WO2018228564A1 - 功率共享的方法及装置 - Google Patents

功率共享的方法及装置 Download PDF

Info

Publication number
WO2018228564A1
WO2018228564A1 PCT/CN2018/091655 CN2018091655W WO2018228564A1 WO 2018228564 A1 WO2018228564 A1 WO 2018228564A1 CN 2018091655 W CN2018091655 W CN 2018091655W WO 2018228564 A1 WO2018228564 A1 WO 2018228564A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
transmit power
power
uplink service
service
Prior art date
Application number
PCT/CN2018/091655
Other languages
English (en)
French (fr)
Inventor
徐汉青
赵亚军
李新彩
杨玲
刘娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP18818285.1A priority Critical patent/EP3641453A4/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2019569776A priority patent/JP7288403B2/ja
Priority to KR1020237007950A priority patent/KR20230035716A/ko
Priority to CA3070002A priority patent/CA3070002C/en
Priority to AU2018286309A priority patent/AU2018286309A1/en
Priority to KR1020207001164A priority patent/KR102650290B1/ko
Priority to EP21212618.9A priority patent/EP3998808A1/en
Publication of WO2018228564A1 publication Critical patent/WO2018228564A1/zh
Priority to US16/716,313 priority patent/US11272463B2/en
Priority to US17/180,376 priority patent/US11589322B2/en
Priority to AU2021258004A priority patent/AU2021258004B2/en
Priority to US17/688,571 priority patent/US11825428B2/en
Priority to JP2022131217A priority patent/JP2022166250A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, for example, to a method and apparatus for power sharing.
  • LTE Long Term Evolution
  • DC dual connectivity
  • LTE is the primary base station
  • the fourth generation mobile communication technology is the main A base station (MeNB) or a master cell group (MCG)
  • NR is a secondary base station (a secondary base station (SgNB) or a secondary cell group (SCG) of the 5th generation mobile communication technology).
  • the NR is the primary base station and the LTE is the secondary base station.
  • the uplink transmission of the user equipment (User Equipment, UE) is restricted by the maximum transmission power (Pcmax), so there is a problem of how to allocate the uplink power of LTE and NR.
  • Pcmax maximum transmission power
  • the DC, NR and NR collision avoidance (CA) of NR and NR also face the problem of how the uplink power is allocated.
  • the embodiment of the present application provides a method and an apparatus for power sharing to solve at least the problem that the UE cannot allocate power when the UE is deployed on multiple carriers in the related art.
  • a method for power sharing including: determining a transmit power of a user equipment UE on a first carrier and a transmit power on a second carrier; receiving the UE according to the a first uplink service that is sent by the transmit power on a first carrier, and a second uplink service that is sent by the UE on the second carrier according to the transmit power on the second carrier.
  • a method for power sharing including:
  • an apparatus for power sharing including: a determining module, configured to determine a transmit power of a user equipment UE on a first carrier and a transmit power on a second carrier; and a receiving module, And configured to receive, by the UE, an uplink service that is sent on the first carrier according to the transmit power on the first carrier, and receive the UE according to the transmit power on the second carrier in the second Uplink traffic sent on the carrier.
  • a device for power sharing including:
  • a power receiving module configured to receive, by the base station, a transmit power on the first carrier and a transmit power on the second carrier;
  • a sending module configured to send a first uplink service on the first carrier according to the transmit power on the first carrier, and send a second on the second carrier according to the transmit power on the second carrier Uplink business.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the method described in the above embodiments.
  • a processor configured to execute a program, wherein the program is executed to perform the method described in the above embodiments.
  • the present invention solves the problem that the UE cannot allocate power when deployed on multiple carriers, and implements the effect that the UE uses the multi-carrier to transmit the uplink service.
  • FIG. 1 is a flow chart of a method of power sharing in accordance with an embodiment of the present application
  • FIG. 2 is a structural block diagram of an apparatus for power sharing according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an NR uplink and downlink transmission carrier frequency according to an embodiment of the present application.
  • the terms "first”, “second”, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not necessarily used to describe a particular order or order.
  • FIG. 1 is a flowchart of a method for power sharing according to an embodiment of the present application. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 determining a transmit power of the user equipment UE on the first carrier and a transmit power on the second carrier;
  • Step S104 Receive a first uplink service that is sent by the UE on the first carrier according to the transmit power on the first carrier, and receive a second uplink service that is sent by the UE on the second carrier according to the transmit power on the second carrier.
  • determining, by the UE, the transmit power on the first carrier and the transmit power on the second carrier determining, by the UE, the transmit power on the first carrier and the transmit power on the second carrier; receiving the first uplink service sent by the UE on the first carrier according to the transmit power on the first carrier, and receiving The second uplink service sent by the UE on the second carrier according to the transmit power on the second carrier.
  • the execution body of the foregoing steps may be a base station, such as an access network base station, etc., but is not limited thereto.
  • the UE may be an NR UE or other UEs supporting the NR communication system.
  • the first carrier and the second carrier in this embodiment may be applied to different scenarios, and different roles may be decorated in different network environments, which may be, but are not limited to:
  • the first carrier is a dedicated carrier
  • the second carrier is a supplementary uplink frequency (SUL)
  • the dedicated carrier is an uplink carrier with a paired downlink carrier.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the uplink carrier and the downlink carrier frequency are the same, that is, the same carrier.
  • the dedicated carrier is an NR dedicated carrier
  • the supplemental uplink frequency (SUL) means that only uplink traffic exists on the carrier.
  • SUL supplemental uplink frequency
  • the LTE uplink shared carrier is used for NR transmission, and the paired downlink carrier of the LTE uplink shared carrier is not used for NR transmission.
  • the LTE uplink shared carrier is a supplementary uplink carrier.
  • the first carrier is a dedicated carrier
  • the second carrier is a shared carrier
  • the first carrier is a carrier of a first radio access technology (RAT)
  • the second carrier is a carrier of a second RAT.
  • RAT radio access technology
  • the first carrier is a carrier carrying a first service type
  • the second carrier is a carrier carrying a second service type.
  • the carrier carrying the first service type is a carrier that enhances the mobile broadband service
  • the carrier carrying the second service type is a carrier of the ultra reliable and low latency communication (URLLC).
  • URLLC ultra reliable and low latency communication
  • These two carriers can be the same carrier and send different types of services. It can also be two different carriers that send different types of services.
  • the carrier carrying the first service type uses the first parameter to send the service, for example, the subcarrier spacing is 15 kHz
  • the carrier carrying the second service type uses the second parameter to send the service, for example, the subcarrier spacing is 30 kHz.
  • the first carrier is a carrier of a primary base station or a primary cell group (MCG) in a dual connectivity DC scenario
  • the second carrier is a secondary base station or a secondary cell group (SCG) carrier in a DC scenario.
  • the first carrier is a carrier of a secondary base station or an SCG in a dual connectivity DC scenario
  • the second carrier is a carrier of a primary base station or an MCG in a DC scenario.
  • the receiving UE sends the first uplink service on the first carrier according to the transmit power on the first carrier, and the receiving UE sends the second uplink on the second carrier according to the transmit power on the second carrier.
  • the second uplink service can be, but is not limited to,:
  • the UE Receiving, by the UE, the first uplink service and the second uplink service that are respectively sent on the first carrier and the second carrier, where the first uplink service is the same as or different from the second uplink service.
  • the uplink service includes at least one of the following: an NR uplink service and an LTE uplink service. According to different network environments, it can also be 2G or 3G uplink services.
  • the receiving the first uplink service and the second uplink service that are sent by the UE on the first carrier and the second carrier respectively include one of the following:
  • the service of one carrier, the fourth type of subframe or time slot is used for the UE to send the service of the second carrier in the fourth subframe or time slot;
  • the fifth type of subframe or time slot is configured semi-statically, wherein the fifth type of subframe or time slot is used for the UE to send the service of the first carrier or the service of the second carrier.
  • the semi-static configuration includes: configuration by high-level Radio Resource Control (RRC) signaling; or, by system information configuration.
  • RRC Radio Resource Control
  • determining the transmit power of the UE on the first carrier and the transmit power on the second carrier include:
  • the total transmit power is allocated to the first carrier and the second carrier, where the value of the total transmit power is less than or equal to the value of the maximum transmit power.
  • allocating the total transmit power to the first carrier and the second carrier includes:
  • the total transmit power is allocated to the first carrier and the second carrier according to the propagation quality, where the transmit power allocated to the first carrier is negatively correlated with the propagation quality of the first carrier, and the transmission is allocated to the second carrier.
  • the power is inversely related to the propagation quality of the second carrier.
  • allocating the total transmit power to the first carrier and the second carrier includes:
  • the transmit power allocated to the first carrier is positively correlated with the priority of transmitting the traffic on the first carrier, and the transmit power allocated to the second carrier is on the second carrier.
  • the priority of sending a service is positively correlated.
  • allocating the total transmit power to the first carrier and the second carrier includes:
  • the first carrier is allocated a first minimum guaranteed power corresponding to the first carrier
  • the second carrier is allocated a second minimum guaranteed power corresponding to the second carrier.
  • determining the transmit power of the UE on the first carrier and the transmit power on the second carrier comprise at least one of the following:
  • the transmit power on the first carrier and the transmit power on the second carrier when the UE is connected are determined.
  • the method before determining the transmit power of the UE on the first carrier and the transmit power on the second carrier, the method further includes: calculating the transmit power of the UE in the uplink according to the path loss of the downlink carrier of the UE.
  • the method before determining the transmit power of the UE on the first carrier and the transmit power on the second carrier, the method further includes:
  • the UE is configured according to one of the following methods:
  • one of the following is also included:
  • PRACH physical random access channel
  • At least one of the following is notified to the UE by system information or RRC signaling: a nominal power P0 of the second carrier and a path loss compensation coefficient ⁇ .
  • a nominal power P0 of the second carrier and a path loss compensation coefficient ⁇ .
  • a device for power sharing is also provided in this embodiment, and the device is used to implement the method described in the foregoing embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of an apparatus for power sharing according to an embodiment of the present application. As shown in FIG. 2, the apparatus includes:
  • the determining module 20 is configured to determine a transmit power of the user equipment UE on the first carrier and a transmit power on the second carrier;
  • the receiving module 22 is configured to receive an uplink service that is sent by the UE on the first carrier according to the transmit power on the first carrier, and an uplink service that is sent by the UE on the second carrier according to the transmit power on the second carrier.
  • each of the foregoing modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or one or more of the foregoing The modules are located in different processors in any combination.
  • the NR is deployed in a 3.5 GHz (GHz) TDD frequency band, and the NR uplink (Up Link, UL) can also be in the FDD UL low frequency band of the LTE. Carrier shared transmission. Then for NR UEs, there may be several cases of uplink transmission:
  • the NR UE transmits the NR channel or signal only on the NR TDD band.
  • the NR UE transmits the NR channel or signal only on the LTE FDD UL shared carrier.
  • the NR UE transmits the NR channel or signal simultaneously on the NR TDD band and on the LTE FDD UL shared carrier, how to allocate power.
  • the NR UE also has the capability of supporting LTE transmission, and it also transmits an LTE channel or signal on the LTE FDD UL carrier. At this time, how the UE allocates the power of the NR UL and the LTE UL is a problem to be solved in this embodiment.
  • This embodiment provides a method and apparatus for power sharing to solve the problem of power sharing between NR and NR, and between NR and LTE, to ensure that they can effectively transmit and meet a specific power absorption rate (Specific Absorption Rate). , SAR) requirements.
  • SAR Specific Absorption Rate
  • the embodiment includes a plurality of different examples:
  • the NR can transmit with the LTE shared LTE frequency band, that is, the NR can transmit the NR service on the LTE frequency band.
  • the UL carrier frequency of the LTE is F1 (for example, located near 700 MHz)
  • the downlink (DL) carrier frequency is F2 (the FDD carrier paired with F1 is also located.
  • the dedicated carrier frequency of NR is F3 (for example, 3.5 GHz, TDD carrier).
  • the frequency band in which the dedicated carrier frequency F3 of the NR and the shared carrier frequency F1 are different is large, for example, the following characteristic differences exist:
  • Wireless channels including path loss, penetration loss, and shadow fading, are quite different;
  • TX Transmit
  • RX Radio
  • NR UEs their downlink path loss measurements are based on signals transmitted on the NR dedicated carrier frequency F3, which depends on the estimated downlink path loss.
  • This algorithm is based on the same uplink and downlink frequencies or The assumption is that there is little difference (for example, the same is 700MHz) and the path loss is not much different.
  • the residual difference can be corrected by closed loop power control. Therefore, there is no problem with the UL open loop power control on the NR dedicated carrier frequency F3.
  • the measurement result on the F3 cannot be directly applied to the uplink shared carrier F1, and the NR UE cannot know the path loss on the shared F1, and thus the accurate UL power control cannot be performed. Therefore, it is necessary to solve the path loss estimation and uplink power control problem on the shared carrier.
  • FIG. 3 is a schematic diagram of an NR uplink and downlink transmission carrier frequency according to an embodiment of the present application.
  • the high frequency band of the NR is the NR dedicated carrier frequency
  • the NR low frequency band is the LTE shared carrier frequency used by the NR, or Other NR carriers have low frequencies.
  • the problems faced by different scenarios are similar, and the path loss estimation and uplink power control problems in the low frequency band must be solved.
  • the first case is: for the initial access of the Physical Random Access Channel (PRACH), that is, how to determine the UL transmit power of the preamble on the low frequency band (for example, the LTE shared carrier frequency F1).
  • PRACH Physical Random Access Channel
  • Method 1 The initial access is limited to be performed only on an uplink carrier with a paired carrier on the downlink or an uplink carrier with the same downlink carrier frequency.
  • the transmit power of the preamble on the uplink carrier is based on the estimated path loss on the downlink carrier. That is, the path loss on the uplink carrier and the downlink carrier can be considered to be approximately or the same.
  • the uplink carrier with the paired carrier on the downlink means that the uplink carrier and the downlink carrier have a small frequency interval and the frequency characteristics are not significantly different, and both the uplink carrier and the downlink carrier can be used for NR transmission.
  • the path loss or UL power control of the uplink carrier can be obtained based on the downlink carrier.
  • the uplink and downlink carriers are all located at 700MHz or 1700MHz.
  • both the UL carrier and the DL carrier of the LTE 700 MHz are shared with the NR. Then, when the NR transmits a preamble on a 700 MHz UL carrier, the obtained path loss can be calculated based on the DL carrier.
  • LTE 700MHz only has UL carrier and NR sharing (LTE 700MHz DL carrier is not heavily shared with NR due to heavy load).
  • the preamble can only be sent on the NR dedicated carrier (3.5 GHz).
  • the UL power transmitted by the preamble is based on the estimated downlink path loss on the NR dedicated carrier.
  • Method 2 Estimating the path loss offset (PL_offset) between the high frequency band and the low frequency band according to the frequency difference between the high frequency band and the low frequency band and the antenna configuration parameters.
  • the preamble Initial Received Target Power or the preamble power deviation (DELTA_PREAMBLE) of the low frequency band is transmitted to the UE through the system information.
  • the preamble Initial Received Target Power of the low frequency band is equal to the preamble Initial Received Target Power minus the path loss offset (PL_offset).
  • the leading power deviation (DELTA_PREAMBLE) of the low band is equal to the preamble Initial Received Target Power of the high band minus the path loss offset (PL_offset).
  • the preamble Initial Received Target Power is the initial power of the preamble that the base station expects to receive, and the preamble power offset (DELTA_PREAMBLE) is related to the preamble format.
  • the path loss in the high frequency band is 110 dB
  • the path loss in the low frequency band is 100 dB.
  • Their path loss offset (PL_offset) is 10 dB.
  • the preamble Initial Received Target Power of the low frequency band is equal to the preamble Initial Received Target Power of the high frequency band minus 10 dB.
  • DELTA_PREAMBLE is similar.
  • the downlink loss, the preamble Initial Received Target Power, and the preamble power deviation (DELTA_PREAMBLE) calculated by the UE in the high frequency band can determine the uplink power of the first transmission preamble, and the subsequent transmission failure can be performed. Power ramping up.
  • Method 3 Estimating the path loss offset (PL_offset) between the high and low frequency bands according to the frequency difference between the high and low frequency bands and the antenna configuration.
  • the low frequency band frequency information (shared carrier frequency information) or the low frequency band and the high frequency band (shared carrier and dedicated carrier frequency band) combined sequence number are sent to the UE through system information.
  • the UE determines the path loss offset (PL_offset) between the high and low frequency bands according to the low frequency band frequency information (shared carrier frequency information) or the combination of the low frequency band and the high frequency band (shared carrier and dedicated carrier frequency band).
  • the downlink loss and the path loss offset (PL_offset) calculated by the UE according to the high frequency band are used to obtain the downlink path loss of the low frequency band, thereby calculating the uplink power transmitted by the transmitting preamble on the low frequency band.
  • the dedicated carrier frequency of the NR is 3.3-4.2 GHz (DL and UL), and there are four cases in which the LTE shared UL carrier frequency that can be used.
  • the path loss offset (PL_offset) is estimated in advance based on parameters such as the dedicated carrier and the shared carrier frequency difference.
  • the shared carrier and the dedicated carrier frequency band combination number are notified to the UE through system information (system information block 2, SIB2), and the UE can know the path loss offset (PL_offset) between the high and low frequency bands according to the serial number, thereby obtaining an accurate low frequency band. Road damage.
  • SIB2 system information block 2
  • the second case is a first case
  • the connected state uplink transmission how to determine the path loss or UL transmission power of the service transmission on the low frequency band (for example, the LTE shared carrier frequency F1).
  • the low frequency band for example, the LTE shared carrier frequency F1.
  • Method 1 The same as Method 3 of the initial access.
  • Method 2 Correct the path loss offset of the low frequency band relative to the high frequency band by adjusting at least one of the following: nominal power P0, partial power control path loss compensation coefficient ⁇ , and closed loop f.
  • is not limited to 8 possible values.
  • 4 bits are used to support 16 values, and the path loss offset of the low band relative to the high band is better corrected.
  • the value range of the nominal power P0 or the preamble initial target received power is expanded.
  • the path loss of 3.5 GHz with beamforming and 2 GHz with beamforming is approximately 5 dB.
  • the difference between 3.5 GHz with beamforming and 700 MHz is approximately 10 dB.
  • the value set of the partial power control (FPC) path loss compensation coefficient ⁇ is ⁇ 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ .
  • the compensation coefficient ⁇ of the high frequency band is set to 1
  • the compensation coefficient ⁇ of the low frequency band is set to 0.9, and the compensation can reach 11 dB.
  • PL is the calculated high frequency downlink loss. This value is close to the actual 700MHz path loss, and the residual difference can be corrected by closed loop power control.
  • can take more values, the accuracy of the compensation is more accurate.
  • can be equal to 0.95, 0.85, 0.75, and 0.65, and the like.
  • the nominal power P0 is further divided into two parts: the cell nominal power and the UE-specific nominal power.
  • the evolved base station (eNodeB) semi-statically sets the physical uplink shared channel nominal power (P0_PUSCH) and the physical uplink control channel nominal power (P0_PUCCH) for all UEs in the cell, and the value is broadcast by the SIB2 system message; wherein, P0_PUSCH
  • P0_PUSCH The range of values is -126 dBm (dBm) to +24 dBm (both for Resource Blocks (RBs)).
  • the value range of P0_PUCCH is -126dBm to -96dBm.
  • each UE may also have a UE-specific nominal power offset, which is delivered to the UE through dedicated RRC signaling.
  • P0_UE_PUSCH and P0_UE_PUCCH are respectively an offset of different system for system nominal power P0_PUSCH and P0_PUCCH, and the unit is dB, which takes a value between -8 and +7.
  • the range of P0 is actually large enough to cover the path loss difference existing at 3.5 GHz and 700/800/900/1.7 GHz.
  • the initial phase can be adjusted by at least one of the following: P0 and ⁇ , which can be subsequently adjusted by the closed loop f.
  • the value of the nominal power P0 may be expanded or may be taken. For example, to increase the UE specific nominal power offset, take a value between -16 and +15.
  • the nominal power P0 includes path loss offset adjustment power associated with the high and low frequency frequencies in addition to the cell nominal power and the UE-specific nominal power. That is, the nominal power P0 is the sum of these three parts.
  • the P0 and the alpha coefficient of the UE on the low frequency band according to the low frequency band frequency information (shared carrier frequency information) or the combined information of the low frequency band and the high frequency band (the shared carrier and the dedicated carrier frequency band), and The parameters are notified to the UE by system information or RRC signaling.
  • the coefficient on the low frequency band has a path loss offset between the low frequency band and the high frequency band with respect to the alpha coefficient on the high frequency band, the coefficient including at least one of the following: P0 and alpha coefficient.
  • the difference between the high and low frequency path loss is 10 dB
  • the base station configures the UE to configure the P0 of the high frequency band to be -100 dBm, and configure the UE to configure the P0 of the low frequency band to be -110 dBm.
  • the base station configures the UE to have ⁇ in the high frequency band of 1, and configures the UE to configure the low frequency band to be 0.9.
  • the base station corrects the path loss offset of the low frequency band relative to the high frequency band through the closed loop f. For example, the base station configures the UE to configure f (absolute value or accumulated value) on the high frequency band to be 10 dB, and configure the UE to configure f (absolute value or integrated value) on the low frequency band to be 0 dB.
  • Method 3 For the case where the uplink low carrier is used for NR UL transmission, the same frequency DL carrier or the downlink carrier paired with it is not used for the NR downlink service transmission, and the same frequency DL carrier or the downlink carrier matched with it can be used for NR. Downlink path loss estimate at low frequency bands.
  • an LTE UL F1 carrier can be used for NR UL transmission, and its paired DL F2 carrier (in the same frequency band as F1) is not shared with the NR.
  • F2 can be used for the transmission of specific NR downlink signals, but does not support NR data (such as the transmission of Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the NR downlink signal should not affect the transmission of LTE signals/channels on F2, and is sparse, frequency-division multiplexing (FDM) or time-division multiplexing (Time-division multiplexing, LTE signal/channel multiplexing). TDM) is sent in a way.
  • FDM frequency-division multiplexing
  • TDM time-division multiplexing
  • the NR UE transmits the NR UL on the NR dedicated carrier and the LTE shared carrier.
  • the NR UE will only transmit NR UL on one of the above carriers and will not transmit at the same time.
  • NR shares an LTE UL carrier scenario.
  • the NR UE supports NR and LTE capabilities, is capable of transmitting NR UL on NR dedicated carriers, and transmitting NR UL or LTE UL on LTE shared carriers.
  • the NR UE will only send one service on one of the above carriers and will not transmit at the same time.
  • LTE, and NR are DC scenarios
  • LTE is the primary base station (MeNB) of the fourth generation mobile communication technology/the primary base station (MgNB) of the fifth generation mobile communication technology/the primary base station or the fifth generation of the fourth generation mobile communication technology
  • MCG master cell group
  • NR is the secondary base station (SeNB) of the fourth generation mobile communication technology/the secondary base station SgNB of the fifth generation mobile communication technology/the auxiliary of the fourth generation mobile communication technology Base station or secondary cell group (SCG) of the fifth generation mobile communication technology.
  • SCG secondary cell group
  • the NR UE transmits the NR UL on the NR dedicated carrier and the LTE shared carrier.
  • the NR UE can simultaneously transmit the NR UL on the above carrier.
  • the NR UE supports NR and LTE capabilities, is capable of transmitting NR UL on NR dedicated carriers, and transmitting NR UL or LTE UL on LTE shared carriers.
  • the NR UE can simultaneously transmit multiple RAT services on the above carrier.
  • Sub-Scenario 5.1 Simultaneously transmitting NR UL on NR dedicated carrier and transmitting LTE UL on LTE shared carrier
  • Sub-Scenario 5.2 Simultaneously transmitting NR UL on NR dedicated carrier and transmitting LTE UL+NR UL on LTE shared carrier
  • Sub-Scenario 5.3 Simultaneous Transmission of LTE UL and NR UL on LTE Shared Carriers
  • LTE, and NR are DC scenarios, LTE is MeNB/MgNB/MCG, and NR is SeNB/SgNB/SCG. Or the configuration of the primary and secondary base stations is reversed.
  • the UE can simultaneously transmit LTE UL to MCG (LTE eNB) and NR UL to SCG (NR gNB).
  • Method 1 Semi-statically configuring a first type of subframe/slot and a second type of subframe/slot, the first type of subframe/slot is a service that simultaneously transmits different carriers in the same subframe/slot. Or simultaneously transmitting services of different RATs in the same subframe/slot, the second type of subframe/slot is a service that transmits a single carrier in the same subframe/slot, or transmits a single RAT in the same subframe/slot. The business is sent.
  • an LTE UL carrier scenario is shared for the NR.
  • the UE may simultaneously transmit the NR UL on the NR dedicated carrier and the shared carrier.
  • the UE will only transmit LTE and NR UL on both MCG and SCG.
  • an LTE UL carrier scenario is shared for the NR.
  • the UE will only transmit NR UL on the carrier of one of the NR dedicated carrier and the shared carrier, and will not transmit at the same time.
  • the UE will only transmit LTE or NR UL on one of the MCG and SCG and will not transmit at the same time.
  • the semi-static configuration may include: the upper layer configuring two types of subframes/slots by using RRC signaling or system information, and notifying the UE, which subframes/slots belong to the first type of subframe/slot. Which subframes/slots belong to the second type of subframe/slot.
  • the services of different carriers or different RATs simultaneously transmitting in the same subframe/slot cannot exceed the maximum of the UE. Transmit power (Pcmax). Therefore, power between different carriers of the same UE or different RATs is allocated.
  • SAP specific power absorption rate
  • each carrier corresponds to a carrier maximum transmit power (Pcmax, c).
  • the maximum transmit power (Pcmax,c) of this carrier may be equal to the maximum transmit power (Pcmax) of the UE, for example 23 dBm.
  • Pcmax maximum transmit power
  • different power control parameters can be configured for both types of subframes/slots. For example, since the second type of subframe/slot has only one type of service at the same time, the normal uplink power control algorithm can be used. Since the first type of subframe/slot has two services at the same time, the power of the two services is allocated, for example, the respective minimum power or the highest power or priority is limited. The second seed frame/slot is not so constrained.
  • the base station notifies the UE of two sets of power control parameters corresponding to the two types of subframes/slots.
  • the notification mode may be RRC signaling, system information, or Downlink Control Information (DCI) signaling.
  • DCI Downlink Control Information
  • the UE determines which type of subframe/slot is any subframe/slot, and can implicitly notify or display the notification through uplink scheduling, or through DCI signaling, such as group sharing DCI (group common)
  • DCI group sharing DCI
  • PDCCH Physical Downlink Control Channel
  • Method 2 semi-statically configuring a third type of subframe/slot and a fourth type of subframe/slot, and the third type of subframe/slot is for transmitting only the first carrier in the subframe/slot ( a service such as an NR dedicated carrier, or a service of a first RAT (such as NR), in a fourth type of subframe/slot is a service that transmits only a second carrier (such as a shared carrier) in the subframe/slot, Or the service of the second RAT (such as LTE).
  • a service such as an NR dedicated carrier, or a service of a first RAT (such as NR)
  • a fourth type of subframe/slot is a service that transmits only a second carrier (such as a shared carrier) in the subframe/slot, Or the service of the second RAT (such as LTE).
  • the semi-static configuration may include: the upper layer configuring two types of subframes/time slots by using RRC signaling or system information. And notify the UE, which subframes/slots belong to the third type of subframe/slot, and which subframes/slots belong to the fourth type of subframe/slot.
  • Method 3 The base station is semi-statically configured with a fifth type of subframe/slot, which is fixed for transmitting one carrier or one RAT type of service.
  • the semi-static configuration may include: the upper layer configures which subframes/slots belong to the fifth type of subframe/slot by using RRC signaling or system information, and notifies the UE.
  • the NR shares an LTE UL carrier scenario.
  • the NR UE transmits the NR UL on the NR dedicated carrier and the LTE shared carrier.
  • the UE transmit power can be shared between two UL carrier frequencies.
  • Each carrier of each UE may be configured with a carrier-frequency-specific carrier maximum transmit power (Pcmax,c), where c is represented as a shared carrier or an NR dedicated carrier.
  • Pcmax,c carrier-frequency-specific carrier maximum transmit power
  • Solution 1 Two Pcmax, the sum of c needs to be equal to Pcmax, such as 23dBm.
  • the two maximum powers are allocated semi-statically, such as: half-divided; according to the priority, the maximum transmit power with higher priority is larger, such as 40% and 60%. For example, if the MCG has a high priority, the Pcmax and c of the MCG are 60%.
  • Each carrier is configured with a different scaling factor according to the priority, for example, the maximum transmission power of 200 mW (23 dBm) is reached.
  • the scaling factor of the shared carrier is 0.4, and the scaling factor of the NR dedicated carrier is 0.6.
  • Solution 3 The power allocation priority is satisfied to be transmitted on a carrier with a higher priority or a better channel condition. If there is any remaining, it is used to send on other carriers. or,
  • the power allocation priority is satisfied to be transmitted on a carrier with a high priority or a poor channel condition. If there is any remaining, it is used to send on other carriers.
  • the shared carrier has a higher priority, 23 dBm first satisfies the shared carrier, and if there is remaining, it is reused for the dedicated carrier.
  • the shared carrier channel condition is good.
  • the UE is in a region with a low frequency coverage of the dedicated carrier. If the power is used for a dedicated carrier, the power is required to be large, and the performance is still poor, so it is not as good for the shared carrier.
  • the shared carrier channel conditions are better, and the dedicated carrier channel conditions are relatively poor.
  • the dedicated carrier channel conditions are relatively poor. For example, in the range of 3.5 GHz coverage, more power is allocated to the dedicated carrier, which ensures that UL performance can be guaranteed on both carriers.
  • LTE and NR are DC scenarios, LTE is MeNB/MgNB/MCG, and NR is SeNB/SgNB/SCG. Or the configuration of the primary and secondary base stations is reversed.
  • Method 1 Only configure the maximum uplink power of the UE to exceed the maximum transmit power Pcmax of the UE. That is, the total transmission power of UE UL LTE and NR cannot exceed Pcmax.
  • the UE reports two power headrooms (PHRs) to two gNBs or a cell group (CG).
  • PLRs power headrooms
  • CG cell group
  • Method 2 Configure UE_LTE UL to not exceed LTE maximum transmit power (Pcmax_lte), and configure UE NR UL to not exceed NR maximum transmit power (Pcmax_nr).
  • Pcmax_lte LTE maximum transmit power
  • Pcmax_nr NR maximum transmit power
  • the sum of Pcmax_lte and Pcmax_nr needs to be smaller than the maximum transmission power Pcmax of the UE.
  • the UE reports two PHRs to two gNBs or CGs.
  • Method 3 Configure the minimum guaranteed power corresponding to each CG of the LTE MCG and the NR SCG. The remaining power is allocated according to the priority of the transmission signal/channel or the timing between the CGs.
  • enhanced mobile broadband eMBB
  • ultra reliable and low latency communication URLLC
  • URLLC ultra reliable and low latency communication
  • FDM Frequency-Division Multiplexing
  • Method 1 The base station configures the maximum transmission power for the eMBB and the URLLC, and the sum of the maximum transmission power does not exceed the maximum transmission power of the UE.
  • Method 2 The base station configures the minimum guaranteed transmission power for the eMBB and the URLLC, and the sum of the minimum guaranteed transmission power does not exceed the maximum transmission power of the UE.
  • the remaining power is preferentially used for the URLLC, or the remaining power is preferentially used for a high priority transmission signal type (such as a control channel, etc.), or preferentially for transmitting an earlier service type.
  • Method 3 The UE preferentially uses power for sending the URLLC. If there is remaining power, it is used to send eMBB. If there is no remaining power, eMBB will not be sent.
  • Method 4 The UE reports the power condition or power headroom (PH) for the URLLC transmission to the base station.
  • PH power headroom
  • LTE and NR are DC scenarios, LTE is MeNB/MgNB/MCG, and NR is SeNB/SgNB/SCG. Or the configuration of the primary base station and the secondary base station are reversed.
  • the UE calculates the power headroom PH.
  • the PH may be the PH of the LTE carrier or the NR carrier, or the PH relative to the maximum transmit power of the UE.
  • the reported PH can be reported to the MCG and/or SCG through the PUCCH or MAC CE.
  • the LTE DC has two uplink power allocation modes: power control mode 1, PCM1 is generally used for synchronous DC, and UE is allocated for each CG. The minimum guaranteed power, the remaining power is shared by the MCG and SCG, depending on the type of information sent.
  • Power control mode 2 (PCM2) is generally used for asynchronous DC, and the UE also allocates a minimum guaranteed power for each CG, and the remaining power is used by the CG whose transmission timing is early.
  • NR is only used for eMBB UEs that use the same parameter numerology (eg, subcarrier spacing, cyclic prefix, etc.).
  • PCM1 or PCM2 of LTE can be reused.
  • NR has more scenarios and problems, so it is necessary to optimize the power control mechanism of NR carrier aggregation (CA)/dual connectivity (DC).
  • CA NR carrier aggregation
  • DC dual connectivity
  • URLLC data For the UE, if UL eMBB data is being transmitted, UL URLLC data arrives at this time. URLLC data needs to be sent immediately to meet the latency requirements of the URLLC.
  • URLLC should have a higher priority and should be allocated enough power. That is, the power requirements of the URLLC should be met. Assume that the power of the eMBB is P_embb and the power of the URLLC is P_urllc.
  • P_urllc>Pcmax-P_embb that is, the power requirement of the URLLC is greater than the remaining power of the UE. Then, on the Orthogonal Frequency Division Multiplexing (OFDM) symbol that is simultaneously transmitted by eMBB and URLLC, P_embb should be lowered. The reduced power is used for the transmission of the URLLC. By performing this operation, the transmission power in one subframe or time slot is not kept constant. In order to achieve the above power allocation, two situations need to be considered:
  • the gNB may send an explicit priority indication to the UE to re-allocate the power of the eMBB before the URLLC is sent.
  • the symbol that needs to be re-allocated eMBB power may be the URLLC to be transmitted. That is, two-step power control can be used.
  • Explicit priority indications can be sent via DCI.
  • the gNB detects the UL URLLC signal sent by the UE.
  • the gNB will assume that the UE reassigns the power of the eMBB based on a predefined principle.
  • the pre-defined principle is the above-mentioned priority guarantee URLLC power principle.
  • Different carriers on the NR's CA/DC can operate in different duplex modes.
  • the minimum guaranteed power is still reserved for the uplink transmission according to the above. If a slot or subframe of a CG is changed from UL to DL/idle/reserved, the guaranteed power allocated to the CG can be given or reassigned to There is a CG transmitted by the UL service on this time slot.
  • the guaranteed power of each CG (generally the minimum guaranteed power) can be fixed, or it can be lent to the other party when not in use. At this time, the minimum guaranteed power of the user is actually 0, and the minimum guaranteed power of the other party is the sum of the minimum guaranteed power of the previous party plus the minimum guaranteed power borrowed.
  • the gNB may notify the UE of the link direction information of the slot/subframe or the information of the link direction change to the UE.
  • the way to notify can be notified by DCI.
  • DC is primarily used for mobility and coverage enhancement. If the guaranteed power (or minimum guaranteed power) is configured for each CG, the power of each CG or each gNB will be equal to or less than the maximum transmit power Pcmax, and power limitation will cause an uplink coverage problem. In order to solve the power limitation problem, it is necessary to consider how to use the reserved guaranteed power.
  • the scheduling between different CGs and the HARQ (Hybrid automatic repeat request) mechanism are independent of each other because the connection between MgNB and SgNB is a non-ideal backhaul (backward back) connection. There is no dynamic interaction scheduling information between them.
  • the UE has mastered all the information from the MgNB and the SgNB, and the two pieces of information can be shared in the internal implementation of the UE. Therefore, from the perspective of the UE, the DC can use more dynamic power allocation or power sharing.
  • Method 1 Report more dynamic PHR (Power headroom) status or other information through UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • Method 2 Reserve some slots/subframes for one of the gNB or CG semi-static, these slots/subframes can be used for UL transmission of the gNB or CG, and other gNBs or CGs in these slots/subframes Need to stop UL transmission.
  • two types of slots/subframes are defined, a first type of slot/subframe for LTE and a second type of slot/subframe for NR.
  • the NR cannot use the first type of time slot/subframe, but the NR can be used when LTE does not use it.
  • LTE cannot use the second type of slot/subframe, but LTE can be used when NR does not use it.
  • the above method can be used in conjunction with other power control schemes such as LTE DC PCM1/PCM2 (power scaling or minimum guaranteed power).
  • LTE DC PCM1/PCM2 power scaling or minimum guaranteed power
  • the UCI information in Method 1 and Method 2 includes at least one of the following:
  • the i-th component carrier CCi in the CG is switched from UL to DL or idle in the slot/subframe/symbol.
  • a wider bandwidth contains or is divided into many parts of bandwidth, and the relationship between some of the bandwidths is similar to intra-band CA.
  • Most of the power control schemes of NR CA can be used for the aggregation of partial bandwidth.
  • the main differences in partial bandwidth and carrier aggregation within the band and the corresponding solutions include:
  • a part of the bandwidth can only be assumed to be a synchronization scenario, that is, a plurality of partial bandwidths between a wider bandwidth belong to the same Timing alignment group (TAG).
  • TAG Timing alignment group
  • a portion of the bandwidth between a wider bandwidth uses a common path loss value or reference signal received power (RSRP).
  • the path loss value or RSRP is used for partial bandwidth for UL power control.
  • the common path loss value or RSRP can be derived based on a partial bandwidth measurement that is defined or referenced. Transmitting a channel state information-reference signal (CSI-RS)/synchronization signal (SS) on the part of the bandwidth for radio resource management (RRM) measurement, such as RSRP measurement .
  • CSI-RS channel state information-reference signal
  • SS synchronization signal
  • RRM radio resource management
  • the CSI-RS or SS is separately transmitted over all or a part of the bandwidth on a wider bandwidth for RRM measurement. That is, RRM measurement is performed independently on all or part of the bandwidth, and uplink power control is performed using the RSRP or path loss value measured by itself.
  • resource blocks (RBs) of some bandwidth edges are allocated lower power.
  • Example 11 Frequency band combination of low frequency (LF) and high frequency (HF).
  • LF low frequency
  • HF high frequency
  • the two carriers use the TDM method when performing CA/DC operations.
  • the two carriers use the TDM method when performing CA/DC operations.
  • other examples such as enhanced coverage.
  • Example 12 supplementary uplink frequency (SUL)
  • the main problem is that the characteristics of the SUL frequency and the dedicated carrier frequency are quite different.
  • One method is to configure a downlink slot/subframe that is located on the downlink carrier of the SUL carrier or SUL pair.
  • the CSI-RS/SS is transmitted on such downlink time slots/subframes for the UE to perform RSRP or path loss measurement.
  • the measurement signal can be a periodic or aperiodic transmission. In order to reduce overhead, the period can be configured as a long period, or a long time to trigger a transmission and measurement.
  • Two-step power control can be used to dynamically redistribute power, including:
  • Step 1 Power allocation according to the existing UL power control algorithm. For example, an initial power control command is sent to the UE along with the scheduling grant.
  • Step 2 Redistribute power if needed.
  • the eMBB transmission power can be dynamically reduced even to 0 for the URLLC transmission of the UE or the interference to the neighboring URLLC service.
  • the DCI in the second step includes at least one of the following information:
  • the i-th component carrier CCi in the CG is switched from UL to DL or idle in the slot/subframe/symbol.
  • the gNB detects the UL URLLC signal sent by the UE.
  • the gNB will assume that the UE reassigns the power of the eMBB based on predefined rules.
  • the predefined rule may be a priority guarantee of URLLC power, or power scaling level.
  • NR and LTE DC are a special scenario for DC between NRs, that is, coordination between different Radio Access Technologies (RATs).
  • RATs Radio Access Technologies
  • LTE and NR are independent of each other
  • power sharing between LTE and NR DC can be semi-statically configured.
  • the maximum transmission power is separately configured for each CG (including at least one of the following: LTE CG and NR CG).
  • power sharing can be performed between component carriers within each CG.
  • the maximum power of different CGs can be fixed or dynamically changed.
  • the maximum power of the low priority CG is the margin after the sum of the other CG maximum powers.
  • Example 15 Two types of Modulation and Coding scheme (MCS) power compensation
  • the first type of coded modulation scheme variable (Delta_MCS1): no power redistribution is performed. For example, normal transmission, according to the initial power control.
  • the second type of coded modulation scheme variable (Delta_MCS2): power redistribution. For example, when the eMBB part of the resource is used for the URLLC, power redistribution is performed, and the resource not used by the URLLC increases the value of the Delta_MCS2.
  • Embodiments of the present application also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor performs determining, according to the stored program code in the storage medium, the transmit power of the user equipment UE on the first carrier and the transmit power on the second carrier;
  • the processor performs, according to the stored program code in the storage medium, receiving an uplink service that is sent by the UE according to the transmit power on the first carrier, and receiving the UE.
  • each of the above-described modules or steps of the present application can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed over a network of multiple computing devices. on. In an embodiment, they may be implemented in program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different than the order herein.
  • the steps shown or described are performed, or they are separately fabricated into one or more integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种功率共享的方法包括:确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的第一上行业务,以及接收所述UE根据所述在第二载波上的发送功率在所述第二载波上发送的第二上行业务。还公开了一种功率共享的装置、一种存储介质以及一种处理器。

Description

功率共享的方法及装置 技术领域
本公开涉及通信技术领域,例如,涉及一种功率共享的方法及装置。
背景技术
在过去的几十年中,移动通信经历了从语音业务到高速率宽带数据业务的飞跃发展。而随着移动互联网和物联网等新型业务的进一步发展,人们对移动网络的新需求将会进一步增加。一方面,预计未来移动网络数据流量将会爆发式增长。另一方面,海量的设备连接和多样化的业务和应用是未来无线通信系统的重要特征之一,以人为中心的通信与以机器为中心的通信将会共存发展。基于未来移动通信多样化的业务和应用需求,无线通信系统要满足多样化的要求,如包括在吞吐量、时延、可靠性、链接密度、成本、能耗、复杂性以及覆盖等多方面的要求。新一代移动通信系统5G新无线接入技术(New Radio,NR)应运而生。
相关技术中,对于5G NR非独立部署场景,例如NR和长期演进(Long Term Evolution,LTE)采用双链接(Dual Connectivity,DC)方式进行部署,LTE为主基站(第四代移动通信技术的主基站(MeNB)或主小区组(Master cell group,MCG)),NR为辅基站(第5代移动通信技术的辅基站(SgNB)或辅小区组(Secondary cell group,SCG))。或者,NR为主基站,LTE为辅基站。用户设备(User Equipment,UE)的上行发送受到最大发送功率(Pcmax)的制约,因此存在如何分配LTE和NR的上行功率问题。
对于5G NR独立部署场景,NR与NR的DC、NR与NR的冲突避免(Collision Avoidance,CA)等等也面临着上行功率如何分配问题。
发明内容
本申请实施例提供了一种功率共享的方法及装置,以至少解决相关技术中UE部署在多载波上时不能分配功率的问题。
根据本申请的一个实施例,提供了一种功率共享的方法,包括:确定用户 设备UE在第一载波上的发送功率和在第二载波上的发送功率;接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的第一上行业务,以及接收所述UE根据所述在第二载波上的发送功率在所述第二载波上发送的第二上行业务。
根据本申请的另一个实施例,还提供了一种功率共享的方法,包括:
接收基站确定的在第一载波上的发送功率和在第二载波上的发送功率;
根据所述在第一载波上的发送功率在所述第一载波上发送第一上行业务,根据所述在第二载波上的发送功率在所述第二载波上发送第二上行业务。
根据本申请的又一个实施例,提供了一种功率共享的装置,包括:确定模块,设置为确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;接收模块,设置为接受所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的上行业务,以及接收所述UE根据所述在第二载波上的发送功率在所述第二载波上发送的上行业务。
根据本申请的又一个实施例,还提供了一种功率共享的装置,包括:
功率接收模块,设置为接收基站确定的在第一载波上的发送功率和在第二载波上的发送功率;
发送模块,设置为根据所述在第一载波上的发送功率在所述第一载波上发送第一上行业务,根据所述在第二载波上的发送功率在所述第二载波上发送第二上行业务。
根据本申请的再一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行上述实施例所述的方法的程序代码。
根据本申请的还一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行上述实施例所述的方法。
本申请解决了UE部署在多载波上时不能分配功率的问题,实现了UE使用多载波传输上行业务的效果。
附图说明
图1是根据本申请实施例的功率共享的方法的流程图;
图2是根据本申请实施例的功率共享的装置的结构框图;
图3是本申请实施例NR上行和下行发送载波频率的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在一实施例中,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种功率共享的方法,图1是根据本申请实施例的功率共享的方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;
步骤S104,接收UE根据在第一载波上的发送功率在第一载波上发送的第一上行业务,以及接收UE根据在第二载波上的发送功率在第二载波上发送的第二上行业务。
通过上述步骤,确定UE的在第一载波上的发送功率和在第二载波上的发送功率;接收UE根据在第一载波上的发送功率在第一载波上发送的第一上行业务,以及接收UE根据在第二载波上的发送功率在第二载波上发送的第二上行业务。解决了UE部署在多载波上时不能分配功率的问题,实现了UE使用多载波传输上行业务的效果。
一实施例中,上述步骤的执行主体可以为基站,如接入网基站等,但不限于此。UE可以是NR UE,也可以是其他支持NR通信制式的UE。
一实施例中,本实施例中的第一载波和第二载波可以适用不同的场景,在不同的网络环境下分饰不同的角色,可以但不限于为:
第一载波为专用载波,第二载波为补充上行载波(supplementary uplink frequency,SUL);专用载波是指有配对的下行载波的上行载波。对于频分双工方式(Frequency Division Duplex,FDD)载波来说,上行载波和下行载波频率 不相同,但是频率相近,频率特性也相近。对于时分双工(Time Division Duplex,TDD)载波,上行载波和下行载波频率相同,也即为相同的载波。
例如专用载波为NR专用载波,补充上行载波(supplementary uplink frequency,SUL)是指在该载波上只存在上行业务。实际上发送时,没有与补充上行载波频率相同的载波或频率相近的下行载波用于下行发送。例如,LTE上行共享载波用于NR发送,LTE上行共享载波的配对的下行载波不会用于NR发送。对NR来说,该LTE上行共享载波就是补充上行载波。
所述第一载波为专用载波,所述第二载波为共享载波。
第一载波为第一无线接入技术(Radio Access Technology,RAT)的载波,第二载波为第二RAT的载波。
第一载波为承载第一业务类型的载波,第二载波为承载第二业务类型的载波。一实施例中,承载第一业务类型的载波为增强移动宽带业务的载波,承载第二业务类型的载波为低时延高可靠通信(ultra reliable and low latency communication,URLLC)的载波。这两个载波可以为同一个载波,发送不同类型业务。也可以是两个不同的载波,分别发送不同类型业务。或者承载第一业务类型的载波采用第一种参数发送业务,例如子载波间隔为15kHz,承载第二业务类型的载波采用第二种参数发送业务,例如子载波间隔为30kHz。
在一实施例中,第一载波为双连接DC场景下主基站或主小区组(MCG)的载波,第二载波为DC场景下的辅基站或辅小区组(SCG)的载波。
在一实施例中,第一载波为双连接DC场景下辅基站或SCG的载波,第二载波为DC场景下主基站或MCG的载波。
在一实施例中,所述接收UE根据在第一载波上的发送功率在第一载波上发送的第一上行业务,以及接收UE根据在第二载波上的发送功率在第二载波上发送的第二上行业务可以但不限于为:
接收UE于第一时间在第一载波上发送的所述第一上行业务,并接收UE于第二时间在第二载波上发送的所述第二上行业务,其中,所述第一上行业务与所述第二上行业务相同;
接收UE于第一时间在第一载波上发送的所述第一上行业务,并接收UE于 第二时间在第二载波上发送的所述第二上行业务,其中,所述第一上行业务与所述第二上行业务不同;
接收所述UE同时在第一载波和第二载波上分别发送的所述第一上行业务和所述第二上行业务,其中,所述第一上行业务与所述第二上行业务相同或不同。
在一实施例中,上行业务包括以下至少之一:NR上行业务和LTE上行业务。根据不同的网络环境也可以是2G或3G的上行业务。
在一实施例中,接收所述UE同时在所述第一载波和所述第二载波上分别发送的所述第一上行业务和所述第二上行业务包括以下之一:
接收所述UE同时在NR专用载波和LTE共享载波上分别发送的NR上行业务和LTE上行业务;
接收所述UE同时在NR专用载波上发送的NR上行业务和在LTE共享载波上发送的LTE上行业务和NR上行业务。
在一实施例中,包括以下之一:
半静态的配置第一类型的子帧或时隙,或者第二类型的子帧或时隙,其中,所述第一类型的子帧或时隙用于所述UE在同一个子帧或时隙中同时发送以下之一:不同载波的业务和不同RAT的业务;所述第二类型的子帧或时隙用于UE在同一个子帧或时隙中发送以下之一:单一载波的业务和单一RAT的业务;
半静态的配置第三类型的子帧或时隙,或者第四类型的子帧或时隙,其中,第三类型的子帧或时隙用于UE在第三子帧或时隙中发送第一载波的业务,第四类型的子帧或时隙用于UE在第四子帧或时隙中发送第二载波的业务;
半静态的配置第五类型的子帧或时隙,其中,第五类型的子帧或时隙用于UE固定发送第一载波的业务或第二载波的业务。
在一实施例中,半静态的配置包括:通过高层无线资源控制(Radio Resource Control,RRC)信令配置;或,通过系统信息配置。
在一实施例中,确定UE在第一载波上的发送功率和在第二载波上的发送功率包括:
S11,确定UE的最大发送功率;
S12,将总发送功率分配给第一载波和第二载波,其中,所述总发送功率的值小于等于所述最大发送功率的值。
一实施例中,将总发送功率分配给第一载波和第二载波包括:
S21,比较第一载波和第二载波的传播质量;
S22,根据传播质量,将总发送功率分配给第一载波和第二载波,其中,分配给第一载波的发送功率与所述第一载波的传播质量成负相关,分配给第二载波的发送功率与所述第二载波的传播质量成负相关。
在一实施例中,将总发送功率分配给第一载波和第二载波包括:
S31,确定UE在第一载波上发送上行业务和第二载波上所发送上行业务的优先级;
S32,按照优先级,将总发送功率分配给第一载波和第二载波。
在一实施例中,分配给所述第一载波的发送功率与在所述第一载波上发送业务的优先级成正相关,分配给所述第二载波的发送功率与在所述第二载波上发送业务的优先级成正相关。
在一实施例中,将总发送功率分配给第一载波和第二载波包括:
S41,为第一载波分配与所述第一载波对应的第一最小保证功率,以及为第二载波分配与所述第二载波对应的第二最小保证功率;
S42,根据发送业务的优先级或载波的传播质量,分配总发送功率的剩余功率。
在一实施例中,确定UE在第一载波上的发送功率和在第二载波上的发送功率包括以下至少之一:
确定UE接入基站时在第一载波上的发送功率和在第二载波上的发送功率;
确定UE连接态时的在第一载波上的发送功率和在第二载波上的发送功率。
在一实施例中,在确定UE在第一载波上的发送功率和在第二载波上的发送功率之前,还包括:根据UE的下行载波的路损计算得到UE在上行的发送功率。
在一实施例中,在确定UE在第一载波上的发送功率和在第二载波上的发送功率之前,还包括:
按照如下方法之一配置所述UE:
配置所述UE的最大发送功率,其中,所述UE在所述第一载波上的发送功率和在所述第二载波上的发送功率的和小于或等于所述最大发送功率;
配置所述UE在第一载波上的最大发送功率以及所述UE在第二载波上的最大发送功率;
配置所述UE在第一载波上的第一最小保证功率以及所述UE在第二载波上的第二最小保证功率。
在一实施例中,在确定UE在第一载波上的发送功率和在第二载波上的发送功率之前,还包括以下之一:
限定物理随机接入信道PRACH在下行有配对载波的上行载波上发送或者在与下行载波频率相同的上行载波上发送;
通过系统信息将在所述第二载波上配置的前导初始目标接收功率或前导功率偏差发送给所述UE,或者通过RRC信令将在所述第二载波上配置的前导初始目标接收功率或前导功率偏差发送给所述UE;
将第二载波频率信息发送给所述UE,以使所述UE根据所述第二载波频率信息来确定所述第一载波和所述第二载波之间的路损偏置,或者将第一载波和第二载波组合序号发送给所述UE,以使所述UE根据所述第一载波和第二载波组合序号来确定所述第一载波和所述第二载波之间的路损偏置;
通过系统信息或RRC信令将以下至少之一通知给所述UE:所述第二载波的标称功率P0和路损补偿系数α。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等) 执行本申请每个实施例所述的方法。
实施例2
在本实施例中还提供了一种功率共享的装置,该装置用于实现上述实施例所述的方法,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本申请实施例的功率共享的装置的结构框图,如图2所示,该装置包括:
确定模块20,设置为确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;
接收模块22,设置为接收UE根据在第一载波上的发送功率在第一载波上发送的上行业务,以及接收UE根据在第二载波上的发送功率,在第二载波上发送的上行业务。
在一实施例中,上述每个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述一个或多个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例针对LTE和NR共存场景,存在功率共享的问题,例如,NR部署在3.5吉赫(GHz)的TDD频段上,同时NR上行(Up Link,UL)还可以在LTE的FDD UL低频段载波共享发送。那么对于NR UE,上行发送可能存在几种情况:
a.NR UE只在NR TDD频段上发送NR信道或信号。
b.NR UE只在LTE FDD UL共享载波上发送NR信道或信号。
c.NR UE在NR TDD频段上和在LTE FDD UL共享载波上同时发送NR信道或信号,如何分配功率。
d.NR UE还具备支持LTE发送的能力,它还会在LTE FDD UL载波上发送LTE信道或信号,这时候UE如何分配NR UL和LTE UL的功率是本实施例所 要解决的问题。
本实施例提供了一种功率共享的方法及装置,来解决NR和NR之间、以及NR和LTE之间的功率共享问题,确保它们能够有效发送的同时,满足特定功率吸收率(Specific Absorption Rate,SAR)的要求。
根据不同的实施步骤或场景,本实施例包括多个不同的实例:
实例一
NR可以和LTE共享LTE的频段进行发送,也即NR可以在LTE频段上发送NR业务。其中,对于NR和LTE共享LTE UL载波的场景,例如LTE的UL载波频率为F1(例如位于700MHz附近),下行(Down Link,DL)载波频率为F2(与F1成对的FDD载波,同样位于700MHz上),NR的专用载波频率为F3(例如3.5GHz,TDD载波)。但是NR的专用载波频率F3和共享载波频率F1所处频段差异较大,例如存在如下的特性差异:
无线信道,包括路径损失、穿透损失、以及阴影衰落等差异较大;
发射(TX)天线配置/接收(RX)天线配置,包括天线的数量、天线增益等差异较大;
波束赋型(Beamforming)技术差异。
对于NR UE来说,它们的下行路损测量是基于在NR专用载波频率F3上发送的信号进行的,UL开环功控依赖于所估计的下行路损,这个算法基于上行和下行频率相同或相差不大(例如同为700MHz)、路损相差不大的假设。残余的差异可以通过闭环功控来纠正。因此,NR专用载波频率F3上的UL开环功控没有问题。但由于上述高频和低频段特性差异,F3上测量结果不能直接应用于上行共享载波F1,则NR UE无法知道共享F1上的路损,也就不能进行准确的UL功率控制。因此,要解决共享载波上的路损估计及上行功率控制问题。
同一个无线接入技术(Radio Access Technology,RAT)例如NR采取高频和低频发送时同样存在上述路损估计及UL功率控制问题。例如,如图3所示,图3是本申请实施例NR上行和下行发送载波频率的示意图,NR的高频段为上述NR专用载波频率,NR低频段为上述NR使用的LTE共享载波频率、或其他NR载波低频率。不同场景面临的问题类似,都要解决低频段上的路损估计及上 行功率控制问题。
具体方案:
第一种情况:对于初始接入物理随机接入信道(Physical Random Access Channel,PRACH)的发送,也即如何确定低频段(例如LTE共享载波频率F1)上前导(preamble)的UL发送功率。
方法一、限定初始接入只能在下行有配对载波的上行载波、或者与下行载波频率相同的上行载波上进行。上行载波上前导(preamble)的发送功率基于下行载波上估计得到的路损。也即,上行载波和下行载波上的路损可以认为近似或相同。
下行有配对载波的上行载波是指上行载波和下行载波频率间隔不大、频率特性差异不大,上行载波和下行载波都可用于NR发送。上行载波的路损或UL功控可以基于下行载波得到。例如上下行载波都位于700MHz或1700MHz。
例如,LTE 700MHz的UL载波和DL载波都与NR共享。则NR在700MHz的UL载波上发送前导(preamble)时,可以基于DL载波计算得到的路损。
又如,LTE 700MHz只有UL载波和NR共享(LTE 700MHz DL载波由于负载重,不与NR共享)。这个时候前导(preamble)只能在NR专用载波上(3.5GHz)发送。前导(preamble)发送的UL功率基于NR专用载波上估计得到的下行路损。
方法二、根据高频段和低频段之间的频率差异和天线配置等参数估计出高频段和低频段之间的路损偏置(PL_offset)。通过系统信息将低频段的前导初始目标接收功率(preamble Initial Received Target Power)或前导功率偏差(DELTA_PREAMBLE)发送给UE。其中,低频段的前导初始目标接收功率(preamble Initial Received Target Power)等于高频段的前导初始目标接收功率(preamble Initial Received Target Power)减去路损偏置(PL_offset)。低频段的前导功率偏差(DELTA_PREAMBLE)等于高频段的前导初始目标接收功率(preamble Initial Received Target Power)减去路损偏置(PL_offset)。
其中,前导初始目标接收功率(preamble Initial Received Target Power)是基站期待接收到的前导(preamble)的初始功率,前导功率偏差 (DELTA_PREAMBLE)与前导格式(preamble format)相关。
例如,高频段的路损为110dB,低频段的路损为100dB。它们的路损偏置(PL_offset)为10dB。则低频段的前导初始目标接收功率(preamble Initial Received Target Power)等于高频段的前导初始目标接收功率(preamble Initial Received Target Power)减去10dB。DELTA_PREAMBLE类似。
UE根据高频段计算得到的下行路损、低频段的前导初始目标接收功率(preamble Initial Received Target Power)、以及前导功率偏差(DELTA_PREAMBLE)就可以确定最开始发送preamble的上行功率,后续发送失败可以执行功率爬坡(power ramping up)。
方法三、根据高低频段之间的频率差异、天线配置等参数估计出高低频段之间的路损偏置(PL_offset)。将低频段频率信息(共享载波频率信息)、或低频段和高频段(共享载波和专用载波频段)组合序号通过系统信息发送给UE。UE根据低频段频率信息(共享载波频率信息)、或低频段和高频段(共享载波和专用载波频段)组合序号来确定高低频段之间的路损偏置(PL_offset)。
UE根据高频段计算得到的下行路损和路损偏置(PL_offset),得到低频段的下行路损,以此计算发送前导(preamble)在低频段上发送的上行功率。
例如,如表1,NR的专用载波频率为3.3-4.2GHz(DL与UL),可以使用的LTE共享UL载波频率有四种情况。提前根据专用载波和共享载波频率差异等参数估计出路损偏置(PL_offset)。将共享载波和专用载波频段组合序号通过系统信息(system information block2,SIB2)通知给UE,UE根据序号即可知道高低频段之间的路损偏置(PL_offset),从而得到准确的低频段的下行路损。
表1
Figure PCTCN2018091655-appb-000001
Figure PCTCN2018091655-appb-000002
第二种情况:
对于连接态上行发送,如何确定低频段(例如LTE共享载波频率F1)上的业务发送的路损或UL发送功率。
方法一:与初始接入的方法三相同。
方法二:通过调整以下至少之一:标称功率P0、部分功率控制路损补偿系数α、闭环f来修正低频段相对于高频段的路损偏置。
为支持高低频路损差异的调整,扩大以下至少之一:标称功率P0、补偿系数α、闭环f的取值可能或取值范围。例如α不限于8个可能取值。例如通过4bit来支持16种取值可能,更好的修正低频段相对于高频段的路损偏置。
在一实施例中,为支持第一载波和第二载波路损差异的调整,扩大标称功率P0或前导初始目标接收功率的取值范围。
例如,参考仿真结果,
3.5GHz的波束赋形(3.5GHz with beamforming)与2GHz的波束赋形(2GHz with beamforming)的路损差异近似为5dB。
3.5GHz with beamforming与700MHz的路损差异近似为10dB。
假设高频段(3.5GHz)的路损是110dB。
部分功率控制(Fractional power control,FPC)路损补偿系数α的取值集合{0,0.4,0.5,0.6,0.7,0.8,0.9,1}。
如果配置高频段的补偿系数α为1,配置低频段的补偿系数α为0.9,能够补偿的就可以达到11dB。在UE发射端,上行发送功率对高频段的路损补偿实际为α*PL=1*110dB=110dB。上行发送功率对低频段的路损补偿实际为α *PL=0.9*110dB=99dB。其中,PL为计算得到的高频段下行损。这个值与实际的700MHz的路损比较接近,残余的差异可以通过闭环功控来纠正。
当补偿系数α可以取更多值时,补偿的精度更加准确。例如α可以等于0.95、0.85、0.75、以及0.65等等。
标称功率P0又分为小区标称功率和UE特定的标称功率两部分。演进型基站(eNodeB)为小区内的所有UE半静态地设定物理上行共享信道标称功率(P0_PUSCH)和物理上行控制信道标称功率(P0_PUCCH),该值通过SIB2系统消息广播;其中,P0_PUSCH的取值范围是-126分贝毫瓦(dBm)到+24dBm(均指每资源块(Resource Block,RB)而言)。P0_PUCCH的取值范围是-126dBm到-96dBm。
除此之外,每个UE还可以有UE特定(specific)的标称功率偏移,该值通过专用(dedicated)RRC信令下发给UE。P0_UE_PUSCH和P0_UE_PUCCH分别是不同UE对于系统标称功率P0_PUSCH和P0_PUCCH的一个偏移量,单位是dB,在-8到+7之间取值。
从上述参数可以看出,实际上P0的范围很大,足够覆盖3.5GHz和700/800/900/1.7GHz存在的路损差异。初始阶段可以通过以下至少之一来调整:P0和α,后续可以通过闭环f来调整。为支持高低频路损差异的调整,扩大标称功率P0取值可能或取值范围。例如,扩大UE specific的标称功率偏移,在-16到+15之间取值。
或者,标称功率P0除了包括小区标称功率和UE特定的标称功率两部分之外,还包括与高低频频率相关的路损偏置调整功率。也即,标称功率P0为这三部分之和。
根据低频段频率信息(共享载波频率信息)、或低频段和高频段(共享载波和专用载波频段)组合信息,确定UE在低频段上的以下至少之一:P0和α系数,并将这两个参数通过系统信息或RRC信令通知给UE。其中,低频段上的系数相对高频段上的α系数已经考虑到低频段和高频段之间的路损偏置,所述系数包括以下至少之一:P0和α系数。
例如,高低频的路损差异为10dB,基站给UE配置高频段上的P0为-100dBm,给UE配置低频段上的P0为-110dBm。又如,基站给UE配置高频段上的α为1, 给UE配置低频段上的α为0.9。
或者,基站通过闭环f来修正低频段相对于高频段的路损偏置。例如,基站给UE配置高频段上的f(绝对值或累计值)为10dB,给UE配置低频段上的f(绝对值或累计值)为0dB。
方法三:对于上行低载波用于NR UL发送的情况,其相同频率DL载波或与其配对的下行载波不用于NR下行业务发送的情况,限制其相同频率DL载波或与其配对的下行载波可用于NR在低频段上的下行路损估计。
例如,LTE UL F1载波可以用于NR UL发送,与其配对的DL F2载波(与F1处于同一频段)不与NR共享。但是为了支持F1的路损计算和定时,限定F2可用于特定NR下行信号的发送,但不用支持NR数据(如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的发送。在F2上发送的特定NR下行信号不应影响F2上LTE信号/信道的发送,且以稀疏、与LTE信号/信道频分多路复用(Frequency-division multiplexing,FDM)或时分多路复用(Time-division multiplexing,TDM)的方式进行发送。
实例二
针对不会同时发送的场景:
场景1、NR共享LTE UL载波场景。NR UE在NR专用载波、LTE共享载波上发送NR UL。在给定时刻,NR UE只会在上述之一的载波上发送NR UL,不会同时发送。
场景2、NR共享LTE UL载波场景。NR UE支持NR和LTE能力,能够在NR专用载波发送NR UL、在LTE共享载波上发送NR UL或LTE UL。在给定时刻,NR UE只会在上述之一的载波上发送一种业务,不会同时发送。
场景3、LTE和NR为DC场景,LTE为第四代移动通信技术的主基站(MeNB)/第五代移动通信技术的主基站(MgNB)/第四代移动通信技术的主基站或第五代移动通信技术的主小区组(Master cell group,MCG),NR为第四代移动通信技术的辅基站(SeNB)/第五代移动通信技术的辅基站SgNB/第四代移动通信技术的辅基站或第五代移动通信技术的辅小区组(Secondary cell group,SCG)。或主辅基站的配置相反。在给定时刻,UE只会发送一种业务,例如只发送LTE  UL信号给MCG、或只发送NR UL信号给SCG。
针对同时发送的场景:
场景4、NR共享LTE UL载波场景。NR UE在NR专用载波、LTE共享载波上发送NR UL。在给定时刻,NR UE可以在上述载波上同时发送NR UL。
场景5、NR共享LTE UL载波场景。NR UE支持NR和LTE能力,能够在NR专用载波发送NR UL、在LTE共享载波上发送NR UL或LTE UL。在给定时刻,NR UE可以在上述载波上同时发送多种RAT业务。
子场景5.1:同时在NR专用载波发送NR UL、在LTE共享载波上发送LTE UL
子场景5.2:同时在NR专用载波发送NR UL、在LTE共享载波上发送LTE UL+NR UL
子场景5.3:同时在LTE共享载波上发送LTE UL和NR UL
场景6、LTE和NR为DC场景,LTE为MeNB/MgNB/MCG,NR为SeNB/SgNB/SCG。或主辅基站的配置相反。在给定时刻,UE可以同时发送LTE UL给MCG(LTE eNB)和NR UL给SCG(NR gNB)。
针对上述几种场景、或NR独立部署或非独立部署场景的上行功率控制问题,解决方法如下:
方法一:半静态的配置第一类型的子帧/时隙以及第二类型的子帧/时隙,第一类型的子帧/时隙为在同一个子帧/时隙同时发送不同载波的业务、或在同一个子帧/时隙同时发送不同RAT的业务,第二类型的子帧/时隙为在同一个子帧/时隙发送单一载波的业务、或在同一个子帧/时隙发送单一RAT的业务发送。
例如,对于NR共享LTE UL载波场景。在第一类型的子帧/时隙,UE可以在NR专用载波和共享载波上同时发送NR UL。
又如,对于NR和LTE为DC场景。在第一类型的子帧/时隙,UE只会在MCG和SCG上同时发送LTE和NR UL。
例如,对于NR共享LTE UL载波场景。在第二类型的子帧/时隙,UE只会在NR专用载波和共享载波之一的载波上发送NR UL,不会同时发送。
又如,对于NR和LTE DC场景。在第二类型的子帧/时隙,UE只会在MCG和SCG之一上发送LTE或NR UL,不会同时发送。
半静态的配置方式可以包括:高层通过RRC信令或者系统信息来配置两种类型的子帧/时隙,并通知给UE,哪些子帧/时隙属于第一类型的子帧/时隙,哪些子帧/时隙属于第二类型的子帧/时隙。
对于第一类型的子帧/时隙,由于受到特定功率吸收率(Specific Absorption Rate,SAP)的要求,在同一个子帧/时隙同时发送不同载波的业务或不同RAT的业务不能超过UE的最大发送功率(Pcmax)。因此,要分配好同一UE不同载波或不同RAT之间的功率。
对于第二类型的子帧/时隙,在同一个子帧/时隙只能发送一个载波上的业务或一种RAT的业务,因此在任意一个载波上,按照正常的UL功控算法进行即可。每个载波对应着一个载波最大发送功率(Pcmax,c)。这个载波最大发送功率(Pcmax,c)可以等于UE的最大发送功率(Pcmax),例如23dBm。两个频率层的最大发送功率之间没有制约关系。也即两个载波可以独立功率控制。
因此,针对两种类型的子帧/时隙,可以配置不同的功率控制参数。例如,第二类型的子帧/时隙因为在同一时刻只存在一种业务,因此按照正常的上行功率控制算法即可。而第一类型的子帧/时隙因为同一时刻存在两种业务,要对这两种业务的功率进行分配,例如限制各自的最低功率或最高功率或优先级。而第二种子帧/时隙不做如此约束。
一实施例中,基站将两种类型的子帧/时隙相应的两套功率控制参数通知给UE。通知方式可以是RRC信令、系统信息、或下行控制信息(Downlink Control Information,DCI)信令。
一实施例中,UE判断任一子帧/时隙为哪种类型的子帧/时隙,可以通过上行调度来隐式通知或显示通知,或者通过DCI信令,如组共用DCI(group common DCI)/物理下行控制信道(Physical Downlink Control Channel,PDCCH)通知子帧/时隙的类型。
方法二:半静态的配置第三类型的子帧/时隙和第四类型的子帧/时隙,第三类型的子帧/时隙为在该子帧/时隙只发送第一载波(如NR专用载波)的业务、或第一RAT(如NR)的业务,在第四类型的子帧/时隙为在该子帧/时隙只发送 第二载波(如共享载波)的业务、或第二RAT(如LTE)的业务。
半静态的配置方式可以包括:高层通过RRC信令或者系统信息来配置两种类型子帧/时隙。并通知给UE,哪些子帧/时隙属于第三类型的子帧/时隙,哪些子帧/时隙属于第四类型的子帧/时隙。
方法三:基站半静态的配置第五类型的子帧/时隙,固定用于发送一个载波或一种RAT类型的业务。
半静态的配置方式可以包括:高层通过RRC信令或者系统信息来配置哪些子帧/时隙属于第五类型的子帧/时隙,并通知给UE。
实例三
NR共享LTE UL载波场景。NR UE在NR专用载波、LTE共享载波上发送NR UL。
解决方案:
两个UL载波频率之间可以共享UE发送功率。可以给每个UE的每个载波配置一个特定载波频率(carrier-frequency-specific)的载波最大发送功率(Pcmax,c),其中,c表示为共享载波或NR专用载波。
考虑1:共享的UL载波频率F1的信道传播特性要好于NR专用载波频率F3,因此,如果总的发送功率达到UE最大发送功率,其中更多的功率可以分配给NR专用载波频率F3。
考虑2:但是考虑到共享F1会用于发送必要信号如PUCCH、和用于边缘UE发送信号,则更多的发送功率可以分配给共享F1。
方案一:两个Pcmax,c之和需要等于Pcmax,如23dBm。
半静态分配两个最大功率,如:对半分;按照优先级,优先级高的最大发送功率更大,如40%和60%。例如MCG优先级高,则MCG的Pcmax,c为60%。
方案二:两个Pcmax,c之和可以大于Pcmax,如23dBm。(这个时候也可以不配置两个Pcmax,c),配置不同或相同的缩放因子。当总功率超过UE最大功率时,进行功率缩放。
每个载波根据优先级配置不同的缩放因子,例如都到达了最大发送功率200mW(23dBm)。共享载波的缩放因子是0.4,NR专用载波的缩放因子是0.6.
方案三:功率分配优先满足在优先级高的或信道条件较好的载波上发送。如有剩余再用于在其他载波上发送。或者,
功率分配优先满足在优先级高的或信道条件较差的载波上发送。如有剩余再用于在其他载波上发送。
例如,共享载波优先级较高,23dBm首先满足共享载波,如有剩余再用于专用载波。
或者,共享载波信道条件较好,这个时候UE处于专用载波高频覆盖较差的区域,功率如果用于专用载波,需要功率较大,且性能仍然较差,所以还不如用于共享载波。
或者,共享载波信道条件较好,专用载波信道条件相对差一些,例如在3.5GHz覆盖的范围内,更大的功率分配给专用载波,能够保证在两个载波上UL性能都能得到保证。
实例四
LTE和NR为DC场景,LTE为MeNB/MgNB/MCG,NR为SeNB/SgNB/SCG。或主辅基站的配置相反。
方法一:只配置UE上行功率最大不能超过UE最大发送功率Pcmax。也即,UE UL LTE和NR的总发送功率不能超过Pcmax。UE上报两个功率余量(Power headroom,PHR)给两个gNB或服务小区组(cell group,CG)。
方法二:配置UE_LTE UL不能超过LTE最大发送功率(Pcmax_lte),配置UE NR UL不能超过NR最大发送功率(Pcmax_nr)。Pcmax_lte与Pcmax_nr的总和需要小于UE的最大发送功率Pcmax。UE上报两个PHR给两个gNB或CG。
方法三:配置LTE MCG和NR SCG每个CG对应的最小保证功率。剩余的功率按照发送信号/信道的优先级或CG之间的定时来分配。
实例五
对于不同参数numerology(例如一种采用15kHz的子载波间隔,另外一种采用60kHz的子载波间隔)或不同业务类型的复用情况,要考虑满足不超过UE最大发送功率的要求。
例如,增强移动宽带(enhanced mobile broad band,eMBB)(例如采用15kHz的子载波间隔)和低时延高可靠通信(ultra reliable and low latency communication,URLLC)(例如采用60kHz的子载波间隔)复用情况,一种是在URLLC发送时,不发送eMBB,URLLC按照正常的UL功率控制即可。另外一种是URLLC和eMBB采用频分多路复用(Frequency-division multiplexing,FDM)方式,eMBB和URLLC的功率之和很可能超过UE的最大发送功率,则不满足SAP的要求。
方法一:基站给eMBB和URLLC分别配置最大的发送功率,最大的发送功率之和不超过UE的最大发送功率。
方法二:基站给eMBB和URLLC分别配置最低保证发送功率,最低保证发送功率之和不超过UE的最大发送功率。剩余功率优先用于URLLC,或者剩余功率优先用于优先级高的发送信号类型(如控制信道等)、或优先用于发送定时较早的业务类型。
方法三:UE优先将功率用于发送URLLC。如果有剩余功率,再用于发送eMBB,如果没有剩余功率,则不发送eMBB。
方法四:UE将用于URLLC发送的功率情况或功率余量(Power headroom,PH)上报给基站。
实例六
LTE和NR为DC场景,LTE为MeNB/MgNB/MCG,NR为SeNB/SgNB/SCG。或主基站和辅基站的配置相反。
为了满足DC场景提升功率利用率,动态上报PH:
当UE有传输新数据的上行资源(无论是LTE调度,还是NR调度,或者两者都有),UE都会计算功率余量PH。该PH可以是LTE载波或NR载波的PH,或者是相对UE最大发送功率的PH。
根据不同的PH预设门限,决定是否上报PH。上报PH可以通过PUCCH 或MAC CE上报给MCG和/或SCG。
除了上六个实例外,在本实施例中,LTE DC有两种上行功率分配方式分别是:功率控制模式一(Power control mode 1,PCM1)一般用于同步的DC,UE为每个CG分配最小保证功率,剩余的功率由MCG和SCG共享,根据发送信息的类型。功率控制模式二(Power control mode 2,PCM2)一般用于异步的DC,UE为每个CG也分配最小保证功率,剩余的功率由发送定时早的CG来使用。
如果NR仅用于服务使用相同参数numerology(例如子载波间隔,循环前缀等)的eMBB UE。可以重用LTE的PCM1或PCM2.但是NR有更多的场景和问题,因此需要优化NR载波聚合(carrier aggregation,CA)/双连接(dual connectivity,DC)的功率控制机制。
本申请中的实例不限于所描述的场景,同样可以应用于类似场景中或类似系统中。如下实例可单独实施或组合实施。
实例七:不同业务的复用
对于UE,如果正在发送UL eMBB数据时,这个时候有UL URLLC数据到达。URLLC数据需要立即被发送来满足URLLC的时延要求。
如果eMBB和URLLC使用FDM,URLLC应该有较高优先级,应该被分配足够的功率。也即应该满足URLLC的功率要求。假设eMBB的功率为P_embb,URLLC的功率为P_urllc。
如果P_urllc>Pcmax-P_embb,也即URLLC的功率需求大于UE的剩余功率。那么在eMBB和URLLC同时发送的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上,P_embb应该降低。降低的功率用于URLLC的发送。执行该操作,一个子帧或时隙中的发送功率不在保持恒定不变。为了实现上述功率分配,需要考虑两种情况:
情况1:基于调度授权的UL URLLC
对于基于调度的UL URLLC,在URLLC发送之前,gNB可以发送一个显式的优先级指示给UE,来重新分配eMBB的功率。需要重新分配eMBB功率的可以是URLLC待发送的符号。也即,可以使用两步功率控制。
显式的优先级指示可以通过DCI发送。
情况2:基于免调度授权的UL URLLC
基于免授权的UL URLLC,可以考虑隐式的方法。gNB检测到UE发送的UL URLLC信号。gNB会假设UE基于预定义的原则重新分配了eMBB的功率。预定义的原则即上述优先保证URLLC功率原则。
实例八:不同的双工模式
NR的CA/DC上的不同载波可以按照不同的双工模式操作。
仍然按照上述为上行发送预留最小保证功率,如果一个CG的一个时隙(slot)或子帧由UL更改为DL/空闲/预留,分配给这个CG的保证功率可以让给或重分配给在这个时隙上有UL业务发送的CG。
也即,每个CG的保证功率(一般为最低保证功率)可以固定不变,也可以当自己不用时借给对方。此时,自己的最低保证功率实际为0,而对方的最低保证功率为之前的对方最低保证功率加上所借的最低保证功率之和。
利用这种方法,功率使用效率会提升,有助于提高系统吞吐量以及增强覆盖,特别是在UL功率受限的场景。对于灵活双工或动态TDD等类似双工机制,时隙或子帧的发送方向会动态变化。为了执行上述重分配保证功率的方法,gNB可以通知UE有关时隙/子帧的链路方向信息、或链路方向改变的信息给UE。通知的方式可以是通过DCI来通知。
实例九:增强的覆盖
DC主要用于移动性和覆盖增强。如果为每个CG配置保证功率(或最小保证功率),每个CG或每个gNB的功率会等于或小于最大发送功率Pcmax,功率受限会导致上行覆盖问题。为了解决功率受限问题,需要考虑如何使用预留的保证功率。
对于NR和NR之间的DC,不同CGs之间的调度和HARQ(Hybrid automatic repeat request)机制是相互独立的,原因是MgNB和SgNB之间的连接是非理想backhaul(后向回程)连接,它们之间不能动态的交互调度信息。但是从UE角度,UE掌握了所有来自MgNB和SgNB的信息,这两部分信息可以在UE内部实现中进行共享。因此,从UE角度,DC可以使用更加动态的功率分配或功 率共享。
例如:
方法一:通过UCI(上行控制信息,Uplink control information)来上报更加的动态PHR(功率余量,Power headroom)状态或其他信息。
方法二:为其中一个gNB或CG半静态的预留一些时隙/子帧,这些时隙/子帧能够用于该gNB或CG进行UL发送,其他的gNB或CG在这些时隙/子帧需要停止UL发送。
对于LTE和NB之间的DC,定义两类时隙/子帧,第一类时隙/子帧用于LTE,第二类时隙/子帧用于NR。或者,为这两类时隙/子帧定义优先级,NR不能使用第一类时隙/子帧,但是当LTE不使用它时,NR才能使用。LTE不能使用第二类时隙/子帧,但是当NR不使用它时,LTE才能使用。
上述方法可以结合其他功率控制方案使用,譬如LTE DC PCM1/PCM2(功率缩放或最小保证功率)。
方法一和方法二中的UCI信息包括如下至少之一:
(1)CG中的第i个成员载波CCi在时隙/子帧/符号由UL切换为DL或空闲。
(2)时隙/子帧/符号的序号和开始位置中的至少一个、或结束位置、或持续时长。
(3)功率偏移值。
实例十:更宽带宽(wider bandwidth)
一个更宽带宽包含或划分为很多部分带宽,部分带宽之间的关系类似频带内载波聚合(intra-band CA)。NR CA的大部分功控方案可以用于部分带宽的聚合。部分带宽和频带内载波聚合的主要差异和相应的解决方法包括:
(1)部分带宽之间只能假设为同步场景,也即,一个更宽带宽之间的多个部分带宽属于同一个定时对准组(Timing alignment group,TAG)。
(2)一个更宽带宽之间的多个部分带宽使用一个公共的路损值或参考信号接收功率(Reference signal received power,RSRP)。路损值或RSRP用于部分 带宽进行UL功率控制。该公共的路损值或RSRP可以基于一个限定或作为参考的部分带宽测量得到。在该部分带宽上发送参考信号信道状态信息(channel state information-reference signal,CSI-RS)/同步信号(synchronization signal,SS),用于无线资源管理(radio resource management,RRM)测量,如RSRP测量。
或者,在更宽带宽上的全部或多个部分带宽上分别发送CSI-RS或SS,进行RRM测量。也即,全部或多个部分带宽上独立进行RRM测量,使用自己测得的RSRP或路损值,进行上行功率控制。
(3)为了降低多个部分带宽使用不同参数numerology(例如子载波间隔)所造成的干扰,以及降低保护带宽间隔,部分带宽边缘的资源块(Resource block,RB)分配较低功率。
实例十一:低频(low frequency,LF)和高频(high frequency,HF)的频带组合。
为了解决两个组合载波(分属于低频和高频)不能同时发送的问题,这两个载波执行CA/DC操作时使用TDM方式。类似的方法请参考其他实例例如增强的覆盖。
实例十二:补充上行载波(supplementary uplink frequency,SUL)
主要问题是SUL频率和专用载波频率的特性差异较大。一个方法是配置一种下行时隙/子帧,该类型时隙/子帧位于SUL载波或SUL配对的下行载波。在这种下行时隙/子帧上发送CSI-RS/SS,用于UE执行RSRP或路损测量。测量信号可以是周期性或非周期发送。为了降低开销,周期可以配置为长周期,或长时间才触发一次发送和测量。
实例十三:两步(2-step)功率控制
因为在调度授权和UL发送之间存在时间间隔,UE有时间来为LTE和NR两条链路计算和分配它的发送功率。可以使用两步功率控制来动态的重新分配功率,具体方法包括:
第一步:按照现有的UL功率控制算法进行功率分配。例如,初始的功率控制命令和调度授权一起发送给UE。
第二步:如果需要,重新分配功率。
例如,当存在URLLC发送时,在发送前重新分配功率,并利用DCI指示UE。为了本UE的URLLC发送,或降低对邻区URLLC业务的干扰,eMBB发送功率可以动态降低甚至为0。
第二步中的DCI包括如下至少之一信息:
(1)CG中的第i个成员载波CCi在时隙/子帧/符号由UL切换为DL或空闲。
(2)时隙/子帧/符号的序号和开始位置中至少之一、或结束位置、或持续时长。
(3)功率偏移值。
除了通过DCI显式指示外,还可以考虑隐式的方法。gNB检测到UE发送的UL URLLC信号。gNB会假设UE基于预定义的规则重新分配了eMBB的功率。预定义的规则可以是优先保证URLLC功率、或功率缩放等级。
实例十四:NR和LTE DC
NR和LTE DC是NR之间DC的一个特殊场景,也即涉及到不同无线接入技术(Radio Access Technologys,RATs)之间的协调。考虑到LTE和NR相互独立,LTE和NR DC之间的功率共享可以半静态的配置。例如,为每个CG(包括以下至少之一:LTE CG和NR CG)分别配置最大发送功率。根据业务类型和信道类型的优先级,每个CG内部的成员载波之间可以进行功率共享。不同CG的最大的功率可以是固定不变的,也可以动态变化。低优先CG的最大功率为其他CG最大功率之和后的余量。
实例十五:两类编码调制方案(Modulation and Coding scheme,MCS)功率补偿
在上行功率控制算法中,考虑对MCS的格式进行功率补偿,体现在编码调制方案变量(Delta_MCS)(参考协议TS36.213版本Release14.0.0)这一项上。如果在一个TTI发送过程中,部分资源和功率会让给其他业务如URLLC发送。那么为了提高接收的性能,需要对其他没有被URLLC占用的资源进行功率补偿。
因此,设置两种类型MCS功率补偿:
第一种类型编码调制方案变量(Delta_MCS1):没有进行功率重分配。例如 正常发送,按照初始的功率控制来。
第二种类型编码调制方案变量(Delta_MCS2):功率重分配。例如,当eMBB部分资源让给URLLC使用后,进行功率重分配,没有被URLLC使用的资源提高Delta_MCS2取值。
实施例4
本申请的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;
S2,接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的上行业务,以及接收所述UE根据在第二载波上的发送功率在所述第二载波上发送的上行业务。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
在本实施例中,处理器根据存储介质中已存储的程序代码执行确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;
在本实施例中,处理器根据存储介质中已存储的程序代码执行接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的上行业务,以及接收所述UE根据在第二载波上的发送功率在所述第二载波上发送的上行业务。
本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域的技术人员应该明白,上述的本申请的每个模块或每个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成一个或多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (21)

  1. 一种功率共享的方法,包括:
    确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;
    接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的第一上行业务,以及接收所述UE根据所述在第二载波上的发送功率在所述第二载波上发送的第二上行业务。
  2. 根据权利要求1所述的方法,其中,确定UE在第一载波上的发送功率和在第二载波上的发送功率包括:
    确定所述UE的最大发送功率;
    将总发送功率分配给所述第一载波和所述第二载波,其中,所述总发送功率的值小于等于所述最大发送功率的值。
  3. 根据权利要求2所述的方法,其中,将总发送功率分配给所述第一载波和所述第二载波包括:
    比较所述第一载波和所述第二载波的传播质量;
    根据所述传播质量,将所述总发送功率分配给所述第一载波和所述第二载波,其中,分配给所述第一载波的发送功率与所述第一载波的传播质量成负相关,分配给所述第二载波的发送功率与所述第二载波的传播质量成负相关。
  4. 根据权利要求2所述的方法,其中,将总发送功率分配给所述第一载波和所述第二载波包括:
    确定所述UE在所述第一载波上发送上行业务和在所述第二载波上发送上行业务的优先级;
    按照所述优先级,将所述总发送功率分配给所述第一载波和所述第二载波。
  5. 根据权利要求2所述的方法,其中,将总发送功率分配给所述第一载波和所述第二载波包括:
    为所述第一载波分配与所述第一载波对应的第一最小保证功率,以及为所述第二载波分配与所述第二载波对应的第二最小保证功率;
    根据发送业务的优先级或载波的传播质量,分配总发送功率的剩余功率。
  6. 根据权利要求1-5任一项所述的方法,还包括以下之一:
    半静态的配置第一类型的子帧或时隙,或者第二类型的子帧或时隙,其中,所述第一类型的子帧或时隙用于所述UE在同一个子帧或时隙中同时发送以下之一:不同载波的业务和不同无线接入技术RAT的业务,所述第二类型的子帧或时隙用于所述UE在同一个子帧或时隙中发送以下之一:单一载波的业务和单一RAT的业务;
    半静态的配置第三类型的子帧或时隙,或者第四类型的子帧或时隙,其中,所述第三类型的子帧或时隙用于所述UE在所述第三类型的子帧或时隙中发送所述第一载波的业务,所述第四类型的子帧或时隙用于所述UE在所述第四类型的子帧或时隙中发送所述第二载波的业务;
    半静态的配置第五类型的子帧或时隙,其中,所述第五类型的子帧或时隙用于所述UE固定发送所述第一载波的业务或所述第二载波的业务。
  7. 根据权利要求6所述的方法,其中,所述半静态的配置包括:
    通过高层无线资源控制RRC信令配置;或
    通过系统信息配置。
  8. 根据权利要求1所述的方法,其中,所述第一载波和所述第二载波分别为以下之一:
    所述第一载波为专用载波,所述第二载波为补充上行载波SUL;
    所述第一载波为专用载波,所述第二载波为共享载波;
    所述第一载波为第一无线接入技术RAT的载波,所述第二载波为第二RAT的载波;
    所述第一载波为承载第一业务类型的载波,所述第二载波为承载第二业务类型的载波。
  9. 根据权利要求1所述的方法,其中,
    所述第一载波为双连接DC场景下主基站或主小区组MCG的载波,所述第二载波为所述DC场景下的辅基站或辅小区组SCG的载波;或
    所述第一载波为DC场景下辅基站或SCG的载波,所述第二载波为所述DC 场景下主基站或MCG的载波。
  10. 根据权利要求1-9任一项所述的方法,其中,接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的第一上行业务,以及接收所述UE根据所述在第二载波上的发送功率在所述第二载波上发送的第二上行业务包括以下之一:
    接收所述UE于第一时间在所述第一载波上发送的所述第一上行业务,并接收所述UE于第二时间在所述第二载波上发送的所述第二上行业务,其中,所述第一上行业务与所述第二上行业务相同;
    接收所述UE于第三时间在所述第一载波上发送的所述第一上行业务,并接收所述UE于第四时间在所述第二载波上发送的所述第二上行业务,其中,所述第一上行业务与所述第二上行业务不同;
    接收所述UE同时在所述第一载波和所述第二载波上分别发送的所述第一上行业务和所述第二上行业务,其中,所述第一上行业务与所述第二上行业务相同或不同。
  11. 根据权利要求10所述的方法,其中,所述上行业务包括以下至少之一:
    新无线接入技术NR上行业务和长期演进LTE上行业务。
  12. 根据权利要求11所述的方法,其中,接收所述UE同时在所述第一载波和所述第二载波上分别发送的所述第一上行业务和所述第二上行业务,包括以下之一:
    接收所述UE同时在NR专用载波和LTE共享载波上分别发送的NR上行业务和LTE上行业务;
    接收所述UE同时在NR专用载波上发送的NR上行业务和在LTE共享载波上发送的LTE上行业务和NR上行业务。
  13. 根据权利要求1所述的方法,在确定UE在第一载波上的发送功率和在第二载波上的发送功率之前,还包括:
    根据所述UE的下行载波的路损计算得到所述UE在上行的发送功率。
  14. 根据权利要求1或13所述的方法,其中,确定UE在第一载波上的发 送功率和在第二载波上的发送功率包括以下至少之一:
    确定所述UE接入基站时在所述第一载波上的发送功率和在所述第二载波上的发送功率;
    确定所述UE连接态时在所述第一载波上的发送功率和在所述第二载波上的发送功率。
  15. 根据权利要求1、8或9所述的方法,在确定UE在第一载波上的发送功率和在第二载波上的发送功率之前,还包括:
    按照如下方法之一配置所述UE:
    配置所述UE的最大发送功率,其中,所述UE在所述第一载波上的发送功率和在所述第二载波上的发送功率的和小于或等于所述最大发送功率;
    配置所述UE在第一载波上的最大发送功率以及所述UE在第二载波上的最大发送功率;配置所述UE在第一载波上的第一最小保证功率以及所述UE在第二载波上的第二最小保证功率。
  16. 根据权利要求1或14所述的方法,在确定UE在第一载波上的发送功率和在第二载波上的发送功率之前,还包括以下之一:
    限定物理随机接入信道PRACH在下行有配对载波的上行载波上发送或者在与下行载波频率相同的上行载波上发送;
    通过系统信息将在所述第二载波上配置的前导初始目标接收功率或前导功率偏差发送给所述UE,或者通过RRC信令将在所述第二载波上配置的前导初始目标接收功率或前导功率偏差发送给所述UE;
    将第二载波频率信息发送给所述UE,以使所述UE根据所述第二载波频率信息来确定所述第一载波和所述第二载波之间的路损偏置,或者将第一载波和第二载波组合序号发送给所述UE,以使所述UE根据所述第一载波和第二载波组合序号来确定所述第一载波和所述第二载波之间的路损偏置;
    通过系统信息或RRC信令将以下至少之一通知给所述UE:所述第二载波的标称功率P0和路损补偿系数α。
  17. 一种功率共享的方法,包括:
    接收基站确定的在第一载波上的发送功率和在第二载波上的发送功率;
    根据所述在第一载波上的发送功率在所述第一载波上发送第一上行业务,根据所述在第二载波上的发送功率在所述第二载波上发送第二上行业务。
  18. 一种功率共享的装置,包括:
    确定模块,设置为确定用户设备UE在第一载波上的发送功率和在第二载波上的发送功率;
    接收模块,设置为接收所述UE根据所述在第一载波上的发送功率在所述第一载波上发送的上行业务,以及接收所述UE根据所述在第二载波上的发送功率,在所述第二载波上发送的上行业务。
  19. 一种功率共享的装置,包括:
    功率接收模块,设置为接收基站确定的在第一载波上的发送功率和在第二载波上的发送功率;
    发送模块,设置为根据所述在第一载波上的发送功率在所述第一载波上发送第一上行业务,根据所述在第二载波上的发送功率在所述第二载波上发送第二上行业务。
  20. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至16中任一项所述的方法。
  21. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至16中任一项所述的方法。
PCT/CN2018/091655 2017-06-16 2018-06-15 功率共享的方法及装置 WO2018228564A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020207001164A KR102650290B1 (ko) 2017-06-16 2018-06-15 전력 공유 방법 및 장치
JP2019569776A JP7288403B2 (ja) 2017-06-16 2018-06-15 電力配分方法及び装置
KR1020237007950A KR20230035716A (ko) 2017-06-16 2018-06-15 전력 공유 방법 및 장치
CA3070002A CA3070002C (en) 2017-06-16 2018-06-15 Power sharing method and apparatus
AU2018286309A AU2018286309A1 (en) 2017-06-16 2018-06-15 Power sharing method and apparatus
EP18818285.1A EP3641453A4 (en) 2017-06-16 2018-06-15 POWER SHARING PROCESS AND APPARATUS
EP21212618.9A EP3998808A1 (en) 2017-06-16 2018-06-15 Power sharing method and apparatus
US16/716,313 US11272463B2 (en) 2017-06-16 2019-12-16 Power sharing method and apparatus
US17/180,376 US11589322B2 (en) 2017-06-16 2021-02-19 Power sharing method and apparatus
AU2021258004A AU2021258004B2 (en) 2017-06-16 2021-10-28 Power sharing method and apparatus
US17/688,571 US11825428B2 (en) 2017-06-16 2022-03-07 Power sharing method and apparatus
JP2022131217A JP2022166250A (ja) 2017-06-16 2022-08-19 無線通信方法、無線通信装置、及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459676.0 2017-06-16
CN201710459676.0A CN109152030B (zh) 2017-06-16 2017-06-16 功率共享的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,313 Continuation US11272463B2 (en) 2017-06-16 2019-12-16 Power sharing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018228564A1 true WO2018228564A1 (zh) 2018-12-20

Family

ID=64658953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091655 WO2018228564A1 (zh) 2017-06-16 2018-06-15 功率共享的方法及装置

Country Status (8)

Country Link
US (3) US11272463B2 (zh)
EP (2) EP3641453A4 (zh)
JP (2) JP7288403B2 (zh)
KR (2) KR102650290B1 (zh)
CN (3) CN116156630A (zh)
AU (2) AU2018286309A1 (zh)
CA (2) CA3135459C (zh)
WO (1) WO2018228564A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020176545A1 (en) * 2019-02-25 2020-09-03 Qualcomm Incorporated Uplink power control prioritization in dual connectivity

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035072B2 (ja) * 2017-11-09 2022-03-14 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN118075853A (zh) * 2017-11-17 2024-05-24 联想(新加坡)私人有限公司 多个上行链路传输的功率控制
CN109802817B (zh) * 2017-11-17 2023-06-16 华为技术有限公司 一种信息发送、接收的方法及装置
CN110266459B (zh) * 2018-05-11 2020-06-16 华为技术有限公司 一种发送解调参考信号dmrs的方法和通信装置
CN110859003A (zh) * 2018-08-22 2020-03-03 成都华为技术有限公司 确定上行资源的方法与装置
US20220104149A1 (en) * 2019-01-10 2022-03-31 Ntt Docomo, Inc. User terminal and radio communication method
CN111436106B (zh) * 2019-01-11 2024-04-12 华为技术有限公司 信号发送方法、装置及系统
US11864125B2 (en) 2019-02-15 2024-01-02 Beijing Xiaomi Mobile Software Co., Ltd. Power configuration method, apparatus, device, and system for multi-bandwidth transmission
CN111642001B (zh) * 2019-03-01 2023-11-21 中兴通讯股份有限公司 信道或信号的发送方法及装置、存储介质
WO2020199221A1 (zh) * 2019-04-04 2020-10-08 Oppo广东移动通信有限公司 一种资源配置方法、网络设备、终端设备
CN113796129B (zh) * 2019-05-03 2024-04-26 联想(新加坡)私人有限公司 用于验证双载波动态功率共享的方法和装置
CN112399619A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 信号发送方法和信号发送装置
WO2021088005A1 (en) * 2019-11-08 2021-05-14 Qualcomm Incorporated Methods and apparatus to facilitate dual connectivity power control mode
CN111148151B (zh) * 2019-12-27 2023-08-15 宇龙计算机通信科技(深圳)有限公司 发射功率的调整方法、装置、存储介质及终端设备
US20240073957A1 (en) * 2020-12-30 2024-02-29 Telefonaktiebolaget Lm Ericsson (Publ) Random access for wireless communication network
CN115250472A (zh) * 2021-04-28 2022-10-28 中国移动通信集团四川有限公司 频率分配方法、装置及电子设备
WO2024011461A1 (zh) * 2022-07-13 2024-01-18 Oppo广东移动通信有限公司 一种基于多载波的通信方法及装置、终端设备、网络设备
WO2024034973A1 (ko) * 2022-08-09 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 멀티 패널 동시 전송을 위한 송신 전력 제어 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158942A (zh) * 2010-02-12 2011-08-17 华为技术有限公司 功率控制方法、网络设备和终端
WO2013165228A1 (en) * 2012-05-04 2013-11-07 Pantech Co., Ltd. Apparatus and method for reporting power headroom in multiple component carrier system
CN106851809A (zh) * 2015-12-03 2017-06-13 华为技术有限公司 确定功率的方法及用户设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839362B2 (en) * 2006-07-31 2014-09-16 Motorola Mobility Llc Method and apparatus for managing transmit power for device-to-device communication
PL2422557T3 (pl) * 2009-04-23 2014-04-30 Interdigital Patent Holdings Inc Sposób i urządzenie do skalowania mocy dla terminali bezprzewodowych z wieloma nośnymi
EP2317815A1 (en) * 2009-11-02 2011-05-04 Panasonic Corporation Power-limit reporting in a communication system using carrier aggregation
KR20110139078A (ko) 2010-06-22 2011-12-28 삼성전자주식회사 이동통신 시스템에서 역방향 전송 출력을 결정하는 방법 및 장치
CN103188811B (zh) * 2011-12-31 2016-08-10 华为技术有限公司 传输子帧信息的方法、用户设备及基站
CN103973397B (zh) 2013-01-29 2019-01-08 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端
JP6693741B2 (ja) * 2013-04-04 2020-05-13 シャープ株式会社 端末装置、通信方法および集積回路
CN104429106A (zh) * 2013-05-09 2015-03-18 华为技术有限公司 业务处理方法及装置
CN104349443B (zh) * 2013-08-09 2019-02-12 电信科学技术研究院 一种上行功率控制方法和装置
EP2854460B1 (en) * 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
CN110831137B (zh) * 2013-10-31 2022-11-01 日本电气株式会社 无线电站、无线电终端、及其控制方法
EP3065448B1 (en) * 2013-11-01 2018-12-05 Sharp Kabushiki Kaisha Terminal device, base station device, and method
CA2938056C (en) 2014-01-31 2019-10-01 Nokia Solutions And Networks Oy A method, apparatus and computer readable medium for controlling data transmissions in a network
WO2015139224A1 (en) 2014-03-19 2015-09-24 Telefonaktiebolaget L M Ericsson(Publ) Uplink power sharing in dual connectivity
US9357510B2 (en) * 2014-03-31 2016-05-31 Qualcomm Incorporated Power sharing and power headroom reporting in dual connectivity scenarios
US9585102B2 (en) 2014-09-26 2017-02-28 Kt Corporation Method of controlling the transmission power of uplink channels and signals and apparatuses thereof
JP2017208582A (ja) * 2014-09-26 2017-11-24 シャープ株式会社 端末装置、基地局装置、および通信方法
US9900843B2 (en) 2015-01-12 2018-02-20 Qualcomm Incorporated Uplink power control techniques for ultra low latency in LTE devices
US10750391B2 (en) * 2016-01-29 2020-08-18 Ofinno, Llc Transmission power in a wireless device and wireless network
US10567110B2 (en) * 2016-03-17 2020-02-18 Ofinno, Llc Modulation, coding and redundancy version in a wireless network
US10271316B2 (en) * 2016-03-21 2019-04-23 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN107613553B (zh) * 2016-07-11 2019-11-22 电信科学技术研究院 一种上行传输功率控制的方法及装置
CN107734622B (zh) * 2016-08-12 2020-12-11 中兴通讯股份有限公司 上行功率控制方法及装置
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment
JPWO2018207372A1 (ja) * 2017-05-12 2020-03-26 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158942A (zh) * 2010-02-12 2011-08-17 华为技术有限公司 功率控制方法、网络设备和终端
WO2013165228A1 (en) * 2012-05-04 2013-11-07 Pantech Co., Ltd. Apparatus and method for reporting power headroom in multiple component carrier system
CN106851809A (zh) * 2015-12-03 2017-06-13 华为技术有限公司 确定功率的方法及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Overview of NR UL for LTE-NR Coexistence", 3GPP TSG RAN WG1 MEETING #89, R1-1706905, 19 May 2017 (2017-05-19), pages 2 - 5, XP051272136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020176545A1 (en) * 2019-02-25 2020-09-03 Qualcomm Incorporated Uplink power control prioritization in dual connectivity
US11589403B2 (en) 2019-02-25 2023-02-21 Qualcomm Incorporated Uplink power control prioritization in dual connectivity

Also Published As

Publication number Publication date
US11272463B2 (en) 2022-03-08
KR20230035716A (ko) 2023-03-14
KR102650290B1 (ko) 2024-03-21
CA3070002C (en) 2023-07-11
US20210176717A1 (en) 2021-06-10
EP3998808A1 (en) 2022-05-18
EP3641453A4 (en) 2021-06-23
US11825428B2 (en) 2023-11-21
JP2020529752A (ja) 2020-10-08
US11589322B2 (en) 2023-02-21
AU2021258004A1 (en) 2021-11-25
US20200267668A1 (en) 2020-08-20
CA3070002A1 (en) 2018-12-20
CN116156630A (zh) 2023-05-23
US20220201628A1 (en) 2022-06-23
AU2021258004B2 (en) 2023-03-30
AU2018286309A1 (en) 2020-02-06
EP3641453A1 (en) 2020-04-22
CN109152030A (zh) 2019-01-04
CN109152030B (zh) 2022-11-15
CN114938534A (zh) 2022-08-23
JP7288403B2 (ja) 2023-06-07
KR20200028942A (ko) 2020-03-17
JP2022166250A (ja) 2022-11-01
CA3135459C (en) 2024-01-09
CA3135459A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2018228564A1 (zh) 功率共享的方法及装置
US11375457B2 (en) User equipment and a method for power control of uplink transmissions
US11595906B2 (en) Dropping transmission of uplink signals of a radio access technology
JP2020043601A (ja) 無線通信システムにおける上向きリンク電力を制御する方法及び装置
US10716070B2 (en) Power scaling of uplink signals in a transmission burst
US11917549B2 (en) Scaling transmission power of uplink signals of a wireless device
US11032779B2 (en) Use of cell specific reference signals for NR open loop uplink power control
WO2016002393A1 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3070002

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018818285

Country of ref document: EP

Effective date: 20200116

ENP Entry into the national phase

Ref document number: 2018286309

Country of ref document: AU

Date of ref document: 20180615

Kind code of ref document: A