WO2018229938A1 - Microwave heating device - Google Patents
Microwave heating device Download PDFInfo
- Publication number
- WO2018229938A1 WO2018229938A1 PCT/JP2017/022145 JP2017022145W WO2018229938A1 WO 2018229938 A1 WO2018229938 A1 WO 2018229938A1 JP 2017022145 W JP2017022145 W JP 2017022145W WO 2018229938 A1 WO2018229938 A1 WO 2018229938A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- circuit
- output
- stage
- output terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/74—Mode transformers or mode stirrers
Definitions
- the present invention relates to a microwave heating apparatus that radiates microwaves to an object to be heated, and more particularly, to a microwave heating apparatus that includes a plurality of antennas that radiate microwaves in a heating chamber in which an object to be heated is accommodated.
- Patent Document 1 A proposal for obtaining a microwave heating apparatus with excellent energy saving performance capable of consuming 100% of the microwave power output from the microwave generator ideally as the heating energy of the object to be heated has been republished Patent No. WO2009-157110 It is made by the gazette (patent document 1).
- the microwave heating device disclosed in Patent Document 1 feeds the microwave generated by the microwave generation unit to the first heating chamber and circulates the reflected microwave returning from the first heating chamber to the microwave generation unit side.
- the non-reciprocal circuit is configured to transmit to the second heating chamber.
- the micro-heating device shown in Patent Document 1 uses two antennas, one antenna is disposed in each of the first heating chamber and the second heating chamber, and one heating chamber is provided. Therefore, there is no concept of efficiently using the output of the microwave generation unit by arranging a plurality of antennas. As long as there is no idea of arranging a plurality of antennas in one heating chamber, in order to efficiently heat various objects to be heated in different shapes, sizes, and quantities accommodated in the heating chamber from a plurality of angles. There is also no idea of arranging a plurality of antennas for one heating chamber in order to irradiate microwaves.
- This invention is made in view of the above-mentioned point, arranges a plurality of antennas in a heating chamber in which an object to be heated is accommodated, reuses the reflected microwaves returning to the antenna side,
- An object of the present invention is to obtain a microwave heating apparatus capable of efficiently using outputs from a microwave oscillator for a plurality of antennas for various objects to be heated having different sizes and amounts.
- a microwave heating apparatus includes an antenna group consisting of n antennas that are integers of 2 or more that radiates microwaves into a heating chamber, a microwave oscillator that generates microwaves, and the microwave oscillator.
- a microwave amplifier that amplifies the generated microwave and an n-stage non-reciprocal circuit corresponding to n antennas of the antenna group, each non-reciprocal circuit having an input terminal, a first output terminal, and a second
- the input terminal is connected to the output terminal of the microwave amplifier
- the first output terminal is connected to the corresponding antenna in the antenna group, and the second to nth stages.
- the non-reciprocal circuit includes a non-reciprocal circuit group whose input terminal is connected to the second output terminal of the preceding non-reciprocal circuit and whose first output terminal is connected to a corresponding antenna in the antenna group.
- the microwaves are radiated from the plurality of antennas to the object to be heated accommodated in the heating chamber, the antenna side with respect to various objects to be heated having different shapes, sizes, and amounts is provided.
- the reflected microwave that returns can be reused, and the output from the microwave oscillator can be used efficiently.
- FIG. 1 A microwave heating apparatus according to Embodiment 1 of the present invention will be described with reference to FIG.
- the object to be heated 2 is accommodated in the heating chamber 1 and supplied with microwaves.
- a door (not shown) for taking in and out the article to be heated 2 is provided on one side wall surface.
- Three side wall surfaces other than the side wall surface provided with the door of the heating chamber 1, the ceiling wall surface and the bottom wall surface are made of a shielding plate made of a metal material, and microwaves supplied into the heating chamber 1 are introduced into the heating chamber 1. Constructed to contain.
- Each of the n antennas 3-1 to 3 -n radiates microwaves into the heating chamber 1, and receives microwaves reflected and returned from the object to be heated 2 and the wall surfaces constituting the heating chamber 1.
- These n antennas 3-1 to 3-n constitute an antenna group 3.
- all the n antennas 3-1 to 3-n are arranged on one side wall surface of three side wall surfaces other than the side wall surface provided with the door of the heating chamber 1.
- n is an integer of 2 or more, and is 3 in the first embodiment.
- three antennas 3-1 to 3-n are preferable, but two antennas may be used. Four or more may be sufficient.
- the microwave oscillator 4 that generates a microwave includes an oscillation circuit that includes a semiconductor element that generates a microwave on one main surface of a dielectric substrate that is formed of a low dielectric loss material.
- the microwave oscillator 4 has an oscillation frequency of 2400 MHz in an initial state, and is variably controlled based on 2400 MHz by a frequency control signal from the control means 5.
- the oscillation frequency of the microwave oscillator 4 is variably controlled by the control means 5, but the microwave oscillator 4 may output a constant frequency, that is, 2400 MHz.
- the control means 5 is formed on one main surface of the dielectric substrate on which the microwave oscillator 4 is formed.
- the control means 5 may be formed on the other main surface of the dielectric substrate, or may be formed on a dielectric substrate different from the dielectric substrate on which the microwave oscillator 4 is formed.
- the microwave amplifier 6 amplifies the microwave output from the output terminal 4 a of the microwave oscillator 4.
- the microwave amplifier 6 includes an amplifier circuit constituted by a conductor pattern using a semiconductor element on a dielectric substrate made of a low dielectric loss material.
- the microwave amplifier 6 further includes matching circuits each formed of a conductor pattern on the same dielectric substrate as the amplifier circuit on the input side and the output side, respectively, in order to operate the amplifier circuit satisfactorily.
- the microwave oscillator 4 is formed on one main surface of the dielectric substrate, and the microwave amplifier 6 is formed on the other main surface of the same dielectric substrate, so that the circuit board is miniaturized. Note that the microwave oscillator 4 and the microwave amplifier 6 may be formed on separate dielectric substrates.
- the microwave amplifier 6 receives the output control signal from the control means 5, and the output power level of the microwave amplifier 6 is variably controlled by this output control signal.
- the output power level of the microwave amplifier 6 is variably controlled by the control means 5, but the output of the microwave amplifier 6 may be rated power.
- the connection between the output end 4a of the microwave oscillator 4 and the input end 6a of the microwave amplifier 6 is performed by a first microwave transmission line 7 serving as a transmission circuit constituted by a conductor pattern on a dielectric substrate.
- the first microwave transmission line 7 is formed by a conductor pattern on one main surface of a dielectric substrate on which the microwave oscillator 4 is formed, and has a characteristic impedance of 50 ⁇ as a transmission circuit.
- the nonreciprocal circuit group 8 includes n stages of nonreciprocal circuits 8-1 to 8-n corresponding to the n antennas 3-1 to 3-n of the antenna group 3.
- the n-stage nonreciprocal circuits 8-1 to 8-n have input terminals 8-1-a to 8-na, first output terminals 8-1-b to 8-nb, and second outputs, respectively. It has ends 8-1-c to 8-nc.
- the first stage non-reciprocal circuit 8-1 has an input terminal 8-1-a connected to the output terminal 6b of the microwave amplifier 6 and a first output terminal 8-1-b corresponding to the corresponding antenna 3-in the antenna group 3. 1 is connected.
- the non-reciprocal circuits 8-2 to 8-n from the second stage to the n-th stage are connected to the non-reciprocal circuits 8-1 to 8-n-1 of the preceding stage by the input terminals 8-2-a to 8-na.
- the n-stage nonreciprocal circuits 8-1 to 8-n in the nonreciprocal circuit group 8 are so-called cascade-connected.
- n is an integer of 2 or more, and in the first embodiment, the number is three as in the antennas 3-1 to 3-3 of the antenna group 3. The number is the same as the number of antennas 3-1 to 3 -n. If there are two antennas, the number is two, and four or more is four or more.
- Each of the n-stage non-reciprocal circuits 8-1 to 8-n is a circulation type, specifically a circulator.
- the connection between the output terminal of the microwave amplifier 6 and the input terminal 8-1 -a of the first stage irreversible circuit 8-1 in the irreversible circuit group 8 is a transmission circuit constituted by a conductor pattern on a dielectric substrate. This is performed by the second microwave transmission line 9.
- the second microwave transmission line 9 is formed by a conductor pattern on the other main surface of the dielectric substrate on which the microwave amplifier 6 is formed, and has a characteristic impedance of 50 ⁇ as a transmission circuit.
- the termination resistor 10 is connected between the second output terminal 8-nc of the final stage non-reciprocal circuit 8-n in the non-reciprocal circuit group 8 and the ground terminal GND.
- the terminating resistor 10 is a resistive element formed by a conductor pattern on the other main surface of the dielectric substrate on which the microwave amplifier 6 is formed and terminated at 50 ⁇ .
- n is 3 in the antennas 3-1 to 3-n of the antenna group 3 and the non-reciprocal circuits 8-1 to 8-n of the non-reciprocal circuit group 8.
- the microwave oscillator 4 driven by a control signal from the control means 5 generates a microwave.
- the microwave generated by the microwave oscillator 4 is output at a frequency set from the output terminal 4 a and is guided to the input terminal 6 a of the microwave amplifier 6 through the first microwave transmission line 7.
- the microwave amplifier 6 amplifies the microwave guided by the first microwave transmission line 7 so that the output power level set by the control signal from the control means 5 is output to the output terminal 6b.
- the microwave amplified by the microwave amplifier 6 and output from the output terminal 6 b is guided to the irreversible circuit group 8 through the second microwave transmission line 9.
- the first stage irreversible circuit 8-1 in the irreversible circuit group 8 transmits the microwave guided to the input terminal 8-1-a via the second microwave transmission line 9 to the first output terminal 8-1-.
- b is transmitted to the corresponding antenna 3-1 in the antenna group 3.
- the microwave transmitted to the antenna 3-1 is radiated toward the heated object 2 in the heating chamber 1.
- the antenna 3-1 irradiates the object to be heated 2 accommodated in the heating chamber 1 with microwaves.
- the object to be heated 2 that has been irradiated with the microwave is heated.
- the microwave irradiated from the antenna 3-1 into the heating chamber 1 is not absorbed by the heated object 2, is reflected by the heated object 2 and the wall surface of the heating chamber 1, and returns to the antenna 3-1. come. Then, the returned microwave (hereinafter referred to as a reflected microwave) is input to the nonreciprocal circuit 8-1 from the first output terminal 8-1-b.
- the nonreciprocal circuit 8-1 converts the reflected microwave input from the first output terminal 8-1-b from the second output terminal 8-1-c to the input terminal of the second stage irreversible circuit 8-2. Output to 8-2-a.
- the non-reciprocal circuit 8-2 in the second stage transmits the reflected microwave input to the input terminal 8-2-a from the first output terminal 8--2-b to the corresponding antenna 3-2 in the antenna group 3. .
- the reflected microwave transmitted to the antenna 3-2 is radiated toward the object to be heated 2 in the heating chamber 1.
- the microwave irradiation angle from the antenna 3-2 to the object to be heated 2 accommodated in the heating chamber 1 is heated from the antenna 3-1. This is different from the microwave irradiation angle to the object to be heated 2 accommodated in the chamber 1. As a result, the microwave from the microwave oscillator 4 to the object to be heated 2 is effectively used, and the uniformity of irradiation to the object to be heated 2 is improved.
- the microwave irradiated from the antenna 3-2 into the heating chamber 1 is not absorbed by the heated object 2, is reflected by the heated object 2 and the wall surface of the heating chamber 1, and returns to the antenna 3-2. come. Then, the returned reflected microwave is input to the nonreciprocal circuit 8-2 from the first output terminal 8-2-b.
- the non-reciprocal circuit 8-2 receives the reflected microwave input from the first output terminal 8-2-2b in the third stage from the second output terminal 8-2-2c, which is the final stage in the first embodiment. Output to the input terminal 8-3-a of the nonreciprocal circuit 8-3.
- the final stage irreversible circuit 8-3 transmits the reflected microwave input to the input terminal 8-3-a from the first output terminal 8-3-b to the corresponding antenna 3-3 in the antenna group 3.
- the reflected microwave transmitted to the antenna 3-3 is radiated toward the heated object 2 in the heating chamber 1.
- the antenna 3-3 Since the antenna 3-3 is arranged at a different position from the antennas 3-1 and 3-2, the irradiation angle of the microwave from the antenna 3-3 to the heated object 2 accommodated in the heating chamber 1 is the antenna 3 -1 and 3-2 are different from the irradiation angle of the microwave to the object to be heated 2 accommodated in the heating chamber 1. As a result, the microwave from the microwave oscillator 4 to the object to be heated 2 is further effectively used, and the uniformity of irradiation to the object to be heated 2 is further improved.
- the microwave irradiated into the heating chamber 1 from the antenna 3-3 is not absorbed by the heated object 2, is reflected by the heated object 2 and the wall surface of the heating chamber 1, and returns to the antenna 3-3. come. Then, the returned reflected microwave is input to the nonreciprocal circuit 8-3 from the first output terminal 8-3-b.
- the nonreciprocal circuit 8-3 outputs the reflected microwave input from the first output terminal 8-3-b to the termination resistor 10 from the second output terminal 8-3-c.
- the terminating resistor 10 consumes the reflected microwave power from the antenna 3-3.
- the microwave from the microwave oscillator 4 is irradiated from the antenna 3-1 to the object to be heated 2 accommodated in the heating chamber 1, and the object to be heated 2 and the heating object are heated.
- the microwave reflected by the wall surface of the chamber 1 is irradiated from the antenna 3-1 to the heated object 2 from the antennas 3-2 and 3-3 in the second and subsequent stages, so that the heated object 2 can be efficiently heated.
- the antennas 3-1 to 3-3 are arranged at different positions, the uniformity of irradiation of the object to be heated 2 with respect to various objects to be heated having different shapes, types, sizes, and amounts. Is improved, and uneven heating of the article to be heated 2 is suppressed.
- FIG. A microwave heating apparatus according to Embodiment 2 of the present invention will be described below with reference to FIG.
- the microwave heating apparatus according to the first embodiment is configured such that all n antennas 3-1 to 3-n of the antenna group 3 are arranged on the same wall surface of the heating chamber 1.
- the n antennas 3-1 to 3-n are divided into a plurality of pieces, and the divided antennas are arranged on the wall surface of the heating chamber 1.
- the second embodiment shows a case where n is 3, in which the first antenna 3-1 is placed on the side wall surface adjacent to the side wall surface on which the door is formed, and the second antenna 3-2 is placed on the ceiling.
- the third antenna 3-3 is disposed on the side wall surface opposite to the side wall surface on which the first antenna 3-1 is disposed on the wall surface.
- the second embodiment is the same as the first embodiment.
- symbol shows the same or an equivalent part.
- the microwave heating apparatus according to the second embodiment configured as described above operates in the same manner as the microwave heating apparatus according to the first embodiment.
- the microwave from the microwave oscillator 4 is efficiently used for heating the object to be heated 2, and the antennas 3-1 to 3-3 are large. Since they are arranged at different positions, the uniformity of irradiation to the object to be heated 2 is further improved with respect to various objects to be heated of different shapes, types, sizes, and quantities, and the object to be heated 2 is heated. Unevenness is suppressed.
- Embodiment 3 a microwave heating apparatus according to Embodiment 3 of the present invention will be described with reference to FIG.
- the microwave heating apparatus according to the third embodiment is largely different from the microwave heating apparatus according to the first embodiment in the following four points, and the other points are the same as those in the first embodiment.
- symbol shows the same or an equivalent part.
- the microwave heating apparatus according to Embodiment 1 has one non-reciprocal circuit 8-1 in the first stage in the non-reciprocal circuit group 8, whereas the microwave heating apparatus according to Embodiment 3 The difference is that a plurality of non-reciprocal circuits connected in cascade are provided.
- the microwave heating apparatus according to the first embodiment is terminated between the second output terminal 8-nc of the final stage non-reciprocal circuit 8-n in the non-reciprocal circuit group 8 and the ground terminal GND. Whereas the resistor 10 is connected, the microwave heating apparatus according to the third embodiment has a second output terminal 8-nc of the non-reciprocal circuit 8-n in the final stage in the non-reciprocal circuit group 8.
- the non-reciprocal circuit group 8 is different in that it is connected to the input terminal 8-11-a of the first stage non-reciprocal circuit 8-11.
- the microwave heating apparatus includes the second output terminal 8-nc of the last stage nonreciprocal circuit 8-n in the nonreciprocal circuit group 8 and the first stage in the nonreciprocal circuit group 8.
- the power detection unit 11 is connected to the input terminal 8-11-a of the nonreciprocal circuit 8-11, and the second output terminal 8-nc of the final stage nonreciprocal circuit 8-n and the first stage nonreciprocal circuit are connected. The difference is that the power appearing at the input terminal 8-11-a of 8-11 is detected.
- n antennas 3-1 to 3-n of the antenna group 3 are divided into a plurality of pieces, and the divided antennas are arranged on the wall surface of the heating chamber 1.
- the first antenna 3-1 is formed on the ceiling wall surface
- the second antenna 3-2 and the third antenna 3-3 are formed by the door. It is arrange
- the first-stage nonreciprocal circuit 8-1 in the nonreciprocal circuit group 8 includes a plurality of nonreciprocal circuits 8-11 and 8-12 connected in cascade, that is, connected in series. In the third embodiment, two cases are shown, but the number is not limited to two, and may be three or more.
- the nonreciprocal circuit 8-11 located on the output side the first output end 8-11-b is connected to the corresponding antenna 3-1 of the antenna group 3, and the input end 8-11-a is the non-return circuit of the final stage.
- the second output terminal 8-11-c is connected to the second output terminal 8-3-c of the reversible circuit 8-3, and the second output terminal 8-11-c is connected to the input terminal 8--2-a of the second stage non-reciprocal circuit 8-2. Connected.
- the input terminal 8-11-a of the non-reciprocal circuit 8-11 and the second output terminal 8--3-c of the final stage non-reciprocal circuit 8-3 are connected by a third microwave transmission line 12.
- the input end 8-12-a is connected to the output end 6b of the microwave amplifier 6, and the first output end 8-12-b is located on the output side.
- the reversible circuit 8-11 is connected to the input terminal 8-11-a, and the second output terminal 8-12-c is connected to the ground terminal GND through the termination resistor 10a.
- the terminating resistor 10a is a resistive element formed by a conductor pattern on the other main surface of the dielectric substrate on which the microwave amplifier 6 is formed and terminated at 50 ⁇ .
- the power detector 11 is a non-reciprocal circuit located on the output side of the second output terminal 8-3-c of the final stage non-reciprocal circuit 8-3 and the first stage non-reciprocal circuit 8-1 in the non-reciprocal circuit group 8. It is connected to the input terminal 8-11-a of 8-11.
- the power detection unit 11 includes a non-reciprocal circuit 8 located on the output side of the second output terminal 8-3-c of the final stage non-reciprocal circuit 8-3 and the first stage non-reciprocal circuit 8-1 in the non-reciprocal circuit group 8.
- the power appearing at the input terminal 8-11-a of -11 is detected and output to the control means 5a as the amount of power.
- the power detection unit 11 and the input terminal 8-11-a of the nonreciprocal circuit 8-11 located on the output side of the first stage nonreciprocal circuit 8-1 are connected by a fourth microwave transmission line 13.
- the power detector 11 is a directional coupler having a coupling degree of about 40 dB, a detector diode that rectifies the amount of power detected by the directional coupler, and rectified by the detector diode.
- a smoothing capacitor that smoothes the processed signal and outputs it to the control means 5a is provided.
- the directional coupler in the power detector 11 detects an amount of power that is about 1/10000 of the transmitted and reflected power.
- the amount of microwave power transmitted to the input terminal 8-11-a of the non-reciprocal circuit 8-11 located on the output side of the first-stage non-reciprocal circuit 8-1 and the antenna group 3 Detecting the amount of reflected microwave power returned by the final stage antenna 3 and output from the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 in the nonreciprocal circuit group 8.
- An electric signal corresponding to the amount of electric power is output.
- the amount of microwave power transmitted to the input terminal 8-11-a of the nonreciprocal circuit 8-11 located on the output side in the first stage nonreciprocal circuit 8-1 is the microwave output from the microwave amplifier 6. It corresponds to the amount of power.
- this electric energy is referred to as the electric energy of the transmission microwave.
- the power detector 11 is formed on one main surface of the dielectric substrate on which the microwave oscillator 4 is formed, one formed on the other main surface of the dielectric substrate, Any one formed on a dielectric substrate different from the dielectric substrate on which the wave oscillator 4 is formed may be used.
- the control unit 5 a receives the output from the power detection unit 11 and performs variable control of the oscillation frequency of the microwave oscillator 4 and variable control of the output power level of the microwave amplifier 6.
- the control means 5a drives the microwave oscillator 4 and the microwave amplifier 6 in the initial state. That is, the control means 5 a gives a frequency control signal to the microwave oscillator 4 so that the initial oscillation frequency of the microwave oscillator 4 is 2400 MHz which is an initial value, and outputs the rated value of the microwave amplifier 6.
- An output control signal is given to the microwave amplifier 6.
- the output control signal corresponds to a driving voltage for the microwave amplifier 6.
- the control means 5a When the microwave oscillator 4 and the microwave amplifier 6 are operated in the initial state, and the control means 5a receives the output from the power detector 11, the ratio of the reflected microwave power amount to the transmitted microwave power amount is set. Then, it is determined whether or not the power amount ratio exceeds a set value. In the third embodiment, the set value is 10%.
- the control means 5a sets the oscillation frequency to the microwave oscillator 4. Provides a frequency control signal that switches to a different frequency. Further, an output control signal for adjusting the output power level is given to the microwave amplifier 6.
- the control means 5a gives the microwave oscillator 4 a frequency control signal for maintaining the oscillation frequency. Then, an output control signal for reducing the output power level is given to the microwave amplifier 6. That is, the drive voltage for the microwave amplifier 6 is reduced.
- the control means 5a receives the output from the power detector 11, and (i) obtains the power amount ratio of the reflected microwave power amount to the transmission microwave power amount, and whether or not the power amount ratio exceeds the set value.
- a frequency control signal is given to the microwave oscillator 4 and the oscillation frequency of the microwave oscillator 4 is variably controlled around a reference value.
- An output control signal is given to the microwave amplifier 6 The output power level of the microwave amplifier 6 is variably controlled around the rated output.
- control means 5a receives the output from the power detector 11, and performs both the variable control of the oscillation frequency of the microwave oscillator 4 and the control of the output power level of the microwave amplifier.
- any one of the controls may be used.
- n is 3 in the antennas 3-1 to 3-n of the antenna group 3 and the non-reciprocal circuits 8-1 to 8-n of the non-reciprocal circuit group 8.
- the microwaves reflected in the heating chamber 1 are sequentially processed in the same manner in the next stage.
- the microwave oscillator 4 is driven at the initial oscillation frequency by the frequency control signal from the control means 5a, and the microwave amplifier 6 is driven at the rated value by the output control signal from the control means 5a.
- the microwave oscillator 4 generates a microwave at the oscillation frequency of the initial value, and the microwave amplifier 6 outputs the microwave from the output terminal 6b at the rated output power level.
- the microwave output in this way is guided to the nonreciprocal circuit group 8 via the second microwave transmission line 9.
- the microwave guided to the nonreciprocal circuit group 8 is radiated from the antenna 3-1 toward the object to be heated 2 in the heating chamber 1 via the first stage nonreciprocal circuit 8-1.
- the microwave reflected by the object to be heated 2 and the wall surface of the heating chamber 1 is heated from the antenna 3-1 ⁇ the nonreciprocal circuit 8-1 ⁇ the second stage nonreciprocal circuit 8-2 ⁇ the antenna 3-2 to the heating chamber 1. Radiated toward the object 2 to be heated.
- Microwaves reflected by the object 2 and the wall of the heating chamber 1 are transmitted from the antenna 3-2 ⁇ the second stage nonreciprocal circuit 8-2 ⁇ the last stage nonreciprocal circuit 8-3 ⁇ the antenna 3-3. Radiated toward the object to be heated 2 in the heating chamber 1. The microwave reflected by the object to be heated 2 and the wall surface of the heating chamber 1 returns from the antenna 3-3 to the final stage nonreciprocal circuit 8-3, and the second output of the final stage nonreciprocal circuit 8-3. Since the operation similar to that of the first embodiment is performed up to the point output from the terminal 8-3-c, detailed description thereof is omitted.
- the reflected microwave output from the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 is input to the nonreciprocal circuit 8-11 on the output side of the first stage nonreciprocal circuit 8-1. 8-11-a.
- the microwave guided to the input terminal 8-11-a is transmitted from the first output terminal 8-11-b to the corresponding antenna 3-1 in the antenna group 3.
- the microwave transmitted to the antenna 3-1 is radiated toward the heated object 2 in the heating chamber 1.
- the antenna 3-1 radiates the reflected microwave together with the transmission microwave to the object to be heated 2 accommodated in the heating chamber 1. Therefore, the microwaves radiated from the antenna 3-3 at the final stage to the object to be heated 2 and reflected by the object to be heated 2 and the wall surface of the heating chamber 1, etc.
- the microwave heating device also reuses the power consumed by the termination resistor 10.
- the power appearing at the input terminal 8-11-a is detected by the power detection unit 11.
- the power detection unit 11 converts the detected power into an electrical signal corresponding to the amount of power and outputs it to the control means 5a.
- an electric signal corresponding to the amount of power appearing at the second output terminal 8-3-c of the final stage non-reciprocal circuit 8-3 is used as the reflected power information and the first stage non-reciprocal circuit 8-1.
- An electric signal corresponding to the power appearing at the input terminal 8-11-a of the nonreciprocal circuit 8-11 located on the output side is hereinafter referred to as transmission power information.
- the control means 5a receives the reflected power information and the transmission power information from the power detection unit 11, obtains the power amount ratio of the reflected microwave power amount to the transmission microwave power amount, and this power amount ratio exceeds the set value. It is determined whether or not.
- the control means 5a gives the microwave oscillator 4 a frequency control signal for switching the oscillation frequency to a different frequency. Further, an output control signal for adjusting the output power level is given to the microwave amplifier 6.
- the microwave oscillator 4 receives the frequency control signal and outputs a microwave whose frequency is changed with reference to the initial oscillation frequency from the output terminal 4a.
- the microwave amplifier 6 receives the output control signal, and outputs the microwave whose output voltage level is changed based on the rated value from the output terminal 6b.
- the control means 5a gives a frequency control signal for maintaining the oscillation frequency to the microwave oscillator 4 and gives an output control signal for reducing the output power level to the microwave amplifier 6.
- the power detection unit 11 is connected to the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 in the nonreciprocal circuit group 8 and the first stage.
- the power appearing at the input terminal 8-11-a of the irreversible circuit 8-11 located on the output side of the irreversible circuit 8-1 is detected, and the control means 5a reflects the reflected power information and the transmitted power information from the power detector 11.
- the oscillation frequency of the microwave oscillator 4 is variably controlled around the reference value, and the output power level of the microwave amplifier 6 is variably controlled around the rated output.
- the power consumption of the microwave amplifier 6 is suppressed so that the amount of reflected microwave power is not more than a set value, and the microwave from the microwave oscillator 4 can be efficiently used for heating the article to be heated 2.
- the microwave from the microwave oscillator 4 is irradiated from the antenna 3-1 to the object to be heated 2 accommodated in the heating chamber 1.
- the microwaves reflected by the heated object 2 and the wall surface of the heating chamber 1 are irradiated from the antenna 3-1 to the heated object 2 from the antennas 3-2 and 3-3 on the second and subsequent stages. Since the reflected microwave from is returned to the antenna 3-1 in the first stage, it is efficiently used for heating the article 2 to be heated. Further, since the antennas 3-1 to 3-3 are arranged at different positions, the uniformity of irradiation to the heated object 2 with respect to various heated objects having different shapes, types, sizes, and amounts.
- the nonreciprocal circuit 8-11 located on the output side of the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 and the first stage nonreciprocal circuit 8-1. Since the oscillation frequency of the microwave oscillator 4 and the output power level of the microwave amplifier 6 are variably controlled according to the amount of power appearing at the input terminal 8-11-a, the power consumption of the microwave amplifier 6 can be suppressed.
- the electric energy of the reflected microwave is set to a set value or less, and the microwave from the microwave oscillator 4 can be efficiently used for heating the article 2 to be heated.
- any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
- Heating chamber 1 Heating chamber, 2 heated object, 3 antenna group, 3-1 to 3-3 antenna, 4 microwave oscillator, 5, 5a control means, 6 microwave amplifier, 8 non-reciprocal circuit group, 8-1 to 8- 3 Non-reciprocal circuit, 10, 10a termination resistor, 11 power detector.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
According to the present invention, an antenna group (3) comprises n number of antennas which radiate microwaves in a heating chamber, wherein n is an integer of at least 2. The microwaves generated from a microwave oscillator (4) are amplified by a microwave amplifier (6). An irreversible circuit group (8) is provided with: n stages of irreversible circuits (8-1 to 8-3) corresponding to the n number of antennas (3-1 to 3-3) of the antenna group (3). Each of the irreversible circuits (8-1 to 8-3) has an input terminal, a first output terminal, and a second output terminal. In the case of the irreversible circuit (8-1) of a first stage, the input terminal is connected to an output terminal of the microwave amplifier (6), and the first output terminal is connected to the corresponding antenna (3-1 to 3-3) of the antenna group (3). In the case of the irreversible circuits (8-2, 8-3) of the second to n-th stages, the input terminal is connected to the second output terminal of the irreversible circuit (8-1, 8-2) of the previous stage and the first output terminal is connected to the corresponding antenna (3-1 to 3-3) of the antenna group (3).
Description
この発明は被加熱物へマイクロ波を放射するマイクロ波加熱装置に係り、特に、被加熱物が収容される加熱室内にマイクロ波を放射するアンテナを複数設けたマイクロ波加熱装置に関する。
The present invention relates to a microwave heating apparatus that radiates microwaves to an object to be heated, and more particularly, to a microwave heating apparatus that includes a plurality of antennas that radiate microwaves in a heating chamber in which an object to be heated is accommodated.
マイクロ波発生部が出力するマイクロ波電力を被加熱物の加熱エネルギーとして理想的には100%消費させることが可能な省エネルギー性能にすぐれたマイクロ波加熱装置を得る提案が再公表特許WO2009-157110号公報(特許文献1)によってなされている。
この特許文献1に示されたマイクロ加熱装置は、マイクロ波発生部で発生したマイクロ波を第1加熱室に給電し、第1加熱室からマイクロ波発生部側に戻る反射マイクロ波を循環型の非可逆回路により第2加熱室に伝送させる構成にしたものである。 A proposal for obtaining a microwave heating apparatus with excellent energy saving performance capable of consuming 100% of the microwave power output from the microwave generator ideally as the heating energy of the object to be heated has been republished Patent No. WO2009-157110 It is made by the gazette (patent document 1).
The microwave heating device disclosed in Patent Document 1 feeds the microwave generated by the microwave generation unit to the first heating chamber and circulates the reflected microwave returning from the first heating chamber to the microwave generation unit side. The non-reciprocal circuit is configured to transmit to the second heating chamber.
この特許文献1に示されたマイクロ加熱装置は、マイクロ波発生部で発生したマイクロ波を第1加熱室に給電し、第1加熱室からマイクロ波発生部側に戻る反射マイクロ波を循環型の非可逆回路により第2加熱室に伝送させる構成にしたものである。 A proposal for obtaining a microwave heating apparatus with excellent energy saving performance capable of consuming 100% of the microwave power output from the microwave generator ideally as the heating energy of the object to be heated has been republished Patent No. WO2009-157110 It is made by the gazette (patent document 1).
The microwave heating device disclosed in Patent Document 1 feeds the microwave generated by the microwave generation unit to the first heating chamber and circulates the reflected microwave returning from the first heating chamber to the microwave generation unit side. The non-reciprocal circuit is configured to transmit to the second heating chamber.
特許文献1に示されたマイクロ加熱装置は、2つのアンテナを用いているものの、第1加熱室及び第2加熱室それぞれに1つのアンテナを配置しているものであり、1つの加熱室に対して複数のアンテナを配置してマイクロ波発生部の出力を効率よく利用するという考え方はない。
1つの加熱室に複数のアンテナを配置するという考え方がない以上、加熱室に収容される形状、大きさ、量の異なる様々な被加熱物に対して、効率良く加熱するために複数の角度からマイクロ波を照射するために1つの加熱室に対して複数のアンテナを配置するという考え方もない。 Although the micro-heating device shown in Patent Document 1 uses two antennas, one antenna is disposed in each of the first heating chamber and the second heating chamber, and one heating chamber is provided. Therefore, there is no concept of efficiently using the output of the microwave generation unit by arranging a plurality of antennas.
As long as there is no idea of arranging a plurality of antennas in one heating chamber, in order to efficiently heat various objects to be heated in different shapes, sizes, and quantities accommodated in the heating chamber from a plurality of angles. There is also no idea of arranging a plurality of antennas for one heating chamber in order to irradiate microwaves.
1つの加熱室に複数のアンテナを配置するという考え方がない以上、加熱室に収容される形状、大きさ、量の異なる様々な被加熱物に対して、効率良く加熱するために複数の角度からマイクロ波を照射するために1つの加熱室に対して複数のアンテナを配置するという考え方もない。 Although the micro-heating device shown in Patent Document 1 uses two antennas, one antenna is disposed in each of the first heating chamber and the second heating chamber, and one heating chamber is provided. Therefore, there is no concept of efficiently using the output of the microwave generation unit by arranging a plurality of antennas.
As long as there is no idea of arranging a plurality of antennas in one heating chamber, in order to efficiently heat various objects to be heated in different shapes, sizes, and quantities accommodated in the heating chamber from a plurality of angles. There is also no idea of arranging a plurality of antennas for one heating chamber in order to irradiate microwaves.
この発明は上記した点に鑑みてなされてものであり、被加熱物が収容される加熱室に複数のアンテナを配置し、アンテナ側に戻ってくる反射されたマイクロ波を再利用し、形状、大きさ、量の異なる様々な被加熱物に対し、複数のアンテナに対するマイクロ波発振器からの出力を効率良く利用できるマイクロ波加熱装置を得ることを目的とする。
This invention is made in view of the above-mentioned point, arranges a plurality of antennas in a heating chamber in which an object to be heated is accommodated, reuses the reflected microwaves returning to the antenna side, An object of the present invention is to obtain a microwave heating apparatus capable of efficiently using outputs from a microwave oscillator for a plurality of antennas for various objects to be heated having different sizes and amounts.
この発明に係るマイクロ波加熱装置は、加熱室内にマイクロ波を放射する、2以上の整数であるn個のアンテナからなるアンテナ群と、マイクロ波を生成するマイクロ波発振器と、このマイクロ波発振器で生成されたマイクロ波を増幅するマイクロ波増幅器と、アンテナ群のn個のアンテナに対応したn段の非可逆回路を具備し、それぞれの非可逆回路が入力端、第1の出力端、第2の出力端を有し、初段の非可逆回路は、入力端がマイクロ波増幅器の出力端に接続され、第1の出力端がアンテナ群における対応したアンテナに接続され、2段目からn段目の非可逆回路は、入力端が前段の非可逆回路の第2の出力端に接続され、第1の出力端がアンテナ群における対応したアンテナに接続される非可逆回路群とを備える。
A microwave heating apparatus according to the present invention includes an antenna group consisting of n antennas that are integers of 2 or more that radiates microwaves into a heating chamber, a microwave oscillator that generates microwaves, and the microwave oscillator. A microwave amplifier that amplifies the generated microwave and an n-stage non-reciprocal circuit corresponding to n antennas of the antenna group, each non-reciprocal circuit having an input terminal, a first output terminal, and a second In the first stage non-reciprocal circuit, the input terminal is connected to the output terminal of the microwave amplifier, the first output terminal is connected to the corresponding antenna in the antenna group, and the second to nth stages. The non-reciprocal circuit includes a non-reciprocal circuit group whose input terminal is connected to the second output terminal of the preceding non-reciprocal circuit and whose first output terminal is connected to a corresponding antenna in the antenna group.
この発明によれば、加熱室内に収容される被加熱物に複数のアンテナからマイクロ波を放射する構成にしたことにより、形状、大きさ、量の異なる様々な被加熱物に対してアンテナ側に戻ってくる反射されたマイクロ波を再利用でき、かつ、マイクロ波発振器からの出力を効率良く利用することができる。
According to the present invention, since the microwaves are radiated from the plurality of antennas to the object to be heated accommodated in the heating chamber, the antenna side with respect to various objects to be heated having different shapes, sizes, and amounts is provided. The reflected microwave that returns can be reused, and the output from the microwave oscillator can be used efficiently.
実施の形態1.
この発明の実施の形態1に係るマイクロ波加熱装置を図1に基づいて説明する。
加熱室1には被加熱物2が収容され、マイクロ波が供給される。加熱室1は被加熱物2を出し入れするための扉(図示省略)が1つの側壁面に設けられている。加熱室1の扉を設けた側壁面以外の3つの側壁面並びに天井壁面及び底壁面は金属材料の遮蔽板で構成されており、加熱室1内に供給されたマイクロ波を加熱室1内部に閉じ込めるよう構成されている。 Embodiment 1 FIG.
A microwave heating apparatus according to Embodiment 1 of the present invention will be described with reference to FIG.
The object to be heated 2 is accommodated in the heating chamber 1 and supplied with microwaves. In the heating chamber 1, a door (not shown) for taking in and out the article to be heated 2 is provided on one side wall surface. Three side wall surfaces other than the side wall surface provided with the door of the heating chamber 1, the ceiling wall surface and the bottom wall surface are made of a shielding plate made of a metal material, and microwaves supplied into the heating chamber 1 are introduced into the heating chamber 1. Constructed to contain.
この発明の実施の形態1に係るマイクロ波加熱装置を図1に基づいて説明する。
加熱室1には被加熱物2が収容され、マイクロ波が供給される。加熱室1は被加熱物2を出し入れするための扉(図示省略)が1つの側壁面に設けられている。加熱室1の扉を設けた側壁面以外の3つの側壁面並びに天井壁面及び底壁面は金属材料の遮蔽板で構成されており、加熱室1内に供給されたマイクロ波を加熱室1内部に閉じ込めるよう構成されている。 Embodiment 1 FIG.
A microwave heating apparatus according to Embodiment 1 of the present invention will be described with reference to FIG.
The object to be heated 2 is accommodated in the heating chamber 1 and supplied with microwaves. In the heating chamber 1, a door (not shown) for taking in and out the article to be heated 2 is provided on one side wall surface. Three side wall surfaces other than the side wall surface provided with the door of the heating chamber 1, the ceiling wall surface and the bottom wall surface are made of a shielding plate made of a metal material, and microwaves supplied into the heating chamber 1 are introduced into the heating chamber 1. Constructed to contain.
n個のアンテナ3-1~3-nはそれぞれ加熱室1内にマイクロ波を放射するとともに、被加熱物2及び加熱室1を構成する壁面などから反射されて戻ってくるマイクロ波を受ける。これらn個のアンテナ3-1~3-nはアンテナ群3を構成する。この実施の形態1では、n個のアンテナ3-1~3-n全てが加熱室1の扉を設けた側壁面以外の3つの側壁面のうちの一つの側壁面に配置されている。
nは2以上の整数であり、この実施の形態1では3個である。加熱室1の大きさ、加熱室1内に収容される被加熱物の形状、大きさ、量から考慮するとアンテナ3-1~3-nは3個が好適であるが、2個でもよく、4個以上でも良い。 Each of the n antennas 3-1 to 3 -n radiates microwaves into the heating chamber 1, and receives microwaves reflected and returned from the object to be heated 2 and the wall surfaces constituting the heating chamber 1. These n antennas 3-1 to 3-n constitute anantenna group 3. In the first embodiment, all the n antennas 3-1 to 3-n are arranged on one side wall surface of three side wall surfaces other than the side wall surface provided with the door of the heating chamber 1.
n is an integer of 2 or more, and is 3 in the first embodiment. Considering the size of the heating chamber 1 and the shape, size, and amount of the object to be heated accommodated in the heating chamber 1, three antennas 3-1 to 3-n are preferable, but two antennas may be used. Four or more may be sufficient.
nは2以上の整数であり、この実施の形態1では3個である。加熱室1の大きさ、加熱室1内に収容される被加熱物の形状、大きさ、量から考慮するとアンテナ3-1~3-nは3個が好適であるが、2個でもよく、4個以上でも良い。 Each of the n antennas 3-1 to 3 -n radiates microwaves into the heating chamber 1, and receives microwaves reflected and returned from the object to be heated 2 and the wall surfaces constituting the heating chamber 1. These n antennas 3-1 to 3-n constitute an
n is an integer of 2 or more, and is 3 in the first embodiment. Considering the size of the heating chamber 1 and the shape, size, and amount of the object to be heated accommodated in the heating chamber 1, three antennas 3-1 to 3-n are preferable, but two antennas may be used. Four or more may be sufficient.
マイクロ波を生成するマイクロ波発振器4は低誘電損失材料により構成された誘電体基板の一主面上にマイクロ波を生成する半導体素子を用いて構成される発振回路を具備する。マイクロ波発振器4は初期状態での発振周波数が2400MHzであり、制御手段5からの周波数制御信号により、2400MHzを基準に可変制御される。なお、この実施の形態1ではマイクロ波発振器4の発振周波数は制御手段5によって可変制御されるものとしたが、マイクロ波発振器4は一定周波数、つまり、2400MHzを出力するものであっても良い。制御手段5はマイクロ波発振器4が形成される誘電体基板の一主面上に形成される。なお、制御手段5は誘電体基板の他主面上に形成されるものでも良く、マイクロ波発振器4が形成される誘電体基板とは別の誘電体基板上に形成されても良い。
The microwave oscillator 4 that generates a microwave includes an oscillation circuit that includes a semiconductor element that generates a microwave on one main surface of a dielectric substrate that is formed of a low dielectric loss material. The microwave oscillator 4 has an oscillation frequency of 2400 MHz in an initial state, and is variably controlled based on 2400 MHz by a frequency control signal from the control means 5. In the first embodiment, the oscillation frequency of the microwave oscillator 4 is variably controlled by the control means 5, but the microwave oscillator 4 may output a constant frequency, that is, 2400 MHz. The control means 5 is formed on one main surface of the dielectric substrate on which the microwave oscillator 4 is formed. The control means 5 may be formed on the other main surface of the dielectric substrate, or may be formed on a dielectric substrate different from the dielectric substrate on which the microwave oscillator 4 is formed.
マイクロ波増幅器6はマイクロ波発振器4の出力端4aから出力されたマイクロ波を増幅する。マイクロ波増幅器6は、低誘電損失材料により構成された誘電体基板上に半導体素子を用いた導電体パターンにより構成される増幅回路を具備する。マイクロ波増幅器6は、さらに、増幅回路を良好に動作させるために、入力側と出力側にそれぞれ、増幅回路と同じ誘電体基板上に導電体パターンにより構成される整合回路を具備する。この実施の形態1ではマイクロ波発振器4が誘電体基板の一主面に、マイクロ波増幅器6が同じ誘電体基板の他主面に形成され、回路基板としての小型化を図っている。なお、マイクロ波発振器4とマイクロ波増幅器6とが別々の誘電体基板に形成されても良い。
マイクロ波増幅器6は制御手段5からの出力制御信号を受け、この出力制御信号によりマイクロ波増幅器6の出力電力レベルが可変制御される。なお、この実施の形態1ではマイクロ波増幅器6の出力電力レベルが制御手段5によって可変制御されるものとしたが、マイクロ波増幅器6の出力は定格電力であっても良い。 Themicrowave amplifier 6 amplifies the microwave output from the output terminal 4 a of the microwave oscillator 4. The microwave amplifier 6 includes an amplifier circuit constituted by a conductor pattern using a semiconductor element on a dielectric substrate made of a low dielectric loss material. The microwave amplifier 6 further includes matching circuits each formed of a conductor pattern on the same dielectric substrate as the amplifier circuit on the input side and the output side, respectively, in order to operate the amplifier circuit satisfactorily. In the first embodiment, the microwave oscillator 4 is formed on one main surface of the dielectric substrate, and the microwave amplifier 6 is formed on the other main surface of the same dielectric substrate, so that the circuit board is miniaturized. Note that the microwave oscillator 4 and the microwave amplifier 6 may be formed on separate dielectric substrates.
Themicrowave amplifier 6 receives the output control signal from the control means 5, and the output power level of the microwave amplifier 6 is variably controlled by this output control signal. In the first embodiment, the output power level of the microwave amplifier 6 is variably controlled by the control means 5, but the output of the microwave amplifier 6 may be rated power.
マイクロ波増幅器6は制御手段5からの出力制御信号を受け、この出力制御信号によりマイクロ波増幅器6の出力電力レベルが可変制御される。なお、この実施の形態1ではマイクロ波増幅器6の出力電力レベルが制御手段5によって可変制御されるものとしたが、マイクロ波増幅器6の出力は定格電力であっても良い。 The
The
マイクロ波発振器4の出力端4aとマイクロ波増幅器6の入力端6aとの接続が誘電体基板上に導電体パターンによって構成される伝送回路となる第1のマイクロ波伝送線路7によって行われる。この実施の形態1では第1のマイクロ波伝送線路7はマイクロ波発振器4が形成される誘電体基板の一主面に導電体パターンによって形成され、伝送回路としての特性インピーダンスが50Ωである。
The connection between the output end 4a of the microwave oscillator 4 and the input end 6a of the microwave amplifier 6 is performed by a first microwave transmission line 7 serving as a transmission circuit constituted by a conductor pattern on a dielectric substrate. In the first embodiment, the first microwave transmission line 7 is formed by a conductor pattern on one main surface of a dielectric substrate on which the microwave oscillator 4 is formed, and has a characteristic impedance of 50Ω as a transmission circuit.
非可逆回路群8はアンテナ群3のn個のアンテナ3-1~3-nに対応したn段の非可逆回路8-1~8-nを具備している。n段の非可逆回路8-1~8-nそれぞれは入力端8-1-a~8-n-a、第1の出力端8-1-b~8-n-b、第2の出力端8-1-c~8-n-cを有している。
初段の非可逆回路8-1は、入力端8-1-aがマイクロ波増幅器6の出力端6bに接続され、第1の出力端8-1-bがアンテナ群3における対応したアンテナ3-1に接続される。 Thenonreciprocal circuit group 8 includes n stages of nonreciprocal circuits 8-1 to 8-n corresponding to the n antennas 3-1 to 3-n of the antenna group 3. The n-stage nonreciprocal circuits 8-1 to 8-n have input terminals 8-1-a to 8-na, first output terminals 8-1-b to 8-nb, and second outputs, respectively. It has ends 8-1-c to 8-nc.
The first stage non-reciprocal circuit 8-1 has an input terminal 8-1-a connected to theoutput terminal 6b of the microwave amplifier 6 and a first output terminal 8-1-b corresponding to the corresponding antenna 3-in the antenna group 3. 1 is connected.
初段の非可逆回路8-1は、入力端8-1-aがマイクロ波増幅器6の出力端6bに接続され、第1の出力端8-1-bがアンテナ群3における対応したアンテナ3-1に接続される。 The
The first stage non-reciprocal circuit 8-1 has an input terminal 8-1-a connected to the
2段目からn段目の非可逆回路8-2~8-nは、入力端8-2-a~8-n-aが前段の非可逆回路8-1~8-n-1の第2の出力端8-1-c~8-n-1-cに接続され、第1の出力端8-2-b~8-n-bがアンテナ群3における対応したアンテナ3-2~3-nに接続される。非可逆回路群8におけるn段の非可逆回路8-1~8-nはいわゆる従属接続されている。
nは2以上の整数であり、この実施の形態1ではアンテナ群3のアンテナ3-1~3-3と同様に3個である。アンテナ3-1~3-nの数と同数であり、アンテナが2個であれば2個、4個以上であれば4個以上である。
n段の非可逆回路8-1~8-nそれぞれは循環型であり、具体的にはサーキュレータである。 The non-reciprocal circuits 8-2 to 8-n from the second stage to the n-th stage are connected to the non-reciprocal circuits 8-1 to 8-n-1 of the preceding stage by the input terminals 8-2-a to 8-na. Are connected to the output terminals 8-1-c to 8-n-1-c of the second antenna, and the first output terminals 8-2-b to 8-nb are connected to the corresponding antennas 3-2 to 3-3 in theantenna group 3. -Connected to n. The n-stage nonreciprocal circuits 8-1 to 8-n in the nonreciprocal circuit group 8 are so-called cascade-connected.
n is an integer of 2 or more, and in the first embodiment, the number is three as in the antennas 3-1 to 3-3 of theantenna group 3. The number is the same as the number of antennas 3-1 to 3 -n. If there are two antennas, the number is two, and four or more is four or more.
Each of the n-stage non-reciprocal circuits 8-1 to 8-n is a circulation type, specifically a circulator.
nは2以上の整数であり、この実施の形態1ではアンテナ群3のアンテナ3-1~3-3と同様に3個である。アンテナ3-1~3-nの数と同数であり、アンテナが2個であれば2個、4個以上であれば4個以上である。
n段の非可逆回路8-1~8-nそれぞれは循環型であり、具体的にはサーキュレータである。 The non-reciprocal circuits 8-2 to 8-n from the second stage to the n-th stage are connected to the non-reciprocal circuits 8-1 to 8-n-1 of the preceding stage by the input terminals 8-2-a to 8-na. Are connected to the output terminals 8-1-c to 8-n-1-c of the second antenna, and the first output terminals 8-2-b to 8-nb are connected to the corresponding antennas 3-2 to 3-3 in the
n is an integer of 2 or more, and in the first embodiment, the number is three as in the antennas 3-1 to 3-3 of the
Each of the n-stage non-reciprocal circuits 8-1 to 8-n is a circulation type, specifically a circulator.
マイクロ波増幅器6の出力端と非可逆回路群8における初段の非可逆回路8-1の入力端8-1-aとの接続が誘電体基板上に導電体パターンによって構成される伝送回路となる第2のマイクロ波伝送線路9によって行われる。この実施の形態1では第2のマイクロ波伝送線路9はマイクロ波増幅器6が形成される誘電体基板の他主面に導電体パターンによって形成され、伝送回路としての特性インピーダンスが50Ωである。
終端抵抗10は非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cと接地端GNDとの間に接続される。終端抵抗10はマイクロ波増幅器6が形成される誘電体基板の他主面に導電体パターンによって形成され、50Ωで終端された抵抗素子である。 The connection between the output terminal of themicrowave amplifier 6 and the input terminal 8-1 -a of the first stage irreversible circuit 8-1 in the irreversible circuit group 8 is a transmission circuit constituted by a conductor pattern on a dielectric substrate. This is performed by the second microwave transmission line 9. In the first embodiment, the second microwave transmission line 9 is formed by a conductor pattern on the other main surface of the dielectric substrate on which the microwave amplifier 6 is formed, and has a characteristic impedance of 50Ω as a transmission circuit.
Thetermination resistor 10 is connected between the second output terminal 8-nc of the final stage non-reciprocal circuit 8-n in the non-reciprocal circuit group 8 and the ground terminal GND. The terminating resistor 10 is a resistive element formed by a conductor pattern on the other main surface of the dielectric substrate on which the microwave amplifier 6 is formed and terminated at 50Ω.
終端抵抗10は非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cと接地端GNDとの間に接続される。終端抵抗10はマイクロ波増幅器6が形成される誘電体基板の他主面に導電体パターンによって形成され、50Ωで終端された抵抗素子である。 The connection between the output terminal of the
The
次に、このように構成されたマイクロ波加熱装置の動作について説明する。なお、説明を簡単にするため、アンテナ群3のアンテナ3-1~3-n及び非可逆回路群8の非可逆回路8-1~8-nのnを3として説明する。4以上の場合も加熱室1にて反射されたマイクロ波が順次、次段にて同様に処理されるものである。
制御手段5からの制御信号によって駆動されたマイクロ波発振器4はマイクロ波を生成する。マイクロ波発振器4で生成されたマイクロ波は出力端4aから設定された周波数により出力され、第1のマイクロ波伝送線路7を介してマイクロ波増幅器6の入力端6aに導かれる。マイクロ波増幅器6は制御手段5からの制御信号によって設定された出力電力レベルが出力端6bに出力されるようにして、第1のマイクロ波伝送線路7により導かれたマイクロ波を増幅する。 Next, the operation of the microwave heating apparatus configured as described above will be described. For the sake of simplicity, description will be made assuming that n is 3 in the antennas 3-1 to 3-n of theantenna group 3 and the non-reciprocal circuits 8-1 to 8-n of the non-reciprocal circuit group 8. In the case of 4 or more, the microwaves reflected in the heating chamber 1 are sequentially processed in the same manner in the next stage.
Themicrowave oscillator 4 driven by a control signal from the control means 5 generates a microwave. The microwave generated by the microwave oscillator 4 is output at a frequency set from the output terminal 4 a and is guided to the input terminal 6 a of the microwave amplifier 6 through the first microwave transmission line 7. The microwave amplifier 6 amplifies the microwave guided by the first microwave transmission line 7 so that the output power level set by the control signal from the control means 5 is output to the output terminal 6b.
制御手段5からの制御信号によって駆動されたマイクロ波発振器4はマイクロ波を生成する。マイクロ波発振器4で生成されたマイクロ波は出力端4aから設定された周波数により出力され、第1のマイクロ波伝送線路7を介してマイクロ波増幅器6の入力端6aに導かれる。マイクロ波増幅器6は制御手段5からの制御信号によって設定された出力電力レベルが出力端6bに出力されるようにして、第1のマイクロ波伝送線路7により導かれたマイクロ波を増幅する。 Next, the operation of the microwave heating apparatus configured as described above will be described. For the sake of simplicity, description will be made assuming that n is 3 in the antennas 3-1 to 3-n of the
The
マイクロ波増幅器6により増幅され、出力端6bから出力されたマイクロ波は第2のマイクロ波伝送線路9を介して非可逆回路群8に導かれる。
非可逆回路群8における初段の非可逆回路8-1は、第2のマイクロ波伝送線路9を介して入力端8-1-aに導かれたマイクロ波を第1の出力端8-1-bからアンテナ群3における対応したアンテナ3-1に伝送する。アンテナ3-1に伝送されたマイクロ波が加熱室1内の被加熱物2に向かって放射される。
このように、アンテナ3-1は、加熱室1に収容された被加熱物2へマイクロ波を照射する。マイクロ波の照射を受けた被加熱物2は加熱される。 The microwave amplified by themicrowave amplifier 6 and output from the output terminal 6 b is guided to the irreversible circuit group 8 through the second microwave transmission line 9.
The first stage irreversible circuit 8-1 in theirreversible circuit group 8 transmits the microwave guided to the input terminal 8-1-a via the second microwave transmission line 9 to the first output terminal 8-1-. b is transmitted to the corresponding antenna 3-1 in the antenna group 3. The microwave transmitted to the antenna 3-1 is radiated toward the heated object 2 in the heating chamber 1.
Thus, the antenna 3-1 irradiates the object to be heated 2 accommodated in the heating chamber 1 with microwaves. The object to be heated 2 that has been irradiated with the microwave is heated.
非可逆回路群8における初段の非可逆回路8-1は、第2のマイクロ波伝送線路9を介して入力端8-1-aに導かれたマイクロ波を第1の出力端8-1-bからアンテナ群3における対応したアンテナ3-1に伝送する。アンテナ3-1に伝送されたマイクロ波が加熱室1内の被加熱物2に向かって放射される。
このように、アンテナ3-1は、加熱室1に収容された被加熱物2へマイクロ波を照射する。マイクロ波の照射を受けた被加熱物2は加熱される。 The microwave amplified by the
The first stage irreversible circuit 8-1 in the
Thus, the antenna 3-1 irradiates the object to be heated 2 accommodated in the heating chamber 1 with microwaves. The object to be heated 2 that has been irradiated with the microwave is heated.
一方、アンテナ3-1から加熱室1内に照射されたマイクロ波が、被加熱物2で吸収されず、被加熱物2及び加熱室1の壁面などにより反射され、アンテナ3-1に戻ってくる。すると、戻ってきたマイクロ波(以下、反射マイクロ波と称す)は第1の出力端8-1-bから非可逆回路8-1に入力される。非可逆回路8-1は、第1の出力端8-1-bから入力された反射マイクロ波を第2の出力端8-1-cから2段目の非可逆回路8-2の入力端8-2-aに出力する。2段目の非可逆回路8-2は入力端8-2-aに入力された反射マイクロ波を第1の出力端8-2-bからアンテナ群3における対応したアンテナ3-2に伝送する。アンテナ3-2に伝送された反射マイクロ波が加熱室1内の被加熱物2に向かって放射される。
On the other hand, the microwave irradiated from the antenna 3-1 into the heating chamber 1 is not absorbed by the heated object 2, is reflected by the heated object 2 and the wall surface of the heating chamber 1, and returns to the antenna 3-1. come. Then, the returned microwave (hereinafter referred to as a reflected microwave) is input to the nonreciprocal circuit 8-1 from the first output terminal 8-1-b. The nonreciprocal circuit 8-1 converts the reflected microwave input from the first output terminal 8-1-b from the second output terminal 8-1-c to the input terminal of the second stage irreversible circuit 8-2. Output to 8-2-a. The non-reciprocal circuit 8-2 in the second stage transmits the reflected microwave input to the input terminal 8-2-a from the first output terminal 8--2-b to the corresponding antenna 3-2 in the antenna group 3. . The reflected microwave transmitted to the antenna 3-2 is radiated toward the object to be heated 2 in the heating chamber 1.
アンテナ3-2はアンテナ3-1と異なった位置に配置されているため、アンテナ3-2から加熱室1に収容された被加熱物2へのマイクロ波の照射角度はアンテナ3-1から加熱室1に収容された被加熱物2へのマイクロ波の照射角度と異なる。その結果、被加熱物2へのマイクロ波発振器4からのマイクロ波は有効活用されるとともに、被加熱物2への照射の均一性が向上する。
Since the antenna 3-2 is arranged at a position different from that of the antenna 3-1, the microwave irradiation angle from the antenna 3-2 to the object to be heated 2 accommodated in the heating chamber 1 is heated from the antenna 3-1. This is different from the microwave irradiation angle to the object to be heated 2 accommodated in the chamber 1. As a result, the microwave from the microwave oscillator 4 to the object to be heated 2 is effectively used, and the uniformity of irradiation to the object to be heated 2 is improved.
一方、アンテナ3-2から加熱室1内に照射されたマイクロ波が、被加熱物2で吸収されず、被加熱物2及び加熱室1の壁面などにより反射され、アンテナ3-2に戻ってくる。すると、戻ってきた反射マイクロ波は第1の出力端8-2-bから非可逆回路8-2に入力される。非可逆回路8-2は、第1の出力端8-2-bから入力された反射マイクロ波を第2の出力端8-2-cから3段目、この実施の形態1では最終段の非可逆回路8-3の入力端8-3-aに出力する。最終段の非可逆回路8-3は入力端8-3-aに入力された反射マイクロ波を第1の出力端8-3-bからアンテナ群3における対応したアンテナ3-3に伝送する。アンテナ3-3に伝送された反射マイクロ波が加熱室1内の被加熱物2に向かって放射される。
On the other hand, the microwave irradiated from the antenna 3-2 into the heating chamber 1 is not absorbed by the heated object 2, is reflected by the heated object 2 and the wall surface of the heating chamber 1, and returns to the antenna 3-2. come. Then, the returned reflected microwave is input to the nonreciprocal circuit 8-2 from the first output terminal 8-2-b. The non-reciprocal circuit 8-2 receives the reflected microwave input from the first output terminal 8-2-2b in the third stage from the second output terminal 8-2-2c, which is the final stage in the first embodiment. Output to the input terminal 8-3-a of the nonreciprocal circuit 8-3. The final stage irreversible circuit 8-3 transmits the reflected microwave input to the input terminal 8-3-a from the first output terminal 8-3-b to the corresponding antenna 3-3 in the antenna group 3. The reflected microwave transmitted to the antenna 3-3 is radiated toward the heated object 2 in the heating chamber 1.
アンテナ3-3はアンテナ3-1及び3-2と異なった位置に配置されているため、アンテナ3-3から加熱室1に収容された被加熱物2へのマイクロ波の照射角度はアンテナ3-1及び3-2から加熱室1に収容された被加熱物2へのマイクロ波の照射角度と異なる。その結果、被加熱物2へのマイクロ波発振器4からのマイクロ波はさらに有効活用されるとともに、被加熱物2への照射の均一性もさらに向上する。
Since the antenna 3-3 is arranged at a different position from the antennas 3-1 and 3-2, the irradiation angle of the microwave from the antenna 3-3 to the heated object 2 accommodated in the heating chamber 1 is the antenna 3 -1 and 3-2 are different from the irradiation angle of the microwave to the object to be heated 2 accommodated in the heating chamber 1. As a result, the microwave from the microwave oscillator 4 to the object to be heated 2 is further effectively used, and the uniformity of irradiation to the object to be heated 2 is further improved.
一方、アンテナ3-3から加熱室1内に照射されたマイクロ波が、被加熱物2で吸収されず、被加熱物2及び加熱室1の壁面などにより反射され、アンテナ3-3に戻ってくる。すると、戻ってきた反射マイクロ波は第1の出力端8-3-bから非可逆回路8-3に入力される。非可逆回路8-3は、第1の出力端8-3-bから入力された反射マイクロ波を第2の出力端8-3-cから終端抵抗10に出力する。終端抵抗10によってアンテナ3-3からの反射マイクロ波の電力が消費される。
On the other hand, the microwave irradiated into the heating chamber 1 from the antenna 3-3 is not absorbed by the heated object 2, is reflected by the heated object 2 and the wall surface of the heating chamber 1, and returns to the antenna 3-3. come. Then, the returned reflected microwave is input to the nonreciprocal circuit 8-3 from the first output terminal 8-3-b. The nonreciprocal circuit 8-3 outputs the reflected microwave input from the first output terminal 8-3-b to the termination resistor 10 from the second output terminal 8-3-c. The terminating resistor 10 consumes the reflected microwave power from the antenna 3-3.
このように構成されたマイクロ加熱装置にあっては、マイクロ波発振器4からのマイクロ波は、加熱室1に収容された被加熱物2にアンテナ3-1から照射され、被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が2段目以降のアンテナ3-2及び3-3から被加熱物2にアンテナ3-1から照射されるため、効率良く被加熱物2の加熱に利用される。
さらに、アンテナ3-1から3-3は異なった位置に配置されているため、形状、種類、大きさ、量の異なる様々な被加熱物に対して、被加熱物2への照射の均一性が向上し、被加熱物2の加熱ムラが抑えられる。 In the microwave heating apparatus configured as described above, the microwave from themicrowave oscillator 4 is irradiated from the antenna 3-1 to the object to be heated 2 accommodated in the heating chamber 1, and the object to be heated 2 and the heating object are heated. The microwave reflected by the wall surface of the chamber 1 is irradiated from the antenna 3-1 to the heated object 2 from the antennas 3-2 and 3-3 in the second and subsequent stages, so that the heated object 2 can be efficiently heated. Used.
Further, since the antennas 3-1 to 3-3 are arranged at different positions, the uniformity of irradiation of the object to be heated 2 with respect to various objects to be heated having different shapes, types, sizes, and amounts. Is improved, and uneven heating of the article to be heated 2 is suppressed.
さらに、アンテナ3-1から3-3は異なった位置に配置されているため、形状、種類、大きさ、量の異なる様々な被加熱物に対して、被加熱物2への照射の均一性が向上し、被加熱物2の加熱ムラが抑えられる。 In the microwave heating apparatus configured as described above, the microwave from the
Further, since the antennas 3-1 to 3-3 are arranged at different positions, the uniformity of irradiation of the object to be heated 2 with respect to various objects to be heated having different shapes, types, sizes, and amounts. Is improved, and uneven heating of the article to be heated 2 is suppressed.
実施の形態2.
以下に、この発明の実施の形態2に係るマイクロ波加熱装置を図2に基づいて説明する。
この実施の形態2に係るマイクロ波加熱装置は、実施の形態1に係るマイクロ波加熱装置がアンテナ群3のn個のアンテナ3-1~3-nすべてが加熱室1の同一壁面に配置されたものとしたのに対し、n個のアンテナ3-1~3-nが複数個に分割され、分割されたアンテナ毎に加熱室1の壁面に配置されたものである。
具体的には、この実施の形態2ではnを3の場合を示し、第1のアンテナ3-1を扉が形成された側壁面に隣接した側壁面に、第2のアンテナ3-2を天井壁面に、第3のアンテナ3-3を第1のアンテナ3-1が配置された側壁面と対向する側壁面に、配置される。
その他の点について、実施の形態2は実施の形態1と同様である。なお、各図、同一符号は同一又は相当部分を示す。Embodiment 2. FIG.
A microwave heating apparatus according toEmbodiment 2 of the present invention will be described below with reference to FIG.
In the microwave heating apparatus according to the second embodiment, the microwave heating apparatus according to the first embodiment is configured such that all n antennas 3-1 to 3-n of theantenna group 3 are arranged on the same wall surface of the heating chamber 1. In contrast, the n antennas 3-1 to 3-n are divided into a plurality of pieces, and the divided antennas are arranged on the wall surface of the heating chamber 1.
Specifically, the second embodiment shows a case where n is 3, in which the first antenna 3-1 is placed on the side wall surface adjacent to the side wall surface on which the door is formed, and the second antenna 3-2 is placed on the ceiling. The third antenna 3-3 is disposed on the side wall surface opposite to the side wall surface on which the first antenna 3-1 is disposed on the wall surface.
In other respects, the second embodiment is the same as the first embodiment. In addition, in each figure, the same code | symbol shows the same or an equivalent part.
以下に、この発明の実施の形態2に係るマイクロ波加熱装置を図2に基づいて説明する。
この実施の形態2に係るマイクロ波加熱装置は、実施の形態1に係るマイクロ波加熱装置がアンテナ群3のn個のアンテナ3-1~3-nすべてが加熱室1の同一壁面に配置されたものとしたのに対し、n個のアンテナ3-1~3-nが複数個に分割され、分割されたアンテナ毎に加熱室1の壁面に配置されたものである。
具体的には、この実施の形態2ではnを3の場合を示し、第1のアンテナ3-1を扉が形成された側壁面に隣接した側壁面に、第2のアンテナ3-2を天井壁面に、第3のアンテナ3-3を第1のアンテナ3-1が配置された側壁面と対向する側壁面に、配置される。
その他の点について、実施の形態2は実施の形態1と同様である。なお、各図、同一符号は同一又は相当部分を示す。
A microwave heating apparatus according to
In the microwave heating apparatus according to the second embodiment, the microwave heating apparatus according to the first embodiment is configured such that all n antennas 3-1 to 3-n of the
Specifically, the second embodiment shows a case where n is 3, in which the first antenna 3-1 is placed on the side wall surface adjacent to the side wall surface on which the door is formed, and the second antenna 3-2 is placed on the ceiling. The third antenna 3-3 is disposed on the side wall surface opposite to the side wall surface on which the first antenna 3-1 is disposed on the wall surface.
In other respects, the second embodiment is the same as the first embodiment. In addition, in each figure, the same code | symbol shows the same or an equivalent part.
このように構成された実施の形態2に係るマイクロ波加熱装置にあっても、実施の形態1に係るマイクロ波加熱装置と同様に動作する。
また、実施の形態2に係るマイクロ波加熱装置にあっては、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用され、かつ、アンテナ3-1~3-3は大きく異なった位置に配置されているため、形状、種類、大きさ、量の異なる様々な被加熱物に対して、被加熱物2への照射の均一性がさらに向上し、被加熱物2の加熱ムラが抑えられる。 Even the microwave heating apparatus according to the second embodiment configured as described above operates in the same manner as the microwave heating apparatus according to the first embodiment.
In the microwave heating apparatus according to the second embodiment, the microwave from themicrowave oscillator 4 is efficiently used for heating the object to be heated 2, and the antennas 3-1 to 3-3 are large. Since they are arranged at different positions, the uniformity of irradiation to the object to be heated 2 is further improved with respect to various objects to be heated of different shapes, types, sizes, and quantities, and the object to be heated 2 is heated. Unevenness is suppressed.
また、実施の形態2に係るマイクロ波加熱装置にあっては、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用され、かつ、アンテナ3-1~3-3は大きく異なった位置に配置されているため、形状、種類、大きさ、量の異なる様々な被加熱物に対して、被加熱物2への照射の均一性がさらに向上し、被加熱物2の加熱ムラが抑えられる。 Even the microwave heating apparatus according to the second embodiment configured as described above operates in the same manner as the microwave heating apparatus according to the first embodiment.
In the microwave heating apparatus according to the second embodiment, the microwave from the
実施の形態3.
次に、この発明の実施の形態3に係るマイクロ波加熱装置を図3に基づいて説明する。
この実施の形態3に係るマイクロ波加熱装置は、実施の形態1に係るマイクロ波加熱装置に対して次の4点が大きく異なり、その他の点については実施の形態1と同様である。なお、各図、同一符号は同一又は相当部分を示す。
第1に、アンテナ群3のn個のアンテナ3-1~3-nの配置が異なる。
第2に、実施の形態1に係るマイクロ波加熱装置が非可逆回路群8における初段の非可逆回路8-1が1個であるのに対して、実施の形態3に係るマイクロ波加熱装置は縦続接続された複数の非可逆回路を具備している点で異なる。
第3に、実施の形態1に係るマイクロ波加熱装置が非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cと接地端GNDとの間に終端抵抗10が接続されているのに対して、実施の形態3に係るマイクロ波加熱装置は非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cが非可逆回路群8における初段の非可逆回路8-11の入力端8-11-aに接続されている点で異なる。
第4に、実施の形態3に係るマイクロ波加熱装置は非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cと非可逆回路群8における初段の非可逆回路8-11の入力端8-11-aとに電力検出部11が接続され、最終段の非可逆回路8-nの第2の出力端8-n-cと初段の非可逆回路8-11の入力端8-11-aに現れる電力を検出している点で異なる。Embodiment 3 FIG.
Next, a microwave heating apparatus according toEmbodiment 3 of the present invention will be described with reference to FIG.
The microwave heating apparatus according to the third embodiment is largely different from the microwave heating apparatus according to the first embodiment in the following four points, and the other points are the same as those in the first embodiment. In addition, in each figure, the same code | symbol shows the same or an equivalent part.
First, the arrangement of the n antennas 3-1 to 3-n in theantenna group 3 is different.
Second, the microwave heating apparatus according to Embodiment 1 has one non-reciprocal circuit 8-1 in the first stage in thenon-reciprocal circuit group 8, whereas the microwave heating apparatus according to Embodiment 3 The difference is that a plurality of non-reciprocal circuits connected in cascade are provided.
Third, the microwave heating apparatus according to the first embodiment is terminated between the second output terminal 8-nc of the final stage non-reciprocal circuit 8-n in thenon-reciprocal circuit group 8 and the ground terminal GND. Whereas the resistor 10 is connected, the microwave heating apparatus according to the third embodiment has a second output terminal 8-nc of the non-reciprocal circuit 8-n in the final stage in the non-reciprocal circuit group 8. The non-reciprocal circuit group 8 is different in that it is connected to the input terminal 8-11-a of the first stage non-reciprocal circuit 8-11.
Fourth, the microwave heating apparatus according to the third embodiment includes the second output terminal 8-nc of the last stage nonreciprocal circuit 8-n in thenonreciprocal circuit group 8 and the first stage in the nonreciprocal circuit group 8. The power detection unit 11 is connected to the input terminal 8-11-a of the nonreciprocal circuit 8-11, and the second output terminal 8-nc of the final stage nonreciprocal circuit 8-n and the first stage nonreciprocal circuit are connected. The difference is that the power appearing at the input terminal 8-11-a of 8-11 is detected.
次に、この発明の実施の形態3に係るマイクロ波加熱装置を図3に基づいて説明する。
この実施の形態3に係るマイクロ波加熱装置は、実施の形態1に係るマイクロ波加熱装置に対して次の4点が大きく異なり、その他の点については実施の形態1と同様である。なお、各図、同一符号は同一又は相当部分を示す。
第1に、アンテナ群3のn個のアンテナ3-1~3-nの配置が異なる。
第2に、実施の形態1に係るマイクロ波加熱装置が非可逆回路群8における初段の非可逆回路8-1が1個であるのに対して、実施の形態3に係るマイクロ波加熱装置は縦続接続された複数の非可逆回路を具備している点で異なる。
第3に、実施の形態1に係るマイクロ波加熱装置が非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cと接地端GNDとの間に終端抵抗10が接続されているのに対して、実施の形態3に係るマイクロ波加熱装置は非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cが非可逆回路群8における初段の非可逆回路8-11の入力端8-11-aに接続されている点で異なる。
第4に、実施の形態3に係るマイクロ波加熱装置は非可逆回路群8における最終段の非可逆回路8-nの第2の出力端8-n-cと非可逆回路群8における初段の非可逆回路8-11の入力端8-11-aとに電力検出部11が接続され、最終段の非可逆回路8-nの第2の出力端8-n-cと初段の非可逆回路8-11の入力端8-11-aに現れる電力を検出している点で異なる。
Next, a microwave heating apparatus according to
The microwave heating apparatus according to the third embodiment is largely different from the microwave heating apparatus according to the first embodiment in the following four points, and the other points are the same as those in the first embodiment. In addition, in each figure, the same code | symbol shows the same or an equivalent part.
First, the arrangement of the n antennas 3-1 to 3-n in the
Second, the microwave heating apparatus according to Embodiment 1 has one non-reciprocal circuit 8-1 in the first stage in the
Third, the microwave heating apparatus according to the first embodiment is terminated between the second output terminal 8-nc of the final stage non-reciprocal circuit 8-n in the
Fourth, the microwave heating apparatus according to the third embodiment includes the second output terminal 8-nc of the last stage nonreciprocal circuit 8-n in the
以下に、上記した相違点を中心に説明する。
アンテナ群3のn個のアンテナ3-1~3-nが複数個に分割され、分割されたアンテナ毎に加熱室1の壁面に配置される。
具体的には、この実施の形態3ではnを3の場合を示し、第1のアンテナ3-1を天井壁面に、第2のアンテナ3-2及び第3のアンテナ3-3を扉が形成されていない側壁面に、配置される。 Below, it demonstrates centering on the above-mentioned difference.
The n antennas 3-1 to 3-n of theantenna group 3 are divided into a plurality of pieces, and the divided antennas are arranged on the wall surface of the heating chamber 1.
Specifically, inEmbodiment 3, the case where n is 3 is shown, the first antenna 3-1 is formed on the ceiling wall surface, and the second antenna 3-2 and the third antenna 3-3 are formed by the door. It is arrange | positioned on the side wall surface which is not made.
アンテナ群3のn個のアンテナ3-1~3-nが複数個に分割され、分割されたアンテナ毎に加熱室1の壁面に配置される。
具体的には、この実施の形態3ではnを3の場合を示し、第1のアンテナ3-1を天井壁面に、第2のアンテナ3-2及び第3のアンテナ3-3を扉が形成されていない側壁面に、配置される。 Below, it demonstrates centering on the above-mentioned difference.
The n antennas 3-1 to 3-n of the
Specifically, in
非可逆回路群8における初段の非可逆回路8-1は縦続接続、つまり、直列接続された複数の非可逆回路8-11及び8-12を具備する。この実施の形態3では2個の場合を示しているが、2個に限られるものではなく、3個以上でも良い。
出力側に位置する非可逆回路8-11は、第1の出力端8-11-bがアンテナ群3の対応するアンテナ3-1に接続され、入力端8-11-aが最終段の非可逆回路8-3の第2の出力端8-3-cに接続され、第2の出力端8-11-cが2段目の非可逆回路8-2の入力端8-2-aに接続される。非可逆回路8-11の入力端8-11-aと最終段の非可逆回路8-3の第2の出力端8-3-cは第3のマイクロ波伝送線路12によって接続される。 The first-stage nonreciprocal circuit 8-1 in thenonreciprocal circuit group 8 includes a plurality of nonreciprocal circuits 8-11 and 8-12 connected in cascade, that is, connected in series. In the third embodiment, two cases are shown, but the number is not limited to two, and may be three or more.
In the nonreciprocal circuit 8-11 located on the output side, the first output end 8-11-b is connected to the corresponding antenna 3-1 of theantenna group 3, and the input end 8-11-a is the non-return circuit of the final stage. The second output terminal 8-11-c is connected to the second output terminal 8-3-c of the reversible circuit 8-3, and the second output terminal 8-11-c is connected to the input terminal 8--2-a of the second stage non-reciprocal circuit 8-2. Connected. The input terminal 8-11-a of the non-reciprocal circuit 8-11 and the second output terminal 8--3-c of the final stage non-reciprocal circuit 8-3 are connected by a third microwave transmission line 12.
出力側に位置する非可逆回路8-11は、第1の出力端8-11-bがアンテナ群3の対応するアンテナ3-1に接続され、入力端8-11-aが最終段の非可逆回路8-3の第2の出力端8-3-cに接続され、第2の出力端8-11-cが2段目の非可逆回路8-2の入力端8-2-aに接続される。非可逆回路8-11の入力端8-11-aと最終段の非可逆回路8-3の第2の出力端8-3-cは第3のマイクロ波伝送線路12によって接続される。 The first-stage nonreciprocal circuit 8-1 in the
In the nonreciprocal circuit 8-11 located on the output side, the first output end 8-11-b is connected to the corresponding antenna 3-1 of the
入力側に位置する非可逆回路8-12は、入力端8-12-aがマイクロ波増幅器6の出力端6bに接続され、第1の出力端8-12-bが出力側に位置する非可逆回路8-11の入力端8-11-aに接続され、第2の出力端8-12-cが終端抵抗10aを介して接地端GNDに接続される。終端抵抗10aはマイクロ波増幅器6が形成される誘電体基板の他主面に導電体パターンによって形成され、50Ωで終端された抵抗素子である。
In the nonreciprocal circuit 8-12 located on the input side, the input end 8-12-a is connected to the output end 6b of the microwave amplifier 6, and the first output end 8-12-b is located on the output side. The reversible circuit 8-11 is connected to the input terminal 8-11-a, and the second output terminal 8-12-c is connected to the ground terminal GND through the termination resistor 10a. The terminating resistor 10a is a resistive element formed by a conductor pattern on the other main surface of the dielectric substrate on which the microwave amplifier 6 is formed and terminated at 50Ω.
電力検出部11は非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cと、初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに接続される。電力検出部11は非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cと初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに現れる電力を検出し、電力量として制御手段5aに出力する。電力検出部11と初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aは第4のマイクロ波伝送線路13によって接続される。
電力検出部11は、図示していないが、結合度が約40dBの方向性結合器と、この方向性結合器にて検出された電力量を整流化する検波ダイオードと、この検波ダイオードによって整流化された信号を平滑処理して、制御手段5aに出力する平滑コンデンサを備える。 Thepower detector 11 is a non-reciprocal circuit located on the output side of the second output terminal 8-3-c of the final stage non-reciprocal circuit 8-3 and the first stage non-reciprocal circuit 8-1 in the non-reciprocal circuit group 8. It is connected to the input terminal 8-11-a of 8-11. The power detection unit 11 includes a non-reciprocal circuit 8 located on the output side of the second output terminal 8-3-c of the final stage non-reciprocal circuit 8-3 and the first stage non-reciprocal circuit 8-1 in the non-reciprocal circuit group 8. The power appearing at the input terminal 8-11-a of -11 is detected and output to the control means 5a as the amount of power. The power detection unit 11 and the input terminal 8-11-a of the nonreciprocal circuit 8-11 located on the output side of the first stage nonreciprocal circuit 8-1 are connected by a fourth microwave transmission line 13.
Although not shown, thepower detector 11 is a directional coupler having a coupling degree of about 40 dB, a detector diode that rectifies the amount of power detected by the directional coupler, and rectified by the detector diode. A smoothing capacitor that smoothes the processed signal and outputs it to the control means 5a is provided.
電力検出部11は、図示していないが、結合度が約40dBの方向性結合器と、この方向性結合器にて検出された電力量を整流化する検波ダイオードと、この検波ダイオードによって整流化された信号を平滑処理して、制御手段5aに出力する平滑コンデンサを備える。 The
Although not shown, the
電力検出部11における方向性結合器は伝送及び反射電力の約1/10000の電力量を検出する。この実施の形態3では、初段の非可逆回路8-1における出力側に位置する非可逆回路8-11の入力端8-11-aに伝送されるマイクロ波の電力量と、アンテナ群3の最終段のアンテナ3によって戻され、非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cから出力される反射マイクロ波の電力量とを検出し、電力量に応じた電気信号を出力する。なお、初段の非可逆回路8-1における出力側に位置する非可逆回路8-11の入力端8-11-aに伝送されるマイクロ波の電力量はマイクロ波増幅器6から出力されたマイクロ波の電力量に相当する。以下、この電力量を伝送マイクロ波の電力量と称す。
電力検出部11は、制御手段5aと同様に、マイクロ波発振器4が形成される誘電体基板の一主面上に形成されるもの、誘電体基板の他主面上に形成されるもの、マイクロ波発振器4が形成される誘電体基板とは別の誘電体基板上に形成されるもの、いずれでも良い。 The directional coupler in thepower detector 11 detects an amount of power that is about 1/10000 of the transmitted and reflected power. In the third embodiment, the amount of microwave power transmitted to the input terminal 8-11-a of the non-reciprocal circuit 8-11 located on the output side of the first-stage non-reciprocal circuit 8-1 and the antenna group 3 Detecting the amount of reflected microwave power returned by the final stage antenna 3 and output from the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 in the nonreciprocal circuit group 8. An electric signal corresponding to the amount of electric power is output. Note that the amount of microwave power transmitted to the input terminal 8-11-a of the nonreciprocal circuit 8-11 located on the output side in the first stage nonreciprocal circuit 8-1 is the microwave output from the microwave amplifier 6. It corresponds to the amount of power. Hereinafter, this electric energy is referred to as the electric energy of the transmission microwave.
Similar to the control means 5a, thepower detector 11 is formed on one main surface of the dielectric substrate on which the microwave oscillator 4 is formed, one formed on the other main surface of the dielectric substrate, Any one formed on a dielectric substrate different from the dielectric substrate on which the wave oscillator 4 is formed may be used.
電力検出部11は、制御手段5aと同様に、マイクロ波発振器4が形成される誘電体基板の一主面上に形成されるもの、誘電体基板の他主面上に形成されるもの、マイクロ波発振器4が形成される誘電体基板とは別の誘電体基板上に形成されるもの、いずれでも良い。 The directional coupler in the
Similar to the control means 5a, the
制御手段5aは電力検出部11からの出力を受け、マイクロ波発振器4の発振周波数の可変制御、及びマイクロ波増幅器6の出力電力レベルの可変制御を行う。
制御手段5aは、マイクロ波発振器4及びマイクロ波増幅器6を初期状態にて駆動する。すなわち、制御手段5aは、マイクロ波発振器4の初期状態の発振周波数を初期値である2400MHzとなるようにマイクロ波発振器4に周波数制御信号を与え、マイクロ波増幅器6の定格値を出力するようにマイクロ波増幅器6に出力制御信号を与える。出力制御信号はマイクロ波増幅器6に対する駆動電圧に相当する。 Thecontrol unit 5 a receives the output from the power detection unit 11 and performs variable control of the oscillation frequency of the microwave oscillator 4 and variable control of the output power level of the microwave amplifier 6.
The control means 5a drives themicrowave oscillator 4 and the microwave amplifier 6 in the initial state. That is, the control means 5 a gives a frequency control signal to the microwave oscillator 4 so that the initial oscillation frequency of the microwave oscillator 4 is 2400 MHz which is an initial value, and outputs the rated value of the microwave amplifier 6. An output control signal is given to the microwave amplifier 6. The output control signal corresponds to a driving voltage for the microwave amplifier 6.
制御手段5aは、マイクロ波発振器4及びマイクロ波増幅器6を初期状態にて駆動する。すなわち、制御手段5aは、マイクロ波発振器4の初期状態の発振周波数を初期値である2400MHzとなるようにマイクロ波発振器4に周波数制御信号を与え、マイクロ波増幅器6の定格値を出力するようにマイクロ波増幅器6に出力制御信号を与える。出力制御信号はマイクロ波増幅器6に対する駆動電圧に相当する。 The
The control means 5a drives the
マイクロ波発振器4及びマイクロ波増幅器6を初期状態にて動作し、制御手段5aが電力検出部11からの出力を受けると、伝送マイクロ波の電力量に対する反射マイクロ波の電力量の電力量比率を求め、この電力量比率が設定値を超えるか否かを判定する。この実施の形態3では設定値を10%としている。被加熱物2を加熱する場合、電力検出部11からの反射マイクロ波の電力量が伝送マイクロ波の電力量に対して設定値を超えた場合、制御手段5aはマイクロ波発振器4に発振周波数を異なる周波数に切換える周波数制御信号を与える。さらには、マイクロ波増幅器6に出力電力レベルを調整する出力制御信号を与える。
また、電力検出部11からの反射マイクロ波の電力量が伝送マイクロ波の電力量に対して設定値以下である場合、制御手段5aはマイクロ波発振器4に発振周波数を維持する周波数制御信号を与え、マイクロ波増幅器6に出力電力レベルを減じる出力制御信号を与える。つまり、マイクロ波増幅器6に対する駆動電圧を低減する。 When themicrowave oscillator 4 and the microwave amplifier 6 are operated in the initial state, and the control means 5a receives the output from the power detector 11, the ratio of the reflected microwave power amount to the transmitted microwave power amount is set. Then, it is determined whether or not the power amount ratio exceeds a set value. In the third embodiment, the set value is 10%. When the object to be heated 2 is heated, when the amount of reflected microwave power from the power detection unit 11 exceeds a set value with respect to the amount of transmitted microwave power, the control means 5a sets the oscillation frequency to the microwave oscillator 4. Provides a frequency control signal that switches to a different frequency. Further, an output control signal for adjusting the output power level is given to the microwave amplifier 6.
In addition, when the amount of reflected microwave power from thepower detection unit 11 is equal to or lower than the set value with respect to the amount of transmitted microwave power, the control means 5a gives the microwave oscillator 4 a frequency control signal for maintaining the oscillation frequency. Then, an output control signal for reducing the output power level is given to the microwave amplifier 6. That is, the drive voltage for the microwave amplifier 6 is reduced.
また、電力検出部11からの反射マイクロ波の電力量が伝送マイクロ波の電力量に対して設定値以下である場合、制御手段5aはマイクロ波発振器4に発振周波数を維持する周波数制御信号を与え、マイクロ波増幅器6に出力電力レベルを減じる出力制御信号を与える。つまり、マイクロ波増幅器6に対する駆動電圧を低減する。 When the
In addition, when the amount of reflected microwave power from the
要するに、制御手段5aは電力検出部11からの出力を受け、(i)伝送マイクロ波の電力量に対する反射マイクロ波の電力量の電力量比率を求め、この電力量比率が設定値を超えるか否かを判定する、(ii)マイクロ波発振器4に周波数制御信号を与え、マイクロ波発振器4の発振周波数を、基準値を中心に可変制御する、(iii)マイクロ波増幅器6に出力制御信号を与え、マイクロ波増幅器6の出力電力レベルを、定格出力を中心に可変制御する。
その結果、実施の形態3に係るマイクロ波加熱装置は、マイクロ波増幅器6の消費電力を抑えて反射マイクロ波の電力量を設定値以下にし、しかも、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用される。 In short, the control means 5a receives the output from thepower detector 11, and (i) obtains the power amount ratio of the reflected microwave power amount to the transmission microwave power amount, and whether or not the power amount ratio exceeds the set value. (Ii) A frequency control signal is given to the microwave oscillator 4 and the oscillation frequency of the microwave oscillator 4 is variably controlled around a reference value. (Iii) An output control signal is given to the microwave amplifier 6 The output power level of the microwave amplifier 6 is variably controlled around the rated output.
As a result, the microwave heating apparatus according to the third embodiment suppresses the power consumption of themicrowave amplifier 6 so that the amount of reflected microwave power is equal to or lower than the set value, and the microwave from the microwave oscillator 4 is efficiently generated. It is used for heating the article 2 to be heated.
その結果、実施の形態3に係るマイクロ波加熱装置は、マイクロ波増幅器6の消費電力を抑えて反射マイクロ波の電力量を設定値以下にし、しかも、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用される。 In short, the control means 5a receives the output from the
As a result, the microwave heating apparatus according to the third embodiment suppresses the power consumption of the
上記した実施の形態3では、制御手段5aは電力検出部11からの出力を受け、マイクロ波発振器4の発振周波数の可変制御、及び前記マイクロ波増幅器の出力電力レベルの制御の両者を行ったものとしたが、いずれか一方の制御を行うものでも良い。
In the above-described third embodiment, the control means 5a receives the output from the power detector 11, and performs both the variable control of the oscillation frequency of the microwave oscillator 4 and the control of the output power level of the microwave amplifier. However, any one of the controls may be used.
次に、このように構成されたマイクロ波加熱装置の動作について説明する。なお、説明を簡単にするため、アンテナ群3のアンテナ3-1~3-n及び非可逆回路群8の非可逆回路8-1~8-nのnを3として説明する。4以上の場合も加熱室1にて反射されたマイクロ波が順次、次段にて同様に処理されるものである。
制御手段5aからの周波数制御信号によってマイクロ波発振器4は初期値の発振周波数で駆動し、制御手段5aからの出力制御信号によってマイクロ波増幅器6は定格値で駆動される。 Next, the operation of the microwave heating apparatus configured as described above will be described. For the sake of simplicity, description will be made assuming that n is 3 in the antennas 3-1 to 3-n of theantenna group 3 and the non-reciprocal circuits 8-1 to 8-n of the non-reciprocal circuit group 8. In the case of 4 or more, the microwaves reflected in the heating chamber 1 are sequentially processed in the same manner in the next stage.
Themicrowave oscillator 4 is driven at the initial oscillation frequency by the frequency control signal from the control means 5a, and the microwave amplifier 6 is driven at the rated value by the output control signal from the control means 5a.
制御手段5aからの周波数制御信号によってマイクロ波発振器4は初期値の発振周波数で駆動し、制御手段5aからの出力制御信号によってマイクロ波増幅器6は定格値で駆動される。 Next, the operation of the microwave heating apparatus configured as described above will be described. For the sake of simplicity, description will be made assuming that n is 3 in the antennas 3-1 to 3-n of the
The
マイクロ波発振器4は初期値の発振周波数でマイクロ波を生成し、マイクロ波増幅器6は定格値の出力電力レベルにて出力端6bからマイクロ波を出力する。このようにして出力されたマイクロ波は第2のマイクロ波伝送線路9を介して非可逆回路群8に導かれる。
非可逆回路群8に導かれたマイクロ波は、初段の非可逆回路8-1を介してアンテナ3-1から加熱室1内の被加熱物2に向かって放射される。
被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が、アンテナ3-1→非可逆回路8-1→2段目の非可逆回路8-2→アンテナ3-2から加熱室1内の被加熱物2に向かって放射される。
被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が、アンテナ3-2→2段目の非可逆回路8-2→最終段の非可逆回路8-3→アンテナ3-3から加熱室1内の被加熱物2に向かって放射される。
被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が、アンテナ3-3から最終段の非可逆回路8-3に戻り、最終段の非可逆回路8-3の第2の出力端8-3-cから出力される点までは、実施の形態1と同様な動作が行われるので、詳細な説明は省略する。 Themicrowave oscillator 4 generates a microwave at the oscillation frequency of the initial value, and the microwave amplifier 6 outputs the microwave from the output terminal 6b at the rated output power level. The microwave output in this way is guided to the nonreciprocal circuit group 8 via the second microwave transmission line 9.
The microwave guided to thenonreciprocal circuit group 8 is radiated from the antenna 3-1 toward the object to be heated 2 in the heating chamber 1 via the first stage nonreciprocal circuit 8-1.
The microwave reflected by the object to be heated 2 and the wall surface of the heating chamber 1 is heated from the antenna 3-1 → the nonreciprocal circuit 8-1 → the second stage nonreciprocal circuit 8-2 → the antenna 3-2 to the heating chamber 1. Radiated toward theobject 2 to be heated.
Microwaves reflected by theobject 2 and the wall of the heating chamber 1 are transmitted from the antenna 3-2 → the second stage nonreciprocal circuit 8-2 → the last stage nonreciprocal circuit 8-3 → the antenna 3-3. Radiated toward the object to be heated 2 in the heating chamber 1.
The microwave reflected by the object to be heated 2 and the wall surface of the heating chamber 1 returns from the antenna 3-3 to the final stage nonreciprocal circuit 8-3, and the second output of the final stage nonreciprocal circuit 8-3. Since the operation similar to that of the first embodiment is performed up to the point output from the terminal 8-3-c, detailed description thereof is omitted.
非可逆回路群8に導かれたマイクロ波は、初段の非可逆回路8-1を介してアンテナ3-1から加熱室1内の被加熱物2に向かって放射される。
被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が、アンテナ3-1→非可逆回路8-1→2段目の非可逆回路8-2→アンテナ3-2から加熱室1内の被加熱物2に向かって放射される。
被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が、アンテナ3-2→2段目の非可逆回路8-2→最終段の非可逆回路8-3→アンテナ3-3から加熱室1内の被加熱物2に向かって放射される。
被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が、アンテナ3-3から最終段の非可逆回路8-3に戻り、最終段の非可逆回路8-3の第2の出力端8-3-cから出力される点までは、実施の形態1と同様な動作が行われるので、詳細な説明は省略する。 The
The microwave guided to the
The microwave reflected by the object to be heated 2 and the wall surface of the heating chamber 1 is heated from the antenna 3-1 → the nonreciprocal circuit 8-1 → the second stage nonreciprocal circuit 8-2 → the antenna 3-2 to the heating chamber 1. Radiated toward the
Microwaves reflected by the
The microwave reflected by the object to be heated 2 and the wall surface of the heating chamber 1 returns from the antenna 3-3 to the final stage nonreciprocal circuit 8-3, and the second output of the final stage nonreciprocal circuit 8-3. Since the operation similar to that of the first embodiment is performed up to the point output from the terminal 8-3-c, detailed description thereof is omitted.
最終段の非可逆回路8-3の第2の出力端8-3-cから出力された反射マイクロ波は、初段の非可逆回路8-1の出力側の非可逆回路8-11の入力端8-11-aに導かれる。入力端8-11-aに導かれたマイクロ波を第1の出力端8-11-bからアンテナ群3における対応したアンテナ3-1に伝送する。アンテナ3-1に伝送されたマイクロ波が加熱室1内の被加熱物2に向かって放射される。
このように、アンテナ3-1は、加熱室1に収容された被加熱物2へ反射マイクロ波を伝送マイクロ波と合わせて放射する。
したがって、最終段のアンテナ3-3から被加熱物2へ放射され、被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波は、最終段の非可逆回路8-3及び第3のマイクロ波伝送線路12を介して初段の非可逆回路8-1の出力側の非可逆回路8-11の入力端8-11-aに導かれ、アンテナ3-1から被加熱物2へ放射するため、実施の形態1に係るマイクロ波加熱装置が終端抵抗10により消費された電力をも再利用している。 The reflected microwave output from the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 is input to the nonreciprocal circuit 8-11 on the output side of the first stage nonreciprocal circuit 8-1. 8-11-a. The microwave guided to the input terminal 8-11-a is transmitted from the first output terminal 8-11-b to the corresponding antenna 3-1 in theantenna group 3. The microwave transmitted to the antenna 3-1 is radiated toward the heated object 2 in the heating chamber 1.
As described above, the antenna 3-1 radiates the reflected microwave together with the transmission microwave to the object to be heated 2 accommodated in the heating chamber 1.
Therefore, the microwaves radiated from the antenna 3-3 at the final stage to the object to be heated 2 and reflected by the object to be heated 2 and the wall surface of the heating chamber 1, etc. It is guided to the input terminal 8-11-a of the nonreciprocal circuit 8-11 on the output side of the first stage nonreciprocal circuit 8-1 through themicrowave transmission line 12, and is radiated from the antenna 3-1 to the heated object 2. Therefore, the microwave heating device according to the first embodiment also reuses the power consumed by the termination resistor 10.
このように、アンテナ3-1は、加熱室1に収容された被加熱物2へ反射マイクロ波を伝送マイクロ波と合わせて放射する。
したがって、最終段のアンテナ3-3から被加熱物2へ放射され、被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波は、最終段の非可逆回路8-3及び第3のマイクロ波伝送線路12を介して初段の非可逆回路8-1の出力側の非可逆回路8-11の入力端8-11-aに導かれ、アンテナ3-1から被加熱物2へ放射するため、実施の形態1に係るマイクロ波加熱装置が終端抵抗10により消費された電力をも再利用している。 The reflected microwave output from the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 is input to the nonreciprocal circuit 8-11 on the output side of the first stage nonreciprocal circuit 8-1. 8-11-a. The microwave guided to the input terminal 8-11-a is transmitted from the first output terminal 8-11-b to the corresponding antenna 3-1 in the
As described above, the antenna 3-1 radiates the reflected microwave together with the transmission microwave to the object to be heated 2 accommodated in the heating chamber 1.
Therefore, the microwaves radiated from the antenna 3-3 at the final stage to the object to be heated 2 and reflected by the object to be heated 2 and the wall surface of the heating chamber 1, etc. It is guided to the input terminal 8-11-a of the nonreciprocal circuit 8-11 on the output side of the first stage nonreciprocal circuit 8-1 through the
また、非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cと初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに現れる電力は、電力検出部11によって検出される。電力検出部11はこれら検出された電力を電力量に応じた電気信号に変換して制御手段5aに出力する。非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cに現れる電力量に応じた電気信号を反射電力情報と、初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに現れる電力に応じた電気信号を伝送電力情報と、以下称す。
Further, in the nonreciprocal circuit group 8, the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 and the nonreciprocal circuit 8-11 positioned on the output side of the first stage nonreciprocal circuit 8-1. The power appearing at the input terminal 8-11-a is detected by the power detection unit 11. The power detection unit 11 converts the detected power into an electrical signal corresponding to the amount of power and outputs it to the control means 5a. In the non-reciprocal circuit group 8, an electric signal corresponding to the amount of power appearing at the second output terminal 8-3-c of the final stage non-reciprocal circuit 8-3 is used as the reflected power information and the first stage non-reciprocal circuit 8-1. An electric signal corresponding to the power appearing at the input terminal 8-11-a of the nonreciprocal circuit 8-11 located on the output side is hereinafter referred to as transmission power information.
制御手段5aは電力検出部11からの反射電力情報と伝送電力情報とを受け、伝送マイクロ波の電力量に対する反射マイクロ波の電力量の電力量比率を求め、この電力量比率が設定値を超えるか否かを判定する。
被加熱物2を加熱している場合、電力量比率が設定値を超えた場合、制御手段5aはマイクロ波発振器4に発振周波数を異なる周波数に切換える周波数制御信号を与える。さらには、マイクロ波増幅器6に出力電力レベルを調整する出力制御信号を与える。 The control means 5a receives the reflected power information and the transmission power information from thepower detection unit 11, obtains the power amount ratio of the reflected microwave power amount to the transmission microwave power amount, and this power amount ratio exceeds the set value. It is determined whether or not.
When the object to be heated 2 is heated, when the power amount ratio exceeds the set value, the control means 5a gives themicrowave oscillator 4 a frequency control signal for switching the oscillation frequency to a different frequency. Further, an output control signal for adjusting the output power level is given to the microwave amplifier 6.
被加熱物2を加熱している場合、電力量比率が設定値を超えた場合、制御手段5aはマイクロ波発振器4に発振周波数を異なる周波数に切換える周波数制御信号を与える。さらには、マイクロ波増幅器6に出力電力レベルを調整する出力制御信号を与える。 The control means 5a receives the reflected power information and the transmission power information from the
When the object to be heated 2 is heated, when the power amount ratio exceeds the set value, the control means 5a gives the
マイクロ波発振器4は周波数制御信号を受け、初期値の発振周波数を基準に周波数を変更したマイクロ波を出力端4aから出力する。
マイクロ波増幅器6は出力制御信号を受け、定格値を基準に出力電圧レベルを変更したマイクロ波を出力端6bから出力する。
一方、電力量比率が設定値以下であると、制御手段5aはマイクロ波発振器4に発振周波数を維持する周波数制御信号を与え、マイクロ波増幅器6に出力電力レベルを減じる出力制御信号を与える。 Themicrowave oscillator 4 receives the frequency control signal and outputs a microwave whose frequency is changed with reference to the initial oscillation frequency from the output terminal 4a.
Themicrowave amplifier 6 receives the output control signal, and outputs the microwave whose output voltage level is changed based on the rated value from the output terminal 6b.
On the other hand, if the power amount ratio is equal to or lower than the set value, the control means 5a gives a frequency control signal for maintaining the oscillation frequency to themicrowave oscillator 4 and gives an output control signal for reducing the output power level to the microwave amplifier 6.
マイクロ波増幅器6は出力制御信号を受け、定格値を基準に出力電圧レベルを変更したマイクロ波を出力端6bから出力する。
一方、電力量比率が設定値以下であると、制御手段5aはマイクロ波発振器4に発振周波数を維持する周波数制御信号を与え、マイクロ波増幅器6に出力電力レベルを減じる出力制御信号を与える。 The
The
On the other hand, if the power amount ratio is equal to or lower than the set value, the control means 5a gives a frequency control signal for maintaining the oscillation frequency to the
このように、実施の形態3に係るマイクロ波加熱装置は、電力検出部11が非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cと初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに現れる電力を検出し、制御手段5aが電力検出部11からの反射電力情報と伝送電力情報に基づき、マイクロ波発振器4の発振周波数を、基準値を中心に可変制御し、マイクロ波増幅器6の出力電力レベルを、定格出力を中心に可変制御する。
その結果、マイクロ波増幅器6の消費電力を抑えて反射マイクロ波の電力量を設定値以下にし、しかも、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用できる。 Thus, in the microwave heating apparatus according to the third embodiment, thepower detection unit 11 is connected to the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 in the nonreciprocal circuit group 8 and the first stage. The power appearing at the input terminal 8-11-a of the irreversible circuit 8-11 located on the output side of the irreversible circuit 8-1 is detected, and the control means 5a reflects the reflected power information and the transmitted power information from the power detector 11. Based on the above, the oscillation frequency of the microwave oscillator 4 is variably controlled around the reference value, and the output power level of the microwave amplifier 6 is variably controlled around the rated output.
As a result, the power consumption of themicrowave amplifier 6 is suppressed so that the amount of reflected microwave power is not more than a set value, and the microwave from the microwave oscillator 4 can be efficiently used for heating the article to be heated 2.
その結果、マイクロ波増幅器6の消費電力を抑えて反射マイクロ波の電力量を設定値以下にし、しかも、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用できる。 Thus, in the microwave heating apparatus according to the third embodiment, the
As a result, the power consumption of the
以上に述べたように、実施の形態3に係るマイクロ加熱装置にあっては、マイクロ波発振器4からのマイクロ波は、加熱室1に収容された被加熱物2にアンテナ3-1から照射され、被加熱物2及び加熱室1の壁面などにより反射されたマイクロ波が2段目以降のアンテナ3-2及び3-3から被加熱物2にアンテナ3-1から照射され、さらに、最終段からの反射マイクロ波が初段のアンテナ3-1に戻されるため、効率良く被加熱物2の加熱に利用される。
さらに、アンテナ3-1~3-3は異なった位置に配置されているため、形状、種類、大きさ、量の異なる様々な被加熱物に対して、被加熱物2への照射の均一性が向上し、被加熱物2の加熱ムラが抑えられる。
またさらに、非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cと初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに現れる電力量に応じて、マイクロ波発振器4の発振周波数及びマイクロ波増幅器6の出力電力レベルを可変制御しているため、マイクロ波増幅器6の消費電力を抑えて反射マイクロ波の電力量を設定値以下にし、しかも、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用できる。 As described above, in the microwave heating apparatus according to the third embodiment, the microwave from themicrowave oscillator 4 is irradiated from the antenna 3-1 to the object to be heated 2 accommodated in the heating chamber 1. The microwaves reflected by the heated object 2 and the wall surface of the heating chamber 1 are irradiated from the antenna 3-1 to the heated object 2 from the antennas 3-2 and 3-3 on the second and subsequent stages. Since the reflected microwave from is returned to the antenna 3-1 in the first stage, it is efficiently used for heating the article 2 to be heated.
Further, since the antennas 3-1 to 3-3 are arranged at different positions, the uniformity of irradiation to theheated object 2 with respect to various heated objects having different shapes, types, sizes, and amounts. Is improved, and uneven heating of the article to be heated 2 is suppressed.
Further, in thenonreciprocal circuit group 8, the nonreciprocal circuit 8-11 located on the output side of the second output terminal 8-3-c of the final stage nonreciprocal circuit 8-3 and the first stage nonreciprocal circuit 8-1. Since the oscillation frequency of the microwave oscillator 4 and the output power level of the microwave amplifier 6 are variably controlled according to the amount of power appearing at the input terminal 8-11-a, the power consumption of the microwave amplifier 6 can be suppressed. The electric energy of the reflected microwave is set to a set value or less, and the microwave from the microwave oscillator 4 can be efficiently used for heating the article 2 to be heated.
さらに、アンテナ3-1~3-3は異なった位置に配置されているため、形状、種類、大きさ、量の異なる様々な被加熱物に対して、被加熱物2への照射の均一性が向上し、被加熱物2の加熱ムラが抑えられる。
またさらに、非可逆回路群8における最終段の非可逆回路8-3の第2の出力端8-3-cと初段の非可逆回路8-1の出力側に位置する非可逆回路8-11の入力端8-11-aに現れる電力量に応じて、マイクロ波発振器4の発振周波数及びマイクロ波増幅器6の出力電力レベルを可変制御しているため、マイクロ波増幅器6の消費電力を抑えて反射マイクロ波の電力量を設定値以下にし、しかも、マイクロ波発振器4からのマイクロ波が効率良く被加熱物2の加熱に利用できる。 As described above, in the microwave heating apparatus according to the third embodiment, the microwave from the
Further, since the antennas 3-1 to 3-3 are arranged at different positions, the uniformity of irradiation to the
Further, in the
なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
In the present invention, within the scope of the invention, any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
1 加熱室、2 被加熱物、3 アンテナ群、3-1~3-3 アンテナ、4 マイクロ波発振器、5,5a 制御手段、6 マイクロ波増幅器、8 非可逆回路群、8-1~8-3 非可逆回路、10,10a 終端抵抗、11 電力検出部。
1 Heating chamber, 2 heated object, 3 antenna group, 3-1 to 3-3 antenna, 4 microwave oscillator, 5, 5a control means, 6 microwave amplifier, 8 non-reciprocal circuit group, 8-1 to 8- 3 Non-reciprocal circuit, 10, 10a termination resistor, 11 power detector.
Claims (12)
- 被加熱物が収容される加熱室、
この加熱室内にマイクロ波を放射する、2以上の整数であるn個のアンテナからなるアンテナ群、
マイクロ波を生成するマイクロ波発振器、
このマイクロ発振器で生成されたマイクロ波を増幅するマイクロ波増幅器、
上記アンテナ群のn個のアンテナに対応したn段の非可逆回路を具備し、それぞれの非可逆回路が入力端、第1の出力端、第2の出力端を有し、初段の非可逆回路は、入力端が前記マイクロ波増幅器の出力端に接続され、第1の出力端が前記アンテナ群における対応したアンテナに接続され、2段目からn段目の非可逆回路は、入力端が前段の非可逆回路の第2の出力端に接続され、第1の出力端が前記アンテナ群における対応したアンテナに接続される非可逆回路群
を備えたマイクロ波加熱装置。 A heating chamber in which an object to be heated is accommodated,
An antenna group consisting of n antennas, each of which is an integer of 2 or greater, that radiates microwaves into the heating chamber;
A microwave oscillator that generates microwaves,
A microwave amplifier that amplifies the microwave generated by this microwave oscillator,
An n-stage non-reciprocal circuit corresponding to n antennas of the antenna group is provided, each non-reciprocal circuit having an input terminal, a first output terminal, and a second output terminal. The input terminal is connected to the output terminal of the microwave amplifier, the first output terminal is connected to the corresponding antenna in the antenna group, and the non-reciprocal circuit from the second stage to the n-th stage has the input terminal at the front stage. A microwave heating device comprising: a nonreciprocal circuit group connected to a second output terminal of the nonreciprocal circuit, wherein the first output terminal is connected to a corresponding antenna in the antenna group. - 前記マイクロ波発振器は、低誘電損失材料により構成された誘電体基板上にマイクロ波を生成する半導体素子を用いて構成される発振回路を具備し、
前記マイクロ波増幅器は、低誘電損失材料により構成された誘電体基板上に半導体素子を用いて構成される増幅回路を具備し、
非可逆回路群におけるn段の非可逆回路それぞれはサーキュレータであることを特徴とする請求項1記載のマイクロ波加熱装置。 The microwave oscillator includes an oscillation circuit configured using a semiconductor element that generates a microwave on a dielectric substrate formed of a low dielectric loss material,
The microwave amplifier includes an amplifier circuit configured using a semiconductor element on a dielectric substrate made of a low dielectric loss material,
The microwave heating apparatus according to claim 1, wherein each of the n-stage nonreciprocal circuits in the nonreciprocal circuit group is a circulator. - 前記マイクロ波増幅器は、増幅回路の入力側と出力側にそれぞれ整合回路を具備し、
前記マイクロ波発振器は誘電体基板の一主面に、前記マイクロ波増幅器は前記誘電体基板の他主面に形成されていることを特徴とする請求項2記載のマイクロ波加熱装置。 The microwave amplifier includes a matching circuit on each of an input side and an output side of an amplifier circuit,
3. The microwave heating apparatus according to claim 2, wherein the microwave oscillator is formed on one main surface of the dielectric substrate, and the microwave amplifier is formed on the other main surface of the dielectric substrate. - 前記マイクロ波発振器の出力端と前記マイクロ波増幅器の入力端との接続は、前記誘電体基板上に導電体パターンによって構成される伝送回路を具備する第1のマイクロ波伝送線路によって行われ、
前記マイクロ波増幅器の出力端と前記非可逆回路群における初段の非可逆回路の第1の入力端との接続は、前記誘電体基板上に導電体パターンによって構成される伝送回路を具備する第2のマイクロ波伝送線路によって行われることを特徴とする請求項3記載のマイクロ波加熱装置。 The connection between the output end of the microwave oscillator and the input end of the microwave amplifier is performed by a first microwave transmission line including a transmission circuit configured by a conductor pattern on the dielectric substrate,
The connection between the output terminal of the microwave amplifier and the first input terminal of the first stage non-reciprocal circuit in the non-reciprocal circuit group includes a second transmission circuit including a conductor pattern on the dielectric substrate. The microwave heating device according to claim 3, wherein the microwave heating device is a microwave transmission line. - 前記非可逆回路群における最終段の非可逆回路の第2の出力端と接地端との間に終端抵抗が接続されていることを特徴とする請求項1から請求項4のいずれか1項に記載のマイクロ波加熱装置。 5. The terminal resistor according to claim 1, wherein a termination resistor is connected between the second output terminal and the ground terminal of the final stage non-reciprocal circuit in the non-reciprocal circuit group. The microwave heating apparatus as described.
- 前記非可逆回路群における最終段の非可逆回路の第2の出力端に接続される電力検出部、
この電力検出部からの出力を受け、前記マイクロ波発振器の発振周波数の制御、及び前記マイクロ波増幅器の出力電力レベルの制御の少なくとも一方の制御を行う制御手段を備えることを特徴とする請求項1から請求項4のいずれか1項に記載のマイクロ波加熱装置。 A power detection unit connected to the second output terminal of the final stage of the non-reciprocal circuit in the non-reciprocal circuit group;
2. A control means for receiving an output from the power detector and controlling at least one of control of an oscillation frequency of the microwave oscillator and control of an output power level of the microwave amplifier. The microwave heating device according to any one of claims 1 to 4. - 前記電力検出部は、方向性結合器と、この方向性結合器にて検出された電力量を整流化する検波ダイオードと、この検波ダイオードによって整流化された信号を平滑処理して、前記制御手段に出力する平滑コンデンサを備えていることを特徴とする請求項6記載のマイクロ波加熱装置。 The power detector includes a directional coupler, a detection diode that rectifies the amount of power detected by the directional coupler, and a smoothing process on a signal rectified by the detection diode, and the control means The microwave heating apparatus according to claim 6, further comprising a smoothing capacitor that outputs to the output.
- 前記非可逆回路群における初段の非可逆回路は、縦続接続された複数の非可逆回路を具備し、前記初段の非可逆回路の出力側に配置される非可逆回路の入力端は最終段の非可逆回路の第2の出力端に接続されるとともに、第2の出力端が2段目の非可逆回路の入力端に接続され、前記初段の非可逆回路の入力側に配置される非可逆回路の第2の出力端が終端抵抗を介して接地端に接続されていることを特徴とする請求項1から請求項4のいずれか1項に記載のマイクロ波加熱装置。 The non-reciprocal circuit of the first stage in the non-reciprocal circuit group includes a plurality of non-reciprocal circuits connected in cascade, and the input terminal of the non-reciprocal circuit arranged on the output side of the non-reciprocal circuit of the first stage is the non-reciprocal circuit of the final stage. A nonreciprocal circuit connected to the second output terminal of the reversible circuit, the second output terminal connected to the input terminal of the second stage nonreciprocal circuit, and arranged on the input side of the first stage nonreciprocal circuit The microwave output device according to any one of claims 1 to 4, wherein the second output terminal of the first and second output terminals is connected to the ground terminal via a termination resistor.
- 前記非可逆回路群における最終段の非可逆回路の第2の出力端と初段の非可逆回路の出力側に位置する非可逆回路の入力端に現れる電力を検出する電力検出部、
この電力検出部からの出力を受け、前記マイクロ波発振器の発振周波数の制御、及び前記マイクロ波増幅器の出力電力レベルの制御の少なくとも一方の制御を行う制御手段を備えることを特徴とする請求項8に記載のマイクロ波加熱装置。 A power detector for detecting power appearing at the second output terminal of the last stage nonreciprocal circuit and the input terminal of the nonreciprocal circuit located on the output side of the first stage nonreciprocal circuit in the nonreciprocal circuit group;
9. A control means for receiving an output from the power detection unit and performing control of at least one of control of an oscillation frequency of the microwave oscillator and control of an output power level of the microwave amplifier. A microwave heating apparatus according to 1. - 前記電力検出部は、方向性結合器と、この方向性結合器にて検出された電力量を整流化する検波ダイオードと、この検波ダイオードによって整流化された信号を平滑処理して、前記制御手段に出力する平滑コンデンサを備えていることを特徴とする請求項9記載のマイクロ波加熱装置。 The power detector includes a directional coupler, a detection diode that rectifies the amount of power detected by the directional coupler, and a smoothing process on a signal rectified by the detection diode, and the control means The microwave heating apparatus according to claim 9, further comprising a smoothing capacitor that outputs to the outside.
- 前記アンテナ群のn個のアンテナすべてが、前記加熱室の同一壁面に配置されていることを特徴とする請求項1から請求項4のいずれか1項に記載のマイクロ波加熱装置。 The microwave heating apparatus according to any one of claims 1 to 4, wherein all n antennas of the antenna group are arranged on the same wall surface of the heating chamber.
- 前記アンテナ群のn個のアンテナは、複数個に分割され、分割されたアンテナ毎に前記加熱室の壁面に配置されていることを特徴とする請求項1から請求項4のいずれか1項に記載のマイクロ波加熱装置。 The n antennas of the antenna group are divided into a plurality of antennas, and each of the divided antennas is disposed on a wall surface of the heating chamber. The microwave heating apparatus as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/022145 WO2018229938A1 (en) | 2017-06-15 | 2017-06-15 | Microwave heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/022145 WO2018229938A1 (en) | 2017-06-15 | 2017-06-15 | Microwave heating device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018229938A1 true WO2018229938A1 (en) | 2018-12-20 |
Family
ID=64659204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022145 WO2018229938A1 (en) | 2017-06-15 | 2017-06-15 | Microwave heating device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018229938A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111918436A (en) * | 2019-05-09 | 2020-11-10 | 青岛海尔智能技术研发有限公司 | Power output circuit and microwave heating equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52144849A (en) * | 1976-05-28 | 1977-12-02 | Mitsubishi Electric Corp | High-frequency heating device |
JPS58117675A (en) * | 1981-12-29 | 1983-07-13 | 松下電器産業株式会社 | High frequency heater |
JPS59228395A (en) * | 1983-06-08 | 1984-12-21 | 松下電器産業株式会社 | High frequency heater |
WO2009050893A1 (en) * | 2007-10-18 | 2009-04-23 | Panasonic Corporation | Microwave heating device |
-
2017
- 2017-06-15 WO PCT/JP2017/022145 patent/WO2018229938A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52144849A (en) * | 1976-05-28 | 1977-12-02 | Mitsubishi Electric Corp | High-frequency heating device |
JPS58117675A (en) * | 1981-12-29 | 1983-07-13 | 松下電器産業株式会社 | High frequency heater |
JPS59228395A (en) * | 1983-06-08 | 1984-12-21 | 松下電器産業株式会社 | High frequency heater |
WO2009050893A1 (en) * | 2007-10-18 | 2009-04-23 | Panasonic Corporation | Microwave heating device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111918436A (en) * | 2019-05-09 | 2020-11-10 | 青岛海尔智能技术研发有限公司 | Power output circuit and microwave heating equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200350141A1 (en) | High-power solid-state microwave generator for rf energy applications | |
JP5167678B2 (en) | Microwave processing equipment | |
EP3120665B2 (en) | Solid-state microwave device | |
US8901470B2 (en) | Microwave heating apparatus | |
EP1329136B1 (en) | Feeding of microwaves | |
JP5142364B2 (en) | Microwave processing equipment | |
US20100224623A1 (en) | Microwave heating apparatus | |
US20150136760A1 (en) | Microwave oven using solid state amplifiers and antenna array | |
US20150041458A1 (en) | Microwave treatment device | |
US11804807B2 (en) | Cost effective hybrid protection for high power amplifier | |
JP6826461B2 (en) | High frequency heating device | |
JP4992525B2 (en) | Microwave processing equipment | |
JP4940922B2 (en) | Microwave processing equipment | |
Werner | RF Energy Systems: Realizing New Applications. | |
JP4839994B2 (en) | Microwave equipment | |
JP2009138954A (en) | High frequency processing device | |
WO2018229938A1 (en) | Microwave heating device | |
WO2017022711A1 (en) | Electromagnetic wave heating device | |
JP2009181728A (en) | Microwave processing device | |
JP5444734B2 (en) | Microwave processing equipment | |
CN110547044B (en) | Microwave processing apparatus | |
JP2008060016A (en) | Microwave utilization device | |
JPH11135251A (en) | Microwave oven | |
KR102141136B1 (en) | High frequency band heating loop antenna and oven using the same | |
EP3358909A1 (en) | High-frequency heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17913260 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17913260 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |