WO2018228153A1 - 相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置 - Google Patents

相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置 Download PDF

Info

Publication number
WO2018228153A1
WO2018228153A1 PCT/CN2018/088017 CN2018088017W WO2018228153A1 WO 2018228153 A1 WO2018228153 A1 WO 2018228153A1 CN 2018088017 W CN2018088017 W CN 2018088017W WO 2018228153 A1 WO2018228153 A1 WO 2018228153A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
dmrs
information
reference signal
precoding information
Prior art date
Application number
PCT/CN2018/088017
Other languages
English (en)
French (fr)
Inventor
李辉
高秋彬
塔玛拉卡拉盖施
陈润华
苏昕
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2018228153A1 publication Critical patent/WO2018228153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and a transmission device for transmitting a phase tracking reference signal, a receiving method thereof, and a receiving device.
  • Phase noise comes from the local oscillator in the transmitter and receiver, and phase noise can affect the transmission of multi-carrier signals.
  • the influence of phase noise will be more serious, and phase noise compensation of the received signal is required to ensure system performance.
  • phase tracking reference signal By introducing a phase tracking reference signal at the transmitting end, phase changes due to phase noise can be tracked, and the receiving end can perform phase noise estimation of the link and compensate for the influence of phase noise.
  • An embodiment of the present disclosure provides a method for transmitting a phase tracking reference signal, which is applied to a transmitting end, and includes:
  • the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port;
  • the precoding information is the current data transmission Precoding information used by each PT-RS port; and the system pre-defines a mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • the step of sending the associated port information and the precoding information to the receiving end includes:
  • the precoding information is sent to the receiving end by physical layer dynamic signaling.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the system pre-defining the mapping relationship between the PT-RS port and the DMRS port represented by the precoding information is:
  • i is a PT-RS port number, and i is an integer, n is a positive integer, W i is a precoding vector of 1*n, and p 0 ... p n-1 respectively represent respective port numbers of the DMRS, Signal indicating the PT-RS port i transmitted on the subcarrier k, The signals of the DMRS ports p 0 ... p n-1 transmitted on the subcarrier k are respectively indicated.
  • the n DMRS ports may be all DMRS ports configured by the sending end, or may be all DMRS ports in the DMRS port group corresponding to the PT-RS port i, or may be associated with the PT-RS port i. A part of the DMRS port in the corresponding DMRS port group.
  • the precoding information of the PT-RS port i is W i ; or
  • W i corresponds to the index value in all available precoding vector sets.
  • An embodiment of the present disclosure further provides a method for receiving a phase tracking reference signal, which is applied to a receiving end, and includes:
  • the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port;
  • the precoding information is for each data transmission a precoding information used by the PT-RS port; and the system pre-defines a mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • the step of receiving the associated port information and the precoding information includes:
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the method further includes:
  • Channel estimation and channel compensation are performed according to the PT-RS and the DMRS.
  • the step of performing channel estimation and channel compensation according to the PT-RS and the DMRS including:
  • the step of calculating a phase change estimate value on each PT-RS port according to the precoding information, the mapping relationship, the first channel estimation value, and the second channel estimation value include:
  • An embodiment of the present disclosure further provides a transmission apparatus for a phase tracking reference signal, which is applied to a transmitting end, and includes:
  • a sending module configured to send the associated port information and the precoding information to the receiving end, where the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information The precoding information used by each PT-RS port in the data transmission; and the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • a first processing module configured to determine, according to the mapping relationship and the precoding information, a target subcarrier corresponding to each PT-RS port, and map each PT-RS port to a target subcarrier to perform phase Track reference signal transmission.
  • the sending module includes:
  • a first sending submodule configured to send the associated port information to the receiving end by using high layer signaling or physical layer dynamic signaling
  • a second sending submodule configured to send the precoding information to the receiving end by using physical layer dynamic signaling.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the system pre-defining the mapping relationship between the PT-RS port and the DMRS port represented by the precoding information is:
  • i is a PT-RS port number, and i is an integer, n is a positive integer, W i is a precoding vector of 1*n, and p 0 ... p n-1 respectively represent respective port numbers of the DMRS, Signal indicating the PT-RS port i transmitted on the subcarrier k, The signals of the DMRS ports p 0 ... p n-1 transmitted on the subcarrier k are respectively indicated.
  • the n DMRS ports may be all DMRS ports configured by the sending end, or may be all DMRS ports in the DMRS port group corresponding to the PT-RS port i, or may be associated with the PT-RS port i. A part of the DMRS port in the corresponding DMRS port group.
  • the precoding information of the PT-RS port i is W i ; or
  • W i corresponds to the index value in all available precoding vector sets.
  • An embodiment of the present disclosure further provides a receiving apparatus for a phase tracking reference signal, which is applied to a receiving end, and includes:
  • a receiving module configured to receive associated port information and precoding information, where the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is The precoding information used by each PT-RS port in the data transmission; and the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • an obtaining module configured to acquire PT-RSs and DMRSs of all ports according to the associated port information, the precoding information, and the mapping relationship.
  • the receiving module includes:
  • a first receiving submodule configured to obtain the associated port information by receiving high layer signaling or physical layer dynamic signaling;
  • the second receiving submodule is configured to obtain the precoding information sent by the sending end by receiving physical layer dynamic signaling.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the device further includes:
  • a second processing module configured to perform channel estimation and channel compensation according to the PT-RS and the DMRS.
  • the step of performing channel estimation and channel compensation according to the PT-RS and the DMRS including:
  • a first channel estimation sub-module configured to perform channel estimation on each port's PT-RS to obtain a first channel estimation value
  • a second channel estimation sub-module configured to perform channel estimation on each port's DMRS separately, to obtain a second channel estimation value
  • phase change estimation submodule configured to calculate a phase change estimated value on each PT-RS port according to the precoding information, the mapping relationship, the first channel estimation value, and the second channel estimation value;
  • the channel compensation sub-module is configured to compensate the second channel estimation value of the DMRS port group corresponding to each PT-RS port according to the phase change estimation value, to obtain a channel estimation result value.
  • the phase change estimation sub-module is further configured to substitute the first channel estimation value and the second channel estimation value into a formula Calculating the phase change on the orthogonal frequency division multiplexing OFDM symbol l of the PT-RS port i, respectively
  • P k,l represents the first channel estimation value of the PT-RS port i on the OFDM symbol 1 subcarrier k
  • the second channel estimation values of the respective ports of the DMRS on the subcarrier k are respectively indicated.
  • Embodiments of the present disclosure also provide a core network device including a memory, a transceiver, a processor, and a computer program stored on the memory and executable on the processor; the processor executing the program
  • the following steps are implemented: sending the associated port information and the precoding information to the receiving end by using the transceiver; wherein the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port;
  • the precoding information is precoding information used by each PT-RS port in the data transmission; and the system pre-defines a mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • the relationship and the precoding information determine a target subcarrier corresponding to each PT-RS port, and map each PT-RS port to a respective target subcarrier for phase tracking reference signal transmission.
  • Embodiments of the present disclosure also provide a terminal device including a memory, a transceiver, a processor, and a computer program stored on the memory and executable on the processor; when the processor executes the program Implementing the steps of: receiving, by the transceiver, associated port information and precoding information; wherein the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding The information is the precoding information used by each PT-RS port in the data transmission; and the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information; The precoding information and the mapping relationship are obtained, and PT-RS and DMRS of all ports are obtained.
  • Embodiments of the present disclosure also provide a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to: transmit associated port information and precoding information to a receiving end; wherein The associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is precoding information used by each PT-RS port in the data transmission; and the system Defining a mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information; determining, according to the mapping relationship and the precoding information, a target subcarrier corresponding to each PT-RS port, and each PT - The RS port is mapped to the respective target subcarrier for phase tracking reference signal transmission.
  • the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port
  • the precoding information is precoding information used by each PT-RS port in the data transmission
  • the system Defining
  • Embodiments of the present disclosure also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of: receiving associated port information and precoding information; wherein the associated port information a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is precoding information used by each PT-RS port in the data transmission; and the system pre-defined
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is obtained; and the PT-RS and the DMRS of all ports are obtained according to the associated port information, the precoding information, and the mapping relationship.
  • the precoding information is used for each PT-RS port in the data transmission due to the mapping relationship between the PT-RS port and the DMRS port indicated by the system pre-defined precoding information.
  • the pre-coding information used by the associated port information includes the DMRS port group corresponding to each PT-RS port. Therefore, the associated port information and the pre-coding information are sent to the receiving end at the transmitting end, and according to the mapping relationship and the precoding information. Determining a target subcarrier corresponding to each PT-RS port, mapping each PT-RS port to a respective target subcarrier, and performing phase tracking reference signal transmission, the receiving end can obtain according to the received information.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and the precoding information can indicate multiple possible precodings, so the precoding information of the configured PT-RS is more flexible.
  • the phase noise compensation performance of the PT-RS is ensured, and the precoding of a fixed port in the DMRS port group is avoided, so that the channel characteristics experienced by the port are poor, and the signal to noise ratio is low at the receiving end. Therefore, it affects the problem of the compensation performance of the PT-RS on phase noise.
  • FIG. 1 is a schematic diagram of frequency domain density of a PT-RS according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of subcarrier mapping of a PT-RS in a PRB according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart showing the steps of a method for transmitting a phase tracking reference signal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of PT-RS transmission of scenario 1 according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of PT-RS transmission of scenario 2 according to an embodiment of the present disclosure.
  • FIG. 6 is a flow chart 1 of the steps of the method for receiving a phase tracking reference signal according to an embodiment of the present disclosure
  • FIG. 7 is a second flowchart of steps of a method for receiving a phase tracking reference signal according to an embodiment of the present disclosure
  • FIG. 8 is a third flowchart of steps of a method for receiving a phase tracking reference signal according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a phase tracking reference signal transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a device for receiving a phase tracking reference signal according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a core network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the phase tracking reference signal In the global 5G standard system designed by New Radio (NR) based on Orthogonal Frequency Division Multiplexing (OFDM) technology, the phase tracking reference signal (PT-RS) is transmitted in the frequency band scheduled by the user, according to its frequency domain density. It can be mapped once every two physical resource blocks PRB (demodulation reference signals DMRS11, PT-RS12) as shown in FIG. 1. Of course, it can also be mapped once per PRB or every 4 PRBs, and in the presence of PT- In the PRB of the RS, each PT-RS port is mapped to one subcarrier.
  • PRB demodulation reference signals
  • PT-RS12 demodulation reference signals
  • Each PT-RS port corresponds to a group of DMRS ports, and each DMRS port in the group is affected by the same phase noise source. This PT-RS port is used to compensate for the phase noise of each DMRS port in the group. If there are multiple phase noise sources, multiple PT-RS ports are required.
  • PT-RS Similar to DMRS, PT-RS also needs to be precoded for transmission. To compensate for the effects of phase noise, the precoding used by the PT-RS is related to the precoding used by a set of DMRS ports corresponding to this PT-RS port. At the same time, in order to ensure the compensation accuracy, the PT-RS should be mapped on the subcarrier where the corresponding DMRS port group is located.
  • the current implementation of precoding for transmitting PT-RS is: the predefined PT-RS port uses the same precoding used by a fixed DMRS port in its corresponding DMRS port group, and is mapped to the DMRS port. On the subcarriers.
  • This fixed DMRS port can be the smallest DMRS port in the group. 2 shows an example of a PRB in which a PT-RS exists (shaded portion indicates PT-RS port 0, and hatched portion indicates PT-RS port 1), and PT-RS port 0 corresponds to DMRS port 0-5, which uses DMRS.
  • Port 0 is precoded and mapped to the subcarrier where DMRS port 0 is located;
  • PT-RS port 1 corresponds to DMRS port 6-7, which uses precoding of DMRS port 6 and maps to the sub-port of DMRS port 6 On the carrier,
  • DMRS port group corresponding to one PT-RS port different DMRS ports may experience different channel characteristics due to different precoding, so that in the existing mode, the PT-RS uses one fixed port of the DMRS port group. Precoding is easy to generate, so the channel characteristics experienced by the port are poor, and the signal-to-noise ratio is low at the receiving end, thereby affecting the compensation performance of the PT-RS for phase noise.
  • the present disclosure provides a method for transmitting a phase tracking reference signal, a transmitting apparatus, a receiving method, and a receiving apparatus, to solve the precoding of a fixed port in a DMRS port group in a PT-RS in the prior art, which is easy to generate. Therefore, the port experiences poor channel characteristics and has a low signal-to-noise ratio at the receiving end, thereby affecting the compensation performance of the PT-RS for phase noise.
  • the embodiment of the present disclosure provides a method for transmitting the phase tracking reference signal, which can flexibly configure the precoding information of the PT-RS, and ensures the compensation performance of the PT-RS for the phase noise.
  • a method for transmitting a phase tracking reference signal according to an embodiment of the present disclosure is applied to a transmitting end, including:
  • Step 301 Send association port information and precoding information to the receiving end, where the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is The precoding information used by each PT-RS port in the secondary data transmission; and the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • Step 302 Determine, according to the mapping relationship and the precoding information, target subcarriers corresponding to each PT-RS port, map each PT-RS port to a respective target subcarrier, and perform phase tracking reference signal transmission. .
  • the precoding information is the precoding information used by each PT-RS port in the data transmission, because the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information.
  • the associated port information includes the DMRS port group corresponding to each PT-RS port. Therefore, in step 301, the transmitting end sends the associated port information and precoding information to the receiving end, and in step 302, according to the mapping relationship and precoding.
  • Information determining a target subcarrier corresponding to each PT-RS port, mapping each PT-RS port to a respective target subcarrier, and performing phase tracking reference signal transmission, the receiving end can be based on the received information. Get PT-RS and DMRS to all ports.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and the precoding information can indicate multiple possible precodings, so the precoding information of the configured PT-RS is more flexible.
  • the phase noise compensation performance of the PT-RS is ensured, and the precoding of a fixed port in the DMRS port group is avoided, so that the channel characteristics experienced by the port are poor, and the signal to noise ratio is low at the receiving end. Therefore, it affects the problem of the compensation performance of the PT-RS on phase noise.
  • step 301 includes:
  • the precoding information is sent to the receiving end by physical layer dynamic signaling.
  • the high layer signaling may be radio resource control RRC signaling or medium access control-user control unit MAC-CE signaling
  • the physical layer dynamic signaling may be downlink control information DCI signaling or the like.
  • the bit number of the physical layer dynamic signaling may be configured by the high layer signaling or predefined as a fixed value.
  • the physical layer dynamic signaling will have enough space to carry precoding information and/or associated port information to complete the transmission of information.
  • the system pre-defines the mapping relationship between the PT-RS port and the DMRS port represented by the precoding information:
  • i is a PT-RS port number, and i is an integer, n is a positive integer, W i is a precoding vector of 1*n, and p 0 ... p n-1 respectively represent respective port numbers of the DMRS, Signal indicating the PT-RS port i transmitted on the subcarrier k, The signals of the DMRS ports p 0 ... p n-1 transmitted on the subcarrier k are respectively indicated.
  • the n DMRS ports may be all DMRS ports configured by the transmitting end, or may be all DMRS ports in the DMRS port group corresponding to the PT-RS port i, or corresponding to the PT-RS port i. A portion of the DMRS port in the DMRS port group.
  • the precoding information of the PT-RS port i is W i ; or
  • W i corresponds to the index value in all available precoding vector sets.
  • the transmitting end transmits a 2-port PT-RS, and the user data is transmitted by 8 streams, that is, 8 DMRS ports are used, and according to the relationship between the predetermined user scheduling bandwidth and the PT-RS frequency domain density, the PT-RS is in each PRS. Transfer.
  • the DMRS port group corresponding to the PT-RS port 0 of the receiving end is DMRS port 0-4, and the DMRS port group corresponding to PT-RS port 1 is DMRS port 5-7.
  • the system pre-defined precoding information indicates a mapping relationship between a PT-RS port and all DMRS ports in the DMRS port group.
  • the number of bits of the DCI signaling may be determined by the RRC signaling, indicating that all elements in each precoding vector take values, the DCI corresponding to the PT-RS port 0 includes 5 bits, and the DCI corresponding to the PT-RS port 1 includes 3 Bit.
  • PT-RS port Precoding indication PT-RS port 0 [1 0 1 0 1] PT-RS port 1 [1 0 0]
  • PT-RS port 0 uses precoding of DMRS ports 0, 2 and 4, and PT-RS port 1 uses precoding of DMRS port 5.
  • the transmitting end transmits a 2-port PT-RS
  • the user data is transmitted by 8 streams, that is, 8 DMRS ports are used, and according to the relationship between the predetermined user scheduling bandwidth and the PT-RS frequency domain density, the PT-RS is in each PRS. Transfer.
  • the DMRS port group corresponding to the PT-RS port 0 of the receiving end is DMRS port 0-4, and the DMRS port group corresponding to PT-RS port 1 is DMRS port 5-7. .
  • the system pre-defined precoding information indicates a mapping relationship between a PT-RS port and all DMRS ports configured by the transmitting end
  • the number of bits of the fixed DCI is 3 bits
  • the precoding information sent by the transmitting end through DCI signaling is the index value corresponding to each PT-RS port in all available precoding vector sets, as shown in the following table. 2:
  • PT-RS port Precoding indication PT-RS port 0 [0 1 1] PT-RS port 1 [1 1 0]
  • the 3-bit binary number corresponds to the index of the pre-coding vector in the pre-coding vector set, ie,
  • each PT-RS port is transmitted in the corresponding DMRS port group and is mapped to the sub-carrier where the DMRS port of the minimum port number is located, and therefore, is known. Mapping relationship and precoding information, PT-RS port 0 is transmitted on the subcarrier where DMRS port 0 is located, and PT-RS port 1 is transmitted on the subcarrier where DMRS port 5 is located, as shown in FIG. 4 (shaded portion indicates PT) -RS port 0, the shaded portion indicates PT-RS port 1).
  • the PT-RS port 0 is directly mapped to the subcarrier where the DMRS port 3 is located, and the PT-RS port 1 is mapped on the subcarrier where the DMRS port 6 is located, directly from the known mapping relationship and precoding information.
  • the transmission is as shown in FIG. 5 (shaded portion indicates PT-RS port 0, and hatched portion indicates PT-RS port 1).
  • the transmitting end sends the associated port information and the precoding information to the receiving end, and determines, according to the mapping relationship and the precoding information, the corresponding PT-RS port.
  • Target subcarriers, each PT-RS port is mapped to a respective target subcarrier, and after the phase tracking reference signal is transmitted, the mapping relationship between the PT-RS port and the DMRS port indicated by the system pre-defined precoding information is
  • the coded information is the precoding information used by each PT-RS port in the data transmission, and the associated port information includes the DMRS port group corresponding to each PT-RS port, so the receiving end can obtain all the ports.
  • PT-RS and DMRS are examples of the precoding information used by each PT-RS port in the data transmission.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and the precoding information can indicate multiple possible precodings, so the precoding information of the configured PT-RS is more flexible. It ensures the phase noise compensation performance of the PT-RS, avoids the precoding of using one fixed port in the DMRS port group, is easy to generate, and therefore has poor channel characteristics, and has a lower signal to noise ratio at the receiving end. Therefore, it affects the problem of the compensation performance of the PT-RS on phase noise.
  • an embodiment of the present disclosure further provides a method for receiving a phase tracking reference signal, which is applied to a receiving end, and includes:
  • Step 601 Receive association port information and precoding information, where the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is the current data transmission. Precoding information used by each PT-RS port; and the system pre-defines a mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • Step 602 Acquire PT-RS and DMRS of all ports according to the associated port information, the precoding information, and the mapping relationship.
  • the receiving end receives the associated port information and the precoding information sent by the sending end.
  • the precoding information is sent in the data transmission due to the mapping relationship between the PT-RS port and the DMRS port indicated by the system pre-defined precoding information.
  • the pre-coding information used by each PT-RS port includes the DMRS port group corresponding to each PT-RS port. Therefore, in step 602, the receiving end can be based on the known associated port information. Encode information and mapping relationships to obtain PT-RS and DMRS for all ports.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and has multiple possibilities. Therefore, the pre-coding information of the configured PT-RS is more flexible, and the PT-RS pair is guaranteed.
  • the phase noise compensation performance avoids the precoding of a fixed port in the DMRS port group, which is easy to generate, so the channel characteristics experienced by the port are poor, and the signal-to-noise ratio is low at the receiving end, thereby affecting the phase of the PT-RS.
  • the problem of noise compensation performance avoids the precoding of a fixed port in the DMRS port group, which is easy to generate, so the channel characteristics experienced by the port are poor, and the signal-to-noise ratio is low at the receiving end, thereby affecting the phase of the PT-RS.
  • step 601 in this embodiment includes:
  • the high layer signaling may be radio resource control RRC signaling or medium access control-user edge device MAC-CE signaling
  • the physical layer dynamic signaling may be downlink control information DCI signaling or the like.
  • the bit number of the physical layer dynamic signaling may be configured by the high layer signaling or predefined as a fixed value.
  • the physical layer dynamic signaling will have enough space to carry precoding information and/or associated port information to complete the transmission of information.
  • the receiving end after the receiving end obtains the PT-RS and the DMRS of all the ports, the receiving end includes:
  • Step 603 Perform channel estimation and channel compensation according to the PT-RS and the DMRS.
  • the PT-RS and DMRS obtained in step 602 can perform channel estimation and channel compensation, reduce the influence of phase noise, and perform user data demodulation using the compensated result.
  • step 603 includes:
  • Step 6031 Perform channel estimation on each port's PT-RS to obtain a first channel estimation value.
  • Step 6032 Perform channel estimation on each port's DMRS to obtain a second channel estimation value.
  • Step 6033 Calculate an estimated phase change value on each PT-RS port according to the precoding information, the mapping relationship, the first channel estimation value, and the second channel estimation value.
  • Step 6034 Compensate a second channel estimation value of the DMRS port group corresponding to each PT-RS port according to the phase change estimation value, to obtain a channel estimation result value.
  • step 6033 includes:
  • the receiving end can learn that the DMRS port group corresponding to the PT-RS port 0 is the DMRS port 0-4, and the PT-RS port 1 corresponds to the associated port information transmitted by the RRC signaling.
  • the DMRS port group is DMRS port 5-7.
  • each PT-RS port transmits in the corresponding DMRS port group and the sub-carrier on which the DMRS port mapped to the minimum port number is located, it can receive the port 0 on the sub-carrier where the DMRS port 0 is located.
  • the PT-RS receives the PT-RS of the port 1 on the subcarrier where the DMRS port 5 is located, and receives the DMRS of all the ports configured by the sender. Then, channel estimation is performed on each port's PT-RS, and the first channel estimation value on the corresponding subcarrier is obtained, and the DMRS of each port is separately subjected to channel estimation to obtain a second channel estimation on the corresponding subcarrier. value.
  • Pn-1 represents the port number of the DMRS.
  • the implementation of the second scenario in the previous embodiment is similar to the scenario 1.
  • the specific precoding vector is obtained through the index and then the corresponding processing is performed, and details are not described herein again.
  • the receiving end receives the associated port information and the precoding information, and the mapping relationship between the PT-RS port and the DMRS port indicated by the system pre-defined precoding information is
  • the precoding information is precoding information used by each PT-RS port in the data transmission
  • the associated port information includes a DMRS port group corresponding to each PT-RS port, so the receiving end can be based on the associated port.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and the precoding information can indicate multiple possible precodings, so the precoding information of the configured PT-RS is more flexible.
  • the phase noise compensation performance of the PT-RS is ensured, and the precoding of a fixed port in the DMRS port group is avoided, so that the channel characteristics experienced by the port are poor, and the signal to noise ratio is low at the receiving end. Therefore, it affects the problem of the compensation performance of the PT-RS on phase noise.
  • an embodiment of the present disclosure further provides a transmission apparatus for a phase tracking reference signal, including:
  • the sending module 901 is configured to send the associated port information and the precoding information to the receiving end, where the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding The information is the precoding information used by each PT-RS port in the data transmission; and the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • the first processing module 902 is configured to determine, according to the mapping relationship and the precoding information, a target subcarrier corresponding to each PT-RS port, and map each PT-RS port to a target subcarrier. Phase tracking reference signal transmission.
  • the sending module 901 includes:
  • a first sending submodule configured to send the associated port information to the receiving end by using high layer signaling or physical layer dynamic signaling
  • a second sending submodule configured to send the precoding information to the receiving end by using physical layer dynamic signaling.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • mapping relationship between the PT-RS port and the DMRS port indicated by the pre-coding information is as follows:
  • i is a PT-RS port number, and i is an integer, n is a positive integer, W i is a precoding vector of 1*n, and p 0 ... p n-1 respectively represent respective port numbers of the DMRS, Signal indicating the PT-RS port i transmitted on the subcarrier k, The signals of the DMRS ports p 0 ... p n-1 transmitted on the subcarrier k are respectively indicated.
  • the n DMRS ports may be all DMRS ports configured by the transmitting end, or may be all DMRS ports in the DMRS port group corresponding to the PT-RS port i, or corresponding to the PT-RS port i. A portion of the DMRS port in the DMRS port group.
  • the precoding information of the PT-RS port i is W i ;
  • W i corresponds to the index value in all available precoding vector sets.
  • the transmission device of the phase tracking reference signal transmits the associated port information and the precoding information to the receiving end, and determines the target subcarrier corresponding to each PT-RS port according to the mapping relationship and the precoding information, and each PT-RS After the port is mapped to the respective target subcarriers, after the phase tracking reference signal is transmitted, the precoding information is the PT of each PT in the data transmission due to the mapping relationship between the PT-RS port and the DMRS port indicated by the system pre-defined precoding information.
  • the precoding information used by the RS port, the associated port information includes the DMRS port group corresponding to each PT-RS port, so the receiving end can acquire the PT-RS and DMRS of all ports.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and the precoding information can indicate multiple possible precodings, so the precoding information of the configured PT-RS is more flexible.
  • the phase noise compensation performance of the PT-RS is ensured, and the precoding of a fixed port in the DMRS port group is avoided, so that the channel characteristics experienced by the port are poor, and the signal to noise ratio is low at the receiving end. Therefore, it affects the problem of the compensation performance of the PT-RS on phase noise.
  • the device is a device to which the above-described phase tracking reference signal transmission method is applied, and an implementation manner of the embodiment of the phase tracking reference signal transmission method is applicable to the device, and the same technical effect can be achieved.
  • an embodiment of the present disclosure further provides a receiving apparatus for a phase tracking reference signal, which is applied to a receiving end, and includes:
  • the receiving module 1001 is configured to receive the associated port information and the precoding information, where the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is The precoding information used by each PT-RS port in the secondary data transmission; and the system pre-defines the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information;
  • the obtaining module 1002 is configured to acquire PT-RSs and DMRSs of all ports according to the associated port information, the precoding information, and the mapping relationship.
  • the receiving module 1001 includes:
  • a first receiving submodule configured to obtain the associated port information by receiving high layer signaling or physical layer dynamic signaling;
  • the second receiving submodule is configured to obtain the precoding information sent by the sending end by receiving physical layer dynamic signaling.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the device further comprises:
  • a second processing module configured to perform channel estimation and channel compensation according to the PT-RS and the DMRS.
  • the step of performing channel estimation and channel compensation according to the PT-RS and the DMRS including:
  • a first channel estimation sub-module configured to perform channel estimation on each port's PT-RS to obtain a first channel estimation value
  • a second channel estimation sub-module configured to perform channel estimation on each port's DMRS separately, to obtain a second channel estimation value
  • phase change estimation submodule configured to calculate a phase change estimated value on each PT-RS port according to the precoding information, the mapping relationship, the first channel estimation value, and the second channel estimation value;
  • the channel compensation sub-module is configured to compensate the second channel estimation value of the DMRS port group corresponding to each PT-RS port according to the phase change estimation value, to obtain a channel estimation result value.
  • the phase change estimation sub-module is further configured to substitute the first channel estimation value and the second channel estimation value into a formula Calculating the phase change on the orthogonal frequency division multiplexing OFDM symbol l of the PT-RS port i, respectively
  • P k,l represents the first channel estimation value of the PT-RS port i on the OFDM symbol 1 subcarrier k
  • the second channel estimation values of the respective ports of the DMRS on the subcarrier k are respectively indicated.
  • the receiving device of the phase tracking reference signal receives the associated port information and the precoding information, and the precoding information is used for the data transmission in the current data transmission due to the mapping relationship between the PT-RS port and the DMRS port indicated by the system predefined precoding information.
  • the precoding information used by the PT-RS ports, the associated port information includes the DMRS port group corresponding to each PT-RS port, so the receiving end can obtain the information according to the associated port information, precoding information, and mapping relationship.
  • PT-RS and DMRS for all ports.
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is predefined by the system, and the precoding information can indicate multiple possible precodings, so the precoding information of the configured PT-RS is more flexible.
  • phase noise compensation performance of the PT-RS is ensured, and the precoding of a fixed port in the DMRS port group is avoided, so that the channel characteristics experienced by the port are poor, and the signal to noise ratio is low at the receiving end. Therefore, it affects the problem of the compensation performance of the PT-RS on phase noise.
  • the device is a device to which the phase tracking reference signal receiving method is applied, and an implementation manner of the embodiment of the phase tracking reference signal receiving method is applicable to the device, and the same technical effect can be achieved.
  • Embodiments of the present disclosure also provide a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to: transmit associated port information and precoding information to a receiving end; wherein The associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is precoding information used by each PT-RS port in the data transmission; and the system Defining a mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information; determining, according to the mapping relationship and the precoding information, a target subcarrier corresponding to each PT-RS port, and each PT - The RS port is mapped to the respective target subcarrier for phase tracking reference signal transmission.
  • the associated port information includes a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port
  • the precoding information is precoding information used by each PT-RS port in the data transmission
  • the system Defining
  • the following steps may be further implemented: sending the associated port information to the receiving end by using high layer signaling or physical layer dynamic signaling; and performing the pre-processing by physical layer dynamic signaling The encoded information is sent to the receiving end.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the system pre-defining the mapping relationship between the PT-RS port and the DMRS port represented by the precoding information is:
  • i is a PT-RS port number, and i is an integer, n is a positive integer, W i is a precoding vector of 1*n, and p 0 ... p n-1 respectively represent respective port numbers of the DMRS, Signal indicating the PT-RS port i transmitted on the subcarrier k, The signals of the DMRS ports p 0 ... p n-1 transmitted on the subcarrier k are respectively indicated.
  • the n DMRS ports may be all DMRS ports configured by the sending end, or may be all DMRS ports in the DMRS port group corresponding to the PT-RS port i, or may be associated with the PT-RS port i. A part of the DMRS port in the corresponding DMRS port group.
  • the pre-coding information PT-RS port is i W i; or W i corresponding to all the available set of precoding vector index values.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • Embodiments of the present disclosure also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of: receiving associated port information and precoding information; wherein the associated port information a demodulation reference signal DMRS port group corresponding to each phase tracking reference signal PT-RS port; the precoding information is precoding information used by each PT-RS port in the data transmission; and the system pre-defined
  • the mapping relationship between the PT-RS port and the DMRS port indicated by the precoding information is obtained; and the PT-RS and the DMRS of all ports are obtained according to the associated port information, the precoding information, and the mapping relationship.
  • the following steps may be implemented: obtaining the associated port information by receiving high layer signaling or physical layer dynamic signaling; and obtaining the preamble sent by the sending end by receiving physical layer dynamic signaling. Encoding information.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the following steps may be further implemented: performing channel estimation and channel compensation according to the PT-RS and the DMRS.
  • the following steps may be implemented: performing channel estimation on each port PT-RS to obtain a first channel estimation value; performing channel estimation on each port DMRS separately, to obtain a a second channel estimation value; calculating, according to the precoding information, the mapping relationship, the first channel estimation value, and the second channel estimation value, a phase change estimation value on each PT-RS port; The phase change estimation value is used to compensate the second channel estimation value of the DMRS port group corresponding to each PT-RS port to obtain a channel estimation result value.
  • the following steps may be further implemented: substituting the first channel estimation value and the second channel estimation value into a formula Calculating the phase change on the orthogonal frequency division multiplexing OFDM symbol l of the PT-RS port i, respectively Where P k,l represents the first channel estimation value of the PT-RS port i on the OFDM symbol 1 subcarrier k, The second channel estimation values of the respective ports of the DMRS on the subcarrier k are respectively indicated.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • an embodiment of the present disclosure further provides a core network device, including a memory 1120, a transceiver 1110, a processor 1100, and a memory stored on the memory 1120 and operable on the processor 1100.
  • a computer program when the processor 1100 executes the program, the following steps are implemented: transmitting, by the transceiver 1110, associated port information and precoding information to a receiving end; wherein the associated port information includes each phase tracking reference signal PT a demodulation reference signal DMRS port group corresponding to the RS port; the precoding information is precoding information used by each PT-RS port in the data transmission; and the system pre-defines the PT- indicated by the precoding information a mapping relationship between the RS port and the DMRS port; determining, according to the mapping relationship and the precoding information, a target subcarrier corresponding to each PT-RS port, and mapping each PT-RS port to a respective target subcarrier, Perform phase tracking reference signal transmission.
  • the transceiver 1110 is configured to receive and transmit data under the control of the processor 1100.
  • the processor 1100 is further configured to: send the associated port information to the receiving end by using high layer signaling or physical layer dynamic signaling; and send the precoding information to the physical layer dynamic signaling to The receiving end.
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the system pre-defining the mapping relationship between the PT-RS port and the DMRS port represented by the precoding information is:
  • i is a PT-RS port number, and i is an integer, n is a positive integer, W i is a precoding vector of 1*n, and p 0 ... p n-1 respectively represent respective port numbers of the DMRS, Signal indicating the PT-RS port i transmitted on the subcarrier k, The signals of the DMRS ports p 0 ... p n-1 transmitted on the subcarrier k are respectively indicated.
  • the n DMRS ports may be all DMRS ports configured by the sending end, or may be all DMRS ports in the DMRS port group corresponding to the PT-RS port i, or may be associated with the PT-RS port i. A part of the DMRS port in the corresponding DMRS port group.
  • the precoding information of the PT-RS port i is W i ; or
  • W i corresponds to the index value in all available precoding vector sets.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1100 and various circuits of memory represented by memory 1120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1110 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1100 in performing operations.
  • an embodiment of the present disclosure further provides a terminal device including a memory 1220, a transceiver 1210, a processor 1200, and a computer stored on the memory 1220 and operable on the processor 1200.
  • the processor 1200 performs the following steps: receiving the associated port information and precoding information through the transceiver 1210; wherein the associated port information includes a PT-RS port corresponding to each phase tracking reference signal Demodulation reference signal DMRS port group; the precoding information is precoding information used by each PT-RS port in the data transmission; and the system pre-defines the PT-RS port and the DMRS indicated by the precoding information
  • the mapping relationship between the ports, and the PT-RS and the DMRS of all the ports are obtained according to the associated port information, the precoding information, and the mapping relationship.
  • the transceiver 1210 is configured to receive and transmit data under the control of the processor 1200.
  • the processor 1200 may further implement the following steps: obtaining the associated port information by receiving high layer signaling or physical layer dynamic signaling; and obtaining the precoding information sent by the sending end by receiving physical layer dynamic signaling. .
  • the number of bits of the physical layer dynamic signaling may be configured by high layer signaling or predefined as a fixed value.
  • the processor 1200 may further implement the following steps: performing channel estimation and channel compensation according to the PT-RS and the DMRS.
  • the processor 1200 may further implement the following steps: performing channel estimation on each port's PT-RS to obtain a first channel estimation value; performing channel estimation on each port's DMRS to obtain a second channel. Estimating a value; calculating a phase change estimate value on each PT-RS port according to the precoding information, the mapping relationship, the first channel estimation value, and the second channel estimation value; The estimated value is used to compensate the second channel estimation value of the DMRS port group corresponding to each PT-RS port to obtain a channel estimation result value.
  • the processor 1200 may further implement the step of: substituting the first channel estimation value and the second channel estimation value into a formula Calculating the phase change on the orthogonal frequency division multiplexing OFDM symbol l of the PT-RS port i, respectively Where P k,l represents the first channel estimation value of the PT-RS port i on the OFDM symbol 1 subcarrier k, The second channel estimation values of the respective ports of the DMRS on the subcarrier k are respectively indicated.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1200 and various circuits of memory represented by memory 1220.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1210 may be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1230 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 in performing operations.
  • terminals described in this specification include, but are not limited to, smartphones, tablets, etc., and many of the functional components described are referred to as modules to more particularly emphasize the independence of their implementation.
  • modules may be implemented in software for execution by various types of processors.
  • an identified executable code module can comprise one or more physical or logical blocks of computer instructions, which can be constructed, for example, as an object, procedure, or function. Nonetheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different bits that, when logically combined, constitute a module and implement the provisions of the module. purpose.
  • the executable code module can be a single instruction or a plurality of instructions, and can even be distributed across multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within the modules and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed at different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software, and the technician can construct a corresponding hardware circuit to implement the corresponding function without considering the cost.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • the modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供一种相位跟踪参考信号的传输方法和传输装置、接收方法和接收装置。传输方法包括:发送关联端口信息和预编码信息至接收端;其中,关联端口信息包括每个相位跟踪参考信号 PT-RS 端口对应的解调参考信号 DMRS 端口组;预编码信息用于指示本次数据发送中每个 PT-RS端口所采用的预编码信息;且系统预定义预编码信息表示的 PT-RS 端口与 DMRS 端口的映射关系;根据映射关系和预编码信息,确定每个 PT-RS 端口所对应的目标子载波,将每个 PT-RS 端口映射至各自的目标子载波,进行相位跟踪参考信号传输。

Description

相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置
相关申请的交叉引用
本申请主张在2017年6月15日在中国提交的中国专利申请No.201710453986.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置。
背景技术
相位噪声来自于发射机与接收机中的本地振荡器,相位噪声会影响多载波信号的传输。在高频段(6GHz以上),相位噪声的影响将更加严重,需要对接收信号进行相位噪声的补偿以保证系统性能。通过在发送端引入相位跟踪参考信号,可以跟踪由于相位噪声所引起的相位变化,保证接收端能够进行链路的相位噪声估计,并对相位噪声的影响进行补偿。
发明内容
本公开的实施例提供一种相位跟踪参考信号的传输方法,应用于发送端,包括:
发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
可选地,所述发送关联端口信息和预编码信息至接收端的步骤,包括:
通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收 端;
通过物理层动态信令将所述预编码信息发送至所述接收端。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
表示PT-RS端口i与n个DMRS端口满足公式
Figure PCTCN2018088017-appb-000001
其中,
i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
Figure PCTCN2018088017-appb-000002
表示在子载波k上传输的PT-RS端口i的信号,
Figure PCTCN2018088017-appb-000003
分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
可选地,所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
可选地,PT-RS端口i的预编码信息是W i;或者是
W i在所有可用预编码向量集合中对应的索引值。
本公开的实施例还提供了一种相位跟踪参考信号的接收方法,应用于接收端,包括:
接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
可选地,所述接收关联端口信息和预编码信息的步骤,包括:
通过接收高层信令或者物理层动态信令获得所述关联端口信息;
通过接收物理层动态信令获得发送端发送的所述预编码信息。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述方法还包括:
根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
可选地,所述根据所述PT-RS和所述DMRS,进行信道估计和信道补偿的步骤,包括:
对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;
对每个端口的DMRS分别进行信道估计,得到第二信道估计值;
根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;
根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
可选地,所述根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值的步骤,包括:
将所述第一信道估计值和第二信道估计值代入公式
Figure PCTCN2018088017-appb-000004
分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
Figure PCTCN2018088017-appb-000005
其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
Figure PCTCN2018088017-appb-000006
分别表示DMRS各个端口在子载波k上的第二信道估计值。
本公开的实施例还提供了一种相位跟踪参考信号的传输装置,应用于发送端,包括:
发送模块,用于发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
第一处理模块,用于根据所述映射关系和所述预编码信息,确定每个 PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
可选地,所述发送模块包括:
第一发送子模块,用于通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;
第二发送子模块,用于通过物理层动态信令将所述预编码信息发送至所述接收端。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
表示PT-RS端口i与n个DMRS端口满足公式
Figure PCTCN2018088017-appb-000007
其中,
i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
Figure PCTCN2018088017-appb-000008
表示在子载波k上传输的PT-RS端口i的信号,
Figure PCTCN2018088017-appb-000009
分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
可选地,所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
可选地,PT-RS端口i的预编码信息是W i;或者是
W i在所有可用预编码向量集合中对应的索引值。
本公开的实施例还提供一种相位跟踪参考信号的接收装置,应用于接收端,包括:
接收模块,用于接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
获取模块,用于根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
可选地,所述接收模块包括:
第一接收子模块,用于通过接收高层信令或者物理层动态信令获得所述关联端口信息;
第二接收子模块,用于通过接收物理层动态信令获得发送端发送的所述预编码信息。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述装置还包括:
第二处理模块,用于根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
可选地,所述根据所述PT-RS和所述DMRS,进行信道估计和信道补偿的步骤,包括:
第一信道估计子模块,用于对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;
第二信道估计子模块,用于对每个端口的DMRS分别进行信道估计,得到第二信道估计值;
相位变换估计子模块,用于根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;
信道补偿子模块,用于根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
其中,所述相位变换估计子模块进一步用于将所述第一信道估计值和第二信道估计值代入公式
Figure PCTCN2018088017-appb-000010
分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
Figure PCTCN2018088017-appb-000011
其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
Figure PCTCN2018088017-appb-000012
分别表示DMRS各个端口在子载波k上的第二信道估计值。
本公开的实施例还提供了一种核心网设备,包括存储器、收发机、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现以下步骤:通过所述收发机发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
本公开的实施例还提供了一种终端设备,包括存储器、收发机、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现以下步骤:通过所述收发机接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS 端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
本公开实施例的相位跟踪参考信号的传输方法,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,在发送端将关联端口信息和预编码信息发送至接收端,且根据该映射关系和预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输后,该接收端就能够根据接收到的信息,获取到所有端口的PT-RS和DMRS。这样,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,预编码信息可以指示多种可能的预编码,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的PT-RS的频域密度示意图;
图2为本公开实施例的PT-RS在一个PRB内的子载波映射示意图;
图3为本公开实施例的相位跟踪参考信号的传输方法的步骤流程图;
图4为本公开实施例的情景一的PT-RS传输示意图;
图5为本公开实施例的情景二的PT-RS传输示意图;
图6为本公开实施例的相位跟踪参考信号的接收方法的步骤流程图一;
图7为本公开实施例的相位跟踪参考信号的接收方法的步骤流程图二;
图8为本公开实施例的相位跟踪参考信号的接收方法的步骤流程图三;
图9为本公开实施例的相位跟踪参考信号的传输装置的结构示意图;
图10为本公开实施例的相位跟踪参考信号的接收装置的结构示意图;
图11为本公开实施例的核心网设备的结构示意图;
图12为本公开实施例的终端设备的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
在基于正交频分复用技术的全新空口(New Radio,NR)设计的全球性5G标准系统中,相位跟踪参考信号(PT-RS)在用户调度的频带内传输,根据其频域密度不同,其可以如图1所示,每2个物理资源块PRB映射一次(解调参考信号DMRS11,PT-RS12),当然,也可以每个PRB或者每4个PRB映射一次,并且在存在PT-RS的PRB中,每个PT-RS端口映射至一个子载波。
其中,每个PT-RS端口对应一组DMRS端口,组内的每个DMRS端口受到相同相位噪声源的影响。此PT-RS端口用于补偿组内每个DMRS端口的相位噪声。若存在多个相位噪声源,则需要多个PT-RS端口。
与DMRS类似,PT-RS也需要经过预编码后传输。为了补偿相位噪声的影响,PT-RS使用的预编码和与此PT-RS端口相对应的一组DMRS端口所使用的预编码相关。同时,为了保证补偿精度,PT-RS应该映射在与其相对应的DMRS端口组所在的子载波上。
目前对于传输PT-RS所使用的预编码的实现方式是:预定义PT-RS端口使用与其相对应的DMRS端口组中的一个固定的DMRS端口所使用的预编码相同,且映射至此DMRS端口所在的子载波上。此固定的DMRS端口可以是组内编号最小的DMRS端口。图2以存在PT-RS的一个PRB为例(阴影部分表示PT-RS端口0,斜线部分表示PT-RS端口1),PT-RS端口0与DMRS端口0-5相对应,其使用DMRS端口0的预编码,且映射至DMRS端口0所在的子载波上;PT-RS端口1与DMRS端口6-7相对应,其使用DMRS端口6的预编码,且映射至DMRS端口6所在的子载波上,。
但是,一个PT-RS端口所对应的DMRS端口组中,由于预编码不同,不同的DMRS端口可能经历不同的信道特性,这样,现有方式中PT-RS使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
有鉴于此,本公开提供一种相位跟踪参考信号的传输方法和传输装置、接收方法和接收装置,以解决现有方式中PT-RS使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
针对现有方式中PT-RS使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题,本公开的实施例提供了一种相位跟踪参考信号的传输方法,可以灵活配置PT-RS的预编码信息,保证了PT-RS对相位噪声的补偿性能。
如图3所示,本公开实施例的一种相位跟踪参考信号的传输方法,应用于发送端,包括:
步骤301,发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
步骤302,根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
在本公开的实施例中,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,在步骤301,发送端将关联端口信息和预编码信息发送至接收端,且在步骤302根据该映射关系和预编码信息,确定每个PT-RS端口所对应的 目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输后,该接收端就能够根据接收到的信息,获取到所有端口的PT-RS和DMRS。其中,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,预编码信息可以指示多种可能的预编码,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
其中,考虑到关联端口信息和预编码信息的对发送周期的要求,可选地,步骤301包括:
通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;
通过物理层动态信令将所述预编码信息发送至所述接收端。
这里,该高层信令可以是无线资源控制RRC信令或者介质访问控制-用户控制单元MAC-CE信令,该物理层动态信令可以是下行控制信息DCI信令等等。
而为实现将预编码信息和/或关联端口信息发送至接收端,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
这样,该物理层动态信令将具有足够的空间携带预编码信息和/或关联端口信息,来完成信息的传输。
在该实施例中,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
表示PT-RS端口i与n个DMRS端口满足公式
Figure PCTCN2018088017-appb-000013
其中,
i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
Figure PCTCN2018088017-appb-000014
表示在子载波k上传输的PT-RS端口i的信号,
Figure PCTCN2018088017-appb-000015
分别表示在子载波k上传输的DMRS端口p 0…p n-1的 信号。
其中,所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
进一步具体的,PT-RS端口i的预编码信息是W i;或者是
W i在所有可用预编码向量集合中对应的索引值。
情景一,发送端传输2端口PT-RS,用户数据用8流传输,即用8个DMRS端口,而根据预定的用户调度带宽与PT-RS频域密度的关系,PT-RS在每个PRS进行传输。这时,发送端通过RRC信令发送的关联端口信息告知接收端PT-RS端口0对应的DMRS端口组是DMRS端口0-4,PT-RS端口1对应的DMRS端口组是DMRS端口5-7。在该情景一中,系统预定义预编码信息表示的是一个PT-RS端口与其DMRS端口组中的全部DMRS端口的映射关系。DCI信令的比特位数此时可由RRC信令确定,指示每个预编码向量中的全部元素取值,对应PT-RS端口0的DCI包括5比特,对应PT-RS端口1的DCI包括3比特。该发送端通过DCI信令发送的预编码信息是各PT-RS端口对应预编码向量的每个元素值:W 0=[1 0 1 0 1],W 1=[1 0 0],如下表1:
表1
PT-RS端口 预编码指示
PT-RS端口0 [1 0 1 0 1]
PT-RS端口1 [1 0 0]
可知,PT-RS端口0使用DMRS端口0、2和4的预编码,PT-RS端口1使用DMRS端口5的预编码。
情景二,发送端传输2端口PT-RS,用户数据用8流传输,即用8个DMRS端口,而根据预定的用户调度带宽与PT-RS频域密度的关系,PT-RS在每个PRS进行传输。同样的,发送端通过RRC信令发送的关联端口信息告知接收端PT-RS端口0对应的DMRS端口组是DMRS端口0-4,PT-RS端口1对应的DMRS端口组是DMRS端口5-7。在该情景二中,系统预定义预编码信息表示的是一个PT-RS端口与发送端配置的全部DMRS端口的映射关系,系统预定义的预编码向量集合为
Figure PCTCN2018088017-appb-000016
其中e m为第m+1个元素为1的单位列 向量,上标T表示转置,m=0,1,…,7。根据全部DMRS具有8端口,因此固定DCI的比特位数为3bit,该发送端通过DCI信令发送的预编码信息是各PT-RS端口在所有可用预编码向量集合中对应的索引值,如下表2:
表2
PT-RS端口 预编码指示
PT-RS端口0 [0 1 1]
PT-RS端口1 [1 1 0]
其中3比特的二进制数对应预编码向量集合中的预编码向量的索引,即有,
Figure PCTCN2018088017-appb-000017
之后,进行PT-RS传输,延续情景一,系统预定义每个PT-RS端口在其对应的DMRS端口组中,映射至最小端口号的DMRS端口所在的子载波上传输,因此,由已知的映射关系和预编码信息,PT-RS端口0在DMRS端口0所在的子载波上传输,PT-RS端口1在DMRS端口5所在的子载波上传输,如图4所示(阴影部分表示PT-RS端口0,斜线部分表示PT-RS端口1)。延续情景二,直接由已知的映射关系和预编码信息,将PT-RS端口0映射至DMRS端口3所在的子载波上传输,将PT-RS端口1映射在DMRS端口6所在的子载波上传输,如图5所示(阴影部分表示PT-RS端口0,斜线部分表示PT-RS端口1)。
综上所述,本公开实施例的相位跟踪参考信号的传输方法,发送端发送关联端口信息和预编码信息至接收端,且根据映射关系和预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输后,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,该接收端就能够获取到所有端口的PT-RS和DMRS。其中,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,预编码信息可以指示多种可能的预编码,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差, 在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
如图6所示,本公开的实施例还提供了一种相位跟踪参考信号的接收方法,应用于接收端,包括:
步骤601,接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
步骤602,根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
首先如步骤601,接收端接收发送端发送的关联端口信息和预编码信息,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,如步骤602,该接收端就能够根据已知的关联端口信息、预编码信息和映射关系,获取所有端口的PT-RS和DMRS。
这样,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,具有多种可能,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
对应上述实施例中关联端口信息和预编码信息的发送实现方式,该实施例步骤601包括:
通过接收高层信令或者物理层动态信令获得所述关联端口信息;
通过接收物理层动态信令获得发送端发送的所述预编码信息。
这里,该高层信令可以是无线资源控制RRC信令或者介质访问控制-用户边缘设备MAC-CE信令,该物理层动态信令可以是下行控制信息DCI信令等等。
而为实现将预编码信息和/或关联端口信息发送至接收端,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
这样,该物理层动态信令将具有足够的空间携带预编码信息和/或关联端口信息,来完成信息的传输。
本公开实施例中,如图7所示,在步骤602接收端获取到所有端口的PT-RS和DMRS后,还包括:
步骤603,根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
这样,由步骤602获取的PT-RS和DMRS,就能够进行信道估计和信道补偿,减少相位噪声影响,从而使用补偿后的结果进行用户数据解调。
具体的,如图8所示,步骤603包括:
步骤6031,对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;
步骤6032,对每个端口的DMRS分别进行信道估计,得到第二信道估计值;
步骤6033,根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;
步骤6034,根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
进一步具体的,步骤6033包括:
将所述第一信道估计值和第二信道估计值代入公式
Figure PCTCN2018088017-appb-000018
分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
Figure PCTCN2018088017-appb-000019
其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
Figure PCTCN2018088017-appb-000020
分别表示DMRS各个端口在子载波k上的第二信道估计值。
延续上一实施例中情景一的实现,接收端通过接收RRC信令传输的关联端口信息,能够得知PT-RS端口0对应的DMRS端口组是DMRS端口0-4,PT-RS端口1对应的DMRS端口组是DMRS端口5-7。且由于系统预定义每个PT-RS端口在其对应的DMRS端口组中,映射至最小端口号的DMRS端口所在的子载波上传输,就能够在DMRS端口0所在的子载波上接收端口0的PT-RS,在DMRS端口5所在的子载波上接收端口1的PT-RS,并且接收发送端配置的所有端口的DMRS。然后,对每个端口的PT-RS分别进行信道估计,获得其相应子载波上的第一信道估计值,对每个端口的DMRS分别进 行信道估计,获得其相应子载波上的第二信道估计值。将位于OFDM符号l(l=5~12)子载波k上的PT-RS的估计结果表示为P k,l,将位于OFDM符号3、4子载波k上的各个端口的DMRS的信道估计的结果表示为
Figure PCTCN2018088017-appb-000021
pn-1表示DMRS的端口号。再根据接收端接收的DCI信令传输的预编码信息,即可由上述公式
Figure PCTCN2018088017-appb-000022
来分别计算各PT-RS端口的相位变化:
PT-RS端口0:
Figure PCTCN2018088017-appb-000023
其中k=0,12,24,…
PT-RS端口1:
Figure PCTCN2018088017-appb-000024
其中k=1,13,25,…
之后,对于与PT-RS端口0对应的DMRS端口(端口0-4)的信道估计结果
Figure PCTCN2018088017-appb-000025
n=0~4,使用
Figure PCTCN2018088017-appb-000026
进行信道补偿,得到调度带宽内的补偿后的信道估计结果
Figure PCTCN2018088017-appb-000027
类似的,可以获得PT-RS端口1对应的DMRS端口(5-7)的补偿后的信道估计结果
Figure PCTCN2018088017-appb-000028
n=5~7。使用补偿后的信道估计结果进行用户数据解调。
上一实施例的情景二的实现,与情景一类似,通过索引得到具体的预编码向量然后进行对应处理,在此不再赘述。
综上所述,本公开实施例的相位跟踪参考信号的接收方法,接收端通过接收关联端口信息和预编码信息,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,该接收端就能够根据关联端口信息、预编码信息和映射关系,获取到所有端口的PT-RS和DMRS。其中,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,预编码信息可以指示多种可能的预编码,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影 响PT-RS对相位噪声的补偿性能的问题。
如图9所示,本公开实施例还提供了一种相位跟踪参考信号的传输装置,包括:
发送模块901,用于发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
第一处理模块902,用于根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
其中,所述发送模块901包括:
第一发送子模块,用于通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;
第二发送子模块,用于通过物理层动态信令将所述预编码信息发送至所述接收端。
其中,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
其中,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
表示PT-RS端口i与n个DMRS端口满足公式
Figure PCTCN2018088017-appb-000029
其中,
i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
Figure PCTCN2018088017-appb-000030
表示在子载波k上传输的PT-RS端口i的信号,
Figure PCTCN2018088017-appb-000031
分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
其中,所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
其中,PT-RS端口i的预编码信息是W i;或者是
W i在所有可用预编码向量集合中对应的索引值。
该相位跟踪参考信号的传输装置,发送关联端口信息和预编码信息至接收端,且根据映射关系和预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输后,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,该接收端就能够获取到所有端口的PT-RS和DMRS。其中,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,预编码信息可以指示多种可能的预编码,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
需要说明的是,该装置是应用了上述相位跟踪参考信号的传输方法的装置,上述相位跟踪参考信号的传输方法的实施例的实现方式适用于该装置,也能达到相同的技术效果。
如图10所示,本公开的实施例还提供了一种相位跟踪参考信号的接收装置,应用于接收端,包括:
接收模块1001,用于接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
获取模块1002,用于根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
其中,所述接收模块1001包括:
第一接收子模块,用于通过接收高层信令或者物理层动态信令获得所述关联端口信息;
第二接收子模块,用于通过接收物理层动态信令获得发送端发送的所述预编码信息。
其中,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
其中,所述装置还包括:
第二处理模块,用于根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
其中,所述根据所述PT-RS和所述DMRS,进行信道估计和信道补偿的步骤,包括:
第一信道估计子模块,用于对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;
第二信道估计子模块,用于对每个端口的DMRS分别进行信道估计,得到第二信道估计值;
相位变换估计子模块,用于根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;
信道补偿子模块,用于根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
其中,所述相位变换估计子模块进一步用于将所述第一信道估计值和第二信道估计值代入公式
Figure PCTCN2018088017-appb-000032
分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
Figure PCTCN2018088017-appb-000033
其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
Figure PCTCN2018088017-appb-000034
分别表示DMRS各个端口在子载波k上的第二信道估计值。
该相位跟踪参考信号的接收装置,通过接收关联端口信息和预编码信息,由于系统预定义预编码信息表示的PT-RS端口与DMRS端口的映射关系,该预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息,关联端口信息包括了每个PT-RS端口对应的DMRS端口组,所以,该接收端就能够根据关联端口信息、预编码信息和映射关系,获取到所有端口的PT-RS和 DMRS。其中,因预编码信息表示的PT-RS端口与DMRS端口的映射关系是系统预定义的,预编码信息可以指示多种可能的预编码,所以配置的PT-RS的预编码信息灵活性更高,保证了PT-RS对相位噪声补偿性能,避免了因使用DMRS端口组中的一个固定端口的预编码,易产生因此端口经历的信道特性较差,在接收端具有较低的信噪比,从而影响PT-RS对相位噪声的补偿性能的问题。
需要说明的是,该装置是应用了上述相位跟踪参考信号的接收方法的装置,上述相位跟踪参考信号的接收方法的实施例的实现方式适用于该装置,也能达到相同的技术效果。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
可选地,该程序被处理器执行时还可以实现以下步骤:通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;通过物理层动态信令将所述预编码信息发送至所述接收端。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
表示PT-RS端口i与n个DMRS端口满足公式
Figure PCTCN2018088017-appb-000035
其中,
i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
Figure PCTCN2018088017-appb-000036
表示在子载波k上传输的PT-RS端 口i的信号,
Figure PCTCN2018088017-appb-000037
分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
可选地,所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
可选地,PT-RS端口i的预编码信息是W i;或者是W i在所有可用预编码向量集合中对应的索引值。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
可选地,该程序被处理器执行时还可以实现以下步骤:通过接收高层信令或者物理层动态信令获得所述关联端口信息;通过接收物理层动态信令获得发送端发送的所述预编码信息。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,该程序被处理器执行时还可以实现以下步骤:根据所述PT-RS 和所述DMRS,进行信道估计和信道补偿。
可选地,该程序被处理器执行时还可以实现以下步骤:对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;对每个端口的DMRS分别进行信道估计,得到第二信道估计值;根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
可选地,该程序被处理器执行时还可以实现以下步骤:将所述第一信道估计值和第二信道估计值代入公式
Figure PCTCN2018088017-appb-000038
分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
Figure PCTCN2018088017-appb-000039
其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
Figure PCTCN2018088017-appb-000040
分别表示DMRS各个端口在子载波k上的第二信道估计值。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
如图11所示,本公开的实施例还提供了一种核心网设备,包括存储器1120、收发机1110、处理器1100及存储在所述存储器1120上并可在所述处理器1100上运行的计算机程序;所述处理器1100执行所述程序时实现以下步骤:通过所述收发机1110发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用 的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
收发机1110,用于在处理器1100的控制下接收和发送数据。
可选地,处理器1100还可以实现以下步骤:通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;通过物理层动态信令将所述预编码信息发送至所述接收端。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
表示PT-RS端口i与n个DMRS端口满足公式
Figure PCTCN2018088017-appb-000041
其中,
i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
Figure PCTCN2018088017-appb-000042
表示在子载波k上传输的PT-RS端口i的信号,
Figure PCTCN2018088017-appb-000043
分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
可选地,所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
可选地,PT-RS端口i的预编码信息是W i;或者是
W i在所有可用预编码向量集合中对应的索引值。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件, 即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
如图12所示,本公开的实施例还提供了一种终端设备,包括存储器1220、收发机1210、处理器1200及存储在所述存储器1220上并可在所述处理器1200上运行的计算机程序;所述处理器1200执行所述程序时实现以下步骤:通过所述收发机1210接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
收发机1210,用于在处理器1200的控制下接收和发送数据。
可选地,所述处理器1200还可以实现以下步骤:通过接收高层信令或者物理层动态信令获得所述关联端口信息;通过接收物理层动态信令获得发送端发送的所述预编码信息。
可选地,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
可选地,所述处理器1200还可以实现以下步骤:根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
可选地,所述处理器1200还可以实现以下步骤:对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;对每个端口的DMRS分别进行信道估计,得到第二信道估计值;根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
可选地,该所述处理器1200还可以实现以下步骤:将所述第一信道估计值和第二信道估计值代入公式
Figure PCTCN2018088017-appb-000044
分别计算PT-RS端口 i的正交频分复用OFDM符号l上的相位变化
Figure PCTCN2018088017-appb-000045
其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
Figure PCTCN2018088017-appb-000046
分别表示DMRS各个端口在子载波k上的第二信道估计值。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1230还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
进一步需要说明的是,此说明书中所描述的终端包括但不限于智能手机、平板电脑等,且所描述的许多功能部件都被称为模块,以便更加特别地强调其实现方式的独立性。
本公开实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以 软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
上述范例性实施例是参考该些附图来描述的,许多不同的形式和实施例是可行而不偏离本公开精神及教示,因此,本公开不应被建构成为在此所提出范例性实施例的限制。更确切地说,这些范例性实施例被提供以使得本公开会是完善又完整,且会将本公开范围传达给那些熟知此项技术的人士。在该些图式中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定范例性实施例目的,并无意成为限制用。如在此所使用地,除非该内文清楚地另有所指,否则该单数形式“一”、“一个”和“该”是意欲将该些多个形式也纳入。会进一步了解到该些术语“包含”及/或“包括”在使用于本说明书时,表示所述特征、整数、步骤、操作、构件及/或组件的存在,但不排除一或更多其它特征、整数、步骤、操作、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,一值范围包含该范围的上下限及其间的任何子范围。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种相位跟踪参考信号的传输方法,应用于发送端,包括:
    发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
    根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
  2. 根据权利要求1所述的相位跟踪参考信号的传输方法,其中,所述发送关联端口信息和预编码信息至接收端的步骤,包括:
    通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;
    通过物理层动态信令将所述预编码信息发送至所述接收端。
  3. 根据权利要求2所述的相位跟踪参考信号的传输方法,其中,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
  4. 根据权利要求1所述的相位跟踪参考信号的传输方法,其中,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
    表示PT-RS端口i与n个DMRS端口满足公式
    Figure PCTCN2018088017-appb-100001
    其中,
    i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
    Figure PCTCN2018088017-appb-100002
    表示在子载波k上传输的PT-RS端口i的信号,
    Figure PCTCN2018088017-appb-100003
    分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
  5. 根据权利要求4所述的相位跟踪参考信号的传输方法,其中,
    所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS 端口i对应的DMRS端口组中的一部分DMRS端口。
  6. 根据权利要求4所述的相位跟踪参考信号的传输方法,其中,PT-RS端口i的预编码信息是W i;或者是
    W i在所有可用预编码向量集合中对应的索引值。
  7. 一种相位跟踪参考信号的接收方法,应用于接收端,包括:
    接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
    根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
  8. 根据权利要求7所述的相位跟踪参考信号的接收方法,其中,所述接收关联端口信息和预编码信息的步骤,包括:
    通过接收高层信令或者物理层动态信令获得所述关联端口信息;
    通过接收物理层动态信令获得发送端发送的所述预编码信息。
  9. 根据权利要求8所述的相位跟踪参考信号的接收方法,其中,
    所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
  10. 根据权利要求7所述的相位跟踪参考信号的接收方法,还包括:
    根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
  11. 根据权利要求10所述的相位跟踪参考信号的接收方法,其中,所述根据所述PT-RS和所述DMRS,进行信道估计和信道补偿的步骤,包括:
    对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;
    对每个端口的DMRS分别进行信道估计,得到第二信道估计值;
    根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;
    根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
  12. 根据权利要求11所述的相位跟踪参考信号的接收方法,其中,所述 根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值的步骤,包括:
    将所述第一信道估计值和第二信道估计值代入公式
    Figure PCTCN2018088017-appb-100004
    分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
    Figure PCTCN2018088017-appb-100005
    其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
    Figure PCTCN2018088017-appb-100006
    分别表示DMRS各个端口在子载波k上的第二信道估计值。
  13. 一种相位跟踪参考信号的传输装置,应用于发送端,包括:
    发送模块,用于发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
    第一处理模块,用于根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
  14. 根据权利要求13所述的相位跟踪参考信号的传输装置,其中,所述发送模块包括:
    第一发送子模块,用于通过高层信令或者物理层动态信令将所述关联端口信息发送至所述接收端;
    第二发送子模块,用于通过物理层动态信令将所述预编码信息发送至所述接收端。
  15. 根据权利要求14所述的相位跟踪参考信号的传输装置,其中,所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
  16. 根据权利要求13所述的相位跟踪参考信号的传输装置,其中,所述系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系为:
    表示PT-RS端口i与n个DMRS端口满足公式
    Figure PCTCN2018088017-appb-100007
    其中,
    i为PT-RS端口号,且i为整数,n为正整数,W i为1*n的预编码向量,p 0…p n-1分别表示DMRS各个端口号,
    Figure PCTCN2018088017-appb-100008
    表示在子载波k上传输的PT-RS端口i的信号,
    Figure PCTCN2018088017-appb-100009
    分别表示在子载波k上传输的DMRS端口p 0…p n-1的信号。
  17. 根据权利要求16所述的相位跟踪参考信号的传输装置,其中,
    所述n个DMRS端口可以是发送端配置的全部的DMRS端口,也可以是与PT-RS端口i对应的DMRS端口组中的全部的DMRS端口,或者是与PT-RS端口i对应的DMRS端口组中的一部分DMRS端口。
  18. 根据权利要求16所述的相位跟踪参考信号的传输装置,其中,PT-RS端口i的预编码信息是W i;或者是
    W i在所有可用预编码向量集合中对应的索引值。
  19. 一种相位跟踪参考信号的接收装置,应用于接收端,包括:
    接收模块,用于接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;
    获取模块,用于根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
  20. 根据权利要求19所述的相位跟踪参考信号的接收装置,其中,所述接收模块包括:
    第一接收子模块,用于通过接收高层信令或者物理层动态信令获得所述关联端口信息;
    第二接收子模块,用于通过接收物理层动态信令获得发送端发送的所述预编码信息。
  21. 根据权利要求20所述的相位跟踪参考信号的接收装置,其中,
    所述物理层动态信令的比特位数可由高层信令配置或者预定义为一个固定值。
  22. 根据权利要求19所述的相位跟踪参考信号的接收装置,其中,还包括:
    第二处理模块,用于根据所述PT-RS和所述DMRS,进行信道估计和信道补偿。
  23. 根据权利要求22所述的相位跟踪参考信号的接收装置,其中,所述根据所述PT-RS和所述DMRS,进行信道估计和信道补偿的步骤,包括:
    第一信道估计子模块,用于对每个端口的PT-RS分别进行信道估计,得到第一信道估计值;
    第二信道估计子模块,用于对每个端口的DMRS分别进行信道估计,得到第二信道估计值;
    相位变换估计子模块,用于根据所述预编码信息、所述映射关系、所述第一信道估计值和所述第二信道估计值,计算每个PT-RS端口上的相位变化估计值;
    信道补偿子模块,用于根据所述相位变化估计值,对每个PT-RS端口对应的DMRS端口组的第二信道估计值进行补偿,得到信道估计结果值。
  24. 根据权利要求23所述的相位跟踪参考信号的接收装置,其中,所述相位变换估计子模块进一步用于将所述第一信道估计值和第二信道估计值代入公式
    Figure PCTCN2018088017-appb-100010
    分别计算PT-RS端口i的正交频分复用OFDM符号l上的相位变化
    Figure PCTCN2018088017-appb-100011
    其中,P k,l表示PT-RS端口i在OFDM符号l子载波k上的第一信道估计值,
    Figure PCTCN2018088017-appb-100012
    分别表示DMRS各个端口在子载波k上的第二信道估计值。
  25. 一种核心网设备,包括:存储器、收发机、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现以下步骤:通过所述收发机发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述映射关系和所述预编码信息,确定 每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
  26. 一种终端设备,包括:存储器、收发机、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现以下步骤:通过所述收发机接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
  27. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现以下步骤:发送关联端口信息和预编码信息至接收端;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述映射关系和所述预编码信息,确定每个PT-RS端口所对应的目标子载波,将每个PT-RS端口映射至各自的目标子载波,进行相位跟踪参考信号传输。
  28. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现以下步骤:接收关联端口信息和预编码信息;其中,所述关联端口信息包括每个相位跟踪参考信号PT-RS端口对应的解调参考信号DMRS端口组;所述预编码信息为本次数据发送中每个PT-RS端口所采用的预编码信息;且系统预定义所述预编码信息表示的PT-RS端口与DMRS端口的映射关系;根据所述关联端口信息、所述预编码信息和所述映射关系,获取所有端口的PT-RS和DMRS。
PCT/CN2018/088017 2017-06-15 2018-05-23 相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置 WO2018228153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710453986.1A CN109150429B (zh) 2017-06-15 2017-06-15 相位跟踪参考信号的传输方法、接收方法及装置
CN201710453986.1 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018228153A1 true WO2018228153A1 (zh) 2018-12-20

Family

ID=64660082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088017 WO2018228153A1 (zh) 2017-06-15 2018-05-23 相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置

Country Status (2)

Country Link
CN (1) CN109150429B (zh)
WO (1) WO2018228153A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210258200A1 (en) * 2018-06-07 2021-08-19 Lg Electronics Inc. Method for transmitting or receiving phase tracking reference signal between terminal and base station in wireless communication system and apparatus supporting same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541526B (zh) * 2019-01-21 2022-02-25 华为技术有限公司 参考信号的传输方法及装置
CN111818628B (zh) * 2019-04-10 2022-04-29 大唐移动通信设备有限公司 数据传输方法和设备
WO2021056555A1 (zh) * 2019-09-29 2021-04-01 富士通株式会社 相位跟踪参考信号的传输方法及装置
CN113132284B (zh) * 2020-01-16 2022-04-26 大唐移动通信设备有限公司 一种载波相位跟踪方法及装置
CN111245591B (zh) * 2020-01-21 2023-04-07 展讯半导体(南京)有限公司 参考信号发送和接收方法及装置、存储介质、基站、终端
CN112653497B (zh) * 2020-12-21 2021-11-30 北京航空航天大学杭州创新研究院 一种降低mimo多通道相位噪声影响的信号收发方法
CN114826839A (zh) * 2021-01-27 2022-07-29 大唐移动通信设备有限公司 相位噪声补偿方法、终端设备及网络设备
CN117063430A (zh) * 2022-03-14 2023-11-14 北京小米移动软件有限公司 确定上行ptrs端口关联关系的方法、装置、介质及产品
CN117063574A (zh) * 2022-03-14 2023-11-14 北京小米移动软件有限公司 确定上行ptrs端口关联关系的方法、装置、介质及产品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560969B1 (en) * 2002-04-05 2003-05-13 Ge Medical Systems Global Technology, Co., Llc Pulse tube refrigeration system having ride-through
US10798684B2 (en) * 2011-09-30 2020-10-06 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
CN103973397B (zh) * 2013-01-29 2019-01-08 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATIONAL INSTRUMENTS: "Discussion on Explicit and Implicit Signaling for PT -RS", R1-1708272, 3GPP TSG RAN WG1 MEETING #89, 19 May 2017 (2017-05-19), XP051261400 *
NTT DOCOMO, INC.: "Discussion on PT -RS", RL-1705726, 3GPPTSG RAN WG1 MEETING #88BIS, 7 April 2017 (2017-04-07), XP051243841 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210258200A1 (en) * 2018-06-07 2021-08-19 Lg Electronics Inc. Method for transmitting or receiving phase tracking reference signal between terminal and base station in wireless communication system and apparatus supporting same
US11558234B2 (en) * 2018-06-07 2023-01-17 Lg Electronics Inc. Method for transmitting or receiving phase tracking reference signal between terminal and base station in wireless communication system and apparatus supporting same

Also Published As

Publication number Publication date
CN109150429B (zh) 2020-10-20
CN109150429A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2018228153A1 (zh) 相位跟踪参考信号的传输方法和传输装置、及其接收方法和接收装置
US10862644B2 (en) Method and apparatus for phase compensation using phase-tracking reference signal
JP2020503782A (ja) 参考信号の送信方法、位相雑音の決定方法および関連装置
CN109586868B (zh) 信息传输方法、装置、发送设备及计算机可读存储介质
CN110661601B (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2021219060A1 (zh) 信息指示方法、信息确定方法、载频信息确定方法、通信节点、终端及介质
US11463219B2 (en) Reference signal transmission method, reference signal transmission device, base station and user equipment
WO2019095701A1 (zh) 相位跟踪参考信号的发送方法及装置
WO2017050086A1 (zh) 信道参数的配置获取方法、装置及系统
US20200266865A1 (en) Interference measurement method, user equipment and network side device
US20220070895A1 (en) Information transmission method, apparatus and device
WO2021143897A1 (zh) 参数信息确定方法、通信节点和存储介质
WO2019137203A1 (zh) 控制信息传输资源的上限的确定方法、装置及通讯设备
WO2022242444A1 (zh) 信道状态信息传输方法、装置、通信节点及存储介质
WO2022193895A1 (zh) 信道状态信息报告方法、信道状态信息接收方法、通信节点及存储介质
WO2023050154A1 (zh) 面向多传输接收点trp的传输配置方法及装置
WO2023279954A1 (zh) 信道状态信息报告、接收方法、通信节点及存储介质
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023078177A1 (zh) 信息传输方法、设备和存储介质
WO2024026797A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
CN111147162B (zh) 一种测量信号的传输方法、装置及设备
WO2024130523A1 (zh) 通信方法以及通信装置
WO2023206171A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
US11128351B2 (en) Uplink data transmission method, terminal, and network side device
CN111052825B (zh) 一种信道解调方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818561

Country of ref document: EP

Kind code of ref document: A1