WO2018229366A1 - Process for laser ablating thin layers in two steps for the production of semi-transparent photovoltaic modules - Google Patents

Process for laser ablating thin layers in two steps for the production of semi-transparent photovoltaic modules Download PDF

Info

Publication number
WO2018229366A1
WO2018229366A1 PCT/FR2018/000174 FR2018000174W WO2018229366A1 WO 2018229366 A1 WO2018229366 A1 WO 2018229366A1 FR 2018000174 W FR2018000174 W FR 2018000174W WO 2018229366 A1 WO2018229366 A1 WO 2018229366A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
laser
process according
section
laser beam
Prior art date
Application number
PCT/FR2018/000174
Other languages
French (fr)
Inventor
Rachida BOUBEKRI
Original Assignee
Sunpartner Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpartner Technologies filed Critical Sunpartner Technologies
Publication of WO2018229366A1 publication Critical patent/WO2018229366A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method of manufacturing, at a high production rate, photovoltaic modules by selective and local laser ablation of the material of thin-film photovoltaic cells. More specifically, it relates to a two-step thin film laser ablation process for obtaining semi-transparent photovoltaic cells whose transparency rate is obtained by creating a more or less dense network of geometric transparency zones in the structure of said thin layers.
  • a photovoltaic module is composed of a multitude of photovoltaic cells connected in series and / or in parallel. Each cell consists of a stack of thin layers. The stacking order of the thin layers is conditioned by the thin film technology considered.
  • the cell in the case of a thin-film technology in which the photoactive layer (hereinafter referred to as an absorber) is amorphous silicon, the cell consists of a stack of thin layers positioned in the film. following order:
  • a transparent substrate for example glass or a polymer
  • An electrically conductive transparent front electrode generally consisting of a transparent oxide hereinafter referred to as "TCO” (acronym for the term “Transparent Conductive Oxide”);
  • An electrically conductive back electrode generally metallic.
  • the thickness of each thin layer varies from a few hundred nanometers to a few microns.
  • this process often generates thermal phenomena, especially when using the laser etching in one step to simultaneously ablack a stack of thin layers made of materials whose ablation thresholds are different.
  • the thermal effect causes the fusion of the materials of the stack, which can be at the origin:
  • One solution for minimizing or even eliminating these thermal effects is to use several laser ablation steps by adapting the parameters of the laser ablation to the thin layers to be ablated.
  • This technique makes it possible to minimize the shunts linked, for example, to a re-deposition of materials on the edges of the ablated surface, which can create contacts between the second electrode of the cell and the lower electrode at the level of the blanks of the ablated patterns.
  • this manufacturing method uses the same laser of main wavelength ⁇ (the main wavelength ⁇ of a laser is defined as the majority wavelength emitted by said laser) and therefore does not take into account the specificities of the ablation thresholds of the different layers. Such a method therefore does not make it possible to eliminate undesirable thermal effects such as the structural modification of all or part of the ablated layers or the formation of alloys in the vicinity of the ablated zones.
  • the pulse duration of these lasers which is less than one picosecond, does not generate the same short circuits on the module since they are in athermic laser / material interaction regimes, which means that the dimensions of the sections of the two successive laser beams would be of a completely different nature than that contemplated in this invention. It would therefore not be obvious for those skilled in the art to shape the beams differently to achieve the desired result in the manufacture of photovoltaic modules object of the invention.
  • the present invention aims to solve these problems and to overcome the aforementioned drawbacks of the state of the art by proposing a new process for laser ablation of photovoltaic thin layers in two steps.
  • the present invention aims at providing a method for manufacturing thin-film photovoltaic cells by selective and local laser ablation of the material of said cells to maximize the performance of semitransparent photovoltaic modules by eliminating the appearance short-circuits resulting from the thermal effects of conventional laser ablation processes and by maximizing the optical quality of said photovoltaic cells.
  • the subject of the invention is generally a method of manufacturing photovoltaic cells in thin, semi-transparent layers by selective and local laser ablation of the material composing said thin layers.
  • the cells may be connected in series and / or in parallel to form semitransparent photovoltaic modules.
  • Said cells comprise, successively, at least one first electrically conductive transparent material (generally a doped semiconductor) deposited on a transparent substrate and acting as a front contact called a first electrode, one or more photoactive layers called absorber (s) and deposited on said first electrode, and a second electrically conductive material containing at least one metal layer and acting as a rear contact called second electrode.
  • first electrically conductive transparent material generally a doped semiconductor
  • the thickness which is equal to the cumulative thicknesses of the absorber and the second electrode
  • a laser generates a beam generally of circular section.
  • the laser section is defined by its center and its diameter. It is known to those skilled in the art to shape the laser beam to obtain a beam whose section represents any geometric form.
  • the diameter is defined as being the maximum distance between two points of the generated section.
  • the center of the circumcircle is defined as the middle of the diameter. So any type of shape is defined by its diameter D and its center C.
  • the manufacturing method according to the invention of the semitransparent photovoltaic cells comprises two unitary stages of selective and local laser ablation carried out successively, and repeated by iterations.
  • the first unitary step Ei consists of removing, via the substrate and the first electrode, and with the aid of a first laser beam of a fluence Fi and of main wavelength ⁇ , a volume Vi of section Si (center Ci and diameter Di) and height Hi within the absorber and the second electrode.
  • This first laser ablation is performed while ensuring the integrity of said first electrode, that is to say without damaging the transparent conductive material that constitutes it.
  • the absorption of the wavelength ⁇ of said first laser beam by the absorber causes sublimation of the material or materials constituting said absorber according to volume VIA of section Si and height HIA.
  • the volume VIB of section Si and height HIB within the second electrode is then ejected, this material ejection phenomenon under physical constraints being better known by the term "lift-off".
  • the second unitary step E 2 consists in removing, through the transparent substrate and with the aid of a second laser beam, a fluence F 2 and a main wavelength different from ⁇ , perfectly or partially aligned with the first laser beam, a volume V 2 of section S2 (diameter D 2 ) within the first electrode.
  • V 2 is perfectly included in the volume Life.
  • This step removes the conductive transparent material in contact with the substrate, and increases the optical quality of an image observed across areas where all the thin layers have been ablated. Indeed, the transmittance of the light in the visible is increased since it removes the reflection phenomena at the interfaces, the refractive index of said transparent conductive material being generally stronger than that of the substrate.
  • the surface of the conductive transparent material in contact with the absorber is generally textured at the nano or micrometric scale, removing said material makes it possible to increase the clarity and to reduce the "haze", that is to say the blur of an image perceived through semi-transparent photovoltaic cells.
  • the method according to the invention is characterized by the fact that said unitary steps E 1 , E 2 are each carried out in a single laser shot, said laser beams being type "tophat” and centered relative to each other, and in that the area of the section Si is greater than 0.25 mm 2 , the area of the section S2 being less than (S x -
  • the two laser beams are shaped to obtain "top hat" type beams, that is to say the end of the section has the following feature: any point of said section has the same energy.
  • the section of the first laser beam has a diameter greater than 564 ⁇ m to limit the diffraction phenomena of visible light to the passage of the opening created by said first beam, which implies that Si is greater than 0.25 mm 2 . So that the two electrodes can not have contact at the ablation blanks which avoids post-ablation the creation of short circuits of the photovoltaic diode, while maintaining a good optical transparency in the area of ablation, one must choose D 2 such that D 2 ⁇ Di - 20 pm. This implies that S2 is less than (S x - 0.035 *
  • the hole made in the first electrode is at least 10 microns smaller on each side than the hole made in the active layer and the second metal electrode.
  • a section S2 ' is defined such that its center Ci is the same as that of the section Si and of diameter D 2 , and V2' the volume of section S2 'and of height H 2 .
  • the two laser beams used during the two elementary steps are centered, which means that V 2 is perfectly included in the volume V2 '.
  • the pulse duration of said laser beams is of the order of magnitude of the nanosecond. This allows for higher production rates than in the case of pico or femtosecond laser beams.
  • the volumes Vie and V2 satisfy the relation: Vie ⁇ 1.1 V 2 .
  • the first and second laser beams may be shaped into disks, oval, polygonal, hexagonal, square or any combination of said shapes.
  • the laser beam defines a section and a volume of ablation of the thin film of photovoltaic cells' ic.
  • photovoltaic cells' ic semi-transparent thin layers whose absorber predominantly comprises a layer of amorphous silicon:
  • the first laser is preferably a green laser whose main wavelength is between 500 and 580 nm and whose fluence Fi is between 600 and 800 mJ / cm 2 so as not to cause physico-chemical modification.
  • substrate usually a glass or plastic
  • the first electrode usually a transparent metal oxide.
  • the first electrode may be composed of fluorine doped tin dioxide.
  • the second laser is an infrared laser whose main wavelength ⁇ 2 is between 900 and 1100 nm and whose fluence F 2 is between 4 and 8 J / cm 2 so as not to cause modification physico-chemical substrate while allowing the ablation of the first electrode.
  • the laser shots of the two unitary steps are all identical and without overlap during the succession of said unitary steps by iteration.
  • This is the set of laser shots of the first unitary step Ei followed by all the shots of the second unitary step E 2 to obtain a functional semi-transparent module whose transparency areas are non-contiguous and have all the same geometric shape to preferentially form an ordered network.
  • the semi-transparency produced by the two laser shots of the two unitary steps (E lr E2) have shapes or dimensions that vary during their successive iterations, to form a photovoltaic module having a semitransparency gradient, or a random network.
  • FIG. 1A represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon.
  • FIG. 1B represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon traversed by a laser beam.
  • FIG. 2A represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon traversed by a green laser beam focusing within the absorber.
  • FIG. 2B represents a diagram of a sectional view of the result of the first unitary step of the laser ablation according to the invention.
  • FIG. 3A represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon traversed by an infra-red laser beam focusing within the first electrode.
  • FIG. 3B represents a schematic sectional view of the result of the second unitary step of the laser ablation according to the invention.
  • FIG. 4 is a diagram showing an example of a photovoltaic module whose transparency zones are obtained by iteration of the two unitary steps of the process, which are two isolated circular laser shots.
  • the photovoltaic cell portion of FIG. 1A is composed of:
  • a first conductive transparent electrode (2) made of fluorine-doped tin dioxide (Sn0 2 : F); an absorber (3) formed of at least one amorphous silicon layer (aSi) forming one or more nip junctions;
  • a second metal conductive electrode (4) composed of aluminum
  • each thin layer varies from a few hundred nanometers to a few microns.
  • FIG. 1B shows a diagram of a sectional view of the photovoltaic cell portion 'ic amorphous silicon according to Figure 1A, through which a laser beam (50) section of green If the thicknesses of the various layers.:
  • the process for manufacturing semi-transparent photovoltaic cells comprises two steps of selective local laser ablation carried out successively.
  • the fluence Fi of the laser is 600 mJ / cm 2 .
  • the beam is of the top-hat type.
  • the diameter Di of the section Si is 600 ⁇ , hence a section area Si equal to 0.28 mm 2 .
  • the area of the section Si is therefore greater than 0.25 mm 2 .
  • This first laser ablation takes place through the transparent substrate (1) and the first transparent electrode (2) which are not impacted by the green laser beam.
  • the absorption of the wavelength ⁇ of the laser beam by the absorber (3) causes the sublimation of the material or materials constituting said absorber according to volume VIA (53) of section Si and height HIA.
  • the volume VIB (54) of section Si and height HIB within the second electrode is then ejected, this material ejection phenomenon (55) under physical constraints is known as the term "lift-off".
  • the result of the first laser ablation shown diagrammatically in FIG. 2B, leaves a vacant zone (6) of volume Vi within the second electrode (4) and the absorber (3) without thermal deterioration of the first electrode (2). ) or the substrate (1), which are transparent for this wavelength ⁇ .
  • the volume V 2 (72) of section S2 and height H2 within the first electrode is then ejected. This second laser ablation is only through the substrate (1) which is not or very little affected thermally.
  • the infrared laser beam (70) is aligned with the first green laser beam (50), i.e. the sections of the two beams are centered with respect to each other, and the diameter of its section is 60 microns smaller than that of the green laser beam, which means that D2 is 540 ⁇ m, and the section S2 is about 0.23 mm 2 .
  • (Si - 0.035 * ⁇ ⁇ ) 0.26 mm 2 , the condition is satisfied that S2 is less than (Si - 0.035 * * * jsi).
  • FIG. 4 is a diagram showing an example of a photovoltaic module whose transparency zones are obtained by iteration of the two unitary steps of the process, which are two isolated circular laser shots. The white transparency areas are distinctly separated from the black photovoltaic active areas.
  • the method of the invention was the subject of a practical test, carried out for the purpose of producing photovoltaic modules based on amorphous silicon having 30% transparency.
  • Semi-transparency is achieved by local and selective ablation of 600 micron diameter discs in the absorber and in the second electrode.
  • the laser used is a green laser (534 nm) nanosecond with a fluence of 600 mJ / cm 2 .
  • the beam is of the top-hat type and its section has a diameter of 600 ⁇ m.
  • a measurement of the optical transmission and the performance of the module was carried out before the second step. We therefore have a first fluorine-doped tin oxide electrode on the entire substrate, and an absorber and second electrode surface of 30% of the substrate surface. The measured transmission is 52.4%.
  • the second step of the method of the invention which consists in ablating the first electrode was carried out from an infrared laser (1064 nm) nanosecond of fluence 7J / cm 2 .
  • the beam is also of top-hat type and the diameter of its section is equal to 540 nm.
  • the semitransparent photovoltaic module obtained by the manufacturing method according to the invention thus has, in fine, 40% of surface area of SnO 2: F.
  • the measured optical transmission then passes to 57.5%, which makes it possible to improve the effective transparency of the module by more than 5%.
  • the electrical performances are identical and are not deteriorated by the second step.
  • the manufacturing method according to the invention therefore makes it possible to manufacture photovoltaic modules in semi-transparent thin layers by selective and local laser ablation of said thin layers. This makes it possible to maximize the electrical performance of said modules by eliminating the appearance of short-circuits consecutive to the thermal effects of known laser ablation processes, while maximizing the optical quality of said semi-transparent photovoltaic modules, and with good rates of production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a process for manufacturing photovoltaic cells made up of semi-transparent thin layers including: a laser ablating step consisting in removing, through the substrate and through the first electrode, with a laser beam of a fluence F1 and of main wavelength λ1, a volume V1 of cross-sectional area S1 larger than 0.25 mm2 and of height H1 within the absorber and within the second electrode; and a second laser ablating step consisting in removing, through the substrate and with a second laser beam of a fluence F2 and of main wavelength λ2 different from λ1, a volume V2 of cross-sectional area S2 smaller than (S1 - 0.035 * √S1) mm2 and of height H2 within the first electrode. The beams are of top-hat type and are centred on each other.

Description

Procédé d'ablation laser de couches minces en deux étapes pour la réalisation de modules photovoltaïques semi-transparents  Laser thin film ablation process in two steps for producing semi-transparent photovoltaic modules
La présente invention se rapporte à un procédé de fabrication, à haute cadence de production, de modules photovoltaïques par ablation laser sélective et locale de la matière des cellules photovoltaïques en couches minces. Elle vise plus spécialement un procédé d'ablation laser de couches minces en deux étapes permettant l'obtention de cellules photovoltaïques semi-transparentes dont le taux de transparence est obtenu par la création d'un réseau plus ou moins dense de zones de transparence géométriques dans la structure desdites couches minces. The present invention relates to a method of manufacturing, at a high production rate, photovoltaic modules by selective and local laser ablation of the material of thin-film photovoltaic cells. More specifically, it relates to a two-step thin film laser ablation process for obtaining semi-transparent photovoltaic cells whose transparency rate is obtained by creating a more or less dense network of geometric transparency zones in the structure of said thin layers.
ETAT DE LA TECHNIQUE STATE OF THE ART
On distingue dans la littérature plusieurs familles de matériaux photovoltaïques tels que les matériaux solides cristallisés, les matériaux à petites molécules organiques, les couches minces solides. Les couches minces solides sont particulièrement adaptées à la technologie photovolta'ique semi-transparente du fait de leurs très faibles épaisseurs. Les temps de mise en œuvre du procédé selon ladite technologie en sont considérablement réduits et leur coût plus faible dû à la moindre quantité de matière utilisée. Several families of photovoltaic materials are distinguished in the literature, such as crystallized solid materials, organic small molecule materials and solid thin films. Solid thin films are particularly suitable for photovoltaic technology 'semitransparent ic due to their very low thicknesses. The implementation times of the process according to said technology are considerably reduced and their lower cost due to the lesser amount of material used.
Un module photovoltaïque est composé d'une multitude de cellules photovoltaïques connectées en série et/ou en parallèle. Chaque cellule est constituée d'un empilement de couches minces. L'ordre d'empilement des couches minces est conditionné par la technologie de couches minces considérée.  A photovoltaic module is composed of a multitude of photovoltaic cells connected in series and / or in parallel. Each cell consists of a stack of thin layers. The stacking order of the thin layers is conditioned by the thin film technology considered.
Par exemple, dans le cas d'une technologie de couches minces dont la couche photo-active (désignée ci-après sous le terme d'absorbeur) est le silicium amorphe, la cellule est constituée d'un empilement de couches minces positionnées dans l'ordre suivant :  For example, in the case of a thin-film technology in which the photoactive layer (hereinafter referred to as an absorber) is amorphous silicon, the cell consists of a stack of thin layers positioned in the film. following order:
- Un substrat transparent (par exemple du verre ou un polymère) ; - Une électrode avant transparente électriquement conductrice généralement constituée d'un oxyde transparent désigné ci-après par le terme « TCO » (acronyme du terme anglais « Transparent Conductive Oxide ») ; A transparent substrate (for example glass or a polymer); - An electrically conductive transparent front electrode generally consisting of a transparent oxide hereinafter referred to as "TCO" (acronym for the term "Transparent Conductive Oxide");
- Une couche photo-active, l'absorbeur, constituée de silicium amorphe ;  A photoactive layer, the absorber, made of amorphous silicon;
- Une électrode arrière électriquement conductrice, généralement métallique. L'épaisseur de chaque couche mince varie de quelques centaines de nanomètres à quelques microns.  - An electrically conductive back electrode, generally metallic. The thickness of each thin layer varies from a few hundred nanometers to a few microns.
Rendre des modules photovoltaïques semi-transparents est une opportunité intéressante dans l'industrie du bâtiment, notamment pour y intégrer des surfaces vitrées capables de générer de l'énergie électrique. La transparence peut être obtenue par des procédés de gravure, de lithographie et/ou d'ablation laser. Le procédé de lithographie permet d'obtenir d'excellents résultats mais il est lent et coûteux en termes d'investissement et de consommables utilisés. Il comporte plusieurs étapes d'insolation et de gravure des différentes couches (gravures par voie sèche ou par voie humide avec des solutions chimiques adaptées). Les étapes sont successives et peuvent englober jusqu'à 8 étapes. De plus, ce procédé est difficile à mettre en œuvre sur des grandes surfaces (supérieures au mètre carré) qui sont privilégiées dans l'industrie du bâtiment.  Making semitransparent photovoltaic modules is an interesting opportunity in the building industry, especially to include glazed surfaces capable of generating electrical energy. Transparency can be achieved by etching, lithography and / or laser ablation processes. The lithography process provides excellent results but is slow and expensive in terms of investment and consumables used. It includes several stages of insolation and etching of the different layers (dry etching or wet etching with suitable chemical solutions). The steps are successive and can encompass up to 8 steps. In addition, this process is difficult to implement on large areas (greater than one square meter) that are preferred in the building industry.
De plus, pour atteindre des cadences de production desdits modules photovoltaïques semi-transparents compatibles avec les exigences de prix du marché du bâtiment, il est nécessaire de pouvoir enlever des surfaces unitaires de matière de quelques dixièmes de mm2 en une ou deux étapes unitaires maximum, correspondant à un ou deux tirs laser successifs. C'est alors un procédé plus rapide, moins onéreux que la lithographie, et il ne nécessite aucune utilisation de produit chimique. In addition, to achieve production rates of said semi-transparent photovoltaic modules compatible with the price requirements of the building market, it is necessary to be able to remove unitary surfaces of material of a few tenths of mm 2 in one or two unit steps maximum , corresponding to one or two successive laser shots. This is a faster process, less expensive than lithography, and requires no use of chemicals.
Néanmoins, ce procédé génère souvent des phénomènes thermiques, notamment lorsqu'on utilise la gravure laser en une étape pour ablater simultanément un empilement de couches minces constituées de matériaux dont les seuils d'ablation sont différents. L'effet thermique provoque la fusion des matériaux de l'empilement, qui peut être à l'origine :  Nevertheless, this process often generates thermal phenomena, especially when using the laser etching in one step to simultaneously ablack a stack of thin layers made of materials whose ablation thresholds are different. The thermal effect causes the fusion of the materials of the stack, which can be at the origin:
- d'une modification locale de la structure chimique de tout ou partie de ces matériaux autour de la zone ablatée ; - d'un re-dépôt de matériaux sur les bords de la surface ablatée, pouvant créer des contacts entre l'électrode supérieure de la cellule et l'électrode inférieure au niveau des flans des motifs ablatés ; a local modification of the chemical structure of all or some of these materials around the ablated zone; - Re-deposition of materials on the edges of the ablated surface, which can create contacts between the upper electrode of the cell and the lower electrode at the level of the blanks of the ablated patterns;
- de la formation d'alliages à proximité des zones ablatées.  - the formation of alloys near the ablated areas.
Ces effets thermiques ont pour conséquence de créer des court-circuits (également appelés « shunts » en anglais) qui vont augmenter les courants de fuite et ainsi diminuer les performances de la cellule photovoltaïque semi-transparente ou du module.  These thermal effects have the effect of creating short circuits (also called "shunts" in English) that will increase the leakage currents and thus reduce the performance of the semi-transparent photovoltaic cell or the module.
Une solution pour minimiser, voire supprimer ces effets thermiques est d'utiliser plusieurs étapes d'ablation laser en adaptant les paramètres de l'ablation laser aux couches minces à ablater.  One solution for minimizing or even eliminating these thermal effects is to use several laser ablation steps by adapting the parameters of the laser ablation to the thin layers to be ablated.
Le document US 2009/0151783 (Nexpower) propose de réaliser la transparence des cellules solaires en ablatant :  Document US 2009/0151783 (Nexpower) proposes to realize the transparency of solar cells by ablating:
o la seconde électrode (électrode supérieure) avec une surface Si ;  o the second electrode (upper electrode) with a Si surface;
o la couche d'absorption et la première électrode (électrode inférieure) avec une surface S2 ; o the absorption layer and the first electrode (lower electrode) with a surface S2 ;
tel que Si≥ S2.  such as Si≥ S2.
Cette technique permet de minimiser les shunts liés par exemple à un re-dépôt de matériaux sur les bords de la surface ablatée, pouvant créer des contacts entre la seconde électrode de la cellule et l'électrode inférieure au niveau des flans des motifs ablatés.  This technique makes it possible to minimize the shunts linked, for example, to a re-deposition of materials on the edges of the ablated surface, which can create contacts between the second electrode of the cell and the lower electrode at the level of the blanks of the ablated patterns.
Toutefois, ce procédé de fabrication utilise un même laser de longueur d'onde principale λ (on définit la longueur d'onde principale λ d'un laser comme la longueur d'onde majoritaire émise par ledit laser) et ne tient donc pas compte des spécificités des seuils d'ablation des différentes couches. Un tel procédé ne permet donc pas de supprimer les effets thermiques indésirables tels que la modification structurelle de tout ou partie des couches ablatées ou la formation d'alliages à proximité des zones ablatées.  However, this manufacturing method uses the same laser of main wavelength λ (the main wavelength λ of a laser is defined as the majority wavelength emitted by said laser) and therefore does not take into account the specificities of the ablation thresholds of the different layers. Such a method therefore does not make it possible to eliminate undesirable thermal effects such as the structural modification of all or part of the ablated layers or the formation of alloys in the vicinity of the ablated zones.
Par ailleurs, dans le cas de cellules photovoltaïques dont l'absorbeur est du silicium amorphe, il serait possible de générer la semi-transparence sans ablater l'électrode avant, étant donné que celle-ci est transparente. A titre d'exemple, il est connu que la transmission du verre nu est d'environ 90% alors que celle d'un TCO déposé sur du verre est de 80%. La cellule photovoltaïque semi-transparente obtenue par ablation unique de la seconde électrode et de l'absorbeur présente donc une moins bonne transparence que celle obtenue en ablatant en plus la couche de TCO. Cela est d'autant plus avantageux que les TCO utilisés dans les cellules photovoltaïques sont texturés pour augmenter la collecte des photons, et génèrent donc une diffusion de la lumière importante leur conférant un aspect laiteux et parfois même coloré. C'est pourquoi, pour obtenir une semi-transparence d'une grande qualité optique, il est préférable d'ablater le TCO. Furthermore, in the case of photovoltaic cells whose absorber is amorphous silicon, it would be possible to generate the semi-transparency without ablating the front electrode, since it is transparent. For example, it is known that the transmission of bare glass is about 90% while that of a TCO deposited on glass is 80%. The semi-transparent photovoltaic cell obtained by single ablation of the second electrode and the absorber therefore has a lower transparency than that obtained by ablating moreover the TCO layer. This is all the more advantageous as the TCOs used in the photovoltaic cells are textured to increase the collection of photons, and thus generate a significant light diffusion conferring a milky and sometimes even colored appearance. Therefore, to obtain semi-transparency of high optical quality, it is preferable to ablate the TCO.
Enfin, on connaît à travers le document US20060196536A1 (Sharp) une méthode d'interconnexion d'un module photovoltaïque qui utilise deux étapes d'ablation laser dans lesquelles les deux faisceaux utilisés ont des diamètres distincts et des longueurs d'ondes distinctes. Néanmoins, ces faisceaux laser YAG sont de type gaussien et ne permettent donc pas d'obtenir des diamètres de faisceaux supérieurs à 100 μιη. De ce fait, les cadences de production de ces lasers sont très basses et la répartition de l'énergie sur n'importe quelle section du faisceau est gaussienne, ce qui signifie inhomogène. Ainsi, la qualité optique (transmittance, « haze », clarté) d'une zone de transparence de plusieurs dixièmes de mm2 créée par ce type d'ablation laser qui nécessiterait le recouvrement de nombreux tirs laser successifs en serait fortement impactée. Par ailleurs, la durée d'impulsion de ces lasers qui est inférieure à la picoseconde ne génère pas les mêmes court-circuits sur le module puisqu'ils sont dans des régimes d'interaction laser/matière athermiques, ce qui signifie que les dimensions des sections des deux faisceaux laser successifs seraient d'une tout autre nature que celle envisagée dans cette invention. Il ne serait donc pas évidënt pour l'homme du métier de mettre en forme différemment les faisceaux pour arriver au résultat escompté dans la fabrication de modules photovoltaïques objet de l'invention. Finally, document US20060196536A1 (Sharp) discloses a method of interconnecting a photovoltaic module that uses two laser ablation steps in which the two beams used have distinct diameters and distinct wavelengths. Nevertheless, these YAG laser beams are of Gaussian type and therefore do not make it possible to obtain beam diameters greater than 100 μιη. As a result, the production rates of these lasers are very low and the energy distribution on any section of the beam is Gaussian, which means inhomogeneous. Thus, the optical quality (transmittance, haze, clarity) of a transparency zone of several tenths of mm 2 created by this type of laser ablation that would require the recovery of many successive laser shots would be strongly impacted. Moreover, the pulse duration of these lasers, which is less than one picosecond, does not generate the same short circuits on the module since they are in athermic laser / material interaction regimes, which means that the dimensions of the sections of the two successive laser beams would be of a completely different nature than that contemplated in this invention. It would therefore not be obvious for those skilled in the art to shape the beams differently to achieve the desired result in the manufacture of photovoltaic modules object of the invention.
La présente invention vise à résoudre ces problèmes et à remédier aux inconvénients précités de l'état de la technique en proposant un nouveau procédé d'ablation laser de couches minces photovoltaïques en deux étapes. BUT DE L'INVENTION The present invention aims to solve these problems and to overcome the aforementioned drawbacks of the state of the art by proposing a new process for laser ablation of photovoltaic thin layers in two steps. PURPOSE OF THE INVENTION
De façon générale, la présente invention vise à proposer un procédé de fabrication de cellules photovoltaïques en couches minces semi-transparentes par ablation laser sélective et locale de la matière desdites cellules permettant de maximiser les performances des modules photovoltaïques semi-transparents en supprimant l'apparition de court-circuits consécutifs aux effets thermiques des procédés classiques d'ablation laser et en maximisant la qualité optique desdites cellules photovoltaïques. In general, the present invention aims at providing a method for manufacturing thin-film photovoltaic cells by selective and local laser ablation of the material of said cells to maximize the performance of semitransparent photovoltaic modules by eliminating the appearance short-circuits resulting from the thermal effects of conventional laser ablation processes and by maximizing the optical quality of said photovoltaic cells.
OBJETS DE L'INVENTION OBJECTS OF THE INVENTION
L'invention a pour objet général un procédé de fabrication de cellules photovoltaïques en couches minces semi-transparentes par ablation laser sélective et locale de la matière composant lesdites couches minces. Lesdites cellules peuvent être connectées en série et/ou en parallèle pour former des modules photovoltaïques semi- transparents. Lesdites cellules comportent successivement au moins un premier matériau transparent et conducteur électriquement (généralement un semi-conducteur dopé) déposé sur un substrat transparent et jouant le rôle de contact avant appelé première électrode, une ou plusieurs couches photo-actives appelée(s) absorbeur et déposée(s) sur ladite première électrode, et un second matériau électriquement conducteur contenant au moins une couche métallique et jouant le rôle de contact arrière appelé seconde électrode. On note : The subject of the invention is generally a method of manufacturing photovoltaic cells in thin, semi-transparent layers by selective and local laser ablation of the material composing said thin layers. The cells may be connected in series and / or in parallel to form semitransparent photovoltaic modules. Said cells comprise, successively, at least one first electrically conductive transparent material (generally a doped semiconductor) deposited on a transparent substrate and acting as a front contact called a first electrode, one or more photoactive layers called absorber (s) and deposited on said first electrode, and a second electrically conductive material containing at least one metal layer and acting as a rear contact called second electrode. We notice :
- Hi l'épaisseur qui est égale aux épaisseurs cumulées de l'absorbeur et de la seconde électrode ;  The thickness which is equal to the cumulative thicknesses of the absorber and the second electrode;
- HiA l'épaisseur de la couche d'absorbeur ;  - HiA the thickness of the absorber layer;
- HIB l'épaisseur de la seconde électrode ;  - HIB the thickness of the second electrode;
- H2 l'épaisseur de la première électrode. - H 2 the thickness of the first electrode.
Un laser génère un faisceau généralement de section circulaire. Dans ce cas, la section laser est définie par son centre et son diamètre. Il est connu de l'homme du métier de mettre en forme le faisceau laser pour obtenir un faisceau dont la section représente n'importe quelle forme géométrique. Dans ce cas, on définit le diamètre comme étant la distance maximale entre deux points de la section générée. On définit le centre du cercle circonscrit comme étant le milieu dudit diamètre. Donc tout type de forme est définie par son diamètre D et son centre C. A laser generates a beam generally of circular section. In this case, the laser section is defined by its center and its diameter. It is known to those skilled in the art to shape the laser beam to obtain a beam whose section represents any geometric form. In this case, the diameter is defined as being the maximum distance between two points of the generated section. The center of the circumcircle is defined as the middle of the diameter. So any type of shape is defined by its diameter D and its center C.
Le procédé de fabrication selon l'invention des cellules photovoltaïques semi- transparentes comporte deux étapes unitaires d'ablation laser sélective et locale effectuées successivement, et répétées par itérations. The manufacturing method according to the invention of the semitransparent photovoltaic cells comprises two unitary stages of selective and local laser ablation carried out successively, and repeated by iterations.
La première étape unitaire Ei consiste à enlever, au travers du substrat et de la première électrode, et à l'aide d'un premier faisceau laser d'une fluence Fi et de longueur d'onde principale λι, un volume Vi de section Si (de centre Ci et de diamètre Di) et de hauteur Hi au sein de l'absorbeur et de la seconde électrode. Cette première ablation laser s'effectue tout en assurant l'intégrité de ladite première électrode, c'est- à-dire sans endommager le matériau conducteur transparent qui la constitue. L'absorption de la longueur d'onde λι dudit premier faisceau laser par l'absorbeur provoque la sublimation du ou des matériaux constituant ledit absorbeur selon le volume VIA de section Si et de hauteur HIA. Le volume VIB de section Si et de hauteur HIB au sein de la seconde électrode est alors éjecté, ce phénomène d'éjection de matière sous contraintes physiques étant plus connu sous le terme anglais « lift-off ».  The first unitary step Ei consists of removing, via the substrate and the first electrode, and with the aid of a first laser beam of a fluence Fi and of main wavelength λι, a volume Vi of section Si (center Ci and diameter Di) and height Hi within the absorber and the second electrode. This first laser ablation is performed while ensuring the integrity of said first electrode, that is to say without damaging the transparent conductive material that constitutes it. The absorption of the wavelength λι of said first laser beam by the absorber causes sublimation of the material or materials constituting said absorber according to volume VIA of section Si and height HIA. The volume VIB of section Si and height HIB within the second electrode is then ejected, this material ejection phenomenon under physical constraints being better known by the term "lift-off".
On définit un volume imaginaire Vie de section Si et de hauteur H2. We define an imaginary volume Vie of section Si and height H 2 .
La seconde étape unitaire E2 consiste à enlever, au travers du substrat transparent et à l'aide d'un second faisceau laser d'une fluence F2 et de longueur d'onde principale différente de λι, parfaitement ou partiellement aligné avec le premier faisceau laser, un volume V2 de section S2 (de diamètre D2) au sein de la première électrode. Ainsi, V2 est parfaitement inclus dans le volume Vie. Cette étape permet d'enlever le matériau transparent conducteur en contact avec le substrat, et d'accroître la qualité optique d'une image observée à travers les zones où toutes les couches minces ont été ablatées. En effet, la transmittance de la lumière dans le visible y est accrue puisque l'on supprime les phénomènes de réflexions aux interfaces, l'indice de réfraction dudit matériau transparent conducteur étant généralement plus fort que celui du substrat. Par ailleurs, la surface du matériau transparent conducteur en contact avec l'absorbeur étant généralement texturée à l'échelle nano ou micrométrique, enlever ledit matériau permet d'augmenter la clarté et de réduire le « haze », c'est-à-dire le flou d'une image perçu au travers des cellules photovoltaïques semi-transparentes. The second unitary step E 2 consists in removing, through the transparent substrate and with the aid of a second laser beam, a fluence F 2 and a main wavelength different from λι, perfectly or partially aligned with the first laser beam, a volume V 2 of section S2 (diameter D 2 ) within the first electrode. Thus, V 2 is perfectly included in the volume Life. This step removes the conductive transparent material in contact with the substrate, and increases the optical quality of an image observed across areas where all the thin layers have been ablated. Indeed, the transmittance of the light in the visible is increased since it removes the reflection phenomena at the interfaces, the refractive index of said transparent conductive material being generally stronger than that of the substrate. Moreover, since the surface of the conductive transparent material in contact with the absorber is generally textured at the nano or micrometric scale, removing said material makes it possible to increase the clarity and to reduce the "haze", that is to say the blur of an image perceived through semi-transparent photovoltaic cells.
Du fait de ces exigences optiques et électriques, et afin de maximiser sa cadence de fabrication, le procédé selon l'invention se caractérise par le faitque lesdites étapes unitaires Ei, E2 sont réalisées chacune en un seul tir laser, lesdits faisceaux laser étant de type « tophat » et centrés l'un par rapport à l'autre, et par le fait que l'aire de la section Si est supérieure à 0,25 mm2, l'aire de la section S2 étant inférieure à (SxDue to these optical and electrical requirements, and in order to maximize its production rate, the method according to the invention is characterized by the fact that said unitary steps E 1 , E 2 are each carried out in a single laser shot, said laser beams being type "tophat" and centered relative to each other, and in that the area of the section Si is greater than 0.25 mm 2 , the area of the section S2 being less than (S x -
0,035 * .fsï) mm2. Les deux faisceaux laser sont mis en forme pour obtenir des faisceaux de type « top-hat » c'est-à-dire dont l'extrémité de la section présente la particularité suivante : tout point de ladite section a la même énergie. La section du premier faisceau laser a un diamètre supérieur à 564 pm pour limiter les phénomènes de diffraction de la lumière visible au passage de l'ouverture créée par ledit premier faisceau, ce qui implique que Si soit supérieure à 0,25 mm2. Pour que les deux électrodes ne puissent pas avoir de contact au niveau des flans d'ablation ce qui permet d'éviter post-ablation la création de court-circuits de la diode photovoltaïque, tout en maintenant une bonne transparence optique dans la zone d'ablation, on doit choisir D2 tel que D2 < Di - 20 pm. Cela implique que S2 soit inférieure à (Sx - 0,035 *0.035 * .fsi) mm 2 . The two laser beams are shaped to obtain "top hat" type beams, that is to say the end of the section has the following feature: any point of said section has the same energy. The section of the first laser beam has a diameter greater than 564 μm to limit the diffraction phenomena of visible light to the passage of the opening created by said first beam, which implies that Si is greater than 0.25 mm 2 . So that the two electrodes can not have contact at the ablation blanks which avoids post-ablation the creation of short circuits of the photovoltaic diode, while maintaining a good optical transparency in the area of ablation, one must choose D 2 such that D 2 <Di - 20 pm. This implies that S2 is less than (S x - 0.035 *
■fsï) mm2. Ainsi, le trou réalisé dans la première électrode possède au moins 10 microns de moins de chaque côté par rapport au trou réalisé dans la couche active et la seconde électrode métallique. ■ fsi) mm 2 . Thus, the hole made in the first electrode is at least 10 microns smaller on each side than the hole made in the active layer and the second metal electrode.
On définit une section S2' telle que son centre Ci soit le même que celui de la section Si et de diamètre D2, et V2' le volume de section S2' et de hauteur H2. Les deux faisceaux laser utilisés lors des deux étapes élémentaires sont centrés, ce qui signifie que V2 est parfaitement inclus dans le volume V2'. A section S2 'is defined such that its center Ci is the same as that of the section Si and of diameter D 2 , and V2' the volume of section S2 'and of height H 2 . The two laser beams used during the two elementary steps are centered, which means that V 2 is perfectly included in the volume V2 '.
Avantageusement, la durée d'impulsion desdits faisceaux laser est de l'ordre de grandeur de la nanoseconde. Cela permet d'obtenir des cadences de production plus élevées que dans le cas de faisceaux laser pico ou femtosecondes. Dans un mode de réalisation avantageux, les volumes Vie et V2 satisfont à la relation : Vie≥ 1,1 V2. Les premier et second faisceaux laser peuvent être mis en forme selon des disques, des surfaces ovales, polygonales, hexagonales, carrées ou toutes combinaisons desdites formes. Pour tout type de forme, le faisceau laser définit une section et un volume d'ablation des couches minces des cellules photovolta'iques. Dans le cas de cellules photovolta'iques en couches minces semi-transparentes dont l'absorbeur comprend majoritairement une couche du silicium amorphe : Advantageously, the pulse duration of said laser beams is of the order of magnitude of the nanosecond. This allows for higher production rates than in the case of pico or femtosecond laser beams. In an advantageous embodiment, the volumes Vie and V2 satisfy the relation: Vie≥1.1 V 2 . The first and second laser beams may be shaped into disks, oval, polygonal, hexagonal, square or any combination of said shapes. For any type of shape, the laser beam defines a section and a volume of ablation of the thin film of photovoltaic cells' ic. In the case of photovoltaic cells' ic semi-transparent thin layers whose absorber predominantly comprises a layer of amorphous silicon:
- Le premier laser est préférentiellement un laser vert dont la longueur d'onde principale \i est comprise entre 500 et 580 nm et dont la fluence Fi est comprise 600 et 800 mJ/cm2 de manière à ne pas entraîner de modification physico-chimique du substrat, généralement un verre ou un plastique, et de la première électrode, généralement un oxyde métallique transparent. Par exemple, la première électrode peut être composée de dioxyde d'étain dopé au fluor. The first laser is preferably a green laser whose main wavelength is between 500 and 580 nm and whose fluence Fi is between 600 and 800 mJ / cm 2 so as not to cause physico-chemical modification. substrate, usually a glass or plastic, and the first electrode, usually a transparent metal oxide. For example, the first electrode may be composed of fluorine doped tin dioxide.
- Le second laser est un laser infra-rouge dont la longueur d'onde principale λ2 est comprise entre 900 et 1100 nm et dont la fluence F2 est comprise entre 4 et 8 J/cm2 de manière à ne pas entraîner de modification physico-chimique du substrat tout en permettant l'ablation de la première électrode. - The second laser is an infrared laser whose main wavelength λ 2 is between 900 and 1100 nm and whose fluence F 2 is between 4 and 8 J / cm 2 so as not to cause modification physico-chemical substrate while allowing the ablation of the first electrode.
Selon une première variante du procédé selon l'invention, les tirs lasers des deux étapes unitaires (Ei,E2) sont tous identiques et sans recouvrement lors de la succession desdites étapes unitaires par itération. Il s'agit de l'ensemble des tirs laser de la première étape unitaire Ei suivi de l'ensemble des tirs de la seconde étape unitaire E2 pour obtenir un module semi-transparent fonctionnel dont les zones de transparence sont non jointives et ont toutes la même forme géométrique pour former préférentiellement un réseau ordonné. Selon une seconde variante du procédé selon l'invention, la semi-transparence réalisée par les deux tirs lasers des deux étapes unitaires (ElrE2) ont des formes ou des dimensions qui varient lors de leurs itérations successives, pour former un module photovoltaïque disposant d'un gradient de semi-transparence, ou un réseau aléatoire. According to a first variant of the method according to the invention, the laser shots of the two unitary steps (Ei, E 2 ) are all identical and without overlap during the succession of said unitary steps by iteration. This is the set of laser shots of the first unitary step Ei followed by all the shots of the second unitary step E 2 to obtain a functional semi-transparent module whose transparency areas are non-contiguous and have all the same geometric shape to preferentially form an ordered network. According to a second variant of the method according to the invention, the semi-transparency produced by the two laser shots of the two unitary steps (E lr E2) have shapes or dimensions that vary during their successive iterations, to form a photovoltaic module having a semitransparency gradient, or a random network.
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
L'invention est maintenant décrite plus en détail à l'aide des figures 1 à 4. The invention is now described in more detail with reference to FIGS. 1 to 4.
La figure 1A représente un schéma d'une vue en coupe d'une portion de cellule photovoltaïque à base de silicium amorphe.  FIG. 1A represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon.
La figure 1B représente un schéma d'une vue en coupe d'une portion de cellule photovoltaïque à base de silicium amorphe parcouru par un faisceau laser.  FIG. 1B represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon traversed by a laser beam.
La figure 2A représente un schéma d'une vue en coupe d'une portion de cellule photovoltaïque à base de silicium amorphe traversé par un faisceau laser vert focalisant au sein de l'absorbeur.  FIG. 2A represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon traversed by a green laser beam focusing within the absorber.
La figure 2B représente un schéma d'une vue en coupe du résultat de la première étape unitaire de l'ablation laser selon l'invention.  FIG. 2B represents a diagram of a sectional view of the result of the first unitary step of the laser ablation according to the invention.
La figure 3A représente un schéma d'une vue en coupe d'une portion de cellule photovoltaïque à base de silicium amorphe traversé par un faisceau laser infra-rouge focalisant au sein de la première électrode.  FIG. 3A represents a diagram of a sectional view of a photovoltaic cell portion based on amorphous silicon traversed by an infra-red laser beam focusing within the first electrode.
La figure 3B représente un schéma une vue en coupe du résultat de la seconde étape unitaire de l'ablation laser selon l'invention.  FIG. 3B represents a schematic sectional view of the result of the second unitary step of the laser ablation according to the invention.
La figure 4 est un schéma représentant un exemple de module photovoltaïque dont les zones de transparence sont obtenues par itération des deux étapes unitaires du procédé, qui sont deux tirs laser isolés de forme circulaire.  FIG. 4 is a diagram showing an example of a photovoltaic module whose transparency zones are obtained by iteration of the two unitary steps of the process, which are two isolated circular laser shots.
La portion de cellule photovoltaïque de la figure 1A est composée : The photovoltaic cell portion of FIG. 1A is composed of:
- d'un substrat transparent (1) de verre ;  - a transparent substrate (1) of glass;
- d'une première électrode transparente conductrice (2) en dioxyde d'étain dopé au fluor (Sn02:F) ; - d'un absorbeur (3) formé au moins d'une couche de silicium amorphe (aSi) formant une ou plusieurs jonctions n i p ; a first conductive transparent electrode (2) made of fluorine-doped tin dioxide (Sn0 2 : F); an absorber (3) formed of at least one amorphous silicon layer (aSi) forming one or more nip junctions;
- d'une seconde électrode (4) conductrice métallique composée d'aluminium a second metal conductive electrode (4) composed of aluminum
(Al). (Al).
L'épaisseur de chaque couche mince varie de quelques centaines de nanomètres à quelques microns. The thickness of each thin layer varies from a few hundred nanometers to a few microns.
La figure 1B représente un schéma d'une vue en coupe de la portion de cellule photovolta'ique à base de silicium amorphe selon la figure 1A, parcourue par un faisceau laser (50) vert de section Si. Les épaisseurs des différentes couches sont : 1B shows a diagram of a sectional view of the photovoltaic cell portion 'ic amorphous silicon according to Figure 1A, through which a laser beam (50) section of green If the thicknesses of the various layers.:
- HIA l'épaisseur de la couche d'absorbeur (3) ;  - HIA the thickness of the absorber layer (3);
- HIB l'épaisseur de la seconde électrode (4) ;  - HIB the thickness of the second electrode (4);
- Hi l'épaisseur de l'ensemble des couches {seconde électrode (4), absorbeur (3)} ;  The thickness of all the layers (second electrode (4), absorber (3));
- H2 l'épaisseur de la première électrode (2).  - H2 the thickness of the first electrode (2).
Le procédé de fabrication des cellules photovoltaïques semi-transparentes comprend deux étapes d'ablation laser sélective et locale effectuées successivement. La première étape unitaire Ei, décrite en relation avec la figure 2A, consiste à graver à l'aide d'un premier faisceau laser (50) vert (λι = 534 nm) un volume Vi de section Si et de hauteur Hi au sein de l'absorbeur (3) et de la seconde électrode (4). La fluence Fi du laser est de 600 mJ/cm2. Le faisceau est de type top-hat. Le diamètre Di de la section Si vaut 600 μιτι, d'où une aire de section Si égale à 0,28 mm2. L'aire de la section Si est donc supérieure à 0,25 mm2. Cette première ablation laser s'effectue au travers du substrat (1) transparent et de la première électrode transparente (2) qui ne sont pas impactés par le faisceau laser vert. L'absorption de la longueur d'onde λι du faisceau laser par l'absorbeur (3) provoque la sublimation du ou des matériaux constituant ledit absorbeur selon le volume VIA (53) de section Si et de hauteur HIA. Le volume VIB (54) de section Si et de hauteur HIB au sein de la seconde électrode est alors éjecté, ce phénomène d'éjection de matière (55) sous contraintes physiques est connu sous le terme anglais de « lift-off ». Le résultat de la première ablation laser, schématisé sur la figure 2B, laisse une zone vacante (6) de volume Vi au sein de la seconde électrode (4) et de l'absorbeur (3) sans détérioration thermique de la première électrode (2) ou du substrat (1), qui sont transparents pour cette longueur d'onde λι. The process for manufacturing semi-transparent photovoltaic cells comprises two steps of selective local laser ablation carried out successively. The first unitary step Ei, described with reference to FIG. 2A, consists in engraving with a first green laser beam (50) (λι = 534 nm) a volume Vi of section Si and of height Hi within the absorber (3) and the second electrode (4). The fluence Fi of the laser is 600 mJ / cm 2 . The beam is of the top-hat type. The diameter Di of the section Si is 600 μιτι, hence a section area Si equal to 0.28 mm 2 . The area of the section Si is therefore greater than 0.25 mm 2 . This first laser ablation takes place through the transparent substrate (1) and the first transparent electrode (2) which are not impacted by the green laser beam. The absorption of the wavelength λι of the laser beam by the absorber (3) causes the sublimation of the material or materials constituting said absorber according to volume VIA (53) of section Si and height HIA. The volume VIB (54) of section Si and height HIB within the second electrode is then ejected, this material ejection phenomenon (55) under physical constraints is known as the term "lift-off". The result of the first laser ablation, shown diagrammatically in FIG. 2B, leaves a vacant zone (6) of volume Vi within the second electrode (4) and the absorber (3) without thermal deterioration of the first electrode (2). ) or the substrate (1), which are transparent for this wavelength λι.
La seconde étape E2, décrite en référence à la figure 3A, consiste à graver à l'aide d'un second faisceau laser (70) infrarouge de longueur d'onde principale λ2 = 1064 nm, de même forme que le faisceau laser (50) vert mais de plus petite section S2, un volume V2 (72) au sein de la première électrode de telle sorte que V2 (72) soit parfaitement inclus dans le volume V (71) de section Si de hauteur H2. La fluence du laser vaut F2 = 7J/cm2. Le volume V2 (72) de section S2 et de hauteur H2 au sein de la première électrode est alors éjecté. Cette seconde ablation laser se fait uniquement au travers du substrat (1) qui n'est pas ou très peu affecté thermiquement. Le faisceau laser infrarouge (70) est aligné avec le premier faisceau laser vert (50), c'est-à-dire que les sections des deux faisceaux sont centrées l'une par rapport à l'autre, et le diamètre de sa section est inférieur de 60 microns à celui du faisceau laser vert, ce qui signifie que D2 est égal à 540 pm, et que la section S2 est d'environ 0,23 mm2. En partant du calcul suivant : (Si — 0,035 * ^βΐ) = 0,26 mm2, on remplit bien la condition que S2 est inférieur à (Si — 0,035 * *jsî). Ces deux conditions permettent d'assurer l'absence de re-dépôt de matière éjectée (73) sur les flancs ablatés de l'absorbeur (3) et de la seconde électrode (4). Ainsi, il n'y a pas de formation de contact entre la première électrode (2) et la seconde électrode (4) et on évite donc la création de court-circuits au sein de la diode photovoltaïque. Par ailleurs, le rapport
Figure imgf000013_0001
= S1/S2 est égal à 1,2 et satisfait donc à la relation Vie 1,1 V2.
The second step E 2 , described with reference to FIG. 3A, consists of etching with the aid of a second infrared laser beam (70) of main wavelength λ 2 = 1064 nm, of the same shape as the laser beam. (50) green but of smaller section S2, a volume V 2 (72) within the first electrode such that V 2 (72) is perfectly included in the volume V (71) of section Si of height H 2 . The fluence of the laser is F2 = 7J / cm 2 . The volume V 2 (72) of section S2 and height H2 within the first electrode is then ejected. This second laser ablation is only through the substrate (1) which is not or very little affected thermally. The infrared laser beam (70) is aligned with the first green laser beam (50), i.e. the sections of the two beams are centered with respect to each other, and the diameter of its section is 60 microns smaller than that of the green laser beam, which means that D2 is 540 μm, and the section S2 is about 0.23 mm 2 . Starting from the following calculation: (Si - 0.035 * ^ βΐ) = 0.26 mm 2 , the condition is satisfied that S2 is less than (Si - 0.035 * * jsi). These two conditions make it possible to ensure the absence of re-deposition of ejected material (73) on the ablated flanks of the absorber (3) and the second electrode (4). Thus, there is no contact formation between the first electrode (2) and the second electrode (4) and thus the creation of short circuits within the photovoltaic diode is avoided. In addition, the report
Figure imgf000013_0001
= S1 / S2 is equal to 1.2 and therefore satisfies the relation Life 1.1 V2.
La figure 4 est un schéma représentant un exemple de module photovoltaïque dont les zones de transparence sont obtenues par itération des deux étapes unitaires du procédé, qui sont deux tirs laser isolés de forme circulaire. Les zones de transparences blanches sont séparées distinctement des zones actives photovoltaïques noires. EXEMPLE DE REALISATION FIG. 4 is a diagram showing an example of a photovoltaic module whose transparency zones are obtained by iteration of the two unitary steps of the process, which are two isolated circular laser shots. The white transparency areas are distinctly separated from the black photovoltaic active areas. EXEMPLARY EMBODIMENT
Le procédé de l'invention a fait l'objet d'un test pratique, réalisé dans le but de produire des modules photovoltaïques à base de silicium amorphe ayant 30 % de transparence. La semi-transparence est réalisée par ablation locale et sélective de disques de 600 microns de diamètre dans l'absorbeur et dans la seconde électrode. Le laser utilisé est un laser vert (534 nm) nanoseconde ayant une fluence de 600 mJ/cm2. Le faisceau est de type top-hat et sa section possède un diamètre de 600 pm. Une mesure de la transmission optique et de la performance du module a été réalisée avant la seconde étape. Nous avons donc une première électrode en oxyde d'étain dopé au fluor sur l'intégralité du substrat, et une surface d'absorbeur et de seconde électrode de 30% de la surface du substrat. La transmission mesurée est de 52,4%. The method of the invention was the subject of a practical test, carried out for the purpose of producing photovoltaic modules based on amorphous silicon having 30% transparency. Semi-transparency is achieved by local and selective ablation of 600 micron diameter discs in the absorber and in the second electrode. The laser used is a green laser (534 nm) nanosecond with a fluence of 600 mJ / cm 2 . The beam is of the top-hat type and its section has a diameter of 600 μm. A measurement of the optical transmission and the performance of the module was carried out before the second step. We therefore have a first fluorine-doped tin oxide electrode on the entire substrate, and an absorber and second electrode surface of 30% of the substrate surface. The measured transmission is 52.4%.
La seconde étape du procédé de l'invention qui consiste à ablater la première électrode a été réalisée à partir d'un laser infrarouge (1064 nm) nanoseconde de fluence 7J/cm2. Le faisceau est aussi de type top-hat et le diamètre de sa section est égale à 540 nm. Le module photovoltaïque semi-transparent obtenu par le procédé de fabrication selon l'invention présente donc in fine 40 % de surface en Sn02:F. La transmission optique mesurée passe alors à 57,5%, ce qui permet d'améliorer de plus de 5% la transparence effective du module. De plus, les performances électriques sont identiques et ne sont pas détériorées par la seconde étape. Le procédé de fabrication selon l'invention permet donc bien de fabriquer des modules photovoltaïques en couches minces semi-transparentes par ablation laser sélective et locale desdites couches minces. Cela permet de maximiser les performances électriques desdits modules en supprimant l'apparition de court-circuits consécutifs aux effets thermiques des procédés d'ablation laser connus, tout en maximisant la qualité optique desdits modules photovoltaïques semi-transparents, et ce avec de bonnes cadences de production. The second step of the method of the invention which consists in ablating the first electrode was carried out from an infrared laser (1064 nm) nanosecond of fluence 7J / cm 2 . The beam is also of top-hat type and the diameter of its section is equal to 540 nm. The semitransparent photovoltaic module obtained by the manufacturing method according to the invention thus has, in fine, 40% of surface area of SnO 2: F. The measured optical transmission then passes to 57.5%, which makes it possible to improve the effective transparency of the module by more than 5%. In addition, the electrical performances are identical and are not deteriorated by the second step. The manufacturing method according to the invention therefore makes it possible to manufacture photovoltaic modules in semi-transparent thin layers by selective and local laser ablation of said thin layers. This makes it possible to maximize the electrical performance of said modules by eliminating the appearance of short-circuits consecutive to the thermal effects of known laser ablation processes, while maximizing the optical quality of said semi-transparent photovoltaic modules, and with good rates of production.

Claims

REVENDICATIONS
1 - Procédé de fabrication de cellules photovolta'iques en couches minces semi- transparentes par ablation laser sélective et locale de la matière composant lesdites couches minces, lesdites couches minces comportant successivement au moins un premier matériau transparent électriquement conducteur déposé sur un substrat transparent (1) et jouant le rôle de contact avant appelé première électrode (2), une ou plusieurs couches photo-active(s) appelée(s) absorbeur (3) et un second matériau électriquement conducteur jouant le rôle de contact arrière appelé seconde électrode (4), le procédé comportant une succession des étapes unitaires suivantes, répétées par itération : 1 - Method for manufacturing photovoltaic cells' ic semi-transparent thin film by selective and local laser ablation of the material composing said thin film, said thin film layers successively comprising at least a first transparent electrically conductive material deposited on a transparent substrate (1 ) and playing the role of front contact called first electrode (2), one or more photo-active layers (s) called (s) absorber (3) and a second electrically conductive material acting as rear contact called second electrode (4). ), the method comprising a succession of the following unitary steps, repeated by iteration:
- une première étape unitaire (Ei) d'ablation laser consistant à enlever, au travers du substrat (1) et de la première électrode (2), et à l'aide d'un premier faisceau laser (50) d'une fluence Fi et de longueur d'onde principale λι, un volume Vi de section Si et de hauteur Hi au sein de l'absorbeur (3) et de la seconde électrode (4) tout en assurant l'intégrité de la première électrode (2) ;  a first unit laser ablation step (Ei) of removing, through the substrate (1) and the first electrode (2), and with the aid of a first laser beam (50) a fluence Fi and main wavelength λι, a volume Vi of section Si and height Hi within the absorber (3) and the second electrode (4) while ensuring the integrity of the first electrode (2) ;
- une seconde étape unitaire (E2) d'ablation laser consistant à enlever, au travers du substrat (1) et à l'aide d'un second faisceau laser (70) d'une fluence F2 et de longueur d'onde principale λ2 différente de λι, un volume V2 de section S2 et de hauteur H2 au sein de la première électrode (2) ; a second unitary laser ablation step (E 2 ) of removing, via the substrate (1) and using a second laser beam (70), a fluence F 2 and a wavelength main λ 2 different from λι, a volume V 2 of section S2 and height H2 within the first electrode (2);
ledit procédé étant caractérisé en ce que lesdites étapes unitaires (Ei,E2) sont réalisées chacune en un seul tir laser, lesdits faisceaux laser (50,70) étant de type « top hat » et centrés l'un par rapport à l'autre, et en ce que la section Si est supérieure à 0,25 mm2, la section S2 étant inférieure à (S1— 0,035 * /SÏ) mm2. said method being characterized in that said unitary steps (E 1, E 2) are each performed in a single laser shot, said laser beams (50, 70) being of the "top hat" type and centered with respect to each other , and in that the Si section is greater than 0.25 mm 2 , the section S 2 being less than (S 1 - 0.035 * / Si) mm 2 .
2 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les volumes V2 et Vie, Vie étant défini par une section Si et une hauteur H2, satisfont à la relation Vie 1,1 V2. 3 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la durée d'impulsion desdits faisceaux laser (50,70) est de l'ordre de grandeur de la nanoseconde. 4 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits faisceaux laser (50,70) sont mis en forme selon des disques, des surfaces ovales, polygonales, hexagonales, carrées ou toutes combinaisons desdites formes. 5 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les deux tirs lasers (50,70) des deux étapes unitaires (Ei, E2) sont tous identiques et sans recouvrement lors de la succession desdites étapes unitaires par itération. 6 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les deux tirs lasers (50, 70) des deux étapes unitaires (Ei, E2) ont des formes ou des dimensions qui varient lors de leurs itérations successives, pour former un gradient de semi-transparence. 7 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier faisceau laser (50) a une fluence Fi comprise entre 600 et 800 mJ/cm2 de manière à ne pas entraîner de modification physico-chimique du substrat (1) et de la première électrode (2). 8 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le second faisceau laser (70) a une fluence F2 comprise entre 4 et 8 J/cm2 de manière à ne pas entraîner de modification physico-chimique du substrat (1). 2 - Process according to any one of the preceding claims, characterized in that the volumes V2 and Vie, Vie being defined by a section Si and a height H2, satisfy the relationship Life 1,1 V2. 3 - Process according to any one of the preceding claims, characterized in that the pulse duration of said laser beams (50,70) is of the order of magnitude of the nanosecond. 4 - Process according to any one of the preceding claims, characterized in that said laser beams (50,70) are shaped according to discs, oval, polygonal, hexagonal, square or any combination of said shapes. 5 - Process according to any one of the preceding claims, characterized in that the two laser shots (50,70) of the two unitary steps (Ei, E 2 ) are all identical and without overlap during the succession of said unit steps by iteration . 6 - Process according to any one of claims 1 to 5, characterized in that the two laser shots (50, 70) of the two unitary steps (Ei, E 2 ) have shapes or dimensions that vary during their successive iterations to form a semitransparency gradient. 7 - Process according to any one of the preceding claims, characterized in that the first laser beam (50) has a fluence Fi between 600 and 800 mJ / cm 2 so as not to cause physico-chemical modification of the substrate ( 1) and the first electrode (2). 8 - Process according to any one of the preceding claims, characterized in that the second laser beam (70) has a fluence F 2 of between 4 and 8 J / cm 2 so as not to cause physico-chemical modification of the substrate (1).
9 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier faisceau laser (50) a une longueur d'onde principale Ai comprise entre 500 et 580 nm. 10 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier faisceau laser (50) a une longueur d'onde principale λ2 comprise entre 900 et 1100 nm. 9 - Process according to any one of the preceding claims, characterized in that the first laser beam (50) has a main wavelength λi between 500 and 580 nm. 10 - Process according to any one of the preceding claims, characterized in that the first laser beam (50) has a main wavelength λ 2 between 900 and 1100 nm.
11 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la hauteur Hi est égale aux épaisseurs cumulées de l'absorbeur (3) et de la seconde électrode (4). 11 - Process according to any one of the preceding claims, characterized in that the height Hi is equal to the cumulative thicknesses of the absorber (3) and the second electrode (4).
12 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la hauteur H2 est égale à l'épaisseur de la première électrode (2). 12 - Process according to any one of the preceding claims, characterized in that the height H 2 is equal to the thickness of the first electrode (2).
13 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'absorbeur (3) est composé majoritairement de silicium amorphe. 13 - Process according to any one of the preceding claims, characterized in that the absorber (3) is composed mainly of amorphous silicon.
14 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première électrode (2) est composée de dioxyde d'étain dopé au fluor. 14 - Process according to any one of the preceding claims, characterized in that the first electrode (2) is composed of fluorine-doped tin dioxide.
PCT/FR2018/000174 2017-06-16 2018-06-14 Process for laser ablating thin layers in two steps for the production of semi-transparent photovoltaic modules WO2018229366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1700647A FR3067858A1 (en) 2017-06-16 2017-06-16 TWO-STAGE THIN FILM LASER ABLATION PROCESS FOR THE PRODUCTION OF SEMI-TRANSPARENT PHOTOVOLTAIC MODULES
FR1700647 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018229366A1 true WO2018229366A1 (en) 2018-12-20

Family

ID=61258268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/000174 WO2018229366A1 (en) 2017-06-16 2018-06-14 Process for laser ablating thin layers in two steps for the production of semi-transparent photovoltaic modules

Country Status (2)

Country Link
FR (1) FR3067858A1 (en)
WO (1) WO2018229366A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196536A1 (en) 2005-03-07 2006-09-07 Sharp Kabushiki Kaisha Thin film solar cell and manufacturing method thereof
US20090151783A1 (en) 2007-12-13 2009-06-18 Chun-Hsiung Lu Translucent solar cell and manufacturing method thereof
TWI477342B (en) * 2013-09-12 2015-03-21 Nexpower Technology Corp Laser scribing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196536A1 (en) 2005-03-07 2006-09-07 Sharp Kabushiki Kaisha Thin film solar cell and manufacturing method thereof
US20090151783A1 (en) 2007-12-13 2009-06-18 Chun-Hsiung Lu Translucent solar cell and manufacturing method thereof
TWI477342B (en) * 2013-09-12 2015-03-21 Nexpower Technology Corp Laser scribing method

Also Published As

Publication number Publication date
FR3067858A1 (en) 2018-12-21

Similar Documents

Publication Publication Date Title
EP3077327B1 (en) Solar heat absorber with surface structure and method for the production thereof
FR2503457A1 (en) SYSTEM OF SOLAR CELLS CONNECTED IN SERIES ON A SINGLE SUBSTRATE
EP2845227B1 (en) Laser etching of a thin layers stack for a connection of a photovoltaic cell
FR2881879A1 (en) PROCESS FOR PRODUCING METAL / SEMICONDUCTOR CONTACTS THROUGH A DIELECTRIC
EP3391421A1 (en) Optical device for reducing the visibility of electrical interconnections in semi-transparent thin-film photovoltaic modules
EP3582268A1 (en) Method for manufacturing a photovoltaic module and photovoltaic module thus obtained
FR2925222A1 (en) METHOD OF MAKING ELECTRIC INERCONNECTION BETWEEN TWO CONDUCTIVE LAYERS
EP3985456A1 (en) Method for manufacturing a resonator
WO2018229366A1 (en) Process for laser ablating thin layers in two steps for the production of semi-transparent photovoltaic modules
EP2681768B1 (en) Process for monolithic series connection of the photovoltaic cells of a solar module and a photovoltaic module obtained by this process
WO2009040353A1 (en) Dispersive optical device with three dimensional photonic crystal
FR3084203A1 (en) INDUSTRIAL METHOD OF LASER ABLATION OF THIN FILMS IN ONE STEP FOR THE PRODUCTION OF SEMI-TRANSPARENT PHOTOVOLTAIC MODULES
EP3227925B1 (en) Photovoltaic textile thread
EP2842170B1 (en) Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector
FR3061606A1 (en) METHOD FOR THE LASER ABLATION OF THIN LAYERS FOR THE PRODUCTION OF SEMI-TRANSPARENT PHOTOVOLTAIC MODULES
EP3168902A1 (en) Method for manufacturing an electrochemical device, such as an electrochromic system or a system for storing energy, for example a microbattery, a battery or a supercapacitor
EP3956700A1 (en) Reflective diffraction grating resistant to an ultra-short-pulse light flux with high peak power and method for the production thereof
WO2020084582A1 (en) Semi-transparent thin-film photovoltaic device provided with an optimised metal/native oxide/metal electrical contact
FR2978688A1 (en) Structuring substrate that is useful for photonic crystals, by depositing optical convergent elements, transverse to light beam, on surface of substrate, and applying beam on substrate to form cavity, where the elements have dimensions
WO2014029836A2 (en) Method for producing the electrical contacts of a semiconductor device
FR3090680A1 (en) Method of preparing a surface to adjust, in a reproducible manner, its adhesion capacity
FR3083727A1 (en) LASER NANOSTRUCTURING THE SURFACE OF A MATERIAL
EP3701574A1 (en) Energy storage device
WO2017076996A1 (en) Substrate for conductive ink
FR3023062A1 (en) SILICON HETEROJUNCTION PHOTOVOLTAIC CELL AND METHOD OF MANUFACTURING SUCH CELL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18759147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18759147

Country of ref document: EP

Kind code of ref document: A1