WO2018229356A1 - Navire a plans porteurs a haute stabilite - Google Patents
Navire a plans porteurs a haute stabilite Download PDFInfo
- Publication number
- WO2018229356A1 WO2018229356A1 PCT/FR2017/051504 FR2017051504W WO2018229356A1 WO 2018229356 A1 WO2018229356 A1 WO 2018229356A1 FR 2017051504 W FR2017051504 W FR 2017051504W WO 2018229356 A1 WO2018229356 A1 WO 2018229356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plane
- carrier plane
- ship
- arm
- shell
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/16—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
- B63B1/24—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
- B63B1/28—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils
- B63B1/285—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils changing the angle of attack or the lift of the foil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/16—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
- B63B1/24—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
- B63B1/248—Shape, hydrodynamic features, construction of the foil
Definitions
- the invention relates to the field of fluvial and coastal transport.
- the Applicant has analyzed the situation.
- the big hydrofoils are able to face hollows of more than one meter.
- the large draft prohibits some ports.
- the power required by the propulsion is of the order of 10 000 kW.
- Their gas turbine engine is noisy and offers good performance at full power. Their use is therefore very constrained.
- Small motorized hydrofoils have not been successful. If prototypes are numerous, industrial achievements are rare. Small hydrofoils are subjected to very different mechanical stresses because of their short length compared to the hollows or chop.
- Application WO2015 / 026301 a submerged wing control system for the purpose of carrying out the gyration of the ship.
- the wings have a shape of J and are adjustable along a vertical axis.
- the vessel is intended for recreational use.
- the Applicant has analyzed the structure. Very important efforts are exerted on the wings and the pivots of the wings. The limitation of the game between the orientations of the wings seems difficult. A heavy structure is necessary.
- the Claimant has come up with a fast, quiet urban passenger transport that respects the banks of waterways and offers a high level of service making it suitable for on-demand use.
- the present invention improves the situation.
- the invention proposes a fluvial or coastal vessel, comprising a hull, a wet propeller propeller, a front carrier plane and a rear hydrosustentation bearing plane.
- the vessel comprises a plurality of pressure probes mounted on at least one leading edge of a plane chosen from the front carrier plane, the rear carrier plane and, where appropriate, a support arm of one of said carrier planes; and a controller receiving a pressure data measured by each probe to calculate an estimated height relative to the water.
- the height of the vessel relative to the water can be controlled resulting in excellent stability and reduced energy consumption.
- the pressure probe comprises a Pitot tube.
- a plurality of pitot tubes aligned in height may be provided.
- the vessel includes a control interface comprising the height of the hull relative to the water, the controller calculating an estimated height of the hull with respect to the water and being configured to adjust the height of the hull with respect to the water.
- the height of the hull with respect to the water can be controlled by speed, acceleration and gyration.
- the pitch control is configured to issue an instruction to a wedge setting member of the forward carrier plane.
- the planing can be obtained and kept at low speed.
- the ship comprises a row of pressure probes disposed on a support portion of a carrier plane, for example on an arm. Extra drag is avoided.
- the vessel comprises a ducted arm disposed in a substantially vertical plane in longitudinal section.
- the pressure probes can be mounted on a leading edge of the shrouded arm.
- the thruster is connected to the hull by the rear carrier plane and the shrouded arm. High rigidity is obtained.
- the rear carrier plane has a rounded center V shape and a rounded end leading edge away from the center of the rear carrier plane and connecting to the trailing edge.
- the drag is weak.
- the angle of the V is between 100 and 140 °. High stability is achieved for passenger comfort.
- the rear carrier plane comprises at least two movable trailing edge flaps controlled by said computer via an actuator for controlling the lift of the rear carrier plane. Drag is reduced and stability is improved.
- the rear carrier plane comprises at least two movable trailing edge flaps controlled by said control member via an actuator to laterally tilt the ship. The gyration with canting of the ship allows a passage to turn at higher speed with equal comfort.
- the thruster is connected to the shell by the rear bearing plane and by a ducted arm disposed in a substantially vertical plane in longitudinal section.
- the streamlined arm supports two propellers.
- the ship comprises two faired arms each supporting a propeller.
- the ship includes batteries housed in the hull and an electrical connection between an electric propulsion motor and the batteries.
- the electrical connection is of small size.
- at least one of the carrier planes comprising a leading edge with rounded bosses.
- the vessel has a low risk of ventilation and low hydrodynamic drag. Ventilation is understood to mean the arrival of air between the extrados of the bearing plane with bossed leading edge and the vein of water situated above said moving extrados.
- the bosses are fading towards the trailing edge.
- the drag is reduced.
- the extrados and the intrados can be smooth.
- the bosses are arranged at a distance from the center of said carrier plane. The bosses are provided in areas at risk of ventilation.
- said carrier plane comprises a central portion with a substantially constant profile and two lateral portions provided with said bosses.
- the central portion may have a reduced thickness, resulting in low drag.
- the central portion has a constant pitch.
- the central portion has a constant chord.
- the rope of the central portion can be reduced, resulting in a weak trail.
- the lateral portions have a decreasing pitch towards the central portion and a decreasing cord towards the central portion.
- the vessel can reach a high speed while maintaining a sufficient central portion immersion for a low ventilation risk.
- the lateral portions provide a high lift relative to their transverse dimension. Planing is easy.
- the front carrier plane passes under the hull.
- FIG. 1 is a side elevational view of a ship according to one aspect of the invention
- FIG. 2 is a front view in elevation of the ship of FIG. 1,
- FIG. 3 is a rear elevational view of the vessel of FIG. 1,
- FIG. 4 is a rear elevational view of a ship according to another aspect of the invention.
- FIG. 5 is a rear elevational view of a ship according to another aspect of the invention.
- FIG. 6 is a rear elevational view of a ship according to another aspect of the invention.
- FIG. 7 is a side elevational view of a ship according to another aspect of the invention.
- FIG. 8 is a sectional view along a vertical longitudinal plane of symmetry of a ship according to another aspect of the invention.
- FIG. 9 is a side elevational view of a ship according to another aspect of the invention.
- FIG. 10 is a side elevational view of a ship according to another aspect of the invention.
- FIG. 11 is a perspective view of a ship according to another aspect of the invention ++ QUADRI ++,
- FIG. 12 is a detail view in perspective of the rear part of a ship according to another aspect of the invention.
- FIGS. 13 and 14 are rear and top views in elevation of the front carrier plane according to another aspect of the invention.
- FIGS. 15 to 18 are sectional views along A-A, BB, CC, DD of FIG. 13, and FIG. 19 is a detailed perspective view of a carrier plane of a ship according to another aspect of the invention.
- the vessel 1 is flotation secured by a hull having hydrodynamic properties suitable for navigation at low speed, planing and resumption of flotation, and carrying planes, often called “hydrofoils” or hydrosustentation wings, providing lift of the assembly beyond a planing speed so that the hull hull is located above the water.
- the hull is in its usual sense the submerged part of the hull, here hull means the submerged part of the hull in Archimedean navigation. The drag decreases sharply during the planing, resulting in reduced energy consumption and increased autonomy.
- the planing speed is relative to the body of water and, for a given ship, depends on its load while increasing with the load.
- the carrier planes are configured to provide a planing at a speed of a few knots, 5 knots at most, to reduce the waves generated by the drag and may deteriorate the banks, to increase the average speed stopped and stopped, and for reduce energy consumption.
- the carrier planes are configured to generate, themselves, a low drag.
- the binomial velocity of planing given load / trailing carrier planes being by nature antagonistic, i.e. the one varying the opposite of the other, different pairs are provided according to the average distance to travel.
- a low planing speed is desirable for a river crossing at short distances and fragile banks.
- a low drag of the carrier planes is adapted to a bay crossing at medium distances and high speed.
- the ship 1 is referenced according to a three-dimensional coordinate system with X the longitudinal axis or axis moving in a straight line, Y the horizontal transverse axis and Z the vertical axis. As the ship may be inclined, the mark is relative to the ship.
- the X axis can rotate relative to the horizontal, especially in acceleration or deceleration.
- the Y axis can take heel relative to the horizontal, especially in bends.
- the Z axis can shift from the vertical for both reasons above.
- the ship is symmetrical with respect to the longitudinal plane XZ.
- the take-off plane is defined as an XY plane passing through the low points of the hull.
- the ship 1 comprises a hull 2 ensuring the buoyancy at a stop and at low speed, a front carrier plane 3 and a rear carrier plane 4 providing lift in the water at cruising speed.
- the ship 1 comprises a thruster 5.
- the ship 1 is devoid of saffron.
- Each bearing plane 3, 4 is connected to the shell bilaterally.
- the term "wing" is sometimes used to designate planes.
- the hull 2 has an inclined bow 6, a stern 7 in a table, straight edges 8 and 9 straight and a bottom 10.
- the bow 6 has a rounded shape raised towards the front .
- the stern 7 is generally parallel to the YZ plane.
- the straight edges 8 and 9 are parallel to the XZ plane.
- the bow 6 comprises a lower part 6a formed in the same material as the shell 2 and a windshield 6b overlying the lower part 6a.
- the windshield 6b also extends laterally over a front portion of the free edges 8 and 9.
- the bottom 10 may be parallel to the XY plane or ribbed parallel to the X axis. In cross-section, the bottom 10 may have a central edge 10a in V and sides 10b and 10c. The sides 10b and 10c may be substantially in the XY plane. The bottom 10 and the bow 6 are in continuity of curvature.
- the central edge 10a can be interrupted in front of the rear carrier plane 4.
- the bottom 10 in the region of the rear carrier plane 4 and back thereof is substantially planar. Fillet connections are formed between the aforementioned elements of the shell 2.
- the shell 2 may be made of composite material.
- the front carrier plane 3 is fixed on each side of the hull 2. The front carrier plane 3 is assembled to the hull in an area having a maximum hull width and located as far forward as possible.
- the front carrier plane 3 has an arch shape passing under the hull 1.
- the front carrier plane 3 undergoes, in use, predominantly compression constraints and a minor one in particular. bending. This is almost the opposite of the pure bending stresses of an inverted T carrier plane.
- the front carrier plane 3 is devoid of cantilevered portion.
- the space between the front bearing plane 3 and the shell 2 is free.
- the front carrier plane 3 is monobloc.
- the front carrier plane 3 may be made of composite material.
- the front bearing plane 3 can be fixed to the straight edges 8 and 9 by fixing to several screw-nuts on each side.
- the front carrier plane 3 is located behind the bow 6, in particular to a portion of the hull 2 of maximum width and up to the bow 6.
- the front bearing plane 3 is symmetrical with respect to the XZ plane.
- the front carrier plane 3 comprises two support portions 11 each in contact with a freeboard 8, 9, a central portion 12 and two inclined portions 13 each disposed between a support portion 11 and the central portion 12.
- the support portions 11 are generally parallel. Alternatively, convergent support portions 11 may be provided. Converging support portions 11 are connected to the lateral ends of the inclined portions 13, laterally beyond the shell 2. The corresponding carrier plane is then free of overhang. The support portions 11 located above are less likely to be in the water resulting in a reduction of the average drag and the inclined portions 13 extending laterally further from the shell 2 provide increased stability.
- the support portions 11 have a thickness greater than the thickness of the inclined portions 13 and the thickness of the central portion 12.
- the support portions 11 have a plate shape, optionally indented to lighten the weight estimate.
- the support portions 11 have a length along the X axis greater than the length of the inclined portions 13 and the length of the central portion 12.
- a support portion 11 of high length allows high rigidity and distributed force transmission on the free edges 8 and 9.
- the support portions 11 being out of water in a supported position, their high length and / or their high thickness is independent of the hydrodynamic properties.
- a Y shape with two branches upward can be provided.
- a lower region 11a of the support portions 11 may be thin due to the essentially compressive forces exerted thereon. Said lower region may have a bulge to the outside.
- the support portions 11 have an increasing thickness upwards so as to distribute the forces of the screw-nut connections.
- the upper region of the inclined portions 13 out of water in a supported position can also be relatively thick and / or long.
- the length of the inclined portions 13 and the length of the central portion 12 is also called rope.
- the front carrier plane 3 has a constant rope from the edges to the center.
- the central portion 12 has a rope equal to the chord of the inclined portions 13.
- the central portion 12 may have a constant chord.
- the central portion 12 may have a constant thickness.
- the central portion 12 may have a rope thickness ratio of between 5 and 15%.
- the central portion 12 may be parallel to the Y axis or rounded to a large radius so as to reduce the draft and the wet surface.
- the inclined portions 13 may have a constant or decreasing chord towards the central portion 12.
- the inclined portions 13 may have a decreasing thickness towards the central portion 12.
- Each inclined portion 13 may have a width along the X axis of between 25 and 45 % of the size of the carrying plan.
- the inclined portions 13 may have an inclination with respect to a transverse axis Y:
- - is constant, close to the connection with the central portion 12 and the support portions 11, for example at an angle between 30 and 50 °.
- the inclination of the inclined portions 13 with respect to a transverse axis Y in the crossing zone of the water plane is between 30 and 50 °, preferably between 30 and 40 °.
- the front and / or rear carrier plane has a descending pitch, going towards the center of said front and / or rear carrier plane.
- Calibration corresponds to the stabilized navigation incidence in that the timing is relative to a reference point of the vessel and the incidence is relative to the water vein.
- the wedging angle of the front carrier plane 3 is less than the wedge angle of the rear carrier plane 4.
- the timing is preferably increasing from the center to the sides.
- the lift is then increasing with the penetration into the water, hence an easy planing, particularly advantageous for the front of the ship 1.
- the roll stability is improved, the recessed edge receiving more lift and the opposite edge receiving less lift.
- the rear carrier plane is uniformly rope and wedge and the front carrier plane is variable rope and setting.
- Variable calibration is a voluntary twisting, called “twist" in English. The rope and wedging vary outside the central part.
- the front carrier plane 3 has a trailing edge 3a tapered and a leading edge 3b rounded, see Figure 8 in section.
- the trailing edge 3a is disposed in a transverse YZ plane.
- the leading edge 3b is disposed in a transverse YZ plane.
- the trailing edge 3a and the leading edge 3b are arranged in parallel planes.
- the front carrier plane 3 may be provided with ribs 14 of leading edge 3b, cf. 7.
- Each rib 14 is located substantially in a plane perpendicular to the adjacent portion of the front support plane 3 which supports said rib 14.
- the ribs 14 are located at a distance from the support portions 11 and at a distance from the central portion 12. ribs 14 are located at least 0.10 m from the shell along the axis Z.
- the ribs 14 extend on the leading edge 3b and close on 2 to 5 cm on the upper surface.
- the ribs 14 may be absent from the underside.
- the ribs 14 extend upstream of the leading edge 3b.
- the ribs 14 have an upstream edge rounded in the direction of their thickness and in the perpendicular direction.
- the ribs 14 have a thickness of 1 to 4 mm.
- the ribs 14 have two opposite parallel faces connected by a fillet.
- the ribs 14 are sometimes referred to by the English term "fence".
- the ribs 14 reduce the phenomenon of ventilation, i.e. of introducing air into the water strip along an inclined portion 13.
- the ribs 14 increase the lift, reduce drag and allow a higher speed.
- the ribs 14 may be two to six in number.
- the ribs 14 are arranged at least 0.10 m under the take-off plane in projection along the Z axis.
- the rear carrier plane 4 may be of the same geometry as the front carrier plane 3.
- the profile may be the same.
- the general shape in plan, the rope and the inclination of the oblique parts 13 may be different.
- the rope of the rear carrier plane 4 is greater than the rope of the front carrier plane 3, with the exception of the rounded ends of the rear carrier plane 4.
- the rear carrier plane 4 and the front carrier plane 3 may have equal spans.
- the rear carrier plane 4 may be provided with ribs 14, in particular on the upper region of the inclined portions 13.
- the ribs 14 extend on the leading edge 3b and in proximity on 2 to 5 cm on the upper surface and on the upper surface. soffit.
- the vessel 1 has under the hull 2 a form of letter Pi inverted bottom crosses and legs up.
- the rear carrier plane 4 forms a single bar and two link arms 15 to the hull 2 form double legs.
- the rear carrier plane 4 is V-shaped with a rounded bottom in section in a transverse plane. The angle of the V is between 100 and 140 °.
- the central portion 12 is rounded to a large radius, for example with a radius of curvature located in the bottom of the hull.
- the central portion 12 has a substantially constant thickness.
- the rear carrier plane 4 is firmly attached to the connecting arms 15 in a demountable manner.
- the plan front carrier 3 has a similar shape and is held by two arms 15. The space between the arms 15 and between the shell 2 and the front carrier plane 3 is clear.
- the inclined portions 13 extend from the central portion 12 to respective free ends.
- the inclined portions 13 have a constant angle with respect to an XY plane, for example between 15 and 40 °.
- the inclined portions 13 and the central portion 12 form the rear carrier plane 4.
- Each inclined portion 13 is attached to a respective arm 15 in a region for balancing the mechanical forces of the water on the rear carrier plane 4, in particular between 20 and 25% and between 75 and 80% of the width of the rear carrier plane 4.
- the inclined portions 13 have a substantially constant thickness between the arms 15 and the central portion 12 and decreasing progressively towards the free ends.
- the underside of the inclined portions 13 is of constant slope and the extrados of the inclined portions 13 is of decreasing slope towards the free ends.
- the trailing edge 4a of the rear bearing plane 4 is located in a transverse plane.
- the leading edge 4b of the rear bearing plane 4 has a central portion located in a transverse plane and rounded end portions.
- the central portion extends substantially between XZ planes passing through the arms 15.
- the end portions are rounded towards the trailing edge 4a with a radius substantially equal to the dimension of the rear bearing plane 4 along the X axis.
- rear carrier plane 4 may have a constant rope between the arms 15.
- the central portion 12 may have a constant rope.
- the rear carrier plane 4 may have a rope-to-rope ratio between 5 and 15% between the arms 15.
- the rear carrier plane 4 is assembled to the hull 2 in an area as far back as possible from the hull. 2.
- the rear carrier plane 4 can be attached to the arms 15 by complementarity of shapes and screw-nut assembly.
- the connecting arms 15 to the shell 2 are parallel.
- the arms 15 are spaced a distance less than the maximum width of the shell 2.
- the arms 15 are profiled with a leading edge of radius greater than the radius of the trailing edge.
- the arms 15 may comprise a hydrodynamic fairing surrounding a structural beam transmitting the forces between the rear bearing plane 4 and the shell 2.
- the arms 15 are substantially vertical.
- the outer surface of the arms 15 may be parallel to an axis Z. In longitudinal section, the arm 15 is located in a substantially vertical plane.
- the arms 15 have an upper end integral with the shell 2 in the flat rear region of the bottom 10 of the shell 2.
- the arms 15 extend under the rear support plane 4 by propellant supports 15a. In the mode of 1 to 4, 6 and 8 to 12, the supports 15a are coplanar with the arms 15.
- the supports 15a can form the pods.
- the rear carrier plane 4 and the front carrier plane 3 are configured to project at a speed of between 3 and 5 knots depending in particular on the load transported. Beyond this speed, the shell is supported by the rear carrier plane 4 and the front carrier plane 3.
- the center of gravity CG in normal load is located in the plane of longitudinal symmetry XZ. Longitudinally, the center of gravity CG is between the front bearing plane 3 and the rear bearing plane 4, in particular between 40 and 50% of the wet length of the ship starting from the rear end. On the Z axis, the center of gravity CG is located at a maximum height depending on the width of the hull for the archimedean stability and the width of the front carrier plane 3 and rear carrier plane 4 for the stability in open-stern navigation . Taking as base point the take-off plane passing through the low points of the hull, the height position of the center of gravity CG is less than 30%, preferably 25%, of the width of the rear carrier plane.
- the center of gravity CG may be between 0.30 and 0.40 m above the normal load waterline for a hull 2 of 2.20 to 2.30 m wide.
- the empty center of gravity is located at a height above the water surface of less than 0.50 m in the steady state where the hull is above the surface of the water.
- the hull is located at a distance above the surface of the water between 0.10 and 0.30 m in the steady state where the hull is above the surface of the water. Below 0.10 m, there is too much risk of occasional water-hull contact generating drag. Beyond 0.30 m, stability becomes difficult to ensure.
- the distance between the center of the front bearing plane 3 and the bottom of the shell 2 along the Z axis, in particular the central edge 10a, is between 0.30 and 0.70 m.
- the distance between the center of the rear bearing plane 4 and the bottom of the shell 2 in a transverse plane is between 0.30 and 0.70 m.
- the stable navigation range is too low between the risk of ventilation when the carrying planes are insufficient immersion and the risk of contact of the hull with the water. Beyond 0.70 m, the drag of the carrier planes becomes strongly energy consuming if the carrying plans are very submerged or the stability is reduced if the carrying planes are not very immersed.
- the preferred range is 0.40 to 0.60 m.
- the hull has a width greater than or equal to 2.00 m, preferably between 2.20 and 2.30 m.
- the span of the outboard bulge planes can reach 3.00 m.
- the wingspan of the front and rear carriers can be equal. In the embodiment of Figures 1 to 3, the span of the rear carrier plane is greater than the span of the front carrier plane, especially more than 0.50 m.
- the ship 1 may be equipped with one or more seats 27 disposed in a passenger compartment 29 formed between the free edges 8 and 9, behind the windshield 6a.
- a pilot seat and a plurality of passenger seats are arranged.
- the vessel 1 is powered.
- the ship 1 may comprise from one to four thrusters 5.
- the thrusters 5 are arranged under the carrier planes along the Z axis.
- the thrusters 5 are integral with a carrier plane 3, 4.
- the thruster is installed under the rear carrier plane 4 in the central position.
- the thruster is orientable about an axis Z, that is to say in azimuth.
- the thruster is either attached to the only rear carrier plane 4 by a pivot connection, or is attached to a fixed, pivoted fairing arm 15 passing through the rear carrier plane 4.
- the rear carrier plane 4 is associated with a mono thruster 5 supported by a single central arm 15. Laterally, the rear carrier plane 4 is secured to the shell 2 by two support portions 11 similar to the support portions 11 of the front carrier plane 3.
- the structure is similar to the previous one except that the single arm 15 divides into two supports 15a by an inverted Y curved beam beneath the rear carrier plane 4.
- the supports 15a present an angle of about 90 ° between them.
- the supports 15a can pivot relative to the rear carrier plane 4.
- the pivot is preferably common to the two supports 15a.
- the faired beam 25 has a general shape of a wing of low height and dimension along the X axis sufficient to take up the forces generated by the thrust of the propellers 17.
- the faired beam 25 is hollow.
- the faired beam 25 forms a housing of the electric power supply cables of the electric motors 16. In the bi-propulsion mode, each thruster is installed under the rear carrier plane 4 in the lateral position.
- the thrusters may be orientable around a Z axis or fixed.
- the thrusters are either fixed to the only rear carrier plane 4 by pivot links, or each fixed to a faired or pivoted faired arm 15, passing through the rear carrier plane 4, or supported by a single pivoting arm, by a fairing beam. 25.
- the gyration of the ship is effected by difference of speed between the thrusters, or even by inversion of the regime.
- each thruster is installed under the rear carrier plane 4, one in the central position, the other in the lateral position.
- the thrusters may be orientable around a Z axis or fixed.
- the thrusters are either fixed to the only rear carrier plane 4 by pivot links, or each fixed to a fixed or pivoted ducted arm, passing through the rear carrier plane 4, or supported by a single pivoting arm, a faired beam 25 of main axis Y connecting the thruster 5 and the single arm 15.
- the gyration of the ship is effected by difference in speed between the lateral thrusters, or even by reversion of speed.
- a thruster 5 is installed under the front carrier plane 3 and the others under the rear carrier plane 4 in lateral position as in the propellant mode.
- three thrusters 5 are provided under the rear carrier plane 4.
- the thrusters 5 are arranged as the thrusters of FIG. 3 in the lateral position and the thruster of FIG. 4 in the central position.
- Each of the three thrusters 5 is supported by an arm 15.
- the three arms 15 support the rear carrier plane 4.
- the visible support portions 11 are part of the front carrier plane 3.
- the central portion 12 of the front carrier plane 3 is also visible, as in Figures 4 and 5 slightly above the central portion 12 of the rear carrier plane 4.
- the rear carrier plane 4 is devoid of motorization.
- the space between the rear carrier plane 4 and the shell 2 is free.
- the front carrier plane 3 is associated with two thrusters 5.
- the front carrier plane 3 is similar in shape to that illustrated in Figures 1 and 2.
- the space between the front carrier plane 3 and the shell 2 is free.
- Each thruster 5 is supported by a propellant support 15a.
- the support 15a is fixed to the front carrier plane 3.
- the support 15a is, here, independent of the rest of an arm as illustrated in the other figures.
- the forces transmitted by the support 15a are taken up by the front carrier plane 3.
- Electrical cables pass through the support 15a and the front carrier plane 3 to supply power to the electric motor 16 from the hull 2.
- the thrusters 5 can be fixed or pivoting around a Z axis.
- two thrusters 5 are installed under the rear carrier plane 4 in a lateral position, cf. Figures 1 to 3, and two thrusters are installed under the front carrier plane 3 in the lateral position as in Figure 7.
- the spacing of the thrusters 5 may be different at the front and rear.
- the thrusters 5 may be orientable around a Z axis or fixed.
- the thrusters are either fixed to the sole front 3 / rear 4 support plane by pivot connections, for example pods, or fixed, or each fixed to a fixed, pivoted or fixed arm, passing through the front carrier 3 / rear 4 , either supported by a single pivoting arm, a streamlined beam 25 of main axis Y connecting the thrusters and the single arm.
- the gyration of the ship 1 is effected by the difference in speed between the lateral thrusters, or even by inversion of the speed.
- a single forward thruster 5 is centrally mounted under the front carrier plane 3.
- the forward thruster 5 is a steerable pod and the rear thrusters 5 are stationary.
- This variant can be combined with the embodiment of FIGS. 9 and 10.
- the speed of the forward thruster relative to the speed of the rear thrusters makes it possible to control the timing of the front carrier plane 3 indirectly. The absence of actuators can thus be bypassed.
- This variant can also be combined with a front carrier plane 3 fixed relative to the hull and deformable wedge. And the ship is very manoeuvrable, with ability to turn on the spot.
- One or more ribs 14 may be mounted on the streamlined arm (s) 15. Air suction along the streamlined arm is avoided.
- the ribs 14 are symmetrical with respect to the center plane XZ.
- the ribs 14 extend around the leading edge.
- Each thruster 5 comprises an electric motor 16 and a propeller 17 in direct contact with the engine.
- the electric motor 16 has a diameter less than 0.30 m, preferably 0.25 m.
- the electric motor 16 has a length / diameter ratio greater than 31 ⁇ 2, preferably 4.
- the propeller 17 is immersed in water in normal operation.
- the electric motor 16 and the propeller 17 are located under the carrier plane.
- the ducted arm (s) 15 provides the mechanical connection between the shell 2 and the corresponding thruster 5.
- the front carrier plane 3 / rear 4 takes part of the mechanical forces generated by the engine.
- the streamlined arm 15 comprises a tubular body and a fairing reducing drag, fixed on the body.
- the streamlined arm 15 provides the electrical connection between the shell 2 and the corresponding thruster 5. Electrical cables pass through the tubular body to provide power to the electric motor 16 from the shell 2, for example in a bore in the arm, or in a housing in the carrier plane.
- the shell 2 In the shell 2 are housed batteries 18 and a control member 19 provided with an interface 20.
- the batteries 18 are housed at the bottom of the shell 2 thus lowering the center of gravity.
- the batteries 18 may be arranged symmetrically.
- the batteries 18 may be arranged at least partly in two rows spaced apart from each other.
- the batteries 18 may be arranged at least partly under seats of the passenger compartment of the ship 1. Longitudinally, the batteries 18 are located behind the front carrier plane 3 and forward or at the same level as the rear carrier plane 4.
- L control member 19 is electrically connected to the batteries 18, to the electric motor 16 and to the interface 20.
- An electrical supply connection is formed between the batteries 18 and each electric propulsion motor 16.
- the interface 20 comprises a engine speed control, steering control, battery charge indicator 18 and engine speed indicator.
- the steering control can be mechanically connected to the steerable thrusters or connected to the control member 19 to generate an order of differentiation of engine speeds.
- the vessel 1 is devoid of saffron.
- the thrusters 5 are steerable.
- the thrusters 5 are each attached to a pivoted fairing arm.
- the streamlined arm 15 extends under the carrier plane ensuring a separation between the water veins displaced by the carrier plane and the veins of water passing in the helix 17.
- the body of the streamlined arm 15 passes through the carrier plane while the fairing is interrupted by the rear carrier plane 4.
- the fairing has an upper portion between the shell 2 and the rear carrier plane 4 and a lower portion between the rear carrier plane 4 and the thruster 5.
- the distance along the Z axis between the rear carrier plane 4 and the axis of the thruster 5 is such that the underside of the trailing edge is located at a level higher than the upper end of the blades of the propeller.
- the pivot axes of the thrusters 5 are parallel.
- the pivoting of the thrusters 5 is indexed.
- the thrust angle of each of the rear thrusters relative to the X axis is equal or centered around the same center of gyration.
- the angles between the axes of each thruster and the X axis are equal or their normals are intersecting at a point forming a center of gyration.
- the pivoting of each thruster 5 is provided by a corresponding faired arm 15.
- the body of each streamlined arm 15 protrudes into the shell 2 and is pivotally controlled by the steering control mechanism.
- the pivoting of the thrusters 5 exerts a thrust from the bottom of the ship 1 towards the outside of the turn. This thrust tends to tilt the top of the ship 1 towards the inside of the turn. This increases the user comfort when cornering.
- the control of the thrusters 5 may be identical, in that the rotation speed of each helix is equal, especially in cruising speed. For low speed maneuvers, the control of the thrusters 5 is advantageously independent. Thus, the speed of each thruster is individual. A higher rotational speed of the outer propeller at the turn makes it possible to turn shorter. A zero rotational speed of the inner propeller decreases the radius of the turn while reducing energy consumption. A reversal of the direction of rotation of the inner helix makes it possible to turn on the spot, by analogy with the turn of a tracked vehicle whose tracks move in opposite directions.
- each thruster 5 comprises an electric motor 16 mounted on board and a transmission 26 with an angle gear between the propeller 17 and the electric motor 16.
- the propeller 17 is mounted with a fixed orientation relative to the hull.
- the propeller 17 is situated under the rear carrier plane 4.
- Each electric motor 16 is mounted in the shell 2, for example at the bottom of the shell 2.
- Each thruster 5 is connected to the shell 2 by the rear bearing plane 4 and by a arm 15 disposed in a substantially vertical plane in longitudinal section.
- the arm 15 is parallel to the Z axis and the return angle is 90 °.
- the arm 15 may be inclined in a transverse plane and / or in a longitudinal plane.
- the thrusters 5 are independently controlled and the gyration is done by differentiating the rotational speeds of the propellers 17.
- Each transmission 26 with a bevel gear includes a shaft in direct contact with the electric motor 16, a pinion carried by the shaft at an end opposite the electric motor, and a gear wheel meshing with the pinion and in direct contact with the propeller 17.
- a transmission ratio of 1/1 provides good compactness and allows a small diameter of return resulting in a low drag generated by the referral disposed upstream of the propeller 17 in the direction of flow of the water. along the ship 1.
- the drag generated by the gearbox transmission 26 is less than the drag generated by the outboard motor of the previous embodiments.
- the engine 16 in the shell 2 is subject to less compactness requirements, including diametric, and can therefore offer increased power. High service speeds can be ensured, for example between 25 and 35 knots.
- the batteries 18 may be of greater capacity than the batteries of the other embodiments to provide high autonomy at high speed. This embodiment is advantageously combined with the following.
- the front carrier plane 3 is temporally variable timing.
- the wedging of a given zone of the front carrier plane 3 can be modified.
- the lift - resulting from the forces exerted by the water on the carrier plane - increases with the speed at constant load.
- the Applicant has realized that a variable setting provides a widening of the payload range for a given speed of interest in the areas where the speed is regulated, a planing at a lower speed resulting in a reduction of the eddies and energy consumption, broadening the speed range for a given load, reducing drag at high speeds, improving stability and reducing the risk of ventilation and charging.
- the ventilation is a separation between the extrados and the vein of water passing on said extrados, by arrival of air, and results in a loss of lift.
- the charging is an imbalance of the ship with brutal depression of the bow 6.
- Variable setting also increases the difference between the speed at which the vessel moves from Archimedean navigation to the navigation on planes, called planing speed, and the speed at which the ship switches from navigation on planes to planes.
- planing speed the speed at which the vessel moves from Archimedean navigation to the navigation on planes.
- Planing speed the speed at which the ship switches from navigation on planes to planes.
- Archimedean navigation The stability of navigation is increased. The ship can thus sail on carrier planes at low speed. This is interesting for docking.
- the preferred mode is a front carrier plane 3 pivoting about a transverse axis.
- the front carrier plane 3 is pivoting in its generality.
- the one-piece construction of the front carrier plane 3 is retained.
- the arched shape of the front carrier plane 3 in cross section allows a transmission of forces similar to a vault with mainly compression.
- the front bearing plane 3 is devoid of cantilevered area.
- Two joints 21 are each fixed to a freeboard 8, 9.
- the freeboard 8, 9 can be reinforced in the vicinity of the joints 21.
- the joints 21 support the front bearing plane 3 about an axis parallel to the Y axis.
- the hinge axis is intersecting with the hull 2.
- the ship 1 comprises two actuators 22 for pivoting the front carrier plane 3 fixed on the one hand to the hull and on the other hand to the front carrier plane 3.
- the front carrier plane 3 is hinged to the hull 2 about an axis of pivot above the waterline.
- the arrangement of the actuators 22 is symmetrical.
- the actuators 22 have a linear stroke.
- the mounting of the actuators 22 allows the pivoting of the front carrier plane 3 on an angular stroke of between 1 to 5 °.
- Stops 23 may be provided to relieve the actuators 22 at the end of the race.
- the abutments 23 may comprise an elastic member. At the end of the stroke, the actuators 22 exert a prestressing against the stops thus ensuring a stability of the front carrier plane 3 and low vibrations.
- the rear carrier plane 4 is fixed relative to the hull.
- the front carrier plane 3 At a first end of the race, the front carrier plane 3 has a high setting providing maximum lift, especially for planing. At a second end of the race opposite to the first, the front carrier plane 3 has a low setting with minimal lift and reduced drag, especially for high speeds. At the second end of the race, the minimum of the local setting of the front carrier plane 3 is greater than zero.
- the front carrier plane 3 is controlled timing.
- the actuators 22 are connected to the control member 19.
- the active adjustment of the setting can be carried out with a maximum setting under a rotational speed value Ri of the propellers 17, a minimum setting above a value R 2 of speed of rotation of the propellers 17 and a progressive setting with the speed between the values Ri and R 2 .
- the ship 1 comprises two resilient members 24 for pivoting the front carrier plane 3 fixed on the one hand to the hull and on the other hand to the front carrier plane.
- the arrangement of the elastic members 24 is symmetrical.
- the elastic members 24 have a linear or angular stroke.
- the mounting of the elastic members 24 allows the pivoting of the front carrier plane 3 on an angular stroke of between 1 to 5 °.
- End stops 23 are provided.
- the elastic members 24 exert a prestressing against the stops 23.
- the prestressing at the first end of the stroke can be provided up to a speed greater than the planing speed.
- Preload at the second end of the stroke may be provided up to a few percent lower than the expected cruising speed.
- the front carrier plane 3 is variable passive incidence depending on the speed.
- the actuators 22 and / or the elastic members 24 have an end articulated to the shell 2 and an opposite end hinged to a support portion 11 of the front bearing plane 3 at the shell along an axis parallel to said axis intersecting with the shell and remote from the hinge 21.
- the actuators 22 and / or the elastic members 24 are mounted above the waterline at full load.
- the front carrier plane 3 is elastically deformable in wedging.
- the front carrier plane 3 may be fixed relative to the hull 2.
- the front carrier plane 3 may comprise a central portion decreasing pitch as a function of the lift.
- the vessel is similar to that of FIGS. 1 to 3.
- the arms 15 support pressure probes 30.
- the pressure probes 30 may comprise Pitot tubes. Pitot tubes measuring a differential pressure are provided with a leading edge surface responsive to the accumulated static pressure and dynamic pressure and a lateral active surface on the side of the arms 15 responsive to the static pressure.
- the pressure probes 30 are connected to the control member 19.
- the pressure probes 30 are here arranged on the leading edge of each arm 15.
- the pressure probes 30 can be arranged on the edge etching each support portion 11.
- the pressure probes 30 are installed on a leading edge of an area of a plane - carrier or support - immersed in Archimedean navigation and emerged in navigation on planes carriers.
- the pressure probes 30 are arranged in a row by arm 15 with a distance between two pressure probes 30 between 2 and 6 cm.
- the pressure probes 30 are inserted into the arm 15 providing a free active surface.
- the pressure sensors 30 measuring the pressure allow the control member 19, equipped with a calculator, to calculate an estimate of the level of the ship relative to the water body, in other words the depression at the planed state, a height. The accuracy depends in particular on the distance between two neighboring pressure probes.
- the pressure probes 30 are arranged on one or more support portions 11.
- the control member 19 is advantageously provided with a control output of the height of the ship relative to the body of water on the basis of the data provided by the pressure probes 30.
- said control output is sent to the thrusters to change their speed, thereby varying the lift, to the pivoting carrier plane pivoting actuators about a transverse axis for adjustment of the setting, for example of the front carrier plane 3, to the deformation actuators d a carrier plane profile, trailing edge flap actuators, etc.
- the arms 15 are immersed and a driving information, also of little use, can not be provided by this means. In the course of planing and in the planed state, the driving information can be provided and is useful.
- the control member 19 thus has a bilateral driving information.
- the trim of the ship is available. From the attitude, the control member 19 can generate a pivoting control of the pods of the thrusters 5 to increase or reduce a lateral inclination of the ship.
- the vessel Independently of the pressure probes 30 or in combination, the vessel is equipped with movable trailing edge flaps 28 on the rear carrier plane 4.
- the movable flaps 28 constitute elevons in the aeronautical sense. Movable flaps 28 moved in the same direction act as pitch control surfaces.
- Movable flaps 28 moved in opposition act as roll rudders.
- the action in pitch control makes it possible to lower the stern of the ship, especially during the deceleration phase in order to maintain the horizontality of the ship or to pitch it up slightly.
- the action in pitch control makes it possible to raise the rear of the ship in order to reduce the lift of the front carrier plane if said lift is excessive.
- the action in pitch control can be implemented in emergency braking to increase drag and reduce lift very quickly.
- the roll control action compensates for load imbalance.
- the action on the flap 28 inside a bend allows the increase of the drag inside the bend and the lowering of the inside edge at the bend, which has a double effect of making it easier to corner or turn the vessel 1 and reduce the centrifugal force felt by users.
- the ship 1 is able to take a turn like a motorcycle and not like a car.
- the roll control action allows to tilt laterally the ship especially in case of fixed boosters where increased comfort. This is facilitated by the pressure probes 30 above.
- the movable flaps 28 extend over the inclined portions 13.
- the movable flaps 28 are located beyond the arms 15 and at a distance from the free end of the rear carrier plane 4.
- the movable flaps 28 have a rectangular shape and are articulated around an axis located in the plane of the inclined portions 13.
- the movable flaps 28 are pivoted by actuators arranged in the thickness of the inclined portions 13 and controlled by the control member 19.
- a portion of the movable flap 28 on one side may be out of the water resulting in a reduction of the lift of said side and a self-locking effect related to the shape of the rear carrier plane Without action of the movable flaps 28. Simultaneously, an action on the movable flap 28 of said side produces less effect and an action on the movable flap 28 on the opposite side produces a full effect.
- Figures 13 and 14 has been shown a front carrier plane 3 designed for high speeds in comparison with previous embodiments.
- the Applicant has developed carrier plans offering low drag high service speed, resulting in reduced energy consumption and increased autonomy.
- the front carrier plane 3 has a decreasing rope towards the center of the ship 1.
- the front carrier plane 3 has a trailing edge 3a located in a transverse plane YZ.
- the front bearing plane 3 has a leading edge 3b approaching the leading edge 3b in the inclined portions 13 and situated in a transverse plane YZ in the central portion 12.
- the rope of the front bearing plane 3 is between 0, 20 and 0.80 m.
- the minimum of the rope is between 0.20 and 0.30 m.
- the maximum of the rope is between 0.50 and 0.80 m.
- the thickness / rope ratio can be constant.
- the thickness is constant in the central portion 12 and decreasing towards the center in the inclined portions 13.
- the ratio between the maximum chord and the minimum chord may be between 2 and 6.
- the rope of the central portion 12 is constant.
- the rope of the inclined portions 13 is decreasing opposite the ends of the support planes.
- the small-sized rope of the central portion 12 has a small wet surface and therefore a low drag.
- the rope of the inclined portions 13 increasing with the depression of the ship 1 generates increasing lift with the depression of the ship 1.
- the drag generated by the carrier planes decreases sharply during the planing. Decay is stronger than a linear decrease because the decrease of the wet surface varies according to the planing height in a linear manner as in the previous embodiments and the decay of the rope.
- the wedging is here descending in the same direction as the rope.
- the wedging angle ⁇ in the central portion 12 is between 1 and 3 °, cf. Figure 15.
- the maximum angle of wedging, in the vicinity of the section of Figure 18, is between 3 and 5 °.
- the section plane of FIG. 16, at the beginning of the inclined portion 13, has the same wedging as the central portion 12.
- the wedging is constant in the central portion 12 and increasing towards the free ends of the inclined portions 13.
- the rear carrier plane 4 may have a similar structure.
- the arms 15 have a rectangular section at the upper end and a hydrodynamic profiled section at the lower end close to the carrying plane and capable of being immersed in navigation on the supporting planes.
- the vessel is similar to that of Figures 1 to 3.
- the leading edge 3b of the front carrier plane 3 is provided with rounded bosses 32.
- a plurality of bosses 32 is formed on each inclined portion 13.
- the bosses 32 are arranged at a distance from the center of said carrier plane.
- the bosses 32 protrude forward.
- the bosses 32 are separated by a hollow 33 of orientation parallel to the axis X and perpendicular to the local area of the inclined portion 13.
- the bosses 32 are circular in section in a transverse plane YZ.
- the bosses 32 have a hemispherical tip in section in a longitudinal plane XZ.
- the bosses 32 have a diameter substantially equal to the local thickness of the carrier plane.
- the bosses 32 are arranged at constant spacing.
- the bosses 32 may be formed on one of the bearing planes 3, 4 or both. Said bosses 32 are fainting towards the upper surface and the lower surface. The extrados and the intrados can be smooth. In other words, the bosses are devoid of projection in a direction perpendicular to the X axis.
- the carrier plane may comprise a central portion 12 substantially constant profile and two side portions 13 provided with said bosses 32.
- the central portion 12 may have a constant wedging and a constant chord.
- the lateral portions 13 may have a decreasing pitch towards the central portion 12.
- the bosses 32 are then slightly offset axes.
- the lateral portions 13 may have a decreasing cord going towards the central portion 12.
- the bosses 32 have a decrease toward the trailing edge depending on the rope.
- the carrying plan is lacking leading edge rib located substantially in a plane perpendicular to a neighboring portion of the carrier plane.
- the bosses 32 offer a reduction in drag while maintaining the lift and reduce the risk of ventilation.
- the free ends of the lateral portions 13 are oriented generally along the axis X and perpendicular to the main axis of the lateral portions 13 with a rounded bulge, also present in FIG. 13.
- the ship 1 offers a wide range of navigation conditions, in particular in terms of cruising speed, planing speed, Archimedean navigation resumption speed, deceleration, radius of gyration in both types of navigation, Archimedean and set-up, etc.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Navire (1) fluvial ou côtier, comprenant une coque (2), un propulseur (5) à hélice mouillée, un plan porteur avant (3) et un plan porteur arrière (4) d'hydrosustentation, une pluralité de sondes de pression (30) montées sur au moins un bord d'attaque d'un plan choisi parmi le plan porteur avant (3), le plan porteur arrière (4) et, le cas échéant, un bras (15) de support d'un desdits plans porteurs; et un organe de commande (19) recevant une donnée de pression mesurée par chaque sonde pour calculer une hauteur estimée par rapport à l'eau.
Description
Navire à plans porteurs à haute stabilité
L'invention concerne le domaine du transport fluvial et côtier.
De nombreux prototypes de navires à sustentation par plans porteurs ou hydroptères ont vu le jour depuis des décennies. On connaît des gros hydroptères assurant des traversées lacustres ou maritimes de quelques dizaines ou centaines de milles nautiques et capables de transporter plus d'une centaine de passagers dans les années 1980.
Après cela, des navires à grande vitesse sans plan porteur, à carène en V ou multicoques, ont permis de transporter jusqu'à 1000 passagers et plusieurs centaines de voitures à près de 40 nœuds. Par leur taille, de tels navires se rapprochent des ferries traditionnels. Mais un ressac important a été signalé sur les côtes aux approches de leur port. Les coûts d'exploitation élevés et très sensibles aux prix pétroliers ont conduit au désarmement de nombreuses unités.
La Demanderesse a analysé la situation. Les gros hydroptères sont capables d'affronter des creux de plus d'un mètre. Le tirant d'eau important leur interdit certains ports. La puissance demandée par la propulsion est de l'ordre de 10 000 kW. Leur motorisation à turbine à gaz est bruyante et n'offre un bon rendement qu'à pleine puissance. Leur utilisation est donc très contrainte.
Les petits hydroptères motorisés n'ont pas connu de succès. Si les prototypes sont nombreux, les réalisations industrielles sont rares. Les petits hydroptères sont soumis à des contraintes mécaniques très différentes en raison de leur faible longueur par rapport aux creux ou au clapot.
D'un autre point de vue, le transport par les artères navigables urbaines n'a guère évolué dans son principe depuis des décennies : des bateaux mouches offrant une vision large pour le tourisme de masse et des péniches ou barges pour le transport des marchandises pondéreuses. Les artères navigables urbaines sont souvent peu ou mal utilisées.
La demande WO2015/026301 un système de commande de navire à ailes immergées en vue de réaliser la giration du navire. Les ailes présentent une forme de J et sont orientables selon un axe vertical. Le navire est destiné à un usage de loisirs.
La Demanderesse a analysé la structure. De très importants efforts s'exercent sur les ailes et sur les pivots des ailes. La limitation du jeu entre les orientations des ailes semble difficile. Une structure lourde s'avère nécessaire. La Demanderesse vient proposer un transport urbain de passagers rapide, silencieux, respectant les berges des cours d'eau et offrant un haut niveau de service le rendant apte à une utilisation à la demande.
La présente invention améliore la situation.
L'invention propose un navire fluvial ou côtier, comprenant une coque, un propulseur à hélice mouillée, un plan porteur avant et un plan porteur arrière d'hydrosustentation. Le navire comprend une pluralité de sondes de pression montées sur au moins un bord d'attaque d'un plan choisi parmi le plan porteur avant, le plan porteur arrière et, le cas échéant, un bras de support d'un desdits plans porteurs ; et un organe de commande recevant une donnée de pression mesurée par chaque sonde pour calculer une hauteur estimée par rapport à l'eau. La hauteur du navire par rapport au plan d'eau peut être contrôlée d'où une excellente stabilité et une consommation d'énergie réduite. Dans un mode de réalisation, la sonde de pression comprend un tube de Pitot. Une pluralité de tubes de Pitot alignés en hauteur peut être prévue.
Dans un mode de réalisation, le navire comprend une interface de commande comprenant la hauteur de la coque par rapport à l'eau, l'organe de commande calculant une hauteur estimée de la coque par rapport à l'eau et étant configuré pour régler la hauteur de la coque par rapport à l'eau. La hauteur de la coque par rapport à l'eau peut être asservie à la vitesse, à l'accélération et à la giration.
Dans un mode de réalisation, la commande de hauteur est configurée pour émettre une instruction vers un organe de réglage de calage du plan porteur avant. Le déjaugeage peut être obtenu et conservé à faible vitesse.
Dans un mode de réalisation, le navire comprend une rangée de sondes de pression disposée sur une partie de support d'un plan porteur, par exemple sur un bras. Une traînée supplémentaire est évitée.
Dans un mode de réalisation, le navire comprend un bras caréné disposé dans un plan sensiblement vertical en coupe longitudinale. Les sondes de pression peuvent être montées sur un bord d'attaque du bras caréné. Dans un mode de réalisation, le propulseur est relié à la coque par le plan porteur arrière et par le bras caréné. Une rigidité élevée est obtenue.
Dans un mode de réalisation, le plan porteur arrière présente une forme en V à centre arrondi et un bord d'attaque à extrémités arrondies à l'opposé du centre du plan porteur arrière et se raccordant au bord de fuite. La traînée est faible.
Dans un mode de réalisation, l'angle du V est compris entre 100 et 140°. Une haute stabilité est obtenue pour le confort des passagers. Dans un mode de réalisation, le plan porteur arrière comprend au moins deux volets mobiles de bord de fuite commandés par ledit calculateur par l'intermédiaire d'un actionneur pour commander la portance du plan porteur arrière. La traînée est réduite et la stabilité est améliorée. Dans un mode de réalisation, le plan porteur arrière comprend au moins deux volets mobiles de bord de fuite commandés par ledit organe de commande par l'intermédiaire d'un actionneur pour incliner latéralement le navire. La giration avec mise en dévers du navire permet un passage en virage à vitesse plus élevée à confort égal. Dans un mode de réalisation, le propulseur est relié à la coque par le plan porteur arrière et par un bras caréné disposé dans un plan sensiblement vertical en coupe longitudinale.
Dans un mode de réalisation, le bras caréné supporte deux hélices. Dans un mode de réalisation, le navire comprend deux bras carénés chacun supportant une hélice.
Dans un mode de réalisation, le navire comprend des batteries logées dans la coque et une liaison électrique entre un moteur électrique de propulsion et les batteries. La liaison électrique est de faible encombrement.
Dans un mode de réalisation, l'un au moins des plans porteurs comprenant un bord d'attaque à bossages arrondis. Le navire présente un faible risque de ventilation et une faible traînée hydrodynamique. On entend par ventilation, l'arrivée d'air entre l'extrados du plan porteur à bord d'attaque à bossages et la veine d'eau située au-dessus dudit extrados en déplacement.
Dans un mode de réalisation, les bossages sont évanouissants vers le bord de fuite. La traînée est réduite. L'extrados et l'intrados peuvent être lisses. Dans un mode de réalisation, les bossages sont ménagés à distance du centre dudit plan porteur. Les bossages sont prévus dans des zones à risque de ventilation.
Dans un mode de réalisation, ledit plan porteur comprend une portion centrale à profil sensiblement constant et deux portions latérales munies desdits bossages. La portion centrale peut présenter une épaisseur réduite, d'où une traînée faible.
Dans un mode de réalisation, la portion centrale présente un calage constant.
Dans un mode de réalisation, la portion centrale présente une corde constante. La corde de la portion centrale peut être réduite, d'où une traînée faible.
Dans un mode de réalisation, les portions latérales présentent un calage décroissant en allant vers la portion centrale et une corde décroissante en allant vers la portion centrale. Le navire peut atteindre une vitesse élevée tout en conservant une immersion de la portion centrale suffisante pour un risque de ventilation bas. Au déjaugeage, c'est-à-dire à la transition entre la navigation archimédienne et la navigation sur plans porteurs, les portions latérales fournissent une portance élevée rapportée à leur dimension transversale. Le déjaugeage est facilité.
Dans un mode de réalisation, le plan porteur avant passe sous la coque.
Dans un mode de réalisation, la course de pivotement est comprise entre 1 et 5°. D'autres caractéristiques, détails et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la figure 1 est une vue de côté en élévation d'un navire selon un aspect de l'invention,
- la figure 2 est une vue de face en élévation du navire de la figure 1 ,
- la figure 3 est une vue arrière en élévation du navire de la figure 1 ,
- la figure 4 est une vue arrière en élévation d'un navire selon un autre aspect de l'invention,
- la figure 5 est une vue arrière en élévation d'un navire selon un autre aspect de l'invention,
- la figure 6 est une vue arrière en élévation d'un navire selon un autre aspect de l'invention,
- la figure 7 est une vue de côté en élévation d'un navire selon un autre aspect de l'invention,
- la figure 8 est une vue en coupe selon un plan de symétrie longitudinal vertical d'un navire selon un autre aspect de l'invention,
- la figure 9 est une vue de côté en élévation d'un navire selon un autre aspect de l'invention,
- la figure 10 est une vue de côté en élévation d'un navire selon un autre aspect de l'invention,
- la figure 11 est une vue en perspective d'un navire selon un autre aspect de l'invention ++QUADRI++,
- la figure 12 est une vue de détail en perspective de la partie arrière d'un navire selon un autre aspect de l'invention,
- les figures 13 et 14 sont des vues arrière et de dessus en élévation du plan porteur avant selon un autre aspect de l'invention.
- les figures 15 à 18 sont des vues en coupe selon A- A, B-B, C-C, D-D de la figure 13, et - la figure 19 est une vue de détail en perspective d'un plan porteur d'un navire selon un autre aspect de l'invention.
Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
Le navire 1 est à flottaison assurée par une coque possédant des propriétés hydrodynamiques appropriées à une navigation à faible vitesse, au déjaugeage et à la reprise de flottaison, et des plans porteurs, souvent appelés « hydrofoils » ou ailes d'hydrosustentation, assurant la sustentation de l'ensemble au-delà d'une vitesse de déjaugeage de manière que la carène de la coque soit située au-dessus de l'eau. La carène est dans son sens habituel la partie immergée de la coque, ici carène s'entend de la partie immergée de la coque en navigation archimédienne. La traînée diminue fortement lors du déjaugeage, d'où une consommation d'énergie réduite et une autonomie accrue. La vitesse de déjaugeage est relative à la masse d'eau et, pour un navire donné, dépend de sa charge en étant croissante avec la charge. Les plans porteurs sont configurés pour assurer un déjaugeage à une vitesse de quelques nœuds seulement, 5 nœuds au plus, pour réduire les vagues générées par la traînée et susceptibles de détériorer les berges, pour augmenter la vitesse moyenne départ arrêté et arrivée arrêté, et pour diminuer la consommation d'énergie. Les plans porteurs sont configurés pour générer, eux-mêmes, une faible traînée.
Le binôme vitesse de déjaugeage à charge donnée / traînée des plans porteurs étant par nature antagoniste, i.e. l'un variant à l'inverse de l'autre, on prévoit des binômes différents selon la distance moyenne à parcourir. Une faible vitesse de déjaugeage est souhaitable pour une traversée fluviale à distances courtes et berges fragiles. Une faible traînée des plans porteurs est adaptée à une traversée de baie à distances moyennes et vitesse élevée.
Le navire 1 est référencé selon un repère tridimensionnel avec X l'axe longitudinal ou axe déplacement en ligne droite, Y l'axe transversal horizontal et Z l'axe vertical. Le navire étant susceptible de prendre de l'inclinaison, le repère est relatif au navire. L'axe X peut pivoter par rapport à l'horizontale, notamment en accélération ou en décélération. L'axe Y peut prendre de la gîte par rapport à l'horizontale, notamment en virage. L'axe Z peut se décaler de la verticale pour les deux raisons ci-dessus. De manière générale, le navire est symétrique par rapport au plan XZ longitudinal. Par ailleurs, le plan de décollage est défini comme un plan XY passant par les points bas de la carène.
Le navire 1 comprend une coque 2 assurant la flottabilité à l'arrêt et à basse vitesse, un plan porteur avant 3 et un plan porteur arrière 4 assurant la sustentation dans l'eau à vitesse de croisière. Le navire 1 comprend un propulseur 5. Le navire 1 est dépourvu de
safran. Chaque plan porteur 3, 4 est relié à la coque de manière bilatérale. Le terme « aile » est parfois utilisé pour désigner les plans porteurs.
Dans le mode de réalisation des figures 1 à 12, la coque 2 présente une proue 6 inclinée, une poupe 7 en tableau, des francs bords 8 et 9 droits et un fond 10. La proue 6 est de forme arrondie relevée vers l'avant. La poupe 7 est généralement parallèle au plan YZ. Les francs bords 8 et 9 sont parallèles au plan XZ. La proue 6 comprend une partie inférieure 6a formée dans le même matériau que la coque 2 et un pare-brise 6b surmontant la partie inférieure 6a. Le pare-brise 6b s'étend aussi latéralement au-dessus d'une partie avant des francs bords 8 et 9.
Le fond 10 peut être parallèle au plan XY ou nervuré parallèle à l'axe X. En coupe transversale, le fond 10 peut présenter une arête centrale 10a en V et des côtés 10b et 10c. Les côtés 10b et 10c peuvent être sensiblement dans le plan XY. Le fond 10 et la proue 6 sont en continuité de courbure. L'arête centrale 10a peut être interrompue en avant du plan porteur arrière 4. Le fond 10 dans la région du plan porteur arrière 4 et en arrière de celui-ci est sensiblement plan. Des congés de raccordement sont ménagés entre les éléments précités de la coque 2. La coque 2 peut être réalisée en matériau composite. Le plan porteur avant 3 est fixé de chaque côté de la coque 2. Le plan porteur avant 3 est assemblé à la coque dans une zone présentant une largeur de coque maximale et située le plus à l'avant possible. Dans le mode de réalisation des figures 1 à 8, 11 et 12, le plan porteur avant 3 présente une forme d'arche passant sous la coque 1. Le plan porteur avant 3 subit, en utilisation, des contraintes majoritairement en compression et minoritairement en flexion. Ceci est quasi opposé aux contraintes en flexion pure d'un plan porteur en T inversé. Le plan porteur avant 3 est dépourvu de portion en porte à faux. L'espace entre le plan porteur avant 3 et la coque 2 est libre. Le plan porteur avant 3 est monobloc. Le plan porteur avant 3 peut être réalisé en matériau composite.
Le plan porteur avant 3 peut être fixé aux francs bords 8 et 9 par fixation à plusieurs vis- écrou de chaque côté. Le plan porteur avant 3 est situé en arrière de la proue 6, notamment à une partie de la coque 2 de largeur maximale et remontante vers la proue 6. Le plan porteur avant 3 est symétrique par rapport au plan XZ. Le plan porteur avant 3 comprend deux parties de support 11 en contact chacune avec un franc bord 8, 9, une
partie centrale 12 et deux parties inclinées 13 chacune disposée entre une partie de support 11 et la partie centrale 12.
Les parties de support 11 sont généralement parallèles. En variante, des parties de support 11 convergentes peuvent être prévues. Des parties de support 11 convergentes sont reliées aux extrémités latérales des parties inclinées 13, latéralement au-delà de la coque 2. Le plan porteur correspondant est alors dépourvu de porte à faux. Les parties de support 11 situées plus haut ont une moindre probabilité d'être dans l'eau d'où une réduction de la traînée moyenne et les parties inclinées 13 s'étendant latéralement plus loin de la coque 2 offrent une stabilité accrue.
Les parties de support 11 présentent une épaisseur supérieure à l'épaisseur des parties inclinées 13 et à l'épaisseur de la partie centrale 12. Les parties de support 11 présentent une forme de plaque, éventuellement échancrée pour alléger le devis des poids. Les parties de support 11 présentent une longueur selon l'axe X supérieure à la longueur des parties inclinées 13 et à la longueur de la partie centrale 12. Une partie de support 11 de longueur élevée permet une rigidité élevée et une transmission des efforts répartie sur les francs bords 8 et 9. Les parties de support 11 étant hors d'eau en position sustentée, leur longueur élevée et/ou leur épaisseur élevée est indépendant des propriétés hydrodynamiques. Une forme en Y à deux branches vers le haut peut être prévue.
Une région inférieure l ia des parties de support 11 peut être fine en raison des efforts essentiellement de compression s'y exerçant. Ladite région inférieure peut présenter un renflement vers l'extérieur. Les parties de support 11 présentent une épaisseur croissante vers le haut de manière à répartir les efforts des liaisons vis-écrou. La région supérieure des parties inclinées 13 hors d'eau en position sustentée peut également être relativement épaisse et/ou longue.
La longueur des parties inclinées 13 et la longueur de la partie centrale 12 est également appelée corde. Le plan porteur avant 3 présente une corde constante des bords vers le centre. La partie centrale 12 présente une corde égale à la corde des parties inclinées 13. La partie centrale 12 peut présenter une corde constante. La partie centrale 12 peut présenter une épaisseur constante. La partie centrale 12 peut présenter un rapport épaisseur sur corde compris entre 5 et 15 %.
La partie centrale 12 peut être parallèle à l'axe Y ou arrondie à grand rayon de manière à réduire le tirant d'eau et la surface mouillée.
Les parties inclinées 13 peuvent présenter une corde constante ou décroissante vers la partie centrale 12. Les parties inclinées 13 peuvent présenter une épaisseur décroissante vers la partie centrale 12. Chaque partie inclinée 13 peut présenter une largeur selon l'axe X comprise entre 25 et 45 % de l'envergure du plan porteur. Les parties inclinées 13 peuvent présenter une inclinaison par rapport à un axe transversal Y :
- soit décroissante continûment vers la partie centrale 12,
- soit constante, au raccordement près avec la partie centrale 12 et les parties de support 11, par exemple d'un angle compris entre 30 et 50°.
- soit croissante, passant par un maximum de 90°, puis décroissante vers la partie centrale 12 pour obtenir un effet de bombement latéral élargissant le plan porteur avant 3 par rapport à la coque 1. Le bombement peut atteindre de 20 à 50 cm selon l'axe Y. De manière générale, l'inclinaison des parties inclinées 13 par rapport à un axe transversal Y dans la zone de traversée du plan d'eau est comprise entre 30 et 50°, préférablement entre 30 et 40°.
Le plan porteur avant et/ou arrière présente un calage décroissant, en allant vers le centre dudit plan porteur avant et/ou arrière. Le calage correspond à l'incidence en navigation stabilisée en ce sens que le calage est relatif à un repère du navire et que l'incidence est relative à la veine d'eau. L'angle de calage du plan porteur avant 3 est inférieur à T 'angle de calage du plan porteur arrière 4. Le calage est préférablement croissant du centre vers les côtés. La portance est alors croissante avec l'enfoncement dans l'eau, d'où un déjaugeage facilité, particulièrement avantageux pour l'avant du navire 1. La stabilité en roulis est améliorée, le bord enfoncé recevant plus de portance et le bord opposé recevant moins de portance.
Dans un mode, le plan porteur arrière est à corde et calage uniformes et le plan porteur avant est à corde et calage variables. Le calage variable est un vrillage volontaire, nommé « twist » en langue anglaise. La corde et le calage varient en dehors de la partie centrale.
Le plan porteur avant 3 présente un bord de fuite 3a effilé et un bord d'attaque 3b arrondi, voir figure 8 en coupe. Le bord de fuite 3a est disposé dans un plan YZ transversal. Le bord d'attaque 3b est disposé dans un plan YZ transversal. Le bord de fuite 3a et le bord d'attaque 3b sont disposés dans des plans parallèles.
Le plan porteur avant 3 peut être muni de nervures 14 de bord d'attaque 3b, cf. figure 7. Chaque nervure 14 est située sensiblement dans un plan perpendiculaire à la portion voisine du plan porteur avant 3 qui supporte ladite nervure 14. Les nervures 14 sont situées à distance des parties de support 11 et à distance de la partie centrale 12. Les nervures 14 sont situées à au moins 0,10 m de la coque selon l'axe Z. Les nervures 14 s'étendent sur le bord d'attaque 3b et à proximité sur 2 à 5 cm sur l'extrados. Les nervures 14 peuvent être absentes de l'intrados. Les nervures 14 s'étendent en amont du bord d'attaque 3b. Les nervures 14 ont un bord amont arrondi dans le sens de leur épaisseur et dans le sens perpendiculaire. Les nervures 14 présentent une épaisseur de 1 à 4 mm. Les nervures 14 possèdent deux faces parallèles opposées raccordées par un congé.
Les nervures 14 sont parfois dénommées par le terme anglais « fence ». Les nervures 14 réduisent le phénomène de ventilation, i.e. d'introduction d'air dans la lame d'eau le long d'une partie inclinée 13. Les nervures 14 augmentent la portance, réduisent la traînée et autorisent une vitesse plus élevée. Les nervures 14 peuvent être au nombre de deux à six. Les nervures 14 sont disposées à au moins 0,10 m sous le plan de décollage en projection selon l'axe Z. Le plan porteur arrière 4 peut être de même géométrie que le plan porteur avant 3. Le profil peut être le même. La forme générale en plan, la corde et l'inclinaison des parties obliques 13 peuvent être différentes. La corde du plan porteur arrière 4 est supérieure à la corde du plan porteur avant 3, à l'exception des extrémités arrondies du plan porteur arrière 4. Le plan porteur arrière 4 et le plan porteur avant 3 peuvent avoir des envergures égales. Le plan porteur arrière 4 peut être muni de nervures 14, notamment sur la région supérieure des parties inclinées 13. Les nervures 14 s'étendent sur le bord d'attaque 3b et à proximité sur 2 à 5 cm sur l'extrados et sur l'intrados.
Dans les modes de réalisation représentés, le navire 1 présente sous la coque 2 une forme de lettre Pi inversée à traverse en bas et jambes en haut. Le plan porteur arrière 4 forme barre unique et deux bras 15 de liaison à la coque 2 forment double jambes. Le plan porteur arrière 4 est en forme de V à fond arrondi en coupe dans un plan transversal. L'angle du V est compris entre 100 et 140°. La partie centrale 12 est arrondie à grand rayon, par exemple avec un rayon de courbure situé dans le bas de la carène. La partie centrale 12 présente une épaisseur sensiblement constante. Le plan porteur arrière 4 est solidaire des bras 15 de liaison de manière démontable. Dans une variante, le plan
porteur avant 3 présente une forme similaire et est maintenu par deux bras 15. L'espace entre les bras 15 et entre la coque 2 et le plan porteur avant 3 est dégagé.
Les parties inclinées 13 s'étendent de la partie centrale 12 jusqu'à des extrémités libres respectives. Les parties inclinées 13 présentent un angle constant par rapport à un plan XY, par exemple compris entre 15 et 40°. Les parties inclinées 13 et la partie centrale 12 forment le plan porteur arrière 4. Chaque partie inclinée 13 est fixée à un bras 15 respectif en une région permettant un équilibrage des efforts mécaniques de l'eau sur le plan porteur arrière 4, notamment située entre 20 et 25% et entre 75 et 80% de la largeur du plan porteur arrière 4. Les parties inclinées 13 présentent une épaisseur sensiblement constante entre les bras 15 et la partie centrale 12 et décroissante de manière progressive vers les extrémités libres. L'intrados des parties inclinées 13 est de pente constante et l'extrados des parties inclinées 13 est de pente décroissante vers les extrémités libres. Le bord de fuite 4a du plan porteur arrière 4 est situé dans un plan transversal. Le bord d'attaque 4b du plan porteur arrière 4 présente une portion centrale située dans un plan transversal et des portions d'extrémité arrondies. La portion centrale s'étend substantiellement entre des plans XZ passant par les bras 15. Les portions d'extrémité sont arrondies vers le bord de fuite 4a avec un rayon sensiblement égal à la dimension du plan porteur arrière 4 selon l'axe X. Le plan porteur arrière 4 peut présenter une corde constante entre les bras 15. La partie centrale 12 peut présenter une corde constante. Le plan porteur arrière 4 peut présenter peut présenter un rapport épaisseur sur corde compris entre 5 et 15 % entre les bras 15. Le plan porteur arrière 4 est assemblé à la coque 2 dans une zone située le plus à l'arrière possible de la coque 2.
Le plan porteur arrière 4 peut être fixé aux bras 15 par complémentarité de formes et assemblage vis-écrou. Les bras 15 de liaison à la coque 2 sont parallèles. Les bras 15 sont distants d'une distance inférieure à la largeur maximale de la coque 2. Les bras 15 sont profilés avec un bord d'attaque de rayon supérieur au rayon du bord de fuite. Les bras 15 peuvent comprendre un carénage hydrodynamique entourant une poutre structurelle transmettant les efforts entre le plan porteur arrière 4 et la coque 2.
Les bras 15 sont sensiblement verticaux. La surface extérieure des bras 15 peut être parallèle à un axe Z. En coupe longitudinale, le bras 15 est situé dans un plan sensiblement vertical. Les bras 15 présentent une extrémité supérieure solidaire de la coque 2 dans la région arrière plane du fond 10 de la coque 2. Les bras 15 se prolongent sous le plan porteur arrière 4 par des supports 15a de propulseurs. Dans le mode de
réalisation des figures 1 à 4, 6 et 8 à 12, les supports 15a sont coplanaires avec les bras 15. Les supports 15a peuvent former les pods.
Le plan porteur arrière 4 et le plan porteur avant 3 sont configurés pour déjauger à une vitesse comprise entre 3 et 5 nœuds en fonction notamment de la charge transportée. Au- delà de cette vitesse, la coque est supportée par le plan porteur arrière 4 et le plan porteur avant 3.
Le centre de gravité CG en charge normale est situé dans le plan de symétrie longitudinal XZ. Longitudinalement, le centre de gravité CG se trouve entre le plan porteur avant 3 et le plan porteur arrière 4, notamment entre 40 et 50% de la longueur mouillée du navire en partant de l'extrémité arrière. Sur l'axe Z, le centre de gravité CG est situé à une hauteur maximale dépendant de la largeur de la coque pour la stabilité archimédienne et de la largeur des plan porteur avant 3 et plan porteur arrière 4 pour la stabilité en navigation à coque émergée. En prenant comme point de base le plan de décollage passant par les points bas de la coque, la position en hauteur du centre de gravité CG est inférieure à 30%, préférablement 25%, de la largeur du plan porteur arrière. Le centre de gravité CG peut être situé entre 0,30 et 0,40 m au-dessus de la ligne de flottaison en charge normale pour une coque 2 de 2,20 à 2,30 m de largeur.
Le centre de gravité à vide est situé à une hauteur au-dessus de la surface de l'eau inférieure à 0,50 m dans l'état sustenté où la coque est au-dessus de la surface de l'eau.
Au cours de la mise au point d'autres paramètres se sont révélés importants. La coque est située à une distance au-dessus de la surface de l'eau comprise entre 0,10 et 0,30 m dans l'état sustenté où la coque est au-dessus de la surface de l'eau. En dessous de 0,10 m, il y a trop de risque de contact occasionnel eau-coque générant de la traînée. Au-delà de 0,30 m, la stabilité devient difficile à assurer. La distance entre le centre du plan porteur avant 3 et le bas de la coque 2 selon l'axe Z, notamment l'arête centrale 10a, est comprise entre 0,30 et 0,70 m. La distance entre le centre du plan porteur arrière 4 et le bas de la coque 2 dans un plan transversal est comprise entre 0,30 et 0,70 m. En dessous de 0,30 m, la plage de navigation stable est trop faible entre le risque de ventilation lorsque les plans porteurs sont en immersion insuffisante et le risque de contact de la coque avec l'eau. Au-delà de 0,70 m, la traînée des plans porteurs devient fortement consommatrice d'énergie si les plans porteurs sont
très immergés ou la stabilité est réduite si les plans porteurs sont peu immergés. La plage préférée est 0,40 à 0,60 m.
La coque est de largeur supérieure ou égale à 2,00 m, préférablement comprise entre 2,20 et 2,30 m. Une largeur de navire de 2,30 m ou de 2,40 m, correspondant à l'envergure des plans porteurs, offre une bonne stabilité. L'envergure des plans porteurs à bombement extérieur peut atteindre 3,00 m. L'envergure des plans porteurs avant et arrière peut être égale. Dans le mode de réalisation des figures 1 à 3, l'envergure du plan porteur arrière est supérieure à l'envergure du plan porteur avant, notamment de plus de 0,50 m.
Le navire 1 peut être équipé d'un ou plusieurs sièges 27 disposé dans un habitacle 29 formé entre les francs bords 8 et 9, en arrière du pare-brise 6a. Un siège de pilote et une pluralité de sièges de passagers sont disposés.
Le navire 1 est à propulsion motorisée. Le navire 1 peut comprendre de un à quatre propulseurs 5. Les propulseurs 5 sont disposés sous les plans porteurs selon l'axe Z. Les propulseurs 5 sont solidaires d'un plan porteur 3, 4. Dans le mode mono propulseur illustré sur la figure 4, le propulseur est installé sous le plan porteur arrière 4 en position centrale. Le propulseur est orientable autour d'un axe Z, c'est-à-dire en azimut. Le propulseur est, soit fixé au seul plan porteur arrière 4 par une liaison à pivot, soit fixé à un bras caréné 15, fixe ou pivotant traversant le plan porteur arrière 4. Sur la figure 4, le plan porteur arrière 4 est associé à un mono propulseur 5 supporté par un mono bras 15 central. Latéralement, le plan porteur arrière 4 est solidaire de la coque 2 par deux parties de support 11 analogues aux parties de support 11 du plan porteur avant 3.
Dans le mode de réalisation de la figure 5, la structure est similaire à la précédente à ceci près que le mono bras 15 se divise en deux supports 15a par une poutre carénée 25 en Y inversé sous le plan porteur arrière 4. Les supports 15a présentent un angle d'environ 90° entre eux. Les supports 15a peuvent pivoter par rapport au plan porteur arrière 4. Le pivot est de préférence commun aux deux supports 15a. La poutre carénée 25 présente une forme générale d'aile de faible hauteur et de dimension selon l'axe X suffisante pour reprendre les efforts générés par la poussée des hélices 17. La poutre carénée 25 est creuse. La poutre carénée 25 forme un logement des câbles électriques d'alimentation des moteurs électriques 16.
Dans le mode bi propulseur, chaque propulseur est installé sous le plan porteur arrière 4 en position latérale. Les propulseurs peuvent être orientables autour d'un axe Z ou fixes. Les propulseurs sont, soit fixés au seul plan porteur arrière 4 par des liaisons à pivot, soit fixés chacun à un bras caréné 15, fixe ou pivotant, traversant le plan porteur arrière 4, soit supportés par un mono bras pivotant, par une poutre carénée 25. Dans le cas de propulseurs fixes, la giration du navire est effectuée par différence de régime entre les propulseurs, voire par inversion de régime.
Dans le mode tri propulseur, chaque propulseur est installé sous le plan porteur arrière 4, l'un en en position centrale, les autres en position latérale. Les propulseurs peuvent être orientables autour d'un axe Z ou fixes. Les propulseurs sont, soit fixés au seul plan porteur arrière 4 par des liaisons à pivot, soit fixés chacun à un bras caréné, fixe ou pivotant, traversant le plan porteur arrière 4, soit supportés par un mono bras pivotant, une poutre carénée 25 d'axe principal Y faisant liaison entre le propulseur 5 et le mono bras 15. Dans le cas de propulseurs fixes, la giration du navire est effectuée par différence de régime entre les propulseurs latéraux, voire par inversion de régime. En variante, un propulseur 5 est installé sous le plan porteur avant 3 et les autres sous le plan porteur arrière 4 en position latérale comme dans le mode bi propulseur. Dans le mode de réalisation de la figure 6, trois propulseurs 5 sont prévus sous le plan porteur arrière 4. Les propulseurs 5 sont disposés comme les propulseurs de la figure 3 en position latérale et le propulseur de la figure 4 en position centrale. Chacun des trois propulseurs 5 est supporté par un bras 15. Les trois bras 15 supportent le plan porteur arrière 4. Les parties de support 11 visibles font partie du plan porteur avant 3. La partie centrale 12 du plan porteur avant 3 est également visible, comme sur les figures 4 et 5 légèrement au-dessus de la partie centrale 12 du plan porteur arrière 4.
Dans le mode de réalisation de la figure 7, le plan porteur arrière 4 est dépourvu de motorisation. L'espace entre le plan porteur arrière 4 et la coque 2 est libre. Le plan porteur avant 3 est associé à deux propulseurs 5. Le plan porteur avant 3 est de forme similaire à celle illustrée en figures 1 et 2. L'espace entre le plan porteur avant 3 et la coque 2 est libre. Chaque propulseur 5 est supporté par un support 15a de propulseur. Le support 15a est fixé au plan porteur avant 3. Le support 15a est, ici, indépendant du reste d'un bras tel qu'illustré sur les autres figures. Les efforts transmis par le support 15a sont repris par le plan porteur avant 3. Des câbles électriques passent dans le support 15a et le plan porteur avant 3 pour assurer l'alimentation du moteur électrique 16 à partir de la coque 2. Les propulseurs 5 peuvent être fixes ou pivotants autour d'un axe Z.
Dans le mode quadri propulseur illustré sur la figure 11, deux propulseurs 5 sont installés sous le plan porteur arrière 4 en position latérale, cf. figures 1 à 3, et deux propulseurs sont installés sous le plan porteur avant 3 en position latérale comme sur la figure 7. L'écartement des propulseurs 5 peut être différent à l'avant et à l'arrière. Les propulseurs 5 peuvent être orientables autour d'un axe Z ou fixes. Les propulseurs sont, soit fixés au seul plan porteur avant 3 / arrière 4 par des liaisons à pivot, par exemple des pods, ou fixes, soit fixés chacun à un bras caréné, fixe ou pivotant, traversant le plan porteur avant 3 / arrière 4, soit supportés par un mono bras pivotant, une poutre carénée 25 d'axe principal Y faisant liaison entre les propulseurs et le mono bras. Dans le cas de propulseurs fixes, la giration du navire 1 est effectuée par différence de régime entre les propulseurs latéraux, voire par inversion de régime.
En variante, un unique propulseur 5 avant est monté en position centrale sous le plan porteur avant 3. Le propulseur 5 avant est un pod orientable et les propulseurs 5 arrière sont fixes. Cette variante peut être combinée avec le mode de réalisation des figures 9 et 10. En cas d'organes élastiques de pivotement du plan porteur avant 3, le régime du propulseur avant relativement au régime des propulseurs arrière permet de commander le calage du plan porteur avant 3 de manière indirecte. L'absence d'actionneurs peut ainsi être contournée. Cette variante peut être aussi combinée avec un plan porteur avant 3 fixe par rapport à la coque et à calage déformable. Et le navire est très manœuvrable, avec aptitude à la giration sur place.
Une ou plusieurs nervures 14 peuvent être montées sur le ou les bras carénés 15. Une aspiration d'air le long du bras caréné est évitée. Les nervures 14 sont symétriques par rapport au plan milieu XZ. Les nervures 14 s'étendent autour du bord d'attaque.
Chaque propulseur 5 comprend un moteur électrique 16 et une hélice 17 en prise directe sur le moteur. Le moteur électrique 16 présente un diamètre inférieur à 0,30 m, préférablement à 0,25 m. Le moteur électrique 16 présente un rapport longueur/diamètre supérieur à 3½, préférablement à 4. L'hélice 17 est immergée dans l'eau en fonctionnement normal. Le moteur électrique 16 et l'hélice 17 sont situés sous le plan porteur. Le ou les bras caréné 15 assure la liaison mécanique entre la coque 2 et le propulseur 5 correspondant. Le plan porteur avant 3 / arrière 4 reprend une partie des efforts mécaniques générés par le moteur. Le bras caréné 15 comprend un corps tubulaire et un
carénage réduisant la traînée, fixé sur le corps. Le bras caréné 15 assure la liaison électrique entre la coque 2 et le propulseur 5 correspondant. Des câbles électriques passent dans le corps tubulaire pour assurer l'alimentation du moteur électrique 16 à partir de la coque 2, par exemple dans un alésage ménagé dans le bras, ou dans un logement dans le plan porteur.
Dans la coque 2, sont logées des batteries 18 et un organe de commande 19 muni d'une interface 20. Les batteries 18 sont logées en fond de coque 2 abaissant ainsi le centre de gravité. Les batteries 18 peuvent être disposées symétriquement. Les batteries 18 peuvent être disposées au moins en partie en deux rangées écartées l'une de l'autre. Les batteries 18 peuvent être disposées au moins en partie sous des sièges de l'habitacle du navire 1. Longitudinalement, les batteries 18 sont situées en arrière du plan porteur avant 3 et en avant ou au même niveau que le plan porteur arrière 4. L'organe de commande 19 est relié électriquement aux batteries 18, au moteur électrique 16 et à l'interface 20. Une liaison électrique d'alimentation est formée entre les batteries 18 et chaque moteur électrique 16 de propulseur 5. L'interface 20 comprend une commande de régime moteur, une commande de direction, un indicateur de charge des batteries 18 et un indicateur de régime moteur. La commande de direction peut être reliée mécaniquement aux propulseurs orientables ou reliée à l'organe de commande 19 pour générer un ordre de différenciation des régimes moteur.
De préférence, le navire 1 est dépourvu de safran. Les propulseurs 5 sont orientables. Les propulseurs 5 sont fixés chacun à un bras caréné 15 pivotant. Le bras caréné 15 se prolonge sous le plan porteur assurant une séparation entre les veines d'eau déplacées par le plan porteur et les veines d'eau passant dans l'hélice 17. Le corps du bras caréné 15 traverse le plan porteur tandis que le carénage est interrompu par le plan porteur arrière 4. Le carénage présente une portion supérieure entre la coque 2 et le plan porteur arrière 4 et une portion inférieure entre le plan porteur arrière 4 et le propulseur 5. La distance selon l'axe Z entre le plan porteur arrière 4 et l'axe du propulseur 5 est telle que le dessous du bord de fuite est situé à un niveau supérieur à l'extrémité supérieure des pales de l'hélice.
Les axes de pivotement des propulseurs 5 sont parallèles. Le pivotement des propulseurs 5 est indexé. Ainsi l'angle de poussée de chacun des propulseurs 5 arrière par rapport à l'axe X est égal ou centré autour du même centre de giration. En d'autres termes, les angles entre les axes de chaque propulseur et l'axe X sont égaux ou leurs normales sont
sécantes en un point formant centre de giration. Le pivotement de chaque propulseur 5 est assuré par un bras caréné 15 correspondant. Le corps de chaque bras caréné 15 fait saillie dans la coque 2 et est commandé en pivotement par le mécanisme de commande de direction. Le pivotement des propulseurs 5 exerce une poussée du bas du navire 1 vers l'extérieur du virage. Cette poussée tend à incliner le haut du navire 1 vers l'intérieur du virage. Ceci accroît le confort des utilisateurs en virage.
La commande des propulseurs 5 peut être identique, en ce sens que la vitesse de rotation de chaque hélice est égale, notamment en vitesse de croisière. Pour les manœuvres à basse vitesse, la commande des propulseurs 5 est avantageusement indépendante. Ainsi, la vitesse de chaque propulseur est individuelle. Une vitesse de rotation plus élevée de l'hélice extérieure au virage permet de virer plus court. Une vitesse de rotation nulle de l'hélice intérieure diminue le rayon du virage tout en réduisant la consommation d'énergie. Une inversion du sens de rotation de l'hélice intérieure permet de virer sur place, par analogie avec le virage d'un engin chenillé dont les chenilles se déplacent en sens opposés.
Dans le mode de réalisation de la figure 8, chaque propulseur 5 comprend un moteur électrique 16 monté à bord et une transmission 26 à renvoi d'angle entre l'hélice 17 et le moteur électrique 16. L'hélice 17 est montée à orientation fixe par rapport à la coque. L'hélice 17 est située sous le plan porteur arrière 4. Chaque moteur électrique 16 est monté dans la coque 2, par exemple en fond de coque 2. Chaque propulseur 5 est relié à la coque 2 par le plan porteur arrière 4 et par un bras 15 disposé dans un plan sensiblement vertical en coupe longitudinale. Le bras 15 est parallèle à l'axe Z et l'angle du renvoi est à 90°. En variante, le bras 15 peut être incliné dans un plan transversal et/ou dans un plan longitudinal. Les propulseurs 5 sont à commande indépendante et la giration se fait par différentiation des vitesses de rotation des hélices 17.
Chaque transmission 26 à renvoi d'angle comprend un arbre en prise directe avec le moteur électrique 16, un pignon porté par l'arbre à une extrémité opposée au moteur électrique, et une roue dentée engrenant le pignon et en prise directe avec l'hélice 17. Un rapport de transmission de 1/1 offre une bonne compacité et permet un renvoi de faible diamètre d'où une faible traînée générée par le renvoi disposé en amont de l'hélice 17 dans le sens d'écoulement de l'eau le long du navire 1.
La traînée générée par la transmission 26 à renvoi d'angle est inférieure à la traînée générée par le moteur hors-bord des modes de réalisation précédents. Le moteur 16 dans
la coque 2 est soumis à de moindres exigences de compacité, notamment diamétrale, et peut donc offrir une puissance accrue. Des vitesses de service élevées peuvent être assurées, par exemple entre 25 et 35 nœuds. Les batteries 18 peuvent être de capacité supérieure aux batteries des autres modes de réalisation afin d'assurer une autonomie élevée à grande vitesse. Ce mode de réalisation est avantageusement combiné avec le suivant.
Dans le mode de réalisation des figures 9 et 10, le plan porteur avant 3 est à calage variable temporellement. En d'autres termes, le calage d'une zone donnée du plan porteur avant 3 est susceptible d'être modifiée. En effet, la portance - résultante des forces exercées par l'eau sur le plan porteur - croît avec la vitesse à charge constante. La Demanderesse s'est rendue compte qu'un calage variable offrait un élargissement de la plage de charge utile pour une vitesse donnée intéressante dans les zones où la vitesse est réglementée, un déjaugeage à plus faible vitesse d'où une diminution des remous et de la consommation d'énergie, un élargissement de la plage de vitesse pour une charge donnée, une diminution de la traînée à vitesse élevée, une meilleure stabilité et une diminution des risques de ventilation et d'enfournement. La ventilation est une séparation entre l'extrados et la veine d'eau passant sur ledit extrados, par arrivée d'air, et se traduit par une perte de portance. L'enfournement est un déséquilibre du navire avec enfoncement brutal de la proue 6.
Le calage variable permet aussi d'augmenter l'écart entre la vitesse à laquelle le navire passe de la navigation archimédienne à la navigation sur plans porteurs, appelée vitesse de déjaugeage, et la vitesse à laquelle le navire passe de la navigation sur plans porteurs à la navigation archimédienne. La stabilité de la navigation est accrue. Le navire peut ainsi naviguer sur plans porteurs à faible vitesse. Ceci est intéressant pour l'accostage.
En variante, un bord de fuite à angle réglable a été considéré. Le mode préféré est un plan porteur avant 3 à pivotement autour d'un axe transversal. Le plan porteur avant 3 est pivotant dans sa généralité. La construction monobloc du plan porteur avant 3 est conservée. La forme arquée du plan porteur avant 3 en coupe transversale permet une transmission des efforts analogues à une voûte avec majoritairement de la compression. Le plan porteur avant 3 est dépourvu de zone en porte à faux. Deux articulations 21 sont fixées chacune à un franc bord 8, 9. Le franc bord 8, 9 peut être renforcé au voisinage des articulations 21. Les articulations 21 supportent le
plan porteur avant 3 autour d'un axe parallèle à l'axe Y. L'axe d'articulation est sécant avec la coque 2.
Sur la figure 9, le pivotement du plan porteur avant 3 est commandé. Le navire 1 comprend deux actionneurs 22 de pivotement du plan porteur avant 3 fixés d'une part à la coque et d'autre part au plan porteur avant 3. Le plan porteur avant 3 est articulé à la coque 2 autour d'un axe de pivotement situé au-dessus de la ligne de flottaison. La disposition des actionneurs 22 est symétrique. Les actionneurs 22 présentent une course linéaire. Le montage des actionneurs 22 autorise le pivotement du plan porteur avant 3 sur une course angulaire comprise entre 1 à 5°. Des butées 23 peuvent être prévues pour soulager les actionneurs 22 en fin de course. Les butées 23 peuvent comprendre un organe élastique. En fin de course, les actionneurs 22 exercent une précontrainte à l'encontre des butées assurant ainsi une stabilité du plan porteur avant 3 et de faibles vibrations. Le plan porteur arrière 4 est fixe par rapport à la coque.
A une première extrémité de la course, le plan porteur avant 3 présente un calage élevé offrant une portance maximale, notamment pour le déjaugeage. A une deuxième extrémité de la course opposée à la première, le plan porteur avant 3 présente un calage faible offrant une portance minimale et une traînée réduite, notamment pour les vitesses élevées. A la deuxième extrémité de la course, le minimum du calage local du plan porteur avant 3 est supérieur à zéro. Le plan porteur avant 3 est à calage commandé.
Les actionneurs 22 sont reliés à l'organe de commande 19. Le réglage actif du calage peut être effectué avec un calage maximal sous une valeur Ri de vitesse de rotation des hélices 17, un calage minimal au-dessus d'une valeur R2 de vitesse de rotation des hélices 17 et un calage progressif avec la vitesse entre les valeurs Ri et R2. A titre d'exemple, Ri = 6 nœuds et R2 = 9 nœuds pour un navire de vitesse maximale de service de 10 à 15 nœuds. Pour un navire haute vitesse, on fixe Ri = 8 nœuds et R2 = 20 nœuds pour un navire de vitesse maximale de service de 25 à 35 nœuds.
Sur la figure 10, le navire 1 comprend deux organes élastiques 24 de pivotement du plan porteur avant 3 fixés d'une part à la coque et d'autre part au plan porteur avant. La disposition des organes élastiques 24 est symétrique. Les organes élastiques 24 présentent une course linéaire ou angulaire. Le montage des organes élastiques 24 autorise le pivotement du plan porteur avant 3 sur une course angulaire comprise entre 1 à 5°.
Des butées 23 de fin de course sont prévues. En fin de course, les organes élastiques 24 exercent une précontrainte à l'encontre des butées 23. La précontrainte à la première extrémité de la course peut être prévue jusqu'à une vitesse supérieure à la vitesse de déjaugeage. La précontrainte à la deuxième extrémité de la course peut être prévue jusqu'à une vitesse inférieure de quelques pour cents à la vitesse de croisière prévue. Pour le reste, on se réfère au mode précédent. Le plan porteur avant 3 est à incidence passive variable en fonction de la vitesse.
Les actionneurs 22 et/ou les organes élastiques 24 présentent une extrémité articulée à la coque 2 et une extrémité opposée articulée à une partie de support 11 du plan porteur avant 3 au niveau de la coque selon un axe parallèle audit axe sécant avec la coque et à distance de l'articulation 21. Les actionneurs 22 et/ou les organes élastiques 24 sont montés au-dessus de la ligne de flottaison à pleine charge. En variante, le plan porteur avant 3 est déformable élastiquement en calage. Le plan porteur avant 3 peut être fixe par rapport à coque 2. Le plan porteur avant 3 peut comprendre une portion centrale à calage décroissant en fonction de la portance.
Dans le mode de réalisation de la figure 12, le navire est similaire à celui des figures 1 à 3. En outre, les bras 15 supportent des sondes de pression 30. Les sondes de pression 30 peuvent comprendre des tubes de Pitot. Les tubes de Pitot mesurant une pression différentielle sont équipés d'une surface active de bord d'attaque sensible à la pression statique et à la pression dynamique cumulées et d'une surface active latérale sur le côté des bras 15 sensible à la pression statique. Les sondes de pression 30 sont reliées à l'organe de commande 19. Les sondes de pression 30 sont, ici, disposées sur le bord d'attaque de chaque bras 15. En variante, les sondes de pression 30 peuvent être disposées sur le bord d'attaque de chaque partie de support 11. En pratique, les sondes de pression 30 sont installées sur un bord d'attaque d'une zone d'un plan - porteur ou de support - immergée en navigation archimédienne et émergée en navigation sur plans porteurs.
Les sondes de pression 30 sont disposées en une rangée par bras 15 avec une distance entre deux sondes de pression 30 comprise entre 2 et 6 cm. Les sondes de pression 30 sont insérées dans le bras 15 offrant une surface active libre. Les sondes de pression 30 mesurant la pression permettent à l'organe de commande 19, muni d'un calculateur, de calculer une estimation du niveau du navire par rapport au plan d'eau, en d'autres termes l'enfoncement à l'état déjaugé, soit une hauteur. La précision dépend notamment de la
distance entre deux sondes de pression 30 voisines. Alternativement, les sondes de pression 30 sont disposées sur une ou des parties de support 11.
L'organe de commande 19 est, avantageusement, pourvu d'une sortie de commande de la hauteur du navire par rapport au plan d'eau sur la base des données fournies par les sondes de pression 30. Selon la configuration du navire 1, ladite sortie de commande est envoyée aux propulseurs pour modifier leur régime faisant ainsi varier la portance, aux actionneurs de pivotement de plan porteur pivotant autour d'un axe transversal pour un réglage du calage, par exemple du plan porteur avant 3, aux actionneurs de déformation d'un profil de plan porteur, aux actionneurs de volet de bord de fuite, etc.
En navigation archimédienne, les bras 15 sont immergés et une information d'enfoncement, par ailleurs peu utile, ne peut pas être fournie par ce moyen. En cours de déjaugeage et à l'état déjaugé, l'information d'enfoncement peut être fournie et est utile. L'organe de commande 19 dispose ainsi d'une information bilatérale d'enfoncement. L'assiette du navire est disponible. A partir de l'assiette, l'organe de commande 19 peut générer une commande de pivotement des pods des propulseurs 5 pour augmenter ou réduire une inclinaison latérale du navire. Indépendamment des sondes de pression 30 ou en combinaison, le navire est équipé de volets mobiles 28 de bord de fuite sur le plan porteur arrière 4. Les volets mobiles 28 constituent des élevons au sens aéronautique. Les volets mobiles 28 déplacés dans le même sens agissent en gouvernes de tangage. Les volets mobiles 28 déplacés en opposition agissent en gouvernes de roulis. L'action en gouvernes de tangage permet de faire baisser l'arrière du navire, notamment en phase de décélération afin de conserver l'horizontalité du navire ou de le cabrer légèrement. L'action en gouvernes de tangage permet de faire monter l'arrière du navire afin de réduire la portance du plan porteur avant si ladite portance est excessive. L'action en gouvernes de tangage peut être mise en œuvre en freinage d'urgence pour augmenter la traînée et réduire la portance très rapidement.
L'action en gouvernes de roulis permet de compenser un déséquilibre de charge. L'action sur le volet 28 intérieur à un virage permet l'augmentation de la traînée à l'intérieur du virage et l'abaissement du bord intérieur au virage d'où un double effet de faciliter la prise de virage ou giration du navire 1 et de réduire la force centrifuge ressentie par les utilisateurs. En d'autres termes, le navire 1 est apte prendre un virage comme une moto et non comme une voiture. L'action en gouvernes de roulis permet d'incliner latéralement
le navire en particulier en cas de propulseurs fixes d'où un confort accru. Ceci est facilité par les sondes de pression 30 ci-dessus.
Les volets mobiles 28 s'étendent sur les parties inclinées 13. Les volets mobiles 28 sont situés au-delà des bras 15 et à distance de l'extrémité libre du plan porteur arrière 4. Les volets mobiles 28 présentent une forme rectangulaire et sont articulés autour d'un axe situé dans le plan des parties inclinées 13. Les volets mobiles 28 sont pivotés par des actionneurs disposés dans l'épaisseur des parties inclinées 13 et commandés par l'organe de commande 19.
En cas d'inclinaison latérale du navire, une partie du volet mobile 28 d'un côté peut être hors de l'eau d'où une réduction de la portance dudit côté et un effet d'autostabilité lié à la forme du plan porteur arrière 4 sans action des volets mobiles 28. Simultanément, une action sur le volet mobile 28 dudit côté produit moins d'effet et une action sur le volet mobile 28 du côté opposé produit un plein effet.
Sur les figures 13 et 14 a été représenté un plan porteur avant 3 conçu pour des vitesses élevées en comparaison des modes de réalisation précédents. La Demanderesse a mis au point des plans porteurs offrant une faible traînée à vitesse de service élevée, d'où une consommation d'énergie réduite et une autonomie accrue.
Le plan porteur avant 3 présente une corde décroissante vers le centre du navire 1. Le plan porteur avant 3 a un bord fuite 3a situé dans un plan transversal YZ. Le plan porteur avant 3 a un bord d'attaque 3b se rapprochant du bord d'attaque 3b dans les parties inclinées 13 et situé dans un plan transversal YZ dans la partie centrale 12. La corde du plan porteur avant 3 est comprise entre 0,20 et 0,80 m. Le minimum de la corde est compris entre 0,20 et 0,30 m. Le maximum de la corde est entre 0,50 et 0,80 m. Le rapport épaisseur/corde peut être constant. L'épaisseur est constante dans la partie centrale 12 et décroissante vers le centre dans les parties inclinées 13. Le rapport entre la corde maximale et la corde minimale peut être compris entre 2 et 6.
La corde de la partie centrale 12 est constante. La corde des parties inclinées 13 est décroissante à l'opposé des extrémités des plans porteurs. La corde de petite dimension de la partie centrale 12 offre une faible surface mouillée donc une faible traînée. La corde des parties inclinées 13 croissante avec l'enfoncement du navire 1 génère une portance croissante avec l'enfoncement du navire 1. Inversement, la traînée générée par les plans porteurs décroît fortement lors du déjaugeage. La décroissance est plus forte qu'une
décroissance linéaire car la diminution de la surface mouillée varie en fonction de la hauteur de déjaugeage de manière linéaire comme dans les modes de réalisation précédents et de la décroissance de la corde. En outre, le calage est, ici, décroissant dans le même sens que la corde. L'angle de calage a dans la partie centrale 12 est compris entre 1 et 3°, cf. figure 15. L'angle de calage a maximal, au voisinage de la coupe de la figure 18, est compris entre 3 et 5°. Le plan de coupe de la figure 16, au début de la partie inclinée 13, présente le même calage que la partie centrale 12. Le calage est constant dans la partie centrale 12 et croissant vers les extrémités libres des parties inclinées 13.
Le plan porteur arrière 4 peut présenter une structure similaire. Comme visible sur la figure 13, les bras 15 présentent une section rectangulaire en extrémité supérieure et une section profilée hydrodynamique en extrémité inférieure voisine du plan porteur et susceptible d'être immergée en navigation sur les plans porteurs.
Dans le mode de réalisation de la figure 19, le navire est similaire à celui des figures 1 à 3. En outre, le bord d'attaque 3b du plan porteur avant 3 est muni de bossages arrondis 32. Une pluralité de bossages 32 est formée sur chaque partie inclinée 13. Les bossages 32 sont ménagés à distance du centre dudit plan porteur. Les bossages 32 sont en saillie vers l'avant. Les bossages 32 sont séparés par un creux 33 d'orientation parallèle à l'axe X et perpendiculaire à la zone locale de la partie inclinée 13. Les bossages 32 sont circulaires en section dans un plan transversal YZ. Les bossages 32 présentent une pointe hémisphérique en section dans un plan longitudinal XZ. Les bossages 32 présentent un diamètre sensiblement égal à l'épaisseur locale du plan porteur. Les bossages 32 sont disposés à espacement constant. Les bossages 32 peuvent être formés sur l'un des plans porteurs 3, 4 ou sur les deux. Lesdits bossages 32 sont évanouissants vers l'extrados et l'intrados. L'extrados et l'intrados peuvent être lisses. En d'autres termes, les bossages sont dépourvus de saillie dans une direction perpendiculaire à l'axe X.
Let plan porteur peut comprendre une portion centrale 12 à profil sensiblement constant et deux portions latérales 13 munies desdits bossages 32. La portion centrale 12 peut présenter un calage constant et une corde constante. Les portions latérales 13 peuvent présenter un calage décroissant en allant vers la portion centrale 12. Les bossages 32 sont alors d'axes légèrement décalés. Les portions latérales 13 peuvent présenter une corde décroissante en allant vers la portion centrale 12. Les bossages 32 présentent une décroissance vers le bord de fuite en fonction de la corde. Le plan porteur est dépourvu
de nervure de bord d'attaque située sensiblement dans un plan perpendiculaire à une portion voisine du plan porteur. Les bossages 32 offrent une réduction de la traînée en conservant la portance et diminuent le risque de ventilation. Les extrémités libres des portions latérales 13 sont orientées de manière générale selon l'axe X et perpendiculaires à l'axe principal des portions latérales 13 avec un bombement arrondi, également présent en figure 13.
Le navire 1 offre une plage large de conditions de navigation, notamment en termes de vitesse de croisière, vitesse de déjaugeage, vitesse de reprise de navigation archimédienne, décélération, rayon de giration dans les deux types de navigation, archimédienne et déjaugée, etc.
Claims
1. Navire (1) fluvial ou côtier, comprenant une coque (2), un propulseur (5) à hélice mouillée, un plan porteur avant (3) et un plan porteur arrière (4) d'hydrosustentation, caractérisé en ce qu'il comprend une pluralité de sondes de pression (30) montées sur au moins un bord d'attaque d'un plan choisi parmi le plan porteur avant (3), le plan porteur arrière (4) et, le cas échéant, un bras (15) de support d'un desdits plans porteurs ; et un organe de commande (19) recevant une donnée de pression mesurée par chaque sonde pour calculer une hauteur estimée par rapport à l'eau.
2. Navire (1) selon la revendication 1, dans lequel la sonde de pression (30) comprend un tube de Pitot.
3. Navire (1) selon l'une des revendications précédentes, comprenant une interface de commande (20) comprenant la hauteur de la coque (2) par rapport à l'eau, l'organe de commande (19) calculant une hauteur estimée de la coque (2) par rapport à l'eau et étant configuré pour régler la hauteur de la coque (2) par rapport à l'eau.
4. Navire (1) selon la revendication 3, dans lequel la commande de hauteur est configurée pour émettre une instruction vers un organe de réglage de calage du plan porteur avant (3).
5. Navire (1) selon l'une des revendications précédentes, comprenant une rangée de sondes de pression (30) disposée sur une partie de support d'un plan porteur.
6. Navire (1) selon l'une des revendications précédentes, comprenant un bras (15) caréné disposé dans un plan sensiblement vertical en coupe longitudinale, les sondes de pression étant montées sur un bord d'attaque du bras (15) caréné, le propulseur (5) étant relié à la coque (2) par le plan porteur arrière (4) et par le bras (15) caréné.
7. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur arrière (4) présente une forme en V à centre arrondi et un bord d'attaque à extrémité arrondies à l'opposé du centre du plan porteur arrière (4) et se raccordant au bord de fuite.
8. Navire (1) selon la revendication 7, dans lequel l'angle du V est compris entre 100 et 140°.
9. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur arrière (4) comprend au moins deux volets mobiles (28) de bord de fuite commandés par ledit calculateur par l'intermédiaire d'un actionneur pour commander la portance du plan porteur arrière (4).
10. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur arrière (4) comprend au moins deux volets mobiles (28) de bord de fuite
commandés par ledit organe de commande (19) par l'intermédiaire d'un actionneur pour incliner latéralement le navire.
11. Navire (1) selon l'une des revendications précédentes, dans lequel le propulseur (5) est relié à la coque (2) par le plan porteur arrière (4) et par un bras (15) caréné disposé dans un plan sensiblement vertical en coupe longitudinale, notamment un bras caréné supportant deux hélices ou deux bras carénés chacun supportant une hélice (17).
12. Navire (1) selon l'une des revendications précédentes, comprenant des batteries (18) logées dans la coque (2) et une liaison électrique entre un moteur électrique ( 16) de propulsion et les batteries (18).
13. Navire (1) selon l'une des revendications précédentes), l'un au moins des plans porteurs comprenant un bord d'attaque à bossages (32) arrondis, évanouissants vers le bord de fuite, et ménagés à distance du centre dudit plan porteur.
14. Navire (1) selon la revendication 13, dans lequel ledit plan porteur comprend une portion centrale (12) à profil sensiblement constant et deux portions latérales (13) munies desdits bossages (32), la portion centrale (12) présentant un calage constant et une corde constante, les portions latérales (13) présentant un calage décroissant en allant vers la portion centrale (12) et une corde décroissante en allant vers la portion centrale (12).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2017/051504 WO2018229356A1 (fr) | 2017-06-12 | 2017-06-12 | Navire a plans porteurs a haute stabilite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2017/051504 WO2018229356A1 (fr) | 2017-06-12 | 2017-06-12 | Navire a plans porteurs a haute stabilite |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018229356A1 true WO2018229356A1 (fr) | 2018-12-20 |
Family
ID=59350976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2017/051504 WO2018229356A1 (fr) | 2017-06-12 | 2017-06-12 | Navire a plans porteurs a haute stabilite |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018229356A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2591562A (en) * | 2019-11-14 | 2021-08-04 | Artemis Tech Limited | Autonomously controlled hydrofoil system |
JP2022021167A (ja) * | 2020-07-21 | 2022-02-02 | 本田技研工業株式会社 | 水上移動体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2696796A (en) * | 1951-07-02 | 1954-12-14 | Hydrofoil Corp | Hydrofoil craft having electrical control means |
CH307157A (de) * | 1951-04-16 | 1955-05-15 | Supramar Ag | Wasserfahrzeug mit Wassertragflügeln. |
DE1129080B (de) * | 1954-11-17 | 1962-05-03 | Hanns Freiherr Von Schertel | Im Auftrieb steuerbarer Wassertragfluegel fuer Wasserfahrzeuge |
US3465704A (en) * | 1964-11-05 | 1969-09-09 | John Gordon Baker | Hydrofoil system for boats |
WO2015026301A1 (fr) | 2013-08-21 | 2015-02-26 | Quadrofoil, Proizvodnja In Storitve, D.O.O. | Système de commande de navire à ailes sous-marines mobiles |
-
2017
- 2017-06-12 WO PCT/FR2017/051504 patent/WO2018229356A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH307157A (de) * | 1951-04-16 | 1955-05-15 | Supramar Ag | Wasserfahrzeug mit Wassertragflügeln. |
US2696796A (en) * | 1951-07-02 | 1954-12-14 | Hydrofoil Corp | Hydrofoil craft having electrical control means |
DE1129080B (de) * | 1954-11-17 | 1962-05-03 | Hanns Freiherr Von Schertel | Im Auftrieb steuerbarer Wassertragfluegel fuer Wasserfahrzeuge |
US3465704A (en) * | 1964-11-05 | 1969-09-09 | John Gordon Baker | Hydrofoil system for boats |
WO2015026301A1 (fr) | 2013-08-21 | 2015-02-26 | Quadrofoil, Proizvodnja In Storitve, D.O.O. | Système de commande de navire à ailes sous-marines mobiles |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2591562A (en) * | 2019-11-14 | 2021-08-04 | Artemis Tech Limited | Autonomously controlled hydrofoil system |
GB2591562B (en) * | 2019-11-14 | 2022-06-08 | Artemis Tech Limited | Autonomously controlled hydrofoil system |
US11731735B2 (en) | 2019-11-14 | 2023-08-22 | Artemis Technologies Limited | Autonomously controlled hydrofoil system |
JP2022021167A (ja) * | 2020-07-21 | 2022-02-02 | 本田技研工業株式会社 | 水上移動体 |
JP7352522B2 (ja) | 2020-07-21 | 2023-09-28 | 本田技研工業株式会社 | 水上移動体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0991562B1 (fr) | Monocoque a stabilisateurs arriere pour navire a grande vitesse | |
WO2005054049A2 (fr) | Stabilisateur dynamique pour bateau, dispositif compensateur d’effort pour orienter une voilure et bateau semi-submersible | |
FR2929591A1 (fr) | Avion a controle en tangage et en lacet par un ensemble propulsif. | |
FR3052677A1 (fr) | Drone comprenant des ailes portantes. | |
FR2903655A1 (fr) | Dispositif de stabilisation dynamique d'un engin sous-marin. | |
WO2016034814A1 (fr) | Aile portante escamotable | |
CA2611765A1 (fr) | Engin multimilieux | |
FR3049575B1 (fr) | Dispositif propulsif a portance active | |
WO2018229356A1 (fr) | Navire a plans porteurs a haute stabilite | |
WO2018229351A1 (fr) | Navire à plans porteurs à haute stabilité | |
EP0084995A1 (fr) | Système de propulsion pour engins et navires à voile | |
EP3094549B1 (fr) | Navire multicoque à propulsion marine | |
WO1994023989A2 (fr) | Hydroptere a voile | |
WO2018229420A1 (fr) | Navire a plans porteurs a haute stabilite | |
WO2003082662A1 (fr) | Coque de navire a grande vitesse du type timaran | |
WO2018229355A1 (fr) | Navire a plans porteurs a haute stabilite | |
WO2018229357A1 (fr) | Navire a plans porteurs a haute stabilite | |
WO2018229354A1 (fr) | Navire a plans porteurs a haute stabilite | |
WO2018229352A1 (fr) | Navire à plans porteurs à haute stabilité | |
WO2018229350A1 (fr) | Embarcadere a accostage rapide | |
FR2978420A1 (fr) | Engin flottant rapide a propulsion eolienne | |
EP1685020B1 (fr) | Carene planante | |
FR2697794A1 (fr) | Hydravion - Voilier destiné à voler au ras des flots, propulsé par la force du vent. | |
EP4452739A1 (fr) | Hydrofoil rhomboedrique et embarcation le comportant | |
FR2655309A1 (fr) | Systeme de propulsion et de sustentation eoliennes pour engins de vitesse nautiques, terrestres ou amphibies. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17740047 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17740047 Country of ref document: EP Kind code of ref document: A1 |