填剤が前記連続相に局在している請求項1~3のいずれか1項に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to any one of claims 1 to 3, further comprising a filler, wherein the filler is localized in the continuous phase.
  5.  液状ポリマーを含み、該液状ポリマーが前記非連続相に局在している請求項1~4のいずれか1項に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to any one of claims 1 to 4, further comprising a liquid polymer, wherein the liquid polymer is localized in the discontinuous phase.
  6.  樹脂を含み、該樹脂が前記連続相に局在している請求項1~5のいずれか1項に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to any one of claims 1 to 5, comprising a resin, and the resin is localized in the continuous phase.
  7.  ジエン系重合体を含有するゴム成分を含む未加硫ゴム組成物を加硫した、連続相と1相以上の非連続相とを有するトレッド用ゴム組成物であって、
     充填剤を含み、該充填剤が前記連続相に局在しており、
     前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1>Tg2であるトレッド用ゴム組成物。
    A rubber composition for a tread obtained by vulcanizing an unvulcanized rubber composition containing a rubber component containing a diene polymer, having a continuous phase and one or more discontinuous phases,
    Including a filler, wherein the filler is localized in the continuous phase;
    A rubber composition for a tread in which the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy Tg1> Tg2.
  8.  前記連続相を構成するゴム成分のガラス転移温度Tg1と、前記非連続相を構成するゴム成分のガラス転移温度Tg2が、Tg1-Tg2≧20℃を満たす請求項7に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to claim 7, wherein the glass transition temperature Tg1 of the rubber component constituting the continuous phase and the glass transition temperature Tg2 of the rubber component constituting the discontinuous phase satisfy Tg1-Tg2 ≧ 20 ° C. .
  9.  液状ポリマーを含み、該液状ポリマーが前記非連続相に局在している請求項7又は8に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to claim 7 or 8, comprising a liquid polymer, wherein the liquid polymer is localized in the discontinuous phase.
  10.  樹脂を含み、該樹脂が前記連続相に局在している請求項7~9のいずれか1項に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to any one of claims 7 to 9, comprising a resin and the resin is localized in the continuous phase.
  11.  前記連続相を構成するゴム組成物の0℃における弾性率E1と、該非連続相を構成するゴム組成物の0℃での弾性率E2とが、2≦(E1/E2)≦10を満たす請求項7~10のいずれか1項に記載のトレッド用ゴム組成物。 The elastic modulus E1 at 0 ° C. of the rubber composition constituting the continuous phase and the elastic modulus E2 at 0 ° C. of the rubber composition constituting the discontinuous phase satisfy 2 ≦ (E1 / E2) ≦ 10. Item 11. The rubber composition for a tread according to any one of Items 7 to 10.
  12.  前記非連続相のドメイン径が50~500nmである請求項1~11のいずれか1項に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to any one of claims 1 to 11, wherein the domain diameter of the discontinuous phase is 50 to 500 nm.
  13.  全充填剤のうち前記連続相に含まれる充填剤の比率が、全ジエン系重合体のうち連続相に含まれるジエン系重合体の比率よりも多い請求項4~12のいずれか1項に記載のトレッド用ゴム組成物。 The ratio of the filler contained in the continuous phase among all the fillers is larger than the ratio of the diene polymer contained in the continuous phase among all the diene polymers. Rubber composition for treads.
  14.  前記液状ポリマー全質量中、前記非連続相に含まれる前記液状ポリマーの量が50質量%を超え100質量%以下である請求項5、6及び9~13のいずれか1項に記載のトレッド用ゴム組成物。 The tread according to any one of claims 5, 6, and 9 to 13, wherein the amount of the liquid polymer contained in the discontinuous phase is more than 50% by mass and 100% by mass or less in the total mass of the liquid polymer. Rubber composition.
  15.  前記樹脂全質量中、前記連続相に含まれる前記樹脂の量が50質量%を超え100質量%以下である請求項6及び10~14のいずれか1項に記載のトレッド用ゴム組成物。 The rubber composition for a tread according to any one of claims 6 and 10 to 14, wherein, in the total mass of the resin, the amount of the resin contained in the continuous phase is more than 50 mass% and 100 mass% or less.
  16.  請求項1~15のいずれか1項に記載のトレッド用ゴム組成物を用いたトレッド部材。 A tread member using the rubber composition for a tread according to any one of claims 1 to 15.
  17.  請求項16に記載のトレッド部材を用いたタイヤ。 A tire using the tread member according to claim 16.
PCT/JP2018/018324 2017-06-12 2018-05-11 Rubber composition for tread, tread member, and tire WO2018230221A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017115282 2017-06-12
JP2017-115282 2017-06-12
JP2017115284 2017-06-12
JP2017-115284 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230221A1 true WO2018230221A1 (en) 2018-12-20

Family

ID=64659994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018324 WO2018230221A1 (en) 2017-06-12 2018-05-11 Rubber composition for tread, tread member, and tire

Country Status (1)

Country Link
WO (1) WO2018230221A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189616A (en) * 1997-12-26 1999-07-13 Bridgestone Corp Production of polymer, polymer obtained thereby, and rubber composition containing the same
JP2011122057A (en) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2013112731A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2013213179A (en) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2014145061A (en) * 2013-01-30 2014-08-14 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2015054862A (en) * 2013-09-10 2015-03-23 旭化成ケミカルズ株式会社 Rubber composition
JP2015083649A (en) * 2013-10-25 2015-04-30 東洋ゴム工業株式会社 Rubber composition and pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189616A (en) * 1997-12-26 1999-07-13 Bridgestone Corp Production of polymer, polymer obtained thereby, and rubber composition containing the same
JP2011122057A (en) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2013112731A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2013213179A (en) * 2012-03-08 2013-10-17 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2014145061A (en) * 2013-01-30 2014-08-14 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2015054862A (en) * 2013-09-10 2015-03-23 旭化成ケミカルズ株式会社 Rubber composition
JP2015083649A (en) * 2013-10-25 2015-04-30 東洋ゴム工業株式会社 Rubber composition and pneumatic tire

Similar Documents

Publication Publication Date Title
JP7055857B2 (en) Rubber composition and tires
JP6967631B2 (en) Rubber composition and tires
JP5617040B2 (en) Rubber composition and tire
JP2019089911A (en) Rubber composition for tire and tire
JP6934423B2 (en) Rubber composition and tires
TWI773816B (en) Rubber composition for tires
JP2013234330A (en) Rubber composition and tire
TWI773815B (en) Rubber composition for tires
JP6802179B2 (en) Manufacturing method of rubber composition and tire
JP2019001845A (en) Rubber composition for tread, tread member, and tire
JP6993191B2 (en) Rubber composition for tires and pneumatic tires using them
WO2017104135A1 (en) Rubber composition and pneumatic tire
JP2016030799A (en) Vulcanized rubber, method for producing vulcanized rubber and tire
CN109071887B (en) Rubber composition
WO2018230221A1 (en) Rubber composition for tread, tread member, and tire
WO2019163773A1 (en) Crosslinked rubber
JP2019006845A (en) Rubber composition and tire using the same
JP7422674B2 (en) Rubber compositions, tread rubber and tires
JP7194641B2 (en) Polymer composition, method for producing the same, and tire
JP7339580B2 (en) Rubber composition for tire
JP2019006846A (en) Rubber composition and tire using the same
TW202402923A (en) Diene rubber composition and method for producing thereof
WO2022249767A1 (en) Rubber composition for tire, tread rubber, and tire
JP2019218489A (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration-proof device, seismic isolation device, and hose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP