WO2018228509A1 - 一种信息的发送方法、接收方法和网络设备以及终端设备 - Google Patents

一种信息的发送方法、接收方法和网络设备以及终端设备 Download PDF

Info

Publication number
WO2018228509A1
WO2018228509A1 PCT/CN2018/091390 CN2018091390W WO2018228509A1 WO 2018228509 A1 WO2018228509 A1 WO 2018228509A1 CN 2018091390 W CN2018091390 W CN 2018091390W WO 2018228509 A1 WO2018228509 A1 WO 2018228509A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
initial
network device
terminal device
subframe
Prior art date
Application number
PCT/CN2018/091390
Other languages
English (en)
French (fr)
Inventor
谢信乾
郭志恒
孙伟
费永强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18817801.6A priority Critical patent/EP3598830B1/en
Publication of WO2018228509A1 publication Critical patent/WO2018228509A1/zh
Priority to US16/716,400 priority patent/US11202269B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method for transmitting information, a receiving method, a network device, and a terminal device.
  • the fifth generation of mobile communication technology 5th-Generation, 5G
  • 5G New Radio Interface
  • LTE Long Term Evolution
  • the NR system is most likely to be deployed at the frequency of 3.5 GHz first, but considering that the uplink coverage of the NR system cannot match the downlink coverage at this frequency point, that is, the range of the downlink coverage is significantly larger than the range of the uplink coverage, so that the NR system The uplink rate is limited.
  • the uplink of the NR system can be deployed on the uplink frequency band of the 1.8 GHz frequency, thereby enhancing the uplink coverage of the NR system, which enables LTE in LTE.
  • the LTE system and the NR system will exist simultaneously in the uplink frequency band, that is, the NR system and the LTE system can share one uplink frequency band.
  • the LTE system often operates in a Frequency Division Duplex (FDD) mode at a frequency of 1.8 GHz, and multiple base stations in the LTE system cannot be synchronized, and there is a deviation.
  • FDD Frequency Division Duplex
  • the NR system if the operating frequency of the NR system is 3.5 GHz, it needs to work in a Time Division Duplex (TDD) mode, so that different base stations under the NR system need to maintain time synchronization. To avoid cross interference between cells.
  • TDD Time Division Duplex
  • the transmission start time on the downlink frequency band and the reception start time on the uplink frequency band will deviate, and the time difference between different base stations does not occur. It's different.
  • the downlink transmission and the uplink transmission are synchronized, and the base station and the terminal device are all associated with a certain number (for the terminal device capable of determining the frame, the subframe, and the slot number of the uplink transmission.
  • a certain number for the terminal device capable of determining the frame, the subframe, and the slot number of the uplink transmission.
  • an uplink subframe in which the downlink subframes numbered n) are synchronized is determined to be an uplink subframe of the same number (ie, number n).
  • the downlink transmission of the NR system cannot be synchronized with the uplink transmission, so that the terminal device cannot determine the number of the uplink subframe according to the number of the downlink subframe.
  • the terminal device when the downlink transmission cannot be synchronized with the uplink transmission, the terminal device cannot obtain the number of the uplink subframe, and the terminal device cannot perform uplink transmission.
  • the embodiment of the present application provides a method for sending information, a receiving method, a network device, and a terminal device, which are used to enable the terminal device to determine the correct time for uplink transmission and avoid uplink transmission failure.
  • the embodiment of the present application provides the following technical solutions:
  • the embodiment of the present application provides a method for sending information, including: determining, by a network device, a first initial receiving time and a first initial sending time, where the first initial receiving time is that the network device is in a first time period Receiving a receiving time of the received signal, the first initial sending time is a sending time of the network device starting to send a signal on a second time period; the network device sending the indication information to the terminal device, where the indication information is used Instructing the terminal device to determine a second initial transmission time, where the second initial transmission time is determined according to the first initial reception time and the first initial transmission time.
  • the network device determines, by using the first initial receiving time and the first initial sending time, the time taken by the network device to receive the signal and the sending signal, respectively, and the sending signal and the receiving signal of the local device through the network device are respectively used.
  • the time taken may be determined to send the indication information to the terminal device, so that the terminal device may determine the second initial transmission time according to the indication information of the network device, and the second initial transmission time is based on the first initial reception time and the first An initial transmission time is determined.
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the first initial receiving time is earlier than or equal to the first initial sending time, and the difference between the first initial sending time and the first initial receiving time is greater than or equal to 0, And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a 15KHz subcarrier interval corresponding to Time slot; the length of the first subframe is 1 millisecond ms.
  • the difference between the first initial transmission time and the first initial reception time is greater than or equal to 0, and is smaller than the first.
  • the time length of the time slot or the first subframe so that the network device can determine to send the indication information to the terminal device according to the foregoing relationship between the first initial transmission time and the first initial reception time.
  • the first initial transmission time is earlier than or equal to the first initial reception time, and the difference between the first initial reception time and the first initial transmission time is greater than or equal to 0. And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a 15KHz subcarrier interval corresponding to Time slot; the first subframe has a time length of 1 ms.
  • the first initial transmission time in a case where the first initial transmission time is advanced or equal to the first initial reception time, the difference between the first initial reception time and the first initial transmission time is greater than or equal to 0, and is smaller than the first.
  • the time length of the time slot or the first subframe so that the network device can determine to send the indication information to the terminal device according to the foregoing relationship between the first initial reception time and the first initial transmission time.
  • the difference between the first initial transmission time and the first initial reception time is less than or equal to a threshold value, and the difference is greater than the threshold value is obtained. a value; or, the difference is less than a threshold value, and the difference is greater than or equal to a value obtained by inverting the threshold value.
  • the network device first determines a difference between the first initial transmission time and the first initial reception time, and the difference has two implementation manners: 1) the difference is less than or equal to the threshold, and the difference is The value is greater than the value obtained after the threshold is inverted, 2) the difference is less than the threshold, and the difference is greater than or equal to the value obtained after the threshold is inverted.
  • the content indicated by the indication information is determined by a time deviation, and the value of the time deviation is equal to a difference between the first initial reception time and the first initial transmission time.
  • the time deviation may be equal to the first initial reception time minus the first initial transmission time, if the first start The reception time is advanced or equal to the first initial transmission time, and the time deviation may be equal to the first initial transmission time minus the first initial reception time.
  • the content indicated by the indication information determined by the network device is determined by the time offset, so that the network device can directly or indirectly indicate the time deviation to the terminal device, and the terminal device can correctly determine the second initial sending time according to the content indicated by the network device. .
  • the network device sends the indication information to the terminal device, where the network device sends, to the terminal device, indication information that carries a time offset, where the value of the time offset is equal to the The difference between the first initial reception time and the first initial transmission time.
  • the network device may add a new field to the indication information to carry the time offset, and the network device may also use the original field in the indication information to carry the time deviation, for example, the original information may be The reserved field is used to carry the time offset, and the original data carried in the original field in the indication information may be replaced by the time offset, which is not limited herein.
  • the network device sends the indication information carrying the time deviation to the terminal device, so that the terminal device can parse the time deviation from the indication information, and the terminal device can use the time offset to obtain the second initial transmission time.
  • the network device sends the indication information to the terminal device, where the network device determines a timing advance amount obtained when the terminal device accesses a cell of the network device; Sending, to the terminal device, indication information that carries a total amount of time advancement, where the total amount of time advance includes: a sum of the timing advance amount and a time offset, where the value of the time offset is equal to the first initial receiving time The difference from the first initial transmission time.
  • the network device may send, to the terminal device, indication information that carries the total amount of time advance. For example, the network device may add a new field to the indication information.
  • the network device may also use the original field in the indication information to carry the total amount of time advancement.
  • the original reserved field in the indication information may be used to carry the total amount of advance time, or the indication information may be The old data carried in some fields is replaced with the total amount of time advance.
  • the network device sends the indication information carrying the total amount of time advancement to the terminal device, so that the terminal device can parse the total amount of time advancement from the indication information, and the terminal device can use the total amount of time advance to obtain the second initial transmission time.
  • the first time period includes an uplink subframe
  • the second time period includes a downlink subframe
  • the uplink subframe and the downlink subframe have the same subframe number
  • the first time period includes an uplink time slot
  • the second time period includes a downlink time slot
  • the uplink time slot and the downlink time slot have the same time slot number.
  • one subframe is a time period
  • the first time period may be an uplink subframe, that is, a receiving time at which the network device starts receiving signals on the uplink subframe is defined as a first initial receiving time.
  • the second time period may be a downlink subframe, that is, the sending time of the network device starting to send a signal on the downlink subframe is defined as a first initial sending time, and the first time period and the second time period satisfy the following relationship: the uplink subframe and the downlink Subframes have the same subframe number.
  • the first initial reception time on the uplink subframe and the first initial transmission time on the downlink subframe may be determined.
  • the relationship between the first time period and the second time period satisfies the relationship of the same subframe number, and the network device can acquire the reception timing of the uplink subframe having the same subframe number and the transmission timing of the downlink subframe.
  • the uplink subframe and the downlink subframe belong to one or two frames with the same number, or the uplink time slot and the downlink time slot belong to one or two of the same number.
  • the uplink subframe and the downlink subframe may belong to the same frame.
  • one frame may include an uplink subframe and a downlink transmission signal used by the uplink transmission signal.
  • the downlink subframe used for example, the uplink subframe and the downlink subframe may belong to two frames, but the two frames have the same frame number.
  • the uplink subframe belongs to the uplink frame
  • the downlink subframe belongs to the downlink frame.
  • Frame, but the upstream frame and the downstream frame have the same frame number.
  • the uplink time slot and the downlink time slot may belong to one frame of the same number, or may belong to two frames of the same number.
  • the embodiment of the present application provides a method for receiving information, including: determining, by a terminal device, a second initial receiving time, where the second initial receiving time is that the terminal device starts to start from a network in a third time period.
  • the receiving time of the device receiving the signal; the terminal device receiving the indication information from the network device according to the second initial receiving time; the terminal device determining the second according to the second initial receiving time and the indication information
  • the initial transmission time is a transmission time at which the terminal device starts transmitting a signal on the fourth time period.
  • the terminal device first determines the second initial receiving time, and then the terminal device receives the indication information sent by the network device according to the second initial receiving time, and the terminal device may follow the indication information of the network device.
  • the second initial receiving time determines the second initial sending time, and the terminal device can perform the uplink transmission after determining the second initial sending time, thereby avoiding the transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the terminal device determines the second initial sending time according to the second initial receiving time and the indication information, including: determining, by the terminal device, a time offset from the indication information, The value of the time offset is equal to the difference between the first initial receiving time and the first initial sending time, where the first initial receiving time is a receiving time at which the network device starts receiving signals in the first time period, The first initial transmission time is a transmission time at which the network device starts transmitting a signal on a second time period; and the terminal device determines a second initial transmission time according to the second initial reception time and the time deviation.
  • the network device sends the indication information carrying the time offset to the terminal device, so that the terminal device can parse the time offset from the indication information, and the terminal device can use the time offset and the second initial reception.
  • the time is obtained by the second initial transmission time.
  • the terminal device can receive the timing advance sent by the terminal device when accessing the cell of the network device, and the terminal device stores the timing advance amount, and the terminal device uses the second start.
  • the receiving time is the starting point of the time axis.
  • determining the time length offset from the starting point of the time axis is the aforementioned time deviation, and then shifting a timing advance amount to obtain the terminal device in the fourth time.
  • the specific time at which the signal is transmitted on the segment, the fourth initial transmission time can be obtained.
  • the first initial receiving time is earlier than or equal to the first initial sending time, and the difference between the first initial sending time and the first initial receiving time is greater than or equal to 0, And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time corresponding to a 15 kHz subcarrier interval
  • the first subframe has a time length of 1 millisecond ms.
  • the first initial transmission time is earlier than or equal to the first initial reception time, and the difference between the first initial reception time and the first initial transmission time is greater than or equal to 0. And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time corresponding to a 15 kHz subcarrier interval
  • the first subframe has a time length of 1 ms.
  • the difference between the first initial transmission time and the first initial reception time is less than or equal to a preset threshold, and the difference is greater than the threshold.
  • the first time period includes an uplink subframe
  • the second time period includes a downlink subframe
  • the uplink subframe and the downlink subframe have the same subframe number
  • the first time period includes an uplink time slot
  • the second time period includes a downlink time slot
  • the uplink time slot and the downlink time slot have the same time slot number
  • the uplink subframe and the downlink subframe belong to one or two frames with the same number, or the uplink time slot and the downlink time slot belong to one or two of the same number. Frames.
  • the terminal device determines a second initial sending time according to the second initial receiving time and the indication information, including: determining, by the terminal device, the time from the indication information. The total amount is advanced; the terminal device determines the second initial transmission time according to the second initial reception time and the total amount of time advance.
  • the network device may send the indication information carrying the total amount of time advancement to the terminal device, so that the terminal device can obtain the time advance total by analyzing the indication information.
  • the quantity shows that the total amount of time advance includes: the sum of the timing advance amount and the time deviation, and the terminal device can use the time advance total amount and the second start receiving time to obtain the second initial transmission time.
  • the embodiment of the present application provides a network device, including: a determining module, configured to determine a first initial receiving time and a first initial sending time, where the first initial receiving time is the first time of the network device The receiving time of the received signal is started on the segment, the first initial sending time is a sending time of the network device starting to send a signal on the second time period, and the sending module is configured to send the indication information to the terminal device, where the indication information is And configured to instruct the terminal device to determine a second initial sending time, where the second initial sending time is determined according to the first initial receiving time and the first initial sending time.
  • the network device determines, by using the first initial receiving time and the first initial sending time, the time taken by the network device to receive the signal and the sending signal, respectively, and the sending signal and the receiving signal of the local device through the network device are respectively used.
  • the time taken may be determined to send the indication information to the terminal device, so that the terminal device may determine the second initial transmission time according to the indication information of the network device, and the second initial transmission time is based on the first initial reception time and the first An initial transmission time is determined.
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the constituent modules of the network device may also perform the steps described in the aforementioned first aspect and various possible implementations, as described above in the first aspect and in various possible implementations. Description.
  • the embodiment of the present application provides a terminal device, including: a first determining module, configured to determine a second initial receiving time, where the second initial receiving time is that the terminal device is in a third time period a receiving time for receiving a signal from the network device, a receiving module, configured to receive the indication information from the network device according to the second initial receiving time, and a second determining module, configured to: according to the second initial receiving time
  • the indication information determines a second initial transmission time, where the second initial transmission time is a transmission time at which the terminal device starts transmitting a signal on a fourth time period.
  • the terminal device first determines the second initial receiving time, and then the terminal device receives the indication information sent by the network device according to the second initial receiving time, and the terminal device may follow the indication information of the network device.
  • the second initial receiving time determines the second initial sending time, and the terminal device can perform the uplink transmission after determining the second initial sending time, thereby avoiding the transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the component modules of the terminal device may also perform the steps described in the foregoing second aspect and various possible implementations, as described in the foregoing second aspect and various possible implementations. Description.
  • the embodiment of the present application further provides a network device, where the network device includes: a processor, a memory, a communication interface, and a bus; the processor, the communication interface, and the memory communicate with each other through the bus; a communication interface for receiving and transmitting data; the memory for storing instructions; the processor for executing the instructions in the memory, performing the method of any of the preceding first aspects.
  • the network device since the network device passes the first initial receiving time and the first initial sending time, the time taken by the network device side to receive the signal and the transmitting signal may be determined, and the sending signal and the receiving end of the network device are received.
  • the time at which the signals are used may determine that the indication information is sent to the terminal device, so that the terminal device may determine the second initial transmission time according to the indication information of the network device, and the second initial transmission time is based on the first initial transmission time. And the first initial transmission time is determined.
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the embodiment of the present application further provides a terminal device, where the terminal device includes: a processor, a memory, a communication interface, and a bus; the processor, the communication interface, and the memory communicate with each other through the bus; a communication interface for receiving and transmitting data; the memory for storing instructions; the processor for executing the instructions in the memory, performing the method of any of the preceding second aspects.
  • the terminal device first determines the second initial receiving time, and then the terminal device receives the indication information sent by the network device according to the second initial receiving time, and the terminal device may follow the indication information of the network device.
  • the second initial receiving time determines the second initial sending time, and the terminal device can perform the uplink transmission after determining the second initial sending time, thereby avoiding the transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • a seventh aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • An eighth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic block diagram of a method for sending information according to an embodiment of the present application
  • FIG. 3 is a schematic block diagram of a method for receiving information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of timing relationship between an uplink subframe and a downlink subframe according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of timing relationship between another uplink subframe and a downlink subframe according to an embodiment of the present disclosure
  • FIG. 5-a is a schematic diagram of timing relationship between another uplink subframe and a downlink subframe according to an embodiment of the present disclosure
  • FIG. 5-b is a schematic diagram of timing relationship between another uplink subframe and a downlink subframe according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • 6-b is a schematic structural diagram of a sending module according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7-b is a schematic structural diagram of a second determining module according to an embodiment of the present disclosure.
  • FIG. 7-c is a schematic structural diagram of another second determining module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • the embodiment of the present application provides a method for sending information, a receiving method, a network device, and a terminal device, which are used to enable the terminal device to determine the correct time for uplink transmission and avoid uplink transmission failure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system in the embodiment of the present application may include: a network device and a terminal device, where the network device refers to a party used to manage communication resources and provide communication services during the communication process, for example, the network device may be a base station, or may be provided.
  • a device such as a server for communication service
  • the terminal device refers to a party that uses communication resources in a communication process, and for example, the terminal device may be a mobile phone terminal, an intelligent mobile terminal, or the like.
  • the communication system described in the embodiment of the present application is mainly a wireless communication system, and in particular, a communication system in which the downlink frequency band and the uplink frequency band are not synchronized.
  • Timing in the embodiment of the present application means according to a prescribed time.
  • the network device uses the downlink subframe n to transmit a downlink signal to the terminal device in the first frequency band, and the network device uses the uplink subframe n to receive the uplink signal sent by the terminal device in the second frequency band, where the network device is The transmission timing on the first frequency band is not synchronized with the reception timing on the second frequency band.
  • the uplink and downlink transmission between the network device and the terminal device can be completed by the LTE system or the NR system.
  • the uplink received subframe number cannot be obtained according to the manner in the uplink and downlink synchronization scenario in the prior art.
  • the terminal device needs to determine the frame, subframe, and time slot number sent by the uplink to meet the requirements of scheduling and feedback timing, and the downlink transmission and the uplink reception of the network device are deviated.
  • the size of the offset cannot be determined, so that the terminal device cannot determine the number of the uplink subframe according to the number of the downlink subframe.
  • a method for transmitting information and a method for receiving information in the embodiment of the present application are proposed, and then detailed descriptions are respectively made from the network device side and the terminal device side, respectively.
  • an embodiment of a method for sending information according to an embodiment of the present application may be applied to a network device side in a communication system, where the method may include:
  • the network device determines a first initial receiving time and a first initial sending time, where the first initial receiving time is a receiving time of the network device starting to receive the signal in the first time period, where the first initial sending time is the second time of the network device.
  • the network device and the terminal device may use a wireless communication resource to send and receive signals, and the network device determines to start receiving the received signal in the first time period, and the network device starts to receive the terminal device to send in the first time period.
  • the time at which the reception starts at this time is defined as the “first initial reception time”, and the first initial reception time is the reception timing of the network device in the first time period, which is used in the embodiment of the present application.
  • the term "timing" refers to the time at which transmission is started or reception is started.
  • the first time period refers to a certain time period in which the network device receives the signal, and the first time period in the embodiment of the present application may be any time period in which the network device performs uplink transmission.
  • the network device may determine, according to the first initial receiving time, the network device may determine the sending time of the sending signal on the second time period, and the network device starts to send the downlink to the terminal device in the second time period.
  • the time at which the transmission starts at this time is defined as the “first initial transmission time”
  • the first initial transmission time is the transmission timing of the network device in the second time period, which is described in the embodiment of the present application.
  • “Timing” refers to the time at which to start or start receiving.
  • the second time period refers to a certain time period in which the network device sends a signal, and does not need to specifically refer to any time period.
  • the network device may determine the first initial receiving time and the first initial sending time, and the network device may determine to receive the signal on the network device side by using the first initial receiving time and the first initial sending time. And the time taken by the transmitting signal, the time taken by the transmitting signal and the receiving signal of the local end of the network device can determine how to indicate to the terminal device, so that the terminal device can determine the second initial sending time according to the indication of the network device.
  • the second initial transmission time is a transmission time at which the terminal device starts transmitting a signal on the fourth time period.
  • the time length of the time period may be one subframe or one time slot, where one subframe may include one or more time slots, for different
  • the subframe may also include a different number of time slots.
  • the first time period includes an uplink subframe
  • the second time period includes a downlink subframe
  • the uplink subframe and the downlink subframe have the same subframe number
  • the first time period includes an uplink time slot
  • the second time period includes a downlink time slot
  • the uplink time slot and the downlink time slot have the same time slot number.
  • the first time period may be an uplink subframe, that is, the receiving time of the network device starting to receive the signal in the uplink subframe is defined as the first initial receiving time
  • the second time period may be the downlink.
  • the subframe that is, the transmission time at which the network device starts transmitting the signal on the downlink subframe
  • the first time segment and the second time segment satisfy the following relationship: the uplink subframe and the downlink subframe have the same subframe. Numbering. Therefore, the scenario applied in step 201 may be: when the uplink subframe and the downlink subframe have the same subframe number, how to determine the first initial reception time on the uplink subframe and determine the first start on the downlink subframe. Send time.
  • one subframe includes at least one time slot, that is, some subframes may include multiple time slots, for example, the number of time slots included in one downlink subframe and one uplink.
  • the number of slots included in a subframe may vary.
  • one time slot may also be a time period
  • the first time period may be an uplink time slot, that is, a receiving time at which the network device starts receiving signals on the uplink time slot is defined as a first initial receiving time
  • the second time period may be a downlink time slot, that is, a transmission time at which the network device starts transmitting a signal on the downlink time slot is defined as a first initial transmission time
  • the first time period and the second time period satisfy the following relationship: an uplink time slot and The downlink time slots have the same time slot number.
  • the scenario applied in step 201 may be: when the uplink time slot and the downlink time slot have the same time slot number, how to determine the first initial reception time on the uplink time slot and determine the first start time on the downlink time slot. Send time.
  • the relationship between the first time period and the second time period satisfies the relationship of the same time slot number, and the network device can acquire the reception timing of the uplink time slot having the same time slot number and the transmission timing of the downlink time slot.
  • the uplink subframe and the downlink subframe belong to one or two frames with the same number, or
  • the uplink time slot and the downlink time slot belong to one or two frames of the same number.
  • the uplink subframe and the downlink subframe may belong to the same frame.
  • one frame may include an uplink subframe used by the uplink transmission signal and a downlink subframe used by the downlink transmission signal, and The uplink subframe and the downlink subframe may belong to two frames, but the two frames have the same frame number.
  • the uplink subframe belongs to the uplink frame
  • the downlink subframe belongs to the downlink frame, but the uplink frame and the downlink frame.
  • Frames have the same frame number.
  • the uplink time slot and the downlink time slot may belong to one frame of the same number, or may belong to two frames of the same number.
  • the relationship between the first initial receiving time and the first initial sending time determined by the network device may be as follows: the first initial receiving time is advanced or equal to the first initial sending time, and the first initial sending is performed. The difference between the time and the first initial receiving time is greater than or equal to 0, and is less than the length of time of the first time slot or the first subframe, where the first time slot includes: a minimum subcarrier spacing corresponding to the network device transmitting or receiving the signal. The time slot, or the time slot corresponding to the 15KHz subcarrier interval; the time length of the first subframe is 1 millisecond (millisecond, ms).
  • the network device may first select a time earlier on the time axis from the first initial receiving time and the first initial sending time, if the first initial receiving time is earlier than or equal to the first initial sending time, that is, the network device is Receiving the signal on the first time period starts transmitting the signal no later than the second time period. If the first initial reception time is equal to the first initial transmission time, it indicates that the network device starts to receive the signal on the first time period and starts transmitting the signal on the second time period simultaneously.
  • the network device may obtain the first time advance amount according to the first initial sending time minus the first initial receiving time, where the first time advance quantity ranges from greater than or equal to 0, and is smaller than the first time slot or the first subframe. Length of time.
  • the first time advance quantity may represent a difference between the first start sending time and the first start receiving time, and the network device may determine, according to the first time advance quantity, a difference value of the following value range: the difference is greater than or equal to 0, and Less than the length of time of the first time slot or the first subframe.
  • the difference between the first initial transmission time and the first initial reception time is greater than or equal to 0, and is less than the time of the first time slot or the first subframe.
  • the length is such that the network device can determine to send the indication information to the terminal device according to the foregoing relationship between the first initial transmission time and the first initial reception time.
  • the first time slot and the first subframe may be implemented in multiple manners.
  • the first time slot may include: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or The time slot corresponding to the 15KHz subcarrier spacing.
  • the first time slot may be a time slot corresponding to a minimum subcarrier interval supported by the wireless communication system.
  • the minimum subcarrier used by the network device to transmit or receive signals is also different, for example, The minimum subcarrier may be 15 kHz.
  • the minimum subcarrier used by the network device to transmit or receive a signal may also take a smaller frequency value, which is not limited herein.
  • the time length of the first subframe takes a value of 1 ms. It can be understood that the value of the first subframe can also be updated according to the evolution of the wireless communication system.
  • the relationship between the first initial reception time and the first initial transmission time determined by the network device may be as follows: the first initial transmission time is advanced or equal to the first initial reception time, and the first start is The difference between the receiving time and the first initial sending time is greater than or equal to 0, and is less than the length of time of the first time slot or the first subframe, where the first time slot includes: a minimum subcarrier spacing used by the network device to send or receive signals.
  • the corresponding time slot, or the time slot corresponding to the 15KHz subcarrier interval; the time length of the first subframe is 1 ms.
  • the network device may first select a time earlier on the time axis from the first initial receiving time and the first initial sending time, if the first initial sending time is earlier or equal to the first initial receiving time, that is, the network device is The transmission of the signal on the second time period begins no later than the start of the reception of the signal over the first time period. If the first initial transmission time is equal to the first initial reception time, it indicates that the network device starts transmitting the signal on the second time period and starts to receive the signal on the first time period. The network device may obtain a second timing advance according to the first initial receiving time minus the first initial sending time, where the second timing advance may be greater than or equal to 0, and smaller than the first slot or the first subframe. Length of time.
  • the second timing advance may indicate a difference between the first initial receiving time and the first initial sending time, and the network device may determine, according to the second timing advance, a difference of the following value ranges: the difference is greater than or equal to 0, and Less than the length of time of the first time slot or the first subframe.
  • the difference between the first initial reception time and the first initial transmission time is greater than or equal to 0, and is smaller than the time of the first time slot or the first subframe.
  • the length is such that the network device can determine to send the indication information to the terminal device according to the foregoing relationship between the first initial reception time and the first initial transmission time.
  • the first time slot and the first subframe may be implemented in multiple manners.
  • the first time slot may include: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or The time slot corresponding to the 15KHz subcarrier spacing.
  • the first time slot may be a time slot corresponding to a minimum subcarrier interval supported by the wireless communication system.
  • the minimum subcarrier used by the network device to transmit or receive signals is also different, for example, The minimum subcarrier may be 15 kHz.
  • the minimum subcarrier used by the network device to transmit or receive a signal may also take a smaller frequency value, which is not limited herein.
  • the time length of the first subframe may take a value of 1 ms. Not limited, the value of the first subframe may be continuously updated according to the evolution of the wireless communication system.
  • the relationship between the first initial receiving time and the first initial sending time determined by the network device may be as follows: a difference between the first initial sending time and the first initial receiving time is less than or equal to The threshold value and the difference is greater than the value obtained after the threshold is inverted. Alternatively, the difference is less than the threshold value, and the difference is greater than or equal to the value obtained by inverting the threshold value.
  • the network device first determines a difference between the first initial sending time and the first initial receiving time, where the difference has two implementation manners: 1) the difference is less than or equal to the threshold, and the difference is greater than the threshold. The value obtained afterwards, 2) the difference is less than the threshold value, and the difference is greater than or equal to the value obtained by inverting the threshold value.
  • the following is used to indicate the threshold value by the letter a, the value obtained by inverting the threshold value by -a, and the difference between the first initial transmission time and the first initial reception time by the letter b, then a and b are satisfied.
  • the specific value of the threshold value may be multiple, for example, the value of the threshold value may be less than the time length value of the first time slot, or less than the time of the first subframe. Length value.
  • the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time slot corresponding to a 15KHz subcarrier interval; the first subframe has a time length of 1 ms.
  • the value of the threshold may be half of the length of the first time slot or half of the time length of the first subframe.
  • the value of the foregoing threshold may be the length of the first time slot. One-third of the time, or a quarter of the length of the first subframe, etc., and not limited, the value of the foregoing threshold value may be continuously updated according to the evolution of the wireless communication system.
  • the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device determines the second initial transmission time, and the second initial transmission time is determined according to the first initial reception time and the first initial transmission time.
  • the network device may send the indication information to the terminal device, for example, the network device may send the indication information to the terminal device by using a downlink.
  • the indication information may be used to indicate that the terminal device determines the second initial sending time, and the indication information that is sent by the network device is related to the first initial receiving time and the first initial sending time, and the network device may receive the time according to the first start.
  • the first initial transmission time can determine the second initial transmission time.
  • the second initial transmission time may be defined as a transmission time at which the terminal device starts transmitting a signal on the fourth time period.
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the content indicated by the indication information is determined by a time offset, the value of the time offset being equal to the difference between the first initial reception time and the first initial transmission time.
  • the content indicated by the indication information sent by the network device may be determined by the network device according to the time offset, where the value of the time offset is equal to the difference between the first initial receiving time and the first initial sending time, for example, if the first The initial transmission time is advanced or equal to the first initial reception time, and the time deviation may be equal to the first initial reception time minus the first initial transmission time. If the first initial reception time is advanced or equal to the first initial transmission time, the time deviation may be It is equal to the first initial transmission time minus the first initial reception time.
  • the content indicated by the indication information determined by the network device is determined by the time offset, so that the network device can directly or indirectly indicate the time deviation to the terminal device, and the terminal device can correctly determine the second initial sending time according to the content indicated by the network device. .
  • the step 202 the network device sends the indication information to the terminal device, including:
  • A1 The network device sends the indication information carrying the time offset to the terminal device, where the value of the time offset is equal to the difference between the first initial reception time and the first initial transmission time.
  • the network device may add a new field to the indication information to carry the time offset.
  • the network device may also use the original field in the indication information to carry the time offset.
  • the original reserved field in the indication information may be used to carry the time.
  • the original data carried in the original field in the indication information may be replaced with the time deviation, which is not limited herein.
  • the network device sends the indication information carrying the time deviation to the terminal device, so that the terminal device can parse the time deviation from the indication information, and the terminal device can use the time offset to obtain the second initial transmission time.
  • the step 202 the network device sends the indication information to the terminal device, including:
  • the network device determines a timing advance amount obtained when the terminal device accesses the cell of the network device.
  • the network device sends, to the terminal device, indication information that carries a total amount of time advancement, where the total amount of time advance includes: a sum of the timing advance amount and the time offset, and the value of the time offset is equal to the first initial receiving time and the first initial sending time. The difference.
  • the value of the timing advance is related to the distance between the terminal device and the network device.
  • the timing advance may be obtained when the terminal device accesses the cell of the network device, and the network device may access the terminal device.
  • the measurement process is performed in the cell, so that the timing advance amount can be obtained, and the network device can determine the total amount of time advancement by the timing advance amount and the time deviation, and the total amount of the time advance includes: a sum of the timing advance amount and the time deviation, for example, the time advance
  • the total amount may be equal to the sum of the timing advance amount and the time deviation, or the sum of the timing advance amount and the time deviation may be calculated, and then multiplied by a correction amount to obtain the total amount of time advance, which is not limited herein.
  • the network device may send, to the terminal device, indication information that carries the total amount of time advance. For example, the network device may add a new field in the indication information to carry the total amount of time advancement, the network device.
  • the original field in the indication information may also be used to carry the total amount of time advance.
  • the original reserved field in the indication information may be used to carry the total amount of advance time, or the original data carried in the original field in the indication information may be used. Replace with the total amount of time advance.
  • the network device sends the indication information carrying the total amount of time advancement to the terminal device, so that the terminal device can parse the total amount of time advancement from the indication information, and the terminal device can use the total amount of time advance to obtain the second initial transmission time.
  • the method for sending information provided by the embodiment of the present application may be performed in the implementation scenario of the foregoing step A1.
  • the network device determines a timing advance amount obtained when the terminal device accesses the cell of the network device.
  • the network device sends, to the terminal device, second indication information that carries a timing advance.
  • the indication information that the network device sends the time deviation in the step A1 may be defined as the first indication information, and the network device may perform the measurement process when the terminal device accesses the cell, so that the timing advance amount can be obtained, and the network device sends the terminal information to the terminal.
  • the device sends the second indication information that carries the timing advance, so that the terminal device receives two indication information from the network device, and the terminal device can parse the time offset and the timing advance from the two indication information by using the two indication information.
  • the terminal device can use the time offset and the timing advance to obtain the second initial transmission time.
  • the method for sending the information provided by the embodiment of the present application may include:
  • the network device determines a time offset according to the first initial receiving time and the first initial sending time.
  • the network device can determine the first initial receiving time and the first initial sending time by using the step 201, and the network device can obtain the difference between the first initial receiving time and the first initial sending time by performing the subtraction, where the difference is the time. deviation.
  • the network device may carry the time offset in the indication information, or the content indicated by the indication information sent by the network device is determined by the time offset.
  • the network device determines the first initial receiving time and the first initial sending time, where the first initial receiving time is a receiving time at which the network device starts receiving signals in the first time period,
  • the first initial sending time is a sending time of the network device starting to send a signal on the second time period, and the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device determines the second initial sending time, and the second initial sending The time is determined according to the first initial reception time and the first initial transmission time.
  • the network device determines, by using the first initial receiving time and the first initial sending time, the time taken by the network device to receive the signal and the sending signal, and the time taken by the local transmitting signal and the receiving signal of the network device can determine the direction.
  • the terminal device sends the indication information, so that the terminal device can determine the second initial transmission time according to the indication information of the network device, and the second initial transmission time is determined according to the first initial reception time and the first initial transmission time. .
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the foregoing embodiment introduces the method for transmitting information provided by the embodiment of the present application from the network device side.
  • the method for receiving information provided by the embodiment of the present application is introduced from the terminal device side. Referring to FIG. 3, the information is received.
  • Methods include:
  • the terminal device determines a second initial receiving time, where the second initial receiving time is a receiving time at which the terminal device starts receiving signals from the network device in the third time period.
  • the network device and the terminal device may use the wireless communication resource to send and receive signals, and the terminal device first determines the receiving time of the received signal on the third time period, and the terminal device starts to receive the network device in the third time period.
  • the downlink signal sent is defined as the “second initial receiving time”, and the second initial receiving time is the receiving timing of the terminal device in the third time period.
  • the "timing" described in the example refers to the time at which transmission is started or reception is started.
  • the third time period refers to a certain time period in which the terminal device receives the signal, and the third time period in the embodiment of the present application may be any time period in which the terminal device performs downlink transmission.
  • the time length of the time period may be one subframe or one time slot, where one subframe may include one or more time slots, for different
  • the subframe may also include a different number of time slots.
  • the third time period includes a downlink subframe
  • the fourth time period includes an uplink subframe
  • the uplink subframe and the downlink subframe have the same subframe number
  • the third time period includes a downlink time slot
  • the fourth time period includes an uplink time slot
  • the uplink time slot and the downlink time slot have the same time slot number.
  • the one time frame is a time period
  • the third time period may be a downlink subframe, that is, the receiving time of the terminal device starting to receive the signal on the downlink subframe is defined as the second initial receiving time
  • the fourth time period may be
  • the uplink subframe that is, the transmission time at which the terminal device starts transmitting the signal on the uplink subframe
  • the scenario applied in step 201 may be: when the uplink subframe and the downlink subframe have the same subframe number, how to determine the first initial reception time on the downlink subframe.
  • one subframe includes at least one time slot, that is, some subframes may include multiple time slots, for example, the number of time slots included in one downlink subframe and one uplink. The number of slots included in a subframe may vary.
  • one time slot may also be a time period
  • the third time period may be a downlink time slot
  • the fourth time period may be an uplink time slot, between the third time period and the fourth time period. If the relationship with the same slot number is satisfied, the terminal device may first obtain the transmission timing of the downlink time slot, and then determine the transmission timing of the uplink subframe with the same subframe number as the downlink subframe in combination with the indication information sent by the network device.
  • the uplink subframe and the downlink subframe belong to one or two frames with the same number, or
  • the uplink time slot and the downlink time slot belong to one or two frames of the same number.
  • the uplink subframe and the downlink subframe may belong to the same frame.
  • one frame may include an uplink subframe used by the uplink transmission signal and a downlink subframe used by the downlink transmission signal, and The uplink subframe and the downlink subframe may belong to two frames, but the two frames have the same frame number.
  • the uplink subframe belongs to the uplink frame
  • the downlink subframe belongs to the downlink frame, but the uplink frame and the downlink frame.
  • Frames have the same frame number.
  • the uplink time slot and the downlink time slot may belong to one frame of the same number, or may belong to two frames of the same number.
  • the step 301 determines, by the terminal device, the second initial receiving time, including:
  • the terminal device determines a second initial reception time according to the synchronization signal received from the network device.
  • the terminal device can receive the synchronization signal sent by the network device, and the terminal device determines the second initial reception time according to the synchronization signal, and the synchronization signal can be transmitted in different manners between the network device and the terminal device, for example, the network device can The terminal device broadcasts a synchronization signal.
  • the terminal device receives the indication information from the network device according to the second initial receiving time.
  • the terminal device may use the second initial receiving time to receive the indication information sent by the network device, where the terminal device may parse the indication information, and obtain the indication.
  • the indication content carried by the information may be used to determine the second initial receiving time.
  • the terminal device determines a second initial sending time according to the second initial receiving time and the indication information, where the second initial sending time is a sending time that the terminal device starts to send a signal on the fourth time period.
  • the terminal device determines the second initial sending time according to the second initial receiving time and the indication information.
  • the second initial sending time is a sending time at which the terminal device starts transmitting a signal on the fourth time period.
  • the indication information sent by the indication information of the network device is related to the first initial reception time and the first initial transmission time, and the indication information sent by the terminal device by using the network device, and the second initial reception time determined by the terminal device itself may be determined.
  • the second initial transmission time is related to the first initial reception time and the first initial transmission time, and the indication information sent by the terminal device by using the network device, and the second initial reception time determined by the terminal device itself may be determined.
  • the terminal device uses the second initial receiving time as the starting point of the time axis, and determines that the time length of the time axis is offset according to the indication information sent by the network device, so that the terminal device can send the signal in the fourth time period.
  • the fourth initial transmission time can be obtained.
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the step 303 determines, by the terminal device, the second initial sending time according to the second initial receiving time and the indication information, including:
  • the terminal device determines a time deviation from the indication information, where the value of the time deviation is equal to the difference between the first initial reception time and the first initial transmission time, and the first initial reception time is that the network device starts to receive in the first time period.
  • the receiving time of the signal, the first initial sending time is a sending time of the network device starting to send a signal on the second time period;
  • the terminal device determines a second initial sending time according to the second initial receiving time and the time offset.
  • the network device sends the indication information carrying the time deviation to the terminal device, so that the terminal device can parse the time deviation from the indication information, and the terminal device can use the time offset and the second initial reception time to obtain the second initial transmission.
  • Time for example, the terminal device may receive the timing advance amount sent by the terminal device when accessing the cell of the network device, the terminal device stores the timing advance amount, and the terminal device uses the second initial receiving time as the time axis starting point. Determining, according to the indication information sent by the network device, that the time length offset from the start of the time axis is the foregoing time deviation, and then shifting the timing advance amount, the specific time for the terminal device to send the signal on the fourth time period is obtained. That is, the fourth initial sending time can be obtained, and the terminal device does not limit the parsing manner of each field in the indication information.
  • the first initial receiving time is advanced or equal to the first initial sending time, and the difference between the first initial sending time and the first initial receiving time is greater than or equal to 0, and is less than the first time slot or the first time.
  • the time length of a subframe includes: a time slot corresponding to a minimum subcarrier interval used by the network device to transmit or receive a signal, or a time slot corresponding to a 15 kHz subcarrier interval; a time length of the first subframe is 1 ms.
  • the network device may first select a time earlier on the time axis from the first initial receiving time and the first initial sending time, if the first initial receiving time is earlier than or equal to the first initial sending time, that is, the network device is Receiving the signal on the first time period starts transmitting the signal no later than the second time period. If the first initial reception time is equal to the first initial transmission time, it indicates that the network device starts to receive the signal on the first time period and starts transmitting the signal on the second time period simultaneously.
  • the network device may obtain the first time advance amount according to the first initial sending time minus the first initial receiving time, where the first time advance quantity ranges from greater than or equal to 0, and is smaller than the first time slot or the first subframe. Length of time.
  • the first time advance quantity may represent a difference between the first start sending time and the first start receiving time, and the network device may determine, according to the first time advance quantity, a difference value of the following value range: the difference is greater than or equal to 0, and Less than the length of time of the first time slot or the first subframe.
  • the difference between the first initial transmission time and the first initial reception time is greater than or equal to 0, and is less than the time of the first time slot or the first subframe.
  • the length is such that the network device can determine to send the indication information to the terminal device according to the foregoing relationship between the first initial transmission time and the first initial reception time.
  • the first time slot and the first subframe may be implemented in multiple manners.
  • the first time slot may include: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or The time slot corresponding to the 15KHz subcarrier spacing.
  • the first time slot may be a time slot corresponding to a minimum subcarrier interval supported by the wireless communication system.
  • the minimum subcarrier used by the network device to transmit or receive signals is also different, for example, The minimum subcarrier may be 15 kHz.
  • the minimum subcarrier used by the network device to transmit or receive a signal may also take a smaller frequency value, which is not limited herein.
  • the time length of the first subframe takes a value of 1 ms. It can be understood that the value of the first subframe can also be updated according to the evolution of the wireless communication system.
  • the first initial transmission time is earlier than or equal to the first initial reception time, and the difference between the first initial reception time and the first initial transmission time is greater than or equal to 0, and is less than the first time slot or the first time.
  • the time length of a subframe includes: a time slot corresponding to a minimum subcarrier interval used by the network device to transmit or receive a signal, or a time slot corresponding to a 15 kHz subcarrier interval; a time length of the first subframe is 1 ms.
  • the difference between the first initial transmission time and the first initial reception time is less than or equal to a preset threshold, and the difference is greater than a value obtained by inverting the threshold; or, the difference The value is less than the threshold and the difference is greater than or equal to the value obtained by inverting the threshold.
  • the first time period includes an uplink subframe
  • the second time period includes a downlink subframe
  • the uplink subframe and the downlink subframe have the same subframe number
  • the time period includes an uplink time slot
  • the second time period includes a downlink time slot
  • the uplink time slot and the downlink time slot have the same time slot number
  • the uplink subframe and the downlink subframe belong to one or two frames with the same number, or the uplink time slot and the downlink time slot belong to one or two frames with the same number.
  • the step 303 determines, by the terminal device, the second initial sending time according to the second initial receiving time and the indication information, including:
  • the terminal device determines the total amount of time advancement from the indication information
  • the terminal device determines a second initial sending time according to the second initial receiving time and the total amount of time advance.
  • the network device may send the indication information carrying the total amount of time advancement to the terminal device, so that the terminal device can obtain the total amount of time advance by analyzing the indication information, which is obtained by the foregoing embodiment.
  • the total amount of time advance includes: the sum of the timing advance amount and the time deviation.
  • the terminal device can obtain the second initial transmission time by using the total amount of time advance and the second initial reception time.
  • the manner in which the terminal device parses the respective fields of the foregoing indication information is not limited.
  • the method for receiving information provided by the embodiment of the present application may further include the following steps:
  • the terminal device receives the second indication information sent by the network device.
  • the terminal device acquires a timing advance amount from the second indication information.
  • the network device may perform a measurement process when the terminal device is connected to the cell, so that the timing advance amount may be obtained, and the network device sends the second indication information that carries the timing advance amount to the terminal device, so that the terminal device receives the information from the network device.
  • the second indication information by using the second indication information, the terminal device can parse the timing advance amount, and the terminal device can use the time offset and the timing advance amount to obtain the second initial transmission time.
  • the step 303 determines, by the terminal device, the second initial sending time according to the second initial receiving time and the first indication information, including:
  • the terminal device determines a time offset from the first indication information.
  • the terminal device determines a second initial sending time according to the second initial receiving time and time deviation and the timing advance.
  • the distance between the terminal device and the network device is very close, for example, when the terminal device is in the cell center region, the distance between the terminal device and the network device approaches 0, and there is no timing between the terminal device and the network device.
  • the terminal device may be according to the second The initial reception time and time deviation and the timing advance amount determine the second initial transmission time, and the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission caused by the inability to determine the correct time of the uplink transmission. failure.
  • the terminal device first determines the second initial receiving time, and then the terminal device receives the indication information sent by the network device according to the second initial receiving time, and the terminal device may follow the network device.
  • the indication information and the second initial reception time determine the second initial transmission time, and the terminal device can perform the uplink transmission after determining the second initial transmission time, thereby avoiding the transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the embodiment of the present application is mainly applied to a wireless communication system, and in particular, a communication system in which a downlink frequency band and an uplink frequency band are not synchronized.
  • the network device sends a downlink signal to the terminal device in the first frequency band, and the network device receives the uplink signal sent by the terminal device in the second frequency band, and the sending timing of the network device in the first frequency band is not synchronized with the receiving timing in the second frequency band.
  • the receiving timing of the network device in the second frequency band may be different from the sending timing of the terminal device in the second frequency band, because the communication delay between the terminal device and the network device is considered, and the network device side and the terminal side are considered. The timing is different, so the transmission timing of the terminal device is always ahead of the reception timing of the network device.
  • the first time frame is specifically the first uplink subframe
  • the second time segment is specifically the first downlink subframe
  • the third time segment is specifically the second downlink subframe
  • the fourth time segment is specifically The second uplink subframe.
  • the timing relationship between the downlink subframe and the uplink subframe with the same subframe number is determined, so that the terminal device can determine the uplink subframe with the same number according to the number of the downlink subframe. To meet the requirements of uplink scheduling and feedback timing.
  • the network device first determines a time offset between the first downlink subframe and the first uplink subframe with the same number, and the time offset may also be referred to as “timing deviation”, and subsequent implementation
  • the "time deviation” is taken as an example.
  • the absolute value of the time deviation may be less than the time length of one time slot or one subframe. Taking the time deviation less than one time slot as an example, the smaller the value deviation range is, The fewer bits needed to quantify the time offset, the less the overhead of transmitting indication information by the network device.
  • the network device may send the indication information of the time offset to the terminal device, so that the terminal device can determine, according to the indication information, the transmission timing of the uplink subframe that is the same as the downlink subframe number.
  • the network device can perform the following steps 1-1 and 1-2.
  • the terminal device can perform the following steps 2-1, 2-2, and 2. -3.
  • Step 1-1 The network device determines a time offset between a timing of the first downlink subframe and a timing of the first uplink subframe, where the time offset is the first uplink subframe relative to the first downlink subframe.
  • the time offset of the first downlink subframe is the same as the time offset of the first uplink subframe
  • the frame number of the first downlink subframe is the same as the subframe number of the first uplink subframe. The same is true.
  • the timing of the first downlink subframe should be understood as the timing at which the network device sends a signal on the first downlink subframe
  • the timing of the first uplink subframe should be understood as The timing at which the network device receives the signal on the first uplink subframe.
  • the time offset of the first uplink subframe relative to the first downlink subframe is greater than or equal to 0, and is less than the time length of one time slot or one subframe, and the time deviation is less than one time slot.
  • the uplink subframe n is advanced to the downlink subframe n, and the uplink subframe n and the downlink subframe n have the same subframe number n, and all belong to the same A frame, one subframe may include one or more time slots, and one subframe in the prior art includes only two time slots.
  • one subframe may include one time slot and There are more than 2 time slots, and the number of time slots included in one downlink subframe may be different from the number of time slots included in one uplink subframe.
  • the number of slots included in the uplink subframe is fixed, and the number of subframes included in the downlink subframe may be the same as or different from that of the uplink subframe.
  • the uplink subframe n or the downlink subframe n in FIG. 4-a includes Two time slots (slot 0 and time slot 1) are taken as an example.
  • the above-mentioned row subframe n or downlink subframe n includes one slot (slot 0) as an example, then the uplink subframe and The downlink subframes are not synchronized, so there is a time offset.
  • the time offset may be greater than or equal to 0 and less than a time length of one subframe.
  • the length of one subframe may be 1 ms, and the length of the slot has multiple values.
  • the time offset may be greater than or equal to 0, and less than the length of time of one uplink time slot.
  • a time offset of the first downlink subframe relative to the first uplink subframe is greater than 0 equal to 0, and is less than a time slot or a time length of one subframe, where the time offset is less than one time slot.
  • the downlink subframe n is advanced in the uplink subframe n, and the uplink subframe n and the downlink subframe n have the same subframe number n, and both belong to
  • one subframe may include one or more time slots, and one subframe in the prior art includes only two time slots.
  • one subframe may include one time.
  • the slot has more than 2 slots, and the number of slots included in one downlink subframe may be different from the number of slots included in one uplink subframe.
  • the number of slots included in the uplink subframe is fixed, and the number of subframes included in the downlink subframe may be the same as or different from that in the uplink subframe.
  • the uplink subframe n or the downlink subframe n in FIG. 5-a includes Two time slots (slot 0 and time slot 1) are taken as an example.
  • the above-mentioned row subframe n or downlink subframe n includes one slot (slot 0) as an example, then the uplink subframe and The downlink subframes are not synchronized, so there is a time offset.
  • the time offset may be greater than or equal to 0 and less than a time length of one subframe.
  • the time offset may be greater than or equal to 0 and less than a length of time of one uplink time slot.
  • a time offset of the first uplink subframe relative to the first downlink subframe is greater than -a and less than or equal to a, where a>0, where a is a time slot or a time length of one subframe Half of it. Or the time deviation is greater than or equal to -a and less than a. It should be noted that when the time offset is greater than 0, the timing of the first uplink subframe is earlier than the timing of the first downlink subframe. When the time offset is less than 0, it should be understood that the first uplink subframe is relative to the first The timing of a downlink subframe is delayed.
  • Step 1-2 The network device sends first indication information to the terminal device, where the first indication information indicates the time offset or a first parameter related to the time offset.
  • a possible implementation manner is that the first indication information indicates a value of the time offset.
  • the first indication information indicates a sum of the time deviation (denoted as TA1) and the second timing advance amount (denoted as TA2), that is, the sum of the TA1 and the TA2 is the first parameter.
  • a possible way of the embodiment of the present application is that the terminal device can only know the first parameter, which is the sum of the time offset and the timing advance (labeled TA2). Another possible way is that the terminal device can know the time deviation. At this time, it is not limited whether the terminal device can know the timing advance amount.
  • the first parameter is a value obtained by calculating the time deviation and the timing advance amount, and the first parameter is exemplified by the sum of the time deviation and the second timing advance amount.
  • the network device may send the indication information of the timing advance amount to the terminal device, where the value of the timing advance amount is related to the distance between the terminal device and the network device.
  • the timing advance in the LTE system, the base station sends a timing advance (ie, N TA ) to the terminal device through the high layer signaling, and the value range of the parameter is [0, 4096] or [0, 20512], and the terminal device
  • the second timing advance may be determined according to N TA as N TA ⁇ Ts, where Ts represents the sampling time interval of the signal in the system. For example, when the terminal device is in the cell center region, i.e.
  • N TA transmitted from the base station to the terminal device can take the value 0 from the base station to the timing advance value of zero; when the terminal device is in cell the edge, i.e., the distance from the base station tends cell radius, N TA transmitted from the base station to the terminal device may be a value of 4096, so that the second timing advance value of 4096 ⁇ Ts.
  • the first indication information may indicate TA1+TA2.
  • Step 2-1 The terminal device determines the timing of the second downlink subframe.
  • the terminal device receives the synchronization signal sent by the network device, and the terminal device determines the timing of the first downlink subframe according to the synchronization signal.
  • the timing of the second downlink subframe should be understood as the timing at which the terminal device receives the signal on the second downlink subframe
  • the timing of the second uplink subframe should be understood as the terminal device. The timing at which the signal is transmitted on the second uplink subframe.
  • Step 2-2 The terminal device receives the first indication information from the network device, where the first indication information indicates a time deviation, or a first parameter related to the time deviation, where the time deviation is the first uplink
  • the subframe numbers of the subframes are the same and the frame numbers to which they belong are also the same.
  • the time deviation is the same as that in the specific implementation method of step 1-1, and details are not described herein again.
  • Step 2-3 The terminal device determines the timing of the second uplink subframe according to the timing of the second downlink subframe and the time offset indicated by the first indication information.
  • the network device can determine the time offset of the downlink subframe and the uplink subframe with the same number in the scenario that the downlink frequency band and the uplink frequency band are out of synchronization, and the network device notifies the terminal of the time offset.
  • the device enables the terminal device to correctly determine the timing of the uplink subframe to ensure proper scheduling and feedback timing.
  • the embodiment of the present application is different from the improvement of the prior art: in the prior art, the downlink subframe timing and the uplink subframe timing with the same number are synchronized.
  • the downlink subframe timing and the uplink subframe timing with the same number may be asynchronous, so the timing relationship between the downlink subframe and the uplink subframe is given in this embodiment of the present application. Determine the method.
  • the absolute value of the time offset of the downlink subframe and the uplink subframe with the same number is smaller than the time length of one slot or one subframe, so that the number of bits required for the first indication information may be reduced. Reduce signaling overhead.
  • the network device sends the first indication information indicating the time offset to the terminal device, so that the terminal device can determine the timing of the uplink subframe according to the first indication information.
  • a network device 600 provided by the embodiment of the present application may include: a determining module 601, a sending module 602, where
  • a determining module 601 configured to determine a first initial receiving time and a first initial sending time, where the first initial receiving time is a receiving time at which the network device starts receiving a signal on a first time period, where the first initial sending The time is a sending time at which the network device starts transmitting a signal on the second time period;
  • the sending module 602 is configured to send, to the terminal device, the indication information, where the indication information is used to indicate that the terminal device determines a second initial sending time, and the second initial sending time is based on the first initial receiving time and the The first initial transmission time is determined.
  • the first initial reception time is earlier than or equal to the first initial transmission time, and a difference between the first initial transmission time and the first initial reception time is greater than or equal to 0, And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time corresponding to a 15 kHz subcarrier interval
  • the first subframe has a time length of 1 millisecond ms.
  • the first initial transmission time is earlier than or equal to the first initial reception time, and a difference between the first initial reception time and the first initial transmission time is greater than or equal to 0, And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time corresponding to a 15 kHz subcarrier interval
  • the first subframe has a time length of 1 ms.
  • the difference between the first initial transmission time and the first initial reception time is less than or equal to a preset threshold, and the difference is greater than the threshold. The value obtained afterwards; or,
  • the difference is less than the threshold value, and the difference is greater than or equal to a value obtained by inverting the threshold value.
  • the content indicated by the indication information is determined by a time offset, and the value of the time offset is equal to a difference between the first initial reception time and the first initial transmission time.
  • the sending module 602 is specifically configured to send, to the terminal device, indication information that carries the time offset.
  • the sending module 602 includes:
  • a first determining sub-module 6021 configured to determine a timing advance amount obtained when the terminal device accesses a cell of the network device
  • the first sending sub-module 6022 is configured to send, to the terminal device, indication information that carries a total amount of time advancement, where the total amount of time advance includes: a sum of the timing advance amount and the time offset.
  • the first time period includes an uplink subframe
  • the second time period includes a downlink subframe
  • the uplink subframe and the downlink subframe have the same subframe number, or
  • the first time period includes an uplink time slot
  • the second time period includes a downlink time slot
  • the uplink time slot and the downlink time slot have the same time slot number.
  • the uplink subframe and the downlink subframe belong to one or two frames of the same number, or
  • the uplink time slot and the downlink time slot belong to one or two frames of the same number.
  • the network device determines the first initial receiving time and the first initial sending time, where the first initial receiving time is a receiving time at which the network device starts receiving signals in the first time period,
  • the first initial sending time is a sending time of the network device starting to send a signal on the second time period, and the network device sends the indication information to the terminal device, where the indication information is used to indicate that the terminal device determines the second initial sending time, and the second initial sending The time is determined according to the first initial reception time and the first initial transmission time.
  • the network device determines, by using the first initial receiving time and the first initial sending time, the time taken by the network device to receive the signal and the sending signal, and the time taken by the local transmitting signal and the receiving signal of the network device can determine the direction.
  • the terminal device sends the indication information, so that the terminal device can determine the second initial transmission time according to the indication information of the network device, and the second initial transmission time is determined according to the first initial reception time and the first initial transmission time. .
  • the terminal device can perform uplink transmission after determining the second initial transmission time, thereby avoiding transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • a terminal device 700 may include: a first determining module 701, a receiving module 702, and a second determining module 703, where
  • the first determining module 701 is configured to determine a second initial receiving time, where the second initial receiving time is a receiving time that the terminal device starts to receive a signal from the network device in the third time period;
  • the receiving module 702 is configured to receive indication information from the network device according to the second initial receiving time
  • a second determining module 703 configured to determine, according to the second initial receiving time and the indication information, a second initial sending time, where the second initial sending time is that the terminal device starts in a fourth time period The time at which the transmitted signal was sent.
  • the second determining module 703 includes:
  • a first determining sub-module 7031 configured to determine a time offset from the indication information, where the value of the time offset is equal to a difference between a first initial receiving time and a first initial sending time, and the first initial receiving time Receiving, by the network device, a receiving time of the received signal on the first time period, where the first initial sending time is a sending time of the network device starting to send a signal on the second time period;
  • the second determining submodule 7032 is configured to determine a second initial sending time according to the second initial receiving time and the time offset.
  • the first initial reception time is earlier than or equal to the first initial transmission time, and a difference between the first initial transmission time and the first initial reception time is greater than or equal to 0, And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time corresponding to a 15 kHz subcarrier interval
  • the first subframe has a time length of 1 millisecond ms.
  • the first initial transmission time is earlier than or equal to the first initial reception time, and a difference between the first initial reception time and the first initial transmission time is greater than or equal to 0, And being smaller than a time length of the first time slot or the first subframe, where the first time slot includes: a time slot corresponding to a minimum subcarrier interval used by the network device to send or receive a signal, or a time corresponding to a 15 kHz subcarrier interval
  • the first subframe has a time length of 1 ms.
  • the difference between the first initial transmission time and the first initial reception time is less than or equal to a preset threshold, and the difference is greater than the threshold. The value obtained afterwards; or,
  • the difference is less than the threshold value, and the difference is greater than or equal to a value obtained by inverting the threshold value.
  • the second determining module 703 includes:
  • a third determining submodule 7033 configured to determine a total amount of time advancement from the indication information
  • the fourth determining submodule 7034 is configured to determine a second initial sending time according to the second initial receiving time and the total amount of time advance.
  • the first time period includes an uplink subframe
  • the second time period includes a downlink subframe
  • the uplink subframe and the downlink subframe have the same subframe number, or
  • the first time period includes an uplink time slot
  • the second time period includes a downlink time slot
  • the uplink time slot and the downlink time slot have the same time slot number.
  • the uplink subframe and the downlink subframe belong to one or two frames of the same number, or
  • the uplink time slot and the downlink time slot belong to one or two frames of the same number.
  • the terminal device first determines the second initial receiving time, and then the terminal device receives the indication information sent by the network device according to the second initial receiving time, and the terminal device may follow the network device.
  • the indication information and the second initial reception time determine the second initial transmission time, and the terminal device can perform the uplink transmission after determining the second initial transmission time, thereby avoiding the transmission failure caused by the inability to determine the correct time of the uplink transmission.
  • the embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the network device includes: a processor, a memory, a communication interface, and a bus; the processor, the communication interface, and the memory communicate with each other through the bus; a communication interface for receiving and transmitting data; the memory for storing instructions; and the processor for executing the instructions in the memory to perform a method of transmitting the foregoing information.
  • the network device 800 includes: a receiver 801, a transmitter 802, a processor 803, and a memory 804 (wherein the number of processors 803 in the network device 800 can be One or more, one processor in Figure 8 is taken as an example).
  • the communication interface may include a receiver 801 and a transmitter 802.
  • the receiver 801, the transmitter 802, the processor 803, and the memory 804 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 804 can include read only memory and random access memory and provides instructions and data to processor 803. A portion of the memory 804 may also include a non-volatile random access memory (English name: Non-Volatile Random Access Memory, English abbreviation: NVRAM).
  • the memory 804 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 803 controls the operation of the network device 800.
  • the processor 803 may also be referred to as a central processing unit (English name: Central Processing Unit, English abbreviation: CPU).
  • CPU Central Processing Unit
  • each component is coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 803 or implemented by the processor 803.
  • the processor 803 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 803 or an instruction in a form of software.
  • the processor 803 may be a general-purpose processor, a digital signal processor (English name: digital signal processing, English abbreviation: DSP), an application specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), field programmable Gate array (English name: Field-Programmable Gate Array, English abbreviation: FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 804, and processor 803 reads the information in memory 804 and, in conjunction with its hardware, performs the steps of the above method.
  • the receiver 801 can be configured to receive input digital or character information, and to generate signal inputs related to related settings and function control of the network device 800, the transmitter 802 can include a display device such as a display screen, and the transmitter 802 can be used to output through an external interface. Number or character information.
  • the processor 803 is configured to execute a method for sending information executed by the foregoing network device side.
  • the terminal device includes: a processor, a memory, a communication interface, and a bus; the processor, the communication interface, and the memory communicate with each other through the bus; a communication interface for receiving and transmitting data; the memory for storing instructions; and the processor for executing the instructions in the memory to perform the foregoing method of receiving information.
  • the terminal device 900 includes: a receiver 901, a transmitter 902, a processor 903, and a memory 904 (wherein the number of processors 903 in the terminal device 900 may be one. Or more, one processor in Figure 9 is taken as an example).
  • the receiver 901, the transmitter 902, the processor 903, and the memory 904 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 904 can include read only memory and random access memory and provides instructions and data to processor 903. A portion of the memory 904 may also include an NVRAM.
  • the memory 904 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 903 controls the operation of the terminal device 900, which may also be referred to as a CPU.
  • the components of the terminal device 900 are coupled together by a bus system.
  • the bus system may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 903 or implemented by the processor 903.
  • the processor 903 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 903 or an instruction in a form of software.
  • the processor 903 described above may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 904, and processor 903 reads the information in memory 904 and, in conjunction with its hardware, performs the steps of the above method.
  • the processor 903 is configured to execute the foregoing method for receiving information performed by the terminal device.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信息的发送方法、接收方法和网络设备以及终端设备,用于使终端设备确定出上行传输的正确时间,避免上行传输失败。本申请实施例提供一种信息的发送方法,包括:网络设备确定第一起始接收时间和第一起始发送时间,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;所述网络设备向终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二起始发送时间,所述第二起始发送时间根据所述第一起始接收时间和所述第一起始发送时间确定。

Description

一种信息的发送方法、接收方法和网络设备以及终端设备
本申请要求于2017年6月16日提交中国专利局、申请号为201710459305.2、发明名称为“一种信息的发送方法、接收方法和网络设备以及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息的发送方法、接收方法和网络设备以及终端设备。
背景技术
在无线通信系统的发展演进过程中,在6千兆赫(GigaHertz,GHz)以下的频带上可以同时部署第五代移动通信技术(5th-Generation,5G)的新空口(New Radio interface,NR)系统和长期演进(Long Term Evolution,LTE)系统。目前,NR系统最有可能先部署在3.5GHz的频点上,但是考虑到在该频点上NR系统的上行覆盖无法匹配下行覆盖,即下行覆盖的范围明显大于上行覆盖的范围,使得NR系统的上行速率受限。由于LTE系统在1.8GHz的频点上的上下行覆盖是匹配的,因此NR系统的上行链路可以部署在1.8GHz频点的上行频带上,从而可以增强NR系统的上行覆盖,这使得在LTE的上行频带上将同时存在LTE系统和NR系统,即NR系统和LTE系统可以共享一个上行频带。
现有技术中,LTE系统在1.8GHz的频点上往往工作在频分双工(Frequency Division Duplex,FDD)模式,LTE系统下的多个基站之间无法同步,存在有偏差。而对于NR系统,若该NR系统的工作频点为3.5GHz时,需要工作在时分双工(Time Division Duplex,TDD)模式,使得NR系统下的不同基站之间都需要保持时间上的同步,以避免出现小区间的交叉干扰。针对这种场景,对于NR系统下的某一基站,其在下行频带上的发送起始时间与在上行频带上的接收起始时间将出现偏差,并且不同基站之间在时间上的偏差也不尽不同。
为了终端设备能够确定上行发送的帧、子帧和时隙编号,现有技术中对于工作在FDD模式的LTE系统,下行传输和上行传输是同步的,基站和终端设备都将与某个编号(例如编号为n)的下行子帧保持同步的上行子帧确定为相同编号(即编号n)的上行子帧。而对于NR系统和LTE系统共享同一个上行频带的场景,NR系统的下行传输无法与上行传输保持同步,使得终端设备无法按照下行子帧的编号确定出上行子帧的编号。
总上可知,现有技术中至少存在如下技术问题:当下行传输无法与上行传输保持同步时,终端设备无法获取到上行子帧的编号,造成终端设备无法进行上行传输。
发明内容
本申请实施例提供了一种信息的发送方法、接收方法和网络设备以及终端设备,用于使终端设备确定出上行传输的正确时间,避免上行传输失败。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种信息的发送方法,包括:网络设备确定第一起始接 收时间和第一起始发送时间,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;所述网络设备向终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二起始发送时间,所述第二起始发送时间根据所述第一起始接收时间和所述第一起始发送时间确定。在本申请实施例中,由于网络设备通过第一起始接收时间和第一起始发送时间,可以确定在网络设备侧接收信号和发送信号各自采用的时间,通过网络设备本端的发送信号和接收信号各自采用的时间,可以确定向终端设备发送指示信息,以使得终端设备可以按照网络设备的指示信息确定出第二起始发送时间,并且该第二起始发送时间是根据第一起始接收时间和第一起始发送时间确定出来的。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
在本申请的一个可能设计中,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。在本申请的上述实施例中,在第一起始接收时间提前或等于第一起始发送时间的情况下,第一起始发送时间与第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,使得网络设备可以根据第一起始发送时间与第一起始接收时间之间的上述关系确定向终端设备发送指示信息。
在本申请的一个可能设计中,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。在本申请的上述实施例中,在第一起始发送时间提前或等于第一起始接收时间的情况下,第一起始接收时间与第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,使得网络设备可以根据第一起始接收时间与第一起始发送时间之间的上述关系确定向终端设备发送指示信息。
在本申请的一个可能设计中,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于门限值、且所述差值大于所述门限值取反后得到的值;或者,所述差值小于门限值、且所述差值大于或等于所述门限值取反后得到的值。在本申请的上述实施例中,网络设备首先确定第一起始发送时间与第一起始接收时间的差值,该差值具有两种实现方式:1)差值小于或等于门限值、且差值大于门限值取反后得到的值,2)差值小于门限值、且差值大于或等于门限值取反后得到的值。在第一起始发送时间与第一起始接收时间的差值满足上述两种方式的场景下,使得网络设备可以根据第一起始接收时间与第一起始发送时间之间的上述关系确定向终端设备发送指示信息。
在本申请的一个可能设计中,所述指示信息所指示的内容通过时间偏差确定,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。在本申请的上述实施例中,举例说明,若第一起始发送时间提前或等于第一起始接收时间,该时间偏差可以等于第一起始接收时间减去第一起始发送时间得到,若第一起始接收时间提前或等于 第一起始发送时间,该时间偏差可以等于第一起始发送时间减去第一起始接收时间得到。网络设备确定的指示信息所指示的内容通过时间偏差确定,使得网络设备可以直接或间接的向终端设备指示出时间偏差,终端设备可以依据网络设备指示的内容正确的确定出第二起始发送时间。
在本申请的一个可能设计中,所述网络设备向终端设备发送指示信息,包括:所述网络设备向所述终端设备发送携带有时间偏差的指示信息,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。在本申请的上述实施例中,网络设备可以在指示信息增加一个新的字段用于携带时间偏差,网络设备也可以使用指示信息中原有的字段用于携带时间偏差,例如可以将指示信息中原有的保留字段用于携带时间偏差,也可以将指示信息中原有的字段中携带的原有数据替换为时间偏差,此处不做限定。网络设备向终端设备发送携带有时间偏差的指示信息,从而终端设备可以从该指示信息中解析出时间偏差,终端设备可以使用该时间偏差得到第二起始发送时间。
在本申请的一个可能设计中,所述网络设备向终端设备发送指示信息,包括:所述网络设备确定所述终端设备接入所述网络设备的小区时得到的定时提前量;所述网络设备向所述终端设备发送携带有时间提前总量的指示信息,所述时间提前总量包括:所述定时提前量和时间偏差之和,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。在本申请的上述实施例中,网络设备确定出该时间提前总量之后,网络设备可以向终端设备发送携带有时间提前总量的指示信息,例如网络设备可以在指示信息增加一个新的字段用于携带时间提前总量,网络设备也可以使用指示信息中原有的字段用于携带时间提前总量,例如可以将指示信息中原有的保留字段用于携带时间提前总量,也可以将指示信息中原有的字段中携带的原有数据替换为时间提前总量。网络设备向终端设备发送携带有时间提前总量的指示信息,从而终端设备可以从该指示信息中解析出时间提前总量,终端设备可以使用该时间提前总量得到第二起始发送时间。
在本申请的一个可能设计中,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。在本申请的上述实施例中,一个子帧为一个时间段,则第一时间段可以是上行子帧,即网络设备在上行子帧上开始接收信号的接收时间定义为第一起始接收时间,第二时间段可以是下行子帧,即网络设备在下行子帧上开始发送信号的发送时间定义为第一起始发送时间,第一时间段和第二时间段满足如下关系:上行子帧和下行子帧具有相同的子帧编号。当上行子帧和下行子帧具有相同的子帧编号时,可以确定在上行子帧上的第一起始接收时间以及确定在下行子帧上的第一起始发送时间。第一时间段和第二时间段之间满足具有相同的子帧编号的关系,网络设备可以获取到具有相同子帧编号的上行子帧的接收定时和下行子帧的发送定时。
在本申请的一个可能设计中,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。在本申请的上述实施例中,上行子帧和下行子帧可以属于同一个帧,例如在TDD模式下,一个帧可以包括上行链路传输信号所使用的上行子帧和下行链路传输信号所使用的下行子帧,又如上行 子帧和下行子帧可以属于两个帧,但这两个帧具有相同的帧编号,例如在FDD模式下,上行子帧属于上行帧,下行子帧属于下行帧,但是上行帧和下行帧具有相同的帧号。同样的,上行时隙和下行时隙可以属于编号相同的一个帧,也可以属于编号相同的两个帧。
第二方面,本申请实施例提供一种信息的接收方法,包括:终端设备确定第二起始接收时间,所述第二起始接收时间为所述终端设备在第三时间段上开始从网络设备接收信号的接收时间;所述终端设备根据所述第二起始接收时间从所述网络设备接收指示信息;所述终端设备根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,所述第二起始发送时间为所述终端设备在第四时间段上开始发送信号的发送时间。在本申请的上述实施例中,终端设备首先确定出第二起始接收时间,然后终端设备根据该第二起始接收时间接收网络设备发送的指示信息,终端设备可以按照网络设备的指示信息和第二起始接收时间确定出第二起始发送时间,终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
在本申请的一个可能设计中,终端设备根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,包括:所述终端设备从所述指示信息中确定出时间偏差,所述时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;所述终端设备根据所述第二起始接收时间和所述时间偏差确定第二起始发送时间。在本申请的上述实施例中,网络设备向终端设备发送携带有时间偏差的指示信息,从而终端设备可以从该指示信息中解析出时间偏差,终端设备可以使用该时间偏差以及第二起始接收时间得到第二起始发送时间,举例说明,终端设备在接入到网络设备的小区时可以接收到终端设备发送的定时提前量,该终端设备存储该定时提前量,终端设备以第二起始接收时间为时间轴起点,按照网络设备所发送的指示信息确定从该时间轴起点偏移的时间长度为前述的时间偏差,然后再偏移一个定时提前量,就可以得到终端设备在第四时间段上发送信号的具体时间,即可以得到第四起始发送时间。
在本申请的一个可能设计中,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
在本申请的一个可能设计中,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
在本申请的一个可能设计中,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于预置的门限值、且所述差值大于所述门限值取反后得到的值;或者,所述差值小于所述门限值、且所述差值大于或等于所述门限值取反后得到的值。
在本申请的一个可能设计中,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
在本申请的一个可能设计中,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
在本申请的前述实施例中对于第一起始接收时间和第一起始发送时间之间满足的关系说明、以及对第一时间段和第二时间段之间的关系说明,均可以参阅第一方面的举例说明。
在本申请的一个可能设计中,所述终端设备根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,包括:所述终端设备从所述指示信息中确定出时间提前总量;所述终端设备根据所述第二起始接收时间和所述时间提前总量确定第二起始发送时间。在本申请的上述实施例中,网络设备确定出该时间提前总量之后,网络设备可以向终端设备发送携带有时间提前总量的指示信息,从而终端设备可以通过解析该指示信息得到时间提前总量,由前述实施例的举例说明可知,时间提前总量包括:定时提前量和时间偏差之和,终端设备可以使用该时间提前总量以及第二起始接收时间得到第二起始发送时间。
第三方面,本申请实施例提供一种网络设备,包括:确定模块,用于确定第一起始接收时间和第一起始发送时间,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;发送模块,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二起始发送时间,所述第二起始发送时间根据所述第一起始接收时间和所述第一起始发送时间确定。在本申请实施例中,由于网络设备通过第一起始接收时间和第一起始发送时间,可以确定在网络设备侧接收信号和发送信号各自采用的时间,通过网络设备本端的发送信号和接收信号各自采用的时间,可以确定向终端设备发送指示信息,以使得终端设备可以按照网络设备的指示信息确定出第二起始发送时间,并且该第二起始发送时间是根据第一起始接收时间和第一起始发送时间确定出来的。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
在本发明的第三方面中,网络设备的组成模块还可以执行前述第一方面以及各种可能的实现方式中所描述的步骤,详见前述对第一方面以及各种可能的实现方式中的说明。
第四方面,本申请实施例提供一种终端设备,包括:第一确定模块,用于确定第二起始接收时间,所述第二起始接收时间为所述终端设备在第三时间段上开始从网络设备接收信号的接收时间;接收模块,用于根据所述第二起始接收时间从所述网络设备接收指示信息;第二确定模块,用于根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,所述第二起始发送时间为所述终端设备在第四时间段上开始发送信号的发送时间。在本申请的上述实施例中,终端设备首先确定出第二起始接收时间,然后终端设备根据该第二起始接收时间接收网络设备发送的指示信息,终端设备可以按照网络设备的指示信息和第二起始接收时间确定出第二起始发送时间,终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
在本发明的第四方面中,终端设备的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
第五方面,本申请实施例还提供一种网络设备,所述网络设备包括:处理器,存储器,通信接口和总线;所述处理器、通信接口、存储器通过所述总线相互的通信;所述通信接口,用于接收和发送数据;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,执行前述第一方面中任一项所述的方法。在本申请的上述实施例中,由于网络设备通过第一起始接收时间和第一起始发送时间,可以确定在网络设备侧接收信号和发送信号各自采用的时间,通过网络设备本端的发送信号和接收信号各自采用的时间,可以确定向终端设备发送指示信息,以使得终端设备可以按照网络设备的指示信息确定出第二起始发送时间,并且该第二起始发送时间是根据第一起始接收时间和第一起始发送时间确定出来的。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
第六方面,本申请实施例还提供一种终端设备,所述终端设备包括:处理器,存储器,通信接口和总线;所述处理器、通信接口、存储器通过所述总线相互的通信;所述通信接口,用于接收和发送数据;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,执行如前述第二方面中任一项所述的方法。在本申请的上述实施例中,终端设备首先确定出第二起始接收时间,然后终端设备根据该第二起始接收时间接收网络设备发送的指示信息,终端设备可以按照网络设备的指示信息和第二起始接收时间确定出第二起始发送时间,终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
本申请的第七方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的第八方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例提供的一种通信系统的组成架构示意图;
图2为本申请实施例提供的一种信息的发送方法的流程方框示意图;
图3为本申请实施例提供的一种信息的接收方法的流程方框示意图;
图4-a为本申请实施例提供的一种上行子帧与下行子帧的定时关系示意图;
图4-b为本申请实施例提供的另一种上行子帧与下行子帧的定时关系示意图;
图5-a为本申请实施例提供的另一种上行子帧与下行子帧的定时关系示意图;
图5-b为本申请实施例提供的另一种上行子帧与下行子帧的定时关系示意图;
图6-a为本申请实施例提供的一种网络设备的组成结构示意图;
图6-b为本申请实施例提供的一种发送模块的组成结构示意图;
图7-a为本申请实施例提供的一种终端设备的组成结构示意图;
图7-b为本申请实施例提供的一种第二确定模块的组成结构示意图;
图7-c为本申请实施例提供的另一种第二确定模块的组成结构示意图;
图8为本申请实施例提供的另一种网络设备的组成结构示意图;
图9为本申请实施例提供的另一种终端设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种信息的发送方法、接收方法和网络设备以及终端设备,用于使终端设备确定出上行传输的正确时间,避免上行传输失败。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
以下分别进行详细说明。
如图1所示,为本申请实施例提供的通信系统的组成架构示意图。本申请实施例提的通信系统可以包括:网络设备和终端设备,其中,网络设备是指在通信过程中用于管理通信资源、提供通信服务的一方,例如网络设备可以是基站,也可以是提供通信服务的服务器等设备,终端设备是指在通信过程中使用通信资源的一方,例如终端设备可以是手机终端、智能移动终端等。本申请实施例中所述的通信系统主要是无线通信系统,尤其是采用下行频段与上行频段定时不同步的通信系统。本申请实施例中的“定时”是指按照规定的时间。如图1所示,网络设备使用下行子帧n,在第一频段上向终端设备发送下行信号,网络设备使用上行子帧n,在第二频段上接收终端设备发送的上行信号,网络设备在第一频段上的发送定时与在第二频段上的接收定时不同步。
在网络设备和终端设备之间的上下行传输可以通过LTE系统或者NR系统来完成。在网络设备端的下行发送无法与上行接收保持同步的场景下,不能按照现有技术中上下行同步场景下的方式得到上行接收的子帧编号。举例说明,考虑到在通信的调度和反馈过程中,终端设备需要确定上行发送的帧、子帧和时隙编号,以满足调度和反馈时序的需求,由于网络设备的下行发送与上行接收存在偏差,现有技术中该偏差的大小无法确定,使得终端设备无法按照按照下行子帧的编号确定出上行子帧的编号。为解决上述问题,提出本申请实施例中的信息的发送方法和信息的接收方法,接下来分别从网络设备侧和终端设备侧分别详细的举例说明。
首先请参阅图2所示,为本申请实施例提供的信息的发送方法的一个实施例,可应用于前述的通信系统中的网络设备一侧,该方法可包括:
201、网络设备确定第一起始接收时间和第一起始发送时间,第一起始接收时间为网络设备在第一时间段上开始接收信号的接收时间,第一起始发送时间为网络设备在第二时间段上开始发送信号的发送时间。
在本申请实施例中,网络设备和终端设备可以使用无线通信资源进行收发信号,网络设备确定在第一时间段上开始接收信号的接收时间,网络设备在第一时间段上开始接收终 端设备发送的上行信号,为便于描述,将此时开始接收的时间定义为“第一起始接收时间”,第一起始接收时间也就是网络设备在第一时间段上的接收定时,本申请实施例中所述的“定时”是指开始发送或者开始接收的时间。其中,第一时间段是指网络设备接收信号的某个时间段,不需要特指任何一个时间段,即本申请实施例中第一时间段可以是网络设备进行上行传输的任意一个时间段。
在本申请实施例中,网络设备除了需要确定第一起始接收时间,网络设备还可以确定在第二时间段上开始发送信号的发送时间,网络设备在第二时间段上开始向终端设备发送下行信号,为便于描述,将此时开始发送的时间定义为“第一起始发送时间”,第一起始发送时间也就是网络设备在第二时间段上的发送定时,本申请实施例中所述的“定时”是指开始发送或者开始接收的时间。其中,第二时间段是指网络设备发送信号的某个时间段,不需要特指任何一个时间段。
在本申请的上述实施例中,网络设备可以确定出第一起始接收时间和第一起始发送时间,则网络设备通过第一起始接收时间和第一起始发送时间,可以确定在网络设备侧接收信号和发送信号各自采用的时间,通过网络设备本端的发送信号和接收信号各自采用的时间,可以确定如何向终端设备进行指示,以使得终端设备可以按照网络设备的指示确定出第二起始发送时间,该第二起始发送时间是终端设备在第四时间段上开始发送信号的发送时间。
需要说明的是,在本申请的上述实施例中,时间段的时间长度可以是一个子帧,也可以是一个时隙,其中,一个子帧可以包含1个或多个时隙,对于不同的子帧,还可以包括不同个数的时隙。
在本申请的一些实施例中,第一时间段包括上行子帧,第二时间段包括下行子帧,且上行子帧和下行子帧具有相同的子帧编号,或者,
第一时间段包括上行时隙,第二时间段包括下行时隙,且上行时隙和下行时隙具有相同的时隙编号。
其中,一个子帧为一个时间段,则第一时间段可以是上行子帧,即网络设备在上行子帧上开始接收信号的接收时间定义为第一起始接收时间,第二时间段可以是下行子帧,即网络设备在下行子帧上开始发送信号的发送时间定义为第一起始发送时间,第一时间段和第二时间段满足如下关系:上行子帧和下行子帧具有相同的子帧编号。因此步骤201所应用的场景可以为:当上行子帧和下行子帧具有相同的子帧编号时,如何确定在上行子帧上的第一起始接收时间以及确定在下行子帧上的第一起始发送时间。第一时间段和第二时间段之间满足具有相同的子帧编号的关系,网络设备可以获取到具有相同子帧编号的上行子帧的接收定时和下行子帧的发送定时。需要说明的是,在本申请的一些实施例中,一个子帧至少包含1个时隙,即有的子帧可以包括多个时隙,例如,一个下行子帧包含的时隙数与一个上行子帧包含的时隙数可以不同。
在申请的上述实施例中,一个时隙也可以为一个时间段,则第一时间段可以是上行时隙,即网络设备在上行时隙上开始接收信号的接收时间定义为第一起始接收时间,第二时间段可以是下行时隙,即网络设备在下行时隙上开始发送信号的发送时间定义为第一起始发送时间,第一时间段和第二时间段满足如下关系:上行时隙和下行时隙具有相同的时隙 编号。因此步骤201所应用的场景可以为:当上行时隙和下行时隙具有相同的时隙编号时,如何确定在上行时隙上的第一起始接收时间以及确定在下行时隙上的第一起始发送时间。第一时间段和第二时间段之间满足具有相同的时隙编号的关系,网络设备可以获取到具有相同时隙编号的上行时隙的接收定时和下行时隙的发送定时。
进一步的,在本申请的一些实施例中,上行子帧和下行子帧属于编号相同的一个或两个帧,或者,
上行时隙和下行时隙属于编号相同的一个或两个帧。
其中,上行子帧和下行子帧可以属于同一个帧,例如在TDD模式下,一个帧可以包括上行链路传输信号所使用的上行子帧和下行链路传输信号所使用的下行子帧,又如上行子帧和下行子帧可以属于两个帧,但这两个帧具有相同的帧编号,例如在FDD模式下,上行子帧属于上行帧,下行子帧属于下行帧,但是上行帧和下行帧具有相同的帧号。同样的,上行时隙和下行时隙可以属于编号相同的一个帧,也可以属于编号相同的两个帧。
在本申请的一些实施例中,网络设备确定出的第一起始接收时间和第一起始发送时间之间可以存在如下关系:第一起始接收时间提前或等于第一起始发送时间,第一起始发送时间与第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,第一时隙包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;第一子帧的时间长度为1毫秒(millisecond,ms)。
具体的,网络设备首先可以从第一起始接收时间和第一起始发送时间中选择出在时间轴上更提前的时间,若第一起始接收时间提前或等于第一起始发送时间,即网络设备在第一时间段上开始接收信号不晚于在第二时间段上开始发送信号。若第一起始接收时间等于第一起始发送时间,则说明网络设备在第一时间段上开始接收信号与在第二时间段上开始发送信号是同时进行的。网络设备可以根据第一起始发送时间减去第一起始接收时间得到第一时间提前量,第一时间提前量的取值范围为:大于或等于0、且小于第一时隙或者第一子帧的时间长度。第一时间提前量可以表示第一起始发送时间与第一起始接收时间的差值,网络设备根据第一时间提前量可以确定出如下取值范围的差值:该差值大于或等于0、且小于第一时隙或第一子帧的时间长度。在第一起始接收时间提前或等于第一起始发送时间的情况下,第一起始发送时间与第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,使得网络设备可以根据第一起始发送时间与第一起始接收时间之间的上述关系确定向终端设备发送指示信息。
其中,第一时隙和第一子帧的实现方式可以有多种,接下来举例说明,第一时隙可以包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙。其中,该第一时隙可以是无线通信系统所支持的最小子载波间隔对应的时隙,根据无线通信系统的不同,网络设备发送或接收信号所使用的最小子载波也是不相同的,例如该最小子载波可以是15KHz,不限定的是,随着无线通信系统的演进,网络设备发送或接收信号所使用的最小子载波还可以取更小的频率值,此处不做限定。在本申请实施例提供的NR系统中,第一子帧的时间长度取值1ms。可以理解的是,第一子帧的取值还可以根据无线通信系统的演进而更新取值。
在本申请的另一些实施例中,网络设备确定出的第一起始接收时间和第一起始发送时 间之间可以存在如下关系:第一起始发送时间提前或等于第一起始接收时间,第一起始接收时间与第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,第一时隙包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;第一子帧的时间长度为1ms。
具体的,网络设备首先可以从第一起始接收时间和第一起始发送时间中选择出在时间轴上更提前的时间,若第一起始发送时间提前或等于第一起始接收时间,即网络设备在第二时间段上开始发送信号不晚于在第一时间段上开始接收信号。若第一起始发送时间等于第一起始接收时间,则说明网络设备在第二时间段上开始发送信号与在第一时间段上开始接收信号是同时进行的。网络设备可以根据第一起始接收时间减去第一起始发送时间得到第二时间提前量,第二时间提前量的取值范围为:大于或等于0、且小于第一时隙或者第一子帧的时间长度。第二时间提前量可以表示第一起始接收时间与第一起始发送时间的差值,网络设备根据第二时间提前量可以确定出如下取值范围的差值:该差值大于或等于0、且小于第一时隙或第一子帧的时间长度。在第一起始发送时间提前或等于第一起始接收时间的情况下,第一起始接收时间与第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,使得网络设备可以根据第一起始接收时间与第一起始发送时间之间的上述关系确定向终端设备发送指示信息。
其中,第一时隙和第一子帧的实现方式可以有多种,接下来举例说明,第一时隙可以包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙。其中,该第一时隙可以是无线通信系统所支持的最小子载波间隔对应的时隙,根据无线通信系统的不同,网络设备发送或接收信号所使用的最小子载波也是不相同的,例如该最小子载波可以是15KHz,不限定的是,随着无线通信系统的演进,网络设备发送或接收信号所使用的最小子载波还可以取更小的频率值,此处不做限定。在本申请实施例提供的NR系统中,第一子帧的时间长度可以取值1ms。不限定的是,第一子帧的取值可以根据无线通信系统的演进而不断更新其取值。
在本申请的另一些实施例中,网络设备确定出的第一起始接收时间和第一起始发送时间之间可以存在如下关系:第一起始发送时间与第一起始接收时间的差值小于或等于门限值、且差值大于门限值取反后得到的值。或者,该差值小于门限值、且差值大于或等于门限值取反后得到的值。
其中,网络设备首先确定第一起始发送时间与第一起始接收时间的差值,该差值具有两种实现方式:1)差值小于或等于门限值、且差值大于门限值取反后得到的值,2)差值小于门限值、且差值大于或等于门限值取反后得到的值。举例说明如下,用字母a表示门限值,用-a表示门限值取反后得到的值,用字母b表示第一起始发送时间与第一起始接收时间的差值,则a与b满足如下关系:-a<b≤a,或,a与b满足如下关系:-a≤b<a。在第一起始发送时间与第一起始接收时间的差值满足上述两种方式的场景下,使得网络设备可以根据第一起始接收时间与第一起始发送时间之间的上述关系确定向终端设备发送指示信息。
需要说明的是,在上述实施例中,门限值的具体取值可以有多种,例如门限值的取值可以为小于第一时隙的时间长度值,或者小于第一子帧的时间长度值。该第一时隙包括: 网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;第一子帧的时间长度为1ms。例如,前述的门限值的取值可以为第一时隙的时间长度的一半或者第一子帧的时间长度的一半,又如,前述的门限的取值可以为第一时隙的时间长度的三分一,或者第一子帧的时间长度的四分之一等等,不限定的是,前述门限值的取值可以根据无线通信系统的演进而不断更新其取值。
202、网络设备向终端设备发送指示信息,指示信息用于指示终端设备确定第二起始发送时间,第二起始发送时间根据第一起始接收时间和第一起始发送时间确定。
在本申请实施例中,网络设备确定出第一起始接收时间和第一起始发送时间之后,网络设备可以向终端设备发送指示信息,例如网络设备可以通过下行链路向终端设备发送该指示信息。该指示信息可以用于指示终端设备确定第二起始发送时间,网络设备发送的指示信息包含的指示内容与第一起始接收时间和第一起始发送时间有关,网络设备可以根据第一起始接收时间和第一起始发送时间可确定出第二起始发送时间。该第二起始发送时间可以定义为终端设备在第四时间段上开始发送信号的发送时间。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
在本申请的一些实施例中,指示信息所指示的内容通过时间偏差确定,时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值。其中,网络设备发送的指示信息所指示的内容可以由网络设备根据时间偏差来确定,该时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值,举例说明,若第一起始发送时间提前或等于第一起始接收时间,该时间偏差可以等于第一起始接收时间减去第一起始发送时间得到,若第一起始接收时间提前或等于第一起始发送时间,该时间偏差可以等于第一起始发送时间减去第一起始接收时间得到。网络设备确定的指示信息所指示的内容通过时间偏差确定,使得网络设备可以直接或间接的向终端设备指示出时间偏差,终端设备可以依据网络设备指示的内容正确的确定出第二起始发送时间。
在本申请的一些实施例中,步骤202网络设备向终端设备发送指示信息,包括:
A1、网络设备向终端设备发送携带有时间偏差的指示信息,时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值。
其中,网络设备可以在指示信息增加一个新的字段用于携带时间偏差,网络设备也可以使用指示信息中原有的字段用于携带时间偏差,例如可以将指示信息中原有的保留字段用于携带时间偏差,也可以将指示信息中原有的字段中携带的原有数据替换为时间偏差,此处不做限定。网络设备向终端设备发送携带有时间偏差的指示信息,从而终端设备可以从该指示信息中解析出时间偏差,终端设备可以使用该时间偏差得到第二起始发送时间。
在本申请的一些实施例中,步骤202网络设备向终端设备发送指示信息,包括:
B1、网络设备确定终端设备接入网络设备的小区时得到的定时提前量;
B2、网络设备向终端设备发送携带有时间提前总量的指示信息,时间提前总量包括:定时提前量和时间偏差之和,时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值。
其中,定时提前量的取值与终端设备、网络设备这两者之间的距离相关,定时提前量 可以在终端设备接入到网络设备的小区时得到,网络设备可以在将终端设备接入到小区时执行测量过程,从而可以得到定时提前量,网络设备可以通过定时提前量和时间偏差确定出时间提前总量,该时间提前总量包括:定时提前量和时间偏差之和,例如该时间提前总量可以等于定时提前量和时间偏差之和,或者计算出定时提前量和时间偏差之和后,再乘以一个修正量可以得到时间提前总量,此处不做限定。网络设备确定出该时间提前总量之后,网络设备可以向终端设备发送携带有时间提前总量的指示信息,例如网络设备可以在指示信息增加一个新的字段用于携带时间提前总量,网络设备也可以使用指示信息中原有的字段用于携带时间提前总量,例如可以将指示信息中原有的保留字段用于携带时间提前总量,也可以将指示信息中原有的字段中携带的原有数据替换为时间提前总量。网络设备向终端设备发送携带有时间提前总量的指示信息,从而终端设备可以从该指示信息中解析出时间提前总量,终端设备可以使用该时间提前总量得到第二起始发送时间。
在本申请的一些实施例中,本申请实施例提供的信息的发送方法,在执行前述步骤A1的实现场景下,该信息的发送方法还可以包括:
C1、网络设备确定终端设备接入网络设备的小区时得到的定时提前量;
C2、网络设备向终端设备发送携带有定时提前量的第二指示信息。
其中,步骤A1中网络设备发送携带有时间偏差的指示信息可以定义为第一指示信息,网络设备可以在将终端设备接入到小区时执行测量过程,从而可以得到定时提前量,网络设备向终端设备发送携带有定时提前量的第二指示信息,从而终端设备从网络设备接收到两个指示信息,通过这两个指示信息,终端设备可以从两个指示信息中解析出时间偏差和定时提前量,终端设备可以使用该时间偏差和定时提前量得到第二起始发送时间。
在本申请的一些实施例中,步骤202网络设备向终端设备发送第一指示信息之前,本申请实施例提供的信息的发送方法,除了执行前述步骤之外,还可以包括:
D1、网络设备根据第一起始接收时间和第一起始发送时间确定时间偏差。
其中,网络设备通过步骤201可以确定出第一起始接收时间和第一起始发送时间,网络设备通过执行减法可以得到第一起始接收时间和第一起始发送时间的差值,该差值即为时间偏差。网络设备可以在指示信息中携带该时间偏差,或者网络设备发送的指示信息所指示的内容通过该时间偏差确定出来。
通过前述内容对本申请实施例的举例说明可知,网络设备确定第一起始接收时间和第一起始发送时间,其中,第一起始接收时间为网络设备在第一时间段上开始接收信号的接收时间,第一起始发送时间为网络设备在第二时间段上开始发送信号的发送时间,网络设备向终端设备发送指示信息,指示信息用于指示终端设备确定第二起始发送时间,第二起始发送时间根据第一起始接收时间和第一起始发送时间确定。由于网络设备通过第一起始接收时间和第一起始发送时间,可以确定在网络设备侧接收信号和发送信号各自采用的时间,通过网络设备本端的发送信号和接收信号各自采用的时间,可以确定向终端设备发送指示信息,以使得终端设备可以按照网络设备的指示信息确定出第二起始发送时间,并且该第二起始发送时间是根据第一起始接收时间和第一起始发送时间确定出来的。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
前述实施例从网络设备一侧介绍本申请实施例提供的信息的发送方法,接下来从终端设备一侧介绍本申请实施例提供的信息的接收方法,请参阅图3所示,该信息的接收方法包括:
301、终端设备确定第二起始接收时间,第二起始接收时间为终端设备在第三时间段上开始从网络设备接收信号的接收时间。
在本申请实施例中,网络设备和终端设备可以使用无线通信资源进行收发信号,终端设备首先确定在第三时间段上开始接收信号的接收时间,终端设备在第三时间段上开始接收网络设备发送的下行信号,为便于描述,将此时开始接收的时间定义为“第二起始接收时间”,第二起始接收时间也就是终端设备在第三时间段上的接收定时,本申请实施例中所述的“定时”是指开始发送或者开始接收的时间。其中,第三时间段是指终端设备接收信号的某个时间段,不需要特指任何一个时间段,即本申请实施例中第三时间段可以是终端设备进行下行传输的任意一个时间段。
需要说明的是,在本申请的上述实施例中,时间段的时间长度可以是一个子帧,也可以是一个时隙,其中,一个子帧可以包含1个或多个时隙,对于不同的子帧,还可以包括不同个数的时隙。
在本申请的一些实施例中,第三时间段包括下行子帧,第四时间段包括上行子帧,且上行子帧和下行子帧具有相同的子帧编号,或者,
第三时间段包括下行时隙,第四时间段包括上行时隙,且上行时隙和下行时隙具有相同的时隙编号。
其中,一个子帧为一个时间段,则第三时间段可以是下行子帧,即终端设备在下行子帧上开始接收信号的接收时间定义为第二起始接收时间,第四时间段可以是上行子帧,即终端设备在上行子帧上开始发送信号的发送时间定义为第二起始发送时间,第三时间段和第四时间段满足如下关系:上行子帧和下行子帧具有相同的子帧编号。因此步骤201所应用的场景可以为:当上行子帧和下行子帧具有相同的子帧编号时,如何确定在下行子帧上的第一起始接收时间。第三时间段和第四时间段之间满足具有相同的子帧编号的关系,终端设备可以首先获取到下行子帧的接收定时,再结合网络设备发送的指示信息确定与该下行子帧具有相同子帧编号的上行子帧的发送定时,详见后续实施例中步骤303的说明。需要说明的是,在本申请的一些实施例中,一个子帧至少包含1个时隙,即有的子帧可以包括多个时隙,例如,一个下行子帧包含的时隙数与一个上行子帧包含的时隙数可以不同。
在申请的上述实施例中,一个时隙也可以为一个时间段,则第三时间段可以是下行时隙,第四时间段可以是上行时隙,第三时间段和第四时间段之间满足具有相同的时隙编号的关系,终端设备可以首先获取到下行时隙的发送定时,再结合网络设备发送的指示信息确定与该下行子帧具有相同子帧编号的上行子帧的发送定时。
进一步的,在本申请的一些实施例中,上行子帧和下行子帧属于编号相同的一个或两个帧,或者,
上行时隙和下行时隙属于编号相同的一个或两个帧。
其中,上行子帧和下行子帧可以属于同一个帧,例如在TDD模式下,一个帧可以包括上行链路传输信号所使用的上行子帧和下行链路传输信号所使用的下行子帧,又如上行子 帧和下行子帧可以属于两个帧,但这两个帧具有相同的帧编号,例如在FDD模式下,上行子帧属于上行帧,下行子帧属于下行帧,但是上行帧和下行帧具有相同的帧号。同样的,上行时隙和下行时隙可以属于编号相同的一个帧,也可以属于编号相同的两个帧。
在本申请的一些实施例中,步骤301终端设备确定第二起始接收时间,包括:
E1、终端设备根据从网络设备接收到的同步信号确定第二起始接收时间。
其中,终端设备可以接收网络设备发送的同步信号,终端设备根据该同步信号确定出第二起始接收时间,网络设备和终端设备之间同步信号的传输方式可以有多种,例如网络设备可以向终端设备广播同步信号。
302、终端设备根据第二起始接收时间从网络设备接收指示信息。
在本申请实施例中,终端设备确定出第二起始接收时间之后,终端设备可以使用该第二起始接收时间来接收网络设备发送的指示信息,终端设备可以解析该指示信息,得到该指示信息所携带的指示内容。
303、终端设备根据第二起始接收时间和指示信息确定第二起始发送时间,第二起始发送时间为终端设备在第四时间段上开始发送信号的发送时间。
在本申请实施例中,终端设备通过前述步骤301和步骤302分别得到第二起始接收时间和指示信息之后,终端设备再根据第二起始接收时间和指示信息确定出第二起始发送时间,第二起始发送时间为终端设备在第四时间段上开始发送信号的发送时间。网络设备发送的指示信息包含的指示内容与第一起始接收时间和第一起始发送时间有关,终端设备使用网络设备发送的指示信息,以及该终端设备自己确定出的第二起始接收时间可确定出第二起始发送时间。例如,终端设备以第二起始接收时间为时间轴起点,按照网络设备所发送的指示信息确定从该时间轴起点偏移具体的时间长度,从而可以得到终端设备在第四时间段上发送信号的具体时间,即可以得到第四起始发送时间。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
在本申请的一些实施例中,步骤303终端设备根据第二起始接收时间和指示信息确定第二起始发送时间,包括:
F1、终端设备从指示信息中确定出时间偏差,时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值,第一起始接收时间为网络设备在第一时间段上开始接收信号的接收时间,第一起始发送时间为网络设备在第二时间段上开始发送信号的发送时间;
F2、终端设备根据第二起始接收时间和时间偏差确定第二起始发送时间。
其中,网络设备向终端设备发送携带有时间偏差的指示信息,从而终端设备可以从该指示信息中解析出时间偏差,终端设备可以使用该时间偏差以及第二起始接收时间得到第二起始发送时间,举例说明,终端设备在接入到网络设备的小区时可以接收到终端设备发送的定时提前量,该终端设备存储该定时提前量,终端设备以第二起始接收时间为时间轴起点,按照网络设备所发送的指示信息确定从该时间轴起点偏移的时间长度为前述的时间偏差,然后再偏移一个定时提前量,就可以得到终端设备在第四时间段上发送信号的具体时间,即可以得到第四起始发送时间,该终端设备对指示信息中各个字段的解析方式不做限定。
在本申请的一些实施例中,第一起始接收时间提前或等于第一起始发送时间,第一起 始发送时间与第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,第一时隙包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;第一子帧的时间长度为1ms。
具体的,网络设备首先可以从第一起始接收时间和第一起始发送时间中选择出在时间轴上更提前的时间,若第一起始接收时间提前或等于第一起始发送时间,即网络设备在第一时间段上开始接收信号不晚于在第二时间段上开始发送信号。若第一起始接收时间等于第一起始发送时间,则说明网络设备在第一时间段上开始接收信号与在第二时间段上开始发送信号是同时进行的。网络设备可以根据第一起始发送时间减去第一起始接收时间得到第一时间提前量,第一时间提前量的取值范围为:大于或等于0、且小于第一时隙或者第一子帧的时间长度。第一时间提前量可以表示第一起始发送时间与第一起始接收时间的差值,网络设备根据第一时间提前量可以确定出如下取值范围的差值:该差值大于或等于0、且小于第一时隙或第一子帧的时间长度。在第一起始接收时间提前或等于第一起始发送时间的情况下,第一起始发送时间与第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,使得网络设备可以根据第一起始发送时间与第一起始接收时间之间的上述关系确定向终端设备发送指示信息。
其中,第一时隙和第一子帧的实现方式可以有多种,接下来举例说明,第一时隙可以包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙。其中,该第一时隙可以是无线通信系统所支持的最小子载波间隔对应的时隙,根据无线通信系统的不同,网络设备发送或接收信号所使用的最小子载波也是不相同的,例如该最小子载波可以是15KHz,不限定的是,随着无线通信系统的演进,网络设备发送或接收信号所使用的最小子载波还可以取更小的频率值,此处不做限定。在本申请实施例提供的NR系统中,第一子帧的时间长度取值1ms。可以理解的是,第一子帧的取值还可以根据无线通信系统的演进而更新取值。
在本申请的一些实施例中,第一起始发送时间提前或等于第一起始接收时间,第一起始接收时间与第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,第一时隙包括:网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;第一子帧的时间长度为1ms。
在本申请的一些实施例中,第一起始发送时间与第一起始接收时间的差值小于或等于预置的门限值、且差值大于门限值取反后得到的值;或者,差值小于门限值、且差值大于或等于门限值取反后得到的值。
在本申请的一些实施例中,第一时间段包括上行子帧,第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,第一时间段包括上行时隙,第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
进一步的,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
需要说明的是,在本申请的前述实施例中对于第一起始接收时间和第一起始发送时间之间满足的关系说明、以及对第一时间段和第二时间段之间的关系说明,均可以参阅前述实施例中的举例说明,此处不再赘述。
在本申请的一些实施例中,步骤303终端设备根据第二起始接收时间和指示信息确定第二起始发送时间,包括:
G1、终端设备从指示信息中确定出时间提前总量;
G2、终端设备根据第二起始接收时间和时间提前总量确定第二起始发送时间。
其中,网络设备确定出该时间提前总量之后,网络设备可以向终端设备发送携带有时间提前总量的指示信息,从而终端设备可以通过解析该指示信息得到时间提前总量,由前述实施例的举例说明可知,时间提前总量包括:定时提前量和时间偏差之和。终端设备可以使用该时间提前总量以及第二起始接收时间得到第二起始发送时间。终端设备对前述的指示信息的各个字段的解析方式不做限定。
在本申请的一些实施例中,除了执行前述的方法步骤之外,本申请实施例提供的信息的接收方法,还可以包括如下步骤:
H1、终端设备接收网络设备发送的第二指示信息;
H2、终端设备从第二指示信息中获取到定时提前量。
其中,网络设备可以在将终端设备接入到小区时执行测量过程,从而可以得到定时提前量,网络设备向终端设备发送携带有定时提前量的第二指示信息,从而终端设备从网络设备接收到第二指示信息,通过第二指示信息,终端设备可以解析出定时提前量,终端设备可以使用该时间偏差和定时提前量得到第二起始发送时间。
在本申请的一些实施例中,步骤303终端设备根据第二起始接收时间和第一指示信息确定第二起始发送时间,包括:
I1、终端设备从第一指示信息中确定出时间偏差;
I2、终端设备根据第二起始接收时间和时间偏差、定时提前量确定第二起始发送时间。
其中,若终端设备和网络设备之间的距离很近,例如当终端设备处于小区中心区域时,终端设备和网络设备之间的距离趋近于0,则终端设备和网络设备之间不存在定时提前量,当终端设备处于小区边缘区域时,终端设备和网络设备之间的距离较大,则终端设备和网络设备之间存在定时提前量,在这种实现场景下,终端设备可以根据第二起始接收时间和时间偏差、定时提前量确定出第二起始发送时间,终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
通过前述内容对本申请实施例的举例说明可知,终端设备首先确定出第二起始接收时间,然后终端设备根据该第二起始接收时间接收网络设备发送的指示信息,终端设备可以按照网络设备的指示信息和第二起始接收时间确定出第二起始发送时间,终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
为便于更好的理解和实施本申请实施例的上述方案,下面举例相应的应用场景来进行具体说明。
请参阅如图1所示,本申请实施例主要应用于无线通信系统,尤其是采用下行频段与上行频段定时不同步的通信系统。网络设备在第一频段上向终端设备发送下行信号,网络设备在第二频段上接收终端设备发送的上行信号,网络设备在第一频段上的发送定时与在第二频段上的接收定时不同步。需要说明的是,网络设备在第二频段的接收定时与终端设 备在第二频段的发送定时可能是不相同的,因为考虑终端设备与网络设备之间的通信时延,网络设备侧和终端侧的定时是不同的,所以终端设备的发送定时总是提前于网络设备的接收定时。
本申请实施例中以第一时间段具体为第一上行子帧、第二时间段具体为第一下行子帧、第三时间段具体为第二下行子帧、第四时间段具体为第二上行子帧为例进行详细说明,本申请实施例可以确定出子帧编号相同的下行子帧和上行子帧的定时关系,使得终端设备能够根据下行子帧的编号确定编号相同的上行子帧,以满足上行调度和反馈时序的要求。
在本申请实施例提供的通信方法中,首先网络设备确定编号相同的第一下行子帧与第一上行子帧之间的时间偏差,该时间偏差也可以称为“定时偏差”,后续实施例中以“时间偏差”为例进行说明,该时间偏差的绝对值可以小于一个时隙或者一个子帧的时间长度,以时间偏差小于一个时隙为例,时间偏差的取值范围越小,需要用来量化该时间偏差的比特数就越少,这样可以减少网络设备发送指示信息的开销。网络设备确定出该时间偏差之后,网络设备可以将该时间偏差的指示信息发送给终端设备,以使终端设备能够根据该指示信息确定与下行子帧编号相同的上行子帧的发送定时。
接下来分别从网络设备侧和终端设备侧进行详细的举例说明,网络设备侧可以执行如下步骤1-1和步骤1-2,终端设备可以执行如下步骤2-1、步骤2-2和步骤2-3。
首先从网络设备侧进行举例说明,主要包括如下步骤:
步骤1-1:网络设备确定第一下行子帧的定时与第一上行子帧的定时之间的时间偏差,所述时间偏差为所述第一上行子帧相对于第一下行子帧的时间偏差或者为所述第一下行子帧相对于第一上行子帧的时间偏差,其中,所述第一下行子帧与第一上行子帧的子帧编号相同且所属的帧编号也相同。
此处需要说明的是,从网络设备的角度看,第一下行子帧的定时应理解为网络设备在第一下行子帧上发送信号的定时,第一上行子帧的定时应理解为网络设备在第一上行子帧上接收信号的定时。
一种可能的实现方式,第一上行子帧相对于第一下行子帧的时间偏差大于等于0,且小于一个时隙或一个子帧的时间长度,以该时间偏差小于一个时隙的时间长度为例,如图4-a和图4-b所示,上行子帧n提前于下行子帧n,上行子帧n和下行子帧n具有相同的子帧编号n,且都属于相同的帧,一个子帧可以包含1个或多个时隙,现有技术中1个子帧只包含2个时隙,在本申请实施例提供的NR系统中,1个子帧可以包含1个时隙和多于2个时隙,且一个下行子帧包含的时隙数与一个上行子帧包含的时隙数可以不同。例如,上行子帧包含的时隙个数固定,而下行子帧包含的子帧个数可能和上行子帧的相同或不同,图4-a中以上行子帧n或下行子帧n都包括两个时隙(时隙0和时隙1)为例,图4-b中以上行子帧n或下行子帧n都包括1个时隙(时隙0)为例,则上行子帧和下行子帧之间不同步,因此存在时间偏差。
可选的,当一个下行子帧和一个上行子帧都只包含1个时隙时,显然,该时间偏差可以大于等于0,且小于一个子帧的时间长度。其中,一个子帧的长度可以为1ms,而时隙的长度有多种取值。
可选的,当下行子帧与上行子帧包含的时隙数不同时,该时间偏差可以大于等于0, 且小于一个上行时隙的时间长度。
另一种可能的实现方式,第一下行子帧相对于第一上行子帧的时间偏差大于0等于0,且小于一个时隙或一个子帧的时间长度,以该时间偏差小于一个时隙的时间长度为例,如图5-a和图5-b所示,下行子帧n提前于上行子帧n,上行子帧n和下行子帧n具有相同的子帧编号n,且都属于相同的帧,一个子帧可以包含1个或多个时隙,现有技术中1个子帧只包含2个时隙,在本申请实施例提供的NR系统中,1个子帧可以包含1个时隙和多于2个时隙,且一个下行子帧包含的时隙数与一个上行子帧包含的时隙数可以不同。例如,上行子帧包含的时隙个数固定,而下行子帧包含的子帧个数可能和上行子帧的相同或不同,图5-a中以上行子帧n或下行子帧n都包括两个时隙(时隙0和时隙1)为例,图5-b中以上行子帧n或下行子帧n都包括1个时隙(时隙0)为例,则上行子帧和下行子帧之间不同步,因此存在时间偏差。
可选的,当一个下行子帧和一个上行子帧都只包含1个时隙时,该时间偏差可以大于等于0,且小于一个子帧的时间长度。
可选的,当下行子帧与上行子帧包含的时隙数不同时,该时间偏差可以大于等于0,且小于一个上行时隙的时间长度。
另一种可能的实现方式,第一上行子帧相对于第一下行子帧的时间偏差大于-a且小于等于a,其中a>0,其中a为一个时隙或一个子帧的时间长度的一半。或者该时间偏差大于等于-a且小于a。需要说明的是,当该时间偏差大于0时,第一上行子帧相对于第一下行子帧的定时提前,当该时间偏差小于0时,应理解为该第一上行子帧相对于第一下行子帧的定时滞后。
步骤1-2:网络设备向终端设备发送第一指示信息,所述第一指示信息指示所述时间偏差,或与所述时间偏差相关的第一参数。
一种可能的实现方式为,该第一指示信息指示的为该时间偏差的取值。
另一种可能的实现方式为,该第一指示信息指示的为该时间偏差(记为TA1)与第二定时提前量(记为TA2)的和,即该TA1与TA2的和即为第一参数。
本申请实施例的一种可能的方式是,终端设备仅可获知第一参数,该第一参数为时间偏差和定时提前量(标记为TA2)的和。另一种可能的方式是,终端设备可以获知时间偏差,此时,不限定终端设备是否可以获知定时提前量。需要说明的是,第一参数为时间偏差和定时提前量经过计算获得的值,此处所举例是第一参数为时间偏差和第二定时提前量的和。
具体的,网络设备可以会向终端设备发送定时提前量的指示信息,该定时提前量的取值与终端设备与网络设备之间的距离相关。针对定时提前量,在LTE系统中,基站会通过高层信令向终端设备发送定时提前量(即N TA),该参数的取值范围为[0,4096]或者[0,20512],终端设备可以根据N TA确定第二定时提前量为N TA×Ts,其中Ts表示系统中信号的采样时间间隔。例如,当终端设备处于小区中心区域,即与基站的距离趋近于0,则基站向该终端设备发送的N TA可以取值为0,从而定时提前量的值为0;当终端设备处于小区边缘时,即与基站的距离趋于小区半径,则基站向终端设备发送的N TA可以取值为4096,从而第二定时提前量的值为4096×Ts。当采用此实现方式时,该第一指示信息可以指示 TA1+TA2。
接下来从终端设备侧进行详细说明,主要包括如下步骤:
步骤2-1:终端设备确定第二下行子帧的定时。
一种可能的实现方式,终端设备接收网络设备发送的同步信号,终端设备根据该同步信号确定第一下行子帧的定时。
此处需要说明的是,从终端设备的角度看,第二下行子帧的定时应理解为终端设备在第二下行子帧上接收信号的定时,第二上行子帧的定时应理解为终端设备在第二上行子帧上发送信号的定时。
步骤2-2:终端设备从网络设备接收第一指示信息,所述第一指示信息指示时间偏差,或与所述时间偏差相关的第一参数,其中,所述时间偏差为所述第一上行子帧相对于第一下行子帧的定时提前量或者为所述第一下行子帧相对于第一上行子帧的定时提前量,其中,所述第一下行子帧与第一上行子帧的子帧编号相同且所属的帧编号也相同。
所述时间偏差与步骤1-1的具体实施方法中的相同,此处不再赘述。
步骤2-3:终端设备根据所述第二下行子帧的定时和所述第一指示信息指示的所述时间偏差,确定第二上行子帧的定时。
采用本申请前述实施例的方法,针对下行频段和上行频段定时不同步的场景,网络设备能够确定编号相同的下行子帧和上行子帧的时间偏差,同时,网络设备将该时间偏差通知给终端设备,使得终端设备能够正确的确定上行子帧的定时,确保正确的调度和反馈时序。
本申请实施例区别于现有技术的改进之处:现有技术中编号相同的下行子帧定时和上行子帧定时之间是同步的。而对于NR和LTE上行共享的场景,编号相同的下行子帧定时和上行子帧定时之间可以是非同步的,故本申请实施例给出了下行子帧和上行子帧之间的定时关系的确定方法。
在本申请实施例中,编号相同的下行子帧和上行子帧的时间偏差的绝对值小于一个时隙或一个子帧的时间长度,从而可以有利于减少第一指示信息所需要的比特数,降低信令开销。在本申请的实施例中,网络设备将指示该时间偏差的第一指示信息发送给终端设备,使得终端设备能够根据该第一指示信息确定上行子帧的定时。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图6-a所示,本申请实施例提供的一种网络设备600,可以包括:确定模块601、发送模块602,其中,
确定模块601,用于确定第一起始接收时间和第一起始发送时间,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为 所述网络设备在第二时间段上开始发送信号的发送时间;
发送模块602,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二起始发送时间,所述第二起始发送时间根据所述第一起始接收时间和所述第一起始发送时间确定。
在本申请的一些实施例中,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
在本申请的一些实施例中,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
在本申请的一些实施例中,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于预置的门限值、且所述差值大于所述门限值取反后得到的值;或者,
所述差值小于所述门限值、且所述差值大于或等于所述门限值取反后得到的值。
在本申请的一些实施例中,所述指示信息所指示的内容通过时间偏差确定,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。
在本申请的一些实施例中,所述发送模块602,具体用于向所述终端设备发送携带有所述时间偏差的指示信息。
在本申请的一些实施例中,请参阅图6-b所示,所述发送模块602,包括:
第一确定子模块6021,用于确定所述终端设备接入所述网络设备的小区时得到的定时提前量;
第一发送子模块6022,用于向所述终端设备发送携带有时间提前总量的指示信息,所述时间提前总量包括:所述定时提前量和所述时间偏差之和。
在本申请的一些实施例中,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,
所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
在本申请的一些实施例中,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,
所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
通过前述内容对本申请实施例的举例说明可知,网络设备确定第一起始接收时间和第一起始发送时间,其中,第一起始接收时间为网络设备在第一时间段上开始接收信号的接收时间,第一起始发送时间为网络设备在第二时间段上开始发送信号的发送时间,网络设备向终端设备发送指示信息,指示信息用于指示终端设备确定第二起始发送时间,第二起始发送时间根据第一起始接收时间和第一起始发送时间确定。由于网络设备通过第一起始接收时间和第一起始发送时间,可以确定在网络设备侧接收信号和发送信号各自采用的时 间,通过网络设备本端的发送信号和接收信号各自采用的时间,可以确定向终端设备发送指示信息,以使得终端设备可以按照网络设备的指示信息确定出第二起始发送时间,并且该第二起始发送时间是根据第一起始接收时间和第一起始发送时间确定出来的。终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
请参阅图7-a所示,本申请实施例提供的一种终端设备700,可以包括:第一确定模块701、接收模块702、第二确定模块703,其中,
第一确定模块701,用于确定第二起始接收时间,所述第二起始接收时间为所述终端设备在第三时间段上开始从网络设备接收信号的接收时间;
接收模块702,用于根据所述第二起始接收时间从所述网络设备接收指示信息;
第二确定模块703,用于根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,所述第二起始发送时间为所述终端设备在第四时间段上开始发送信号的发送时间。
在本申请的一些实施例中,请参阅图7-b所示,所述第二确定模块703,包括:
第一确定子模块7031,用于从所述指示信息中确定出时间偏差,所述时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;
第二确定子模块7032,用于根据所述第二起始接收时间和所述时间偏差确定第二起始发送时间。
在本申请的一些实施例中,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
在本申请的一些实施例中,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
在本申请的一些实施例中,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于预置的门限值、且所述差值大于所述门限值取反后得到的值;或者,
所述差值小于所述门限值、且所述差值大于或等于所述门限值取反后得到的值。
在本申请的一些实施例中,请参阅图7-c所示,所述第二确定模块703,包括:
第三确定子模块7033,用于从所述指示信息中确定出时间提前总量;
第四确定子模块7034,用于根据所述第二起始接收时间和所述时间提前总量确定第二起始发送时间。
在本申请的一些实施例中,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,
所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所 述下行时隙具有相同的时隙编号。
在本申请的一些实施例中,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,
所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
通过前述内容对本申请实施例的举例说明可知,终端设备首先确定出第二起始接收时间,然后终端设备根据该第二起始接收时间接收网络设备发送的指示信息,终端设备可以按照网络设备的指示信息和第二起始接收时间确定出第二起始发送时间,终端设备确定出第二起始发送时间后可以进行上行传输,从而避免因无法确定上行传输的正确时间而导致的传输失败。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本申请实施例提供的另一种网络设备,所述网络设备包括:处理器,存储器,通信接口和总线;所述处理器、通信接口、存储器通过所述总线相互的通信;所述通信接口,用于接收和发送数据;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,执行前述的信息的发送方法。
接下来前述的网络设备进行详细说明,请参阅图8所示,网络设备800,包括:接收器801、发射器802、处理器803和存储器804(其中网络设备800中的处理器803的数量可以一个或多个,图8中以一个处理器为例)。其中,通信接口可包括接收器801、发射器802。在本申请的一些实施例中,接收器801、发射器802、处理器803和存储器804可通过总线或其它方式连接,其中,图8中以通过总线连接为例。
存储器804可以包括只读存储器和随机存取存储器,并向处理器803提供指令和数据。存储器804的一部分还可以包括非易失性随机存取存储器(英文全称:Non-Volatile Random Access Memory,英文缩写:NVRAM)。存储器804存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器803控制网络设备800的操作,处理器803还可以称为中央处理单元(英文全称:Central Processing Unit,英文简称:CPU)。具体的应用中,的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器803中,或者由处理器803实现。处理器803可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器803中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器803可以是通用处理器、数字信号处理器(英文全称:digital signal processing,英文缩写:DSP)、专用集成电路(英文全称:Application Specific Integrated Circuit, 英文缩写:ASIC)、现场可编程门阵列(英文全称:Field-Programmable Gate Array,英文缩写:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器804,处理器803读取存储器804中的信息,结合其硬件完成上述方法的步骤。
接收器801可用于接收输入的数字或字符信息,以及产生与网络设备800的相关设置以及功能控制有关的信号输入,发射器802可包括显示屏等显示设备,发射器802可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器803,用于执行前述网络设备侧执行的信息的发送方法。
接下来介绍本申请实施例提供的另一种终端设备,所述终端设备包括:处理器,存储器,通信接口和总线;所述处理器、通信接口、存储器通过所述总线相互的通信;所述通信接口,用于接收和发送数据;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,执行前述的信息的接收方法。
接下来前述的终端设备进行详细说明,请参阅图9所示,终端设备900包括:接收器901、发射器902、处理器903和存储器904(其中终端设备900中的处理器903的数量可以一个或多个,图9中以一个处理器为例)。在本申请的一些实施例中,接收器901、发射器902、处理器903和存储器904可通过总线或其它方式连接,其中,图9中以通过总线连接为例。
存储器904可以包括只读存储器和随机存取存储器,并向处理器903提供指令和数据。存储器904的一部分还可以包括NVRAM。存储器904存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器903控制终端设备900的操作,处理器903还可以称为CPU。具体的应用中,终端设备900的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器903中,或者由处理器903实现。处理器903可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器903中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器903可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存 储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器904,处理器903读取存储器904中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中,处理器903,用于执行前述的终端设备执行的信息的接收方法。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (38)

  1. 一种信息的发送方法,其特征在于,所述包括:
    网络设备确定第一起始接收时间和第一起始发送时间,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;
    所述网络设备向终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二起始发送时间,所述第二起始发送时间根据所述第一起始接收时间和所述第一起始发送时间确定。
  2. 根据权利要求1所述的方法,其特征在于,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
  3. 根据权利要求1所述的方法,其特征在于,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙,或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
  4. 根据权利要求1所述的方法,其特征在于,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于门限值、且所述差值大于所述门限值取反后得到的值;或者,
    所述差值小于门限值、且所述差值大于或等于所述门限值取反后得到的值。
  5. 根据权利要求1所述的方法,其特征在于,所述指示信息所指示的内容通过时间偏差确定,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。
  6. 根据权利要求1-5所述的任一方法,其特征在于,所述网络设备向终端设备发送指示信息,包括:
    所述网络设备向所述终端设备发送携带有时间偏差的指示信息,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。
  7. 根据权利要求1-5所述的任一方法,其特征在于,所述网络设备向终端设备发送指示信息,包括:
    所述网络设备确定所述终端设备接入所述网络设备的小区时得到的定时提前量;
    所述网络设备向所述终端设备发送携带有时间提前总量的指示信息,所述时间提前总量包括:所述定时提前量和时间偏差之和,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。
  8. 根据权利要求1所述的方法,其特征在于,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,
    所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
  9. 根据权利要求8所述的方法,其特征在于,所述上行子帧和所述下行子帧属于编号 相同的一个或两个帧,或者,
    所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
  10. 一种信息的接收方法,其特征在于,所述方法包括:
    终端设备确定第二起始接收时间,所述第二起始接收时间为所述终端设备在第三时间段上开始从网络设备接收信号的接收时间;
    所述终端设备根据所述第二起始接收时间从所述网络设备接收指示信息;
    所述终端设备根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,所述第二起始发送时间为所述终端设备在第四时间段上开始发送信号的发送时间。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,包括:
    所述终端设备从所述指示信息中确定出时间偏差,所述时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;
    所述终端设备根据所述第二起始接收时间和所述时间偏差确定第二起始发送时间。
  12. 根据权利要求11所述的方法,其特征在于,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
  13. 根据权利要求11所述的方法,其特征在于,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
  14. 根据权利要求11所述的方法,其特征在于,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于预置的门限值、且所述差值大于所述门限值取反后得到的值;或者,
    所述差值小于所述门限值、且所述差值大于或等于所述门限值取反后得到的值。
  15. 根据权利要求11-14中任一所述的方法,其特征在于,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,
    所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
  16. 根据权利要求15所述的方法,其特征在于,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,
    所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
  17. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述第二起始接收 时间和所述指示信息确定第二起始发送时间,包括:
    所述终端设备从所述指示信息中确定出时间提前总量;
    所述终端设备根据所述第二起始接收时间和所述时间提前总量确定第二起始发送时间。
  18. 一种网络设备,其特征在于,所述包括:
    确定模块,用于确定第一起始接收时间和第一起始发送时间,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;
    发送模块,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二起始发送时间,所述第二起始发送时间根据所述第一起始接收时间和所述第一起始发送时间确定。
  19. 根据权利要求18所述的网络设备,其特征在于,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
  20. 根据权利要求18所述的网络设备,其特征在于,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
  21. 根据权利要求18所述的网络设备,其特征在于,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于预置的门限值、且所述差值大于所述门限值取反后得到的值;或者,
    所述差值小于所述门限值、且所述差值大于或等于所述门限值取反后得到的值。
  22. 根据权利要求18所述的网络设备,其特征在于,所述指示信息所指示的内容通过时间偏差确定,所述时间偏差的取值等于所述第一起始接收时间与所述第一起始发送时间的差值。
  23. 根据权利要求22所述的网络设备,其特征在于,所述发送模块,具体用于向所述终端设备发送携带有所述时间偏差的指示信息。
  24. 根据权利要求22所述的网络设备,其特征在于,所述发送模块,包括:
    第一确定子模块,用于确定所述终端设备接入所述网络设备的小区时得到的定时提前量;
    第一发送子模块,用于向所述终端设备发送携带有时间提前总量的指示信息,所述时间提前总量包括:所述定时提前量和所述时间偏差之和。
  25. 根据权利要求18所述的网络设备,其特征在于,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,
    所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
  26. 根据权利要求25所述的网络设备,其特征在于,所述上行子帧和所述下行子帧属于编号相同的一个或两个帧,或者,
    所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
  27. 一种终端设备,其特征在于,所述终端设备包括:
    第一确定模块,用于确定第二起始接收时间,所述第二起始接收时间为所述终端设备在第三时间段上开始从网络设备接收信号的接收时间;
    接收模块,用于根据所述第二起始接收时间从所述网络设备接收指示信息;
    第二确定模块,用于根据所述第二起始接收时间和所述指示信息确定第二起始发送时间,所述第二起始发送时间为所述终端设备在第四时间段上开始发送信号的发送时间。
  28. 根据权利要求27所述的终端设备,其特征在于,所述第二确定模块,包括:
    第一确定子模块,用于从所述指示信息中确定出时间偏差,所述时间偏差的取值等于第一起始接收时间与第一起始发送时间的差值,所述第一起始接收时间为所述网络设备在第一时间段上开始接收信号的接收时间,所述第一起始发送时间为所述网络设备在第二时间段上开始发送信号的发送时间;
    第二确定子模块,用于根据所述第二起始接收时间和所述时间偏差确定第二起始发送时间。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第一起始接收时间提前或等于所述第一起始发送时间,所述第一起始发送时间与所述第一起始接收时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1毫秒ms。
  30. 根据权利要求28所述的终端设备,其特征在于,所述第一起始发送时间提前或等于所述第一起始接收时间,所述第一起始接收时间与所述第一起始发送时间的差值大于或等于0、且小于第一时隙或第一子帧的时间长度,所述第一时隙包括:所述网络设备发送或接收信号所使用的最小子载波间隔对应的时隙或15KHz子载波间隔对应的时隙;所述第一子帧的时间长度为1ms。
  31. 根据权利要求28所述的终端设备,其特征在于,所述第一起始发送时间与所述第一起始接收时间的差值小于或等于预置的门限值、且所述差值大于所述门限值取反后得到的值;或者,
    所述差值小于所述门限值、且所述差值大于或等于所述门限值取反后得到的值。
  32. 根据权利要求28-31中任一所述的终端设备,其特征在于,所述第一时间段包括上行子帧,所述第二时间段包括下行子帧,且所述上行子帧和所述下行子帧具有相同的子帧编号,或者,
    所述第一时间段包括上行时隙,所述第二时间段包括下行时隙,且所述上行时隙和所述下行时隙具有相同的时隙编号。
  33. 根据权利要求32所述的终端设备,其特征在于,所述上行子帧和所述下行子帧属 于编号相同的一个或两个帧,或者,
    所述上行时隙和所述下行时隙属于编号相同的一个或两个帧。
  34. 根据权利要求27所述的终端设备,其特征在于,所述第二确定模块,包括:
    第三确定子模块,用于从所述指示信息中确定出时间提前总量;
    第四确定子模块,用于根据所述第二起始接收时间和所述时间提前总量确定第二起始发送时间。
  35. 一种网络设备,其特征在于,所述网络设备包括:处理器,存储器,通信接口和总线;所述处理器、通信接口、存储器通过所述总线相互的通信;
    所述通信接口,用于接收和发送数据;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,执行如权利要求1至9中任一项所述的方法。
  36. 一种终端设备,其特征在于,所述终端设备包括:处理器,存储器,通信接口和总线;所述处理器、通信接口、存储器通过所述总线相互的通信;
    所述通信接口,用于接收和发送数据;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,执行如权利要求10至17中任一项所述的方法。
  37. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9,或者10-17中任意一项所述的方法。
  38. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-9,或者10-17任意一项所述的方法。
PCT/CN2018/091390 2017-06-16 2018-06-15 一种信息的发送方法、接收方法和网络设备以及终端设备 WO2018228509A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817801.6A EP3598830B1 (en) 2017-06-16 2018-06-15 Information sending method and receiving method, network device, and terminal device
US16/716,400 US11202269B2 (en) 2017-06-16 2019-12-16 Deviation-based information transmission method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459305.2 2017-06-16
CN201710459305.2A CN109151983B (zh) 2017-06-16 2017-06-16 一种信息的发送方法、接收方法和网络设备以及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,400 Continuation US11202269B2 (en) 2017-06-16 2019-12-16 Deviation-based information transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018228509A1 true WO2018228509A1 (zh) 2018-12-20

Family

ID=64659456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091390 WO2018228509A1 (zh) 2017-06-16 2018-06-15 一种信息的发送方法、接收方法和网络设备以及终端设备

Country Status (4)

Country Link
US (1) US11202269B2 (zh)
EP (1) EP3598830B1 (zh)
CN (1) CN109151983B (zh)
WO (1) WO2018228509A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11140641B2 (en) * 2018-10-11 2021-10-05 Qualcomm Incorporated Cellular vehicle-to-everything out of coverage synchronization
CN110167089B (zh) * 2019-06-19 2021-07-30 北京中兴高达通信技术有限公司 一种网络设备、无线通信系统及信道切换方法
WO2021093208A1 (en) * 2020-02-14 2021-05-20 Zte Corporation A method for transmitting information for determining time difference information among nodes of a network
EP4349084A1 (en) * 2021-08-05 2024-04-10 ZTE Corporation Time synchronization techniques
CN116095728A (zh) * 2021-11-05 2023-05-09 展讯半导体(南京)有限公司 数据传输方法及相关产品
WO2023205998A1 (en) * 2022-04-25 2023-11-02 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses, and computer readable media for processing uplink transmission failure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106376050A (zh) * 2016-09-30 2017-02-01 宇龙计算机通信科技(深圳)有限公司 reference numerology的子载波间隔的设置/确定方法、装置、基站和终端
WO2017079530A1 (en) * 2015-11-04 2017-05-11 Interdigital Patent Holdings, Inc. Device and methods for multiplexing transmissions with different tti duration
WO2017091123A1 (en) * 2015-11-24 2017-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio-network node, and methods performed therein for managing signaling in a wireless communication network
WO2017100355A1 (en) * 2015-12-07 2017-06-15 Intel IP Corporation Master information block and system information block transmissions in unlicensed spectrum

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254118B1 (en) * 2000-05-22 2007-08-07 Qualcomm Incorporated Method and apparatus in a CDMA communication system
GB0500460D0 (en) * 2005-01-11 2005-02-16 Koninkl Philips Electronics Nv Time of flight
CN102843762B (zh) * 2007-02-05 2015-07-22 日本电气株式会社 用于无线通信系统的通信同步管理方法及其定时器控制
KR101758357B1 (ko) * 2009-11-02 2017-07-17 한국전자통신연구원 재전송 방법 및 장치
KR101636398B1 (ko) * 2010-05-17 2016-07-05 삼성전자주식회사 광대역 무선통신 시스템에서 상향링크 자원할당 지시 장치 및 방법
WO2012041422A2 (en) * 2010-09-30 2012-04-05 Panasonic Corporation Timing advance configuration for multiple uplink component carriers
US20120120944A1 (en) * 2010-11-15 2012-05-17 Xue Yang Methods and apparatuses for multi-radio coexistence
JP5905749B2 (ja) * 2012-03-06 2016-04-20 株式会社Nttドコモ 無線基地局
US9660771B2 (en) * 2012-10-16 2017-05-23 Samsung Electronics Co., Ltd Method and apparatus for performing hybrid automatic repeat request operation in an asymmetric multicarrier communication network environment
US20140269633A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Coexistence of a wireless wide area network device in time division duplex (tdd) mode with a wireless access point (ap)
CN104519590A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 双连接下小小区上进行随机接入的方法及系统
US20160380742A1 (en) * 2013-11-29 2016-12-29 Sharp Kabushiki Kaisha Terminal device, base station apparatus, integrated circuit, and communication method
EP2897318B1 (en) * 2014-01-21 2017-09-06 Panasonic Intellectual Property Corporation of America TDD uplink/downlink configuration enhancements
WO2015129985A1 (ko) * 2014-02-28 2015-09-03 엘지전자(주) 무선 통신 시스템에서 낮은 지연을 가지는 상향링크 데이터 전송 방법 및 장치
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN105376849B (zh) * 2014-09-01 2020-04-24 上海朗帛通信技术有限公司 一种蜂窝通信中的laa方法和装置
CN107079440A (zh) * 2014-11-06 2017-08-18 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US10673673B2 (en) * 2015-02-03 2020-06-02 Lg Electronics Inc. Method and apparatus for performing synchronization for carrier without synchronization signal in wireless communication system
US9615258B2 (en) * 2015-05-21 2017-04-04 Nokia Solutions And Networks Oy Method and apparatus for securing timing packets over untrusted packet transport network
CN106550415A (zh) * 2015-09-22 2017-03-29 中兴通讯股份有限公司 上行同步方法、设备和系统
US10314037B2 (en) * 2016-07-08 2019-06-04 Qualcomm Incorporated Latency reduction techniques in wireless communications
US10397915B2 (en) * 2016-11-09 2019-08-27 Qualcomm Incorporated Latency reduction in shared or unlicensed spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079530A1 (en) * 2015-11-04 2017-05-11 Interdigital Patent Holdings, Inc. Device and methods for multiplexing transmissions with different tti duration
WO2017091123A1 (en) * 2015-11-24 2017-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio-network node, and methods performed therein for managing signaling in a wireless communication network
WO2017100355A1 (en) * 2015-12-07 2017-06-15 Intel IP Corporation Master information block and system information block transmissions in unlicensed spectrum
CN106376050A (zh) * 2016-09-30 2017-02-01 宇龙计算机通信科技(深圳)有限公司 reference numerology的子载波间隔的设置/确定方法、装置、基站和终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Considerations of NR UL Operation", 3GPP TSG RAN WG1 MEETING #88, R1- 1701668, 12 February 2017 (2017-02-12), XP051208835 *
See also references of EP3598830A4

Also Published As

Publication number Publication date
EP3598830A4 (en) 2020-04-01
US11202269B2 (en) 2021-12-14
EP3598830B1 (en) 2022-06-08
CN109151983A (zh) 2019-01-04
US20200120627A1 (en) 2020-04-16
CN109151983B (zh) 2021-01-29
EP3598830A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018228509A1 (zh) 一种信息的发送方法、接收方法和网络设备以及终端设备
EP3096549B1 (en) Data transmission method, base station, and user equipment
AU2016433340B2 (en) Data transmission method and apparatus
EP3520287B1 (en) Aligning slots allocated to extended cyclic prefix symbols with slots allocated to normal cyclic prefix symbols
US8837397B2 (en) Apparatus and method for co-existence between different radio access technologies
EP3863347A1 (en) Resource configuration method and device
CN111656852A (zh) 用于5g网络中的回程的方法和装置
CN111630917B (zh) 用于多跳系统中的资源分配的方法、系统和装置
WO2017000307A1 (en) Method, apparatus and system
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
JP2022501904A (ja) ネットワークデバイスにおける方法、及び統合アクセスバックホールノードにおける方法
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
US20190306833A1 (en) Resource Mapping Method and User Equipment
US11202294B2 (en) Methods and devices for determining downlink resource set and sending resource position information
WO2018171689A1 (zh) 一种信息传输方法及通信设备
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2018137570A1 (zh) 一种信息传输方法及装置
WO2019029693A1 (zh) 一种数据传输方法和网络设备以及终端设备
US20230388168A1 (en) Compensation of residual time-frequency errors in communications
CN112839376A (zh) 定时确定方法、装置、通信节点及存储介质
WO2018171783A1 (zh) 信号传输方法、装置及系统
US9986535B2 (en) Method and system for managing mobile management entity (MME) in a telecommunication network
WO2018201861A1 (zh) 一种消息解码方法、发送端设备和接收端设备
KR20230042076A (ko) 데이터 전송의 시간 영역 파라미터를 표시하기 위한 방법, ue 및 기지국
WO2018127221A1 (zh) 一种资源指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018817801

Country of ref document: EP

Effective date: 20191014

NENP Non-entry into the national phase

Ref country code: DE