WO2018228240A1 - 通信方法、终端和网络设备 - Google Patents

通信方法、终端和网络设备 Download PDF

Info

Publication number
WO2018228240A1
WO2018228240A1 PCT/CN2018/089948 CN2018089948W WO2018228240A1 WO 2018228240 A1 WO2018228240 A1 WO 2018228240A1 CN 2018089948 W CN2018089948 W CN 2018089948W WO 2018228240 A1 WO2018228240 A1 WO 2018228240A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
terminal
beam scanning
measurement
network device
Prior art date
Application number
PCT/CN2018/089948
Other languages
English (en)
French (fr)
Inventor
耿婷婷
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18816995.7A priority Critical patent/EP3627876A4/en
Publication of WO2018228240A1 publication Critical patent/WO2018228240A1/zh
Priority to US16/711,657 priority patent/US11178612B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods, terminals, and network devices.
  • New Radio (NR) communication systems such as the fifth generation mobile communication system (may be referred to as 5G for short), can be deployed not only in the low frequency band, such as the frequency band below 3 GHz (including 3 GHz). It can also be deployed in high frequency bands, such as bands above 6 GHz (including 6 GHz).
  • 5G New Radio
  • the high-frequency system configures multiple beams in one cell and performs beam scanning to ensure coverage.
  • terminals can also perform minimum of drive-tests (MDT) to obtain network-related parameters to detect network failures and/or optimize network performance.
  • MDT minimum of drive-tests
  • the terminal consumes a large amount of energy.
  • the present application provides a communication method, a terminal, and a network device, which helps to avoid wasting power consumption of the terminal.
  • the present application provides a method of communication.
  • the communication method includes: the terminal performs signal measurement according to a beam scanning manner of the cell, and obtains a measurement result; the terminal sends the measurement result to the network device.
  • the terminal performs signal measurement according to the beam scanning mode of the cell, so that the terminal can perform signal measurement during the beam scanning period of the signal, thereby helping to avoid wasting terminal energy consumption.
  • the terminal performs signal measurement according to a beam scanning manner of the cell, and obtains a measurement result, including: determining, by the terminal, a beam scanning of the first beam in the cell according to a beam scanning manner of the cell. a time period; the terminal determines, according to the beam scanning period and the recording duration of the first beam, all or part of the time period overlapped with the beam scanning period of the first beam as the target measurement period; the terminal performs signal measurement in the target measurement period to obtain the measurement result.
  • the terminal first determines a beam scanning period of the first beam in the cell according to a beam scanning manner of the cell, and then may perform a beam scanning period of the first beam on the first beam in a period overlapping with the configured recording duration.
  • the first signal is used for signal measurement. This enables the terminal to perform signal measurement on the first signal during the period in which the first signal is detected, and can stop signal measurement on the first signal in a period in which the beam scanning period of the first beam does not overlap with the recording duration, thereby avoiding Waste the energy consumption of the terminal.
  • the length of the recording duration is greater than or equal to the length of the beam scanning period of the first beam.
  • the length of the recording duration is greater than or equal to the length of the beam scanning period of the first beam, which helps the terminal to detect the first signal during the recording duration, that is, the beam scanning period and the recording of the first beam.
  • There is an overlapping period of time which helps to avoid the measurement of the first signal when the first signal is not detected in the terminal, thereby helping to avoid wasting terminal energy consumption.
  • the starting moment of the recording duration is equal to the starting moment of the beam scanning period of the first beam.
  • the start time of the recording duration is equal to the start time of the beam scanning period of the first beam, which helps the overlapping period of the beam scanning period and the recording duration of the first beam, thereby helping to avoid detection in the terminal.
  • the first signal is measured when the first signal is not used, thereby helping to avoid wasting terminal energy consumption.
  • the recording duration is N times of the DRX period, and N is a positive number; the terminal is according to the beam scanning period of the first beam. And recording the duration, determining all or part of the period of the recording duration that overlaps with the beam scanning period of the first beam as the target measurement period, including: the terminal according to the beam scanning period of the first beam, the DRX period, and the DRX ON period in the DRX period And determining all or part of the period of the DRX ON period overlapping with the beam scanning period of the first beam as the target measurement period.
  • the terminal determines all or part of the time period in which the beam scanning period of the first beam overlaps with the DRX ON period as the target measurement period. Since the DRX ON period is a period in which the terminal receives data, it helps to avoid signal measurement in the terminal during the DRX OFF period, thereby helping to further avoid wasting terminal energy consumption.
  • the DRX ON period may be an integer multiple of a beam scanning period of the first beam.
  • the communications method further includes: receiving, by the terminal, beam number information sent by the network device, where the beam number information is used to indicate the beam measurement of the terminal number.
  • the terminal may stop performing signal measurement according to the beam number information, thereby helping to avoid waste of power consumption of the terminal.
  • the measurement result includes at least one beam identification information and at least one signal quality information in the cell, the at least one beam identification information and the at least one Signal quality information is one-to-one correspondence.
  • the present application provides a communication method.
  • the communication method includes: the network device receives a measurement result obtained by the terminal performing signal measurement according to a beam scanning manner of the cell; and the network device processes the measurement result.
  • the network device can process the measurement result obtained by the terminal according to the beam scanning manner of the cell, which helps to avoid waste of energy consumption in the terminal.
  • the measurement result is that the terminal is measured during a target measurement period within a recording duration, and the target measurement period is all overlapped with the beam scanning period of the first beam within the recording duration or In some periods, the beam scanning period of the first beam is determined by the terminal according to the beam scanning mode.
  • the length of the recording duration is greater than or equal to the length of the beam scanning period of the first beam.
  • the starting moment of the recording duration is equal to the starting moment of the beam scanning period of the first beam.
  • the recording duration is N times of the DRX period
  • the target measurement period includes the terminal in the DRX ON period in the DRX cycle.
  • N is a positive integer for all or part of the period of overlap with the beam scanning period of the first beam.
  • the communications method further includes: the network device sends the beam number information to the terminal, where the beam number information is used to indicate the number of beam measurements of the terminal .
  • the measurement result includes at least one beam identification information and at least one signal quality information in the cell, the at least one beam identifier The information is in one-to-one correspondence with the at least one signal quality information.
  • the present application provides a terminal.
  • the terminal comprises means for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a network device.
  • the network device comprises means for performing the communication method of any of the possible implementations of the second aspect or the second aspect.
  • the application provides a terminal.
  • the terminal includes a processor and a transmitter.
  • the processor is used to execute the program.
  • the processor and the transmitter implement the communication method of any of the possible implementations of the first aspect or the first aspect when the processor executes the code.
  • the terminal may further comprise a memory for storing code executed by the processor.
  • the terminal may further include a receiver.
  • the receiver is configured to receive information sent by the network device.
  • the application provides a network device.
  • the network device includes a processor and a receiver.
  • the processor is used to execute the program.
  • the processor and the receiver implement the communication method of any of the possible implementations of the second aspect or the second aspect when the processor executes the code.
  • the network device can also include a memory for storing code executed by the processor.
  • the network device may further include a transmitter.
  • the transmitter is used to send information to the terminal.
  • the application provides a computer readable storage medium.
  • Program code for terminal execution is stored in the computer readable storage medium.
  • the program code includes instructions for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a computer readable storage medium.
  • Program code for execution of the network device is stored in the computer readable storage medium.
  • the program code includes instructions for performing the communication method of any of the possible implementations of the second aspect or the second aspect.
  • the application provides a computer program product comprising instructions.
  • the terminal is caused to perform the communication method in any one of the possible implementations of the first aspect or the first aspect.
  • the application provides a computer program product comprising instructions.
  • the computer program product is run on a network device, the network device is caused to perform the communication method of any of the possible implementations of the second aspect or the second aspect.
  • FIG. 1 is a schematic structural diagram of a communication system of a communication method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a target measurement period of an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a target measurement period of another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a target measurement period of another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic interaction flowchart of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic interaction flowchart of a communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device according to another embodiment of the present application.
  • FIG. 1 is a schematic architectural diagram of a communication system to which a communication method of an embodiment of the present application can be applied. It should be understood that the embodiment of the present application is not limited to the system architecture shown in FIG. 1. In addition, the device in FIG. 1 may be hardware, functionally divided software, or a combination of the two.
  • the communication system shown in FIG. 1 includes one or more terminals 110, and one or more network devices 120.
  • the terminal 110 and the network device 120 can communicate with each other.
  • the network device 120 and the terminal 110 can communicate by using a beam scanning method.
  • the terminal 110 may be a user equipment (UE).
  • the UE may communicate with one or more core networks (CNs) via a radio access network (RAN).
  • RAN radio access network
  • a UE may be referred to as an access terminal, a terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless network device, a user agent, or a user device.
  • the UE may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function.
  • a network device 120 is a base station. It should be understood that the specific type of the base station is not limited in the embodiment of the present application. In systems with different wireless access technologies, the names of devices with base station functions may vary. For convenience of description, in all embodiments of the present application, the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station.
  • a base station also referred to as a base station device, is a device that accesses a terminal to a wireless network, including but not limited to: a transmission reception point (TRP), a 5G node B (gNB) , evolved Node B (eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base)
  • TRP transmission reception point
  • gNB 5G node B
  • eNB evolved Node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • base transceiver station base
  • a transceiver station BTS
  • a home base station for example, home evolved node B, or home node B, HNB
  • BBU base band unit
  • AP Wifi access point
  • Pico small base station device
  • the terminal 110 can perform signal measurement, for example, the terminal 110 can measure the signal of the serving cell, and report the measurement result to the network device 120, so that the network management device detects the problem and the fault in the network according to the measurement result. , and / or optimize network performance.
  • the current communication method of the terminal mainly includes the following steps: the network device sends the measurement configuration information to the terminal, and the measurement configuration information may include at least one type of information such as a recording period (such as a logging duration) and a recording duration (such as a logging interval); the terminal according to the measurement configuration information. Perform measurement and report the measurement result; the network device receives the measurement result, and then performs fault detection or network optimization according to the measurement result, or the network device can send the measurement result to the network management device, and the network management device according to the measurement As a result, operations such as fault detection or network optimization are performed.
  • the network device sends the measurement configuration information to the terminal, and the measurement configuration information may include at least one type of information such as a recording period (such as a logging duration) and a recording duration (such as a logging interval); the terminal according to the measurement configuration information.
  • the network device receives the measurement result, and then performs fault detection or network optimization according to the measurement result, or the network device
  • the recording duration can also be referred to as a recording interval.
  • the above communication method has the following disadvantages: the network device may not detect the signal within the recording duration indicated by the measurement configuration information, and may not even measure the signal. At this time, if the terminal always performs the signal measurement process, it is wasted. The energy consumption of the terminal.
  • the present application proposes a new communication method so that the power consumption of the terminal can be saved.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. It should be understood that FIG. 2 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 2.
  • the terminal performs signal measurement according to a beam scanning manner of the cell, and obtains a measurement result.
  • the cell may be a serving cell of the terminal.
  • the beam scanning mode may be that the network device of the cell is sent by using a broadcast message or a dedicated RRC signaling, for example, by using RRC measurement configuration signaling.
  • the terminal may send a request message to the network device of the cell, request a beam scanning mode of the cell, and receive a beam scanning mode sent by the network device of the cell according to the request message.
  • the beam scanning mode may include a mapping relationship between each beam identification information and a corresponding scan time, and/or a beam scanning period.
  • the beam identification information is used to uniquely identify the beam, and includes at least one of an identifier of the beam, an antenna port identifier of the beam, a reference signal of the beam, and an index of the beam.
  • the beam English in the embodiment of the present application may be referred to as a beam.
  • the transmit beam may refer to a distribution of signal strengths formed in different directions of the space after the signal is transmitted through the antenna
  • the receive beam may refer to a signal intensity distribution of the wireless signals received from the antenna in different directions in space.
  • one or more antenna ports of one beam can also be regarded as one antenna port set, that is, one antenna port set includes at least one antenna port.
  • the beam may refer to a precoding vector having a certain energy transmission directivity and can identify the precoding vector by using index information, where the energy transmission directivity refers to receiving precoding through the precoding vector in a certain spatial position.
  • the processed signal has better receiving power, such as satisfying the receiving demodulation signal-to-noise ratio, etc., and in other spatial locations, the power of the signal after pre-coding processing through the pre-coding vector is low, and the receiving solution is not satisfied. Adjust the signal to noise ratio.
  • Different communication devices may have different precoding vectors, ie corresponding to different beams.
  • one communication device may use one or more of a plurality of different precoding vectors at the same time, ie simultaneously
  • a beam can be understood as a spatial resource.
  • the beam identifier can be identified by a beam identifier, and the beam identifier can be corresponding to the corresponding resource ID of the user, such as the ID of a channel-state information-reference signal (CSI-RS) corresponding to a certain configuration or
  • the resource may also be an ID or a resource of a certain configured Sounding Reference Signal (SRS), or may be an index information of a specific signal or channel display or implicit bearer carried by the beam, including but not limited to
  • a synchronization signal or a broadcast channel is transmitted through the beam to indicate a beam identification of the beam.
  • the terminal sends the measurement result to the network device.
  • the terminal performs signal measurement by referring to the beam scanning mode of the cell, that is, the terminal can perform signal measurement by referring to the scanning time of the beam. More specifically, the terminal can know the scan time of each beam. This helps the terminal avoid signal detection without detecting the signal, thereby helping to save energy consumption of the terminal.
  • the measurement by the terminal according to the beam scanning manner of the serving cell may include: the terminal performs measurement according to a beam scanning period in the cell.
  • reference signals of different beams such as a Synchronization Signal (SS) and a channel state information-reference signal (CSI-RS) signal, may have the same scanning duration. Or different, but the scanning period can be different.
  • SS Synchronization Signal
  • CSI-RS channel state information-reference signal
  • the terminal when the terminal scans the reference signal of the first beam in the first ms, the reference signal of the first beam is detected at the first ms.
  • the terminal may determine that the scanning period of the reference signal of the first beam is from 1 ms to 5 ms, and the scanning period of the reference signal of the second beam is from 6 ms to 10 ms.
  • the reference signal scanning period of all beams can be determined.
  • the scanning period of the reference signal of the beam may be simply referred to as the beam scanning period of the beam.
  • the signal measurement may be performed in the beam scanning period of each beam, so that the power consumption caused by the measurement when the terminal does not detect the signal may be avoided.
  • the terminal can receive the recording duration sent by the network device.
  • the recording duration can refer to the length of time each time the terminal performs signal measurement.
  • the duration of the record may be received by the terminal in the current serving cell, or may be received by the terminal in the neighboring cell.
  • the recording duration is configured by the network device, that is, the network device instructs the terminal to perform signal measurement and recording within the recording duration.
  • the terminal may perform signal measurement for the duration of the recording.
  • the terminal may perform signal measurement according to the recording duration and the beam scanning manner, that is, the beam scanning period of the beam.
  • the terminal when the terminal performs signal measurement according to a beam scanning period and a recording market of a certain beam (referred to as a first beam for convenience of subsequent description), the terminal may include: the terminal may determine the intra-cell according to the beam scanning manner of the cell. a beam scanning period of the first beam; and determining, according to the configured recording duration and the beam scanning period of the first beam, all or part of the period of the recording duration overlapping the beam scanning period as the target measurement period; then the terminal is at the target The signal is measured during the measurement period to obtain the measurement result.
  • the terminal may include: the terminal may determine the intra-cell according to the beam scanning manner of the cell. a beam scanning period of the first beam; and determining, according to the configured recording duration and the beam scanning period of the first beam, all or part of the period of the recording duration overlapping the beam scanning period as the target measurement period; then the terminal is at the target The signal is measured during the measurement period to obtain the measurement result.
  • the terminal may determine the beam scanning period of each beam according to the beam scanning manner, and may determine all or part of the time period in which each beam scanning period overlaps with the recording duration as the total target measurement period, and then in the target measurement.
  • the signal is measured during the time period to obtain the measurement result.
  • the terminal may determine a beam scanning period of the first beam in the cell according to a beam scanning manner. For example, the terminal may determine the beam scanning period of the first beam to be 1 ms to 5 ms according to the beam scanning duration of the first beam being 5 ms, and the terminal detecting the reference signal of the first beam at the 1 ms.
  • the terminal may determine all the durations or partial durations of the 4 ms to the 5 ms in which the recording duration is overlapped with the beam scanning period of the first beam as Target measurement period.
  • the terminal can perform signal measurement within 4 ms of the recording duration in which the signal can be detected, and stop the signal measurement within the other 6 ms within the recording duration, thereby saving terminal power.
  • the thick solid line indicates the target measurement period in which the terminal can perform signal measurement in the first beam direction.
  • the terminal can perform signal measurement only during the period in which the beam scanning period overlaps within the recording duration, thereby saving energy consumption of the terminal.
  • the length of the recording duration may be greater than or equal to the length of the beam scanning period, which helps to make the recording duration overlap with the beam scanning period of the first beam, thereby helping to ensure that the terminal can detect the signal during the period.
  • the signal is measured.
  • the beam scanning duration of each beam is 5 ms, and the beam scanning period is 40 ms
  • the length of the recording duration may be greater than or equal to 40 ms. This can make the recording duration overlap with the beam scanning period of any beam, so that the terminal can measure the signal that can be detected regardless of which beam is in the scanning area.
  • the starting time of the recording duration may be adjusted according to the beam scanning period, so that the beam scanning period has an overlapping portion with the recording duration, so that the terminal can measure the signal during the period in which the signal is detected.
  • the terminal may adjust the start time of the recording duration to the start time of the beam scanning period of the first beam, so that the recording duration may be overlapped with the beam scanning period of the first beam.
  • the starting time of the recording duration is the same as the starting time of the beam scanning period of the first beam, so that the recording duration has an overlapping portion with the beam scanning period of the first beam.
  • the terminal can perform discontinuous reception (DRX). For example, when the terminal does not receive data at certain times, the terminal can maintain the awake state to receive data only after waking up at certain times to save power consumption of the terminal.
  • the period in which the UE stays awake after waking up may be referred to as a reception period of discontinuous transmission, that is, a period of DRX ON.
  • the terminal determines, according to the beam scanning period and the recording duration of the first beam, all or part of the period of the recording duration that overlaps with the beam scanning period of the first beam as the target measurement period, which may include The terminal determines all or part of the period of the DRX ON period overlapping with the beam scanning period of the first beam as the target measurement period according to the beam scanning period of the first beam, the recording duration, and the receiving DRX ON period within the DRX period. In this way, the terminal can perform signal measurement only when performing data transmission, thereby further saving energy consumption of the terminal.
  • the recording duration may be an integer multiple of the DRX period, and correspondingly, the period of the DRX ON may be an integer multiple of the beam scanning period.
  • the recording duration can be considered to be the same as the DRX cycle, that is, the recording duration is one DRX cycle.
  • the terminal determines the target measurement period according to the beam scanning period and the recording duration of the first beam, and may include: determining, by the terminal, the target measurement period according to the DRX period (ie, according to the recording duration), the DRX ON period, and the beam scanning period of the first beam.
  • the terminal may determine all or part of the period of the DRX ON period overlapping with the beam scanning period of the first beam as the target measurement period of the first beam.
  • the information used to indicate the recording duration may specifically indicate a multiple relationship between the recording duration and the DRX cycle. If the recording duration is 1 times that of DRX, the information for indicating the recording duration may indicate 1.
  • the terminal after receiving the information indicating the recording duration, the terminal can determine the recording duration according to the DRX cycle.
  • the reference signal of the first beam may be a common reference signal of the serving cell, such as the synchronization signal SS, or other signals, such as CSI-RS, CRS, or a terminal-level reference signal.
  • the terminal may receive beam number information from the network device, where the beam number information indicates a number of beams that the terminal can measure. After receiving the number information of the beam, the terminal can perform signal measurement in a corresponding number of beam directions under normal conditions. After the measured number of beams reaches the number indicated by the beam number information, the signal measurement can be stopped.
  • the terminal may receive measurement configuration information from the network device, where the measurement configuration information may include at least one of: recording area information, such as an identifier or an index of one or more cells to be measured; and one or more network notification areas (RAN) Notification area, RNA) information, where RAN is an abbreviation of radio access network; one or more tracking area (TA) information; one or more public land mobile networks , PLMN) information.
  • recording area information such as an identifier or an index of one or more cells to be measured
  • RNA network notification areas
  • TA tracking area
  • PLMN public land mobile networks
  • the aforementioned information for indicating the recording duration may be carried in the measurement configuration information.
  • the terminal may obtain the beam scanning mode of the current cell in the current cell, or obtain the beam scanning mode of the current cell in the neighboring cell.
  • the terminal may obtain the beam scanning mode of the second cell from the system message of the second cell.
  • the terminal may send a request message to the network device of the second cell, request a beam scanning manner of the second cell, and receive a beam scanning manner sent by the network device of the second cell according to the request message.
  • the measurement result sent by the terminal may include beam identification information, or beam identification information and corresponding beam signal quality information.
  • the terminal may further send the cell identifier of the cell corresponding to the beam identifier to the network device.
  • the terminal may further send information such as measurement time and measurement location to the network device.
  • the terminal can send the measurement report in a variety of ways.
  • the terminal in the connected state performs signal measurement, and after obtaining the measurement result, the measurement report including the measurement result may be immediately sent to the network device by radio reference control (RRC) signaling.
  • RRC radio reference control
  • the connected state can also be referred to as an active state.
  • the terminal in the connected state may first send indication information indicating that the measurement report exists, such as MDT report indicator information, to the network device, and then the terminal sends the measurement report.
  • indication information indicating that the measurement report exists such as MDT report indicator information
  • the measurement report may be sent to the network device through the contention-based data transmission resource or through the grant-free resource.
  • the terminal in the idle state or the deactivated state may first buffer the measurement report, and wait until the terminal sends the RRC message, such as the terminal initiates the connection establishment complete message, or the terminal sends the reestablishment complete message, or the terminal sends the reconfiguration complete message, or the terminal sends the connection.
  • the RRC message may carry indication information indicating that the measurement report exists, such as MDT report indicator information.
  • the terminal may then receive a measurement report request message sent by the network device according to the indication information, and send a measurement report according to the measurement report request message.
  • the terminal can also receive a recording period sent by the network device.
  • the recording period may refer to the total duration of the signal measurement performed by the configured terminal. When the total measurement duration of the terminal reaches or exceeds the recording period, the measurement can be stopped.
  • the recording duration is part of the recording cycle.
  • the recording period can be 50 ms and the recording duration can be 10 ms. That is to say, the terminal can perform signal measurement of 50 ms in total, and the 50 ms can be divided into 5 measurements, each measuring 10 ms.
  • FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present application. It should be understood that FIG. 6 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 6.
  • the network device receives, by the terminal, a measurement result obtained by performing signal measurement according to a beam scanning manner of the cell.
  • the measurement result may include beam identification information, or beam identification information and corresponding signal quality information.
  • the network device may further receive a cell identifier of the cell corresponding to the beam identifier.
  • the terminal may also send information such as measurement time and measurement location to the network device.
  • S620 The network device processes the measurement result.
  • the network device can receive the measurement result including the signal measurement performed by the terminal according to the beam scanning mode, and process the data according to the measurement report, thereby contributing to saving energy consumption of the terminal.
  • the processing, by the network device, the measurement report may include: the network device detects the network fault according to the measurement result, repairs the network problem, optimizes the network performance, and the like.
  • the network device may send the measurement result to the network management device, and the network management device detects the network failure according to the measurement result, repairs the network problem, optimizes the network performance, and the like.
  • the network device in the embodiment of the present application may be a network device in the communication method shown in FIG. 2, and may implement a function that can be implemented by the network device in the communication method shown in FIG. 2, and related to the communication method shown in FIG.
  • the technical features are also applicable to the communication method of the embodiment of the present application. For brevity, details are not described herein again.
  • FIG. 7 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG.
  • the network device sends measurement configuration information to the terminal by using an RRC connection reconfiguration message. Accordingly, the terminal receives measurement configuration information.
  • the network device or the network management device may first determine which terminals are terminals for performing signal measurement, that is, determine which terminals are measurement terminals.
  • the network device or the network management device may start from the session, and sequentially select the subsequently accessed terminal as the measurement terminal until the selected number of measurement terminals reaches the specified specification.
  • Subsequent access terminals include terminals that establish normal access, switch in, and reestablish access.
  • the network device may send measurement configuration information to the measurement terminals through an RRC connection reconfiguration message, and the measurement configuration information may also be referred to as a configuration parameter.
  • the configuration parameter may include at least one of the following: a measurement object, frequency information and/or quality type as reported above, and the quality type may include reference signal receiving power (RSRP), reference signal receiving quality of the beam (reference signal) Receiving quality, RSRQ) or other quality type; recording duration; recording period, such as the length of the T330 timer; network absolute time stamp; trace reference parameter; tracking record session reference number ( Trace Recording Session Reference); Trace Collection Entity ID (TCE Id, Trace Collection Entity ID); MDT PLMN list; logging area information.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality of the beam
  • RSRQ reference signal receiving quality
  • recording duration such as the length of the T330 timer
  • network absolute time stamp such as the length of the T330 timer
  • trace reference parameter such as the length of the T330 timer
  • trace reference parameter such as the length of the T330 timer
  • trace reference parameter such as the length of the T330 timer
  • trace reference parameter such as the length of
  • the recording area information is used to indicate the measurement range information of the terminal, and the specific measurement range information may be described in other embodiments of the present invention.
  • the recording area information may be cross-RNA or PLMN in the MDT PLMN list.
  • the measurement result recorded by the terminal can be spread over all RNAs or all PLMNs in the MDT PLNM list.
  • the RRC connection reconfiguration message may also include an includeLocationInfo for activating the terminal to perform an immediate MDT.
  • the network device may also send a beam scanning mode of the serving cell to the terminal.
  • the network device may further send a beam scanning manner of the neighboring cell to the terminal.
  • the terminal After receiving the RRC connection reconfiguration message, if the RRC connection reconfiguration message includes the includeLocationInfo for activating the terminal to perform the immediate MDT, the terminal may start the immediate MDT.
  • the terminal may also determine a beam scanning mode, and then perform signal measurement according to the beam scanning mode and the measurement configuration information in the RRC connection reconfiguration message, that is, an immediate MDT, and record the measurement result.
  • the terminal may send an RRC connection reconfiguration complete message to the network device.
  • the includeLocationInfo can be included in the RRC connection reconfiguration complete message.
  • the includeLocationInfo may include 1 bit of indication information. If the indication information is TRUE, it indicates that the terminal's Immediate MDT measurement item configuration is completed.
  • the terminal sends a measurement report to the network device.
  • the measurement report carries the recorded measurement results in S704.
  • the measurement report may also carry LocationCoordinates information for associating the measurement report with the location information of the terminal.
  • the network device receives the measurement report.
  • the network device can then detect network faults, optimize network performance, etc. based on measurements and other information in the measurement report.
  • FIG. 8 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations of FIG.
  • the network device sends measurement configuration information to the terminal by using an RRC connection reconfiguration message. Accordingly, the terminal receives measurement configuration information.
  • the network device or the network management device may first determine which terminals are terminals for performing signal measurement, that is, determine which terminals are measurement terminals.
  • the network device or the network management device may start from the session and sequentially select the subsequently accessed logged MDT capable terminal as the measurement terminal until the session duration ends or the session termination command is received. There is no limit to the number of terminals that can logged MDT.
  • the network device may send measurement configuration information to the measurement terminals through an RRC connection reconfiguration message, and the measurement configuration information may also be referred to as a configuration parameter.
  • the configuration parameter may include at least one of the following: a measurement object, frequency information and/or quality type as reported above, and the quality type may include reference signal receiving power (RSRP), reference signal receiving quality of the beam (reference signal) Receiving quality, RSRQ) or other quality type; recording duration; recording period, such as the length of the T330 timer; network absolute time stamp; trace reference parameter; tracking record session reference number ( Trace Recording Session Reference); Trace Collection Entity ID (TCE Id, Trace Collection Entity ID); MDT PLMN list; logging area information.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality of the beam
  • RSRQ reference signal receiving quality
  • recording duration such as the length of the T330 timer
  • network absolute time stamp such as the length of the T330 timer
  • trace reference parameter such as the length of the T330 timer
  • trace reference parameter such as the length of the T330 timer
  • trace reference parameter such as the length of the T330 timer
  • trace reference parameter such as the length of
  • the terminal can only measure the signal in the recording area when the logged MDT is performed.
  • the recording area information is used to indicate the measurement range information of the terminal, and the specific measurement range information may be described in other embodiments of the present invention.
  • the recording area information may be cross-RNA or PLMN in the MDT PLMN list.
  • the measurement result recorded by the terminal can be spread over all RNAs or all PLMNs in the MDT PLNM list.
  • the network device may also send a beam scanning mode of the serving cell to the terminal.
  • the network device may further send a beam scanning manner of the neighboring cell to the terminal.
  • the terminal enters an inactive state or an idle state idler.
  • the deactivated state is also called the third state.
  • the terminal performs a logged MDT in a deactivated state or an idle state.
  • the terminal may also determine a beam scanning mode, and then perform signal measurement according to the beam scanning mode and the measurement configuration information in the RRC connection reconfiguration message, that is, logged MDT, and record the measurement result.
  • the terminal caches the measurement result after performing the logged MDT in the deactivated state or the idle state, or caches the measurement report including the measurement result.
  • the terminal may send an RRC connection reconfiguration complete message to the network device.
  • the includeLocationInfo can be included in the RRC connection reconfiguration complete message.
  • the includeLocationInfo may include 1 bit of indication information. If the indication information is TRUE, it indicates that the terminal's Immediate MDT measurement item configuration is completed.
  • the network device sends a measurement report request message to the terminal, requesting a measurement report.
  • the terminal sends a measurement report to the network device.
  • the measurement report carries the recorded measurements in S706.
  • the measurement report may also carry LocationCoordinates information for associating the measurement report with the location information of the terminal.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application. It should be understood that the terminal 900 shown in FIG. 9 is only an example, and the terminal in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 9, or not included in FIG. All modules.
  • the processing module 910 is configured to perform signal measurement according to a beam scanning manner of the cell, to obtain a measurement result.
  • the communication module 920 is configured to send the measurement result to the network device.
  • the terminal performs signal measurement according to the beam scanning mode of the cell, so that the terminal can perform signal measurement during the beam scanning period of the signal, thereby helping to avoid wasting terminal energy consumption.
  • the processing module 910 is specifically configured to: determine, according to a beam scanning manner of the cell, a beam scanning period of the first beam in the cell; and according to a beam scanning period and a recording duration of the first beam, record the duration and the first beam. All or part of the period in which the beam scanning period overlaps is determined as the target measurement period; the signal measurement is performed in the target measurement period to obtain the measurement result.
  • the length of the recording duration is greater than or equal to the length of the beam scanning period of the first beam.
  • the starting time of the recording duration is equal to the starting time of the beam scanning period.
  • the recording duration is N times the DRX period, and N is a positive number.
  • the processing module 910 is specifically configured to determine, according to the beam scanning period of the first beam, the DRX period, and the DRX ON period in the DRX period, all or part of the period of the DRX ON period overlapping with the beam scanning period of the first beam. The time period is measured for the target.
  • the communication module 920 is further configured to: receive beam number information sent by the network device, where the beam number information is used to indicate a number of beam measurements of the terminal.
  • the measurement result includes at least one beam identification information and at least one signal quality information in the cell, and the at least one beam identification information is in one-to-one correspondence with the at least one signal quality information.
  • the terminal shown in FIG. 9 can perform various steps performed by the terminal in the communication method shown in FIG. 2, and details are not described herein for brevity.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application. It should be understood that the network device 1000 illustrated in FIG. 10 is only an example, and the network device in the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 10, or All modules in 10.
  • the communication module 1010 is configured to receive a measurement result obtained by the terminal performing signal measurement according to a beam scanning manner of the cell.
  • the processing module 1020 is configured to process the measurement result.
  • the network device can process the measurement result obtained by the terminal according to the beam scanning mode of the cell, which helps to avoid waste of energy consumption in the terminal.
  • the measurement result is obtained by measuring, by the terminal, a target measurement period within a recording duration, where the target measurement period is all or part of a period overlapping the beam scanning period of the first beam, and the beam scanning period of the first beam is The terminal is determined according to the beam scanning mode.
  • the length of the recording duration is greater than or equal to the length of the beam scanning period of the first beam.
  • the starting moment of the recording duration is equal to the starting moment of the beam scanning period of the first beam.
  • the recording duration is N times of the DRX period
  • the target measurement period includes all or part of a period in which the terminal overlaps with the beam scanning period of the first beam in the DRX ON period in the DRX period, where N is a positive integer.
  • the communication module 1010 is further configured to: send the beam number information to the terminal, where the beam number information is used to indicate the number of beam measurements of the terminal.
  • the measurement result includes at least one beam identification information and at least one signal quality information in the cell, where the at least one beam identification information is in one-to-one correspondence with the at least one signal quality information.
  • the terminal shown in FIG. 10 can perform various steps performed by the network device in the communication method shown in FIG. 6. For brevity, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present application. It should be understood that the terminal 1100 shown in FIG. 11 is only an example, and the terminal in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 11.
  • the processor 1110 can be used to implement the operations or steps that the processing module 910 in FIG. 9 can implement.
  • the transmitter 1120 can be used to implement the operations or steps that the communication module 920 in FIG. 9 can implement.
  • the terminal shown in FIG. 11 may further include a receiver for receiving information sent by the network device.
  • the receiver and the transmitter can be integrated together, called a transceiver.
  • the terminal shown in FIG. 11 may also include a memory for storing program code executed by the processor.
  • a memory can be integrated in the processor 1110.
  • FIG. 12 is a schematic structural diagram of a network device according to another embodiment of the present application. It should be understood that the network device 1200 illustrated in FIG. 12 is merely an example, and the network device in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG.
  • the processor 1220 can be used to implement the operations or steps that the processing module 1020 in FIG. 10 can implement.
  • the receiver 1210 can be used to implement the operations or steps that the communication module 1010 in FIG. 10 can implement.
  • the network device shown in FIG. 12 may further include a transmitter for transmitting information to the terminal or other network device.
  • the receiver and the transmitter can be integrated together, called a transceiver.
  • the network device shown in Figure 12 can also include a memory for storing program code executed by the processor.
  • a memory may be integrated in the processor 1220.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供通信方法、终端和网络设备。该通信方法:终端根据小区的波束扫描方式进行信号测量,得到测量结果;终端向网络设备发送测量结果;网络设备接收终端根据小区的波束扫描方式进行信号测量得到的测量结果;网络设备对测量结果进行处理。本申请提供的通信方法、终端和网络设备,有助于避免浪费终端的能耗。

Description

通信方法、终端和网络设备
本申请要求于2017年06月14日提交中国专利局、申请号为201710446713.4、申请名称为“通信方法、终端和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、终端和网络设备。
背景技术
随着通信技术的不断发展,新无线(New Radio,NR)通信系统,如第五代移动通信系统(可以简称为5G),不仅可以部署在低频段,如3GHz以下(包括3GHz)的频段,也可以部署在高频段,如6GHz以上(包括6GHz)的频段。
高频信号的固有特性,比如穿透力低、遇遮挡物信号衰落块,会导致高频信号存在较大的路径损耗。为了补偿高频信号的路径损耗,提高业务的传输可靠性,通常情况下,高频系统在一个小区中会配置多个波束,并进行波束扫描,以保证覆盖。
高频系统中,终端也可以进行最小路测(minimization of drive-tests,MDT),以获取网络相关参数,从而检测网络故障和/或优化网络性能。
但使用现有的MDT方法进行测量,终端的能耗较大。
发明内容
本申请提供一种通信方法、终端和网络设备,有助于避免浪费终端的能耗。
第一方面,本申请提供了一种通信方法。该通信方法包括:终端根据小区的波束扫描方式进行信号测量,得到测量结果;终端向网络设备发送测量结果。
该通信方法中,终端根据小区的波束扫描方式进行信号测量,使得终端可以在信号的波束扫描时段进行信号测量,从而有助于避免浪费终端的能耗。
结合第一方面,在第一种可能的实现方式中,终端根据小区的波束扫描方式进行信号测量,得到测量结果,包括:终端根据小区的波束扫描方式,确定小区内的第一波束的波束扫描时段;终端根据第一波束的波束扫描时段和记录时长,将记录时长内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段;终端在目标测量时段进行信号测量,得到测量结果。
该实现方式中,终端先根据小区的波束扫描方式,确定小区中的第一波束的波束扫描时段,然后可以在第一波束的波束扫描时段与配置的记录时长重叠的时段对第一波束上的第一信号进行信号测量。这使得终端可以在检测到第一信号的时段才对第一信号进行信号测量,而在第一波束的波束扫描时段与记录时长不重叠的时段可以停止对第一信号的信号测量,从而可以避免浪费终端的能耗。
结合第一种可能的实现方式,在第二种可能的实现方式中,记录时长的长度大于或等于第一波束的波束扫描周期的长度。
该实现方式中,记录时长的长度大于或等于第一波束的波束扫描周期的长度,有助于终端在记录时长内可以检测到第一信号,即有助于第一波束的波束扫描时段与记录时长存在重叠时段,从而有助于避免终端中在检测不到第一信号时对第一信号进行测量,进而有助于避免浪费终端的能耗。
结合第一种可能的实现方式,在第三种可能的实现方式中,记录时长的起始时刻等于第一波束的波束扫描时段的起始时刻。
该实现方式中,记录时长的起始时刻等于第一波束的波束扫描时段的起始时刻,有助于第一波束的波束扫描时段与记录时长存在重叠时段,从而有助于避免终端中在检测不到第一信号时对第一信号进行测量,进而有助于避免浪费终端的能耗。
结合第一种至第三种中任意一种可能的实现方式,在第四种可能的实现方式中,记录时长为DRX周期的N倍,N为正数;终端根据第一波束的波束扫描时段和记录时长,将记录时长内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段,包括:终端根据第一波束的波束扫描时段、DRX周期和DRX周期内的DRX ON时段,将DRX ON时段内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段。
该实现方式中,终端将第一波束的波束扫描时段与DRX ON时段重叠的全部或部分时段确定为目标测量时段。由于DRX ON时段为终端接收数据的时段,因此,有助于避免终端中在DRX OFF时段进行信号测量,从而有助于进一步避免浪费终端的能耗。
其中,DRX ON时段可以是第一波束的波束扫描时段的整数倍。
结合第一方面或上述任意一种可能的实现方式,在第五种可能的实现方式中,该通信方法还包括:终端接收网络设备发送的波束数目信息,波束数目信息用于指示终端的波束测量数目。
该实现方式中,终端根据波束数目信息,在测量满足波束数目信息指示的波束数目的信号后,可以停止进行信号测量,从而有助于避免终端的能耗的浪费。
结合第一方面或上述任意一种可能的实现方式,在第六种可能的实现方式中,测量结果包括小区内的至少一个波束标识信息和至少一个信号质量信息,至少一个波束标识信息与至少一个信号质量信息一一对应。
第二方面,本申请提供了一种通信方法。该通信方法包括:网络设备接收终端根据小区的波束扫描方式进行信号测量得到的测量结果;网络设备对测量结果进行处理。
该通信方法中,网络设备可以对终端根据小区的波束扫描方式进行信号测量得到的测量结果进行处理,有助于避免终端浪费能耗。
结合第二方面,在第一种可能的实现方式中,测量结果是终端在记录时长内的目标测量时段测量得到的,目标测量时段是记录时长内与第一波束的波束扫描时段重叠的全部或部分时段,第一波束的波束扫描时段为终端根据波束扫描方式确定的。
结合第一种可能的实现方式,在第二种可能的实现方式中,记录时长的长度大于或等于第一波束的波束扫描周期的长度。
结合第一种可能的实现方式,在第三种可能的实现方式中,记录时长的起始时刻等于第一波束的波束扫描时段的起始时刻。
结合第一种至第三种中任意一种可能的实现方式,在第四种可能的实现方式中,记录时长为DRX周期的N倍,目标测量时段包括终端在DRX周期中的DRX ON时段内与第一波束的波束扫描时段重叠的全部或部分时段,N为正整数。
结合第二方面或上述任意一种可能的实现方式,在第五种可能的实现方式中,该通信方法还包括:网络设备向终端发送波束数目信息,波束数目信息用于指示终端的波束测量数目。
结合第二方面或上述任意一种可能的实现方式,在第六种可能的实现方式中,测量结果包括所述小区内的至少一个波束标识信息和至少一个信号质量信息,所述至少一个波束标识信息与所述至少一个信号质量信息一一对应。
第三方面,本申请提供了一种终端。该终端包括用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法的模块。
第四方面,本申请提供了一种网络设备。该网络设备包括用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法的模块。
第五方面,本申请提供了一种终端。该终端包括处理器和发送器。处理器用于执行程序。当处理器执行代码时,处理器和发送器实现第一方面或第一方面中任意一种可能的实现方式中的通信方法。
可选地,该终端还可以包括存储器,该存储器用于存储处理器执行的代码。
可选地,该终端还可以包括接收器。该接收器用于接收网络设备发送的信息。
第六方面,本申请提供了一种网络设备。该网络设备包括处理器和接收器。处理器用于执行程序。当处理器执行代码时,处理器和接收器实现第二方面或第二方面中任意一种可能的实现方式中的通信方法。
可选地,该网络设备还可以包括存储器,该存储器用于存储处理器执行的代码。
可选地,该网络设备还可以包括发送器。该发送器用于向终端发送信息。
第七方面,本申请提供了一种计算机可读存储介质。该计算机可读存储介质中存储用于终端执行的程序代码。该程序代码包括用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法的指令。
第八方面,本申请提供了一种计算机可读存储介质。该计算机可读存储介质中存储用于网络设备执行的程序代码。该程序代码包括用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法的指令。
第九方面,本申请提供了一种包含指令的计算机程序产品。当该计算机程序产品在终端上运行时,使得终端执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第十方面,本申请提供了一种包含指令的计算机程序产品。当该计算机程序产品在网络设备上运行时,使得网络设备执行第二方面或第二方面中任意一种可能的实现方式中的通信方法。
附图说明
图1是本申请实施例的通信方法的通信系统的示意性架构图;
图2是本申请一个实施例的通信方法的示意性流程图;
图3是本申请一个实施例的目标测量时段的示意图;
图4是本申请另一个实施例的目标测量时段的示意图;
图5是本申请另一个实施例的目标测量时段的示意图;
图6是本申请另一个实施例的通信方法的示意性流程图;
图7是本申请一个实施例的通信方法的示意性交互流程图;
图8是本申请另一个实施例的通信方法的示意性交互流程图;
图9是本申请一个实施例的终端的示意性结构图;
图10是本申请一个实施例的网络设备的示意性结构图;
图11是本申请另一个实施例的终端的示意性结构图;
图12是本申请另一个实施例的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是能够应用本申请实施例的通信方法的通信系统的示意性架构图。应理解,本申请实施例并不限于图1所示的系统架构中,此外,图1中的装置可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。
图1所示的通信系统包括一个或多个终端110,以及一个或多个网络设备120。终端110与网络设备120之间可以互相通信。具体地,网络设备120与终端110之间可以通过波束扫描方式进行通信。
终端110可以是用户设备(user equipment,UE)。UE可以经无线接入网(radio access network,RAN)与一个或多个核心网(core network,CN)进行通信。UE可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。UE可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备或物联网、车辆网中的终端设备以及未来网络中的任意形态的终端设备等。
网络设备120的一种示例是基站。应理解,本申请实施例对基站的具体类型不作限定。采用不同无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站,
基站(base station,BS),也可称为基站设备,是一种将终端接入到无线网络的设备,包括但不限于:传输接收点(transmission reception point,TRP)、5G节点B(gNB)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base Station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU),或Wifi接入点(access point,AP),或小基站设备(pico)等。
图1所示的通信系统中,终端110可以进行信号测量,如终端110可以测量服务小区的信号,并向网络设备120上报测量结果,以便于网络管理设备根据测量结果检测网络中 的问题和故障,和/或优化网络性能。
目前终端的通信方法主要包括以下步骤:网络设备向终端发送测量配置信息,测量配置信息可以包括记录周期(如logging duration)、记录时长(如logging interval)等至少一种信息;终端根据测量配置信息进行测量,并上报测量结果;网络设备接收测量结果,然后可以根据该测量结果进行故障检测或网络优化等操作,或者,网络设备可以将测量结果发送给网络管理设备,由网络管理设备根据该测量结果进行故障检测或网络优化等操作。
其中,记录时长也可以称为记录间隔。
上述通信方法有如下缺点:网络设备通过测量配置信息指示的记录时长内,终端有可能检测不到信号,更谈不上对信号进行测量,此时,若终端一直执行信号测量流程,则会浪费终端的能耗。
因此本申请提出一种新的通信方法,以便于可以节省终端的能耗。
图2是本申请一个实施例的通信方法的示意性流程图。应理解,图2示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图2中的各个操作的变形。
S210,终端根据小区的波束扫描方式进行信号测量,得到测量结果。其中,该小区可以是终端的服务小区。
波束扫描方式可以是小区的网络设备通过广播消息,或专有的RRC信令发送的,比如通过RRC测量配置信令发送。或者,终端还可以向小区的网络设备发送请求消息,请求小区的波束扫描方式,并接收小区的网络设备根据该请求消息发送的波束扫描方式。
波束扫描方式可以包括各个波束标识信息和对应的扫描时间的映射关系,和/或波束扫描周期。波束标识信息用于唯一识别波束,包括:波束的标识、波束的天线端口标识、波束的参考信号、波束的索引中的至少一个。
本申请实施例中波束英文可称为beam。
例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,一个波束的一个或多个天线端口也可以看作是一个天线端口集,也就是说一个天线端口集包括至少一个天线端口。
具体的,波束可以是指具有一定能量传输指向性的预编码向量并且能够通过索引信息去标识该预编码向量,能量传输指向性是指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等,而在其他空间位置内,接收经过该预编码向量进行预编码处理后的信号的功率较低,不满足接收解调信噪比。不同的通信设备可以有不同的预编码向量,即对应不同的波束,针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。波束可以理解为空间资源。可以通过一个波束标识去标识波束,波束标识可以对应配置该用户的对应的资源ID,如对应为某一个配置的信道状态信息参考信号(Channel-State Information-Reference Signal,CSI-RS)的ID或者资源,也可以是某一配置的上行探测参考信号(Sounding Reference Signal,SRS)的ID或者资源,也可以是通过该波束承载的特定信号或信道显示或隐式承载的索引信息,包括但是 不限于通过该波束发送同步信号或者广播信道指示该波束的波束标识。
S220,终端向网络设备发送测量结果。
该通信方法中,终端参考小区的波束扫描方式进行信号测量,即终端可以参考波束的扫描时间进行信号测量。更具体地说,终端可以获知各个波束的扫描时间。这有助于终端避免在检测不到信号进行信号测量,进而有助于节省终端的能耗。
其中,终端根据服务小区的波束扫描方式进行测量,可以包括:终端根据小区内的波束扫描时段进行测量。
通常情况下,每个小区中,不同波束的参考信号,如同步信号(Synchronization Signal,SS)、信道状态信息测量导频(channel state information-reference signal,CSI-RS)信号,其扫描时长可以相同或不同,但扫描时段可以不同。
例如,波束扫描方式包括小区中各个顺序扫描的波束的参考信号与时间的对应关系,且各个波束的参考信号的扫描时长均为5ms时,若终端在第1ms时检测到第一波束的参考信号,则终端可以确定第一波束的参考信号的扫描时段为第1ms至第5ms,第二波束的参考信号的扫描时段为第6ms至第10ms。依次类推,就能确定所有波束的参考信号扫描时段。本申请实施例中,可以将波束的参考信号的扫描时段简称为波束的波束扫描时段。
终端确定各个波束的波束扫描时段后,可选地,可以在各个波束的波束扫描时段进行信号测量,从而可以避免终端在检测不到信号时进行测量所导致的功率消耗。
可选地,终端可以接收网络设备发送的记录时长。记录时长可以指终端每次进行信号测量的时长。其中,该记录时长可以是终端在当前服务小区中接收的,也可以是终端在邻小区中接收的。
应注意,该记录时长是网络设备配置的,即网络设备指示终端在该记录时长内进行信号测量和记录。
现有技术中,终端接收记录时长后,可能在该记录时长内一直进行信号测量。但本申请实施例中,终端接收记录时长后,可以根据记录时长和波束扫描方式,即波束的波束扫描时段来进行信号测量。
具体地,终端根据某一个波束(为了后续描述方便,将该波束称为第一波束)的波束扫描时段和记录市场进行信号测量时,可以包括:终端可以根据小区的波束扫描方式,确定小区内的第一波束的波束扫描时段;再根据配置的记录时长和第一波束的波束扫描时段,将该记录时长内与该波束扫描时段重叠的全部或部分时段确定为目标测量时段;然后终端在目标测量时段内进行信号测量,得到测量结果。
小区中存在多个波束时,终端可以根据波束扫描方式确定各个波束的波束扫描时段,并可以将各个波束扫描时段与记录时长重叠的全部或部分时段确定为总的目标测量时段,然后在目标测量时段进行信号测量,得到测量结果。
下面以第一波束为例,详细介绍终端如何根据记录时长和波束扫描方式进行信号测量的。
终端可以根据波束扫描方式,确定小区内的第一波束的波束扫描时段。如终端可以根据第一波束的波束扫描时长为5ms,且终端在第1ms检测到第一波束的参考信号,确定第一波束的波束扫描时段为第1ms至第5ms。
若记录时长为10ms,且记录时长的起始时刻为第2ms,则终端可以将记录时长与第 一波束的波束扫描时段重叠的第2ms至第5ms这4个ms中全部时长或部分时长确定为目标测量时段。
此时,终端可以在记录时长中的能够检测到信号的4个ms内进行信号测量,而在记录时长内其他6个ms内停止信号测量,从而可以节省终端电量。
如图3所示,记录时长内,粗实线表示终端可以在第一波束方向进行信号测量的目标测量时段。
这种方法中,终端可以只在记录时长内与波束扫描时段重叠的时段进行信号测量,从而可以节省终端的能耗。
通常情况下,记录时长的长度可以大于或等于波束扫描周期的长度,这样有助于使得记录时长与第一波束的波束扫描时段有重叠时段,从而有助于保证终端能够在检测到信号的时段对信号进行测量。
如,终端的服务小区中包括8个顺序扫描的波束,每个波束的波束扫描时长为5ms,则波束扫描周期为40ms,则记录时长的长度可以大于或等于40ms。这可以使得记录时长与任意波束的波束扫描时段均有重叠部分,从而可以使得终端不论位于哪个波束的扫描区域内,均可以测量其能检测到的信号。
或者,终端确定信号的波束扫描时段后,可以根据波束扫描时段调整记录时长的起始时刻,使得波束扫描时段与记录时长具有重叠部分,以使得终端能够在检测到信号的时段对信号进行测量。
更具体地,终端可以将记录时长的起始时刻调整到第一波束的波束扫描时段的起始时刻,从而可以保证记录时长与第一波束的波束扫描时段具有重叠部分。
如图4所示,记录时长的起始时刻与第一波束的波束扫描时段的起始时刻相同,使得记录时长与第一波束的波束扫描时段具有重叠部分。
通常情况下,终端与网络设备的通信过程中,终端可以进行非连续接收(discontinuous Reception,DRX)。例如,终端可以在某些时间不接收数据时,仅在某些时间醒来后维持醒着的状态以接收数据,以节省终端的能耗。其中,UE醒来后维持醒着的时段可以称为不连续传输的接收时段,即DRX ON的时段。
可以理解地,如果终端配置了DRX,则终端根据第一波束的波束扫描时段和记录时长,将记录时长内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段,可以包括:终端根据第一波束的波束扫描时段、记录时长和DRX周期内的接收DRX ON时段,将DRX ON时段内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段。这样,可以使得终端仅在进行数据传输时进行信号测量,从而可以进一步节省终端的能耗。
可选地,记录时长可以是DRX周期的整数倍,相应地地,DRX ON的时段可以是波束扫描周期的整数倍。
如图5中,可以认为记录时长与DRX周期相同,即记录时长是一个DRX周期。此时,终端根据第一波束的波束扫描时段和记录时长确定目标测量时段,可以包括:终端根据DRX周期(即根据记录时长)、DRX ON时段和第一波束的波束扫描时段确定目标测量时段。
具体地,终端可以将DRX ON时段内与第一波束的波束扫描时段重叠的全部或部分 时段确定为第一波束的目标测量时段。
可选地,记录时长是DRX周期的整数倍时,用于指示记录时长的信息具体可以指示记录时长与DRX周期的倍数关系。如记录时长是DRX的1倍时,用于指示记录时长的信息可以指示1。
这样,终端接收到用于指示记录时长的信息后,可以根据DRX周期确定记录时长。
其中,第一波束的参考信号可以是服务小区的公共参考信号,比如同步信号SS,也可以是其它的信号,比如CSI-RS,CRS,或终端级别的参考信号。
可选地,终端可以从网络设备接收波束数目信息,该波束数目信息指示终端可以测量的波束数量。终端接收该波束数目信息后,正常情况下,可以在相应数目的波束方向进行信号测量。测量的波束数量达到波束数目信息指示的数量后,可以停止信号测量。
可选地,终端可以从网络设备接收测量配置信息,测量配置信息可以包括以下至少一项:记录区域信息,如一个或多个待测量小区的标识或索引;一个或多个网络通知区域(RAN notification area,RNA)信息,其中,RAN为无线接入网(radio access network)的简称;一个或多个跟踪区域(tracking area,TA)信息;一个或多个公共陆地移动网络(public land mobile network,PLMN)信息。
应注意,前述用于指示记录时长的信息可以携带在测量配置信息中。
本申请实施例中,可选地,终端可在当前小区中获取当前小区的波束扫描方式,也可以在邻小区中获取当前小区的波束扫描方式。
例如,当终端从第一个小区移到第二个小区后,若第二个小区属于待测量小区的范围,则终端可以从第二个小区的系统消息中获取第二个小区的波束扫描方式,或者,终端可以向第二个小区的网络设备发送请求消息,请求第二个小区的波束扫描方式,并接收第二个小区的网络设备根据该请求消息发送的波束扫描方式。
本申请实施例中,可选地,终端发送的测量结果中可以包括波束标识信息,或者波束标识信息和对应的波束信号质量信息。
可选地,终端还可以向网络设备发送波束标识对应的小区的小区标识。
可选地,终端还可以向网络设备发送测量时间以及测量位置等信息。
可选地,终端可以通过多种方式发送测量报告。例如,连接态的终端进行信号测量,得到测量结果后,可以即时通过无线资源控制(radio reference control,RRC)信令向网络设备发送包括测量结果的测量报告。连接态又可以称为激活态(active)。
或者,连接态的终端可以先向网络设备发送指示存在测量报告的指示信息,如MDT report indicator信息,然后终端再发送测量报告。
再如,空闲idle态或去激活RRC_INACTIVE态的终端进行信号测量得到测量结果后,可以通过基于竞争的数据传输资源,或者通过免授权(grant-free)资源向网络设备发送测量报告。
或者,空闲态或去激活态的终端可以先缓存测量报告,等到终端发送RRC消息时,如终端发起连接建立完成消息,或终端发送重建完成消息,或者终端发送重配置完成消息,或者终端发送连接恢复完成消息,或者终端发送连接重激活完成消息时,可以在上述RRC消息中携带指示存在测量报告的指示信息,如MDT report indicator信息。然后终端可以接收网络设备根据该指示信息发送的测量报告请求消息,并根据测量报告请求消息发送测量 报告。
此外,终端还可以接收网络设备发送的记录周期。其中,记录周期可以指配置的终端进行信号测量的总时长。当终端的测量总时长达到或超过记录周期时,可以停止测量。
记录时长是记录周期中的一部分。例如,记录周期可以为50ms,记录时长可以为10ms。也就是说,终端可以总共进行50ms时长的信号测量,这50ms可以分为5次测量,每次测量10ms。
图6是本申请另一个实施例的通信方法的示意性流程图。应理解,图6示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图6中的各个操作的变形。
S610,网络设备接收终端根据小区的波束扫描方式进行信号测量得到的测量结果。
具体地,该测量结果中可以包括波束标识信息,或者波束标识信息和对应的信号质量信息。
可选地,网络设备还可以接收波束标识对应的小区的小区标识。
可选地,终端还可以向网络设备发送测量时间以及测量位置等信息
S620,网络设备对测量结果进行处理。
该通信方法中,网络设备可以接收包括终端根据波束扫描方式进行信号测量得到的测量结果,并根据该测量报告进行处理,有助于节省终端的能耗。
其中,网络设备对测量报告进行处理,可以包括:网络设备根据测量结果检测网络故障,修复网络问题,优化网络性能,等等。或者,网络设备可以将测量结果发送给网络管理设备,由网络管理设备根据测量结果检测网络故障、修复网络问题,优化网络性能,等等。
本申请实施例中的网络设备可以是图2所示的通信方法中的网络设备,可以实现图2所示的通信方法中的网络设备能够实现的功能,图2所示的通信方法中相关的技术特征同样适用于本申请实施例的通信方法,为了简洁,此处不再赘述。
下面结合图7所示的即时(immediate)MDT方法,详细介绍本申请的通信方法。应理解,图7示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图7中的各个操作的变形。
S702,网络设备通过RRC连接重配置(RRC connection reconfiguration)消息向终端发送测量配置信息。相应地,终端接收测量配置信息。
在网络设备向终端发送测量配置信息之前,网络设备或网络管理设备可以先确定哪些终端是进行信号测量的终端,即确定哪些终端是测量终端。
具体地,网络设备或者网络管理设备可以从会话开始,依次选取后续接入的终端作为测量终端,直到选取的测量终端数目达到指定规格。后续接入的终端包括正常RRC连接建立接入、切换入、重建接入的终端。
确定测量终端后,网络设备可以通过RRC connection reconfiguration消息向这些测量终端发送测量配置信息,测量配置信息也可以称为配置参数。
配置参数可以包括以下至少一项:测量对象,如上报的频点信息和/或质量类型,质量类型可以包括参考信号接收功率(reference signal receiving power,RSRP)、波束的参考信号接收质量(reference signal receiving quality,RSRQ)或其它质量类型;记录时长; 记录周期,如T330计时器的长度;网络绝对时间信息(network absolute time stamp);跟踪参考号参数(trace reference parameter);跟踪记录会话参考号(Trace Recording Session Reference);跟踪采集服务器标记(TCE Id,Trace Collection Entity ID);MDT PLMN列表;记录区域信息(logging area)。
记录区域信息用于指示终端的测量范围信息,具体的测量范围信息可以参数本发明其它实施例中的描述。
其中,记录区域信息在MDT PLMN列表中可以是跨RNA或PLMN的。当没有配置记录区域信息时,终端记录的测量结果可以遍及所有RNA或者遍及MDT PLNM列表中所有PLMN。
RRC connection reconfiguration消息还可以包括includeLocationInfo,用于激活终端进行immediate MDT。
网络设备还可以向终端发送服务小区的波束扫描方式。可选地,网络设备还可以向终端发送邻小区的波束扫描方式。
S704,终端接收RRC connection reconfiguration消息后,若RRC connection reconfiguration消息中包含用于激活终端进行immediate MDT的includeLocationInfo,则终端可以开始进行immediate MDT。
具体地,终端还可以确定波束扫描方式,然后根据波束扫描方式和RRC connection reconfiguration消息中的测量配置信息进行信号测量,即immediate MDT,并记录测量结果。
终端根据波束扫描方式进行immediate MDT的实现方式可以参考图2中的S210,为了简洁,此处不再赘述。
S706,终端执行immediate MDT完毕后,可以向网络设备发送RRC连接重配置完成(RRC connection reconfiguration complete)消息。
RRC connection reconfiguration complete消息中可以包含includeLocationInfo。具体地,includeLocationInfo可以包括1bit的指示信息。该指示信息取值为TRUE,则指示终端的Immediate MDT测量项配置已完成。
S708,终端向网络设备发送测量报告。该测量报告携带S704中的记录的测量结果。其中,测量报告还可以携带LocationCoordinates信息,用于把测量报告和终端的位置信息关联起来。
相应地,网络设备接收测量报告。然后网络设备可以根据该测量报告中的测量结果以及其他信息检测网络故障、优化网络性能等。
下面结合图8所示的日志(logged)MDT方法,详细介绍本申请的通信方法。应理解,图8示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图8中的各个操作的变形。
S802,网络设备通过RRC连接重配置(RRC connection reconfiguration)消息向终端发送测量配置信息。相应地,终端接收测量配置信息。
在网络设备向终端发送测量配置信息之前,网络设备或网络管理设备可以先确定哪些终端是进行信号测量的终端,即确定哪些终端是测量终端。
网络设备或网络管理设备可以从会话开始,依次选取后续接入的具有logged MDT能 力的终端作为测量终端,直到会话持续时间结束或收到会话终止命令。对进行logged MDT的终端数目可以不做限制。
确定测量终端后,网络设备可以通过RRC connection reconfiguration消息向这些测量终端发送测量配置信息,测量配置信息也可以称为配置参数。
配置参数可以包括以下至少一项:测量对象,如上报的频点信息和/或质量类型,质量类型可以包括参考信号接收功率(reference signal receiving power,RSRP)、波束的参考信号接收质量(reference signal receiving quality,RSRQ)或其它质量类型;记录时长;记录周期,如T330计时器的长度;网络绝对时间信息(network absolute time stamp);跟踪参考号参数(trace reference parameter);跟踪记录会话参考号(Trace Recording Session Reference);跟踪采集服务器标记(TCE Id,Trace Collection Entity ID);MDT PLMN列表;记录区域信息(logging area)。
若配置参数包括记录区域信息,则终端进行logged MDT时可以只测量记录区域中的信号。记录区域信息用于指示终端的测量范围信息,具体的测量范围信息可以参数本发明其它实施例中的描述。
其中,记录区域信息在MDT PLMN列表中可以是跨RNA或PLMN的。当没有配置记录区域信息时,终端记录的测量结果可以遍及所有RNA或者遍及MDT PLNM列表中所有PLMN。
网络设备还可以向终端发送服务小区的波束扫描方式。可选地,网络设备还可以向终端发送邻小区的波束扫描方式。
S804,终端进入去激活态(inactive)或空闲态idle。去激活态又称为第三态,.
S806,终端在去激活态或空闲态进行logged MDT。
具体地,终端还可以确定波束扫描方式,然后根据波束扫描方式和RRC connection reconfiguration消息中的测量配置信息进行信号测量,即logged MDT,并记录测量结果。
终端根据波束扫描方式进行logged MDT的实现方式可以参考图2中的S210,为了简洁,此处不再赘述。
终端在去激活态或空闲态执行logged MDT后先缓存测量结果,或者说缓存包括测量结果的测量报告。
S808,终端进入连接态。
S810,终端可以向网络设备发送RRC connection reconfiguration complete消息。RRC connection reconfiguration complete消息中可以包含includeLocationInfo。具体地,includeLocationInfo可以包括1bit的指示信息。该指示信息取值为TRUE,则指示终端的Immediate MDT测量项配置已完成。
S812,网络设备向终端发送测量报告请求消息,请求测量报告。
S814,终端向网络设备发送测量报告。该测量报告携带S706中的记录的测量结果。其中,测量报告还可以携带LocationCoordinates信息,用于把测量报告和终端的位置信息关联起来。
图9是本申请一个实施例的终端的示意性结构图。应理解,图9示出的终端900仅是示例,本申请实施例的终端还可包括其他模块或单元,或者包括与图9中的各个模块的功能相似的模块,或者并非要包括图9中所有模块。
处理模块910,用于根据小区的波束扫描方式进行信号测量,得到测量结果。
通信模块920,用于向网络设备发送测量结果。
终端根据小区的波束扫描方式进行信号测量,使得终端可以在信号的波束扫描时段进行信号测量,从而有助于避免浪费终端的能耗。
可选地,处理模块910具体用于:根据小区的波束扫描方式,确定小区内的第一波束的波束扫描时段;根据第一波束的波束扫描时段和记录时长,将记录时长内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段;在目标测量时段进行信号测量,得到测量结果。
可选地,记录时长的长度大于或等于第一波束的波束扫描周期的长度。
可选地,记录时长的起始时刻等于所述波束扫描时段的起始时刻。
可选地,记录时长为DRX周期的N倍,N为正数。相应地,处理模块910具体用于:根据第一波束的波束扫描时段、DRX周期和DRX周期内的DRX ON时段,将DRX ON时段内与第一波束的波束扫描时段重叠的全部或部分时段确定为目标测量时段。
可选地,通信模块920还用于:接收网络设备发送的波束数目信息,波束数目信息用于指示终端的波束测量数目。
可选地,测量结果包括小区内的至少一个波束标识信息和至少一个信号质量信息,至少一个波束标识信息与至少一个信号质量信息一一对应。
图9所示的终端可以执行图2所示的通信方法中由终端执行的各个步骤,为了简洁,此处不再赘述。
图10是本申请一个实施例的网络设备的示意性结构图。应理解,图10示出的网络设备1000仅是示例,本申请实施例的网络设备还可包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块,或者并非要包括图10中所有模块。
通信模块1010,用于接收终端根据小区的波束扫描方式进行信号测量得到的测量结果。
处理模块1020,用于对测量结果进行处理。
网络设备可以对终端根据小区的波束扫描方式进行信号测量得到的测量结果进行处理,有助于避免终端浪费能耗。
可选地,测量结果是终端在记录时长内的目标测量时段测量得到的,目标测量时段是记录时长内与第一波束的波束扫描时段重叠的全部或部分时段,第一波束的波束扫描时段为终端根据波束扫描方式确定的。
可选地,记录时长的长度大于或等于第一波束的波束扫描周期的长度。
可选地,记录时长的起始时刻等于第一波束的波束扫描时段的起始时刻。
可选地,记录时长为DRX周期的N倍,目标测量时段包括终端在DRX周期中的DRX ON时段内与第一波束的波束扫描时段重叠的全部或部分时段,N为正整数。
可选地,通信模块1010还用于:向终端发送波束数目信息,波束数目信息用于指示终端的波束测量数目。
可选地,测量结果包括小区内的至少一个波束标识信息和至少一个信号质量信息,所述至少一个波束标识信息与所述至少一个信号质量信息一一对应。
图10所示的终端可以执行图6所示的通信方法中由网络设备执行的各个步骤,为了 简洁,此处不再赘述。
图11是本申请另一个实施例的终端的示意性结构图。应理解,图11示出的终端1100仅是示例,本申请实施例的终端还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块。
其中,处理器1110可以用于实现图9中的处理模块910能够实现的操作或步骤,发送器1120可以用于实现图9中的通信模块920能够实现的操作或步骤。
图11所示的终端还可以包括接收器,用于接收网络设备发送的信息。其中,接收器和发送器可以集成在一起,称为收发器。
图11所示的终端也可以包括存储器,用于存储处理器执行的程序代码。其中,处理器1110中可以集成有存储器。
图12是本申请另一个实施例的网络设备的示意性结构图。应理解,图12示出的网络设备1200仅是示例,本申请实施例的网络设备还可包括其他模块或单元,或者包括与图12中的各个模块的功能相似的模块。
其中,处理器1220可以用于实现图10中的处理模块1020能够实现的操作或步骤,接收器1210可以用于实现图10中的通信模块1010能够实现的操作或步骤。
图12所示的网络设备还可以包括发送器,用于向终端或其他网络设备发送信息。其中,接收器和发送器可以集成在一起,称为收发器。
图12所示的网络设备也可以包括存储器,用于存储处理器执行的程序代码。其中,处理器1220中可以集成有存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    终端根据小区的波束扫描方式进行信号测量,得到测量结果;
    所述终端向网络设备发送所述测量结果。
  2. 根据权利要求1所述的通信方法,其特征在于,所述终端根据小区的波束扫描方式进行信号测量,得到测量结果,包括:
    所述终端根据所述波束扫描方式,确定所述小区内的第一波束的波束扫描时段;
    所述终端根据所述波束扫描时段和记录时长,将所述记录时长内与所述波束扫描时段重叠的全部或部分时段确定为目标测量时段;
    所述终端在所述目标测量时段进行信号测量,得到所述测量结果。
  3. 根据权利要求2所述的通信方法,其特征在于,所述记录时长的长度大于或等于所述第一波束的波束扫描周期的长度。
  4. 根据权利要求2所述的通信方法,其特征在于,所述记录时长的起始时刻等于所述波束扫描时段的起始时刻。
  5. 根据权利要求2至4中任一项所述的通信方法,其特征在于,所述记录时长为非连续传输DRX周期的N倍,N为正数;
    所述终端根据所述波束扫描时段和记录时长,将所述记录时长内与所述波束扫描时段重叠的全部或部分时段确定为目标测量时段,包括:
    所述终端根据所述波束扫描时段、所述DRX周期和所述DRX周期内的接收DRX ON时段,将所述DRX ON时段内与所述波束扫描时段重叠的全部或部分时段确定为所述目标测量时段。
  6. 根据权利要求1至5中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端接收网络设备发送的波束数目信息,所述波束数目信息用于指示所述终端的波束测量数目。
  7. 根据权利要求1至6中任一项所述的通信方法,其特征在于,所述测量结果包括所述小区内的至少一个波束标识信息和至少一个信号质量信息,所述至少一个波束标识信息与所述至少一个信号质量信息一一对应。
  8. 一种通信方法,其特征在于,包括:
    网络设备接收终端根据小区的波束扫描方式进行信号测量得到的测量结果;
    网络设备对所述测量结果进行处理。
  9. 根据权利要求8所述的通信方法,其特征在于,所述测量结果是所述终端在记录时长中的目标测量时段内进行信号测量得到的,所述目标测量时段是所述记录时长内与所述第一波束的波束扫描时段重叠的全部或部分时段,所述第一波束的波束扫描时段为所述终端根据所述波束扫描方式确定的。
  10. 根据权利要求9所述的通信方法,其特征在于,所述记录时长的长度大于或等于所述第一波束的波束扫描周期的长度。
  11. 根据权利要求9所述的通信方法,其特征在于,所述记录时长的起始时刻等于所述波束扫描时段的起始时刻。
  12. 根据权利要求9至11中任一项所述的通信方法,其特征在于,所述记录时长为非连续传输DRX周期的N倍,所述目标测量时段包括所述终端在所述DRX周期中的DRX ON时段内与所述波束扫描时段重叠的全部或部分时段,N为正整数。
  13. 根据权利要求8至12中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备向所述终端发送波束数目信息,所述波束数目信息用于指示所述终端的波束测量数目。
  14. 根据权利要求8至13中任一项所述的通信方法,其特征在于,所述测量结果包括所述小区内的至少一个波束标识信息和至少一个信号质量信息,所述至少一个波束标识信息与所述至少一个信号质量信息一一对应。
  15. 一种终端,其特征在于,包括:
    处理模块,用于根据小区的波束扫描方式进行信号测量,得到测量结果;
    通信模块,用于向网络设备发送所述测量结果。
  16. 根据权利要求15所述的终端,其特征在于,所述处理模块具体用于:
    根据所述波束扫描方式,确定所述小区内的第一波束的波束扫描时段;
    根据所述波束扫描时段和记录时长,将所述记录时长内与所述波束扫描时段重叠的全部或部分时段确定为目标测量时段;
    在所述目标测量时段进行信号测量,得到所述测量结果。
  17. 根据权利要求16所述的终端,其特征在于,所述记录时长的长度大于或等于所述第一波束的波束扫描周期的长度。
  18. 根据权利要求16所述的终端,其特征在于,所述记录时长的起始时刻等于所述波束扫描时段的起始时刻。
  19. 根据权利要求16至18中任一项所述的终端,其特征在于,所述记录时长为非连续传输DRX周期的N倍,N为正数;
    所述处理模块具体用于:根据所述波束扫描时段、所述DRX周期和所述DRX周期内的接收DRX ON时段,将所述DRX ON时段内与所述波束扫描时段重叠的全部或部分时段确定为所述目标测量时段。
  20. 根据权利要求15至19中任一项所述的终端,其特征在于,所述通信模块还用于:
    接收网络设备发送的波束数目信息,所述波束数目信息用于指示所述终端的波束测量数目。
  21. 根据权利要求15至20中任一项所述的终端,其特征在于,所述测量结果包括所述小区内的至少一个波束标识信息和至少一个信号质量信息,所述至少一个波束标识信息与所述至少一个信号质量信息一一对应。
  22. 一种网络设备,其特征在于,包括:
    通信模块,用于接收终端根据小区的波束扫描方式进行信号测量得到的测量结果;
    处理模块,用于对所述测量结果进行处理。
  23. 根据权利要求22所述的网络设备,其特征在于,所述测量结果是所述终端在记 录时长内的目标测量时段进行信号测量得到的,所述目标测量时段是所述记录时长内与所述第一波束的波束扫描时段重叠的全部或部分时段,所述第一波束的波束扫描时段为所述终端根据所述波束扫描方式确定的。
  24. 根据权利要求23所述的网络设备,其特征在于,所述记录时长的长度大于或等于所述第一波束的波束扫描周期的长度。
  25. 根据权利要求23所述的网络设备,其特征在于,所述记录时长的起始时刻等于所述波束扫描时段的起始时刻。
  26. 根据权利要求23至25中任一项所述的网络设备,其特征在于,所述记录时长为非连续传输DRX周期的N倍,所述目标测量时段包括所述终端在所述DRX周期中的DRX ON时段内与所述波束扫描时段重叠的全部或部分时段,N为正整数。
  27. 根据权利要求22至26中任一项所述的网络设备,其特征在于,所述通信模块还用于:
    向所述终端发送波束数目信息,所述波束数目信息用于指示所述终端的波束测量数目。
  28. 根据权利要求22至27中任一项所述的网络设备,其特征在于,所述测量结果包括所述小区内的至少一个波束标识信息和至少一个信号质量信息,所述至少一个波束标识信息与所述至少一个信号质量信息一一对应。
PCT/CN2018/089948 2017-06-14 2018-06-05 通信方法、终端和网络设备 WO2018228240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18816995.7A EP3627876A4 (en) 2017-06-14 2018-06-05 COMMUNICATION METHOD, TERMINAL AND NETWORK DEVICE
US16/711,657 US11178612B2 (en) 2017-06-14 2019-12-12 Communication method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710446713.4A CN109089269A (zh) 2017-06-14 2017-06-14 通信方法、终端和网络设备
CN201710446713.4 2017-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/711,657 Continuation US11178612B2 (en) 2017-06-14 2019-12-12 Communication method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2018228240A1 true WO2018228240A1 (zh) 2018-12-20

Family

ID=64658914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089948 WO2018228240A1 (zh) 2017-06-14 2018-06-05 通信方法、终端和网络设备

Country Status (4)

Country Link
US (1) US11178612B2 (zh)
EP (1) EP3627876A4 (zh)
CN (1) CN109089269A (zh)
WO (1) WO2018228240A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366876A (zh) * 2019-01-31 2021-09-07 高通股份有限公司 用于执行最小化路测(mdt)的技术
CN113676941A (zh) * 2020-05-15 2021-11-19 深圳市万普拉斯科技有限公司 无线网络信号测量方法、装置、计算机设备和存储介质
EP3913962A4 (en) * 2019-02-15 2022-03-16 Huawei Technologies Co., Ltd. CONFIGURATION PROCESS TO MINIMIZE TESTS PER PIPE AND BASE STATION

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2997527A1 (en) * 2015-11-13 2017-05-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of allocating radio resource and device utilizing the same
US11224088B2 (en) * 2018-07-02 2022-01-11 Qualcomm Incorporated Beam sweeping during an on-period of a DRX cycle
EP3834459A4 (en) * 2018-08-21 2021-11-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. BEAM MEASUREMENT PROCESS, NETWORK DEVICE, AND USER EQUIPMENT
CN111491302B (zh) * 2019-01-25 2022-05-20 大唐移动通信设备有限公司 信息上报方法、接收方法、装置及设备
CN113424505B (zh) * 2019-02-12 2023-04-11 中兴通讯股份有限公司 性能信息上报的方法
CN113647128B (zh) * 2019-09-12 2024-03-08 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN114982275A (zh) * 2020-01-21 2022-08-30 华为技术有限公司 通信方法及装置
WO2023138752A1 (en) * 2022-01-18 2023-07-27 Nokia Solutions And Networks Oy Analytics in view of dynamic beam configurations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014014A2 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Apparatus and method of multi cell cooperation in wireless communication system
CN104469688A (zh) * 2013-09-22 2015-03-25 中国移动通信集团公司 一种预编码的方法、设备和系统
CN104937972A (zh) * 2013-01-15 2015-09-23 三星电子株式会社 在波束形成系统中测量信号的方法和设备
WO2016172840A1 (en) * 2015-04-28 2016-11-03 Mediatek Inc. Robust mobility measurements and inter-cell coordination in mmwave small cell
CN106465148A (zh) * 2014-06-10 2017-02-22 高通股份有限公司 用于调整执行波束扫描的周期性的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115553A1 (en) * 2011-02-25 2012-08-30 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for reducing power consumption in a communication device
WO2015010334A1 (zh) 2013-07-26 2015-01-29 华为终端有限公司 通信方法、用户设备和网络设备
WO2015081474A1 (zh) * 2013-12-02 2015-06-11 华为技术有限公司 一种协作调度方法和网络设备
ES2904452T3 (es) * 2014-01-31 2022-04-05 Ericsson Telefon Ab L M Mediciones de asistencia en pequeñas celdas con un esquema de encendido/apagado
US10111157B2 (en) * 2014-03-14 2018-10-23 Lg Electronics Inc. Method and apparatus for reconfiguring MBMS MDT in wireless communication system
KR20160081780A (ko) * 2014-12-30 2016-07-08 한국전자통신연구원 다중빔 제어 방법
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014014A2 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Apparatus and method of multi cell cooperation in wireless communication system
CN104937972A (zh) * 2013-01-15 2015-09-23 三星电子株式会社 在波束形成系统中测量信号的方法和设备
CN104469688A (zh) * 2013-09-22 2015-03-25 中国移动通信集团公司 一种预编码的方法、设备和系统
CN106465148A (zh) * 2014-06-10 2017-02-22 高通股份有限公司 用于调整执行波束扫描的周期性的方法和装置
WO2016172840A1 (en) * 2015-04-28 2016-11-03 Mediatek Inc. Robust mobility measurements and inter-cell coordination in mmwave small cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627876A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366876A (zh) * 2019-01-31 2021-09-07 高通股份有限公司 用于执行最小化路测(mdt)的技术
EP3913962A4 (en) * 2019-02-15 2022-03-16 Huawei Technologies Co., Ltd. CONFIGURATION PROCESS TO MINIMIZE TESTS PER PIPE AND BASE STATION
CN113676941A (zh) * 2020-05-15 2021-11-19 深圳市万普拉斯科技有限公司 无线网络信号测量方法、装置、计算机设备和存储介质
CN113676941B (zh) * 2020-05-15 2023-08-29 深圳市万普拉斯科技有限公司 无线网络信号测量方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
US11178612B2 (en) 2021-11-16
US20200120602A1 (en) 2020-04-16
EP3627876A4 (en) 2020-05-27
EP3627876A1 (en) 2020-03-25
CN109089269A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2018228240A1 (zh) 通信方法、终端和网络设备
JP7038816B2 (ja) 無線通信ネットワークにおけるユーザ機器、ネットワークノードおよび方法
WO2018228333A1 (zh) 通信方法及装置
WO2018228270A1 (zh) 测量方法、测量配置方法和相关设备
WO2019137346A1 (zh) 监控信道质量的方法和终端设备
WO2019020035A1 (zh) 一种选择波束的方法及设备
WO2018228468A1 (zh) 一种无线链路监控方法和装置
CN111869273B (zh) 用于监视寻呼消息的方法和设备
WO2019029422A1 (zh) 一种定位、测量上报方法及装置
WO2020199972A1 (zh) 通信方法及装置
US20210219164A1 (en) Measurement reporting entry processing method and device
CN108347766B (zh) 一种上行移动性下的寻呼传输方法、通信站点及通信节点
TW202044882A (zh) 具有功率節省功能的波束管理電子設備和方法
WO2020078318A1 (zh) 通信方法及装置
WO2019214732A1 (zh) 通信方法和装置
US11202220B2 (en) Method of adapting report mapping based on beamforming
WO2015172471A1 (zh) 一种动态信道检测的处理方法、站点及接入点设备
WO2018171666A1 (zh) 信息收发方法和设备
US20230239767A1 (en) Network access method, network access apparatus, terminal, and network-side device
JP2022549552A (ja) 通信のための方法、端末装置及びコンピュータ可読媒体
US20220385428A1 (en) Signal quality information obtaining method, device, and system
TW202044868A (zh) 用於候選波束偵測之方法及用戶設備
US20150230153A1 (en) Local cell discovery in macro-assisted enhanced local area
TW201815194A (zh) 通訊方法、終端裝置和網路裝置
US20210204182A1 (en) High-gain beam handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816995

Country of ref document: EP

Effective date: 20191216