WO2018228166A1 - 无线承载的配置方法及装置 - Google Patents

无线承载的配置方法及装置 Download PDF

Info

Publication number
WO2018228166A1
WO2018228166A1 PCT/CN2018/088448 CN2018088448W WO2018228166A1 WO 2018228166 A1 WO2018228166 A1 WO 2018228166A1 CN 2018088448 W CN2018088448 W CN 2018088448W WO 2018228166 A1 WO2018228166 A1 WO 2018228166A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
drb
terminal
qos flows
mapping relationship
Prior art date
Application number
PCT/CN2018/088448
Other languages
English (en)
French (fr)
Inventor
戴谦
黄河
马子江
王昕�
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18817849.5A priority Critical patent/EP3641477A4/en
Priority to JP2019569485A priority patent/JP7175927B2/ja
Priority to MX2019015296A priority patent/MX2019015296A/es
Priority to KR1020207001403A priority patent/KR102330739B1/ko
Publication of WO2018228166A1 publication Critical patent/WO2018228166A1/zh
Priority to US16/716,354 priority patent/US11323911B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/20Master-slave selection or change arrangements

Definitions

  • the present application relates to the field of communications, but is not limited to the field of communications, and in particular, to a method and apparatus for configuring a radio bearer.
  • FIG. 1 is a schematic diagram of a system architecture form according to the related art in Dual Connectivity (DC).
  • DC Dual Connectivity
  • a base station may select a suitable base station (such as a quality of a wireless channel that meets a certain threshold) for the UE and add the base station to the UE (the base station to be added is referred to as a second network element).
  • a suitable base station such as a quality of a wireless channel that meets a certain threshold
  • the first network element and the New Generation Core Network establish a control plane interface (NG Control Plane, NG-C), a second network element, and NG-CN for the UE.
  • NG-C control plane interface
  • NG-CN New Generation Core Network
  • the NG-U interface is established for the UE at most, and the first network element and the second network element are connected by an ideal or non-ideal interface (referred to as an Xn interface); in the wireless interface, the first network element and the second network element
  • the network element can provide the same or different radio access technology (Radio Access Technology, RAT for short) and schedule the UE relatively independently.
  • Radio Access Technology Radio Access Technology
  • the terminal needs to establish a connection with multiple network elements at the same time to form a dual connection or multiple connections.
  • the connection effect provided by the dual connection or the multiple connection does not achieve the desired effect.
  • the embodiment of the present application provides a method and an apparatus for configuring a radio bearer to solve at least the problem of how to configure a dual-connected or multi-connected terminal in the related art.
  • a method for configuring a radio bearer including: in a case where a first node determines a second node to which a terminal is to be connected, the first node determines configuration information of the terminal, where The terminal is connected to the first node, and the configuration information is configured by the first node and/or the second node; the configuration information is sent to the terminal, where the configuration information is used by And indicating that the terminal is connected to the first node and the second node according to the configuration information, where the terminal constitutes multiple connections.
  • a method for configuring a radio bearer including: receiving configuration information sent by a first node, where the configuration information carries the first node and/or the second node Configuring the terminal; connecting to the first node and the second node according to the configuration information.
  • a configuration apparatus for a radio bearer which is applied to a first node, and includes: a determining module configured to determine, in a case where a second node to which the terminal is to be connected is determined, Configuration information, wherein the terminal is connected to the first node, the configuration information is configured by the first node and/or the second node; and the first sending module is configured to send the configuration information to The terminal, wherein the configuration information is used to indicate that the terminal is connected to the first node and the second node according to the configuration information.
  • a configuration apparatus for a radio bearer which is applied to a second node, and includes: a first receiving module configured to receive a request message sent by a first node connected by the terminal; and a second sending module And configuring, according to the request message, sending configuration information of the second node to the terminal to the first node, and accessing the terminal according to the configuration information.
  • a configuration apparatus for a radio bearer which is applied to a terminal, and includes: a second receiving module, configured to receive configuration information sent by a first node, where the configuration information carries The first node and/or the second node configures the terminal; and the connection module is configured to connect to the first node and the second node according to the configuration information.
  • a storage medium comprising a stored program, wherein the program is executed while performing the method described in any of the above alternative embodiments.
  • an electronic device comprising: a memory and a processor coupled to the memory, the processor configured to execute a program stored on the memory, wherein The method described in any of the above alternative embodiments is performed while the program is running.
  • the first node determines configuration information of the terminal, where the terminal is connected to the first node, and the configuration information is used by the first node. And/or the second node configuration; sending the configuration information to the terminal, wherein the configuration information is used to indicate that the terminal is connected to the first node and the second node according to the configuration information.
  • the first node or the terminal may form a connection between the terminal and the plurality of nodes according to the configuration information, thereby forming a dual connection or multiple connections of the terminal.
  • the configuration information is sent to the terminal, so that the terminal can select a suitable second node to connect, thereby avoiding the connection to the second node that is not effective, thereby improving the connection effect of the dual connection or the multiple connection, and improving the use of the dual connection or multiple The quality of the communication that connects to communicate.
  • FIG. 1 is a schematic diagram of a dual-connected system architecture form according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of two types of bearers when a layer 2 protocol stack is located in the same base station according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of two types of bearers when an L2 protocol stack is located at two base stations according to an embodiment of the present application;
  • FIG. 4 is a flowchart of a method for configuring a radio bearer according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a user plane protocol stack in which an MCG bearer and an SCG bearer are respectively configured in a MN and a SN in a dual connectivity scenario;
  • Example 6 is an example flow chart of adding an SN according to Example 1;
  • Example 7 is a schematic diagram of a user plane protocol stack in which an MCG split bearer and an SCG split bearer are respectively configured in a MN and a SN in a dual connectivity scenario according to Example 2;
  • FIG. 8 is a schematic diagram of a user plane protocol stack in which an SCG split bearer and an SCG split bearer are respectively configured in a MN and a SN according to the dual connectivity scenario of Example 3.
  • FIG. 9 is a schematic diagram of a MN initiated SN modification process according to Example 4.
  • FIG. 10 is a schematic diagram of a SN initiated SN modification process according to Example 4.
  • FIG. 11 is a schematic structural diagram of a network element according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of two bearer types when the layer 2 protocol stack is located in the same base station according to the related art. As shown in FIG. 2, the complete layer 2 (Layer 2, L2) protocol stack is illustrated. Two bearer types when both are in the same base station.
  • Layer 2, L2 Layer 2, L2
  • the first network element and the second network element respectively establish an NG-U interface with the NG-CN; wherein the bearer of the L2 protocol stack located in the first network element is called a primary cell group (Master Cell)
  • the bearer of the group which is referred to as the MCG bearer and the L2 protocol stack are located in the second network element, is called the secondary cell group (SCG) bearer.
  • FIG. 3 is a schematic diagram of two bearer types when the L2 protocol stacks are respectively located at two base stations according to the related art, as shown in FIG. 3, FIG. 3 is a schematic diagram of an MCG offload bearer type, and FIG. 3 is a SCG split bearer type. schematic diagram.
  • FIG. 3 In this user plane mode, only the first network element establishes an NG-U interface with the NG-CN, and the second network element only performs data packets with the first network element through the user plane (Xn-U) of the Xn interface. Transmission.
  • the L2 protocol stack includes a new AS sublayer for mapping the QF and the DRB, a Packet Data Convergence Protocol (PDCP), and a Radio Link Control (Radio Link Control, referred to as RLC) and Medium Access Control (MAC).
  • the bearer is configured with two RLC sub-layers and a MAC sub-layer, and is relatively independent, and is located at two base stations respectively.
  • the bearer that is only configured with the RLC sub-layer and the MAC sub-layer on the second network element is called an MCG split bearer (MCG).
  • MCG split bearer MCG split bearer
  • a mobile communication network including but not limited to a 5G mobile communication network
  • the network architecture of the network may include a network side device (for example, a base station) and a terminal.
  • the terminal in this embodiment may constitute a dual connection, or multiple connections, that is, a terminal, a primary node, and one or more secondary nodes.
  • an information transmission method that can be run on the network architecture is provided. It should be noted that the operating environment of the foregoing radio bearer configuration method provided in the embodiment of the present application is not limited to the foregoing network architecture.
  • the first node in the embodiment of the present application may be a master node (MN), the second node may be a secondary node (SN), and the second node may exist in multiple. More connections.
  • the first node is the master node MN
  • the first node cell group may be an MCG
  • the second node is a secondary node SN
  • the second node cell group may be an SCG.
  • FIG. 4 is a flowchart of a method for configuring a radio bearer according to an embodiment of the present application. As shown in FIG. 4, the process includes The following steps:
  • Step S402 in the case that the first node determines the second node to be connected, the first node determines configuration information of the terminal, where the terminal is connected to the first node, and the configuration information is used by the first node and / or the second node configuration;
  • the configuration information is sent to the terminal, where the configuration information is used to indicate that the terminal is connected to the first node and the second node according to the configuration information, so that the terminal forms a dual connection or multiple connections.
  • the configuration information may include: information such as a node identifier of the second node that can be used by the terminal to form a dual connection or multiple connections, so that the first node or the like can uniformly control the dual connection or multiple connections of the terminal, and avoid the period of time.
  • a large number of terminals connected to the same node cause a large amount of load on the corresponding node, resulting in poor connection quality of dual or multiple connections, and ping-pong switching effect due to poor connection quality; thereby improving dual connectivity or multiple The quality of the connection.
  • the above is only an example of configuration information, and the specific implementation is not limited to the above examples.
  • the first node determines configuration information of the terminal, where the terminal is connected to the first node, and the configuration information is used by the first node. And/or the second node configuration; sending the configuration information to the terminal, wherein the configuration information is used to indicate that the terminal is connected to the first node and the second node according to the configuration information, and the terminal constitutes a multi-connection.
  • the execution body of the foregoing steps may be a base station or the like, but is not limited thereto.
  • the method before the determining, by the first node, the configuration information of the terminal, the method further includes: determining a mapping between the Qos flows and the Data Radio Bearer (DRB) according to the first preset manner. Relationship, and/or mapping relationship between the Qos flows and the logical channel (Logic Channel, LCH).
  • DRB Data Radio Bearer
  • the method further includes:
  • the configuration information is formed according to the mapping relationship between the Qos flows and the DRB, and/or the mapping relationship between the Qos flows and the LCH.
  • the configuration information carries any one of the foregoing mapping relationships.
  • the terminal After receiving the configuration information, the terminal can know the mapping relationship between the Qos flows and the DRB, and/or the mapping relationship between the Qos flows and the LCH.
  • the DRB or LCH of the bearer may be determined according to the Qos flows of the current data to be transmitted, thereby selecting one connection from the dual connection or the multiple connection to transmit data, thereby ensuring the use of the dual connection or The quality of communication in which multiple connections are communicated, and the reduction of data streams requiring high quality of service to the unsuitable DRB or LCH, resulting in poor communication quality.
  • mapping relationship between the data stream Qos flows and the DRB is determined according to the first preset manner, and/or the mapping relationship between the Qos flows and the LCH includes at least one of the following:
  • the plurality of connected nodes to be configured respectively determine the mapping relationship between the Qos flows and the DRB on the own side;
  • the plurality of connected nodes to be configured respectively determine the mapping relationship between the Qos flows and the LCH on the own side;
  • the mapping relationship between the Qos flows and the DRB is determined by the anchor node where the bearers of the terminal are located, and/or the mapping relationship between the Qos flows and the LCH; or the anchor nodes where the separated bearers of the terminal are located determine the Qos flows, and the separated bearers
  • the mapping relationship between the Qos flows and the DRB includes at least one of: determining to map a plurality of specified QoS flows to the same DRB; determining a total number of DRBs required.
  • the mapping relationship of the Qos flows LCH includes at least one of: determining to map a plurality of specified QoS flows to the same LCH; determining a total number of LCHs required.
  • the plurality of connected nodes to be configured respectively determine the mapping relationship between the Qos flows and the DRB on the own side, including at least one of the following:
  • the plurality of connected nodes to be configured respectively determine the mapping relationship between the Qos flows and the LCH on the own side, including one of the following:
  • the mapping relationship between the Qos flows and the DRB is determined by the anchor node where the respective bearers of the terminal are located, and/or the mapping relationship between the Qos flows and the LCH; or the anchor node where each separated bearer of the terminal is located determines the Qos Flows, the mapping relationship between the DRBs or LCHs of the branches separated from the separated bearers, including one of the following:
  • Determining, by the second node, a Qos flows carried by the second node cell group, a mapping relationship with the DRB and/or the LCH, or determining a Qos flows corresponding to the separated bearers of the second node cell group, and the separated first node and the second node The mapping relationship between the DRB and/or LCH of both branches.
  • the determining, by the first node, the configuration information of the terminal includes: determining, by the first node, configuration information of a data radio bearer identifier DRB ID of the bearer between the terminal and the node.
  • the DRB ID of the bearer is determined by the anchor node where the bearer is located, or the DRB IDs of all the first node branches and the second node branches separated by the bearer are determined.
  • the shared DRB ID space by the first node and the second node is determined by the second preset manner before the first node determines the configuration information of the terminal.
  • the shared DRB ID space by the first node and the second node is determined by a second preset manner, including one of the following:
  • the first node determines a value range of the shared DRB ID space
  • the first node is an LTE base station, determining, by the first node, a value range of the shared DRB ID space;
  • the first node negotiates with the second node to determine a value range of the shared DRB ID space.
  • the value range of the shared DRB ID space is determined by negotiation.
  • the method before the first node determines the configuration information of the terminal, the method further includes: determining, by the first node, the available resources of the DRB ID space and/or the DRB ID by using a third preset manner.
  • the first node determines available resources of the DRB ID space and/or the DRB ID by using a third preset manner, including at least one of the following:
  • the first node When the first node determines to initiate the addition of the second node, the first node notifies the second node of the unused DRB ID resource of the first node, or the first node notifies the second node of all the The DRB ID space value range and the DRB ID resource used by the first node;
  • the first node When the first node determines to initiate the addition of the second node, the first node notifies the second node of the unused DRB ID resource of the first node, and the first node receives the feedback message sent by the second node. In the case that the second node rejects or modifies the unused DRB ID resource, the feedback message carries the second node's rejection or modification reason for the unused DRB ID resource;
  • the first node After receiving the feedback message sent by the second node, the first node modifies the DRB ID resource that is not used by the first node according to the feedback message, and re-initiates the process of adding the second node to the second node.
  • the reason for the rejection or modification includes at least one of the following:
  • the unused DRB ID resource exceeds the second node supportable upper limit.
  • the DRB space range exceeds the second node to support the upper limit.
  • the first node if the first node initiates a second node change process, or receives a second node change process initiated by the second node, if the process adds a new DRB or deletes an existing DRB, the first The node updates the unused DRB ID resource status, or updates the used DRB ID resource status, and notifies the other nodes to which the terminal is connected.
  • the first node is a primary node and the second node is a secondary node.
  • a method for configuring a radio bearer including: receiving, by a first node that is connected by the terminal, a request message for adding a second node or modifying a second node; The message sends configuration information of the second node to the terminal to the first node, and accesses the terminal according to the configuration information.
  • the second node can perform the configuration operation of the second node to the terminal in all the embodiments described above.
  • the second node determines to receive the second node change process initiated by the first node, or the second node initiates the second node modification process, after detecting the DRB increase or the DRB deletion, the second node updates the DRB ID resource and notifies the other nodes to which the terminal is connected.
  • a method for configuring a radio bearer including: receiving configuration information sent by a first node, where the configuration information carries the first node and/or the second node pair
  • the configuration of the terminal is connected to the first node and the second node according to the configuration information. It should be added that this embodiment can be executed on the terminal.
  • the method further includes:
  • Radio resource control (RRC) connection reconfiguration message sent by the first node or the second node, where the RRC connection reconfiguration message carries DRB configuration information;
  • RRC radio resource control
  • the terminal configures a connection with the first node according to the RRC connection reconfiguration message, or configures a connection with the second node.
  • the terminal receives the RRC connection reconfiguration message sent by the first node or the second node, and after the RRC connection reconfiguration message carries the DRB configuration information, the method further includes:
  • the terminal When the terminal detects that each of the node branches corresponding to a separate bearer is configured with a different DRB ID, or if different DRBs are configured with the same DRB ID, the terminal feeds back a message indicating that the RRC reconfiguration fails. .
  • the message for indicating the RRC reconfiguration failure carries a reason for the failure, and the reason for the failure includes one of the following: the DRB ID (Identity, ID) configuration is incorrect, the DRB ID configuration is duplicated, and the DRB ID configuration is not unique. The ID of the DRB branch is incorrectly configured.
  • the MN determines the mapping relationship between the Qos flows and the DRBs on the MN side and each of the multiple connected secondary nodes SN, including: which QoS flow IDs are mapped to the same DRB, and how many data radio bearers need to be configured;
  • the MN determines the mapping relationship between the Qos flows and the LCH on the MN side and the SN side of each multi-connection secondary node, including: which QoS flow IDs are mapped to the same LCH, and how many logical channels LCH need to be configured;
  • each node of the multi-connection determines the mapping relationship between the Qos flows and the DRB on the own side;
  • mapping relationship between the Qos flows and the DRBs corresponding to the MCG bearers, or the mapping relationship between the Qosflows corresponding to the split bearers (MCS bearers) and the DRBs of the split MN branches is determined by the master node MN;
  • the node SN determines a mapping relationship between the Qos flows and the DRBs corresponding to the SCG bearers, or a mapping relationship between the Qos flows corresponding to the SCG split bearer and the separated DRBs of the SN branches;
  • each node of multiple connections determines the mapping relationship between Qos flows and LCH on its own side;
  • the MN determines the MCG bearer on the MN side, or the mapping relationship between the Qos flows and the LCH corresponding to the MCG part of the MCG split bearer; the SN side determines the SCG bearer on the SN side, or the QG flows and the LCH corresponding to the SCG part of the SCG split bearer. Mapping relationship between
  • the MN determines the mapping relationship between the Qos flows and the DRB/LCH corresponding to the MCG bearer, or the mapping relationship between the Qos flows corresponding to the MCG split bearer and the DRB/LCH of the split MN branch and the SN branch;
  • the mapping relationship between the Qos flows and the DRB/LCH corresponding to the SCG bearer, or the mapping relationship between the Qosflows corresponding to the SCG split bearer and the separated MN branch and the DRB/LCH of the SN branch are determined.
  • the DRB ID of the bearer is determined by the anchor node where the bearer is located, or the DRB ID of all the branches that are separated by the bearer; specifically, the MN determines the DRB ID of the MCG bearer, or all the branches separated by the MCG split bearer.
  • DRB ID; the DRB ID of the SCG bearer is determined by the SN, or the DRB ID of all branches split by the SCG split bearer;
  • the DRB ID space is also called the DRB ID pool.
  • the MN determines the range of the DRB ID space/pool, and the SN may choose to reject if it is unacceptable;
  • the MN determines the range of the DRB ID space/pool; if the MN is an eLTE base station or a 5G gNB, and the SN is an LTE eNB, the MN and the SN negotiate to determine the DRB ID space/pool range;
  • the MN and the SN negotiate to determine the DRB ID space/pool range in any case.
  • the MN when the MN initiates the SN addition, the MN shall provide the available (unused) DRB ID resources to the SN, or provide the SN with the complete DRB ID space/pool range and the DRB ID resources that the MN has used;
  • the SN when receiving the range of available DRB ID resources or the complete DRB ID space/pool provided by the MN, the SN can accept/reject/modify the range of the available DRB ID resources or the DRB ID space/pool, and feed back to the MN;
  • the SN may carry a corresponding rejection/modification cause cause in the feedback, and the cause includes: rejecting the available DRB ID resource (also referred to as not being used by the MN), rejecting the DRB ID space/pool range, The available DRB ID resources cannot be supported, the range of the DRB ID space/pool cannot be supported, the available DRB ID resources exceed the supportable upper limit, and the DRB ID space/pool range exceeds the supportable upper limit.
  • the MN when the MN receives the range of the available DRB ID resource or the DRB ID space/pool modified by the SN, the MN may modify according to the situation, and decide whether to re-initiate SN addition to the SN;
  • the UE After receiving the RRC connection reconfiguration message that is sent by the MN or the SN, the UE needs to check whether the DRB IDs of the branches of the split DRB are the same. If not, the UE should feed back the RRC reconfiguration failure message and carry the message. The cause of the failure is the cause of the failure. The DRB ID is incorrectly configured, the DRB ID is inconsistent, and the ID of the DRB is incorrectly configured.
  • the UE After receiving the RRC connection reconfiguration message that is configured by the MN or the SN, the UE needs to check whether the DRB ID of each branch node is duplicated. If yes, the UE should feed back the RRC reconfiguration failure message and carry the corresponding message. The reason for the failure is that the DRB ID is incorrectly configured, the DRB ID configuration is duplicated, and the DRB ID configuration is not unique.
  • Example 1 The MN establishes the MCG bearer and the SCG bearer through the SN adding SN adding process, the configuration of the QoS flow mapping relationship, the configuration of the DRB ID, and the coordination of the DRB ID space/pool in the process.
  • the master node Master Node may be an enhanced base station eNB or a gNB (5G base station).
  • FIG. 5-a is a schematic diagram of a gNB as an MG
  • FIG. 5-b is an eNB. Schematic diagram of MG.
  • FIG. 6 is a flow chart showing an example of adding an SN according to Example 1, as shown in FIG. 6, including the following steps:
  • Step 1 When the MN determines that an SN is to be added to form a DC, the MN sends an add request message to the selected SN, where at least the QoS flow information (Qos flow ID) that is split into the SN is included. ;
  • Step 2 If the SN receives the request of the MN and the parameter configuration sent, the SN feeds back the Ack, which includes the air interface parameter configuration configured by the SN to the UE (can be included in the FS RRC container form in the update request Ack message) ;
  • Step 3 sending an RRC connection reconfiguration
  • Step 4 The MN sends the configuration information of the newly added MCG bearer and the SCG bearer, and the updated air interface parameter configuration (including the air interface parameter configuration configured by the SN to the UE) to the UE, and obtains the reconfiguration completion confirmation of the UE, for example, sending RRC connection reconfiguration is completed;
  • Step 5 The MN notifies the SN that the UE has successfully completed the air interface parameter reconfiguration of the SN.
  • Step 6 The random access process includes: performing a synchronization process between the UE and the SN to establish an air interface connection.
  • the MN needs to send the SN to the SN to allocate the Qos flows and DRB mapping information for the SCG bearer, including: the number of DRBs corresponding to the SCG bearer, the mapping relationship between the Qos flows and the DRB; in this example, the above information can be added by the SN ( Addition request)
  • the message is carried.
  • the MN needs to send the SN to the SN to allocate the Qos flows and LCH mapping information for the SCG bearer, including: the number of LCHs corresponding to the SCG bearer, the mapping relationship between the Qos flows and the LCH; in this example, the above information can be requested by the SN ( Addition request)
  • the message is carried.
  • the MN does not need to configure Qos flows and DRB mapping information for the SCG bearer, and the SN configures the Qos flows and DRB mapping information by itself.
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (in this example, it can be carried by the SN addition request message).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN sends the self-configured Qos flows and the DRB mapping information to the MN.
  • the SN may be carried by the SN addition request Ack message.
  • the SN may also confirm the mapping information by using the SN RRC container in the SN RRC container.
  • the addition request Ack) message is sent to the UE.
  • the MN does not need to configure the Qos flows and LCH mapping information for the SCG bearer, and the SN configures the Qos flows and LCH mapping information by itself.
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (in this example, it can be carried by the SN addition request message).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN sends the self-configured Qos flows and LCH mapping information to the MN.
  • the SN may be carried by the SN Addition Request Ack message.
  • the SN may also use the mapping information as a SN RRC container (container).
  • the meta-form is sent to the UE through an SN add request Ack message.
  • the MN does not need to configure the mapping information of the Qos flows and the DRB and/or the LCH for the SCG bearer, and the mapping information is configured by the SN.
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (in this example, it can be carried by the SN addition request message).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN sends the mapping information of the Qos flows and the DRB and/or the LCH to the MN.
  • the SN may be carried by the SN Addition Request Ack message.
  • the SN may also use the mapping information as the SN RRC.
  • the cell form of the container is sent to the UE through the SN addition request Ack message.
  • the MN and the SN respectively allocate the DRB-ID of the DRB on the own side, and the MN may send the DRB-ID corresponding to the MCG bearer configured by itself to the SN, which in this example may be carried by the SN add request message;
  • the SN may send the DRB-ID corresponding to the SCG bearer configured by itself to the MN.
  • the SN may be carried by the SN Addition Request Ack message.
  • the UE After receiving the RRC connection reconfiguration message that is sent by the MN or the SN, the UE needs to check whether the DRB ID of each branch node is duplicated. If yes, the UE should feed back the RRC reconfiguration failure message and carry the corresponding failure reason.
  • the reasons for the failure include: the DRB ID configuration is incorrect, the DRB ID configuration is duplicated, and the DRB ID configuration is not unique.
  • Example 2 MN establishes MCG split bearer through SN add process
  • a process in which an eLTE base station eNB and a 5G NR base station gNB form a dual connection may be used, where the Master Node may be an eNB or a gNB.
  • FIG. 7 is a schematic diagram of a user plane protocol stack for configuring an MCG split bearer and an SCG split bearer in the MN and the SN according to the dual connectivity scenario of Example 2, as shown in FIG. 7, FIG. 7-a is a schematic diagram of when the gNB is a MN. 7-b is a schematic diagram when the eNB is MN.
  • the MN needs to send the SN the Qos flows and DRB mapping information allocated by the MN to the SN branch of the MCG separation and separation bearer, including: the mapping between the number of DRBs corresponding to the SN branches separated by the MCG and the Qos flows and the DRB;
  • the above information may be carried by an SN add request message.
  • the MN needs to send the SN the Qos flows and LCH mapping information allocated by the MN for the SN branches separated by the MCG separation bearer, including: the mapping between the number of LCHs corresponding to the SN branches separated by the MCG separation bearers, Qos flows and LCH;
  • the above information may be carried by an SN add request message.
  • the MN configures a Qos flows and a DRB mapping relationship for the MN branches separated by the MCG separation bearer;
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (in this example, it can be carried by the SN addition request message).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN configures a Qos flows and a DRB mapping relationship for the SN branches of the MCG split bearer, and sends the mapping relationship to the MN.
  • the SN may be carried by the SN add request Ack message;
  • the mapping relationship is sent to the UE through a SN add request Ack message in the form of a SN RRC container.
  • the MN configures a Qos flows and an LCH mapping relationship for the MN branch of the MCG separation and separation bearer
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (in this example, it can be carried by the SN add request message).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN configures the mapping relationship between the Qos flows and the LCH for the SN branch of the MCG split bearer separation bearer, and sends the mapping relationship to the MN.
  • the SN may be carried by the SN add request Ack message; in addition, the SN may also The mapping relationship is sent to the UE by a SN Addition Request Ack message in the form of a cell of the SN RRC container.
  • the MN needs to send the SN to the SN to allocate the Qos flows allocated for the SN branch of the MCG split bearer, and the DRB and/or LCH mapping information, including: the number of DRBs corresponding to the SN branch of the MCG split bearer and the number of LCHs, between Qos flows and DRB Mapping relationship, mapping relationship between Qos flows and LCH; in this example, the above information can be carried by an SN add request message.
  • the DRB-ID is configured by the MN for the MN branch and the SN branch of the MCG split bearer
  • the DRB ID of the MN branch and the SN branch of the MCG separated bearer shall be guaranteed to be the same;
  • the MN sends the DRB-ID of the SN branch of the MCG split bearer that it configures to the SN, which in this example can be carried by the SN add request message.
  • the UE After receiving the RRC connection reconfiguration message that is sent by the MN or the SN, the UE needs to check whether the DRB IDs of the branches of the separated DRB are the same. If not, the UE should feed back the RRC reconfiguration failure message and carry the corresponding failure. The reason for the failure is that the DRB ID is incorrectly configured, the DRB ID configuration is inconsistent, and the ID of the DRB is incorrectly configured.
  • the UE After receiving the RRC connection reconfiguration message that is sent by the MN or the SN, the UE needs to check whether the DRB ID of each branch node is duplicated. If yes, the UE should feed back the RRC reconfiguration failure message and carry the corresponding failure. The reason for the failure is that the DRB ID is incorrectly configured, the DRB ID configuration is duplicated, and the DRB ID configuration is not unique.
  • Example 3 The MN establishes an MCG bearer and an SCG split bearer through the SN adding process.
  • a process in which the eLTE base station eNB and the 5G NR base station gNB form a dual connection may be used, where the MN may be an eNB or a gNB.
  • FIG. 8 is a schematic diagram of a user plane protocol stack in which an SCG split bearer and an SCG split bearer are respectively configured in an MN and a SN according to the dual connectivity scenario of FIG. 3, as shown in FIG. 8,
  • FIG. 8-a is a schematic diagram of an eNB performing MN.
  • 8-b is a schematic diagram when gNB is MN.
  • the MN configures the Qos flows and the DRB mapping information for the local MCG bearer, including: the number of DRBs corresponding to the MCG bearers, and the mapping relationship between the Qos flows and the DRBs;
  • the MN sends the SN to the SN to allocate the Qos flows and the DRB mapping information of the MN branch and the SN branch of the SCG split bearer, including: the number of DRBs corresponding to the SCG split bearer, the mapping relationship between the Qos flows and the MN branch and the DRB of the SN branch;
  • the above information can be carried by an SN add request message.
  • the MN configures the Qos flows and LCH mapping information for the local MCG bearer, including: the mapping between the number of LCHs corresponding to the MCG bearers, the Qos flows, and the LCH;
  • the MN needs to send the SN the Qos flows and LCH mapping information configured by the MN for the MN branch and the SN branch of the SCG split bearer, including: the number of LCHs corresponding to the MN branch and the SN branch of the SCG split bearer, the Qos flows and the MN branch and the SN branch
  • LCH mapping information configured by the MN for the MN branch and the SN branch of the SCG split bearer, including: the number of LCHs corresponding to the MN branch and the SN branch of the SCG split bearer, the Qos flows and the MN branch and the SN branch
  • the mapping relationship between LCHs; in this example, the above information can be carried by an SN add request message.
  • the MN configures a Qos flows and a DRB mapping relationship for the MN branch carried by the MCG.
  • the MN configures a Qos flows and a DRB mapping relationship for the MN branch of the SCG split bearer, and sends the mapping relationship to the SN;
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (the above information can be carried by the SN add request message in this example).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN configures the Qos flows and the DRB mapping relationship for the SN branch of the SCG split bearer, and sends the mapping relationship to the MN.
  • the SN may be carried by the SN add request acknowledgement (addition request Ack) message; The relationship is sent to the UE through the SN Addition Request Ack message in the form of a cell of the SN RRC container.
  • the MN configures a Qos flows and an LCH mapping relationship for the MN branch carried by the MCG.
  • the MN configures a Qos flows and an LCH mapping relationship for the MN branch of the SCG split bearer, and sends the mapping relationship to the SN;
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (the above information can be carried by the SN add request message in this example).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN configures the mapping relationship between the Qos flows and the LCH for the SN branch of the SCG split bearer, and sends the mapping relationship to the MN.
  • the SN may be carried by the SN add request acknowledgement (addition request Ack) message; The relationship is sent to the UE through the SN Addition Request Ack message in the form of a cell of the SN RRC container.
  • the MN configures a mapping relationship between the Qos flows and the DRB/LCH for the MCG bearer.
  • the MN sends the SN the Qos flows information (Qos flow number, Qos flow ID, or Qos flow ID list) that is split to the SN (the above information can be carried by the SN add request message in this example).
  • Qos flows information Qos flow number, Qos flow ID, or Qos flow ID list
  • the SN configures the Qos flows and the DRB/LCH mapping relationship for the MN branch and the SN branch of the SCG split bearer, and sends the mapping relationship to the MN.
  • the mapping relationship may also be sent to the UE through a SN add request Ack message in the form of a cell of the SN RRC container.
  • the DRB-ID is configured by the SN branch and the SN branch of the SCG split bearer
  • the DRB ID of the MN branch and the SN branch of the SCG separated bearer shall be guaranteed to be the same;
  • the SN sends the MN branch of the SCG split bearer and the DRB-ID of the SN branch to the MN.
  • the SN adds the request acknowledgement (ADDR) message carrying; the DRB ID of the SN branch can also pass the SN.
  • the form of the RRC container is sent to the UE in an SN add request Ack message.
  • the UE After receiving the RRC connection reconfiguration message that is sent by the MN or the SN, the UE needs to check whether the DRB IDs of the branches of the separated DRB are the same. If not, the UE should feed back the RRC reconfiguration failure message and carry the corresponding failure. The reason for the failure is that the DRB ID is incorrectly configured, the DRB ID configuration is inconsistent, and the ID of the DRB is incorrectly configured.
  • the UE After receiving the RRC connection reconfiguration message that is sent by the MN or the SN, the UE needs to check whether the DRB ID of each branch node is duplicated. If yes, the UE should feed back the RRC reconfiguration failure message and carry the corresponding failure reason.
  • the reasons for the failure include: the DRB ID configuration is incorrect, the DRB ID configuration is duplicated, and the DRB ID configuration is not unique.
  • Example 4 MN or SN initiates SN modification SN modification process
  • SN modification is used to modify, establish, or release bearer contexts.
  • the typical process is as follows:
  • FIG. 9 is a schematic flowchart of a MN-initiated SN modification according to Example 4.
  • FIG. 10 is a schematic flowchart of an SN-initiated SN modification according to Example 4.
  • the MN initiates a SN modification process, the message sent by the MN to the SN is a SN modification request, and the message that the SN feeds back to the MN is a SN modification Ack;
  • the message sent by the SN to the MN is a SN modification request, and the message that the MN feeds back to the SN is a SN modification confirmation.
  • the MN needs to send a definition of the DRB ID space or pool to the SN, including: the DRB ID space/pool value range, in this example, the SN add request message carrying; SN If you do not agree or cannot identify the definition of the DRB ID space/pool, you can choose to reject the SN addition and carry the rejection reason in the MN's reject message (such as SN add reject message) (for example: DRB ID space / Pool cannot be supported).
  • the DRB ID space/pool value range in this example, the SN add request message carrying
  • SN If you do not agree or cannot identify the definition of the DRB ID space/pool, you can choose to reject the SN addition and carry the rejection reason in the MN's reject message (such as SN add reject message) (for example: DRB ID space / Pool cannot be supported).
  • the method is applicable to the specified scenario, that is, if the MN is an LTE eNB, the MN determines the range of the DRB ID space/pool; if the MN is an eLTE base station or a 5G gNB, and the SN is an LTE eNB, the MN and the SN negotiate to determine the DRB ID space. / Pool's range; the MN in this example is eLTE (an upgraded version of LTE) or 5G gNB, so the MN and SN can negotiate the definition of the DRB ID space/pool; refer to the description of Method 3c.
  • the MN needs to send a definition of the DRB ID space/pool to the SN, including: the DRB ID space/pool value range, in this example, can be carried by the SN add request message; if the SN does not agree with the DRB ID
  • the space/pool definition may be modified to feed back the modified DRB ID space/pool value range to the MN.
  • the SN may be used to request an acknowledgment (addition request Ack) message or SN. Adding a reject message to carry;
  • the SN addition process may be terminated; if the modification of the SN is agreed, the DRB ID may be reconfigured according to the DRB ID space/pool fed back by the SN.
  • the difference between the method 4 series and the 3 series is that the method 4 is that the MN and the SN coordinate the available resources (unused resources) in the DRB ID space/pool, and the method 3 is that the MN and the SN coordinate the definition of the DRB ID space/pool ( That is, the value range);
  • the MN When the MN initiates an SN addition, the MN needs to send the available (unused) DRB ID resources to the SN, or provide the SN with the complete DRB ID space/pool range and the DRB ID space/pool usage status (eg : DRB ID space/pool in the form of a bitmap to reflect the used/unused state of the DRB ID in each DRB ID space/pool; or the already used DRB ID), in this case, the above information can be added via the SN request (addition request) message carrying;
  • the SN may accept/reject/modify the range of the available DRB ID resource or the DRB ID space/pool, and feed back the result to the MN;
  • the SN Addition Request Ack message may be fed back;
  • the SN may add feedback (addition reject) message;
  • the modified available (unused) DRB ID resource or the modified DRB ID space/pool range may be confirmed by the SN add request Ack.
  • the message or SN adds a reject message to the MN;
  • the corresponding refusal/modification failure reason may be carried in the feedback message.
  • the failure causes include: rejecting the DRB ID resource, rejecting the DRB ID space/pool range, failing to support the DRB ID resource, and failing to support the DRB ID resource.
  • the range of the DRB ID space/pool is supported, the DRB ID resource exceeds the supportable upper limit, and the DRB ID space/pool ranges exceed the supportable upper limit.
  • the MN When the MN receives the range of the available DRB ID resource or the DRB ID space/pool modified by the SN, it may decide whether to re-initiate the SN adding procedure to the SN to modify the previous DRB ID configuration according to the situation.
  • the MN or SN When the MN or SN initiates the SN modification process, if the DRB is added or deleted, the MN or the SN should update the DRB ID space/pool usage status, or the available DRB ID resource status, or the used DRB ID resource. Status, and notify other dual-connect/multi-connect nodes; for example, mod modification Ack, SN modification confirm, or other inter-node interface messages.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • a device for configuring a radio bearer is provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • a device for configuring a radio bearer which is applied to a first node, and includes: a determining module, configured to determine configuration information of the terminal, where the second node to be connected is determined by the terminal, where The terminal is connected to the first node, and the configuration information is configured by the first node and/or the second node; the first sending module is configured to send the configuration information to the terminal, where the configuration information is used to indicate the The terminal is connected to the first node and the second node according to the configuration information, and the terminal constitutes multiple connections.
  • the configuration device of the radio bearer of the first node of the application may perform the configuration operation of all the first node-to-terminal multi-connections in the foregoing embodiments.
  • a radio bearer configuration apparatus which is applied to a second node, and includes: a first receiving module configured to receive a request message sent by a first node connected by the terminal; and a second sending And the module is configured to send configuration information of the second node to the terminal to the first node according to the request message, and access the terminal according to the configuration information.
  • the configuration device of the radio bearer of the second node of the application may perform the configuration operation of all the second node-to-terminal multi-connection in the foregoing embodiment.
  • a configuration apparatus for a radio bearer which is applied to a terminal, and includes: a second receiving module, configured to receive configuration information sent by the first node, where the configuration information carries a configuration of the first node and/or the second node to the terminal; and a connection module, configured to connect to the first node and the second node according to the configuration information.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a network element may include a memory 110 and a processor 120 connected to the memory 110.
  • the processor 120 is configured to run on the memory 110.
  • the program wherein the program is executed to perform the method described in any of the foregoing embodiments.
  • the network element may be the foregoing first node, second node, or terminal.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method described in any of the above embodiments.
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may differ from this
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线承载的配置方法及装置,其中,该方法包括:在第一节点确定终端待连接的第二节点的情况下,该第一节点确定该终端的配置信息,其中,该终端与该第一节点连接,该配置信息由该第一节点和/或该第二节点配置;将该配置信息发送至该终端,其中,该配置信息用于指示该终端依据该配置信息连接至该第一节点和第二节点,该终端构成多连接。

Description

无线承载的配置方法及装置
相关申请的交叉引用
本申请基于申请号为201710459099.5、申请日为2017年06月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域但不限于通信领域,尤其涉及一种无线承载的配置方法及装置。
背景技术
在相关技术中,图1是根据相关技术中双连接(Dual Connectivity,简称为DC)的系统架构形式示意图。
在所述DC系统中,对于具备多收发机(multiple Rx/Tx)的用户设备(User Equipment,UE),新系统无线接入网(New Generation Radio Access Network,NG-RAN)中UE当前的服务基站(称为第一网元)可以为所述UE选择一个合适的(比如无线信道的质量满足一定的门限)基站并添加给所述UE(将被添加的基站称为第二网元),以使得两个基站能够共同为UE提供无线资源以进行用户面的数据传输。在有线接口方面,第一网元与新系统核心网(New Generation Core Network,NG-CN)间会为UE建立控制面接口(NG Control Plane,NG-C)、第二网元与NG-CN间至多为UE建立NG-U接口,第一网元与第二网元之间会以理想或非理想的接口(称为Xn接口)进行连接;在无线接口方面,第一网元与第二网元可以提供相同或不同的无线接入技术(Radio Access Technology,简称为RAT),并相对独 立的对UE进行调度。
终端需要同时与多个网元建立连接,以形成双连接或多连接,在具体实现时,双连接或多连接所提供的连接效果并未达到理想的效果。
针对相关技术中如何配置双连接或者多连接终端的问题,目前还没有有效的解决方案。
发明内容
本申请实施例提供了一种无线承载的配置方法及装置,以至少解决相关技术中如何配置双连接或者多连接终端的问题。
根据本申请的一个实施例,提供了一种无线承载的配置方法,包括:在第一节点确定终端待连接的第二节点的情况下,所述第一节点确定所述终端的配置信息,其中,所述终端与所述第一节点连接,所述配置信息由所述第一节点和/或所述第二节点配置;将所述配置信息发送至所述终端,其中,所述配置信息用于指示所述终端依据所述配置信息连接至所述第一节点和第二节点,所述终端构成多连接。
根据本发明的另一个实施例,提供了一种无线承载的配置方法,包括:接收第一节点发送的配置信息,其中,所述配置信息中携带有所述第一节点和/或第二节点对所述终端的配置;依据所述配置信息连接至所述第一节点和所述第二节点。
根据本申请的另一个实施例,提供了一种无线承载的配置装置,应用于第一节点,包括:确定模块,配置为在确定终端待连接的第二节点的情况下,确定所述终端的配置信息,其中,所述终端与所述第一节点连接,所述配置信息由所述第一节点和/或所述第二节点配置;第一发送模块,配置为将所述配置信息发送至所述终端,其中,所述配置信息用于指示所述终端依据所述配置信息连接至所述第一节点和第二节点。
根据本申请的另一个实施例,提供了一种无线承载的配置装置,应用 于第二节点,包括:第一接收模块,配置为接收终端连接的第一节点发送的请求消息;第二发送模块,配置为依据所述请求消息向所述第一节点发送所述第二节点对所述终端的配置信息,并根据所述配置信息接入所述终端。
根据本申请的另一个实施例,提供了一种无线承载的配置装置,应用于终端,包括:第二接收模块,配置为接收第一节点发送的配置信息,其中,所述配置信息中携带有所述第一节点和/或第二节点对所述终端的配置;连接模块,配置为依据所述配置信息连接至所述第一节点和所述第二节点。
根据本申请的另一个实施例,提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述可选实施例中任一项中所述的方法。
根据本申请的另一个实施例,提供了一种电子设备,,包括:存储器及与所述存储器连接的处理器,所述处理器配置为运行存储在所述存储器上的程序,其中,所述程序运行时执行上述可选实施例任一项中所述的方法。
通过本申请,在第一节点确定终端待连接的第二节点的情况下,该第一节点确定该终端的配置信息,其中,该终端与该第一节点连接,该配置信息由该第一节点和/或该第二节点配置;将该配置信息发送至该终端,其中,该配置信息用于指示该终端依据该配置信息连接至该第一节点和第二节点。第一节点或终端可以根据该配置信息,形成终端与多个节点之间的连接,从而构成该终端的双连接或多连接。通过配置信息发送给终端,使得终端可以选择合适的第二节点进行连接,从而避免连接到效果并不好的第二节点,从而提升双连接或多连接的连接效果,并提升利用双连接或多连接进行通信的通信质量。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一 部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一种双连接的系统架构形式示意图;
图2是本申请实施例的一种层2协议栈位于同一基站时的两种承载类型示意图;
图3是本申请实施例的一种L2协议栈分别位于两个基站时的两种承载类型示意图;
图4是根据本申请实施例的一种无线承载的配置方法的流程图;
图5是双连接场景中在MN和SN分别配置MCG bearer和SCG bearer的用户面协议栈示意图;
图6是根据示例一的增加SN的示例流程图;
图7是根据示例2的双连接场景中在MN和SN分别配置MCG split bearer和SCG split bearer的用户面协议栈示意图;
图8是根据示例3的双连接场景中在MN和SN分别配置SCG split bearer和SCG split bearer的用户面协议栈示意图;
图9是根据示例4的MN发起的SN修改(modification)流程示意图;
图10是根据示例4的SN发起的SN修改(modification)流程示意图;
图11为本发明实施例提供的一种网元的结构示意图。
具体实施方式
DC系统中可配置四种用户面承载类型。对某一承载而言,图2是根据相关技术中的层2协议栈位于同一基站时的两种承载类型示意图,如图2所示,示意了完整的层2(Layer 2,L2)协议栈都位于同一基站时的两种承载类型。
在这种用户面模式中,第一网元与第二网元会分别与NG-CN建立NG-U接口;其中,L2协议栈都位于第一网元的承载称为主小区组(Master  Cell Group,简称为MCG)承载、L2协议栈都位于第二网元的承载称为辅小区组(Secondary Cell Group,简称为SCG)承载。
图3是根据相关技术中的L2协议栈分别位于两个基站时的两种承载类型示意图,如图3所示,图3左图是MCG分流承载类型示意图,图3右图是SCG分离承载类型示意图。在这种用户面模式中,仅第一网元会与NG-CN建立NG-U接口、而第二网元仅会通过Xn接口的用户面(Xn-U)与第一网元进行数据包的传输。所述L2协议栈包括用于对QF与DRB进行映射的新AS子层、分组数据汇聚协议子层(Packet Data Convergence Protocol,简称为PDCP)、无线链路控制子层(Radio Link Control,简称为RLC)与媒体接入控制子层(Medium Access Control,简称为MAC)。承载配置有两套RLC子层与MAC子层、并相对独立的分别位于两个基站,其中,对第二网元上仅配置有RLC子层和MAC子层的承载称为MCG分离承载(MCG split bearer)、对第一网元上仅配置有RLC子层和MAC子层的承载称为SCG分离承载(SCG split bearer)。
本申请实施例中提供了一种移动通信网络(包括但不限于5G移动通信网络),该网络的网络架构可以包括网络侧设备(例如基站)和终端。本实施例中的终端可以构成双连接,或者多连接,即存在终端,主节点,一个或多个辅节点,在本实施例中提供了一种可运行于上述网络架构上的信息传输方法,需要说明的是,本申请实施例中提供的上述无线承载的配置方法的运行环境并不限于上述网络架构。
需要补充的是,本申请实施例中的第一节点可以为主节点(Master Node,MN),第二节点可以为辅节点(Secondary Node,SN),第二节点可以存在多个,该终端构成多连接。在第一节点为主节点MN的情况下,第一节点小区组可以为MCG,在第二节点为辅节点SN的情况下,第二节点小区组可以为SCG。
在本实施例中提供了一种运行于上述网络架构的无线承载的配置方法,图4是根据本申请实施例的一种无线承载的配置方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,在第一节点确定终端待连接的第二节点的情况下,该第一节点确定该终端的配置信息,其中,该终端与该第一节点连接,该配置信息由该第一节点和/或该第二节点配置;
步骤S404,将该配置信息发送至该终端,其中,该配置信息用于指示该终端依据该配置信息连接至该第一节点和第二节点,以用于供该终端构成双连接或多连接。该配置信息中可包括用:可供终端构成双连接或多连接的第二节点的节点标识等信息,如此,由第一节点等节点来统一管控终端的双连接或多连接,避免一段时间内大量的终端连接到同一个节点导致的对应节点的负载量大,从而导致的双连接或多连接的连接质量差的问题,及因连接质量差导致的乒乓切换效应;从而提升了双连接或多连接的连接质量。当然,以上仅是对配置信息的举例,具体实现时不局限于上述举例。
通过上述步骤,在第一节点确定终端待连接的第二节点的情况下,该第一节点确定该终端的配置信息,其中,该终端与该第一节点连接,该配置信息由该第一节点和/或该第二节点配置;将该配置信息发送至该终端,其中,该配置信息用于指示该终端依据该配置信息连接至该第一节点和第二节点,该终端构成多连接。采用上述技术方案,解决了相关技术中如何配置双连接或者多连接终端的问题,实现了终端依据第一节点或者第二节点的配置信息构成多连接。
在一些实施例中,上述步骤的执行主体可以为基站等,但不限于此。
在一些实施例中,在该第一节点确定该终端的配置信息之前,该方法还包括:依据第一预设方式确定数据流(Qos flows)与数据无线承载(Data Radio Bearer,DRB)的映射关系,和/或,该Qos flows与逻辑信道(Logic  Channel,LCH)的映射关系。
在一些实施例中,所述方法还包括:
根据所述Qos flows与DRB的映射关系,和/或,所述Qos flows与LCH的映射关系,形成所述配置信息。例如,所述配置信息携带有上述映射关系的任意一种,如此,终端接收到该配置信息之后,就可以知道Qos flows和DRB的映射关系,和/或,Qos flows与LCH的映射关系,后续终端利用双连接和多连接进行通信时,可以根据当前待传输的数据的Qos flows确定出承载的DRB或LCH,从而从双连接或多连接中选择一个连接来传输数据,从而确保利用双连接或多连接进行通信的通信质量,减少高服务质量要求的数据流放到了不适配的DRB或LCH上传输,导致的通信质量差的问题。
在一些实施例中,依据第一预设方式确定数据流Qos flows与DRB的映射关系,和/或,该Qos flows与LCH的映射关系,包括以下至少之一:
该第一节点确定该第一节点侧和该第二节点侧二者的Qos flows,与DRB的映射关系;
该第一节点确定第一节点侧和该第二节点侧二者的Qos flows,与LCH的映射关系;
待构成的多连接的多个节点分别确定自身侧的Qos flows和DRB的映射关系;
待构成的多连接的多个节点分别确定自身侧的Qos flows和LCH间的映射关系;
由该终端的各个承载所在的锚节点确定Qos flows与DRB的映射关系,和/或Qos flows与LCH的映射关系;或者由该终端的各个分离承载所在的锚节点确定Qos flows,与该分离承载分离出的各个分支的DRB或LCH的映射关系,其中该锚节点是指各个承载对应的PDCP实体所在的节点。
在一些实施例中,该Qos flows与DRB的映射关系,包括以下至少之 一:确定将多个指定Qos flow映射到同一个DRB;确定总共需要的DRB数量。
在一些实施例中,该Qos flows LCH的映射关系,包括以下至少之一:确定将多个指定Qos flow映射到同一个LCH;确定总共需要的LCH数量。
在一些实施例中,待构成的多连接的多个节点分别确定自身侧的Qos flows和DRB的映射关系,包括以下至少之一:
该第一节点确定第一节点小区组承载的Qos flows和DRB的映射关系,或者确定第一节点小区组分离承载对应的Qos flows与分离出的第一节点分支的DRB的映射关系;或者确定第二节点小区组分离承载对应的Qos flows与分离出的第一节点分支的DRB的映射关系;
该第二节点确定第二节点小区组承载的Qos flows和DRB的映射关系,或者确定第二节点小区组分离承载对应的Qos flows与分离出的第二节点分支的DRB的映射关系;或者确定第一节点小区组分离承载对应的Qos flows与分离出的第二节点分支的DRB的映射关系。
在一些实施例中,待构成的多连接的多个节点分别确定自身侧的Qos flows和LCH间的映射关系,包括以下之一:
该第一节点确定第一节点小区组承载的Qos flows和LCH的映射关系,或者确定第一节点小区组分离承载对应的Qos flows与分离出的第一节点分支的LCH的映射关系;或者确定第二节点小区组分离承载对应的Qos flows与分离出的第一节点分支的LCH的映射关系;
该第二节点确定第二节点小区组承载的Qos flows和DRB的映射关系,或者确定第二节点小区组分离承载对应的Qos flows与分离出的第二节点分支的LCH间的映射关系;或者确定第一节点小区组分离承载对应的Qos flows与分离出的第二节点分支的LCH的映射关系。
在一些实施例中,由该终端的各个承载所在的锚节点确定Qos flows与DRB的映射关系,和/或Qos flows与LCH的映射关系;或者由该终端的各个分离承载所在的锚节点确定Qos flows,与该分离承载分离出的各个分支的DRB或LCH的映射关系,包括以下之一:
该第一节点确定第一节点小区组承载的Qos flows,与DRB和/或LCH的映射关系,或者确定第一节点小区组分离承载对应的Qos flows,与分离出的第一节点和第二节点分支二者的DRB和/或LCH的映射关系;
该第二节点确定第二节点小区组承载的Qos flows,与DRB和/或LCH的映射关系,或者确定第二节点小区组分离承载对应的Qos flows,与分离出的第一节点和第二节点分支二者的DRB和/或LCH的映射关系。
在一些实施例中,该第一节点确定该终端的配置信息,包括:该第一节点确定为该终端与节点之间的承载分配数据无线承载标识DRB ID的配置信息。
在一些实施例中,由该承载所在的锚节点确定该承载的DRB ID,或者确定该承载分离出的所有第一节点分支和第二节点分支的DRB ID。
在一些实施例中,在该第一节点确定该终端的配置信息之前,通过第二预设方式确定由该第一节点和该第二节点的共享DRB ID空间。
在一些实施例中,通过第二预设方式确定由该第一节点和该第二节点的共享DRB ID空间,包括以下之一:
该第一节点确定该共享DRB ID空间的取值范围;
在该第一节点为LTE基站的情况下,由该第一节点确定该共享DRB ID空间的取值范围;
在该第一节点为eLTE基站或5G基站,该第二节点为LTE基站的情 况下,该第一节点和该第二节点协商确定该共享DRB ID空间的取值范围;
该第一节点和该第二节点为任意基站情况下,协商确定该共享DRB ID空间的取值范围。
在一些实施例中,在该第一节点确定该终端的配置信息之前,该方法还包括:该第一节点通过第三预设方式确定DRB ID空间和/或DRB ID的可用资源。
在一些实施例中,该第一节点通过第三预设方式确定DRB ID空间和/或DRB ID的可用资源,包括以下至少之一:
在该第一节点确定发起增加第二节点的情况下,该第一节点向该第二节点通知该第一节点未使用的DRB ID资源,或者,该第一节点向该第二节点通知全部的DRB ID空间取值范围以及被该第一节点使用的DRB ID资源;
在该第一节点确定发起增加第二节点的情况下,该第一节点向该第二节点通知该第一节点未使用的DRB ID资源,该第一节点接收到该第二节点发送的反馈消息,其中,在该第二节点拒绝或者修改该未使用的DRB ID资源的情况下,该反馈消息携带有该第二节点对该未使用的DRB ID资源的拒绝或者修改原因;
该第一节点接收到该第二节点发送的反馈消息之后,依据该反馈消息修改该第一节点未使用的DRB ID资源,并向该第二节点重新发起增加第二节点过程。
在一些实施例中,该拒绝或者修改原因包括以下至少之一:
拒绝该未使用的DRB ID资源,拒绝该DRB ID空间范围,无法支持该未使用的DRB ID资源,无法支持该DRB ID空间范围,该未使用的DRB ID 资源超过该第二节点可支持上限,该DRB空间范围超过该第二节点可支持上限。
在一些实施例中,在该第一节点发起第二节点更改过程、或者收到第二节点发起的第二节点更改过程的情况下,若该过程增加新DRB或者删除现有DRB,该第一节点更新该未使用的DRB ID资源状态,或者更新该被使用的DRB ID资源状态,并将更新信息通知终端连接至的其他节点。
在一些实施例中,该第一节点为主节点,该第二节点为辅节点。
根据本申请的另一个实施例,还提供了一种无线承载的配置方法,包括:第二节点接收终端连接的第一节点发送的增加第二节点或者修改第二节点的请求消息;依据该请求消息向该第一节点发送该第二节点对该终端的配置信息,并根据该配置信息接入该终端。
需要补充的是,上述步骤的可以在第二节点上执行,在一些实施例中,第二节点可以执行上述所有实施例中第二节点对终端的配置操作。
在一些实施例中,在该第二节点确定收到第一节点发起的第二节点更改过程,或者第二节点发起第二节点修改过程的情况下,在检测到DRB增加或者DRB删除之后,该第二节点更新该DRB ID资源,并将更新信息通知终端连接至的其他节点。
根据本申请的另一个实施例,还提供了一种无线承载的配置方法,包括:接收第一节点发送的配置信息,其中,该配置信息中携带有该第一节点和/或第二节点对该终端的配置;依据该配置信息连接至该第一节点和该第二节点。需要补充的是,该实施例可以在终端上执行。
在一些实施例中,依据该配置信息连接至该第一节点和该第二节点之后,该方法还包括:
终端接收到该第一节点或者第二节点发送的无线资源控制(Radio  Resource Control,RRC)连接重配消息,其中,该RRC连接重配消息携带有DRB配置信息;
该终端依据该RRC连接重配消息配置与该第一节点的连接,或者配置与该第二节点的连接。
在一些实施例中,终端接收到该第一节点或者第二节点发送的RRC连接重配消息,其中,该RRC连接重配消息携带有DRB配置信息之后,该方法还包括:
在该终端检测到某一个分离承载对应的各个节点分支被配置了不同的DRB ID,或者,不同的DRB被配置了相同的DRB ID的情况下,该终端反馈用于指示RRC重配失败的消息。
在一些实施例中,该用于指示RRC重配失败的消息携带有失败原因,该失败原因包括以下之一:DRB标识(Identity,ID)配置错误,DRB ID配置重复,DRB ID配置不唯一,DRB分支的ID配置错误。
下面结合本申请优选实施例进行详细说明。
以下方法均针对DC或多连接MC场景:
需要说明的是,以下实施例中记载的方法彼此之间为并列关系,标号没有明确的先后限定关系。
1,谁确定数据流Qos flow与数据无线承载DRB和逻辑信道LCH的映射关系(Who decide the Qos flow mapping to DRB and LCH(Logical Channel)?针对上述技术问题,有以下几种实施方式:
1a),由MN决定MN侧和各个多连接辅节点SN侧的Qos flows和DRB间的映射关系,包括:哪几个Qos flow ID映射到同一个DRB、需要配置多少个数据无线承载;
1b),由MN决定MN侧和各个多连接辅节点SN侧的Qos flows和LCH间的映射关系,包括:哪几个Qos flow ID映射到同一个LCH、需要配置 多少个逻辑通道LCH;
1c),多连接的各个node决定自己侧的Qos flows和DRB间的映射关系;
即由主节点MN来决定MCG承载对应的Qos flows和DRB间的映射关系,或MCG分离承载(split bearer)对应的Qosflows,与所分离split出的MN分支的DRB之间的映射关系;由辅节点SN来决定SCG承载对应的Qos flows和DRB间的映射关系,或SCG split bearer对应的Qos flows,与分离出的SN分支的DRB之间的映射关系;
1d),多连接的各个node决定自己侧的Qos flows和LCH间的映射关系;
即MN决定MN侧的MCG承载,或MCG part of MCG分离承载对应的Qos flows和LCH间的映射关系;由SN来决定SN侧的SCG承载,或SCG part of SCG分离承载对应的Qos flows和LCH间的映射关系;
1e),由承载所在的锚节点(anchor node)决定该承载对应的Qos flows和DRB/LCH间的映射关系,或者该承载对应的Qos flows与该承载分离出的各个分支的DRB/LCH之间的映射关系;
即由MN来决定MCG承载对应的Qos flows和DRB/LCH间的映射关系,或MCG分离承载对应的Qos flows与所split出的MN分支和SN分支的DRB/LCH之间的映射关系;由SN来决定SCG承载对应的Qos flows和DRB/LCH间的映射关系,或SCG split bearer对应的Qosflows与分离出的MN分支和SN分支的DRB/LCH之间的映射关系。
2,谁确定分配DRB ID的赋值(Who decide the DRB ID assignment)。
由承载所在的锚节点决定该承载的DRB ID,或者该承载分离出的所有分支的DRB ID;具体的,即由MN来决定MCG承载的DRB ID,或MCG分离承载所分离出的所有分支的DRB ID;由SN来决定SCG承载的DRB  ID,或SCG分离承载所split出的所有分支的DRB ID;
3,谁确定由MN和SN共享的DRB ID空间/池(Who decide the DRB ID space/pool shared by MN and SN)?针对上述问题,可以有以下三种实施方式,需要补充的是,DRB ID空间又称为DRB ID池:
3a),MN决定DRB ID空间/池的范围,SN若不能接受则可选择拒绝;
3b),若MN为LTE eNB,则由MN决定DRB ID空间/池的范围;若MN为eLTE基站或者5G gNB,而SN为LTE eNB,则MN和SN协商决定DRB ID空间/池的范围;
3c),MN和SN在任何情况下均协商决定DRB ID空间/池的范围。
4,协商DRB ID空间/池(Negotiation of DRB ID space/pool),该实施例包括以下实施方式:
4a),在MN发起SN添加时,MN应向SN提供可用的(未被使用的)DRB ID资源,或者向SN提供完整的DRB ID空间/池的范围以及MN已经使用了的DRB ID资源;
4b),SN收到MN提供的可用DRB ID资源或者完整的DRB ID空间/池的范围时,可接受/拒绝/修改该可用DRB ID资源或者DRB ID空间/池的范围,并反馈给MN;
拒绝/修改时,该SN可在反馈中携带对应的拒绝/修改原因cause,cause包括:拒绝该可用的(也称为未被MN使用的)DRB ID资源、拒绝DRB ID空间/池的范围、无法支持该可用的DRB ID资源、无法支持该DRB ID空间/池的范围、该可用的DRB ID资源超过可支持上限、DRB ID空间/池的范围超过可支持上限等;
4c),MN收到SN修改的该可用DRB ID资源或者DRB ID空间/池的范围时,可根据情况进行修改,并决定是否要向该SN重新发起SN addition;
4d),在MN或SN发起SN修改(modification)时,若有DRB增加或者删除,则MN或SN应更新DRB ID空间/池的状态、或者可用的DRB ID资源状态、或者已用的DRB ID资源状态,并通知其他双连接/多连接节点;
5,终端行为UE行为(behavior)
5a),UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查split DRB的各个分支的DRB ID是否相同,若不相同,UE应反馈RRC重配失败消息,并携带对应的失败原因(cause),失败原因包括:DRB ID配置错误、DRB ID配置不一致、分离DRB的ID配置错误等形式。
5b),UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查各个分支节点的DRB ID有没有重复情况,如果有则UE应反馈RRC重配失败消息,并携带对应的失败原因,失败原因包括:DRB ID配置错误、DRB ID配置重复、DRB ID配置不唯一等形式。
下面是本申请优选实施例的示例
示例1:MN通过SN增加SN添加过程建立MCG承载和SCG承载,在此过程中的Qos flow映射关系的配置、DRB ID的配置、DRB ID空间/池的协调。
以eLTE基站eNB和5G NR基站gNB构成双连接的场景为例,其中主节点Master Node可以是增强型基站eNB,或者gNB(5G基站)。
图5是双连接场景中在MN和SN分别配置MCG承载和SCG承载的用户面协议栈示意图,如图5所示,图5-a是gNB做MG时的示意图,图5-b是eNB为MG时的示意图。
图6是根据示例一的增加SN的示例流程图,如图6所示,包括以下步骤:
步骤1:当MN确定要增加一个SN以构成DC,MN向选中的SN发送添加请求(addition request)消息,其中至少包含:拆分给SN的QoS flow信息(Qos flow的数量,Qos flow ID);
步骤2:SN如果接收MN的请求以及发来的参数配置,则反馈Ack,其中包含SN配置给UE的空口参数配置(可以SN RRC容器形式包含在天假请求确认(addition request Ack)消息中);
步骤3,发送RRC连接重配置;
步骤4:MN将新增的MCG承载和SCG承载的配置信息,以及更新后的空口参数配置(包含SN配置给UE的空口参数配置)发给UE并获取UE的重配置完成确认,例如,发送RRC连接重配置完成;
步骤5:MN通知SN,UE已经成功完成SN的空口参数重配;
步骤6:随机接入过程,包括:UE与SN进行同步过程,以建立空口连接。
需要说明的是,如果将之前的优选实施例中的技术方案应用到示例一中,存在以下技术方案:
如果对应于方法1a:
MN需给SN发送MN为SCG bearer分配的Qos flows和DRB映射信息,包括:SCG bearer对应的DRB数量、Qos flows和DRB之间的映射关系;在本例中,上述信息可通过SN添加请求(addition request)消息携带。
如果对应于方法1b:
MN需给SN发送MN为SCG bearer分配的Qos flows和LCH映射信息,包括:SCG bearer对应的LCH数量、Qos flows和LCH之间的映射关系;在本例中,上述信息可通过SN添加请求(addition request)消息携带。
如果对应于方法1c:
MN无需为SCG承载配置Qos flows和DRB映射信息,由SN自行配 置Qos flows和DRB映射信息。
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(在本例中可通过SN addition request消息携带)。
SN将自配的Qos flows和DRB映射信息发送给MN,在本例中可通过SN addition request Ack消息携带;此外SN也可以将该映射信息以SN RRC container的信元形式通过SN添加请求确认(addition request Ack)消息发给UE。
如果对应于方法1d:
MN无需为SCG bearer配置Qos flows和LCH映射信息,由SN自行配置Qos flows和LCH映射信息。
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(在本例中可通过SN addition request消息携带)。
SN将自配的Qos flows和LCH映射信息发送给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;此外SN也可以将该映射信息以SN RRC容器(container)的信元形式通过SN添加请求确认(addition request Ack)消息发给UE。
如果对应于方法1e:
MN无需为SCG bearer配置Qos flows,与DRB和/或LCH的映射信息,由SN自行配置上述映射信息。
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(在本例中可通过SN addition request消息携带)。
SN将自配的Qos flows,与DRB和/或LCH的映射信息发送给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;此外SN也可以将该映射信息以SN RRC container的信元形式通过SN addition request Ack消息发给UE。
如果对应于方法2a:
MN和SN分别分配自己侧的DRB的DRB-ID,MN可将自己配置的MCG bearer对应的DRB-ID发给SN,在本例中可通过SN添加请求(addition request)消息携带;
SN可将自己配置的SCG承载对应的DRB-ID发给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带。
如果对应于方法5b:
UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查各个分支node的DRB ID有没有重复情况,如果有则UE应反馈RRC重配失败消息,并携带对应的失败原因,失败原因包括:DRB ID配置错误、DRB ID配置重复、DRB ID配置不唯一等形式。
示例2:MN通过SN添加(addition)过程建立MCG分离承载
以eLTE基站eNB和5G NR基站gNB构成双连接的过程为例,其中Master Node可以是eNB,或者gNB。
图7是根据示例2的双连接场景中在MN和SN分别配置MCG分离bearer和SCG分离承载的用户面协议栈示意图,如图7所示,图7-a是gNB做MN时的示意图,图7-b是eNB为MN.时的示意图。
需要补充的是,SN添加的示例流程仍可参考图6。
如果将之前的优选实施例中的技术方案应用到示例2中的SN添加流程中,存在以下技术方案:
如果采用方法1a,
MN需给SN发送MN为MCG分离分离承载的SN分支分配的Qos flows和DRB映射信息,包括:MCG分离承载分离的SN分支对应的DRB数量、Qos flows和DRB之间的映射关系;在本例中,上述信息可通过SN添加 请求(addition request)消息携带。
如果采用方法1b
MN需给SN发送MN为MCG分离承载分离的SN分支分配的Qos flows和LCH映射信息,包括:MCG分离承载分离的SN分支对应的LCH数量、Qos flows和LCH之间的映射关系;在本例中,上述信息可通过SN添加请求(addition request)消息携带。
如果采用方法1c
MN为MCG分离承载分离的MN分支配置Qos flows和DRB映射关系;
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(在本例中可通过SN addition request消息携带)。
SN为MCG分离承载分离的SN分支配置Qos flows和DRB映射关系,并将该映射关系发送给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;此外SN也可以将该映射关系以SN RRC容器(container)的信元形式通过SN添加请求确认(addition request Ack)消息发给UE。
如果采用方法1d,
MN为MCG分离分离承载的MN分支配置Qos flows和LCH映射关系;
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(在本例中可通过SN添加请求(addition request)消息携带)。
SN为MCG分离承载分离承载的SN分支配置Qos flows和LCH映射关系,并将该映射关系发送给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;此外SN也可以将该映射关系以SN RRC container的信元形式通过SN添加请求确认(addition request Ack)消息发 给UE。
如果采用方法1e,
MN需给SN发送MN为MCG分离承载的SN分支分配的Qos flows,与DRB和/或LCH映射信息,包括:MCG分离承载的SN分支对应的DRB数量和LCH数量、Qos flows和DRB之间的映射关系、Qos flows和LCH之间的映射关系;在本例中,上述信息可通过SN添加请求(addition request)消息携带。
如果采用方法2a
因为MCG分离承载的锚节点(anchor node)是MN,因此由MN为MCG分离承载的MN分支和SN分支配置DRB-ID;
MCG分离承载的MN分支和SN分支的DRB ID应保证相同;
MN将自己配置的MCG分离承载的SN分支的DRB-ID发给SN,在本例中可通过SN添加请求(addition request)消息携带。
如果采用方法5a:
UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查分离DRB的各个分支的DRB ID是否相同,若不相同,UE应反馈RRC重配失败消息,并携带对应的失败原因,失败原因包括:DRB ID配置错误、DRB ID配置不一致、分离DRB的ID配置错误等形式。
如果采用方法5b:
UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查各个分支node的DRB ID有没有重复情况,如果有则UE应反馈RRC重配失败消息,并携带对应的失败失败原因,失败原因包括:DRB ID配置错误、DRB ID配置重复、DRB ID配置不唯一等形式。
示例3:MN通过SN添加流程建立MCG承载and SCG分离承载,
以eLTE基站eNB和5G NR基站gNB构成双连接的过程为例,其中 MN可以是eNB,或者gNB。
图8是根据示例3的双连接场景中在MN和SN分别配置SCG分离承载和SCG分离承载的用户面协议栈示意图,如图8所示,图8-a是eNB做MN时的示意图,图8-b是gNB为MN时的示意图。
需要补充的是,SN添加的示例流程仍可参考图6。
如果将之前的优选实施例中的技术方案应用到示例2中的SN添加流程中,存在以下技术方案:
如果采用方法1a,
MN为本地的MCG承载配置Qos flows和DRB映射信息,包括:MCG承载对应的DRB数量、Qos flows和DRB之间的映射关系;
MN给SN发送MN为SCG分离承载的MN分支和SN分支分配的Qos flows和DRB映射信息,包括:SCG分离承载对应的DRB数量、Qos flows和MN分支和SN分支的DRB之间的映射关系;在本例中,上述信息可通过SN添加请求(addition request)消息携带。
如果采用方法1b,
MN为本地的MCG承载配置Qos flows和LCH映射信息,包括:MCG承载对应的LCH数量、Qos flows和LCH之间的映射关系;
MN需给SN发送MN为SCG分离承载的MN分支和SN分支配置的Qos flows和LCH映射信息,包括:SCG分离承载的MN分支和SN分支对应的LCH数量、Qos flows和MN分支和SN分支的LCH之间的映射关系;在本例中,上述信息可通过SN添加请求(addition request)消息携带。
如果采用方法1c,
MN为MCG承载的MN分支配置Qos flows和DRB映射关系;
MN为SCG分离承载的MN分支配置Qos flows和DRB映射关系,并将该映射关系发送给SN;
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(上述信息在本例中可通过SN添加请求(addition request)消息携带)。
SN为SCG分离承载的SN分支配置Qos flows和DRB映射关系,并将该映射关系发送给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;此外SN也可以将该映射关系以SN RRC container的信元形式通过SN添加请求确认(addition request Ack)消息发给UE。
如果采用方法1d,
MN为MCG承载的MN分支配置Qos flows和LCH映射关系;
MN为SCG分离承载的MN分支配置Qos flows和LCH映射关系,并将该映射关系发送给SN;
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(上述信息在本例中可通过SN添加请求(addition request)消息携带)。
SN为SCG分离承载的SN分支配置Qos flows和LCH映射关系,并将该映射关系发送给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;此外SN也可以将该映射关系以SN RRC container的信元形式通过SN添加请求确认(addition request Ack)消息发给UE。
如果采用方法1e,
MN为MCG承载配置Qos flows和DRB/LCH间的映射关系;
MN给SN发送拆分给SN的Qos flows信息(Qos flow数量、Qos flow ID、或者Qos flow ID list)(上述信息在本例中可通过SN添加请求(addition request)消息携带)。
SN为SCG分离承载的MN分支和SN分支配置Qos flows和DRB/LCH映射关系,并将该映射关系发送给MN,在本例中可通过SN添 加请求确认(addition request Ack)消息携带;此外SN也可以将该映射关系以SN RRC container的信元形式通过SN添加请求确认(addition request Ack)消息发给UE。
如果采用方法2a,
因为SCG分离承载的anchor node是SN,因此由SN为SCG分离承载的MN分支和SN分支配置DRB-ID;
SCG分离承载的MN分支和SN分支的DRB ID应保证相同;
SN将自己配置的SCG分离承载的MN分支和SN分支的DRB-ID发给MN,在本例中可通过SN添加请求确认(addition request Ack)消息携带;其中SN分支的DRB ID还可通过SN RRC container的形式包含在SN添加请求确认(addition request Ack)消息中发给UE。
如果采用方法5a:
UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查分离DRB的各个分支的DRB ID是否相同,若不相同,UE应反馈RRC重配失败消息,并携带对应的失败原因,失败原因包括:DRB ID配置错误、DRB ID配置不一致、分离DRB的ID配置错误等形式。
如果采用方法5b:
UE收到MN或者SN发送的包含DRB配置的RRC连接重配消息后,需检查各个分支node的DRB ID有没有重复情况,如果有则UE应反馈RRC重配失败消息,并携带对应的失败原因,失败原因包括:DRB ID配置错误、DRB ID配置重复、DRB ID配置不唯一等形式。
示例4:MN或SN发起SN修改SN修改过程
SN修改(modification)用于修改(modify),、建立(establish)或释放(release)承载上下文(contexts),其典型流程如下:
图9是根据示例4的MN发起的SN修改流程示意图;
图10是根据示例4的SN发起的SN修改流程示意图;
在图9和图10的流程中,无论是承载的新增,删除,或是对承载类型(type)的修改,在引入前述各项方法后,均和前述示例1~3类似,差别只在于MN或者SN所配置的DRB配置、或者LCH相关配置、或者Qos flow的映射关系等通过不同的消息来携带而已。
在本实施例中,MN发起的SN修改(modification)流程中,MN发给SN的消息为SN修改请求(modification request),SN反馈MN的消息为SN修改(modification)Ack;
SN发起的SN修改(modification)流程中,SN发给MN的消息为SN修改请求(modification request),MN反馈SN的消息为SN修改确认(modification confirm)。
示例5:DRB ID空间/池的协调
如果将之前的优选实施例中的技术方案应用到示例5中,存在以下技术方案:
如果采用方法3a,
MN需给SN发送对DRB ID空间(space)或池(pool)的定义,包括:DRB ID空间/池的取值范围,在本例中,可通过SN添加请求(addition request)消息携带;SN如果不同意或者无法识别该DRB ID空间/池的定义,可选择拒绝SN添加,并在给MN的拒绝消息(例如SN添加拒绝(addition reject)消息)中携带拒绝原因(例如:DRB ID空间/池无法支持)。
如果采用方法3b,
该方法适用于指定场景,即若MN为LTE eNB,则由MN决定DRB ID空间/池的range;若MN为eLTE基站或者5G gNB,而SN为LTE eNB,则MN和SN协商决定DRB ID空间/池的空间(range);在本例中的MN 为eLTE(是LTE的升级版本)或者5G gNB,因此MN和SN可以对DRB ID空间/池的定义进行协商;参考方法3c的描述。
如果采用方法3c,
MN需给SN发送对DRB ID空间/池的定义,包括:DRB ID空间/池的取值范围,在本例中,可通过SN添加请求(addition request)消息携带;SN如果不同意该DRB ID空间/池的定义,可选择对该定义进行修改,将修改后的DRB ID空间/池的取值范围反馈给MN,在本例中,可以通过SN添加请求确认(addition request Ack)消息或者SN添加(addition)reject消息携带;
MN如果不同意SN的修改,可终止SN添加流程;如果同意SN的修改,那么可以按照SN反馈的DRB ID空间/池对DRB ID进行重配置。
如果采用方法4a,b,c:
注意:方法4系列和3系列的区别在于,方法4是MN和SN协调DRB ID空间/池内的可用资源(未被使用的资源),方法3是MN和SN协调DRB ID空间/池的定义(即取值范围);
MN发起SN添加(addition)时,MN需给SN发送可用的(未被使用的)DRB ID资源,或者向SN提供完整的DRB ID空间/池的范围以及DRB ID空间/池的使用状态(例如:bitmap形式的DRB ID空间/池以反映每一个DRB ID空间/池中的DRB ID的使用/未用状态;或者已经使用了的DRB ID),在本例中,上述信息可通过SN添加请求(addition request)消息携带;
SN收到MN提供的上述DRB ID信息后,可接受/拒绝/修改该可用DRB ID资源或者DRB ID空间/池的范围,并反馈给MN处理结果;
即:
SN接受时,可反馈SN添加请求确认(addition request Ack)消息;
SN拒绝时,可反馈SN添加拒绝(addition reject)消息;
SN要对上述DRB ID资源信息进行修改时,可将修改后的可用的(未被使用的)DRB ID资源、或者修改后的DRB ID空间/池的范围通过SN添加请求确认(addition request Ack)消息或SN添加(addition)reject消息反馈给MN;
SN采用拒绝/修改动作时,可在上述反馈消息中携带对应的拒绝/修改失败原因,失败原因形式包括:拒绝DRB ID资源、拒绝DRB ID空间/池的范围、无法支持该DRB ID资源、无法支持该DRB ID空间/池的范围、DRB ID资源超过可支持上限、DRB ID空间/池的范围超过可支持上限等;
MN收到SN修改的该可用DRB ID资源或者DRB ID空间/池的范围时,可根据情况决定是否要向该SN重新发起SN添加流程以修改之前的DRB ID配置。
如果采用方法4d:
在MN或SN发起SN修改(modification)过程时,若有DRB增加或者删除,则MN或SN应更新DRB ID空间/池的使用状态、或者可用的DRB ID资源状态、或者已用的DRB ID资源状态,并通知其他双连接/多连接节点;例如可通过SN修改(modification)Ack,SN修改确认(modification confirm),或其他节点间接口消息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述 的方法。
在本实施例中还提供了一种无线承载的配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本实施例中提供了一种无线承载的配置装置,应用于第一节点,包括:确定模块,用于在确定终端待连接的第二节点的情况下,确定该终端的配置信息,其中,该终端与该第一节点连接,该配置信息由该第一节点和/或该第二节点配置;第一发送模块,用于将该配置信息发送至该终端,其中,该配置信息用于指示该终端依据该配置信息连接至该第一节点和第二节点,该终端构成多连接。需要补充的是,该应用第一节点的无线承载的配置装置可以执行前述实施例中的所有第一节点对终端的多连接的配置操作。
根据本申请的另一个实施例,还提供了一种无线承载的配置装置,应用于第二节点,包括:第一接收模块,配置为接收终端连接的第一节点发送的请求消息;第二发送模块,配置为依据该请求消息向该第一节点发送该第二节点对该终端的配置信息,并根据该配置信息接入该终端。需要补充的是,该应用第二节点的无线承载的配置装置可以执行前述实施例中的所有第二节点对终端的多连接的配置操作。
根据本申请的另一个实施例,还提供了一种无线承载的配置装置,应用于终端,包括:第二接收模块,配置为接收第一节点发送的配置信息,其中,该配置信息中携带有该第一节点和/或第二节点对该终端的配置;连接模块,用于依据该配置信息连接至该第一节点和该第二节点。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
根据本申请的另一个实施例,提供了一种网元,如图11所示,该网元可包括存储器110及与存储器110连接的处理器120,该处理器120配置为运行位于存储器110上的程序,其中,该程序运行时执行上述前述实施例中的任一项可选实施例中所述的方法。该网元可为前述第一节点、第二节点或终端。
根据本申请的另一个实施例,提供了一种存储介质,该存储介质包括存储的程序,其中,该程序运行时执行上述实施例中的任一项可选实施例中所述的方法。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一些实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种无线承载的配置方法,包括:
    在第一节点确定终端待连接的第二节点的情况下,所述第一节点确定所述终端的配置信息,其中,所述终端与所述第一节点连接,所述配置信息由所述第一节点和/或所述第二节点配置;
    将所述配置信息发送至所述终端,其中,所述配置信息用于指示所述终端依据所述配置信息连接至所述第一节点和第二节点。
  2. 根据权利要求1所述的方法,其中,在所述第一节点确定所述终端的配置信息之前,所述方法还包括:
    依据第一预设方式确定数据流Qos flows与数据无线承载DRB的映射关系,和/或,所述Qos flows与逻辑信道LCH的映射关系。
  3. 根据权利要求2所述的方法,其中,依据第一预设方式确定数据流Qos flows与数据无线承载DRB的映射关系,和/或,所述Qos flows与逻辑信道LCH的映射关系,包括以下至少之一:
    所述第一节点确定所述第一节点侧和所述第二节点侧二者的Qos flows,与DRB的映射关系;
    所述第一节点确定第一节点侧和所述第二节点侧二者的Qos flows,与LCH的映射关系;
    待构成的多连接的多个节点分别确定自身侧的Qos flows和DRB的映射关系;
    待构成的多连接的多个节点分别确定自身侧的Qos flows和LCH间的映射关系;
    由所述终端的各个承载所在的锚节点确定Qos flows与DRB的映射关系,和/或Qos flows与LCH的映射关系;或者由所述终端的各个分离承载所在的锚节点确定Qos flows,与所述分离承载分离出的各个分支的DRB或 LCH的映射关系,其中所述锚节点是指各个承载对应的PDCP实体所在的节点。
  4. 根据权利要求3所述的方法,其中,所述Qos flows与DRB的映射关系,包括以下至少之一:
    将多个指定Qos flow映射到同一个DRB;
    映射所述Qos flows总共需要的DRB数量。
  5. 根据权利要求3所述的方法,其中,所述Qos flows LCH的映射关系,包括以下至少之一:
    将多个指定Qos flow映射到同一个LCH;
    映射所述Qos flows总共需要的LCH数量。
  6. 根据权利要求3所述的方法,其中,待构成的多连接的多个节点分别确定自身侧的Qos flows和DRB的映射关系,包括以下至少之一:
    所述第一节点确定第一节点小区组承载的Qos flows和DRB的映射关系;
    所述第一节点确定第一节点小区组分离承载对应的Qos flows与分离出的第一节点分支的DRB的映射关系;
    所述第一节点确定第二节点小区组分离承载对应的Qos flows与分离出的第一节点分支的DRB的映射关系;
    所述第二节点确定第二节点小区组承载的Qos flows和DRB的映射关系;
    所述第二节点确定第二节点小区组分离承载对应的Qos flows与分离出的第二节点分支的DRB的映射关系;
    所述第二节点确定第一节点小区组分离承载对应的Qos flows与分离出的第二节点分支的DRB的映射关系。
  7. 根据权利要求3所述的方法,其中,待构成的多连接的多个节点分 别确定自身侧的Qos flows和LCH间的映射关系,包括以下至少之一:
    所述第一节点确定第一节点小区组承载的Qos flows和LCH的映射关系;
    所述第一节点确定第一节点小区组分离承载对应的Qos flows与分离出的第一节点分支的LCH的映射关系;
    所述第一节点确定第二节点小区组分离承载对应的Qos flows与分离出的第一节点分支的LCH的映射关系;
    所述第二节点确定第二节点小区组承载的Qos flows和DRB的映射关系;
    所述第二节点确定第二节点小区组分离承载对应的Qos flows与分离出的第二节点分支的LCH间的映射关系;
    所述第二节点确定第一节点小区组分离承载对应的Qos flows与分离出的第二节点分支的LCH的映射关系。
  8. 根据权利要求3所述的方法,其中,由所述终端的各个承载所在的锚节点确定Qos flows与DRB的映射关系,和/或Qos flows与LCH的映射关系;或者由所述终端的各个分离承载所在的锚节点确定Qos flows,与所述分离承载分离出的各个分支的DRB或LCH的映射关系,包括以下至少之一:
    所述第一节点确定第一节点小区组承载的Qos flows,与DRB和/或LCH的映射关系;
    所述第一节点确定第一节点小区组分离承载对应的Qos flows,与分离出的第一节点和第二节点分支二者的DRB和/或LCH的映射关系;
    所述第二节点确定第二节点小区组承载的Qos flows,与DRB和/或LCH的映射关系;
    所述第二节点确定第二节点小区组分离承载对应的Qos flows,与分离 出的第一节点和第二节点分支二者的DRB和/或LCH的映射关系。
  9. 根据权利要求1所述的方法,其中,所述第一节点确定所述终端的配置信息,包括:
    所述第一节点确定为所述终端与节点之间的承载分配数据无线承载标识DRB ID的配置信息。
  10. 根据权利要求9所述的方法,其中,由所述承载所在的锚节点确定所述承载的DRB ID,或者确定该承载分离出的所有第一节点分支和第二节点分支的DRB ID。
  11. 根据权利要求1所述的方法,其中,在所述第一节点确定所述终端的配置信息之前,所述方法还包括:
    通过第二预设方式确定由所述第一节点和所述第二节点的共享DRB ID空间。
  12. 根据权利要求11所述的方法,其中,通过第二预设方式确定由所述第一节点和所述第二节点的共享DRB ID空间,包括以下之一:
    所述第一节点确定所述共享DRB ID空间的取值范围;
    在所述第一节点为LTE基站的情况下,由所述第一节点确定所述共享DRB ID空间的取值范围;
    在所述第一节点为eLTE基站或5G基站,所述第二节点为LTE基站的情况下,所述第一节点和所述第二节点协商确定所述共享DRB ID空间的取值范围;
    所述第一节点和所述第二节点为任意基站情况下,协商确定所述共享DRB ID空间的取值范围。
  13. 根据权利要求1所述的方法,其中,在所述第一节点确定所述终端的配置信息之前,所述方法还包括:
    所述第一节点通过第三预设方式确定DRB ID空间和/或DRB ID的可用 资源。
  14. 根据权利要求13所述的方法,其中,所述第一节点通过第三预设方式确定DRB ID空间和/或DRB ID的可用资源,包括以下至少之一:
    在所述第一节点确定发起增加第二节点的过程的情况下,所述第一节点向所述第二节点通知所述第一节点未使用的DRB ID资源,或者,所述第一节点向所述第二节点通知全部的DRB ID空间取值范围以及被所述第一节点使用的DRB ID资源;
    在所述第一节点确定发起增加第二节点的过程的情况下,所述第一节点向所述第二节点通知所述第一节点未使用的DRB ID资源,所述第一节点接收到所述第二节点发送的反馈消息,其中,在所述第二节点拒绝或者修改所述未使用的DRB ID资源的情况下,所述反馈消息携带有所述第二节点对所述未使用的DRB ID资源的拒绝或者修改原因;
    所述第一节点接收到所述第二节点发送的反馈消息之后,依据所述反馈消息修改所述第一节点未使用的DRB ID资源,并向所述第二节点重新发起增加第二节点过程。
  15. 根据权利要求14所述的方法,其中,所述拒绝或者修改原因包括以下至少之一:
    拒绝所述未使用的DRB ID资源,拒绝所述DRB ID空间范围,无法支持所述未使用的DRB ID资源,无法支持所述DRB ID空间范围,所述未使用的DRB ID资源超过所述第二节点可支持上限,所述DRB空间范围超过所述第二节点可支持上限。
  16. 根据权利要求14所述的方法,其中,在所述第一节点发起的第二节点更改过程、或者收到所述第二节点发起的第二节点更改过程的情况下,若所述过程增加新DRB或者删除现有DRB,所述第一节点更新所述未使用的DRB ID资源状态,或者更新被使用的DRB ID资源状态,并将更新信 息通知终端连接至的其他节点。
  17. 根据权利要求1-16任一项中所述的方法,其中,
    所述第一节点为主节点,所述第二节点为辅节点。
  18. 一种无线承载的配置方法,其中,包括:
    第二节点接收终端连接的第一节点发送的增加第二节点或者修改第二节点的请求消息;
    依据所述请求消息向所述第一节点发送所述第二节点对所述终端的配置信息,并根据所述配置信息接入所述终端。
  19. 根据权利要求18所述的方法,其中,在所述第二节点确定收到所述第一节点发起的第二节点更改过程,或者第二节点发起第二节点修改过程的情况下,在检测到DRB增加或者DRB删除之后,所述第二节点更新所述DRB ID资源,并将更新信息通知终端连接至的其他节点。
  20. 一种无线承载的配置方法,其中,包括:
    终端接收第一节点发送的配置信息,其中,所述配置信息中携带有所述第一节点和/或第二节点对所述终端的配置;
    依据所述配置信息连接至所述第一节点和所述第二节点。
  21. 根据权利要求20所述的方法,其中,依据所述配置信息连接至所述第一节点和所述第二节点之后,所述方法还包括:
    终端接收到所述第一节点或者第二节点发送的RRC连接重配消息,其中,所述RRC连接重配消息携带有DRB配置信息;
    所述终端依据所述RRC连接重配消息配置与所述第一节点的连接,或者配置与所述第二节点的连接。
  22. 根据权利要求21所述的方法,其中,终端接收到所述第一节点或者第二节点发送的RRC连接重配消息,其中,所述RRC连接重配消息携带有DRB配置信息之后,所述方法还包括:
    在所述终端检测到一个分离承载对应的各个节点分支被配置了不同的DRB ID,或者,不同的DRB被配置了相同的DRB ID的情况下,所述终端反馈用于指示RRC重配失败的消息。
  23. 根据权利要求22所述的方法,其中,所述用于指示RRC重配失败的消息携带有失败原因,所述失败原因包括以下之一:DRB ID配置错误,DRB ID配置重复,DRB ID配置不唯一,DRB分支的ID配置错误。
  24. 一种无线承载的配置装置,应用于第一节点,包括:
    确定模块,配置为在确定终端待连接的第二节点的情况下,确定所述终端的配置信息,其中,所述终端与所述第一节点连接,所述配置信息由所述第一节点和/或所述第二节点配置;
    第一发送模块,配置为将所述配置信息发送至所述终端,其中,所述配置信息用于指示所述终端依据所述配置信息连接至所述第一节点和第二节点。
  25. 一种无线承载的配置装置,应用于第二节点,包括:
    第一接收模块,配置为接收终端连接的第一节点发送的请求消息;
    第二发送模块,配置为依据所述请求消息向所述第一节点发送所述第二节点对所述终端的配置信息,并根据所述配置信息接入所述终端。
  26. 一种无线承载的配置装置,其中,应用于终端,包括:
    第二接收模块,配置为接收第一节点发送的配置信息,其中,所述配置信息中携带有所述第一节点和/或第二节点对所述终端的配置;
    连接模块,配置为依据所述配置信息连接至所述第一节点和所述第二节点。
  27. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至23任一项中所述的方法。
  28. 一种电子设备,包括:存储器及与所述存储器连接的处理器,其 中,所述处理器配置为运行存储在所述存储器上的程序,其中,所述程序运行时执行上述权利要求1至23任一项中所述的方法。
PCT/CN2018/088448 2017-06-16 2018-05-25 无线承载的配置方法及装置 WO2018228166A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18817849.5A EP3641477A4 (en) 2017-06-16 2018-05-25 RADIO MEDIA CONFIGURATION METHOD AND APPARATUS
JP2019569485A JP7175927B2 (ja) 2017-06-16 2018-05-25 無線ベアラ構成方法および装置
MX2019015296A MX2019015296A (es) 2017-06-16 2018-05-25 Método y aparato de configuración de portadora de radio.
KR1020207001403A KR102330739B1 (ko) 2017-06-16 2018-05-25 무선 베어러 구성 방법 및 장치
US16/716,354 US11323911B2 (en) 2017-06-16 2019-12-16 Radio bearer configuration method and apparatus for configuring a dual connectivity terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459099.5A CN109246844B (zh) 2017-06-16 2017-06-16 无线承载的配置方法及系统
CN201710459099.5 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,354 Continuation US11323911B2 (en) 2017-06-16 2019-12-16 Radio bearer configuration method and apparatus for configuring a dual connectivity terminal

Publications (1)

Publication Number Publication Date
WO2018228166A1 true WO2018228166A1 (zh) 2018-12-20

Family

ID=64660061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088448 WO2018228166A1 (zh) 2017-06-16 2018-05-25 无线承载的配置方法及装置

Country Status (7)

Country Link
US (1) US11323911B2 (zh)
EP (1) EP3641477A4 (zh)
JP (1) JP7175927B2 (zh)
KR (1) KR102330739B1 (zh)
CN (1) CN109246844B (zh)
MX (1) MX2019015296A (zh)
WO (1) WO2018228166A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3738339A4 (en) * 2018-02-13 2021-02-24 Samsung Electronics Co., Ltd. DATA LOADING PROCESS, DRB IDENTIFIER ASSIGNMENT PROCESS, RESOURCE RELEASE PROCEDURE, AND DEVICE
JP2021514564A (ja) * 2018-01-05 2021-06-10 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ無線ベアラの識別子の割り当て方法、ネットワークノード及びコンピュータ記憶媒体

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787791B (zh) * 2017-11-10 2024-04-12 华为技术有限公司 通信方法及通信设备
US11589345B2 (en) * 2017-11-17 2023-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Management of resource allocation and notification control over RAN interfaces
EP3534667B1 (en) * 2018-01-05 2021-09-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for allocating identifier of data bearer, and terminal device and network device
CN110635880B (zh) * 2018-06-22 2021-12-21 华为技术有限公司 信号传输方法、网络设备及系统
CA3108686A1 (en) 2018-08-08 2020-02-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information configuration method and apparatus, terminal, and network device
WO2020127522A2 (en) * 2018-12-20 2020-06-25 Sony Corporation Telecommunications apparatus and methods
BR112020020055A2 (pt) 2019-02-13 2021-01-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método e aparelho para configuração de portador
CN111586711B (zh) * 2019-02-15 2022-04-12 华为技术有限公司 一种多空口连接中的通信方法和通信装置
CN111866963B (zh) * 2019-04-28 2021-12-31 华为技术有限公司 通信方法、通信装置、计算机存储介质及通信系统
CN110677925B (zh) * 2019-08-30 2021-08-20 华为技术有限公司 一种无线承载处理的方法及终端设备
KR20210121545A (ko) * 2020-03-30 2021-10-08 삼성전자주식회사 이중 접속을 제어하기 위한 전자 장치 및 그의 동작 방법
US11758600B1 (en) * 2020-12-16 2023-09-12 Sprint Spectrum Llc Controlling dual connectivity based on inter-access-node flow of user-plane communication of dual-connectivity service

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349500A (zh) * 2013-08-08 2015-02-11 中兴通讯股份有限公司 双连接处理方法、装置及基站
CN104349389A (zh) * 2013-08-02 2015-02-11 上海贝尔股份有限公司 用于建立无线承载的方法和装置
CN104796948A (zh) * 2014-01-21 2015-07-22 普天信息技术有限公司 双连接网络中的无线承载修改方法及系统
US20160316508A1 (en) * 2013-10-30 2016-10-27 Kt Corporation Method and apparatus for configuring dual connection in mobile communication network

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133463A (ko) * 2013-05-10 2014-11-19 한국전자통신연구원 이중 연결성 설정 방법
US10064051B2 (en) * 2014-01-17 2018-08-28 Samsung Electronics Co., Ltd. Dual connectivity mode of operation of a user equipment in a wireless communication network
JP6626828B2 (ja) * 2014-01-30 2019-12-25 シャープ株式会社 デュアル接続性オペレーションのためのシステムおよび方法
EP2922363B1 (en) * 2014-03-21 2020-01-15 Alcatel Lucent Dual Connectivity Network
US9820332B2 (en) * 2014-08-07 2017-11-14 Lg Electronics Inc. Method for deactivating SCells during SCG change procedure and a device therefor
WO2016047904A1 (en) 2014-09-25 2016-03-31 Lg Electronics Inc. Method for handling of data transmission and reception for senb related bearer release at a user equipment in a dual connectivity system and device therefor
CN105766052B9 (zh) * 2014-10-23 2020-05-19 华为技术有限公司 接口建立方法及装置
US10375751B2 (en) 2015-08-19 2019-08-06 Samsung Electronics Co., Ltd Method and wireless communication system for handling offloading of DRBs to WLAN carrier
CN106686751B (zh) * 2015-11-10 2021-08-17 中兴通讯股份有限公司 一种无线承载的配置方法及装置
KR102325344B1 (ko) * 2016-09-30 2021-11-12 삼성전자주식회사 신규 무선 통신 아키텍쳐에서 듀얼-커넥티비티를 성립하여 데이터를 송신하는 방법 및 장치
WO2018128017A1 (ja) * 2017-01-05 2018-07-12 日本電気株式会社 無線アクセスネットワークノード、無線端末、コアネットワークノード並びにこれらの方法及び非一時的なコンピュータ可読媒体
CN109274474B (zh) * 2017-05-05 2019-11-19 华为技术有限公司 一种基于反转服务流特性的通信方法及装置
CN108496318B (zh) * 2017-12-21 2021-11-02 北京小米移动软件有限公司 标识分配方法及装置、基站和用户设备
WO2019139319A1 (en) * 2018-01-11 2019-07-18 Lg Electronics Inc. Communication device, processing device and method for transmitting uplink data
KR20200098339A (ko) * 2019-02-12 2020-08-20 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
US11375541B2 (en) * 2019-02-14 2022-06-28 Lg Electronics Inc. Method and apparatus for channel access priority classes based on message type in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349389A (zh) * 2013-08-02 2015-02-11 上海贝尔股份有限公司 用于建立无线承载的方法和装置
CN104349500A (zh) * 2013-08-08 2015-02-11 中兴通讯股份有限公司 双连接处理方法、装置及基站
US20160316508A1 (en) * 2013-10-30 2016-10-27 Kt Corporation Method and apparatus for configuring dual connection in mobile communication network
CN104796948A (zh) * 2014-01-21 2015-07-22 普天信息技术有限公司 双连接网络中的无线承载修改方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641477A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514564A (ja) * 2018-01-05 2021-06-10 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ無線ベアラの識別子の割り当て方法、ネットワークノード及びコンピュータ記憶媒体
US11252767B2 (en) 2018-01-05 2022-02-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for allocating identifier of data bearer, and network node and computer storage medium
JP7085002B2 (ja) 2018-01-05 2022-06-15 オッポ広東移動通信有限公司 データ無線ベアラの識別子の割り当て方法、ネットワークノード及びコンピュータ記憶媒体
EP3738339A4 (en) * 2018-02-13 2021-02-24 Samsung Electronics Co., Ltd. DATA LOADING PROCESS, DRB IDENTIFIER ASSIGNMENT PROCESS, RESOURCE RELEASE PROCEDURE, AND DEVICE
US11470658B2 (en) 2018-02-13 2022-10-11 Samsung Electronics Co., Ltd. Method for data offloading, method for DRB identifier allocating, method for resource releasing, and device

Also Published As

Publication number Publication date
US20200120535A1 (en) 2020-04-16
CN109246844B (zh) 2022-07-15
KR102330739B1 (ko) 2021-11-23
MX2019015296A (es) 2020-07-20
JP7175927B2 (ja) 2022-11-21
JP2020523911A (ja) 2020-08-06
EP3641477A1 (en) 2020-04-22
EP3641477A4 (en) 2020-06-24
CN109246844A (zh) 2019-01-18
US11323911B2 (en) 2022-05-03
KR20200021989A (ko) 2020-03-02

Similar Documents

Publication Publication Date Title
WO2018228166A1 (zh) 无线承载的配置方法及装置
JP6988004B2 (ja) 集中型ユニットと分散型ユニットのアーキテクチャにおける通信方法および通信デバイス
CN109151915B (zh) 用于数据分组递送的方法、用户设备和基站
CN108306708B (zh) 一种数据包处理方法及装置
US20220201539A1 (en) Method for obtaining data radio bearer identifier and base station
WO2018202153A1 (zh) 一种新型服务质量架构在双连接系统的配置方法及装置
US20220022104A1 (en) System and method for enhanced session management in nextgen mobile core networks
CN109429368B (zh) 消息发送方法、系统、装置、网元、存储介质及处理器
US11096233B2 (en) Method and device for network access
WO2019242749A1 (zh) 一种切换方法及装置
KR102645345B1 (ko) 네트워크 액세스를 위한 방법 및 장치
US20200187042A1 (en) Apparatus for v2x-oriented local e2e path establishment and qos control
WO2019140955A1 (zh) 地址发送的方法、装置及存储介质
US20230262557A1 (en) Methods and devices for enhancing integrated access backhaul networks for new radio
JP7276500B2 (ja) 通信システム
KR102246493B1 (ko) 이동통신 시스템에서 멀티 셀 네트워크 구축 방법 및 장치
WO2020147680A1 (zh) 通信方法和网络设备
WO2019096117A1 (zh) 消息、策略发送方法及装置,存储介质,处理器
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2024060239A1 (zh) 通信方法、装置、设备、存储介质及程序产品
CN106559778A (zh) 基站及其lte和wlan汇聚时数据传输控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207001403

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018817849

Country of ref document: EP

Effective date: 20200116